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ABSTRACT

Quantum communication is an important ingredient in future information pro-
cessing technologies and transfers a quantum state from one location to an-
other. There are three types of Quantum communication protocols: QKD
(Quantum Key Distribution), QSDC (Quantum Secret Direct Communica-
tion), and QSS (Quantum Secret Sharing). Here we are implementing some
protocols from QSDC and QQSS in ideal simulators, noisy simulators, and real
backends with IBM Qiskit. Also, we are implementing some quantum attacks
(e.g. intercept-and-resend, entangleuand measure, DoS, etc.). We are discussing
security against attacks and the effect of hardv»are/ simulator noise before as
well as after applying some error mitigation techniques.
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Chapter 1

Introduction

1.1 World of Quantum

1.1.1 Motivation

In recent years, technology is growing very fast. Lots of information is required to process in the field of Cyber Security,
Artificial Intelligence (AI), Machine Learning, Deep Learning, etc. The computational requirements have skyrocketed with
the advent of the processing of Big Data. High-Performance Computing (HPC) and parallel computing technigues boosted
computational complexity. But what about if we can achieve some techniques to process an infinite number of information
at once? Quantum computing provides one such possibility by storing information as quantum data and thereby increasing
computational power. Shor’s algorithm [1] is one significant piece of evidence for this. Along with this high computational
power, quantum computing brings some challenges for us, especially in the field of cyber security. In the field of eryptology,
most security protocols are designed based on the computational power of the classical computer. But with its very high
computational power quantum computing breaks the security in many cases. So, in the field of quantum computing, increasing
the computational power is not the only thing to concentrate on. We have to focus on security also.

1.1.2 Postulates of Quantum Mechanics

Quantum computation is developed over three postulates of quantum mechanics. They are:

s Postulate 1. Pure state of a quantum system is represented by unit vectors of a Hilbert space. For any two-state
o) ) and o, 3 € C, afd) + 3| is also a quantum state.

s Postulate 2. (Evolution) Time evolution of a quantum system is governed by unitary operation.

o Postulate 3. Any physical quantity associated with a quantum system can be represented by a Hermitian operator
acting on the Hilbert space. These physical quantities are called ‘observables’.

e Postulate 4. (Measurement Principle) Measurement of a quantum system is an interaction that measures some
observables of the system. The followings are the properties of measurement:
— Measurement outcome will always be one of the eigenvalues of the observable A.

— (Born Rule) The probability of obtaining a particular eigenvalue A; of the observable A for some quantum system
[/} is given by the probability distribution Ploutcome is  A\] = |(X; [)|%, where |);) is the normalized eigenvector
of A corresponding to the eigenvelue A; and (A = |1

— (Wave Function Collapse) During measurement system undergoes collapse of wave function and the post measure-
ment state becomes the normalized eigenstate |X;) corresponding to the eigenvalue A;.

1.1.3 Quantum States and its Representations

Above we saw that a quantum can state can be realized as a unit vector in a Hilbert space. But there is another realization
of quantum states as a density matrix.

Definition 1 (Eensity Matrix) A density matriz p is a linear operator acting on a Hilbert space with following properties:




e pis Hermitioan (p = p')
s p is normalized (trp=1)
e p is positive operator (p > 0).

Definition 2 (Pure state) A state |y} is called a pure state if |1f) is normalized vector. In this case density matriz is

defined as p = |} {¢|.

Definition 3 (Ensemble) Suppose a quantum system is one of several states [1);) with respective probabilities p;. Then we
shall call {|yn),pi} as an ensemble of states.

Definition 4 (Density matrix of quantum state) Let us consider a quantum state as an ensemble {|v:), pi}. Then the
density matriz of the above system is defined as
p= Z pilthi) (vl
i

Note that, if p is a pure state then trp = 1.
Definition 5 (Mixed state) If a system p is such that tr p® < 1, then we call that state a mized state.

Definition 6 (Product state) Let us consider a quantum system H containing two subsystem A, B. Then a state |\)) zp €
H is called a product state if |{)ap = [(V)a @ [W0) g, where {0} 4, W) g are two quantum states in A, B respectively. For any
product state |a) @ |b) we write it as |ab).

Definition 7 (Entangle state) (For a system made of two subsystems) If a state is not a product state then it is said to
be an entangled state.

1.1.4 Quantum Computation

We have given a brief introduction to quantum mechanics and quantum states. Now we will briefly discuss quantum com-
puting. In quantum computation, the main components are qubits, quantum gates, quantum circuits, and the measurement
of quantum qubits.

Qubits

Qubit is basic unit of gquantum information in guantum computation. It corresponds a quantum system in two dimen-
sional Hilbert space. We can also think about d-dimensional generalization, called qudits. Since qubits are associated
with Hilbert space, basis of that space is said to be basis of the qubit also. Two usefull bases in quantum computation
are computational basis and diagonal or Hadamard basis. For a single qubit, computational basis is {|0),[1)}, where,

o =[] -m=]}

1} and Hadamard basis is {|4}, =)}, where |+) = (]0) + |1})/+/2. For two qubit, computational can be
written as {|00), |01}, |10}, |11} }.

Quantum Gates

According to the second postulate in §1.1.2, quantum evolutions are operations of unitary operators. In quantum computation,
those operators are called quantum gates which are applied to qubits to evolve the system. If a gate is applicable on a single
qubit then it is nothing but a 2 x 2 unitary operator. Some common single-qubit gates are I, X, Y, Z. These are called Pauli
gates. Except these two useful single-qubit gates are T and Hadamard. A useful two-qubit gate is C'X (controlled-X), where
one qubit is the control qubit and another qubit is a target qubit where an X gate will be applied if the control qubit is in
state |0}.

