Modelling and Analysis of Spiking Neural
Networks

By Soham Banerjee

Modelling and Analysis of Spiking Neural Networks

Soham Banerjee

Modelling and Analysis of Spiking Neural Networks

EISSER.TATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Master of Technology
in
Computer Science

by

Soham Banerjee
[Roll No: CS2024 |

under the guidance of

Ansuman Banerjee
Professor
Advanced Computing and Microelectronics Unit

Swarup Mohalik
Prinicipal Engineer - Research

Ericsson Reserach India

STATISTICAL

it

o

- b

Z > =0 Z =
M= St n =

]-f;;ﬁ.m_eflill

UNITY IN DIVERSITY

pndian Statistical Institute
Kolkata-700108, India

July 2022

CERTIFICATE

This is to certify that the dissertation titled ‘®8lodelling and Analysis of Spiking Neural
Networks” submitted by Soham Banerjee to Indian Statistical Institute, Kolkata, in partial
fulfillment for the award of the degree of Master of Technology in Computer Science is
a bonafide record of work carried out by him under our supervision and guidance. The dis-
sertation has fulfilled all the requirements as per the regulations of this institute and, in our
opinion, has reached the standard needed for submission.

Ansuman Banerjee Swarup K. Mohalik
Advanced Computing and Microelectronics Unit(ACMU) Ericsson Research
Indian Statistical Institute, Kolkata Bangalore

Acknowledgement

I would like to thank my supervisors, Dr. Ansuman Banerjee, Advanced Computing and Microelec-
tronics Unit, Indian Statistical Institute, Kolkata and Dr. Swarup K. Mohalik, Ericsson Research for
their continuous guidance and unwavering support. For the entire duration of the thesis, I have had
many opportunities to learn and improve myself and my work. Their guidance has given me a much
better appreciation of the research sphere and the value of good quality work.

My deepest thanks to the faculties of Indian Statistical Institute and Ericsson Research, for their
support and assistance throughout the duration of the thesis.

I would also like to thank Dr. Sumaena Ghosh, ECSU, Indian Statistical Institute, Kolkata for the
great amounts of insight and assistance provided that has helped me improve my work further.

gast but not the least, I would like to thank my family, friends and peers for their help and support.
I thank all those, whom T have missed out from the above list.

Soham Banerjee

Roll No. C52024

Indian Statistical Institute
Kolkata - 700108, India.

Abstract

The increasing demand for neural network based models for problem solving is due to it's simple
operation and robustness. These models have been able to solve many problems that traditional
solutions have a hard time solving. This increased demand for more efficient and robust models
has caused the field of artificial intelligence to be one of the most popular fields of study. With the
continuous and rigorous developments in this field, the need for systems and models capable of solving
specific problems with high performance has also increased manifold. This has led to the introduction
of larger, more complicated networks that have shown great results. One of the major drawbacks of
these larger deep neural networks is that the amount of power consumed by the hardware that runs
these models is extremely high. This drawback prevents these systems to be used for edge systems
which cannot run hardware with high power requirements. To overcome this drawback of traditional
deep neural networks, a new type of neural network called Spiking Neural Network (SNN) has been
introduced. These are special neural networks that have great similarity in their architecture and
operation with the human brain, unlike the traditional networks which only share the architecture.
These spiking neural networks have shown similar performance when compared to traditional networks
with a much lesser energy requirement.

This thesis predominantly focuses on formal methods for modelling and analysis of Spiking Neural
Networks with an objective to model the behaviors and apply various frameworks like verification and
simplification. We discuss the various properties of spiking neural networks and their functioning. We
then use different mathematical objects to model the network and it’s properties. One such model is
the Linear Real Arithmetic (LRA). We express the network as a set of linear real arithmetic formulas,
which can then be used to test, extend and modify the network. We propose a LRA based encoding
for spiking neural networks and define a few frameworks that take advantage of the encoding. These
frameworks are simplification, verification and neuron equivalence of spiking neural networks. Each
of these frameworks is based on the proposed encoding.

We also discuss the modelling of SNNs using timed automata. We talk about how timed automata
can be used to encode a SNN and how the the timed automata simulation and verification can be
used for the sound modelling of SNNs. The frameworks discussed are based on the timed automata
encoding and its consequent simulation and verification.

We have implemented our proposed encoding and have tested the proposed frameworks on various
spiking neural networks. With the increasing performance and applications of spiking neural net-
works, the requirement for a modelling framework will increase. We believe that our thesis makes an
important contribution in that space.

iii

Contents

Acknowledgement i
E}stract iii
List of Tables vii
List of Figures 1
1 Introduction 1
1.1 Spiking Neural Networks 2

1.2 Need for Verification of Neural Networks 3

1.3 Formal verification of Spiking Neural Networks 4

1.4 Motivation of this dissertation 5

1.5 Contributions of this dissertation 6

1.6 Organization of the dissertation 6

2 Background and Related Work 7
2.1 Neural Networks 7
2.2 Neural Network Verification 9
2.2.1 Adversarial Robustness 9

2.3 Spiking Neural Networks 10
2.4 Spike trains e e 13
2.5 Satisfiability Modulo Theories Lo 13
2.6 Timed Automata e e e e 14
2.7 Tools. . .. e 15

271 Z3 e 15

272 Uppaal e 15
273 snnTorch0 16
274 Brian2 L e e 19
2.8 Related Worko 19
2.81 Modelling of Traditional Neural Networks 19
2.8.2 Spiking Neural Networks 20
2.9 Novelty of this Dissertation Work 20

3 A Scalable framework for SNN verification based on Satisfiability Modulo Theories 23

3.1 SNNencoding L 24
3.2 SNN Simplification 27
3.2.1 SNN Simplification L 28
3.2.2 Identifying Dead Neurons 30
3.23 Handling Neuron Equivalence 32

3.3 Verification of SNNs L 35
3.3.1 Hardness of SNN verification 39
3.3.2 Adversarial Robustness of SNNs using SMT encoding 41
333 Procedure 42

3.4 Implementation and Resultso o 45
4 Timed Automata based encoding of SNNs 47
41 Timed Automata L 47
4.2 TA encoding of SNN L 49
42.1 TA encoding of LIFR neuron 49
4.2.2 TA encoding of Spike Trainso 52

4.3 Verification of SNNs using TA encoding 54
44 Results. 56

5 Conclusion and Future Work 57

List of Tables

3.1 Relation between number of nodes and variables of the SMT encoding
3.2 Results of applying the simplification frameworks to networks with varying scales . . .

3.3 Adverserial robustness for synthetic networks

4.1 Experiment results for the TA encoding of SNN

vii

List of Figures

21

2.2

2.6

2.7

2.8

2.9

An abstract look of an Artificial Neural Network 8
A small feed-forward network oo 9
Adding a small amount of noise changes the output of a network 10
Neuron Potentials of 2 connected neurons oL 11
Graph for RELU activation function 14
Example of a Timed Automatao 15
Sample z3 execution L L e 16
Uppaal Modelling Components 17
Uppaal Verification Components 18
Small SNN . 0 0 o e 23
Sample for dead neuron elimination oL 31
Sample SNN for the merging of equivalent nodes 34
Example SNN (N) to demonstrate verification framework 38
SNN equivalents for logical operations 0oL 40

Different d—perturbations for a sample MNIST data generated using sunTorch 43

Example of composition of TA 48
TA encoding of LIFR neuron [5] 50
Sample SNN for TA conversiono 51
TA encoding of the SNN in Figure 4.3 52
General TA corresponding to a spike train. 0oL HH
TA for the example oL HH
TA encoding of P L e e 56

ix

Chapter 1

Introduction

Traditionally, problems like image recognition, text classification and pattern recognition have been
extremely challenging to solve using traditional algorithms and strategies [1]. In order to tackle these
problems and come up with solutions with higher performance in terms of simplicity and accuracy, we
often use Deep Neural Networks. These are models that show exceptional accuracy and robustness,
especially on inputs not encountered before.

These deep neural networks are based on the architecture of the brain in a way that, the processing
units are isomorphic to the neurons of the brain and the connections between them are isomorphic
to the synapses present in the brain. The synapses have real weights associated with them while the
processing nodes have activation functions associated with them. The network is often structured as
collections of these processing units called as layers. These layers are connected to each other and
act as parallel computation subsystems which make up the entire model. The model, upon receiving
an input propagates the input forward through the entire network using the synapses and the nodes
while performing the associated operations. In a logical sense each layer is said to take an input vector
from its previous layer and then pass an output vector which will act as the input for the next layer.
The output of the entire model is the output vector generated by the last layer. There are no fixed
structural constraints for deep neural networks and these are often determined by the problem and
the data. In an abstract sense, complex problems require complex structures whereas simple problems
can be achieved with smaller and simpler networks.

The weights of the synapses are parameters of the model that need to be learned. This learning is
done by a process called as training which is done using the existing data on the model to generate
outputs and then calculating the loss between the expected outputs and the actual outputs [14]. We
try to optimize the network by minimizing the loss. This training process is often a one time process
and is greatly affected by the size, quality and structure of the data available for training. A well
trained network performs well on both seen and unseen data. This property makes these models
appealing to use for most problems.

With increasing power of processing systems and reducing costs of memory, the popularity of deep
neural networks is increasing by a great amount. Unlike its other alternatives, deep neural networks
are more robust and can utilize the extra computational power well. These simple networks discussed
are usually referred to as the first generation of newral networks [3]. Even though a large number of
problems can be solved using these simple deep neural networks, they still lack the ability to solve
complicated problems like machine translation and pattern recognition. For such problems there have
been many new variants of deep neural networks that have been developed to further increase the
scope of problems that can be solved by the same.

2 1. Introduction

These neural networks are often referred to as the second generation of neural networks and have many
architectural variations unlike their predecessors. These variations often yield better performance for
specific problems and are often different for different types of problems. In the current spectrum of
artificial intelligence and machine learning, these models are considered to be the best models available
to solve complicated problems. Some of these variations of deep neural networks referred from [14]
are mentioned in the following.

(a) Convolutional Neural Networks

These deep neural networks have a special convolutional layer along with the regular layers. These
convolutional layers have specific filters that are used to filter out specific sections of the input data.
This property of being able to extract specific parts of the input data for processing makes convolu-
tional neural networks great for image processing and pattern recognition.

(b) Recurrent Neural Networks

These deep neural networks unlike other networks have recurrent layers, which are special layers
which have synapses connecting to the next layer as well as itself. This structure allows the network
to essentially remember the previous output (by propagating the output of the layer as input to the
same layer). This property gives recurrent neural networks the ability to recognize sequential patterns
which is often used for natural language processing problems.

(¢) Transformers

These are special deep neural networks that are often a sequence of encoder layers and decoder lay-
ers. These layers encode the input into a sequence of numbers and decode them back to reconstruct
the output. This structure allows the transformer to work well for problems like machine transla-
tion, where the encoding-decoding process can be used to successfully express the translation process
mathematically.

These models are further improved by using different mechanisms and strategies like transfer learning,
adaptive boosting, hyper-parameter tuning, attention, masking, negative sampling etc. These together
with the discussed architectures lead to more complicated and powerful models.

There are many more variations of deep neural networks which are extensively used to solve increas-
ingly challenging problems. But, all these networks also share a few common drawbacks. These
are:

e Highly dependent on availability of data.

e Require high computational resources.

e Require large amount of power to run the hardware.

1.1 Spiking Neural Networks

Since the availability of the data is not part of the network, we can consider it to be bevond our
control. Then considering the other two drawbacks, we need to consider a variation of deep neural
networks which has comparable performance as the existing methods, however, can be run with low
power and computational resources.

An observation that can be made is that, even though deep neural networks are inspired by the brain
and have very similar structures, the operation of the networks does not match the brain. A neuron
in the brain remains inactive until it receives a sizeable stimulus from its synapses. Upon receiving

1.2. Need for Verification of Neural Networks 3

such stimulus the neuron will propagate the stimulus further. This implies that at any given point of
time, only a fraction of neurons will be active. This makes the whole structure very energy efficient.

The neurons also have a very simple operation. They send an output if they receive a significant
input, otherwise they just wait for the inputs to increase. Such a simple structure allows the neurons
to yield good results without complicated operations.

The observations can be combined to come up with an idea of a new type of network that can operate
with high accuracy, low dependency on computational components and high energy efficiency. These
types of networks are often categorised as neuromorphic systems and are often labelled as third
generation of neural networks.

One of the more popular networks of this kind is Spiking Neural Networks. These networks are
designed to be similar to the brain in the structural sense as well as operational sense. Spiking Neural
Networks operate on spike trains instead of traditional vectors. The spikes are considered to be
distinet events which occur independently. A spike train is a sequence of spikes. Each neuron of the
network accepts these spikes as input and produces an output spike train which is fed to the next layer.
This operation is similar to the traditional deep neural networks with an additional temporal nature
of the operation. The neurons perform operations only upon receiving a spike from the previous layers
and is in a waiting state when no spikes are received.

The spiking neural networks, unlike traditional neural networks, are run on special hardware. These
are relatively cheaper due to being made for a specific set of computations instead of a general
processing unit. The efficiency of the model comes from the fact that for any input, only a fraction
of the neurons will be operational, which drastically reduces the energy requirement.

This low power operation and existence of special hardware enables these networks to take advantage
of the edge computing paradigm. For example, let us consider a self operating drone. The drone takes
images using cameras and sensors and then sends the data to a remote server. The server will then
process the data and generate the output which will be sent back to the drone to make the decision.
This method suffers from latency and dependency issues as, without the server communication it
cannot operate. If we construct a spiking neural network for the same, it will be a simpler hardware
with low power requirement. This will enable us to place the network on the drone itself, saving large
amounts of power and time with almost no trade-off of accuracy.

