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Abstract

We study the problem of semantic search in E-Commerce using the User Click-through
data such that, for a given user query, show all semantically relevant products to
user. Pure keyword based matching fails here dugo various reasons like: lack of
user query intent matching, misspelled queries ete. In this thesis, we propose a novel
idea of computing product-product similarity among clicked products present in a
same session along with query-product similarity. We train representation based
two tower neural network model. We build and train a representation based two
tower neural network model for semantic matching in query-product pair and in
product-product pair. In two tower architecture, we explored both Siamese based
and Non-Siamese based model. In Siamese based model weights are shared between
query tower and product tower, in Non-Siaiggse based model weights are not shared
between query tower and product tower. As query and product information text tend
to be shorter in length, we used average pooling with word unigram to capture the
short range linguistic pattern. We present better results as compared to Semantic
and Lexical baseline models. Both Siamese and Non-Siamese approaches produced
eventually same results but Siamese network based model has converged much faster
than the Non-Siamese network based model. We present better F1 and Recall score
as compared to baseline models.
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Chapter 1

Introduction

In the current era, online shopping has become an integral part of our life. Users gart
their online shopping by entering a search query text which describes the product as
per their gderstanding. The user experience is worsened when products that are
displayed do not match the intent of the search query, and this may harm user’s long-
term engagement and trust. Therefore, shopping sites try to show the list of relevant
products for a given query. There can be problems with user queries like misspelled
queries, very short queries etc. Simple lexical matching can be one of the approaches
to show the relevant products. In lexical matching we search for the same keywords
in product description as present in the user query and return the set of matched
products. There are some problems with the lexical matching approach as below:

o Misspelled Queries: As per some web search log [4, 5], 10-15% user queries have
spelling mistakes. For example: if the query is ‘colege bbag’, lexical matching
engine will not show any result here. We can use an advanced spell checker
method here but if engine architecture takes care of it that will be easier.

e Intent Matching: Product descriptions vocabulary will be very professional in
nature as compared to user’s query which will be in daily language and this leads
to vocabulary gap [24]. Capturing the intent of the query is very important here.
For example: let the user want a glucometer but do not know the machine name
so he will usually search for ‘diabetes test machine’. If we use lexical matching
here glucometer product will never be shown here because user query does
not contain the word ‘glucometer’. In such a scenario the user will go back and
search the same term in google and get the correct machine name as glucometer
and then search for it again in the shopping portal. Such interruptions are not
good for shopping sites because users might go to some other site for a better
user experience which affects the business. If we can understand the user’s
intent relevant products can be shown immediately, thus semantic matching is
needed.
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1.1 Problem Statement

In this research, we are building a Semantic Search Model using User Click-through
data such that for a given user query, list of all relevant semantic products should be
shown to the user.

We present neural network based model trained on large amount of user click-through
data which captures the semantic representation between query and clicked products.
Earlier work [17, 11] has been focused on building query-document or query-product
semantic similarity. Our contribution include sessionization of user click-through data
and then considering a co-clicked neighbouring products in a same session, then we
build a product-product semantic similarity along with the query-product semantic
similarity. -

Our contribution can be summarized as follows:

e We propose a neural network based model which captures the semantic rela-
tionship between given query-product pair.

e With the help of sessionization, we build a sessions of some fixed time interval
on a given user click-through data and then we consider the co-clicked products
in a same session which helps us to build a semantic similarity between product-
product pairs along with query-product pairs.

e We trained and tested this model on large amount of data, we observed better
performance as compared to Semantic and Lexical baseline models.




Chapter 2

Related Work

There is a substantial literature on capturing the semantics of queries and relevant
documents in pptural Language Processing (NLP). Word2Vec [B§ drew a lot of atten-
tion for using word embeddings to capture semantic structure. Diaz et al. [7] trained
neural word embeddings using concepts from Word2Vec g locate neighbouring words
in order to extend the search with synonyms. Finally, the state-of-the-art semantic
search models can typically be divided into below three groups based on these latest
developments and other significant findings:

¢ Latent Factor Models: Query and document-level embeddings are learned via
non-linear matrix completion techniques without accessing their content.

e Factorized Models/Representation Based Models: Using the content of queries
and products convert them to low dimensional word embeddings separately.

. gnteraction Models: Create interaction matrices between the query and product
content. Then with help of neural networks extract patterns from the interaction
matrix.