Measurement of Qubits

To retrieve the information after processing we have to measure qubits. In IBM qiskit only allowed measurement is of the
observable Z, which can be done by measuring qubits on a computational basis. So after measurement, we get measurement
outcome as 0 or 1 and the state collapses to |0} or |1} respectively. If we measure multiple qubits we shall get a sequence
of classical bits as an outcome and the system will be collapsed in state @{|0},|1}}. If we require to measure any other
observable then we have to change the basis accordingly.




Quantum Circuits

A quantum circuit is a collection of quantum registers (possibly along with classical registers), unitary gates, and quantum
measurement operations, where quantum registers can be thought of as a quantum version of classical registers corresponding
to the qubits. In IBM qiskit all quantum registers are initially set in state |0). To perform quantum computation, we have
to break the computation into several instructions. Depending on these instructions we create a quantum circnit by applying
appropriate gates. Depending on our final requirement we measure proper observable to get the outcome.

1.2 Noise in Quantum Computation

oday’s quantum computers fall under the category of NISQ (Noisy-Intermediate Scale Quantum) [2] devices, which have
few qubits and are noisy. Generally, noises are came at the time of preparing a state, applying gates as well as at the time
of measurement. We can think of different types of quantum noises. Here we are discussing a few of them.

1.2.1 Types of Noise
Bit-flip Noise

Bit-flip error is one kind of Pauli error where with a small probability, p, X gate and with probability 1 — p identity gate is
being applied. Since here error is due to flipping the qubit on computational basis, it is called bit-flip error.

Phase-flip Noise

Phase-flip error is another kind of Pauli error where with a small probability, p, Z gate and with probability 1 — p identity
gate is being applied. Here error is due to flipping qubits on Hadamard basis which is the same as flipping the phase on
computational basis. And so it is called phase-flip error.

Depolarizing Noise
The depolarizing channel is defined as: E(p) = (1 — A)p + )\Tr[p]% with 0 < A < 4" /(4" —g where A is the depolarizing
error parameter and n is the number of qubits.

o If A\ =0 this is the identity channel E(p) = p

e If A =1 this is a completely depolarizing channel E(p) = 1/2"

o If A=4"/(4" — 1) this is a uniform Pauli error channel: E(p) =3, PjpP; /(4" — 1) for all P;! = 1.

Thermal Relaxation Noise

Physical qubits are photons in some excited or ground state. Any particle always wants to stay in an equilibrinm state.
To return to an equilibrium state photons release energy. This results in an error in quantum computation. This error is
called thermal relaxation error. There are two types of relaxation — one is decaying of amplitude in the wave function, and
another is decaying of phase. If 77 is decay constant for amplitude and 75 is same for phase then the relation between them
is T, < 273 [24].

1.2.2 Quantum Error Correction and Error Mittigation

Since quantum operations are noisy, to get the appropriate result we have to correct the error or at least reduce the error
significantly. There are some proposed ideas for this. There are several error-correcting codes like bit-flip code, phase-flip
code, Shor code, stabilizer code, etc. But to perform error correcting operations we need lots of qubits. Since we have limited
resources (access to IBM quantum machine with 5-qubit is open to all), we can’t perform quantum error correction in the
real backend. So we used another technique to reduce quantum error, called error mitigation.




Quantum Error Mitigation
We can divide error mitigation in two parts — measurement error mitigation and gate error mitigation.
s Step 1 [Measurement error mitigation]: The idea behind this mitigation is as follows [6]:

— If n qubit is measured then 2™ outcomes are possible. Create circuits for each outcome (with measurement) and
execute them. The output will be noisy. Create a linear operator as a matrix (say, M) using these noisy outputs.
Then clearly if Cigew and i be the ideal and noisy output respectively then we have C, sy = MCigear.
Therefore we will get ideal output from noisy one by applying M ! on Cpiey 88 Cigear = M Clrpisy-

Note: To prepare circuits for different outcomes we use some one qubit gates which are also noisy, so Cjgeq is
not properly ideal.

¢ Step 2 [Gate error mitigation]: By looking carefully one can see that the idea behind measurement error mitigation
works if measurement is done at the end only. So that idea is not applicable here. To perform gate error mitigation
there are several protocols like zero noise extrapolation (ZNE), probabilistic error cancellation (PEC), etc. Here we
will discuss the unitary folding method of ZNE (8] which we used in this thesis work. The idea of ZNE is as follows:

— Noise-scaling: Let L be the cirenit we prepared to perform some quantum computation. Then by replacing the
circuit with LLYL we shall be able to scale up the noise. If A; > 1,4 > 1 are scalling parameter, then prepare
circnits for {A;};. Execute all the circuits and collect the expected value. There are two versions of noise-scaling
— 1) Non-adaptive, where all A; are chosen beforehand; 2) Adaptive, where Ay is chosen beforehand (typically set
to 1) and remaining A; are chosen by the ZNE algorithm itself.

— Extrapolation: Fit above expected values in best fitted curve. Let E(A) be the curve. Then put A = 0 to get
required result as £(0).
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Chapter 2

Quantum Secret Sharing

2.@ Introduction

Secret sharing was independently proposed by Adi Shamir [3] and George Blakley [4] in 1979. It is a method to distribute a
‘secret’ among a group in such a way that no individual will be able to recover the secret with the information that individual
has, but with information from a sufficient number of individuals, the secret can be reconstructed. In a secret sharing, there
is one ‘dealer’ who shares the secret among n parties. If any m parties will reconstruct the secret using their ‘shares’ but less
than m parties will not reconstruct the secret then we will call it a ‘(m,n)-secret sharing scheme’. Clearly if m = 1 then it
is a trivial sharing.