Similarly, there exist many other problems where the portability and robustness offered by spiking
neural networks can be utilized to get better solutions. Spiking neural networks have also been shown
to provide better accuracy in the context of image and audio detection. This is due to the fact that
the brain uses changes in images and audio as cues for detection. These cues are equivalent to spikes
of the network, so the network is also good at the same. All of these applications make spiking neural
networks a useful model to consider for many problems.

1.2 Need for Verification of Neural Networks

Due to the inference efficiency offered by the different neural networks, many safety critical systems like
self driving vehicles, automatic guidance systems and assistance tools employ these neural networks.
Being able to work well with complicated spacial relations are often requirements for such problems
which, the deep neural networks provide. Due to the extreme safety requirements of such systems,
failure of these systems can be catastrophic. To ensure that the model to be deployed is not susceptible
to failure, verification of such systems is conducted. A primary objective of this thesis is to explore
formal methods for verification and robustness analysis of Spiking Neural Networks.

4 1. Introduction

Formal Verification of a system is a framework where a given system is analysed along with a set of
properties to check which of the properties are satisfied by the system. These properties are behaviours
of the system that guarantee safety of the system. Unlike traditional testing paradigms, instead of
generating input test cases to test for the satisfiability of the properties, formal methods try to express
the system mathematically and check the property on that mathematical encoding. The traditional
testing paradigms are simpler to implement as they just require a few samples from the input space,
but they lack the gnarantee of satisfiability for all inputs. In order to achieve this guarantee, for safety
critical systems, we use formal verification.

The properties to be checked are usually of the form, as mentioned below:

e System specific — These properties refer to the operation of the system without any constraints
on the input space. Example of such a property is, "For all valid inputs, does the system always
output a valid action?”. These properties make sure that the system is sound.

e Problem specific — These properties refer to the expected output of the system for a specific
subset of the input space. Example of such a property is, "If the camera is obstructed, does the
system output the action halt?”

e Robustness — These properties refer to the system operating correctly after the introduction of
some perturbation to the inputs. Example of such a property is, "Does the system give the
same output for an input with and without a perturbation of 0.57"

1.3 Formal verification of Spiking Neural Networks

The requirements of formal methods for verification not only apply to traditional neural networks
but, to spiking neural networks as well, as they are also being used in safety critical systems. But
unlike traditional neural networks, which have many tools and frameworks for verification, spiking
neural networks suffer from a lack of such frameworks. This is mainly due to the recency of spiking
neural networks.

Creating such frameworks for verification of spiking neural networks also poses a challenge as we
cannot use the existing frameworks that exist for traditional neural networks. If we consider a single
timestep of the entire execution of a spiking neural network, it is similar to a traditional neural network
with inputs and outputs. This implies that the challenge of the problem stems from the temporal
nature of the system. SNNs are temporal in nature in the way they process information over time.
Thus, verification of SNNs is not limited to verifying correctness for a specific time step, but over all
time steps of operation, which is hard to model, considering that time is continuous and the SNN is
expected to run forever.

There are broadly two approaches to mathematically express the temporal nature of the system.
These are:

e Using continuous time based modelling — These include automata that operate on timed words
like Timed Automata [2]. The overall approach would be to model the operation of a network
as a finite state timed automata and using the constructed automata for verification.

e Discretizing the operation of the system into finite timesteps which can be treated as intercon-
nected discrete systems — Then we can use traditional verification paradigms on these discrete
systems concurrently in order to create a verification framework.

1.4. Motivation of this dissertation 5

These paradigms provide a mathematical base upon which further work can be done in order to
encode the spiking neural networks and the verification properties. These encodings can be used to
verify the encoded properties as well as create a framework that can be used for further structural and
behavioural modification to the system. These modifications are often useful for the simplification of
large networks. The encoding can also be used to check equivalence of two distinct networks as well
as getting a better understanding of the model behaviours.

The only drawback with the above paradigms is that the size of the framework increases greatly
with increasing complexity of the network and the simulation time. This poses a challenge as most
verification tools start to fail at extremely large encodings. So the challenge is not just to come up
with a verification framework, but a scalable verification framework.

1.4 DMotivation of this dissertation

The lack of standard verification paradigms for spiking neural networks is a problem still not solved.
This is a severe hurdle for the applications of these systems as, without a reliable verification frame-
work, the systems cannot be used for validation of safety critical artifacts. The current frameworks
that exist for traditional neural networks cannot be used for verification of spiking neural networks
without some significant changes. In order to successfully utilize spiking neural networks and all the
advantages it provides, we require a reliable modelling and verification paradigm.

Due to the infancy of these spiking neural networks, the primary works focus on getting better and
more efficient systems both in terms of performance and portability. These works are a good depiction
of the power and robustness offered by spiking neural networks but lack any discussion regarding the
scalability and reliability of these networks.

Another orthogonal direction of work being done is hardware centric. These works focus on creating
special processors and systems to improve the cost effectiveness of such systems as well as the hardware
reliability. The hardware reliability parts of the works focus on system specific properties but still
lack any notion of a framework for modelling such systems.

There also exist works which introduce some timed automata based encodings [6] for spiking neural
networks along with a framework for verification of hardware properties. The work however lacks a
scalable notion of models and suffers from a lack of robustness as well. These works however serve as
a great starting point in order to tackle the modelling and verification frameworks for spiking neural
networks.

The primary motivation of this thesis is to develop scalable and efficient encodings for Spiking Neu-
ral Networks by taking advantage of different paradigms. Specifically, this thesis has the following
motivations:

e Propose a lossless encoding for spiking neural networks using timed antomata which encapsulate
the behaviours of spiking neural networks.

e Propose a lossless encoding for spiking neural networks as Satisfiability Modulo Theory (SMT)
constraints that provide an expressive theory for symbolic encoding of the behaviours of spiking
neural networks.

e Use these encodings in order to tackle various problems like verification, robustness analysis,
simplification and equivalence of spiking neural networks.

6 1. Introduction

1.5 Contributions of this dissertation

The objective of the thesis is to propose two encodings, based on timed automata and SMT for
Spiking Neural Networks. Using these encodings, we tackle the problems of verification, abstraction-
refinement, simplification and equivalence of the same. The contributions of this thesis are briefly
described below:

o SMT based Encoding: Upon discretization of the spiking neural network operation, the function-
ing of the spiking neural networks can be encoded using linear real arithmetic. In this thesis we
propose an encoding of an SNN in linear real arithmetic and demonstrate how the formulation
of the systems mimics the behaviour of the original.

e Timed automata based Encoding: The temporal aspects of spiking neural networks are encap-
sulated well using timed automata. In this thesis we propose an encoding for spiking neural
networks using timed automata. We encode the entire system as a large collection of smaller
timed automata corresponding to each neuron and then demonstrate the identical behaviour of
the encoding and the original network.

o Applications of Encodings: Using these encodings we can propose strategies for verification, ad-
versarial robustness, simplification and equivalence checking of spiking neural networks. In this
thesis we go over each proposed encoding and their equivalent frameworks for these applications.

?.6 Organization of the dissertation
This dissertation is organized into 5 chapters. A summary of the contents of the chapters is as follows:

Chapter 1: This chapter contains an introduction and a summary of the major contributions of
this work.

Chapter 2: This chapter corresponds to the background and prerequisites of the work for all the
topics discussed.

Chapter 3: This chapter describes the SMT based encoding of spiking neural networks.
Chapter 4: This chapter describes the timed automata based encoding of spiking neural networks.

Chapter 5: We summarize with conclusions on the contributions of this dissertation.

Chapter 2

Background and Related Work

In this chapter, we describe the background concepts and prerequisites related to the systems that
are discussed and referenced throughout the thesis. We also demonstrate the working of the systems
discussed to have a better understanding of the work described in the subsequent chapters. We finally
describe the software tools and programming libraries used in the coming chapters.

2.1 Neural Networks

Neural Networks (NN), often called as Artificial Neural Networks or Deep Neural Networks, are the
core of Deep Learning algorithms which is a prominent subset of Machine Learning [14]. A neural
network is a model which is a collection of processing units called as nodes or neurons, interconnected
by data transfer edges called as synapses. The etymology of neural networks comes from the similarity
between the the architecture of the model and the human brain.

Neural Networks unlike traditional algorithmic models, rely on having a set of data available for
training. This process of training is done hefore the model has been deployed. This process, in an
abstract sense, is done by building the network on the training samples and updating the parameters
of the network to reduce the errors and improve accuracy. These networks are powerful tools as they
are very robust and can tackle problems that are difficult to solve with traditional algorithms.

There are many types of neural networks all of which have different architectures and applications.
The most common one of these deep neural networks are feed-forward neural networks. A feed-forward
neural network is made up of a collection of sequential layers each containing a number of nodes. Each
of these layers is connected to the next layer and the previous layer. Upon receiving an input the
first layer takes that input and after processing it passes it to the second layer. The process continues
until the final layer outputs a vector. This vector is considered as the output of the entire network.
The processing done by each layer of a feed-forward neural network is done in two steps as below.

e Weighted sum of the inputs : The synapses through which the data is transferred have an
associated weight which is use to calculate the total input to every individual node. For a node
v; and previous layver with n nodes we have the input received at v; as,

L3
Total input sum = E Wi X
i=1

8 2. Background and Related Work

Deep neural network
Input layer Multiple hidden layers Output layer

Figure 2.1: An abstract look of an Artificial Neural Network

where w; ; refers to the weight of the synapse between the neuron v; and the 4" neuron of the
previous layer and x; refers to the input value received from the j th neuron of the previous layer.

e Activation function : The neuron after receiving the inputs and performing a weighted sum,
passes the total sum to an activation function. The output of these activation functions are
sent to each neuron of the next layer. These activation functions can be linear or non-linear in
nature and affect how the network behaves. Some activation functions are,

— RELU (Rectified Linear Unit)
y(x) = max(x,0)

— Absolute funetion

y(z) = |z
— Sigmoid function
yl) = —:eT
— Tanh function
yla) = ::17:::

Let us consider the small feed-forward network given in Figure 2.2. Let us assume that the activation
functions of neurons are sigmoid activation functions. For an input vector z = [2, 1] we have,
=2 19=1
a = sigmoid(—3z; + 3x2) = sigmoid(—3) = 0.953
b = sigmoid(—x1 + bxs) = sigmoid(3) = 0.047
¢ = sigmoid(2a + 4b) = sigmoid(2.094) = 0.89

So, for an input [2, 1] the feed-forward network outputs the value 0.89.

These neural networks have many applications including but not limited to classification, pattern
recognition, prediction of values as well as decision modelling. The study of these neural networks,
it’s variants and applications is one of the leading areas of research in the field of data science.

2.2. Neural Network Verification 9

Figure 2.2: A small feed-forward network

2.2 Neural Network Verification

Due to the increasing popularity and power of neural networks over the past few years, neural networks
are being considered for many safety critical problems [16]. These problems include but are not limited
to, vehicular assistance systems, medical equipment operation, surveying and information retrieval
for ecological data.

Failure of these systems can be catastrophic and cause destruction of property and endanger lives.
This acts as the primary motivation for the introduction of formal verification. Formal verification
is the process of mathematically modelling a hardware or software system in order to verify the
correctness of the system with respect to some formal specifications or properties. This is often
done, either by providing a formal proof or by mathematically modelling the system. Some of the
many mathematical objects that are used for verification are, finite state machines, linear programs,
graph structures, first-order logic, etc. Mathematically modelling a system, enables the exhaustive
testing of properties, i.e. we can check the satisfiability of properties for all possible inputs without
enumerating those inputs. Modelling complicated systems poses a challenge as encapsulating the
nuanced behaviours of the system using mathematical objects may not always be possible. In these
cases software and hardware testing paradigms yield better results.

2.2.1 Adversarial Robustness

Adversarial Robustness is a special subset of verification which deals with testing the robustness of a
network against some adversarial noise added to the inputs [16]. A system is said to be adversarially
robust if for any small perturbation of the input the output does not change. This is a very important
part of the verification framework as networks need to be robust in order to avoid failures in it's
execution like the instance shown in Figure 2.3.

Adversarial robustness of a system can be checked by using the same verification framework described
above. Informally we can describe this property as, given an input vector x and network N, does the
network output the same classification for all § —perturbations of 2. The set of §—perturbations of =
can be formally written as,

{z' + =0 < |2’ — 2||s <6}

where 4 € R. The set of J—perturbations of x are the set of vectors that are at most 4 distance away
from .

10 2. Background and Related Work

+.007 x —
. +
T sign(VeJ (6, z.y)) esign(VﬁJ(B.w.y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 2.3: Adding a small amount of noise changes the output of a network
2.3 Spiking Neural Networks

Traditional neural networks suffer from a major drawback of high energy demand. This drawback
makes these networks unsuitable for edge computing systems due to their lack of portability. This
has motivated the development of a new variant of neural network that does not suffer from the high
energy demand; Spiking Neural Networks (SNN).

A spiking neural network is similar to the human brain in not just the architecture but the functioning
as well. Unlike traditional networks the data being propagated is not a real vector, instead it is a
collection of timed events called as a Spike train. These spike trains are time based inputs, so the
execution of an SNN occurs over a simulation time instead of oceurring instantly.

The SNN receives the spike trains as input where the spikes are propagated forward through the
network. The output of the SNN is also a spike train generated by the neurons of the last laver.

There are many different types of SNNs based on architecture and types of neurons. The architectures
of SNN are similar to that of traditional neural networks, i.e. we can have Convolutional SNNs,
Recurrent SNNs, Feed-forward SNNs, ete. The types of neurons an SNN has can be Leaky Integrate
and Fire neurons, Synaptic, Lapicque or Alpha. All of these neurons have different operations and
properties but all of them act on spike inputs.