In order to find semantic ideas, gatent Semantic Analysis (LSA) [6] calculates a low-
rank factorization of a term-document matrix. It was expanded andggmther improved
by [1, 15] using concepts in Latent Dirichlet Allocation (LDA) [2]. Huang et al. [11]
introduced the Deep Semantig@imilarity Model (DSSM) by publishing in the space of

ctorized models. In DSSM, a deep neural network model is trained end to end using
a discriminative loss in order to learn a fixed size representation for the query and
products, which was based on LSA and Semaggic Hashing [20]. In DSSM architecture,
fully connected layers were later replaced by gonvolut.’ 1al Neural Networks (CNNs)
[10, 21] and Recurrent Neural Networks (RNNs) [18]. 1e Deep Relevance Matching
Model (DRMM) [9] employs an interaction matrix in order to capture local term

matching using neural approaches. This alternative approach, which articulated the

6
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idea of interaction models, has since been effectively expanded by MatchPyramid [19]
and other approaches [12, 13, 14, 23, 25].

2.1 Deep Semantic Matching

Witkpincreasing popularity in Deep Natural Language Processing approaches, numer-
ous neural network based architectures have been presented in recent years to solve
the semantic gap issue brought up by conventional lexical matching. One of these
approaches is representation based learning. The representation based models have
the typical characteristics of two tower architecture. DSSM [11] is one of the rep-
resentation based model which has two tower structgr. In two tower architecture,
both tower can jointly use either siamese or distinct neural netw in order to cre-
ate a semantic representation g query and products, then we use a simple matching
function @ilse cosine similarity to compute the similarity between query and product.
Siamese Neural Network [3], which is often referred to as the twin neural network, is
an artificial neural network that applies the same weights on two different types of
input vectors to compute equivalent output representation. In case of Non-Siamese or
distinct neural network based two tower architecture, query and product have their
own distinct tower where weights between them is not shared and they learn their
own representation.

This kind of two tower representation based approach has recently n explored in
E-Commerce Semantic Product Search [17], here query and product are embedded as
vectors using the representation based learning and after that matching is performed
in the vector space. One set of stacked neural network layers represents “tower” here,
we have such two towers one for query and one for product. This kind of approach
favours in production settings, there we can precompute the embeddings for product
as the number of products usually be fixed and thus we only calculate the embeddings
for search query at real time and it accelerats the real time services.

2.2 Prod2Vec and Meta-Prod2Vec

In our approach, we are considering co-clicked products in a same session and per-
forming product-product similarity among the@Pbased on some window size k. This
idea is inspired by Word2Vec [16] approafh:mich is one of the most widely used
methods for learning word embeddings from la, text corpus using neural networks.
Word2Vec captures the semantic structure in such a way that words in the corpus
with similar contexts are situated close to each other in the vector space. Based on
this, clicked products which share the same session can be semantically related as
the queries in that small session time interval are usually semantically related to each
other.
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Prod2Vec [8] is based on Word2Vec approach, in which we apply Word2Vec algorithm
on 51.1311(?& of clicked products in a session, clicked products in the same session
acts as a sentence and individual product as words. To create distributed representa-
tions of products, Prod2Vec approach employs the product co-occurrence information
which is defined by sequence of purchased or clicked products in a session. However,
Prod2Vec approach does not utilizes metadata information of products like product
category, brand, color etc. Meta-Prod2Vec [22] leverages the product’s metadata as
a side information along with Prod2Vec approach. In this along with products their
metadata information such as brand, category etc. passed through the network. This
is very relevant for scenarios in which product occurrence in a session is very rare
and metadata information can be used for semantic matching and recommending rel-
evant products. In our proposed approach we have used product’s category as a side
information.




Chapter 3

Data

The dataset which we have used here is Flipkart's User Click-through data. It consists
of userdid, query_text, clicked_products, unix_timestamp etc. Click-through data is
daily logged and one hadoop based file is getting created for each day. There are
many types of products present in Flipkart's catalog, for this thesis work we have
only considered lifestyle products.

3.1 Sessionization of Data

In sessionization of data, we create sessions each of some fixed time interval t. As
one of our approach is Prod2vec, in which we consider the co-clicked products in a
same session, we create sessions by dividing user click-through data using some fixed
time interval ¢ for a given userid. This is based on the understanding that user may
search for certain product with different queries for certain time intervel ¢ and for a
given user all those queries within time ¢ may be semantically related and also all
those clicked products in a session for these queries can be semantically related. This
sessionization is done by aggregating user click-through data with respect to userid
and then forming a sessions for a given user using time interval t. In our approach
we have considered each session of 10 minutes.