In 1999 Hillery et. al. [5] proposed the first Quantum Secret Sharing (QSS) scheme which was a quantum version of
the classical secret sharing scheme. They proposed two protocols, one is to share classical secrets using quantum states and
another is to split quantum information. Both the protocols were (2, 2)-secret sharing. In the same paper, they proposed
one possible generalization of the first protocol (sharing classical message) up to (3, 3)-secret sharing. Then Xiao et. al. [9]
proposed a (n,n)-secret sharing protocol which is a generalized version of Hillery’s first protocol. In the last 20 years Zhang,
Guo, Panigrahi, Hsu, Liao [12, 13, 10, 11, 14, 15] proposed some more QSS schemes.

Here we Implemented QSS protocols proposed by Hillery et. al. [5] with IBM giskit. In 2020, Dintomon et. al. [16]
implemented first protocol in IBMQ-5-Tenerife. We implemented both the protocols in several IBM backends as well as in
simulators. Then checked their security against different attacks. Also, we created a noise model using parameters from
‘ibme_jakarta’ to check the effect of gate errors. Then we applied error mitigation on IBM Backend result as well as noisy
simulator result. We also implemented the generalized QSS proposed by Li Xiao et. al. [9].

2.2 Splitting of Classical Message

In the paper, [5] author proposed a protocol based on Greenberger-HorneZeilinger (GHZ) state. There are three parties
(one dealer, and two individual receivers) involved in this protocol, each has one qubit from the above entangled state. They
measured their qubits randomly and then two individuals together construct the dealer’s secret.

2.2.1 Brief of the pr:@ocol
e Step 1: Alice (dealer), Bob, and Charlie each have one particle from a GHZ triplet that is in state
1

=

(000) + [111))

e Step 2: They each choose at random a direction (x or y) and measure their particle in that direction and announce
the directions in which they have measured.

e Step 3: They throw away the results where an odd number of measurements is performed in the y direction.

e Step 4: Bob and Charlie derive the secret (result) of Alice depending on the measurements of their two qubits and
the mathematical details provided below.
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Let us define eignstates of x and y as

1 1
40 = 5=(0)+ 1) =) = 5=(0) 1)
| +y) = %um Lil) |—y) = %um i)

Then |¥) becomes

) = 5 [+ @)l + ) + |~ 2)el 2 )|+ 2)a) + (| + 2 B e e
:%[(|+y>c|+f>b+|_y>c|_z>b)(|_y>a)+(|+y>c|_$>b+|_y>c|+x>b)(|+y>a)]
:%[(|+x>r_|+3}'>b+|_'r>c|_%(l_y>a)+(|+‘r>c|_y>b+|_I>c|+y>b)(|+y>a)]
=%[(|+y>a|+y>b+|—y>c|—y}b)(|—x>a)+(|+y}r_|—y}b+|—y>c|+y}b)(|+x}a)]

where a, b, ¢ in subscript denotes Alice, Bob and Charlie’s qubit respectively. From this we can make measurement outcome
table 2.1:
Charlie
‘|+g |—=) [+w) -9
|+x) | [+2) |=2) |[-v [+u)
S - | l-x [+ [+u [-w)
A +w | l=w [+y |-2) [+2)
[=w) | I+ [=w [+2) |-

Table 2.1: Relation between outputs (QSS)

This table shows what will be Alice’s output depending on Charlie and Bob’s output. Select the row corresponding to
Bob's measurement output and the column corresponding to Charlie’s measurement output. Alice’s measurement output is
given by the intersection of the above row and column. Also notice that an odd number of y directions of measurements are
not there in the table and they are thrown away in step 3.

2.2.2 Implementation with Qiskit

We imunplemented above protocol with IBM qiskit. Here is one of the circuits and corresponding histogram:

032
axre
Ao _“7
a1 o2

0234
024

Probabilities
[=]
=

gz

N vl.ﬂ
o1

oog

000

§ 5 g $
= ~ -

The first part is the creation of the GHZ triplet and the last part is measurement. Here everyone measures on Hadamard
() basis.
2.2.3 Attack Implementation

Since there is no communication except sharing the entanglement, the attack is only possible at the time of entanglement
sharing. We implemented three common attacks performed by Eve: Intercept-and-resend, Entangle-and-measure, and Daniel-
of-service (DoS).
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Intercept-and-resend attack

In this case, some eavesdropper creates interceptions and resends corresponding resulting qubits to the destination. Then,
Alice, Bob, and Charlie follow the protocol. To create interception we used measurement on a randomly chosen z (com-
putational) or x (Hadamard) basis. We ran the protocol 500 times and got the following plot of interception detection
rate:

=6
wa
w03 J
500

g

Awertage e laverage on number of berabon]

1 m m i w0 s
Nummber of running the protocal

Figure 2.1: Intercept-and-resend-attack (QSS)

This graph shows how the average error (due to interception) changes with the number of iterations. The average error
we got was 50.0666% with a variance of 1.2960.
Here is one of the histogram

0130 0129 0131
0124 0122 0125 0125
0.12 0115
w
o
5 0.08 1
O]
K
&
0.04
0.00
=] ~ =] ~ ~ =] ~
§ § § § § § 37 4

Entangle-and-measure attack

At first, the GHZ triplet will be created according to the protocol. Then to create entanglement for Eve we used a controlled-
NOT gate controlled by Bob and Charlie’s qubit and target as two different ancilla qubits.
We ran the protocol in 'qasm_simulator’ 500 times and generates following graph:

£
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B
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] 100 £ £ e 0
Murmbes af runng (e protoca

Figure 2.2: Entangle-and-measure-attack (QSS)
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This graph shows how the average error (due to entanglement) changes with the number of iterations. The average error

we got was 49.9950% with a variance of 0.0100.
Here is one of the histogram

0137
014 013t

gl 012 . 0123 .
012§

Probabilities

0.04

DoS attack

After creating the GHZ triplet some eavesdropper applies an identity operator or some random unitary operator on the
qubits both with the probability of 0.5. Then the remaining part of the protocol will be continued. We know that any 2 x 2
complex unitary matrix can be represented as

