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Abstract

A swarm of robots is a distributed system of small, autonomous, inexpensive mobile

robots that work collaboratively to achieve some specific goal. This thesis aims to study

the gathering problem, which is a fundamental coordination problem. In the initial

configuration, the robots are located at distinct nodes of an input graph. The main

objective of the problem is that all the robots must meet at a point. In this thesis, the

deployment space of the robots is assumed to be an infinite grid graph.

This thesis considers the gathering over meeting nodes problem in an infinite grid do-

main. The input grid graph consists of some nodes which are marked as meeting nodes.

The problem requires the mobile robots to gather at one of the pre-fixed meeting nodes.

Several variations of the problem have been considered. All the initial configurations

for which the problem is deterministically unsolvable have been characterized. A deter-

ministic distributed algorithm has been proposed to solve the problem for the remaining

configurations.

The problem has also been studied under the objective function that minimizes the total

number of moves made by all the robots to finalize the gathering task. A deterministic

distributed algorithm has been proposed to solve the problem for all those solvable

configurations, and the initial configurations for which the problem is unsolvable have

been characterized. The proposed gathering algorithm is optimal with respect to the

total number of moves performed by all the robots in order to finalize the gathering.

Another variation of the problem considers two disjoint and finite groups of anonymous

robots. The initial configurations also consist of two finite and disjoint sets of heteroge-

neous meeting nodes. The objective is to design a distributed algorithm that gathers all

the robots belonging to the first team at one of the meeting nodes belonging to the first

type. Similarly, all the robots in the second team must gather at one of the meeting

nodes belonging to the second type. The initial configurations for which the gathering

problem is unsolvable have been characterized. For the remaining initial configurations,

a distributed gathering algorithm has been proposed.

The parking problem can also be considered as a variation of the problem. As a solution

to the parking problem, the robots need to partition themselves into groups so that

each parking node contains a number of robots equal to the capacity of the node. It

is assumed that the number of robots in the initial configuration represents the sum

of the capacities of the parking nodes. Under this setup, we have characterized all the

initial configurations and the values of ki for which the problem is unsolvable. For the

remaining configurations, a deterministic distributed algorithm was proposed.
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Chapter 1

Introduction

A swarm of robots is a collection of identical, small robots that work collaboratively to

perform certain tasks. The study of swarm robotics aims to use a system of relatively

small generic robots that can work together to execute complex tasks. It draws inspira-

tion from the collective behavior of biological entities such as birds, ants, termites and

bees. The tasks are executed without any centralized control. Each individual in this

computational system has limited abilities to accomplish the desired goals. Since every

robot is equipped with the same abilities, any entity in the system can be replaced by

another. As a result, the system becomes scalable and appropriate for use in fault-prone

environments. The computational aspects of these systems have been the main focus

of the research. The emphasis has been on what the robots should have as minimal

capabilities to solve a problem.

1.1 Motivation

Over the past two decades, there has been a significant increase in the study of co-

operative behaviors of multi-robot systems. A common motivation behind building

autonomous multi-robot systems is the need to perform different tasks in adverse situa-

tions where human intervention is not possible. A practical substitute for using a single

powerful and expensive robot is a swarm of cheap, weak, simple robots. Compared to

a traditional single robot, a swarm of robots has several benefits. Manufacturing a sin-

gle powerful robot with a complicated structure and control modules can be expensive.

1
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However, the components of an individual swarm robotic system, being very simple and

generic, can be mass-produced and inexpensive. Even a sizable swarm of these robots

could be significantly less expensive than a single powerful robot. Below, we list several

task domains where swarm robotics could be used.

• The use of swarm robotics is suited for tasks that require patrolling a large area

of space, for example, environmental monitoring. Their sensing abilities can aid

in providing surveillance for quick detection of hazardous events, such as in cases

when chemicals are accidentally leaked [118].

• Swarm robotics systems are suited for tasks that require low-cost designs, such as

mining tasks or agricultural foraging tasks [118].

• They can be used for search and rescue missions to provide aid during natural

disasters [115].

• On the battlefield, a swarm of robots can be used to build dynamic communi-

cation networks. When some of the communication nodes are hit by enemy fire,

these networks can benefit from the robustness attained through re-configuring the

communication nodes [109].

The subject of multi-robot systems was first studied by Suzuki et al. in the papers

[116, 117], with a focus on the study of pattern formation problems. In these papers,

the investigations were carried out from a computational point of view. The purpose

of theoretical studies on the computational aspects of robot swarms is primarily to

determine the minimal capabilities that robots need to solve a given problem. The

emphasis in such works is on rigorous mathematical proofs instead of experimental or

empirical evidence. In this thesis, we pursue this line of research and study the gathering

problem in the discrete domain, which is a fundamental coordination problem.
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1.2 Computational Entities

The computational entities are usually called robots. Each robot is capable of performing

local computations. The robots are endowed with motorial capabilities that allow them

to move. In the general model, the robots are assumed to be autonomous, i.e., there

is no centralized control. The robots are assumed to be anonymous, i.e., there are

no unique identifiers that they can use during computation. They are identical in the

sense that they are indistinguishable by their appearances. They are also assumed to be

homogeneous, i.e., they run the same algorithm and have the same capabilities. There

is no global coordinate system available for the robots. Each robot has its own unit

of length, an origin assumed to be the current position of the robot and an ego-centric

Cartesian coordinate system defined by two perpendicular axes, namely X and Y axis.

1.3 Deployment Space

In general, there are mainly two settings for the spatial universe U , where the robots

operate and move: discrete and continuous. In the discrete setting, the robots are

usually deployed at the nodes of an undirected and unlabeled graph. This setting mainly

describes the case of mobile agents in a communication network. In the continuous

universe, the robots are represented as points in the d dimensional Euclidean plane. In

this thesis, we have assumed that the robots are deployed at the nodes of an infinite

grid graph, where they move along the edges of the graph.

1.4 Agreement in Coordinate System

The robots do not have any agreement on the global coordinate system. Each robot has

its own local coordinate system, which is ego-centric, i.e., the origin is at the current

location of the robot. The robots have their own notion of unit length. The unit distance

of a robot may be different from the others. However, the robots may have full or partial

agreement on the direction and orientation of the coordinate axes. The following models

are considered depending on the extent of consistency among local coordinate systems

[62].
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• Two-axis agreement: The robots agree on the direction and orientation of both

the axes (Figure 1.1).

X+

X+

X+

X+

Y +

Y +

Y +

Y +

Y +

Figure 1.1: The robots have full axis agreement

X+

X+

X+

X+

Y −

Y +

Y +

Y +

Y −

Figure 1.2: One-axis agreement

• One axis agreement: The robots agree on the direction and orientation of only

one axis. The other coordinate axes may have different orientations for different

robots. In Figure 1.2, the robots agree on the direction and orientation of the X-

axis; different robots have different positive orientations of the positive Y− axis.