3.2 Data Preparation

We have performed helow steps for data preparation:

e Using PySpark merge the hadoop based avro files of given day which contains
the user click-through data.

e Select only those records where at least one click is performed .
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3. Data

Filter to get only lifestyle products as we are only considering lifestyle product
for our research.

Select only required columns from this like query_text, user_id, clicked_products,
unix_timestamp.

After performing above selection, write new file to hadoop based parquet format
and load this to pandas for further processing,.

Form ¢ minutes session for each user using the unix_timestamp information.
Add new column session_number, which represents session number for a given
user.

Perform group by operation on columns session_number and user_id in order to
aggregate queries and clicked products in each session.

After above group by operation each row will have aggregated queries and their
corresponding clicked products in array format.

Final data format will be array of array in which each list contains query_text,
corresponding clicked product_title and & left and X right neighbouring products
from the session. Here k is the window size which represents how many left and
right co-clicked products we are considering from a session to form a single data
instance.

3.3 Data Format and Example

After performing all pre-processing steps our single instance data format will look
like as below:

[(f:p:pl: P2y e P2y "’lﬂb()"’i]

Here ¢ represents query, p represents anchor product title text, p; to pog represent
neighbouring products to p with window size k. label represents if given data instance
is a positive sample or negative sample, if label = 1 then it is a positive sample and
if label = 0 then it is a negative sample.

We have explain below getting data instances from click-through data:

Consider that a particular user has searched for two queries within some time
t and clicked few products as below:

P11 P12

2t P21 P22 Pas
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o After sessionization on time interval ¢, these two queries belong to same session:

[(ql tpu Pi2), (g2 : p21 po2 1?23)]

¢ Now, We build a query and corresponding clicked product pairs:
(qr.pn) (qu.pi2) (q2,p21) (q2,p22) (g2, p23)
¢ Considering window size k = 3, we build our data instances as below:
[Ql; Pus, P12, P, Poa, 1]

1, P12, P, P2, Pa2 P, 1
(G2; P21, Pi1s P12 Paze Py 1
lg2, p22. P11, P12, P21, Pas. 1]
(@2, P23, Piz; P2, pa2
e These are the positive data instances and therefore have label = 1 at the end of
the list. Now, we build negative data instances/samples by replacing the anchor

product with some random product from different category and label = 0 as
below:

@1, Py, P2 P2, pa2 0]
[, Phas Pui, P2, paa, Pz, O
g2, él
(42, Pho

[(1'2: pfz;}: P2, Dot P2o, U]

, P, P2, pe2, P23, 0

P11, P12, P21, P23, U]

¢ In this particular example, 5 positive and 5 negative data instances are formed
from one session and each one of them will be single data instance input to our
neural network model.




Chapter 4

Proposed Approach

Qur approach is based on sessionization of user click-through data, representation
based two tower architecture and prod2vec with metadata information. We sessionize
the user click-through data by forming a session of ¢ minutes for a given user. Within
session query and clicked products are aggregated and data instances are formed
based on window size k. These formed data instances will be input to our model.
We are passing data instance which consist of query, anchor product and co-clicked
neighbouring products and getting fixed vector representation of each. In two tower
architecture, we are having embedding layer and from there on two separate fully
connected feed forward networks. Query and product will be passed through their
own network and embedding layer will be comnggy to both. Figure 4.1 and Figure
4.2 represents the two tower architecture, in this left network represents query tower
and right network represents product tower.

4.1 Neural Network Architecture

Our proposed model is based on representation based two tower architecture. We are
having two variants of this architecture:

e Siamese based network

e Non-Siamese based network

In Siamese based network, same weights are shared while working on two different
types of input vectors. We have two types input text data: query text and product
text. So, query and products will pass through their own network but their weights
will be shared as shown in Figure 4.1.

In Non-Siamese based network, weights are not shared between query tower and
product tower. Query and product will learn their own representation initially and

12
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will converge over the time during training. Figure 4.2 represents the Non-Siamese
based two tower architecture.