[ cos(E) —e sin(§)
U(6,¢,4) = (e"“b sin(%) eildtd) cos(%)

where 8, ¢, A are three parameters. This concept is used in the above code.
We ran the protocol in 'qasm_simulator’ 500 times and generates following graph:
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Figure 2.3: DoS attack (QSS)

This graph shows how the average error (due to attack) changes with several iterations. The average error we got was
24.9481% with a variance of 4.1115.
Here is one of the histogram
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2.2.4 Execution on IBM backends
Choosing Initial Layout

In real backends maintained by IBM, not all qubits are connected with each other. There is some specific coupling map (see
fig. 2.4 for T-qubit backends). If we apply some 2-qubit gate between two qubits that are not connected then some swap
gate will be applied to change the positions of the wvirtual qubits. So we have to avoid this type of 2-qubit gates. Also, the
noise of the qubits, measurements as well as coupling between qubits is not the same. So we have to use those qubits and
couplings which are less noisy. Roughly, in IBM backends a 2-qubit gate has a 10% error of measurement, and a single-qubit
gate has a 1% error of measurement. So we will focus on those qubits which have less measurement error and those coupling
which has less ‘CX’" error (controlled-NOT gate error). Also, we will try to avoid swap gates. All of these can be done by
choosing a proper initial layout for our circuit. The initial layout is a vector denoting a one-one map between virtual qubits
in our circuit and physical qubit in the backend. At the time of transpilation, this vector is used to select the physical qubits
from the backend where the transpiled circuit will be assembled. Here we used the initial layout as [5, 3, 6] for ‘ibmq_jakarta’

Figure 2.4: Layout of IBM backend ‘ibmg_jakarta’ [Circle denotes qubits, line denotes coupling, color denotes error; white:
high error. blue: less error.|

which means Alice, Bob, and Charlie’s qubit will be mapped to qubit 5, 3,6 in the backend respectively.

Execution

We executed the protocol on four 7-qubit IBM backends: ‘ibm_perth’, ‘ibmq_lagos’, ‘ibmq_casablanca’, ‘ibmq_jakarta’. Error
statistics for 100 iterations on above backends are as follows:

ibm_perth ibmgq_lagos ibmg_casablanca ibmgq_jakarta
mean error 0.2397 0.0649 0.0979 0.1152
variance of error 0.5998 1.2369 0.4330 1.2198

Here is the transpiled (due to backend configuration) circuit (left) [original circuit is given in right as reference]:

[

ancillag » 0

ancilla; = 1 qU - H - —— ————H _E—

ancillaz = 2

EwEl g @ .

ancilla; » 4

q2 H
R R e e B e e > E Jl
3 w 0 1 2
ar6 B X — R & C
meas.‘ y 0 y 1 L X

The histograms from four backends are:
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Figure 2.5: ‘ibm_perth’ histogram Figure 2.6: ‘ibmg_lagos’ histogram
Figure 2.7: ‘ibmq_casablanca’ histogram Figure 2.8: ‘ibmq_jakarta’ histogram

Here is the graph how average error changes over iteration number in four backends:

Figure 2.9: “ibm_perth’ graph Figure 2.10: ‘ibmq_lagos’ graph

Figure 2.11: ‘ibmq_casablanca’ graph Figure 2.12: ‘ibmq_jakarta’ graph

2.2.5 Simmulation with Noise Models

Thermal Relaxation error is the most realistic error to create a realistic noise model. But thermal relaxation error is a
coherent error, whereas a real machine generates incoherent errors also. So in our model, we will use thermal relaxation
error followed by depolarising error (which is an incoherent error) as suggested in qiskit documentation [7]. So let us deduce
depolarizing g()r parameters in presence of Thermal Relaxation error.

Denoting depolarizing channel as E_dep = (1 — p) * [ + p* D, where [ is the identity channel and D is the completely

depolarizing channel, we have
1 —error :g(f:}_dep # B relax) = (1 — A\) = F(I * Erelaz) + A+ F(D % E_relax)
=(1—-A)* F(Erelaz) + Ax F(D)
= F(E_relaz) — X * (dim = F(E_relax) — 1) /dim

16




where F' denotes the average fidelity.

Thus we get,
error — relax_in fid

(2.1)

depol-param = dim « dim * relax_fid — 1

where

depol_param = depolarizing error parameter A

dim = dimension

error = gate error (from backend)

relaz_infid = gate infidelity due to thermal ralexation error

relax_fid =1 — relax_infid

Thus we created a noise model using parameters from ‘ibmg_jakarta’ and (2.1).
We executed our circuits with this noise model and got average error as 12.7945% whereas in real backend error was
11.52%. Here is the graph how average error changes with iteration number:
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Figure 2.13: Noisy simulator graph {(QSS)

Histogram for some random circunit is given by
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2.2.6 Error Mitigation

Now our task is to mitigate the error. To do so we are focusing on measurement error mitigation and circnit error mitigation.
Let us see the scaled circuits:
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Figure 2.15: 3X scalling
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Figure 2.16: 5X scalling

We executed the protocol with the above error mitigation technique on ‘ibmq_jakarta’.
Here is the graph how average error changes over iteration number (total 100 iteration):

—_—
_‘“——_______,__F

S

Murmizer o rurnng the Bt

] LY

Figure 2.17: Backend mitigated error graph ((QSS)




The average error is reduced from 11.5235 (without mitigation) to 1.9231% (with mitigation).
Histogram without mitigation and with mitigation:
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Figure 2.18: Backend error mitigation histogram (QSS)
On noisy simulator
We executed the protocol with the above error mitigation technique on a noisy simulator (see §2.2.5).
Here is the graph how average error changes over iteration number (total 100 iteration):
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Figure 2.19: Noisy simulator mitigated error graph (QSS)
The average error is reduced from 12.7945% (without mitigation) to 1.2931% (with mitigation).
Histogram without mitigation and with mitigation:
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Figure 2.20: noisy simulator error mitigation histogram (QSS)
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2.3 Quantum Information Splitting

This protocol is also proposed by Hillery et. al. [5] and uses the GHZ state. Three parties (one dealer, and two individual
receivers) are involved here. Dealer has a secret gquantum state |V} to share. They will perform a modified version of
teleportation protocol to construct the secret at any one individual’s end.