One of the most common type of neuron for SNNs is Leaky Integrate and Fire neurons (LIFR) neurons.
These neurons can be formally defined as below,

Definition 2.1 An%tegmte and Fire(IF) newron is defined as a tuple (8, \, 7, p,y) where,

f is the firing threshold of the neuron.

T is the refractory period

2
L3P ! the leak factor

p: Q7 — Q7 is the potential function defined as,

() = Ap(t—=1)+ >0 jw-ai(t) ;o plt—1) <@
po= T w; - ai(t) L p(t—1) >0

2.3. Spiking Neural Networks 11

10 { == Neuron 0
Neuron 1
S
:__.‘; 08
o
g <
T 06
= L
c
:
- 04
=
=
L5
=02
00
T T T
0 20 40 &0 80 100

Time (ms)

Figure 2.4: Neuron Potentials of 2 connected neurons

e y: N — {9,1} is the newron output function given as,

1 p(t) =0
ym:{ 0 pit) <

A LIFR neuron accumulates potential until a threshold is met, at which point it fires a spike. Upon
receiving a spike from input neuron i at time-step f, the neuron will accumulate the potential corre-
sponding to the weight of the synapse between the neuron and input neuron i (encapsulated by the
potential function p). If the accumulated potential is greater than the firing threshold (@) then the
neuron outputs a spike (Output potential function y). After an output spike, the potential is reset
and starts accumulating again after waiting for a small recovery period (Refractory period 7). If the
LIFR neuron does not spike, the stored potential starts to reduce as time goes on (Leak factor A).

Figure 2.4 demonstrates the working of these LIFR neurons. There are two LIFR neurons connected
to each other through a synapse. Every time neuron 0 spikes the potential of neuron 1 goes up. When
no inputs are received the potentials start to leak.

If we have A = 1 then the neuron is called as Integrate Fire (IF) neuron. Most implementations
of SNNs have very small refractory period(r) which is mostly ignored during computations. Going
forward we assume that 7 = 0.

As an example let us consider the following network,

11, I are input spikes received, n1, ns, 0 are I'F neurons all with the same firing threshold of # = 3.
Also let P(x) denote the potential of a node x. Now let us consider the input spikes as an array of
timesteps when there is an input spike. For example,

I; = [0.6,1.3,2.4] and I = [0.4,0.9,1.8,2.1]

12 2. Background and Related Work

Then we have the following execution for ¢ € (0,3) with P(nq), P(n2), P(0) all initially 0.

o At t =04, I spikes,
P(ng)=Pna2)+1=0+1=1
and since P(na) < #, ny does not spike.
e At t = 0.6, [spikes,
P(n)=Plm)+2=0+2=2
and since P(n1) < #, ny does not spike.
e At t=10.9, I, spikes,
P(ng)=Plna)+1=1+1=2
and since P(n2) < #, n2 does not spike.
e At t =13, I spikes,
P(ny)=Plm)+2=2+2=4
and since P(n1) = 8, n; does spike. This will imply that,

Plo)=Plo) +2=0+2=2
P(n1)=0

since P(0) < 8, o does not spike.
e At t= 1.8, I, spikes,
P(ng)=Plne)+1=2+1=3
and since P(ng) = #, ny does spike. This will imply that,

Plo)=Plo)+1=2+1=3
P(ny) =0

since P(o0) > #, o does spike. So P(0) = 0.
e At t =21, [, spikes,
P(na)=Pna)+1=0+1=1
and since P(na) < #, na does not spike.
o At t =24 I spikes,
P(n)=Pln)+2=0+2=2

and since P(nq) < #, ny does not spike.

So at the end o spikes once in the duration t € (0,3) and at £ = 1.8.

L1 25 (18]

2.4. Spike trains 13

2.4 Spike trains

A spike train is a collection of timed events. These are often the data for neuromorphic problems.
They are collected by using multiple sensors which detect changes on different stimuli.

These spike trains are often expressed as a sequence of timestamps for when the event occurs. For ex-
ample, a spike train representation of an input that spikes every 1.3 secs would be {1.3,2.6,3.9,5.1,--- }

We can encode a spike train as a fixed Boolean vector whose size is equal to the number of timesteps.
These timesteps are the smallest unit of time for which no two events occur at the same timestep. We
can do this by the following construction. Given a spike train I we define the Boolean vector I” as,

1’[-@]:{ 1 del

0 otherwise

The number of timesteps can be selected by calculating the number in a way that no two spikes of the
same neuron that occur at different instances are mapped to the same timestep. Consider the spike
trains,

Iy ={1.42,2.16,2.83,4.94,6.31} and I, = {1.43,2.82,4.22}
For the example we can infer that 4 = 0.7 and we get,

I = {0,1,1,1,0,1,0, 1}, = {0,1,0,1,1,0,0,0}

2.5 Satisfiability Modulo Theories

Satisfiability Modulo Theories is a paradigm to determine if a given mathematical formula is sat-
isfiable. It is essentially a generalization of the Boolean satisfiability problem (also known as SAT
problem) by allowing more complex variables like integers and real numbers.

There exist many different SMT solvers that can solve formulas in Linear Real Arithmetic (LRA). A
formula is said to be in LRA if it is of the form,

arry + agto + -+ aprp b

where @ can be =, #, <, >, <, > and Vr;, r;,a; € R. These SMT solvers can compute satisfiability
for formulas with extremely large number of variables. Here, B denotes the set of real numbers.

SMT solvers offer a new approach to verification of hardware and software systems. If we can suc-
cessfully encode a system and it's properties into LRA formulas, we can then use these SMT solvers
to check for satisfiability of the verification query. This method is used for verification of traditional
neural networks with linear activation functions.

For the RELU activation function we have, we have,
y(x) = maz(z,0)
Since LRA does not support max as a function we encode this as,
(x20 = y=z)A (e <0 = y=0)

We can observe that this formula encodes the behaviour of the RELU function. SMT solvers offer a
creat deal of verification capabilities and is also very scalable in nature.

14

2. Background and Related Work

2.6

Figure 2.5: Graph for RELU activation function

Timed Automata

A timed automata is a mathematical object that operates on timed words. These timed words are
words of the form,

{(s,t) :s€0, teRT}

It is structurally similar to a finite state automata and shares a lot of it’s properties as well. Informally
a timed antomata is an extension of finite state automata with the additional functionality to handle
clocks and clock-based constraints. Clocks are real value counters that are nsed to encapsulate the
temporal aspect of the machine. Defining constraints on clocks allows the timed automata to accept
timed words.

Formally a timed automata is defined as below,

Definition 2.2 A Timed Automata TA is a tuple (L, IO,X,E,Ams', Inv), where,

L is the set of locations (states) with I° as initial location.

X is a set of clocks.

3 is the set of communication labels (input symbols)

Ares C L x (G x 8 x 21Xy x L is a set of transitions between locations.

Inv: L — G assigns invariants to each locations.

Here (i is the set of guard conditions and 2/¥! refers to the reset conditions of all clocks. In other
words, any subset of the clocks can be reset on an arc. The guard conditions are of the form,

g:=c1axndey

2.7. Tools 15

L3 L1
y<=2 finished

L >O

L2
y<=4

Figure 2.6: Example of a Timed Automata

where ¢1,c0 € R, € X and 0 can be <, >, =, #, <, >. The locations have their own clock invariants,
which need to be satisfied while the machine is in that state. If the invariant of a state becomes false
while the machine is in that state, it must take a transition to some other state or the execution dies
if no such transition exists. Each transition (arc) has an associated clock guard, input symbol and
clock resets. The clock resets refer to the subset of clocks that will be reset back to 0.

Since timed automata have the ability to encapsulate temporal nature of systems they are often good
modelling tools for such systems. In Chapter 4, we use these to model SNNs.

2.7 Tools

In this section we describe the major tools and libraries used throughout the thesis work.

2.7.1 Z3

Z3r is an SMT solver developed by Microsoft Research [7]. Z3 is one of the state of the art solutions for
SMT solving and can handle variables in the order of millions. Z3 has bindings in various programming
languages like C,C++ and Python. We have used the Python library corresponding to Z3 which is
named Z3py.

From Figure 2.7 we can see that Z3 can solve LRA formulas and returns unsat upon receiving a set
of formulas.

2.7.@ Uppaal

Uppaal is an integrated tool environment that is used for the verification and modelling of real-time
systems modelled as timed automata and extended timed automata [4]. The Uppaal tool has 4
components,

16 2. Background and Related Work

(b) Output of the sample code

Figure 2.7: Sample z3 execution

GUI for making the automata and transitions along with their invariants and guards.

e A programming platform (C based) to model complex functionality that cannot be modelled
using the GUI tool.

A simulator that simulates the timed automata for a given timed word.

e A model checker that can run Linear temporal logic (LTL) and Computation tree logic (CTL)
formulas in order to check properties on the modelled timed automata.

Figure 2.8 and Figure 2.9 provide a snapshot of the Uppaal framework.

2.7.3 snnTorch

snn'Torch is a Python framework built upon PyTorch in order to perform gradient based learning with
spiking neural networks [11]. The library provides additional functionality to the existing Py Torch
implementation allowing the user to create spiking neural networks.

The PyTorch package has support for many traditional neural network layers like, feed-forward layers,
convolutions layers, recurrent layers but with snnTorch we have the additional functionality to have
LIFR neurons, Lapicque neurons and Synaptic neurons.

The library can be used to simulate and train different types of SNNs. The simulation is done by
breaking the entire simulation time into discrete steps, and then passing the spike trains as input one
timestep at a time. The library also has additional functions for visualization and encoding of spike
trains from non-spike train data.

2.7. Tools

17

¥4, bridgexmi - UPPAAL
File Edit View Tools Options Help
- - ~ e
EwXx e a9 ::;|Q O-{-/\/H
Editor Simulator ConcreteSimulator Verifier

.‘l‘:;m.l.gﬂ. o ~] Hame: | Soldier Farameters: |const int delay

| Declarations
=1

Dedarations
:--?"6 Torch

-7 Dedarations

| System dedlarations

unsafe

=0 y=0
take |
eleasel y == delay
release!
y == delay
lake !
y=o0 ET O sate

(a) Uppaal GUI

4, bridgexm| - UPPAAL
File Edit View Tools Options Help

Cw&(srlaaane V|
Editor Simulator ConcreteSimulator Verifier

fastest = 5;

I Froject £

| Declarations - fast = 10:
=75, Soldier slow = 20;
i [Dedarations slowest = 25;

I‘:';}-?%Torch
i || Dedarati

[Vikingl = Soldier(fastest):
Viking2 = Soldier(fest):
[Viking3 = Soldier(slow);
Viking4 = Soldier(sloweat);

system Vikingl, Viking2, Viking3, Vikingd4, Torch;

(b) Uppaal Codebase

Figure 2.8: Uppaal Modelling Components

18

2. Background and Related Work

5 bridgexm| - UPPAAL — o x
File Edit View Tools Options Help
E@mXolaes(we

Editor Simulator ConcreteSimulator Verifier

2d

Enabled Transitions [+ <Global variables>
T [<Constraints> iking)
. i time =
take : Viking2 — Torch i :.:'?lgieng_l?p)'ﬂ uite) g y =0
take : Viking3 — Torch i angi‘, >0
take : Vikingd — Torch vikingd.y = 0 -
- Vikingd.y 2 0
Hosst Had - time = Vikingl.y o
“-Vikingl.y = Viking2 h
Simulation Trace Viking2.y = Viking3|
Viking3.y = Viking4 —s
Viking4.y = time ! satfe
Viking2
LA L=0 y=0
Trace File:
4 Prev » Next " Replay
i Open * Sove Random
' y=0 L= are
Slow Fast
(a) Uppaal Simulator
4% bridgexml - UPPAAL - o X

File Edit View Tools Options Help
EmXoeolaqq|ne

Editor Simulator ConcreteSimulator Verifier

v”

Ovenview

all
E<>
Ec>»

not deadlock
Vikingl.safe
Viking2.safe

Get Trace

E<> Viking3.safe Insert
A[] not (Viking4.safe and time<slowest)

Remove
E<» Vikingd.safe imply time>=slowest
E<» Vikingl.safe and Viking2.safe and Viking3.safe and Viking4.safe Comments
Query
Comment
Status
it UPPAAL version 4.1.24 (rev. 29A3ECA4ESFBOBOS), 2019 -- server.

(b) Uppaal Verifier

Figure 2.9: Uppaal Verification Components

2.8. Related Work 19

2.7.4 Brian2

Brian2 is a Python library that deals with the simulation of SNNs [20]. Unlike snnTorch or other
simulators, Brian2 simulates SNNs from a hardware perspective. The simulation tool deals with
physical quantities like voltage and current instead of dimensionless real values.

The simulation of Brian2 is done using these physical quantities as units and the functions which
encapsulate the behaviour of the SNN are modelled using differential equations.

These functionalities enable a better understanding of SNN architectures and functioning.

2.8 Related Work

In this section we highlight some of the related work done for traditional neural networks as well as
the works done for spiking neural networks.

2.8.1 Modelling of Traditional Neural Networks

There exists rich literature for modelling of traditional neural networks and modelling based frame-
works for the same. In [18], Katz, et al, have discussed the modelling of neural networks using Linear
Real Arithmetic. The work also discusses a verification framework based on the encoding proposed.
Finally the paper discusses the notion of scalable verification and how the different architectures can
enable more verification friendly networks.

In [10], an abstraction-refinement based verification for traditional neural networks is introduced.
The paper talks about the use of over-approximation for property verification. The framework is
an iterative process of constructing an over-approximation of the network followed by refining the
abstracted network, while checking for the satisfiability of a property on the network. The over-
approximation of the network is constructed in a way that if a property is not satisfied by the original
system it will not be satisfied for the over-approximation either. The abstraction part of the framework
is used for constructing smaller networks for verification and the refinement part of the framework is
used to eliminate any spuriousness the model exhibits. The framework is a more efficient and scalable
verification model for traditional neural networks.