As shogm in Figure 4.1 and Figure 4.2, embedding layer is our first model component
which consists of || x N parameters where V' represents vocabulary and N is the
embedding dimension. We use average pooling after getting word embeddings of query
and product from embedding layer. Average pooling @guires very less computation
which reduces the training time and inference latency. Query and Product both tend
be shorter and without long range dependencies and thus average pooling gives better
result here. After embedding layer and average pooling, we get query or product
dimension as Batch_Size x N. We used two hidden layers in both query tower and
product tower. Finally we get an vector representation from last hidden layer from
both query tower and product tower and compute the cosine similarity between them.

Consider Figure 4.1 and Figure 4.2, which represents Siamese Network and Non-
Siamese Network respectively, in this architecture after embedding layer we have two
set of stacked neural network layers one in left and one in right. Each of these stacked
networks are fully connected Multi Layer Perceptrons. Usually one stacked network
represents query tower and other stacked network represents product tower.

Let g represents the query, p represents product and they are represented as sequence
of tokens. We generate tokens using word unigram based tokenization technique, let
¢ is broken into n tokens and p is broken into m tokens as shown below:

4= @t% t31 aoop tﬂ)
P= (tln tg, t3: "':f"m)

We build a word to index dictionary from our vocabulary which assigns each token
in query and product to its corresponding index. Now, each token will be encoded to
embedding size N, thus query and product now represented as:

q:nxN
p:mx N

To get a fixed width representation for both query and product, we apply average
pooling on query and product token represenggion. After average pooling we get both
query and product representation as ve(rtorogsize 1 x N, where N is the embedding
size. As we are going to work with batch data, so in this case after average pooling
we get both query and product representation as vector of size Batch_Size x N.
Query and product now pass through their own tower which is basically a fully con-
nected Multi Layer Perceptrons. In our architecture we have used two hidden layers
say Hidden_Layerl and Hidden_Layer2. Let the dimensions for hidden layers be as
below:
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Hidden_Layerl : N x I
Hidden_Layer2 : Ly x Lo

For each batch of input data, Hidden_Layerl outputs vector of size (Batch_Size x Ly)
and Hidden_Layer2 outputs vector of size (Batch_Size x L).

From last hidden layer we get the vector representation for query, anchor product
and all the co-clicked neighbouring products which we pass it to our loss function for
cosine similarity computation.

In Figure 4.1 which represents Siamese Network, weights are shared, this implies that
corresponding hidden layers in both query tower and product tower are identical, as
the embedding layer is already shared, here we can say that they are practically same
network.

Figure 4.2 represents Non-Siamese Network, here we design our network in such a
way that embedding layer is common for both query and product but query tower
and product tower have their own MLP network and weights are not shared between
query tower and product tower. Thus, here both query tower and product tower
learn their own weights during training using the same cosine similarity based loss
function.

4.2 Loss Function

For semantic matching our objective is to calculate the similarity between two given
vectors and make their embeddings closer if positive pair and farther if negative pair.

We are calculating similarity on two types of pairs: query-product pair and product-
product pair. In product-product pair, one element will always be our anchor product
p.

Consider our input data instance format:

[Q:p:ph D2yeens Poik, ane"’i]

As explained earlier, g represents query, p represents anchor product, p; to psp are
neighbouring products and label represents positive or negative sample depending on
its value.

In this case, we calculate the cosine similarity between following pairs:

(P, q), (. p1), (P.p2), - (P. P2r)

Here, k represents the window size, we are considering k left and % right co-clicked
neighbouring products in a session for a given anchor product.
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» cos
Shared Weights
Hidden Layer - » Hidden Layer
4 A
Shared Weights
Hidden Layer i ta Hidden Layer
5 A
Embedding Layer : IV] x Embedding _Size
A
9|2 5|7|9|2|6]|3
A A
running shoes campus Smar running shoes black shoe
Tite Category
Query
Product

Figure 4.1: Siamese Network

Below expression represents our batch loss function:

2k

batch_loss = MSE(cos(p,q),label) + Z MSE(cos(p,p;), label)

i=1

MSE represents mean square error, it is calculated based on cosine similarity between
pairs and their corresponding label.
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Figure 4.2: Non-Siamese Network

If label = 1, then it is a positive sample and we want to maximize the similarity
between vectors present in a given pair, If label = 0, then it is a negative sample and
we want to minimize the similarity between vectors present in a given pair.
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4.3 Tokenization

In this section we explain the tokenization technique used in our approach. We are
using query and product titles in our model, which will be in form of strings and can be
comprised of few words. For example query can be “running shoes” and prggjict can
be “campus smart running shoes black”. We tokenize these strings to form sequence
of smaller components such as words, sub-words or characters. In our model we have
used word unigram. We have also explored word bi-grams and character trigrams but
it was significantly increasing the vocabulary size and taking huge amount of training
time for a single epoch.