2.3.1 Brief of the protocol

e Step 1: Alice, Bob, and Charlie each have one particle from a GHZ triplet (A, B, C' respectively) that is in state
€
V2

Alice has one more particle (A’ say) in some arbitrary quantum state |[W) 4 = |0} + 3|1).

|2*) anc = —=(|000) + [111))

e Step 2: Alice measures her two qubits on a Bell basis and chooses Bob or Charlie randomly and declares the ontput.
Say, Bob is chosen, then |W} will be prepared in Charlie’'s qubit.

e Step 3: Charlie (not chosen by Alice) applies an X-gate depending on the measurement output of Alice’s qubit A and
a Z-gate depending on the measurement output of particle A" when the measurement outputs are one (similar to the
teleportation protocol). Now Bob and Charlie produce the state |¥) together at Charlie’s end.

e Step 4: Bob (chosen by Alice) measures his qubit on a Hadamard basis. Bob sends his measurement output to Charlie.
Charlie applies a Z-gate depending on the measurement output of Bob when the measurement output is one. Now
Charlie has the state [\W}.

2.3.2 Implementation with Qiskit

Here is the circuit when Alice chooses Bob at step 2: In the first part we are initializing A" and in the last part to verify

state : — [} (0.816 — 045413, —0.3546 — 0.04612,) |

i
b

]

hob : [H]
charlie : 4

|
T
|
alice : T E
|
|
|
|

|[EL3]
[H}-b{n s : U;,[::_?314.—:r_—[).r.:5?*z)

whether | ¥} is created correctly or not at Charlie’s end we applied the inverse of the gate we used to initialize A'. Measurement
output 0 with probability 1 means the protocol works correctly.
If Alice chooses Charlie at step 2 then the circuit will be as following:

meas ©

| | I | |
state : —||..--}(—n..—'.7-m +0.41967, —n_[‘.nm—n.n?nzmj]} ; . @ . . .
alice I 1} I ’L I ! !
' [ =] l (e ] ’L | |
bob : ! & | {1} | 1 Us (1.558, —, 2.308)

charlie : 1 1 1 1 1
| I I I I

meas ; +

2.3.3 Attack Implementation
Intercept-and-resend attack

We ran the protocol 600 times and got the following plot of interception detection rate:
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Figure 2.21: Interception-and-resend-attack graph (QLS)

This graph shows how the average error (due to interception) changes with the number of iterations. The average error
we got was 47.832%.
Here is histogram for one of the circuits
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Entangle-and-measure attack

We ran the protocol in 'gasm_simulator’ 500 times and generates following graph:
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Figure 2.22: Entangle-and-measure-attack graph (QIS)

This graph shows how the average error (due to entanglement) changes with the number of iterations. The average error
we got was 33.376%.

DoS attack

We ran the protocol in 'qasm_simulator’ 600 times and generates following graph:
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Figure 2.23: DoS attack graph (QIS)

This graph shows how the average error (due to attack) changes with several iterations. The average error we got was

25.037%.

2.3.4 Execution on IBM backends

We executed the protocol on ‘ibmq_jakarta (1.0.25)" [backend version is inside the parenthesis]. Here is the graph how average
error changes over iteration number (total 100 iteration):

Figure 2.24: ‘ibmgq_jakarta’ error graph (QIS)

The average error we received is 10.1752% with a variance of 0.5857.
Here is histogram for one circuit
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2.3.5 Simmulation in Noise Model

The graph how average error changes over iteration number (total 100 iteration) on the noisy simulator generated in section
§2.2.5:
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Figure 2.25: Noisy simulator error graph (QIS)

The average error we received is 9.6153% with a variance of 0.0175. Time is taken in this simulation (9800 circuits): 56
hours 46 minutes 18.695701122283936 seconds.
Here is histogram for one circuit
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2.3.6 Error Mitigation
On IBM Backend

We executed the protocol with the above error mitigation technique on ‘ibmq_jakarta (1.0.25)" [backend version is inside the
parenthesis|.

Here is the graph how average error changes over iteration number (total 100 iteration):

&0

i

45

3 Eal A i Lo a0
Humiber of running the protao

Figure 2.26: Backend mitigated error graph (QIS)

Average error is reduced from 10.1752 (without mitigation) to 4.6444% (with mitigation).
Histogram without mitigation and with mitigation:
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We executed the protocol with the above error mitigation technique on a noisy simulator (see §2.2.5).
Here is the graph how average error changes over iteration number (total 125 iteration):

On noisy simulator
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Figure 2.27: Noisy simulator mitigated error graph (QIS)

The average error is reduced from 9.6153% (without mitigation) to 4.5806% (with mitigation).
Histogram without mitigation and with mitigation:

-ty

2.4 Generalization of Quantum Secret Sharing

This is generalization to n-party of the protocol [5] discussed in 2.2. The generalization is given by Li Xiao et. al. [9] for
n-party. The protocol is written briefly in the following section.

2.4.1 Brieéof the Protocol

e Step 1: Alice, Bob, Charlie,... each has one particle from a GHZ multiplet that is in state

1
) = Z5(100..0) +[11..1)
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e Step 2: Everyone measures their qubits randomly either on = or y basis and declares their measurement basis.

s Step 3: If there are an odd number of measurements on y basis then discard the corresponding measurement result
otherwise continue.

s Step 4: To get Alice’s message back, the remaining n-1 person perform the following:

— when the number of parties measures in y basis is 4k for some positive integer £ then XOR of their (n-1 party)
measurement results will give Alice’s message.