There are many works that introduce different frameworks based on the verification of neural networks.
One such work [19] discusses the pruning and slicing of neural networks with the help of the verification
framework. The work defines the concept of redundant neurons. These are neurons that do not
contribute to the network in a meaningful way. The work presents a sound framework to eliminate
the redundant neurons using the verification framework.

Another framework for verification of neural networks introduced in [16] is the Reluplex method. The
reluplex framework is a scalable verification tool that is based on the existing Simplex [16] framework
used in Linear Programming. . Reluplex can handle the Rectified Linear Unit (ReLU) activation
function, which is one of the most common activation functions used in fraditional neural networks.
The method applies the verification process to the entire network instead of applying it to some
simplified network. The paper tests the model on neural networks designed for airborne collision
avoidance for Unmanned Aerial Systems (ACAS Xu). The proposed framework is able to verify
networks of a scale which could not be verified previously.

Another verification based framework is introduced in [12]. This framework is for simplification of

20 2. Background and Related Work

neural networks by the elimination of dead neurons. The paper defines a dead neuron as a neuron of the
system which always outputs 0. This neuron does not contribute to the output of the network since the
value output by the neuron is always zero. These neurons can be removed to create a smaller network
without changing the behaviour of the original network. The framework uses network simulations in
order to get a list of candidates that might be dead. Then it uses the verification framework to see
it the candidates can ever output a non-zero value. The remaining neurons at the end are considered
to be dead and can be removed from the network.

There also exists a framework for modification of a deep neural network [13]. Traditional neural
networks need to be retrained every time there is a significant change in the inputs and outputs
of a network. Since training of neural networks is not cheap, the paper presents a framework in
order to modify the behavior of the network with minimal modifications. This framework uses formal
verification to find the minimal amount of changes required to the network in order to account for
the change in inputs and outputs.

2.8.2 Spiking Neural Networks

Spiking Neural Networks have gained popularity in the last few vears due to the increasing applications
of energy efficient neural networks. The physical hardware required for spiking neural networks are
still under development with a few prototypes for non-commercial use. Despite this, there is an
ever-growing literature base for spiking neural networks.

There is ample literature that describes the various spiking neural networks trained for different
datasets with varying accuracy [21]. One such spiking neural network was trained for the handwritten
digit recognition (MNIST) [8]. The paper demonstrates a learning method called as Spike-Timing-
Dependent Plasticity (STDP). The network trained by this method on the MNIST dataset yields a
model that has an accuracy of 95%. The work also uses unlabeled data for training (Unsupervised
Learning).

There exist multiple works that compare the performance of spiking neural networks and different
variations of the same. One such paper [17] talks about the tolerance of spiking neural networks and
establishes a set of constraints for which the spiking neural network gives high accuracy, independent
of non-ideal hardware operation.

With increasing popularity of SNNs, there are some methods to convert an ANN into an equivalent
SNN. One such work [9] claims a higher accuracy of the converted network. In this work, the method
for conversion of ANN to SNN is seemingly lossless. It introduces a different conversion technique
that can be used to convert an existing ANN into an SNN with great accuracy.

Finally we look at a safety critical application of SNN. In [15], an SNN is constructed that takes
images of signatures as input and labels them genuine or forged. A network like this can be used to
automatically scan signatures on cheques and verify them. The paper discusses the architecture of
the network along with its operation.

2.9 Novelty of this Dissertation Work

In this work we propose frameworks for the modelling and analysis of spiking neural networks. Since
traditional neural network encodings cannot be used for spiking neural networks, we propose an SMT
based encoding for spiking neural networks, that can successfully model SNNs. We uses this encoding
to propose frameworks for simplification, verification and equivalence of SNNs.

2.9. Novelty of this Dissertation Work 21

We also discuss a timed automata encoding of SNNs. We finally introduce a simulation based veri-
fication framework for SNNs that utilizes the TA encoding of SNNs and the simulation tools for TA
based systems.

Chapter 3

A Scalable framework for SNN
verification based on Satisfiability
Modulo Theories

This chapter presents our proposal on a SMT-based verification framework for SNN verification.
Satisfiabilty Modulo Theories have offered a scalable verification framework for modeling, analysis
and verification of a wide range of hardware and software systems, and are quite recently being used
for modeling deep neural networks. Our exploration in this chapter intends to use SMT theories
to model SNNs. In the discussion below, we begin with an intuitive example that illustrates the
execution semantics of SNNs adopted in this chapter.

—0.3

AN
S

—0.1
Figure 3.1: Small SNN

Example 3.1 Consider the small SNN as shown in Figure 3.1 with the threshold of all neurons as 1
and initial potential as 0. Let us consider two input spike trains I; and Iy as,

I =[1,0,1,1]
Iy =[1,1,0,1]

As discussed before, a spike train depicts the firing of the inputs at specific time steps. The time axis
is discretized into time steps, which correspond to the different positions in the spike train vector. An

23

24 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

input that fires at a specific time step is represented with a 1 at that specific position in the vector, with
a () otherwise. Thus, for example, the input I fires at time steps 1, 3 and 4 while the input Is fires
at time steps 1, 2 and 4. The theory of this time discretization and spiking of newrons is discussed in
Chapter 2.

As noted in Chapter 2, a spiking neuron transfers a potential equal to the weight of the edge to the
neuron on the other side of the edge. A recipient neuron receives all such potentials from the incoming
edges, computes the cumulative potential for itself and decides to spike or not based on its threshold.
With these spike trains as inputs we will have the following simulation of the SNN.

At t =1, both inputl neurons spike
— Potential of vy; = 0-0.3- 0.4 =-0.7
— Potential of vig =0 + 0.5-0.1 = 0.4
— Potential of vg; = 0+ 0.5 - 0.1 = 0.4

o Att =2, only vy spikes

— Potential of vo1 = -0.7- 0.4 = -1.1
— Potential of v11 = 0.4 - 0.1 = 0.3
— Potential of va; = 0.4 - 0.1 = 0.3

o At t =3, only voo spikes
— Potential of vg1 = -1.1- 0.3 = -1.4

— Potential of vi7 = 0.4 + 0.5 = 0.9
— Potential of vo1 = 0.4 + 0.5 = 0.9

o At t =4, both input neurons spike

— Potential of vg; = -1.4 - 0.3 - 0.4 = -2.1

— Potential of vi; = 0.9 + 0.5-0.1 = 1.4
This neuron will spike at t = 4.

— Potential of va; = 0.9 + 0.5-0.1 = 1.4
This neuwron will spike at t = 4.

— Potential of vgg =0+ 1+ 1 =2
This neuron will spike at t = 4.

So the output spike train of the network is [0,0,0,1]. W

3.1 SNN encoding

In order to achieve a good encoding of any system, we need to ensure that the encoding is sound and
complete. An encoding is,

e Sound — if every property of the encoding is also satisfied by the original system

e Complete — if every property of the original system can be encoded.

3.1. SNN encoding 25

In order to encode an SNN we have to first model the execution semantics that can characterize
the behaviors and properties of the network and then encode them. At the end we add additional
properties if required to ensure soundness of the system.

For SMT based encodings of SNNs we use the theory of Linear Real Arithmetic (LRA), since the
SNNs allow the edge weights to be real numbers. A collection of all LRA constraints encapsulate
the behaviour of SNNs as shown in Figure 3.1. These formulas are often constructed for smaller
units of the system and the conjunction of these formulas vields the encoding of the system. In the
case of encoding neural networks, each neuron is encoded separately and the network encoding is the
conjunction of all those individual encodings.

In this chapter we use a similar approach for the encoding of SNNs using LRA formulas. We consider
the properties of each neuron and formulate them using LRA formulas. Then we create a conjunction
of all properties in order to get our encoding of the entire SNN. However there arises the issue of the
temporal aspect of the system. While writing LRA formulas we consider each neuron separately but,
in this case, time is a continuous variable which cannot be expressed using LRA formulas. In order
to work around this issue we divide the entire execution time of the system and divide it into discrete
timesteps. These steps need to be small enough to ensure that no two events (spikes) can occur at
one step, but also large enough such that it does not deeply impact the performance of the system.
Often these steps can have the same length as the clock cycle of the hardware on which the SNNs
are realized. A spike is a discrete event that occurs at a specific timestep. These spikes are the basic
units for propagating information across a spiking neural network. A set of spikes can be called as a
spike train, formally defined as below.

Definition 3.1 A spike train [is a set of distinct spikes defined as,

I'={t : A spike occurs at t}

We can also have a Boolean representation of a spike train,

Definition 3.2 A Boolean representation of a spike train is a vector whose size is equal to the number
of steps and the values are given by,

10 = 1 A spike occurs at t
Tl otherwise

Example 3.2 Let us consider a spike train, Iy = {0.8,1.6,2.0,2.4,3.6}. Here we divide the total
stmulation duration (4 sec) into timesteps of size 0.4 sec. So we can encode the array as a,

Iy = {ro4, Tog, T1.2, T1.6, T2.0, T2.4, T2.8, T3.2, T3.6,T4.0}
where x; is 1 if I1 spikes at timestep i, otherwise it is zero. So we get the Boolean encoding as,

I ={0,1,0,1,1,1,0,0,1,0}. W

In the further discussions, every reference to spike trains will refer to Boolean spike trains. For a
given SNN with n layers, as in the Example 3.1, we define the following notations.

e The total time 1.

e The total number of discrete steps, each of length & as T'/d.

26

3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

The set {1,2,--- ,x} as [z].
The number of nodes in layer i as m;.

The decay factor as A.

th

The i*" neuron of the j* layer as V(i)

The threshold of v; ;) as 8, j

The indicator variable for the spike generated by the i** node of the j layer at timestep t as

Tijt)
The accumulated potential of node v

11
The weight of the synapse between the i'* node of the j** layer and the k™ node of the (j —1)

(i,j) at time t as P; ;)
th

layer as w; j)
The potential gained by node v(; ;) at timestep t as Sj; ;) where,

my_1
Sty = Y Tkj-14) Wi k)
k=1
For a neuron vy jy, if it receives a spike from a node vy ;_;y then the weight of the synapse
between v; jy and v ;_1) will be added to the potential of v(; ;). If no spike is received from
V(k,j—1), No potential is added.

With all the notations defined, we can look at the properties of the neurons to be modelled. For each

neuromn v

(i,;) and each timestep ¢ we have,

e A neuron spikes if the potential of the neuron crosses the threshold of the neuron.

We know that the total potential of a neuron at any given point in time is the accumulated
potential from the input synapses and the previously stored potential. So we have,

Total Potential : Sj; ;¢ + P j—1)
So we have the following LRA expression corresponding to this property,
(St + A+ Plja) 2 0iigy = (wige =1)

In this formulation, the stored potential added is the decayed stored potential. As time passes,
the neuron potential starts to leak causing the stored potential to decay. The leak factor denotes
the fraction of potential retained after the previous timestep.

A neuron does not spike if the potential of the neuron does not cross the threshold
of the neuron.
Similarly for this property we have the LRA expression,

(Stin) + A Page-n) < 0aj) = (@ige=0)
On crossing the threshold, the neuron potential is set to 0.
If the threshold is crossed then the neuron potential is reset. This property can be expressed

with the LRA formula,

(S(i‘j,ﬂ +A- P(II‘J'J—I)) 2 g(i‘j) = (Pijx=0)

3.2. SNN Simplification 27

e If the potential of a neuron does not cross the threshold the potential is stored for
the pgxt timestep
This can be expressed as,

(Stigny + X Pagen) < 0ug) = (Plje) = Sty + A Plage-1)

e The initial potential of a neuron is 0.
The system starts with empty potentials. This can be expressed by the following LR A formula,

P joy=0

Combining these formulas for a single node v; ;; and single timestep ¢ we can write the conjunction
as,

Fiajn = (Sagn + A Paga—n 2 0ag) = (@ije=1DA(Paze =0)) A
(Stigy + A Pige—1) <065 = (@ije=0)A(Pjay = Saga + A Pliji-))

Consider a SNN with n layers, layer i having m; nodes. For each layer i we have the encoding as,

FEl N A A Fuo| A A N Pijo=0

te[T/6] jeln] ig]m;] JE[n]ig[my;]

At first glance the set of formulas cafflseem extremely large and complex, since the order of the number
of variables is O(n - m - t) where n refers to the number of layers, m refers to the maximum number
of nodes in a layer and ¢ refers to the number of timesteps. Even though the number of variables is
in the order of 10* for small networks and 10° for large networks that are available in practice, the
SMT solvers work seamlessly and show extremely good performances upto 10® variables.

It is intuitively easy to see that the SMT encoding is sound and complete for the time T, since the
functionality of each SNN neuron is transferred to a lossless encoding as a collection of terms in the
LRA theory. We thus have a sound and complete encoding and an associated decision procedure that
employs a SMT solver to evaluate a given SNN for the time T against any given input spike train.

3.2 SNN Simplification

Modern Spiking Neural Network applications are increasingly growing to be large and complex. Thus,
there is a continuous growing need for scalable procedures that can handle SNNs at scale. To this
effect, we define a novel procedure for simplification of a given SNN that is driven by the observation
that not all neurons in a given SNN fire, in other words, there may be neurons in a given SNN that may
never cross their threshold. The challenge is in automatically identifying and pruning such neurons
for a given SNN. Once such neurons are identified, we get an equivalent SNN which has lesser number
of neurons and therefore, synapses. Before we talk about our proposal of dead neuron identification
and elimination, we define the notion of equivalent SNNs.

Definition 3.3 Two Spiking Neural Networks Ny and No are said to be Equivalent if Yx € X we
have, Ni(x) = Na(z).