4.?.1 Word Unigram

This is a basic form of tokenization technique in ghich we break the given string into
sequence of individual words. For example if word is “campus smart running shoes
black™ then its corresponding word unigrams are | “campus”, “smart”, “running”,
“shoes”, “black” |.




Chapter 5

Experiments

5.1 Training Dataset

As already explained we are using user click-through data for our model training. In
E-Commerce site daily millions of queries are getting searched and thus our training
corpus becomes very huge. After applying filters for clicked products and lifestyle
products we still have almost 9 Millions records per day. We perform sessionization
on this with 10 minutes interval and then consider the neighbouring products for each
anchor product with window size as k. In our case we used £ = 3 and we got almost
50 millions data instances for three days of data where each data instance consists of
query, anchor product and neighbouring products.

5.1.1 Positive Samples

Each data instance in our training dataset is an array and last element of this array
represent label of instance, if label = 1 then it is a positive sample and if label = 0
then it is a negative sample. Data instances which we get from user click-through
data is a positive sample for us as these are the products which user clicked for a
given query and we assume user clicks here as a relevant product.

5.1.2 Negative Samples

Each product belong to some category like ‘shoe’ , ‘necklace’, ‘shirt’ etc. We generate
negative data instances by replacing anchor product in positive data instance with
the random product which belongs to some different category. For instance, consider
below a positive data instance which we generated from user click-through data, here
k=3.

7
Positive Data Sample : [ g, p, p1, p2, p3, pd, p5, p6, 1 |

18
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To generate the negative product we replace p with p, where p’ is randomly selected
from all the products such that its category is different from p, we get Negative Data
Sample as below:
Negative Data Sample : [ g, ¢, pl, p2, p3, pd, p5, p6, 0]

5.2 Testing Dataset

We used standard test dataset from Flipkart, which was manually annotated and
consist of both relevant as well as non-relevant query-product pairs. It consist of
total 741724 records out of which almost 79% are positive samples and 21% are
negative samples.

5.3 Experimental Setup

our model architecture, for both query and product text, we have used common
embedding layer which consists of |V| x N parameters. We fix the embedding dimen-
sion to N = 512 and our vocabulary size is |V| = 589936.

As explained, after embedding layer we use average pooling to get fixed length embed-
dings for both query and product. After average pooling, for both query and product
text we get dimension as Batch_Size x N, where Batch_Size = 1024, N = 512 and
thus after average pooling our dimension becomes 1024 x 512.

We have used two fully connected hidden layers for both query tower and product
tower whose dimesnions are like below:

Hidden_Layerl : 512 x 256

Hidden_Layer2 : 256 x 128

From last hiddes layer we are getting vector of size 128 for a given query or product.
We are using tanh as an activation function in each layer. We experimented with
different hidden layer configuration and Batch_Size and above setup was optimal
with respect to L?ning time and results.

We used Pytorch fo implement our model a,ndam the model using Adam 1mizer
The hyperparameters of Adam optimizer are 5; = 0.9, F, = 0.999, ¢ = and the
learning rate is set to 0.001. The batch size for training is set to 1024. We train our
model on a Tesla V100-SXM2-32GB GPU card. Due to high volume of data each
epoch took almost 3 hours for almost 100 million data instances. We considered 15
days of data here and at a given time we trained our model on 3 days of data, once
done we took next 3 days of data and retrained our model on it and so on.
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S-MS Semantic Baseline Lexical Baseline

(cut-off = 0.5) (cut-off = 0.5) (cut-off = 0.08)
Good Class F1 0.86 0.81 0.79
(585353 Precision 0.82 0.83 0.84
79% Recall 0.9 0.79 0.76
Bad Class F1 0.34 0.37 0.38
[156371] Precision 0.44 0.34 0.33
21% Recall 0.27 0.41 0.44