— when the number of parties measures in y basis is 4k + 2 for some non-negative integer k then the complement of
the XOR of the measurement resnlts will give Alice’s message.

2.4.2 Implementation with Qiskit

Here is one of the circuit and corresponding histogram for 5 (delear + 4 individual):

a 1 x—Id
i J‘
> & 1 i
5 w0 wl w3 w2 4
C
0077
0.08 o
0068 0066 Lose 0066 0067
(5] 0.062 0062 Gog: noea
w 0.06 s
! nosz sz .
£
£ on4
g0
I
o.02

§

iﬂ_fa

5

b;h
ﬂ;oJI
D;_lo
111y

s & 8
s & =

§ § 8§ 3§

Here g, g1 and g3 chosen = axis and other two chosen y axis. The histogram shows possible outcomes. To find the number
of total possible outcomes let’s consider ¢y, ...,q4. Each of them will get two outcomes (up and down) on their respective
basis. So there are 2! possible outcomes. But for each of these outcomes, gy will collapse in one specific outcome - either up
or down depending on others’ outcomes. So total number of possible outcomes will be 2* x 1 = 16. You can see there are 16
bars in the histogram.

“01;
i'uO;

2.4.3 Attack

Following table shows percentage of detecting attacks for different number of parties:




Intercept-and-resend attack | Entangle-and-Measure attack | DoS attack
4-qubit 50.0013% 50.0001% 24.9993%
5-qubit 49.8162% 50.0153% 24.8501%
6-qubit 49.9836% 49.8903% 25.0109%
7-qubit 49.9962% 49.9963% 25.0010%

In each case, we can detect the intercept-resend attack and entangle-measure attack with approximately .5 probability
while the DoS attack is detected with a probability of .25 approximately.

2.4.4 Real Backend and Noisy simulator

Following table shows percentage of error recieved from ‘ibmq_jakarta’ and ‘noisy simulator’ (see §2.2.5):

4-qubit

5-qubit

6-qubit

T-qubit

ibmgq_jakarta
noisy simulator

14.9116%
15.9576%

30.1990%
19.6508%

41.2327%
23.4379%

53.8105%
27.0475%

From this table, you can see that the error difference between the real backend and noisy simulator is increasing from the
5-qubit implementation. This is happening because we only considered gate noise, but in the backend, there are errors due
to the environment and also the qubits are noisy. Also, note that when the number of qubits is 5 or more then an error is
very high. In the next section, we will see that after mitigating the error 5-qubit protocol will have less than 10% error.

2.4.5 Error Mitigation

Following table shows percentage of error recieved from ‘ibmq_jakarta’ and ‘noisy simulator’ (see §2.2.5):

4-qubit 5-qubit
ibmg_jakarta 5.2366% 7.3901%
noisy simulator 2.4680% 4.9805%
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Chapter 3

Quantum Secure Direct Communication

3.1 Introduction

Quantum secure direct communication (QSDC) and quantum key distribution (QKD) are gquantum-based communi-
cation schemes. BB84, which is one of the first QKD protocols, proposed in 1984 [?]. In QKD, first, a key is generated,
then the message is encrypted using that key and transmitted. In contrast to QKD, QSDC sends a secret message directly
via quantum channel without setting up any prior key [21, 22]. If both sides’ communication is allowed in a QSDC then it
is called quantum dialognue (QD) protocol.

A measurement-device independent quantum dialogue (MDI-QD) protocol was proposed by A. Maitra [20] in 2017. In
2020 Das and Paul [19] improved that protocol. In 2021, Das and Paul [23] proposed a quantum conference protocol which
is an extended wversion of the above protocol. Here we implemented these protocols with IBM qiskit. Then we checked their
security against different attacks. Also, we simulated them in noise model (see §2.2.5). Then we applied error mitigation on
IBM Backend result as well as noisy simulator result.

Here we implemented the MDI-QD protocol from [19, 20] and the conference protocol proposed by Das and Paul in [23]
for quantum direct communication in giskit. And then checked their security against different attacks. We implemented these
algorithms with IBM qiskit, and executed them in the ideal simulator, real IBM backends, and different noisy simulators.
Also, we created a noise model using parameters from ‘tbmq_jakarta’ and executed protocols in using these noise models also.
We are working on error mitigation for real backend and noisy simulators.

3.2 Measurement-Device Independent Quantum Dialogue

There are three algorithms (one in [20] and two modifications in [19]) with some classical modifications. The quantum part
is the same for all three algorithms. So the giskit implementation, security check against quantum attacks, and error due to
noise will be the same for all of the three algorithms. We will first see all of the three algorithms briefly then will continue

with only one. Here algorithm 1 is proposed by A. Maitra [20] and algorithms 2, and 3 are modifications of algorithm 1
provided in [19].

3.2.1 Brief of the protocols
Algorithm 1

1. Alice and Bob share n bit key string k = kyky .. . k.

2. They encode their messages in )4 and ()p using table 3.1.

Key | Message bit | Encoded qubit
0 0 0y
0 1 1)
1 0 [+)
1 1 |-}

Table 3.1: Encoding Table (MDI-QD)
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3. Send Q4 and Qg to some third party who will measure them on Bell basis and announce the results.

4. Alice and Bob guness each others message bits using table 3.2.

Self qubit | Guess when measurement output is
|@t) | |@7) | [¥t) [¥)
0} 0 0 1 1
1) 1 1 0 0
l+) 0 1 0 1
|- 1 0 1 0

Table 3.2: Guess each other's message bit (MDI-QD)

5. They discard the cases where the measurement outcome is |[®@*) or [¥™),

n

6. Alice and Bob randomly choose %= (v < 1) number of positions and announce the guesses for respective positions to
estimate error.