• Direction-only: The robots agree on a common direction for both local coordi-

nate axes. However, unlike in the case where the robots agree on the orientation
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X+

X+

X−

X−

Y −
Y +

Y +

Y −

Figure 1.3: Direction-Only

of one of the axes, the positive orientations of the axes may not be the same in

the case where the robots have direction-only agreement (Figure 1.3).

• Axes-only: The robots agree on the directions of both local coordinate axes.

However, the positive orientations of the axes are not common and the robots do

not agree on which of the two axes is the X− axis and which is the Y− axis (Figure

1.4).

Y −

X+

X+

Y +

Y −

Y +

X+

X−

Y +

Figure 1.4: Axes-Only

• Chirality: The robots agree on a common cyclic orientation, i.e., they agree on

the common handedness (clockwise and anticlockwise directions) (Figure 1.5).
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Y +
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Y +

Figure 1.5: The robots agree on a common clockwise direction

Y +
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X+Y +

X+

Y +

X−

Y +

Figure 1.6: The robots are disoriented

• Disoriented: The robots do not have agreement on the common direction and

orientations of the coordinate systems (Figure 1.6). In the context of the thesis,

it has been assumed that the robots are disoriented.

1.5 Robots with or without Extent

Generally, in the continuous domain, the robots are viewed as points, i.e., they are

assumed to be dimensionless. For d ≥ 3, the robots may also be considered as a unit

disc in the Euclidean plane or a unit ball in the d dimensional Euclidean space. The

robots with extent are usually termed as fat robots [26, 27, 43]. However, in the discrete

domain, the extent does not carry much relevance. The only assumption is that a robot

fits into a node and can move along the edges of the input graph. In this thesis, we have

assumed that the robots are dimensionless.
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1.6 Visibility

Each robot can observe its surroundings using its visibility sensors. This enables the

robots to share information implicitly among themselves. There are three main types of

visibility models that have been considered in the literature.

• Unlimited Visibility: The most commonly used model is the unlimited visibility

model or full visibility model. In this model, each robot is able to observe all the

other robots.

• Limited Visibility: The robots can sense the presence of other robots within a

predefined limited visibility range. This range is called the visibility radius of the

robots. It is generally assumed that the visibility radius is the same for all robots.

In Figure 1.7, r can see all the robots within the visibility range of γ.

r
γ

Figure 1.7: Limited Range Visibility Model

• Obstructed Visibility: In the obstructed visibility or opaque robot model, the

visibility range of a robot is usually unlimited, but its visibility is obstructed by

the presence of the other robots, i.e., if three opaque robots are collinear, the

middle robot obstructs the vision of other two robots. In Figure 1.8, r3 obstructs

the vision of r1 and r4. r2 cannot see r5 due to the presence of r3. However, r1

can see r2, r3 and r5. r2 can see r3 and r4. r3 can see all the other robots. r4 and

r5 can see each other.

In this thesis, it has been assumed that the robots have unlimited visibility.
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r1

r2

r3 r4

r5

Figure 1.8: Obstructed Visibility Model

1.7 Look-Compute-Move cycle

At any point of time, each robot is either active or inactive. An active robot operates in

Look-Compute-Move (LCM) cycle. Once a computational cycle is over, the robot may

become inactive or may again start a fresh computational cycle. A robot executes the

computational cycle repeatedly.

• During the Look phase, a robot uses its visibility sensors to take a snapshot of the

spatial universe. This phase is instantaneous, and the outcome is a snapshot of

the positions of the other robots in their own local coordinate system.

• Based on the perceived configuration, a robot computes a destination point in the

compute phase. The algorithm is assumed to be the same for all robots.

• In the Move phase, a robot moves towards the computed destination point. If

the destination point is the current location of the robot, the robot stays still and

performs a null movement.

1.8 Activation Schedule

Three types of schedulers are mainly considered in the literature with regard to the

activation schedule of the robots and the timing of the operations within their cycles.

• In the fully-synchronous (FSYNC) setting, time can be logically divided into non-

overlapping global rounds. In each round, all the robots are activated. They take



1.8. Activation Schedule 9

the snapshots at the same time and then perform their moves simultaneously. In

Figure 1.9, the robots r1, r2 and r3 are activated simultaneously.

r1

r2

r3

Idle Compute

Look Move

Figure 1.9: Fully-synchronous scheduler

• In the semi-synchronous (SSY NC) setting, a subset of robots are activated at the

same time and all operations are instantaneous. As a consequence, a robot is not

observed by the other robots when it is in motion. In Figure 1.10, the robots r1

and r2 are activated simultaneously.

r1

r2

r3

Idle Compute

Look Move

Figure 1.10: Semi-synchronous scheduler
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• The most general model is the asynchronous (ASY NC) setting. In this setting,

the activation of a robot and its execution of the LCM cycle are independent.

The amount of time spent in Look, Compute, Move and inactive states are finite

but unbounded and unpredictable. As a result, robots do not have a common

notion of time. Additionally, a robot can be seen while it is in motion, which

enables computations to be made using obsolete information about its position. It

should also be noted that the configuration perceived by a robot during the look

phase may significantly change before it initiates a movement. In this setting, the

scheduler is assumed to be fair, i.e., each robot is activated an infinite number of

times. In Figure 1.11, each robot r1, r2 and r3 are activated independently. In

this thesis, the scheduler has been assumed to be asynchronous.

r1

r2

r3

Idle Compute

Look Move

Figure 1.11: Asynchronous scheduler

1.9 Memory

Based on memory and communication capabilities, four models are generally used in the

literature:s

• OBLOT : The most general and well-studied model is the OBLOT model. In this

standard model, the robots are assumed to be silent and oblivious. The robots
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are silent in the sense that there is no explicit communication of information. The

robots are oblivious in the sense that their memory is volatile. They do not have

any memory of past observations, computations and actions. At the end of each

Look-Compute-Move cycle, the memory is erased. Therefore, the computation in

each cycle is based solely on what is observed in the current cycle [25, 37, 55].

• LUMI: In this model, the robots are endowed with externally visible lights. These

lights have a finite number of predetermined colors. Each color indicates a different

state of the robot. While the robots are oblivious and their memories are erased

in the next cycle, the color of the light is retained in the next cycle [53, 71, 95].

The lights serve both as a weak explicit communication mechanism and a form of

memory.

• FSTA: In this model, the robots are silent but have finite memory. This model is

similar to the LUMI model. The only difference is that here the light of a robot

is only visible to itself. In other words, in the Look phase, a robot observes the

positions of robots visible to it but not their lights. However, it can see the color

of its own light [9, 70, 71].