28 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

Where X is the input space given by, {0,1}"* where m denotes the number of input neurons and ¢

denotes the number of timesteps. This means that if two SNNs have the same output spike train for
all possible inputs, the networks are equivalent.

Equivalence of two SNNs N; and Ny does not guarantee identical architecture, it just guarantees that
the outputs of the networks are identical for all inputs. This indicates that two networks with different
architectures and parameters may still be equivalent to each other. This notion of equivalence is useful
for verifying the soundness and completeness of modification based frameworks applied to SNNs.

The equivalence of two networks can be checked by the following procedure,

e For the given two SNNs N and Ny we trivially check if the number of input neurons and output
neurons are same for both the networks. If they are not we can conclude that the two networks
are not equivalent, as they do not share the same input/output space.

e Then we construct the SMT encoding for both the networks. Then we construet the following
formula, ¥z € X,

Eq 2 (Ny(z) = y1) A (Na(2) = y2) A (y1 # y2)

e We then use an SMT solver to check for satisfiability of Eq.

e If the SMT solver returns UNSAT we can say that the there exists no assignment of input = for
which the two networks have different output (i.e. 1 # y2). So we can conclude that the two
networks are equivalent.

e If the SMT solver returns SAT we can say that there exists an assignment of input x for which
the two networks have different outputs. So we can conclude that the two networks are not

equivalent. The solution returned by the SMT solver in this case will be the input for which
the two outputs differ from each other.

3.2.1 SNN Simplification

We now describe our approach towards SNN simplification. We begin with the definition of a dead
neuron.

Definition 3.4 A Dead neuron is a neuron v; ; of a network N where for every possible spike train,

vt € [T/d], P(i‘j‘t) < 9(1"3')

This means that, for every possible input and all timesteps, the potential of the neuron does not cross
it’s threshold. This is equivalent to saying that a dead neuron is a neuron which never spikes for any
possible input to the network.

Example 3.3 Let us consider the following neuron with 8(; ;1) =1,

3.2. SNN Simplification 29

In this example, whenever vy ; or viyy j spike, the potential of v; j11 goes down by the formula
P(:',j,&} = (—0.5).’}‘2(;\.‘3-‘” + (_0'2)a:(k+1,j,£} + ‘P(I',_}',E— 1) and P(:',j,ﬂ) =10

Since the potential v; j11 is a decreasing function, the potential can never cross the threshold which
implies that the neuron will never fire. So v; ;11 is a dead neuron. B

A dead neuron does not contribute to the network in any way since no output is ever generated by
the neuron. During operation these dead neurons stay idle as the potential is never met and hence
can be removed from the network to further simplify it. Removal of a dead neuron does not affect the
output of the network as no part of the output was dependent on them. As a first step, we propose
to remove such dead neurons. Next, we define the concept of equivalent neurons.

Definition 3.5 Two neurons v;; and vy, are said to equivalent if, for every possible spike train,

Wt € [11/6]‘ (ﬂ:(i,j,t) = 1) ind ('?;(k,m,t) = 1)

This means that, for each possible input and all timesteps, equivalent neurons have the same output
spike train. Equivalent neurons essentially act as copies of each other. In the context of a human
brain each neuron acts as an indicator that contributes to the final output. Having two identical
indicators for the same stimulus is redundant in nature and increases the size of the network without
improving it's efficiency.

Example 3.4 Let us consider the following example,

30 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

Here, v; j and vy, have the same input weights and neurons. In this case if any one of them spikes,
the other will also spike since the potentials of the two neurons are the same at every timestep. This
can be observed by looking at the formula corresponding to the potentials of the neurons,
.P(.,"J";,) = JP(,"J";_ 1) + 0.4x 4+ 0.3y
P{k,m,,!,) = ‘P(k,m,,l,—l) + 0.4z + 033}'
ID('i,j,ﬂ) = ID(k,m,,ﬂ) =0
Solving these relations we can observe that,

Wt = [11/6]| P(-,E‘J",_‘,) = P(k,'m,,!.)

So the neurons v ;y and v,y are equivalent. W

Merging duplicate neurons of the same layer into a single neuron will reduce the size of the network
while still maintaining the original properties. However, we have to make some additional adjustments
to the weights to ensure the equivalence, as discussed in the following subsection.

Now we define the simplification problem for SNNs.

Definition 3.6 Given an SNN, N, we need to construct an SNN, N', such that |[N'| < |N| and
Ve e X, N(z)=N'(z).

Here X denotes the input space which can be written as {0, 1}*[7/%) where m refers to the number
of neurons in the input laver of N. For a given SNN N, |N| stands for the number of neurons in N.
We can construct a simplified network by removing the dead neurons and then merging the equivalent
neurons. Since both these operations do not alter the output of the network, we are expected to get
a network with a lesser (or same) number of neurons (in case there are no dead neurons or equivalent
neuron pairs) which yields the same output as the original for every input.

3.2.2 Identifying Dead Neurons
For the removal of dead neurons we have the following procedure,

e Randomly generate a fixed set of inputs for the network N. Let us denote the set of inputs as [I.
The size of I, i.e. the number of inputs should be proportional to the size of N where, a large
network will require a large set of inputs whereas a smaller network will just require a small set.

e We initialize a list of possible dead neurons and insert all the neurons of N as candidates to be
dead neurons.

e We run the inputs from / on N and note the spike trains of the neurons. If a neuron v has at
least one spike, then we remove it from the candidate list since it cannot be a dead neuron if it
spikes.

e After the simulations we get a list of candidate dead neurons. We use the following query to
check if these neurons are dead. This can be done by invoking a solver to check for satisfiability
of the following expression for neuron vy; ; :

dt € [T/fj], P{i,j,&) = 9{1-‘}-)

along with the network formulas of the previous layers. The layers after the dead neuron do not
impact the spikes of the candidate, hence they can be ignored.

3.2. SNN Simplification 31

o If the solver returns UNSAT, we can infer that there exists no input assignment for which the
candidate neuron’s potential crosses its threshold. This implies that the neuron never spikes
and hence can be labelled as a dead neuron.

e If the solver returns SAT, we can infer that there exists some input for which the candidate
neuron’s potential crosses its threshold. This implies that the neuron can spike and hence cannot
be labelled as a dead neuron. This candidate is removed from the list. This step ensures that
no live neuron is labelled as dead because of unfavourable random inputs.

e We then construct a network N’ from N but by removing all the dead neurons and their
associated synapses.

(a) Sample SNN before dead neuron elimination

\C

(b) Sample SNN after dead neuron elimination

Figure 3.2: Sample for dead neuron elimination

Example 3.5 In order to demonstrate the working of the process of eliminating dead neurons, let us
consider the network in Figure 3.2a. The execulion will be as follows,
e Let us say we generate a random input I; = [0,1,0] for neuron a and Iy = [1,0,1] for neuron b.
o We initialize the set of candidate dead neurons as {c, d,e, f }

o After simulating the input we can observe that neurons e and f did spike. So we eliminate them
from the dead newron candidate list.

o We now apply the SMT solver to check if the neuron is dead or not for the candidate list {c,d},

— For d the solver will return SAT as it’s output. This is due to the fact that there exists
an input spike train for which d spikes. The solver will return one such assignment, say,
L =[1,1,1] and Iy = [1,1,1]. So we remove d from the dead neuron candidate list.

32 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

— For ¢ the solver will return UNSAT as its outpul. This implies that there is no input spike
train for which c spikes. So we conclude that ¢ is a dead neuron and it can be eliminated.

On removal of the dead neuron we get the resulting network in Figure 3.2b. B

Algorithm 1 presents our procedure for dead neuron handling. It is intuitively easy to see the following
Theorem.

Theorem 3.1 The SNN produced after dead neuron elimination is equivalent to the original SNN for
all spike trains.C

3.2.3 Handling Neuron Equivalence

For the merging equivalent neurons we have the following procedure,

We generate the set of inputs I similar to the the ones used for eliminating the dead neurons.

e We initialize groups corresponding to each layer and insert all the nodes of a layer into their
corresponding groups.

e We then check for equivalent neurons by comparing the spike trains obtained from running [/
through N. If two or more neurons of the same layer have different spike trains for any input
we put them in separate groups.

e At the end of the simulation we have groups corresponding to each layer. If a neuron is the only
member of its group, then it is a unique neuron without an equivalent neuron in the same layer.
We consider each group containing more than one neuron.

e We then check the following formulas for all the neuron pairs in each group G,
Wiy, ip € G, 3t € [’1‘/5], T(iy,4.0) ‘ﬁé T (iy,5.0)

e If for any formula the solver returns UNSAT we can say that for all possible inputs the output
spike trains of the two neurons are identical. This would imply that the two neurons are
equivalent.

e If the solver returns SAT we can say that, there exists an input for which the two neurons output
different spike trains, which would imply that they are not equivalent.

e We consider the each of the final groups as G' with neurons {v(;, jy, Vi, 4ys - 0,5} We can
merge them into a new neuron v(; ;) with threshold as follows,

0. — Zv(‘,‘_ﬂe(;gﬁ"j)
S

and we merge all the input synapses for the neurons with the following weight assignment,

, Lo €6 Wirik
Wi ke = T

3.2. SNN Simplification 33

then we finally we merge all the input synapses for the neurons with the following weight
assignment,

Wigk = D Wik

Yt 5)€G

In an abstract sense, the neurons of a group are merged into a single neuron whose weights and
thresholds are taken as the average of all the individual neurons of the group.

e We construct a new network N” from N’ (obtained from the original network N after dead
neuron elimination) by replacing the equivalent neurons with the associated merged neuron.

Theorem 3.2 The merged neuron will behave identical to all the equivalent neurons for any spike
train. O

Proof 3.1 Let us consider a set of equivalent neurons G containing k neurons to be merged. Let
us also denote the merged neuron as vg. In order to show that vg encapsulates the behaviour of all
neurons in G we show that whenever the neurons in G spike, vg will also spike and vice versa. Let
the set of timesteps for which the neurons in GG spike are denoted by Typir. and the set of timesteps
Jor which the neurons in G do not spike are denoted by T:;r:ike' We have the following. ¥t € Topire and
Vv € G,

1

> wiji- w0 >0
=1

Adding the equations corresponding to all the nodes together and dividing by k we get,

1

1 1
v ;€G =1 v, €G
Which is equivalent to,
i1
Z wigyy -1 =g
=1

So whenever the neurons to be merged spike, the emerged neuwron will also spike. By changing the sign
of the inequality we can prove the other half of the proof as well. As for the

O

In order to demonstrate the working of the process of merging the equivalent neurons, let us consider
an example.

Example 3.6 Let us consider the example SNN in Figure 3.3a with thresholds of all neurons as 1
and the initial potentials as 0. The execution will be as follows,

o Let us say we generate a random input Iy = [1,1,1] and I, = [1,0,1].

e We initialize the group as {vo1,v11,v21}-

34 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

—0.3

)60

—0.1

(a) Initial grouping
—0.3

QB

—0.1

(b) Final groups

Figure 3.3: Sample SNN for the merging of equivalent nodes

o After simulating the input we can observe that neurons vo1 and vi 1 have different spike trains.
We also notice that vi,1 and ve1 have the same spike train. So we group them accordingly as
shown in Figure 3.3b

e We now apply an SMT solver to check if the two neurons are equivalent or not. The model will
return UNSAT. This implies that for all inputs the spike trains of the two neurons will always
be the same, hence they are equivalent. So these neurons can be merged. M

At the end of the procedure we get a new network N’ for which the number of neurons is less than N.
Once the neuron equivalence is established, it is easy to see that the network generated after merging
of equivalent neurons is equivalent to the original one. For N and N' we have the following lemma,

Lemma 3.1 The network N’ is equivalent to the network N. O

By observing algorithm 1, we can observe that initialization is O(|N|), simulation is O(|N| - I) and
the query execution using the solver and construction of the new network is O(|N|) in the number of
solver calls. So we can say that elimination of dead neuron makes O(| N|) solver calls. For algorithm
2, the initialization is O(| N|), simulation is O(|N|?-I) and the check using the solver and construction
of the new network is O(| N|?) in the number of solver calls. So we can say that merging of equivalent
neurons makes O(|N|2) solver calls. Combining the two we get the overall complexity of simplification
to be |N|? in the number of solver calls.

3.3. Verification of SNNs 35

Algorithm 1 Algorithm for removal of Dead Neurons

Input: The Spiking Neural Network N, Number of inputs for simulation 1
Output: Reduced Spiking Neural Network N’ without dead neurons.
candidates + ||
fori=1toi=|N|do
candidates.add (i) = Add the node i to candidate list
end for
c 0
while ¢ < I do
c—c+1
ip + generate RandomInput() © Select a random input to simulate
spiked < simulate(N, ip) = Simulate the input on the network
for node in spiked do
candidates.remove(node) > Remove neuron i from the candidate list
end for
end while
for node in candidates do
if checkSpike(N,node) == SAT then Check if node can fire
candidate. remove(node)
end if
end for
newNetwork = removeNeurons(N, candidate) > Construct the new network
return newNetwork

3.3 Verification of SNNs

Formally we define the verification problem for Spiking Neural Networks as follows:

Definition 3.7 Given a tuple (P,Q,N), where N : {0, 1}™*' — {0, 1}"* is the SNN, P : {0,1}"*! —
{0,1} is the input property and Q : {0,1}"* — 0,1} is the output property the verification problem
is to decide if there exists an xg € {0, 1}™*" for which,

Plxo) A (N(xzo) = y) ANQ(y)

is satisfiable.

Here t refers to the number of timesteps, m refers to the number of input neurons of N and n refers
to the number of output neurons of N.

If there exists such an xg we say that the system does not satisfy the given property. The input xq
that was found, acts as the counter-example for the property. If there exists no such xg we can say
that the system satisfies the property as there exists no inputs for which Q(x) is satisfied.