7. If an error is tolerable then they continue with remaining (not chosen above) bits. Otherwise, they abort.

Algorithm 2

1. Alice and Bob share n bit key string k = ki ko .. . k,, and calculate ¢ = &1 | k;.

2. They encode their codes in ) 4 and () using table 3.1.

3. Send (4 and Qg to some third party who will measure them on Bell basis and announce the result. Alice and Bob
store the result.

4. Alice and Bob randomly choose yn(y < 1) number of measnrement results.
5. They guess each other’s message bits (using table 3.2) for the above-chosen bits and announce guesses to estimate error.

6. If error is tolerable then they continue with remaining (not chosen above) bits. Otherwise, they abort. Let {111,“_,"_.[?f]}?;l
be the remaining sequence of measurement results and updated key be kye = k1ko ...k, where n' = (1 — y)n.

7. Generate X = {X[i]}?, as
X[i] = 1, if ﬂium‘,[i] =@ ) or |[Wt);
0, otherwise

8. Generate Y = {Y[i|}I, as

P, if X[i] = 1;

Yi] = < kpewld], if e =1 an X[i] is the j** zero in the sequence X;

knewlj], if e =0 an X[i] is the j*" zero in the sequence X

9. If X[{] ®Y[i] =1 then Alice and Bob consider i" measurement result M. [i] and guess other’s message bit using
table 3.2. Else they discard M,,,.,.[i].

Algorithm 3
1. Perform first 7 steps of algorithm 2.
2. Generate Y = {Y[i|]}}; and Z Z#Z[i]}?;l as
if X [i] = 1;
Y[i] = cwld], ife=1an X[i] is the j** zero in the sequence X;
knewli], if e =0 an X[i] is the j** zero in the sequence X
0, if X[i] = 1;
Zli] = { knewlg], He=0an X[i] is the J™ zero in the sequence X;

Enewli], if e =1 an X[i] is the j* zero in the sequence X
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3. gX [i] & Y[i] = 1 then Alice and Bob consider it" measurement result M, [i] and Bob guess Alice’s message bit using
ble 2 above. Else they discard M, [i].

4 TX [z] &2 [z] = 1 then Alice and Bob consider i*"* measurement result Mf,mw[z'] and Alice guess Bob's message bit using
table 1 above. Else they discard M,,,,,[i].

3.2.2 Implementation with Qiskit

We implemented above protocol with IBM qiskit. Here is one of the circuits and corresponding histogram:
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Us(m,0,7) is the X gate and U, (0,7) is H hate. Here the key is 1, Alice’s message bit is also 1 but Bob’s message bit is
0. So the qubits are prepared in |-} (Alice) and in |+) (Bob) state. Let us now see some measurement output we got and
compare them with the expected output. Here is a table containing the first few inputs and corresponding output we got:

key | Alice | Bob | Enc_basis | Expected measurement
1 1 e | x [le, 1], [1, 117 | [1, 1]
] [ 0|z [[e, e], [e, 1]] | [e, 1]
] 1 o |z [[1, @], [1, 117 | [1, @]
] 1 @ |z [[1, @], [1, 1]] | [1, @]
] 1 1|z [[e, @], [e, 1]] | [e, @]
o 1 @ |z [[1, e], [1, 111 | [1, @]
1 1 1| x [[e, e], [1, e]l] | [e, @]
1 1 8 | x [fe, 1], [1, 1]] | [e, 1]
e 1 e |z [[1, el, [1, 1]] | [2, 1]
@ 1 e |z [[1, el, [1, 1]] | [2, 1]
1 1 e | x [[e, 1], [1, 1]] | [1, 1]
@ e e |z [[e. e], [e, 1]] | [e, @]
@ - 1]z [[e. e], [e, 1]] | [e, @]
i @ 1] x [[e, 1], [1, 1]] | [1, 1]
1 [ e | x [[e, @], [1, e]] | [1, @]

Table 3.3: Output table (MDI-QD)

Let us take any two (here red and green marked row is taken) to analyze measurement output. In the red row key is
zero, so Alice’s bit 1is encoded as |1) and Bob’s bit 0 encoded as |0). Now from table 3.1, we can see that if the key is 0 and
Alice’s bit is 1 then Bob's bit 0 forces the quantum state to be either [W1) or |I~) after Bell measurement. So measurement
output will be 10 or 11 with half probability. Here we got 11 which is one of the desired outputs.

Now let us consider the green marked row. Here the key is one, Alice’s bit is 0 and Bob's bit is 1. So Alice’s prepared qubit
will be |[+) and Bob’s qubit will be |—). Then after measurement state should be either |7} or ¥~} with half probability.
So measurement output should be 01 or 11. Here we got 11 which is one of the desired outputs.
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3.2.3 Attack Implementation

Intercept-and-resend attack

We ran the protocol 500 times and got the following plot of interception detection rate:

s

Inbercept detecton rste (aversge on nember of iterstion)

Figure 3.1: Intercept-and-resend attack graph (MDI-QD))

This graph shows the average error (due to interception) against the number of iterations. We average error as 37.5016%
with a variance of (.8824.
Here is histogram for one of the circuits
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We ran the protocol in 'qasm_simulator’ 500 times and generates following graph:
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Figure 3.2: Entangle-and-measure attack graph (MDI-QD))

This graph shows the average error (due to interception) against the number of iterations. We average error as 24.9238%
with a variance of 1.3435.




DoS attack
We ran the protocol in 'qasm_simulator’ 500 times and generates following graph:

Figure 3.3: DoS attack graph (MDI-QD))

This graph shows the average error (due to interception) against the number of iterations. We average error as 24.9735%

with a variance of 1.5312.