• FCOM : In this model, the robots are oblivious but have finite communication

bits. This model is also similar to the LUMI model. The difference here is that

the light of a robot is only visible to others. A robot cannot observe the color of

its own light [70, 71].

In this thesis, we have considered the OBLOT model.

1.10 Multiplicity Detection Capability

Multiple robots may occupy a single point when they are depicted as points. A multi-

plicity point is a location where multiple robots are present. If the robots are endowed

with multiplicity detection capability, then they can detect whether there exists a mul-

tiplicity at a given point. Based on the multiplicity detection capabilities of the robots,

the following models are considered:

• Global-weak multiplicity detection capability: This is the capability of a

robot by which it can only detect whether multiple robots occupy a point. They
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Figure 1.12: The nodes with purple colored implies multiplicity (a) Global-weak
multiplicity detection (b) Global-strong multiplicity detection

are unable to count the exact number of robots that make up the multiplicity. If

the robots have local-weak multiplicity detection capability rather than the global

version, they can detect whether there is a multiplicity at the point where it

currently resides. In Figure 1.12 (a), each robot can observe that the nodes v1,

v3 and v5 contain multiplicity if they are endowed with global-weak multiplicity

detection capability.

• Global-strong multiplicity detection capability: This is the capability of a

robot that allows it to count the exact number of robots composing a multiplicity.

If the robots have the local version of strong multiplicity detection capability rather

than the global version, they can only detect the number of robots that make up

the multiplicity in their current location. In Figure 1.12 (b), each robot can observe

that the nodes v1, v3 and v5 contain exactly 3, 3 and 2 robots, respectively, if they

are endowed with global-strong multiplicity detection capability.

In chapters 3 and 5 of the thesis, it has been assumed that the robots have weak mul-

tiplicity detection capacity. However, in chapters 4 and 6 of the thesis, the robots are

equipped with global-strong multiplicity detection capability.

1.11 Movement

In the continuous domain, the robots are assumed to move along straight lines. Neverthe-

less, certain models also allow robots to travel along some curved trajectories [32, 103].
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The movement of a robot may terminate before reaching its destination in the continuous

domain. Based on this, there are mainly two models that have been considered:

• Rigid Motion: In this model, each robot is able to reach its destination without

halting in between [37].

• Non-rigid motion: In this model, the movement of a robot may be stopped by

the adversary before it reaches its destination. However, it is assumed that there

is a distance δ > 0 such that whenever a robot moves, it moves at least a distance

δ towards its destination point, provided that the destination is at least δ distance

away from the current position of the robot. Note that this assumption guarantees

finite time reachability of the robot towards its destination point. The value of δ

may not be known to the robots.

In the discrete domain, the movement of the robots is restricted along the edges of the

graph and at any instant of time, a robot can move toward one of its adjacent nodes.

In this thesis, since the robots are deployed at the nodes of an infinite grid graph, we

assume that the movement of a robot is instantaneous. This implies that the robots

cannot be seen while moving, i.e., the robots can be seen only at the nodes of the graph.

In such a context, an instantaneous move also implies rigid movements.

1.12 Fundamental Geometric Problems

A large volume of works concerning different geometrical problems have been studied

in the literature. One of the key issues in the field of swarm robotics research is the

coordination of robots in distributed environments. The following are a few well-studied

geometric problems for swarm robots:

1.12.1 Geometric Problems in Continuous Domain

• Gathering: In the initial configuration, the robots are located at distinct points

on the plane. The main objective of the gathering problem is that all the robots

must meet at a point. This point is not known to them a priori. This task must

be accomplished within a finite amount of time [35, 38, 68, 106, 117]. A closely



14 Chapter 1. Introduction

related problem to the gathering problem is the convergence problem, where the

objective is that the robots must be as close as possible instead of meeting at a

particular point [5, 38, 39]. Another problem closely related to the gathering is

the near-gathering problem, where the robots are required to be within a circle of

a predetermined radius [102].

• Scattering and Covering: The scattering problem aims at arranging the robots

such that no two robots share the same position in the final configuration [58, 79].

A more specific version of the scattering problem is the covering problem, where

the objective is to disperse the robots across a bounded region of space in order

to cover the region. There may be certain optimization criteria involved. As an

example, uniform covering of a region requires that the region be equipartition,

with each partition being assigned a robot. In order to achieve maximum coverage

for a given sensing range v, the robots must scatter in a manner that maximizes

the region covered by circles of radius v centered at the location of the robot.

• Pattern Formation: In the initial configuration, the robots are usually assumed

to be at distinct positions on the plane. The pattern formation problem requires

the robots to arrange themselves in space so as to form a pattern given as input

[69, 116, 117, 122]. The pattern is generally given as a set of points in space or a

geometric predicate like circle, square, etc.

• Mutual Visibility: The Mutual visibility problem requires the robots lying on

the plane to attain a configuration in which robots occupy distinct locations on the

plane, and no three robots are collinear [95, 96]. This problem considers opaque

robots that block the vision of other robots through them.

• Flocking: The flocking problem requires the robots to move together, forming a

pattern and maintaining it while moving [23]. The guided flocking problem is a

variation of the flocking problem in which the movement of the robots is directed

by an exogenous source, which is a distinct mobile entity. This entity is generally

referred to as the leader or guide [99, 120, 121].
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1.12.2 Geometric Problems in Discrete Domain

• Gathering: In the initial configuration, the robots are located at distinct nodes

of an anonymous graph. The main objective of the gathering problem is that all

the robots must meet at one of the nodes of the graph. In the discrete domain, the

problem has been mostly considered in rings, grids and trees [87, 88, 113, 47, 114].

• Pattern Formation: In the initial configuration, the robots are assumed to be

at the distinct nodes of an anonymous graph. Numerous works related to the

pattern formation problem have also been considered in the grid topology, where

the robots usually operate on a two-dimensional square grid [18, 30, 92, 94].

• Mutual Visibility: Mutual visibility in graphs refers to the concept of determin-

ing whether two nodes in a graph are mutually visible to each other. In the final

configuration, the robots must attain a configuration in which they occupy distinct

nodes of the graph and no three robots are collinear. In the discrete domain, the

problem has been mainly studied in square grids [1, 76, 110, 111].

• Graph Exploration: The graph exploration problem [7, 8, 64, 93] is mainly of

two types: Terminating and Exclusive Perpetual. The terminating variant of the

exploration problem requires that each node of the input graph must be visited

by at least one robot, and eventually, all the robots stop moving. The exclusive

perpetual variant of the gathering problem requires that each robot must visit

every vertex of the graph infinitely often. Furthermore, no two robots visit the

same vertex or travel along the same edge at the same time.