In this section, we describe the verification framework enabled by the SMT encoding of SNNs. The
idea of verification is exactly the same as in case of DNNs as mentioned in Chapter 2. We show how
the encoding in tandem with the solvers can yield a reliable framework for verification.

In order to utilize the SMT solvers, we need to encode each part of the formula using LRA formulas.
Considering each part of the formula we have,

e P(xp) — input property
The input property refers to the specific subset of inputs for which the property is to be checked.

36 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

Algorithm 2 Algorithm for merging of Equivalent Neurons

Input: The Spiking Neural Network N with n layers
Output: Reduced Spiking Neural Network N without equivalent neurons

ﬁups «— [
ori=1toi=n do

for j =1toj=n; do
groups[i].add(j) > Add the node i to candidate list
end for
end for
c+ 0
while ¢ < I do
c—c+1
ip + generate RandomInput() & Select a random input to simulate
spikes « simulate(N, ip) > Simulate the input on the network
for nodel in spikes do
for node2 in spikes do
if nodel.spikes # node2.spikes then
splitGroups(nodel, node2) > Put nodel and node2 in separate groups
end if
end for
end for

end while
for group in groups do
for nodel in group do
for node2 in group do

if checkEquiv(nodel, node2) then r Use the SMT solver to check for equivalence
splitGroups(nodel, node2) = Put nodel and node2 in separate groups
end if
end for
end for

end for
newNetwork + N
for group in groups do
if |group| # 1 then
newNeuron = mergeNeurons(group) = Merge all neurons
newNetwork = removeNeurons(newNetwork, group) > Remove neurons in group from
the network
newNetwork = addNeuron(newNetwork, new N euron)
end if
end for
return newNetwork

3.3. Verification of SNNs 37

These input properties can be encoded using LRA formulas as they are well defined subsets of
the input space. Some of the common input properties and their respective encodings are as
below.

— All inputs — These properties exhaustively search over all possible inputs. These are most
commonly used for hardware property testing where, independent of the operation, the
system should satisfy the hardware safety properties. The encoding for these properties is,

Plxg) 2T

Here T refers to a tautology, i.e. a statement that is always true.

— Specific Inputs — These properties focus on a specific input from the entire input space.
These are commonly used for properties based on exceptions and corner cases. The en-
coding of such properties are assignments of the Boolean variables corresponding to the
the timesteps. If a spike occurs at time ¢ for neuron v;p then the indicator variable x(; o)
would be assigned a 1. This can be shown using the formulation for a spike train I,

1 te l;
I' = ’ t 1,2,3,---,1T/8
{ 0 otherwise €{ /%}

Consider the two input spike trains,

L ={1,3}
I, ={1,2}
These spike trains can be interpreted as follows, at timestep ¢ = 1 both inputs I; and I,
spike. Similarly at ¢ = 2, Is will spike again and at t = 3, I; will spike. We can encode
the duration of T' = 3 it into discrete steps of § = 1 and get the binary encoding of spike
trains as,
I ={1,0,1}
I, ={1,1,0}

The LRA for this assignment would be of the form,

P({I, I1}) £(z01) = 1) A (2002 = 0) A(zos = 1)
Ao =1 A (21,02 = 1) A(xa,03 =0)

— Inputs based on Spike counts — These properties define a condition on the number
of spikes in the input spike train. These can be lower or upper bounds on the number of
spikes in the spike train. These can be generically written in the form,

P(zg) £ ¢y < Z T4 < C2
te[T /5]

Here ¢, co are non-negative integers.
— Compound Properties — these properties are conjunctions of multiple input properties.

These are used to verify various problem specific properties. A generic formulation of these
properties would be,

P(zp) £ Py(xg) A Po(xg) A- - A Pr(xg)

e N(xg) =y — network encoding
The network’s behaviour is encapsulated using the proposed SMT encoding. Since the encoding
is sound and complete, any property of the original system is also a property of the encoding.
This way when we use the SMT solver to check for a property we can guarantee that the
properties satisfied by the encoding are also satisfied by the original system.

38 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

Figure 3.4: Example SNN (N) to demonstrate verification framework

e ((y) — output property

The output property of the verification framework is similar to that of the input property. Several
different types of properties can be expressed using LRA formulas. For output properties, most
cases have count based properties since labelling and classification are all count based results
for SNNs. The formulas we consider for these are often negations of required properties. This is
due to the fact that, checking for existence of a counter example is much easier that exhaustive
searching over all inputs. The following statements are equivalent to each other as they are
contra-positives of one another.

Yao, Qy) < —(Jxo, Wy))

The set of all these formulas can be given to an SMT solver for verification. If the solver returns
UNSAT we can say that the SNN satisfies the property as there exists no input for which the negation
of the output property holds true. If the solver returns SAT, we can say that the SNN does not satisfy
the property. Most solvers return a solution if the output is SAT. This solution is the counter-example
for which the network failed the property.

The proposed framework is a reliable and scalable framework for verification of SNNs and is only
limited by the expressibility of properties using LRA. This framework along with an efficient SMT
solver can greatly increase the reliability of SNNs for safety critical systems. The robustness of the
framework also unlocks the potential to verify more complicated properties and networks.

Example 3.7 For the verification framework let us consider the example neural network in Figure
3.4. Lel us consider the following lwo properties,

e P : the number of spikes generated by a is more than the number the spikes generated by b and
() : neuron d never spikes. This can be encoded as,

P Z:}JGZZ.?:E, and () : Zr}:d=0

where x; are spike indicators for neuron i. We take the complement of the output property
as, Q : neuron d spikes at least once. If we give the network encoding N along with P and
Q to the solver, it will return SAT along with the input spike train as, I, = [0,0,1,1,1] and
I, =[1,1,0,0,0] for which the neuron d does spike. So the network N does not satisfy (P, Q).

3.3. Verification of SNNs 39

e P : neuron b never spikes and Q) : neuron d never spikes. We take the complement of the output

property as, () : neuron d spikes at least once. If we give the network encoding N along with P
and @ to the solver, it will return UNSAT. So the network N satisfies (P,Q).

So the network N satisfies the second property but it does not satisfy the first property. B

Algorithm 3 Algorithm for Verification of SNNs
Input: The Spiking Neural Network N, Input property P and output property ()}
Output: UNSAT or Counter-example
Q + —Q
if Solver(N, P,Q') == SAT then
counter = getSolution(N, P,Q’)
return counter
else if Solver(N,P,Q) == UNSAT then
return UNSAT
end if

3.3.1 Hardness of SNIN verification

In [16], it has been show using reductions that the verification problem of traditional neural networks
is NP Hard. This is shown by reducing an instance of of the 3-SAT problem [16] to an instance of
binary neural network verification. We use a similar process to prove hardness of SNN verification.

Theorem 3.3 SNN verification is NP-Complete. [

Proof 3.2 Let us consider a general instance of the 3-SAT problem,
CyANCy A A Oy

where each clause is of the form,
Ci:aVgvg

where each q; is a Boolean variable or the negation of a Boolean wariable. We will construct a
verification problem of SNN that is satisfiable iff the 3-SAT formula is satisfiable. The constructed
SNN werification problem will be done on a SNN which operates for one timestep and has the neuron
thresholds as 1. Let us consider the following operations and their respective SNN interpretations for
the Boolean operators,

e Negation : —.
We model this property using the SNN in Figure 3.5a. When x is 1 the potential of the oulpul
node is 0, and there is no output spike. If x is 0 the potential crosses the threshold and hence
generates an output spike.

e Conjunction : Cy ANCoy A -+ A Ch.
We model this property using the SNN in Figure 3.5b. When all inputs are 1 the potential of the
output node is 1 (k x 1/k), so there is an output spike. If any of the inputs are 0 the potential
does not cross the threshold and hence no output spike is generated.

40

3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

(a) SNN encoding for negation of Boolean variable

A
N

\
ST AT

"/
(¢) SNN encoding for disjunction

Figure 3.5: SNN equivalents for logical operations

3.3. Verification of SNNs 41

e Disjunction : aVb Ve.
We model this property using the SNN in Figure 3.5¢. When a and b and c are 0 the potential
of the output node is 0, so there is no output spike. If any one of them is 1 the potential crosses
the threshold, so an output spike is generated.

For any instance of 3-SAT we can encode the formula using an SNN with the reductions mentioned
above. The network is constructed in such a way that there will be only one output neuron (y). The
reduction is polynomial in the number of clauses. Using this reduction we can now construct a SNN
verification problem (N, Q), where N is the SNN constructed from the 3-SAT formula and Q is the
output property "Does y spike?”. If N satisfies the property @) we can say that the 3-SAT formula is
also SAT. If the N does not satisfy the property Q@ we can say that the 3-SAT formula is UNSAT.
Thus, we have a polytime reduction from 3-SAT to SNN verification, thereby allowing us to conclude
on the hardness of the latter. O

3.3.2 Adversarial Robustness of SNNs using SMT encoding

We now talk about a special class of verification problems that is quite popular in recent literature,
as defined in Chapter 2.

Definition 3.8 An SNN N is said to be adversarially robust if Yx1,x0 € X we have,
|1 —xalt <6 = N(x1)= N(x2)

where X is the input space given by {0, 1}™*t |ja—bl|; refers to the Manhattan norm, N(z) corresponds
to the output neuron with the most output spikes on input x and & € R.

In this section we take a look at a specific verification problem; the problem of adversarial robustness
for SNNs. Adversarial robustness for traditional networks, as seen in Chapter 2, are defined as the
ability of a network to give the same output for any input and every one of it's §—perturbations.

In the context of SNNs the same definition applies, where, for any given input = we ask if the SNN N
gives the same output for x and all §—perturbations of x. Unlike traditional networks spiking neural
networks cannot use the same notion of d—perturbation as the input of the SNN (i.e. spike trains)
does not have real values to perturb.

We need to define a new notion of d—perturbation in the context of SNNs. Perturbations in traditional
NNs are isomorphic by some bounded noise introduced to the inputs. We propose the following two
notions of § —perturbations.

Definition 3.9 d—perturbations on spike times refers to shifting the spike times of the spikes in the
spike train by § timesteps.

For example, for d and a spike x(; 5) the d—perturbation would mean that the spike can ocour anytime
between 5 — 4 <{ <5+ 4. In an abstract sense a d—perturbation of spike time is essentially shifting
the time of the spikes of a spike train in any direction to have the spike events occur earlier or later
than the original spike train. For example let us consider a spike train I given as,

1=100,0,1,0,0,0,1,0,0.1,0]

42 3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

Now let us consider a spike train I’ given by,
I' =11,0,0,0,1,0,0,0,0,1,0]

for 4 = 2 we can observe that each spike from [has been shifted by at most 2 timesteps, so we can
say that I' is a d—perturbation (on spike time) of I.

Definition 3.10 d—perturbations on spike counts refers to changing the spike counts of the spike
trains so that there are at most § changes.

If & = 10 then, the sum of all the spikes that are present in the perturbed input but not in the original
image plus the the sum of all spikes which are present in the original input but not in the perturbed
input must be at most 10. The set of all d-perturbed spike trains I for a given spike train I can be
formally written as,

Is={I' : |[I'=1I|j <46}
Where || X — Y||; refers to the first norm i.e. Manhattan distance between the two vectors.

For example let us consider a spike train [given as,
I=10,0,1,0,0,0,1,0,0,1,0]

Now let us consider a spike train I’ given by,
I'=11,0,1,0,1,0,0,0,1,1,0]

for & = 5 we can observe that the Manhattan distance between I and I is at most §, so we can say
that I' is a d—perturbation (on spike count) of 1.

Comparing the original MNIST spike encoding (3.6b) and the §—perturbation of spike times (3.6c)
we can observe that the variation is not drastic. There is some loss of spikes caused by spike times
crossing the bounds of the simulation but, they are still very similar to each other. This similarity can
also be intuitively explained. Since each neuron spike corresponds to a particular stimulus, delaying
the stimulus will not affect the output drastically as long as the number of spikes is not greatly altered.

For most real life applications the spike trains generated by sensors are more susceptible to errors
where, there are incorrect spikes or missing indented spikes. So we choose to use the notion of
d—perturbation of spike counts for adversarial robustness.

3.3.3 Procedure

In order to check for adversarial robustness for SNNs we have the following procedure,

e Given an SNN N, we use the SMT encoding to get the set of formulas corresponding to the
network

e We then create the set of formulas that cover the d—perturbations of a singe input g as,

F52 |z —2oly <6

3.3. Verification of SNNs 43

(a) A sample MNIST image

10 20 0 10 20

(b) Spike encoding of the image

(d) d—perturbation of spike counts for 4 = 50

Figure 3.6: Different d —perturbations for a sample MNIST data generated using snnTorch

44

3. A Scalable framework for SNN verification based on Satisfiability Modulo Theories

e Then we create the set of formulas which refer to the property that the original output (y =

max(y1, y2,- - . yx)) should match the output for all perturbations (y" = max(y}, vy, -+, yp))-
The formula corresponding to the output of the network is given by,

F,ANCuzZy A ACunz2Tw = (y=i)

ic[k]

where [y] refers to the set {1,2,--- k}. Informally the formula encapsulates the property that
the output of the network should be the label corresponding to the output node which spiked
the most.

Example 3.8 In order to show this let us consider a network N with 3 outpul neurons and let
us consider the output spike train generated by N(xy) for some input spike train xq are,

y = {1,1,1,1,0,1}
y2 = {0,0,1,0,1,0}
y2 = {1,0,0,1,1,1}

The formulation would be,

E£(Xn=2Yyw)A(lun=Xy) = y=1))A
(Cwm=22v) A w22y = yY=2)A
(XwmzXyw)A(Ewm=>n) = y=3)

2y=1

So for our example we will have y = 1. A

The set of formulas corresponding to the matching outputs are,
Fop 2 FyNFy A (y=1y)
We take the negation of the intended property for the sake of the solver to get,

F'Dp%Fy/\Fy(/\(y;éy’)

We then combine all the formulas to get the set of formulas corresponding to adversarial ro-
bustness as,

F 2 Fs A(N(xg) =yo) A(N(z) =y) A F:,p
We then pass these formulas to the SMT solver.