Figure 5.1: Siamese Network Result with Cut-Off = 0.5

5.4 Results

From Figure 5.1 to Figure 5.4, we have shown results of our model and compared
them with Semantic and Lexical baseline models. In Figure 5.1 and Figure 5.2 we
have shown results of our Siamese Network (S-MS) and Non-Siamese Network (NS-
MS) respectively where cut-off = 0.5. In Figure 5.3 and Figure 5.4 we have shown
results of our Siamese Network (S-MS) and Non-Siamese Network (NS-MS) respec-
tively where cut-off = 0.6. Semantic and Lexical are baseline models against which we
are comparing our results. Here cut-off represents the threshold at which we decide
for relevant or non relevant product. For example, in test dataset for certain sample
if cosine similarity between query and product is greater than cut-off value then we
predict sample as relevant i.e. 1 else it is not relevant i.e. 0. Lexical Baseline is
based on Jaccard Similarity where we compare only common words between query
and product text, since it is text matching we use very low cut-off i.e 0.08. Semantic
Baseline and our model (S-MS, NS-MS) is neural network based model which look
for semantic matching.

We observe that at cut-off = 0.5, both our model performed much better than the
baseline models in good class category which is 79% of total test data, our models are
having a slightly low F1 score compared to Semantic Baseline in bad class category
which is 21% of test data. Here good and bad class represents relevant and not
relevant query-product pairs respectively in test data set.

We also observe that even at higher cut-off = 0.6, both of our model performed
much better than the Ig@eline models for which scores are computed at cut-off = 0.5.
At cut-off = 0.6, both our model performed better than the baseline models in good
class category and our models are having similar F1 score in bad class category. Thus,
even at higher cut-off our proposed models has produced better results as compared
to baseline models.
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NS-MS Semantic Baseline Lexical Baseline

(cut-off = 0.5) (cut-off = 0.5) (cut-off = 0.08)
Good Class F1 0.86 0.81 0.79
(585353 Precision 0.82 0.83 0.84
79% Recall 0.9 0.79 0.76
Bad Class F1 0.34 0.37 0.38
[156371] Precision 0.44 0.34 0.33
21% Recall 0.27 0.41 0.44

Figure 5.2: Non-Siamese Network Result with Cut-Off = 0.5

S-MS Semantic Baseline Lexical Baseline

(cut-off = 0.6) (cut-off = 0.5) (cut-off = 0.08)
F1 0.85 0.81 0.79

Good Class —
[535353] Precision 0.83 0.83 0.84
79% Recall 0.87 0.79 0.76
F1 0.37 0.37 0.38
Bad Class —
[1563?1] Precision 0.38 0.34 0.33
21% Recall 0.36 0.41 0.44
Figure 5.3: Siamese Network Result with Cut-Off = 0.6

NS-MS Semantic Baseline Lexical Baseline

(cut-off = 0.6) (cut-off = 0.5) (cut-off = 0.08)
Good Class F.1, 0.85 0.81 0.79
[585353] Precision 0.83 0.83 0.84
79% Recall 0.87 0.79 0.76

F1 37 37 ¥
Bad Class — 0.3 0.3 0.38
[156371] Precision 0.38 0.34 0.33
21% Recall 0.36 0.41 0.44

Figure 5.4: Non-Siamese Network Result with Cut-Off = 0.6




Chapter 6

%Jonclusion and Future Work

We have introduced a novel idea for semantic search in E-Commerce by including
product-product similarity for a co-clicked neighbouring products in a same session
along with the query-product similarity. We looked into user click-through data in
E-Commerce and pre-processed it to form a sessionize data. We introduced two ar-
chitecture in this, one is Siamese network architecture where weights between query
tower and product tower are shared, other being Non-Siamese network in which query
and product are sharing the embedding layer but we have separate query tower and
product tower and weights between them are not shared. We found that though both
approaches are giving the same results eventually but Siamese network based model
converging much faster than the Non-Siamese network based model. We observed
that our results are better than the baseline models by getting better F1 score and
better recall as compared to baseline models. We also observed that even at higher
relevance cut-off our proposed models have produced better results as compared to
baseline models.

In E-commerce, large amount of data is getting generated daily and this data can be
very noisy. In our model we used complete daily data for training as data cleansing
in this case is very time consuming. In future we can try for data cleansing methods
which will be helpful to consider more relevant query product pair based on some
threshold and thus initial data will be less noisy. We only tried product category as a
metadata information in our model in future we can look for more metadata features
like product brand, product parent category, product price etc. In E-Commerce, we
look for very low latency systems, to maintain this we used multi-layer perceptron
in our approach. We can explore RNN and Transformers based models in future
where latency will be high, but results can be better. We did sessionization on
the basis of userid, so in future we can utilize this to build models for personalized
recommendation to a particular user.
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