• Dispersion: In the dispersion problem, the initial configuration involves placing

the robots at the nodes of an anonymous graph with n nodes. The objective is to

reposition a subset of k ≤ n robots such that each robot ends up at distinct nodes

of the graph [6, 90].

1.13 Scope of the Thesis

This thesis aims to study the gathering problem in an infinite grid domain. The de-

ployment space of the robots is assumed to be an infinite grid graph, where the robots

are located at the nodes of the graph. The problem has been largely studied in the
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continuous domain, where the robots are represented as either points or fat disks in R2.

In the continuous domain, it is assumed that the robots move with high accuracy and

infinite precision. In specific models, the robots can even perform guided movements,

i.e., they can move along some specified curve [32, 103]. Moreover, the robots can move

even by infinitesimally small amounts. Even if the field of robot deployment is small,

a dimensionless robot can move without creating any collisions. The correctness of the

algorithms relies on the accurate execution of the movements. However, the vision sen-

sors do not have infinite precision for real-life robots with weak mechanical capabilities.

A robot can travel an amount of distance, which may be an irrational number. In prac-

tice, performing such infinitesimal movements with infinite precision may not always be

possible. This motivates us to consider the problem in a grid-based terrain where the

movements are restricted along the grid lines, and a robot can move to one of its neigh-

bors in one step. Gathering [47, 87, 88, 113] problem has been studied in the discrete

domain, where the movements of the robots are restricted along the edges. However,

the gathering point was not restricted. In this thesis, we have studied the restricted

gathering model, where the gathering is restricted to some specific nodes. These nodes

are some prefixed nodes located at the nodes of an infinite grid graph, given as input,

and are visible to each robot in the initial configuration.

The gathering over meeting nodes problem has been studied in this thesis under dif-

ferent sets of assumptions. We have identified the set of all unsolvable configurations

under different settings. For the remaining configurations, the deterministic distributed

algorithms are proposed for the different problems considered in the thesis. We pro-

vide correctness and finite time termination of the proposed algorithms. The following

problems have been addressed in this thesis:

1.13.1 Gathering over Meeting Nodes in Infinite Grid

This work considers gathering over meeting nodes problem in an infinite grid by asyn-

chronous oblivious mobile robots. In this work, the robots are deployed at the nodes

of an infinite grid graph, which has a subset of nodes marked as meeting nodes. The

robots are assumed to be identical, autonomous, anonymous and oblivious. They op-

erate under an asynchronous scheduler. They do not have any agreement on a global
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coordinate system. However, the robots are endowed with local-weak multiplicity detec-

tion capability. We have shown that even if the robots are endowed with multiplicity

detection capability, some configurations remain ungatherable. We have proposed a

deterministic distributed algorithm to solve the gathering problem for the remaining

configurations. The efficiency of the proposed algorithm in terms of the total number

of moves executed by the robots has been studied. We have proved that any algorithm

that solves the gathering over meeting nodes problem requires Ω(Dn) moves, where D is

the larger side of the initial minimum enclosing rectangle of all the robots and meeting

nodes and n is the number of robots. The proposed algorithm requires O(Dn) moves,

i.e., the algorithm is asymptotically optimal. We have also proved that the proposed

algorithm requires O(D) epochs to terminate, where an epoch is the smallest interval

of time within which each robot is guaranteed to execute its LCM cycle at least once.

The lower bound regarding the total number of epochs required to terminate is O(D),

which proves that the proposed algorithm is asymptotically time optimal. The formal

definition of the problem is as follows:

Problem 1. Let R(t) denote the multiset of robot positions at time t and M be the set

of meeting nodes located at the nodes of the grid. Given a configuration C(t) = (R(t),

M), the gathering over meeting nodes problem in an infinite grid asks the robots to

gather at one of the meeting nodes within a finite time, i.e., in the final configuration

all the robots are on a single meeting node.

1.13.2 Optimal Gathering over Weber Meeting Nodes in Infinite Grid

Efficient solutions satisfying a particular optimization criterion are preferable in terms

of cost and better implementation. This work considers the Optimal Gathering over

Weber Meeting nodes problem in infinite grids. The initial configuration comprises at

least seven robots that are deployed at the nodes of an infinite grid. The optimization

criterion studied in this work is the minimization of the total number of moves made

by the robots to finalize the gathering. A meeting node that minimizes the sum of

the distances from all the robots is termed as a Weber meeting node. In our restricted

gathering model, the robots must gather at one of the Weber meeting nodes to ensure

gathering with a minimum number of moves. We have shown that there exist some

configurations where gathering over Weber meeting nodes cannot be ensured, even if
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the robots are endowed with global-strong multiplicity detection capability. It has been

shown that, without the assumption of global-strong multiplicity detection capability,

there are configurations where gathering cannot be accomplished as soon as a multiplicity

is created. However, there are initial configurations where gathering can be ensured

over a meeting node but not on the set of Weber meeting nodes. This includes the

configuration admitting a single line of symmetry without any robots or Weber meeting

nodes on the reflection axis, but at least one meeting node exists on the reflection axis.

In that case, the feasibility of the problem has been studied. The formal definition of

the problem is as follows:

Problem 2. Let C(t) = (R(t), M) be a given configuration. The optimal gathering

over Weber meeting nodes problem asks the robots to gather at one of the meeting nodes

of the initial configuration such that the total number of moves made by the robots is

minimized, i.e., in the final configuration, all the robots are on a single Weber meeting

node.

1.13.3 Gathering over Heterogeneous Meeting Nodes

It may be possible that in many real-life applications, different tasks are required to

be performed simultaneously by different groups of robots. This work considers the

gathering over heterogeneous meeting nodes problem in infinite grids. Two finite and

disjoint types of homogeneous robots are deployed at the nodes of an infinite grid graph.

The grid graph also consists of two finite and disjoint sets of prefixed meeting nodes

located over the nodes of the grid. The objective is to design a distributed algorithm

that gathers all the robots belonging to the first team at one of the meeting nodes

belonging to the first type. Similarly, all the robots in the second team must gather

at one of the meeting nodes belonging to the second type. The robots can distinguish

between the two types of meeting nodes. A robot can identify the team to which it

belongs. However, a robot cannot identify its team members. The initial configurations

for which the restricted gathering problem is unsolvable have been characterized. For the

remaining initial configurations, a distributed gathering algorithm has been proposed.