If the SMT solver returns UNSAT, we can conclude that there exists no d—perturbation around
xq for which the outputs of the two inputs do not match. This implies that for the given x(and
4, the network is adversarially robust.

If the SMT solver returns SAT, we can conclude that there exists a §—perturbation of xy for
which the outputs of the two inputs do not match. This implies that for the given zg and 4,
the network is not adversarially robust. The assignment of x returned by the SMT solver is the
d —perturbation of xy for which the outputs do not match.

3.4, Implementation and Results 45

Number
of Nodes | Number of timesteps | Number of Variables for the solver | Time taken
in SNN

10 25 ~ 5000 0.12 sec
400 25 ~2x 10° 0.79 sec
625 30 ~ 3.75 x 10° 0.86 sec
10000 30 ~ 6 x 10° 1.13 sec

Table 3.1: Relation between number of nodes and variables of the SMT encoding
3.4 Implementation and Results

We have written a program to encode a given SNN into its equivalent SMT encoding. We then
construct random synthetic networks with varyving scale and check the number of variables in the
SMT encoding. The number of variables and time taken for encoding is given in Table 3.1

In order to test our method for SNN simplification, we create different SNNs with increasing number
of nodes. We then apply the Simplification framework to these networks and analyse the resultant
SNN. The results for the same are noted in the Table 3.2.

Nodes in | Inputs Candidates Simulation Candidate Query Percentag

the SNN | for sim- | after simula- | Time neurons after | Time reduc-
ulation tion query tion

20 10 7 2.13 sec 6 2.45 sec 30%

20 20 6 2.34 sec 6 2.72 sec 30%

35 10 18 2.19 sec 13 4.52 sec 37.14%

35 20 15 2.39 sec 13 4.63 sec 37.14%

50 10 22 2.25 sec 17 6.89 sec 34%

50 20 17 2.41 sec 17 7.32 sec 34%

Table 3.2: Results of applying the simplification frameworks to networks with varying scales

In order to test the adversarial robustness framework we construct some networks and select some
random inputs and note their respective outputs. Then for different values of § we check for adversarial
robustness.

Neurons of SNN | Number of inputs SNET[;Jergf onert;f?,:gmnb thai{;s a:rtiol[:){obu&»t
25 10 10 10 8 2
30 10 10 10 8 3
45 10 10 10 9 3

Table 3.3: Adverserial robustness for synthetic networks

In Table 3.3 the first column corresponds to the total number of neurons in the network. The second
column describes the mumber of inputs for which adversarial robustness was checked. In the last
column, the value for each 4 denotes the number of perturbed inputs for which the the inputs were
robust for that value of 4 around the specific input under consideration.

]

Chapter 4

Timed Automata based encoding of

SNNs

The temporal aspect of the spiking neural networks, makes it hard for the traditional mathematical
tools to model the behaviours and their properties. In order to perfectly encapsulate the properties
of a spiking neural network we need a mathematical object that can handle temporal behaviours.
One of the most popular mathematical objects that is used to model time-based systems is Timed
Automata.

In this chapter we first discuss the Timed Automata Based encoding of spiking neural networks and
spike trains. We will then proceed to take a look at the verification framework which utilizes the
timed automata encoding. We begin with a formal definition of a timed word, a Timed Automata
and the notion of acceptance and rejection on timed words. Following that, we present the encoding of
LIFR neurons using TAs and representation of a SNN as a collection of TAs encoding the constituent
neurons and their interconnections.

4.1 Timed Automata

A timed word is a special type of word that has an associated positive non-decreasing sequence of
numbers. These numbers refer to the time associated with each letter of the word. Formally we define
a timed word as in Definition 4.1 below.

Definition 4.1 A timed word w is a sequence,
w = (x1, 1) (22, f2),- -
where for all i, x; € ¥, t; € R and t; < t;11.
Here ¥ denotes an input alphabet. It can be a finite or an infinite sequence. A model that is often

used in the context of timed words is a timed automata. A timed automata is formally defined as in
4.2 below.

Definition 4.2 A Timed Automata TA is a tuple (L,1°, X, %, L,.., Ares, Inv), where,

e L is the set of locations (states) with I° as the initial location.

47

48 4. Timed Automata based encoding of SNNs

é,u_. is the set of accepting locations.

is a set of clocks.

Y is the set of communication labels (input symbols)

Ares € Lx (G x X x 21Xy x L is a set of transitions between locations.

Inv: L — G assigns invariants to each locations.

Here (7 is the set of guard conditions and 21! refers to the reset conditions of all clocks. In other
words, any subset of the clocks can be reset on an arc. The guard conditions are of the form,

g:=cpbaxden

where ¢1,c0 € R, @ € X and 0 can be <,>,=,#,<,>. A timed automata can be used as an
acceptance machine for timed words. If a timed word is passed to a timed automata the timed
automata will either accept or reject the word. If a timed word, at the end of its transitions ends in
one of the accepting states then we can say that the timed word is accepted, otherwise it is said to
be rejected. If a timed word is accepted by a timed automata we say that the word is part of the
language of the timed automata. If the word is rejected we say that it is not a part of the language
of the timed automata.

A timed automata definition can be extended to include real variables and their update statements.
This extended automata is often useful for mapping various real life applications. Most real work
applications are made of smaller components that work together with each other. In order to model
such systems it is not intuitive to model the whole system as a single automata. In these cases, it
is better to model the individual modules as automata and then construct a composition of these
automata. A composition of a timed automata is a collection of timed automata that function
concurrently using a common global clock. In order for these disconnected automata to function with
each other they need to communicate using some common means. This is achieved using common
flags that are shared by the automata, called as communication labels or synchronization labels. On
taking a transition an automata can either send a signal (denoted by the variable name followed by
an !) or receive a signal (denoted by the variable name followed by an 7). We demonstrate the notion
of composition of TAs with Example 4.1.

t > 10, x!

s:= 0,27
t:=0,y? s>D5, y!

Figure 4.1: Example of composition of TA

Example 4.1 The composition of automata in Figure 4.1 is a composition of two automata (with
start states a and c respectively) that share a global clock and two communication labels x,y. If the
first automata takes the transition a — b it will send a signal to the second automata using the
communication label x. This means that when the transition a — b is taken, the transition ¢ — d is
also taken simultaneously. This way two independent automata achieve a notion of synchronization
variables. B

4.2. TA encoding of SNN 49

4.2 TA encoding of SNN

In order to encode a spiking neural network as a timed automata we need to encode each neuron as a
separate timed automata. We can then construct a larger timed automata using these smaller timed
automata.

4.2.1 TA encoding of LIFR neuron

Since Leaky Integrate and Fire neurons constitute the most popular type of neurons used in SNNs,
we consider it for the TA encoding. Formally we define LIFR neurons as done in Definition 4.3.

Definition 4.3 An LIFR neuron v € V' is defined as a tuple (8, 7o, A, P, Yu) where,

e {0, is the firing threshold of v.
e 7, is the refractory period of v.
e X\, QN El] is the leak factor.

e p,: N = Qg is the membrane potential function defined as,

. > wirs(t) vif pu(t—=1) > 6,
po(t) = S wiri(t) + Ay - polt — 1) ; otherwise

oy, N— {El} is the neuron output function defined as,

e A0S
Ju= 0 otherwise

Using this definition of LIFR neuron as base we define the TA encoding as follows.

finition 4.4 Given a neuron v = (6,7, A, p,y) we define the TA encoding of v as a tuple,
A X, Var, ¥, Ares, Inv) where,

o L ={A W D}
o X ={t}
e Var={p,a}

E={nli €[l,---,m]} U{y}
e Arcs =

{(Ajt <T,2;? {a:= a+w},‘4)|V2-BE [1,--- ,m]}U
{(At =T,¢{p:=a+|\p]}, D),

(D,p < 0,¢,{a =0}, 4),

(D,p =0,y {}, W),
(W,t=71,¢6,{a,t,p:=0},A)}

50 4. Timed Automata based encoding of SNNs

In this encoding of the LIFR neuron, the states of the automata encoding correspond to the Ac-
cumulation (A), Decision (D) and Waiting (W) states of the LIFR neuron. The variables p and a
correspond to the total potential and accumulated potential of the LIFR neuron. ¥ corresponds to
the communication labels for receiving input spikes (z;) and the communication label corresponding
to output spike (y;) of the neuron. The parameter T' corresponds to the accumulation period of the
neuron. Each neuron collects input spikes for the accumulation period and then upon completion
checks if the neuron has enough potential to spike. The parameter 7 corresponds to the refractory
period of the neuron. For the arcs in the encoding we have the following informal deseriptions.

e A+ A
This transition corresponds to the accumulation of potential by receiving an input spike through
the communication labels.

e A D
This transition corresponds to the addition of the previous potentials to the accumulated po-
tentials and goes to the state D, which will decide whether the neuron will spike or not.

e D A
This transition corresponds to the reset of the accumulated potential and beginning of the
accumulation period again after the neuron fails to cross the threshold to spike.

e D W
This transition corresponds to the spiking of the neuron. This transition is taken if the total
potential is greater than the threshold.

o W — A
This is the complete reset of the neuron to restart the accumulation period after the neuron has
spiked.
Vi=1.....m
G:t<T

S a?

Figure 4.2: TA encoding of LIFR neuron [5]

The working of the TA given in Figure 4.2 can be explained as follows.

4.2. TA encoding of SNN 51

Figure 4.3: Sample SNN for TA conversion

The initial state of the automata is the state A. At this state the automata accumulates potential
from the input neurons by taking the self transition corresponding to the input spike. If input
neuron ¢ spikes then the weight corresponding to x, w;, is added to the accumulated potential
of the neuron. (a:= a -+ w;)

e This process occurs until the accumulation period is completed (t = T°). At this point the
transition from A to D is taken while adding the accumulated potential with the previous
potential with some loss.

e [is a committed state. This means that if there is an output transition available, it must be
taken. This is due to the decision process being instant. The clock cannot progress at this state
and a transition must be taken immediately after arrival.

e If the total potential is less than the threshold (p > #), the transition from D to A is taken
while resting the accumulated potential. Here the next accumulation period will start.

e If the total potential is greater than or equal to the threshold, the transition from D to W is
taken while sending an output spike (y!).

e Then for 7 duration the system will be idle at state W. Then at ¢t = 7 the transition from W
to A is taken, while resetting all previous stored potentials and starting the next accumulation
period.

An SNN can be considered as a collection of interconnected LIFR neurons. In a similar way, the TA
encoding of an SNN can be considered as a composition of the TA encodings of the LIFR neurons.
The synapses between two neurons is encoded by the communication label between the two TA
corresponding to those neurons. Formally, if there exists a synapse from neuron v; to neuron v;, then,
there will exist a corresponding communication label x; ; shared between them. The communication
signal will be sent by the TA corresponding to v; when, it takes the transition from its decision state
to its waiting state. The communication signal will be received by the TA corresponding to v; when, it
takes the self transition from its accumulation state. We demonstrate this encoding with an Example
4.2

Example 4.2 Let us consider a 2 state neural network given in Figure 4.3. The equivalent TA
encodings of the two networks are given in Figure 4.4. When an input spike is given to the SNN, the
TA corresponding to neuron a will take the self transition from state A to accumulate the potential.
When the neuron a spikes it takes the transition from the state D to W, sending a communication
signal through the label x,) in the process. At this point the TA corresponding to the newron b will
take the self transition from state A. This way the synapse between the newrons a and b is encoded in
the context of TA. B

Theorem 4.1 The TA encoding of SNN is sound and complete.l]

Algorithm 4 refers to the algorithm to convert an SNN to its equivalent TA encoding.

52 4. Timed Automata based encoding of SNNs

(b) TA encoding of nenron b

Figure 4.4: TA encoding of the SNN in Figure 4.3

4.2.2 TA encoding of Spike Trains

The spike trains also need to be encoded in order to @mulate the inputs along with the network.
These spike trains can be formally described using the Tollowing grammar,

G:=0-(0)¥| P(d) @ (2)*
Diu=s-Pd)-®|e

where P(d) denotes a pause of duration d, ¢ denotes empty alphabet (to indicate the end of a spike
train) and (a)¥ corresponds to an infinite repetition of a. This grammar of spike trains works on
continuous real values instead of discrete binary encodings, like the ones discussed in the previous

chapters. Using this grammar we can construct a TA for the input spike train using the following
recursive definition.

o If [:= &y - (Pg)¥

— L(I) = L(®1) UL(®y)
This means that the language accepted by the constructed TA I is the concatenation of
the language accepted by the automata ¢, and ®».

— first(I) = first(®q)
The initial state of [is the same as initial state of ®.

4.2. TA encoding of SNN 53

Algorithm 4 Algorithm for getting the TA encoding of SNNs

Input: The Spiking Neural Network N with m layers with n; nodes the i**layer
Output: TA encoding of N

ta ¢ blankT A() > Create a TA with no states
for doi=1toi=m > Adding all input neurons
ta = eomposition(ta, encode (v; 1)) > Composition of the existing TA with the new TA
end for
for j =2to j =m do - For each layer j
fori=1toi=n; do > For each node i of layer j
ta = composition(ta, encode(v; ;))
for k=1to k=n;_; do > For each node i of layer j — 1
ta.addCommdLabel s(i, k) > Connecting neuron v; ; to the neuron vy ;_1
end for
end for
end for
return fa

— Ares(I) = Ares(®q)JAres(P2)U{ (last(®1), true, €, D, first(®2)), (last(®a), true, e, 0, first(®s))}
The arcs of I is the collection of all the arcs from @, and all the arcs from ®, along with
the arc between the last state of &, and the first state of ®9.
— Inv(l) = Inv(®y) U Inv(ds)
The invariants of I is the collection of the all the invariants of ®, and all the invariants of
Dy,

This automata corresponds to the one in Figure 4.5a.
o If [:= P(d) - @y - (P2)¥

— L) = {R} U L(®1) U L(%y)
This means that the language accepted by the constructed TA [is the concatenation of a
delay of d and the the language accepted by the automata ®; concatenated with ®».