3.2.4 Execution on IBM backends

We executed the protocol on four 7-qubit IBM backends: ‘ibm_perth (1.1.14)°, ‘ibmq_casablanca (1.2.49)", ‘ibme_jakarta

(1.0.25)" [backend versions are inside the parenthesis|. Error statistics for 100 iterations on above backends are as follows:
ibm_perth ibmgq_casablanca ibmgq_jakarta

mMean error 0.0457 0.0582 0.0467

variance of error 0.2567 0.2686 3.2533

Here is the graph how average error changes over iteration nmumber in ‘ibmq_casablanca’:

Figure 3.4: ‘ibmq_casablanca’ error graph (MDI-QD))

3.2.5 Simmulation in Noise Model
The graph how average error changes over iteration number (total 100 iteration) on the noisy simulator generated in section

§2.2.5:

Figure 3.5: noisy simulator error graph (MDI-QD)

The average error we received is 9.6153% with a variance of 0.0175.
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3.3 Quantum Conferrence

Using a similar approach as proposed in [19], the author proposed [23] a three-party quantum conference protocol with the
help of an untrusted fourth party. Let us see the proposed protocol briefly in the following section.

3.3.1 Brief of the protocol

1. Alice, Bob and Charlie share m bit key string & = kyko ... k,,. Let the m-bit messages of Alice, Bob and Charlie be
=@y .. 0y, b=">0bby...by,c=ecies... ey respectively.

2. They encode their messages in ()4, (g, and Q¢ using table 3.1.

3. Alice, Bob, and Charlie choose some random permutation and apply those on Qa,@Qg. Q¢ and get g4, qg, go respec-
tively.
4. Send Qa, @B, Qc to some fourth party (UFP).
5. Alice, Bob, and Charlie choose dm number of common positions on Q4,Qp, Qc. where § < 1. For these selected
positions they perform the following steps:
o They tell the positions and bases of the corresponding qubits to UFP.
o UF'P measures those states on proper basis and announces the results.
s Alice, Bob, and Charlie reveal corresponding qubits and compare with UFP’s result.

o If the estimated error is not tolerable then they abort, otherwise, they continue.

6. Alice, Bob and Charlie tell the permutations they applied to UFP. UFP applies inverse permutation to get back

Q4. Qp.Qc.

7. They discard the qubits which are choosen above and discard corresponding key values.

8. UFP measures each three-qubit state (one qubit from each of 4, @ g, (J¢) in By basis and announces the result, where
Bs = {|‘I’3:}}?=u with
1

[®5) = —5(1000) £ [111),  [) =

1
®F) = —(|010) + [101}), |DF) = —
|®7) ﬁ(| ) E[101)), |®5) 7
9. Alice, Bob and Charlie randomly choose ym' number of measurement results to estimate error, where v < 1, m' =
(1 —d)m. If error is tolerable then they continue, otherwise abort.

12(|oo1} + [110))

-5

(|011) = [100))

10. They discard corresponding results, qubits and keys.

11. They will construct each other’s message using remaining results.

3.3.2 Implementation with Qiskit

Here is one of the circuit and corresponding histogram:
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Here the key value was 1 so everyone prepares their state in Hadamard basis and everyone has message 0 so prepared
state is | + ++). After By measurement possible outcomes are |®;) for i = 0,1,2,3. Histogram shows possible ountcomes.

3.3.3 Attack

There are two channel: channel I, which they used to send Q.4,Qp, Q¢ to UFP; channel II, which they use at the last
step to construct each other's messages. Table 3.4 and 3.5 show effect of attacks on these chamnels.

Intercept-and-resend attack | Entangle-and-Measure attack | DoS attack
Channel I 24.8891% 25.0051% 24.9875%
Channel 11 25.0730% 25.1845% 25.0860%
Table 3.4: Checking for channels
Attack Intercept-and-resend attack | Entangle-and-Measure attack | DoS attack

Only channel 1
Only channel I1
Both channels

50.0433%
12.4757%
66.0339%

25.0329%
12.4567%
31.0565%

50.0006%
12.5019%
56.9548%

Table 3.5: Final message integrity checking

We can see from table 3.4 that attacks on different channels can be detected with probability .25. Also from table 3.5 one
can see how much the message is affected by different attacks. The effect on message for attacks on channel 11 is approximately

12.5% and the effect of attacks on channel I is higher.

3.3.4 Real Backend and Noisy simulator

Following table shows percentage of error recieved from ‘ibmq_jakarta’” and ‘noisy simulator’ (see §2.2.5):

Channel 1

Channel 11

Message Integrity

ibmq_jakarta
noisy simulator

3.2427%
2.2206%

0.9808%
1.2725%

31.7487%
30.0053%

From this table, we can see that the error of different channels is low but this low error affects messages with the probability

of more than .3.

3.3.5 Error Mitigation

Following table shows percentage of error recieved from ‘ibmgq_jakarta’” and ‘noisy simulator’ (see §2.2.5):

Channel I | Channel 11 | Message Integrity
ibmq_jakarta 0.3679% 0.6288% 23.0308%
noisy simulator 0.1946% 0.2494% 20.4136%

Still, more than 20% of the message got corrupted. In this protocol small error in the channel is highly affecting message
integrity.
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Chapter 4

Conclusion

In this work, we saw that the protocols we implemented have some drawbacks in terms of implementation or security, or
quantum noise. Both the QSS protocols proposed by Hillery [5] are very simple. Also, the generalization given by Xiao [9]
is very simple. Although both the protocols proposed by Hillery [5] work well, the generalization doesn’t perform well for
more than four parties in IBM’s real backend. Even error mitigation (ZNE) is not working perfectly for this protocol with
six or more parties. We were not able to use Quantum error correction because that requires lots of qubits and we don’t
have access to backends with more than 7 qubits. For the MDI-QD protocol proposed by A. Maitra and modified by Das
and Paul [20, 19], the probability of detecting attacks is around .25, which is low for security. Later Das and Paul modified
the protocol to improve security and generalized the protocol [23] to get a conference protocol using two different channels.
Security is improved but although both channels have very little noise, that affects message integrity on a large scale.
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