The proposed algorithm assumes global-weak multiplicity detection capability for the

robots and solves the problem within a finite time. The proposed algorithm runs in

Θ(dn) moves, where d is the diameter of the minimum enclosing rectangle of all the
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robots and meeting nodes and n is the number of robots in the system. We measure

the time complexity of our algorithms in epochs. The proposed algorithm runs in O(dn)

epochs. The formal definition of the problem is as follows:

Problem 3. Let C(t) = (R(t), M) be a given configuration. Given two finite disjoint

sets of homogeneous robots, R1 and R2, and two finite disjoint homogeneous sets of

meeting nodes M1 and M2 distributed over an infinite two-dimensional grid, the gath-

ering over heterogeneous meeting nodes problem asks the robots in R1 to gather at one

of the meeting nodes in M1 and the robots in R2 to gather at one of the meeting nodes

in M2.

1.13.4 Parking Problem over Infinite Grids

The gathering over meeting nodes problem can be extended to a generalized gathering

model, where each fixed node is occupied by a number of robots equal to the capacity

of the fixed node in the final configuration. This work considers parking problem over

infinite grids. The robots are deployed at the nodes of an infinite grid, which has a

subset of prefixed nodes marked as parking nodes. Each parking node pi has a capacity

of ki which is given as input and represents the maximum number of robots a parking

node can accommodate. As a solution to the parking problem, robots need to partition

themselves into groups so that each parking node contains a number of robots equal

to the capacity of the node. It is assumed that the number of robots in the initial

configuration represents the sum of the capacities of the parking nodes. Under this

setup, we have characterized all the initial configurations and the values of ki for which

the problem is unsolvable. For the remaining configurations, a deterministic distributed

algorithm was proposed. The formal definition of the problem is as follows:

Problem 4. Let P denote the set of parking nodes. C(t) = (R(t), P) denote the

system configuration at any time t. The goal of the parking problem over infinite grids

is to transform any initial configuration at some time t > 0 into a configuration such

that each parking node pi is saturated in the final configuration., i.e., each parking node

contains exactly ki robots.
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1.14 Organisation of the Thesis

This thesis considers the gathering at fixed nodes problem in an infinite grid domain.

This thesis has four contributing chapters in addition to the Introduction, Related Works

and Conclusion chapters. The literature review of previously studied works that are

relevant to this thesis is presented in Chapter 2. The main contribution of the thesis is

presented in Chapters 3-6. In Chapter 3, the gathering over meeting nodes problem has

been considered. The main objective is to gather all the robots at one of the prefixed

meeting nodes. In Chapter 4, the optimal gathering over Weber meeting nodes problem

is described, where the objective is to gather the robots at one of the meeting nodes

such that the sum of the distances traveled by the robots is minimized. Chapter 5

considers the gathering over heterogeneous meeting nodes problem, where the objective

is to gather two different types of robots at two different meeting nodes. In Chapter 6,

the parking problem in an infinite grid has been considered, where the objective is to

place ki number of robots at each parking node pi, where ki is the capacity of a parking

node pi. The capacity of each parking node is given as input to the robots. Finally, the

research work done in this thesis is summarised in Chapter 7, along with the research

directions that may be pursued in the future.



Chapter 2

Related Works

Numerous studies of various geometric problems for swarm robotics have been reported

in the literature [65, 66]. The basic objective of these works has been finding minimal

sets of capabilities that are needed to solve the problems. One of the most important

and fundamental coordination problems that has been extensively investigated in the

literature is the Gathering problem. It is also referred to as a point formation problem.

It has been studied in both the continuous and discrete domains, where the underlying

topology is an undirected graph. The problem is studied from different perspectives,

including the capabilities of the robots, the deployment area, environmental constraints,

faults, optimization constraints, etc. This thesis emphasizes the research in the discrete

domain.

2.1 Gathering in Continuous domain

2.1.1 Rendezvous problem

The problem of gathering two robots is also known as rendezvous. Suzuki et al. [117]

studied the rendezvous problem in the SSY NC model. Nevertheless, even if the robots

have strong multiplicity detection capabilities, they will not be able to solve the problem

if they do not have any agreement on the common coordinate axes. Izumi et al. [80]

investigated the problem in a scenario where the robots have unreliable compasses.

They considered two types of unreliable compasses: static compass, which never changes

21
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its direction during the execution of the algorithm and dynamic compass, which may

change its direction arbitrarily. They provide a complete characterization of rendezvous

solvability with respect to compasses in the SSY NC setting. The main objective of their

study is to find the minimum magnitude of consistency between the local coordinate

systems of the robots that are necessary and sufficient to solve the problem. In a recent

study, Bramas et al. [21] proved that if the robots disagree on the unit distance of

their coordinate systems, they are able to solve rendezvous and agree on a final common

location without making any additional assumptions.

Later, many researchers have considered the rendezvous problem in a scenario where

the robots are endowed with a constant number of lights. Das et al. [52] proved that

rendezvous can be solved by asynchronous robots using only three colors. They proved

that without any other extra assumptions, the ASY NC model with visible lights is more

powerful than the SSY NC model. Viglietta [119] proved that two colors are sufficient to

solve the rendezvous problem in the SSY NC model, but only three colors are sufficient

in the ASY NC model if the robots can detect null distances. Additionally, he showed

that if robots use only the observed colors to determine their next move, rendezvous is

not possible in the ASY NC model with two colors. Flocchini et al. [63] investigated

the problem in two different weaker settings: FSTATE and FCOM . They proved that

FSTATE robots with rigid movements could gather in SSY NC using only six internal

states. They also proved that the rendezvous of two FCOM robots could be solved

with only three distinct colors in the SSY NC setting and 12 colors in the ASY NC

setting. Okumura et al. [100] proposed an algorithm that solves the problem with two

colors in the ASY NC model, where the robots have rigid movements. If the robots

have non-rigid movements, then the value of δ was assumed to be known. However,

their solutions are not self-stabilizing, i.e., robots must have a specific light color in the

initial configuration. Heriban et al. [77] proposed a self-stabilizing algorithm for the

rendezvous problem. They proved that only two colors are necessary and sufficient to

solve the rendezvous problem in the ASY NC model.

2.1.2 Gathering for more than two robots

The gathering problem for n > 2 robots exhibits different characteristics from the ren-

dezvous problem in terms of computation. Cohen and Peleg [38] studied the convergence
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problem for fully-synchronous robots. They proved that the gathering problem could be

solved by any number of synchronous, oblivious robots without making any additional

assumptions. In their solution, each robot in the system moves straight toward the cen-

ter of gravity of the robot positions. In [34], Cieliebak considered the gathering problem

of n autonomous mobile robots in the plane, where the robots are assumed to be non-

oblivious. Thus, they can store the results of all computations from the beginning and

can freely access these results in order to carry out subsequent computations. Prencipe

[106] proved that gathering of n > 2 semi-synchronous robots is impossible if the robots

do not have any agreement on the coordinate axes or in the absence of any multiplicity

detection capability. Izumi et al. [80] considered the gathering problem of n ≥ 2 semi-

synchronous robots using a broader model in which the local compasses of the robots

have a dynamic tilt of ϕ, where ϕ < π
4 . Their proposed algorithm for the gathering

problem required rigid movements for the robots and the assumption of common chiral-

ity. Dieudonne et al. [60] proposed a self-stabilizing gathering algorithm for gathering

an odd number of semi-synchronous robots, where the robots are endowed with strong

multiplicity detection capability. In general, it is assumed that during their look phase,

each robot can accurately sense the positions of the other robots. However, there could

be some inaccuracies in the measurements of both angles and distances. Cohen et al.