— first(I) = F
The initial state of [is the state that encodes the delay.

— Ares(I) = Ares(®q) U Ares(®o) U
{(FPo,t <d, {t[0]}, first(P1)), (last(®y), true e, D, first(Ps)), (last(Ps), true, e, O, first(Ps))}
The arcs of I is the collection of all the arcs from ®; and all the arcs from ®,5 along with
the arc between the last state of ®; and the first state of ®5 and the arc between the delay
state and first state of ®q.

— Inv(l) = {Py =t <d} U Inv(®q) U Inv(Py)
The invariants of [is the collection of all the invariants of ®; and all the invariants of ®9
along with the invariant of the delay state.

This automata corresponds to the one in Figure 4.5b.

o Ifd:=¢
~ L(1) = {¢)
The language accepted by the [is €

— first(l)=E
The initial state is the only state.

54 4. Timed Automata based encoding of SNNs

— Ares(I) =10
No arcs.

— Inv(l)=10
No invariants.

This automata corresponds to the one in Figure 4.5¢c.
o If [:=s5-P(d) @'

— L(I)={S, Py} - L(?")
The language accepted by [is the language formed with concatenating the timed word
{S, Py} by the language accepted by &

— first(I)= S

The initial state is S.

— Ares(I) = Ares(9) U {(S, true, b, 0, P), (Py,t < d, {t[0]}, first(®'))}
The arcs of I are the collection of all the arcs in ®' along with the arcs formed by concate-
nation.

— Inv(l) = {Py =t < d}U Inv(d)
The invariants of I is the set of all invariants of ®' along with the invariant of the delay
state.

This automata corresponds to the one in Figure 4.5d.

For example, let us consider the spike train {1.3,2.4,2.9,3.7}. Using the TA encoding for this spike
train we get the TA in figure 4.6.

4.3 Verification of SNNs using TA encoding

Now that we have an encoding we can use it for verification of properties. We consider the definition
3.7 for verification of SNNs. In this definition we have an input tuple (N, P, @) where N refers to the
spiking neural network, P refers to the input property and @ refers to the output property.

In order to utilize the encoding we construct the following,

e TA for P.

We construct an automata corresponding to the property P such that every input accepted by
the automata satisfies P. For example let us consider P :=minimum gap between two spikes
is 1 second. This can be encoded as in the figure 4.7 The automata in Figure 4.7 has a single
state and a single transition. The transition has a communication label associated which acts
as the spike indicator. After the system takes the transition it must wait for at least 1 second
before taking the transition again. So the set of all spike trains generated by the the automata
satisfy the property P.

e TA for N.
We encode the neural network using the TA encoding. We first encode each LIFR neuron in
the automata using the TA encoding given in 4.4. We then encode the synapses by creating
communication labels in between the appropriate neurons. The composition of all the neurons
will together make up the TA encoding of the SNN.

4.3. Verification of SNNs using TA encoding

55

Figure 4.5: General TA corresponding to a spike train.

Figure 4.6: TA for the example

56 4. Timed Automata based encoding of SNNs

t>1, t:=0, z!

Figure 4.7: TA encoding of P

o TA for ().
We write the property) in the form of logic formulas that can be verified using the TA veri-
fication tools. These properties are usually written as reachability queries. For example let us
consider (Q :=the output neuron op never spikes. For this property we have a lemma,

Lemma 4.1 If a neuron never spikes, then the W state of the TA encoding of that newron is
not reachable. [

Using this lemma the property can be encoded as checking the reachability of the W state
corresponding to the output neuron op. If op can spike then there exists an input for which the
state W of op is reached.

We construct a composition of the TA associated with P and N. We use a TA verification tool to
check the formula corresponding to the complement of () on the composition of P and N. If the
verifier returns a sample input trace, we can say that the property is not satisfied since, () was false
on the returned trace. If the simulator does not return a trace, we can say that the system satisfies
the property.

4.4 Results

Number of Neurons | Time for TA construction | Time for verification
3 0.2 sec 0.6 sec

5 0.3 sec 1 sec

7 0.3 sec 2.4 sec

9 0.5 sec 6.3 sec

Table 4.1: Experiment results for the TA encoding of SNN

We construct some representative SNNs using Brian2 and encoded them as timed automata. We then
use a reachability query and use a verifier to check if the encoded TA satisfies the reachability query.
This query verification is done using the Uppaal tool. The implemented framework takes as input an
SNN implemented using Brian2 libraries in Python. It then parses through the entire implementation
to extract the required values and then constructs a file containing the timed automata encoding.
This file is passes to Uppaal for verification. We also note the time taken for the construction of the
file corresponding to the TA from an SNN and the verification time taken by Uppaal for verifying the
query. These results are noted in the Table 4.1.

The verification for larger SNN networks and more complex output properties is left as future work.

Chapter 5

Conclusion and Future Work

In this thesis we have, focused on the spiking neural networks, their functions and its properties. Due
to increasing number of use cases for spiking neural networks there is a proportional increase in the
demand for modelling and verification frameworks for the same. A major hurdle for constructing
these modelling and verification frameworks is the fact that traditional techniques cannot be applied
directly in the context of SNNs. In this work we propose and highlight two frameworks based on two
separate mathematical artifacts that can be used to model and analyse SNNs.

Initially, we describe the functionality of an SNN to get a better understanding of what functionalities
have to be encapsulated by the encodings. We also discuss some additional frameworks that take
advantage of the encodings in order to simplify and verify the SNNs. These frameworks utilize the
soundness and completeness of the encodings to yield good results.

The first proposed encoding utilizes the LRA formulations to encode the SNN and encapsulate it’s
properties. The proposed encoding of SNNs can then be used of simulation, verification and simpli-
fication of SNNs. This encoding can also take advantage of various SMT solvers in order to create a
scalable framework for property verification.

The second encoding uses timed automata in order to model the SNNs. This framework used for
modeling SNNs can handle the temporal aspect of SNNs well and can achieve a very robust modelling
for the same. The TA encoding can also take advantage of TA simulation and verification tools in
order to simulate and verify SNNs.

With the increasing demand of power efficient systems for edge computing applications, we believe
that the work done for the duration of this thesis serves as a good starting point for the research
on encodings and verification of SNNs. For the future work, we plan to develop encodings for more
complex SNN architectures like Convolutional SNNs and Recurrent SNNs. Additionally we also
plan to apply the proposed frameworks to the various real world SNN networks. Finally we plan to
propose additional frameworks analogous to the ones that exist in the context of traditional NNs like,
Abstraction, Modification and many more.

Bibliography

[1]
2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

ALBARGHOUTHI, A. Introduction to neural network verification, 2021.

ALur, R. Timed automata. In Computer Aided Verification. Springer Berlin Heidelberg, 1999,
pp. 8-22.

AyUso-MARTINEZ, A., CASANUEVA-MoRrATO, D., DoMINGUEZ-MORALES, J. P., JIMENEZ-
FERNANDEZ, A., AND JIMENEzZ-MORENO, G. Construction of a spike-based memory using
neural-like logic gates based on spiking neural networks on spinnaker, 06 2022.

BeEnGTSSON, J., LARSEN, K., LArsson, F., PETTERSSON, P., AND Y1, W. Uppaal—a tool
suite for automatic verification of real-time systems. In Proceedings of the DIMACS/SYCON
Workshop on Hybrid Systems III: Verification and Control: Verification and Control (Berlin,
Heidelberg, 1996), Springer-Verlag, p. 232-243.

DE Maria, E., D1 Giusto, C., AND LAVERSA, L. Spiking neural networks modelled as timed
automata with parameter learning, 2018.

DE Maria, E., DI Giusto, C., AND LAVERSA, L. Spiking neural networks modelled as timed
automata with parameter learning, 2018.

DE Moura, L., aAND BJoRrRNER, N. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems. Springer Berlin Heidelberg, 2008, pp. 337-340.

Dienn, P. U., aAND CooKk, M. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in Computational Neuroscience 9 (Aug. 2015).

Ding, J., Yu, Z., Tian, Y., anD Huane, T. Optimal ann-snn conversion for fast and accurate
inference in deep spiking neural networks, 2021.

ELBOHER, Y. Y., GOTTSCHLICH, J., AND KaTz, G. An abstraction-based framework for neural
network verification. In Computer Aided Verification (Cham, 2020), S. K. Lahiri and C. Wang,
Eds., Springer International Publishing, pp. 43-65.

EsuracHIaN, J. K., Warp, M., Nerrci, E., Wane, X., LEnz, G., Dwivepl, G.. BEN-
NAMOUN, M., JEoNG, D. S., anp Lu, W. D. Training spiking neural networks using lessons
from deep learning.

GOKULANATHAN, S., FELDSHER, A., MaLca, A., BARRETT, C., AND Katz, G. Simplifving
neural networks using formal verification. In NASA Formal Methods (Cham, 2020), R. Lee,
S. Jha, A. Mavridou, and D. Giannakopoulou, Eds., Springer International Publishing, pp. 85—
93.

GOLDBERGER, B., Karz, G., Api, Y., AND KESHET, J. Minimal modifications of deep neural
networks using verification. In LPAR23. LPAR-23: 23rd International Conference on Logic for

59

60

BIBLIOGRAPHY

[18]

19

[20)

[21]

Programming, Artificial Intelligence and Reasoning (2020), E. Albert and L. Kovacs, Eds., vol. 73
of EPiC Series in Computing, EasyChair, pp. 260-278.

GURNEY, K. An Introduction to Neural Networks. Taylor Francis, Inc., USA, 1997.

JagTapr, A. B., Sawat, D. D., HEGabp1, R. S., anD HEGADI, R. S. Verification of genuine and
forged offline signatures using siamese neural network (SNN). Multimedia Tools and Applications
79, 47-48 (Apr. 2020), 35109-35123.

Karz, G., BaArreTT, C., DILL, D. L., JuLian, K., AND KOCHENDERFER, M. J. Reluplex: a
caleulus for reasoning about deep neural networks. Formal Methods in System Design (Jul 2021).

Kma, T., Hu, S., Kimv, J.. Kwak, J. Y., Park. J., LEE, S., Kim, 1., Park, J.-K., AND
JEONG, Y. Spiking neural network (SNN) with memristor synapses having non-linear weight
update. Frontiers in Computational Neuroscience 15 (Mar. 2021).

KupEeR, L., Karz, G., GoTrrscHLICH, J., JuLiaN, K., BARRETT, C., AND KOCHENDERFER,
M. Toward scalable verification for safety-critical deep networks.

Lanav, O., AND KaTz, G. Pruning and slicing neural networks using formal verification, 2021.

STIMBERG., M., BRETTE, R., AND GoOoODMAN, D. F. Brian 2, an intuitive and efficient neural
simulator. eLife 8 (aug 2019), 47314,

Tavanail, A., GHODRATI, M., KHERADPISHEH, S. R., MASQUELIER, T., AND Maipa, A. S.
Deep learning in spiking neural networks.

Modelling and Analysis of Spiking Neural Networks

ORIGINALITY REPORT

S

SIMILARITY INDEX

PRIMARY SOURCES

B B

. . - 0
library.isical.ac.in:8080 174 words —)

Internet

N 0
hal.archives-ouvertes.fr 132 words — '] /0

Internet

Elisabetta De Maria, Thibaud L'Yvonnet, Daniel o~ < 1 0%
Gaffé, Annie Ressouche, Franck Grammont.

"Modelling and Formal Verification of Neuronal Archetypes

Coupling", Proceedings of the 8th International Conference on
Computational Systems-Biology and Bioinformatics - CSBio '17,

2017

Crossref

Deng, Xiang Bo, Yue Xiang Lin, Ling Dong Bu, Li 0
eng, Xiang Bo, Yue |§ng” in, Ling Dong Bu, Li 55 e < 1 /0
Zhou Zhang, and Zhe Liu. "Prediction Modeling of

Maximum Dry Density of Coarse Grained Soil Using Improved

Artificial Neural Networks", Applied Mechanics and Materials,

2013.

Crossref

G 0
amslaurea.unibo.it 32 words — < 1 /0

Internet

" . . 0
The effect. ofgn exogenpgs magnetic field on” 27 words — < 1 /0
neural coding in deep spiking neural networks",

Journal of Integrative Neuroscience, 2018

Crossref

n H O
Fran.ck Cassez. The Cgmplexwy of | 26 words — < 1)0
Codiagnosability for Discrete Event and Timed
Systems", Lecture Notes in Computer Science, 2010

Crossref

docplayer.net 21 words — < 1 0%

Internet

"Algorithms and Computation”, Springer Science < %
and Business Media LLC, 2005 18 words 1

Crossref

. n T 0
J. Green, S. Bhattacharyya, B. Panja. "Real-Time 18 words — < 1 /0

Logic Verification of a Wireless Sensor Network",
2009 WRI World Congress on Computer Science and
Information Engineering, 2009

Crossref

n . n . 0
Handbook of Natural Computing", Springer 15 words — <])0
Science and Business Media LLC, 2012

Crossref

Ic_fsgtel:re Notes in Computer Science, 2012. 14 words — < 1 /0
i 0
ygrin.com 14words — < 170
ON <14 WORDS

ON <14 WORDS