[40] studied the gathering problem in which robots with consistent compasses and strong

multiplication detection capabilities may have measurement inaccuracies. Cieliebak et

al. [36] were the first to study the gathering of n > 2 robots in the ASY NC model.

They assumed that the robots have weak multiplicity detection capability.

The robots may become faulty at any stage of execution. Agmon and Peleg [4] were

the first to study the gathering problem under the fault model. They proposed an

algorithm that can tolerate n−1
3 Byzantine faults in the FSY NC model. In the SSY NC

model, they proposed a gathering algorithm that assumes the weak multiplicity detection

capability of the robots. The solution can tolerate a single crash fault. Bramas et al. [22]

proposed an algorithm that can tolerate n− 1 crash faults, assuming strong multiplicity

detection of the robots in the SSY NC model. Bhagat et al. [11] studied the gathering

problem under the crash fault model and proposed an algorithm for gathering n ≥ 2

asynchronous oblivious robots, where the robots have an agreement of only one axis.

It was assumed that the robots do not agree on a common chirality and can gather

without any multiplicity detection capability. Defago et al. [54] presented a study
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of the feasibility of deterministic gathering under crash and byzantine faults. They

presented several randomized solutions to the problem where deterministic solutions are

not possible. This was the first study that considered probabilistic solutions to solve

the gathering problem. They identified conditions under which a probabilistic solution

exists and conditions for which no probabilistic solution exists.

The gathering problem has also been studied under different optimization criteria. A

variant of the gathering problem was studied by Cicerone et al. [31], where the gathering

is accomplished at one of the meeting points. The meeting points are a finite set of points

that are visible to all the robots during their look phase. They identified the initial

configurations for which the gathering problem is not solvable even in the FSY NC

model. For the rest of the configurations, they proposed a deterministic algorithm

that solves the problem in the ASY NC model. They also studied the same problem

with respect to the two optimal criteria: one by minimizing the total number of moves

traveled by all the robots and the other by minimizing the maximum distance traveled

by a single robot. Bhagat et al. [15] were the first to study the constrained gathering

problem for a set of autonomous robots in the ASY NC model. It was assumed that the

gathering point is not restricted, and the optimization constraint is that the maximum

distance traversed by the robots should be minimized. Based on the assumption that

robots possess only two bits of memory, a distributed algorithm was proposed to solve

the problem in finite time for a set of n ≥ 5 asynchronous robots. Bhagat and Molla

[14] studied the same problem with the assumption that the robots do not have any

lights. The robots are assumed to have local-weak multiplicity detection capability and

one-axis agreement.

2.1.3 Limited Visibility Model

All the studies discussed so far have assumed that the visibility of robots is unlimited. In

the limited visibility model, the robots may not have a complete view of the environment.

In this model, researchers have investigated the convergence and gathering problems.

Ando et al. [5] studied the convergence problem for a set of semi-synchronous robots

with limited visibility. Their proposed algorithm solves the convergence problem within

a finite time, where the robots are assumed to be disoriented. Flocchini et al. [67, 68]

were the first to study the gathering problem for asynchronous robots in the limited
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visibility model. They proved that when robots agree on the directions and orientations

of both local coordinate axes, i.e., when they have consistent compasses, the gathering

problem is solvable for robots with limited visibility. Di Luna et al. [97] studied the

gathering problem for disoriented robots with limited visibility, such that the robots

do not initially form a connected visibility graph. The system is assumed to have a

leader in the form of a special configuration of three robots (called Turing Mobile) that

coordinate the activities leading up to the robot gathering. Another version of the

gathering problem is the near-gathering problem, where the robots are required to be

within a circle of a predetermined radius. Pagli et al. [102] studied this problem in the

ASY NC model with limited visibility.

2.1.4 Fat Robot Model

The fat robot model, in which the robots are represented as disks instead of dimen-

sionless points, provides a more realistic insight into robot-based systems. Czyzowicz

et al. [43, 44] initiated the study of the gathering of fat robots in the Euclidean plane.

Since robots have dimensions, they can not occupy the same position at the same time.

Therefore, they defined the gathering pattern as follows: The robots must form a config-

uration in which the union of all the disks representing the fat robots must be connected.

They solve the problem of gathering robots for the initial configurations consisting of

at most four robots in the asynchronous setting. Cord-Landwehr et al. [41] proposed

a gathering algorithm for synchronous fat robots, where the robots are assumed to be

opaque. However, they assumed that the robots knew the gathering point in advance.

The main objective of the robots is to gather as close as possible to the given point.

Agathangelou et al. [3] studied the gathering of n ≥ 2 opaque fat robots under the

assumption that the robots agree on a common chirality. Honorat et al. [78] considered

gathering of n ≤ 4 robots equipped with a slim-omnidirectional camera. The cameras

are fitted on the top of the robots. The robots are modeled as unit disks, each having an

omnidirectional camera represented as a disk of smaller size. The region obstructed by

a single robot in this model is a truncated infinite cone. In this setting, they proposed

a gathering algorithm. Gan Chaudhuri et al. [27] extended the study of the gathering

problem for disoriented fat transparent robots in the ASY NC model. They proposed a

distributed algorithm for gathering n ≥ 2 asynchronous fat robots.
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2.2 Gathering in Discrete Domain

2.2.1 Gathering in rings

Gathering in the discrete domain has been extensively studied in rings [17, 45, 46, 48,

49, 50, 51, 75, 81, 82, 84, 85, 87, 88, 101]. Klasing et al. [88] proved that gathering in an

anonymous ring is impossible without the multiplicity detection capability of the robots.

For all configurations with an odd number of robots and all asymmetric configurations

with an even number of robots, the authors proposed a distributed algorithm to solve

the gathering problem. They assumed that the robots are endowed with global-weak

multiplicity detection capability. It was proved that the gathering is not solvable for

periodic configurations and for the configurations that admit edge-edge symmetries,

where the axis of symmetry passes through two edges of the ring. Klasing et al. [87]

investigated configurations in an anonymous ring that allows symmetries and has an

even number of robots. The robots are endowed with global-weak multiplicity detection

capability. They solved the problem for all configurations with more than eighteen

robots. It has been proven that gathering is possible for an odd number of robots if

and only if the configuration is not periodic. These results left open the cases where the

number of robots is between four and eighteen.

Most of the cases where the number of robots is four were solved by Koren et al. [89].

The cases that remained open were the SP4 configurations. These are the sets of all

symmetric configurations of type node–edge with four robots and the odd interval cut by

the axis is bigger than the even one. An interval is defined as a maximal set of consecutive

empty nodes. The node-edge symmetry type means that the axis of symmetry passes

through one node and one edge of the ring. D’Angelo et al. [49] proposed an algorithm

for gathering all configurations that belong to the set of I \(U ∪SP4), where I is the set

of all initial configurations and U is the set of all ungatherable configurations listed in

[88]. The algorithm assumed global-weak multiplicity detection of the robots. D’Angelo

et al. [50] considered the gathering problem on anonymous rings with six robots. They

proposed a distributed algorithm to solve the problem that assumes the global-weak

multiplicity detection capability of the robots.

There are other results that concern the gathering of the robots in an anonymous ring,

where they are endowed with local-weak multiplicity detection capability. Izumi et al.
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[81] proposed a distributed gathering algorithm for the robots deployed at the nodes of

an unoriented ring, where the robots are endowed with local-weak multiplicity detection

capability. They proved that the proposed algorithm is asymptotically time-optimal, i.e.,

the time complexity of the algorithm is O(n), where n is the number of nodes. Izumi et

al. [82] provided a gathering algorithm for rings with local-weak multiplicity detection

capability under the assumptions that the initial configurations are non-symmetric, non-

periodic and the number of robots is less than half the number of nodes. Later, Kamei

et al. [83] studied the gathering problem in anonymous rings where the robots are

equipped with local-weak multiplicity detection capability. They assumed that the initial

configuration might be symmetric but non-periodic. Furthermore, they assumed that

the number of robots k is greater than eight and the number of nodes of the ring network

is an odd integer greater than k + 3. In [84], Kamei et al. proposed an algorithm for

the case where n is odd, k is even and 10 ≤ k ≤ n − 5. D’Angelo et al [46] provide a

full characterization of the initial configurations for which the gathering problem could

be solved. The authors characterize the initial configurations from which the gathering

problem is solvable for any k < n− 4 and k = 4. They design an algorithm that solves

the problem when the robots are empowered by the local-weak multiplicity detection

capability.

D’Emidio et al. [56] have shown that gathering of four robots on rings of seven nodes

is unsolvable in ASY NC. Di Stefano et al. [114] studied the optimal gathering on

rings with the optimization constraint that the number of moves required to accomplish

the gathering should be minimized. The proposed algorithm assumes the global-strong

multiplicity detection capability of the robots. Kamei et al. [85] studied the gathering

algorithms for myopic luminous robots in rings, i.e., the robots have limited visibility.

The proposed algorithm does not assume any multiplicity detection capability. However,

the robots are endowed with lights and each robot can see the color of the lights of its

own and those of the other robots.

2.2.2 Gathering in grids

D’Angelo et al. [47] studied the gathering problem on trees and finite grids. They

proved that even with global-strong multiplicity detection capability, a configuration is

ungatherable if and only if it is periodic or symmetric, with the line of symmetry passing
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through the edges of the grid. They solved the problem for the remaining configurations

without assuming any multiplicity detection capability of the robots. Cord-Landwehr

et al. [42] proposed an O(n) time algorithm for gathering robots in a finite grid under

the fully-synchronous setting. The proposed algorithm assumed that each robot could

observe other robots within a fixed distance of 20 units. It was also assumed that two

robots are connected if and only if they are vertical or horizontal neighbors on the grid.

Castenow et al. [24] provided a O(N2) algorithm for gathering on a grid in the fully

synchronous setting, where the robots are assumed to be oblivious. The viewing range of

the robots was assumed to be seven. Poudel et al. [104] studied the gathering problem

on a finite grid, where they assumed that each robot could observe any other robot

within a viewing range of
√
10 units and two robots are connected if and only if they

are
√
2 units apart. The robots agree on the direction and orientation of both axes.

A distributed time-optimal algorithm was proposed in the asynchronous setting. The

robots gather to a point in O(DE) epochs, where DE denotes the maximum distance

between any pair of robots in the initial configuration.

A Weber point is a node of the graph that minimizes the sum of the lengths of the

shortest paths from it to each robot. Di Stefano et al. [113] studied the optimal gathering

problem in infinite grids, with the optimization criteria that the sum of the distances

traveled by each robot to accomplish the gathering must be minimized. The authors

proposed a distributed algorithm and assured gathering on a Weber point by letting

each robot move along the shortest paths toward such a node. However, the robots have

global-strong multiplicity detection capability. Recently, Shibata et al. [112] studied

the gathering problem of seven mobile robots on triangular grids. The robots agree on

the orientation and direction of both axes and they operate under a fully synchronous

scheduler. With visibility range one, they showed that no collision-free algorithm exists

for the gathering problem. With visibility range two, they proposed a collision-free

algorithm that solves the problem from any connected initial configuration. Goswami

et al. [73] studied the gathering problem on an infinite triangular grid for n ≥ 2 robots,

where the robots have limited visibility.
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2.2.3 Gathering in other graph topology

Stefano et al. [114] studied the optimal gathering in general graphs, where the opti-

mization constraint is to minimize the total number of asynchronous moves performed

by the robots to accomplish the gathering task. They proposed sufficient conditions for

gathering in general graphs. They also proposed two distributed algorithms for trees and

rings that achieve exact gathering. Here, exact gathering refers to gather the robots at

one of the Weber points in the graph. Bose et al. [19] considered the gathering problem

in hypercubes. They proposed an optimal algorithm that minimizes the total number

of moves by all the robots. Cicerone et al. [29] studied the gathering problem in dense

and symmetric graphs like complete and complete bipartite graphs. In such topologies,

they fully characterized the solvability of the gathering task in the synchronous setting.

Guilbaut et al. [74] proposed a complete solution for the gathering problem for regular

bipartite graphs. They proved that the class of gatherable initial configurations consists

of only star graphs, where all the mobile agents are adjacent to an agent. Kamei et al.

[86] studied the gathering problem on torus-shaped networks, where the robots operate

under an asynchronous scheduler. However, the robots are assumed to be endowed with

local-weak multiplicity detection capability.

2.3 Other Problems studied in Grid topology

2.3.1 Pattern Formation Problems

The Arbitrary Pattern Formation Problem (APF ) was first studied by Suzuki et al.

[116, 117] in the Euclidean plane. They have characterized the entire class of patterns

that are formed by autonomous and anonymous robots in FSY NC and SSY NC. The

robots are assumed to have an unbounded amount of memory. Flocchini et al. [69]

investigated the solvability of the problem in ASY NC, where the robots are assumed

to be oblivious and represented as points in the plane. Dieudonne et al. [59] studied the

relationship between the APF problem and the Leader Election problem and proved

that the two problems are equivalent. Yamauchi et al. [123] studied the APF problem

in limited visibility. The Embedded Pattern formation problem was first studied in [72]

by Fujinaga et al. The problem asks for a distributed algorithm that requires the robots
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to occupy all the fixed points within a finite amount of time. Each fixed point must be

occupied by exactly one robot. Cicerone et al. [33] provided a full characterization of

all configurations where the embedded formation problem is solvable without chirality.

In the grid topology, the APF problem has been studied by several researchers in [18,

30, 91, 92, 94]. Bose et al. [18] were the first to study the problem for asynchronous

oblivious robots in infinite grids. However, the proposed algorithm assumed the initial

configuration to be asymmetric. The problem of pattern formation on an infinite grid

was studied by Lukovszki et al. [94] for robots with limited visibility. As part of

the study, the problem was investigated for robots with a constant-size memory and

a common coordinate system operating in the synchronous setting. In [91], Kundu et

al. studied the APF in infinite grids for opaque robots. Adhikary et al. [2] studied

a variant of the pattern formation problem, which is the Circle Formation problem in

an infinite grid under the assumption that the robots are oblivious, asynchronous and

opaque. Cicerone [30] investigated the APF problem for asynchronous robots in regular

tessellations graphs, where the initial configuration is assumed to be asymmetric.

2.3.2 Mutual Visibility Problems

Di Luna et al. [96] initiated the study of the mutual visibility problem for a set of

semi-synchronous oblivious robots. The problem for robots with persistent memory was

studied by Di Luna et al. [95] with the assumption that the robots are unaware of

the total number of robots in the team. They solved the problem (a) using two colors

in SSY NC and (b) using three colors in ASY NC for rigid robots. As a solution to

the problem of non-rigid robots, they used (a) with two colors in SSY NC if the robots

knew δ, (b) with three colors in SSY NC without knowing δ, and (c) with three colors in

ASY NC assuming the robots agree on the direction of one coordinate axis. Bhagat et

al. [10] proposed an algorithm that solves the mutual visibility problem in two rounds for

a set of synchronous robots. The algorithm uses only one bit of persistent memory and

guarantees collision-free movements for the robots. The proposed algorithm is optimum

in terms of round complexity, the amount of memory for the FSTATE computational

model and the number of movements for the robots.

In infinite grids, the Mutual Visibility problem was studied in [1, 76, 105, 110, 111].

Adhikary et al. [1] initiated the study of this problem in infinite grids. In [1], the
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authors proposed a distributed algorithm that solves the Mutual Visibility problem for

luminous robots in ASY NC from any initial configuration using nine colors. Sharma et

al. [111] considered the opaque point robot model and proved that any algorithm solving

the problem would require Ω(N) epochs. They proposed a deterministic algorithm that

requires 17 colors if leader election is not required. They also proposed a randomized

algorithm that requires O(max(D,N)) epochs and 50 colors, where D is the diameter

of the initial configuration. Hector et al. [76] studied the Mutual visibility problem in

the asynchronous setting by allowing all the robots to form a convex hull. The authors

proposed two randomized algorithms: an O(max{N2, D}) time algorithm using 50 colors

and an O(max{N1.5, D}) time algorithm using 55 colors. Poudel et al. [105] considered

the mutual visibility problem by fat robots on infinite grids. The movements were not

restricted to one hop or along the grid lines. A robot can directly move to any visible

grid point in one step. In this setting, they proposed an algorithm that requires O(
√
N)

epochs in the ASY NC model, where N is the number of robots in the system.

2.3.3 Grid Exploration

Grid exploration has been studied in [7, 8, 16, 20, 57, 98, 107, 108]. Baldoni et al. [7, 8]

studied the perpetual grid exploration in the FSY NC model. The robots have memory

and a global sense of direction. Bonnet et al. [16] investigated the exclusive perpetual

exploration of grid-shaped networks using anonymous, oblivious and fully asynchronous

robots. The robots do not have any sense of direction. They proved that three robots

are necessary and sufficient to solve the problem, provided that the size of the grid is

n × m with 3 ≤ n ≤ m or n = 2 and m ≥ 4. Rauch et al. [107] studied the Optimal

Exclusive Perpetual Grid Exploration by Luminous Myopic Robot problem. The robots

are deployed at the nodes of a finite grid and they are assumed to be disoriented. The

robots have limited visibility. They proposed a distributed algorithm that is optimal in

terms of the visibility range, the number of robots and the number of colors. Bramas et

al. [20] studied the Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic

Opaque Robots problem, where the robots are assumed to be opaque. The robots have

an agreement on a common chirality. They proposed a distributed algorithm that is

optimal in terms of the visibility range, the number of robots and the number of colors.
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Devismes et al. [57] studied the terminating grid exploration in infinite grids. They pro-

posed necessary and sufficient conditions for the terminating exploration of an anony-

mous grid by a swarm of k asynchronous oblivious robots. They proved that three robots

are necessary and sufficient in all but the cases where the grid size is 2 × 2 and 3 × 3,

which requires four and five robots, respectively. Sardar et al. [108] studied the termi-

nating grid exploration problem with the objective constraint that the total number of

wasteful repeated visits of the nodes that occur during exploration should be minimized.

2.3.4 Dispersion

In the initial configuration, the robots are placed at the nodes of an n- node anonymous

graph. The dispersion problem requires k ≤ n robots to reposition themselves to reach a

configuration in which each robot is at a distinct node of the graph. Augustine et al. [6]

initiated the study of this problem. The problem was examined in [6] in arbitrary graphs

as well as in specific graph structures like paths, rings, and trees, where it was assumed

that the number of robots is equal to n. Kshemkalyani et al. [90] studied this problem

on grids. They proposed two deterministic algorithms for the dispersion problem on an

anonymous grid graph. The first algorithm works under the local communication model,

which restricts a robot’s ability to communicate with those robots that are in its current

node. The second algorithm operates under the global communication model, in which

any robot in the graph, presumably located at different nodes, can communicate with

any other robot in the graph.



Chapter 3

Gathering over Meeting Nodes in

Infinite Grid 1

3.1 Overview

The gathering problem has been explored in detail in the literature under different

settings. However, most of the studies are in the continuous domain, where the robots

can move freely in the plane. This chapter investigates the gathering problem in an

infinite grid, given as an input. We have assumed that some of the nodes of the infinite

grid are prefixed nodes, which are designated as meeting nodes. The objective of our

study is to gather all the robots at one of the meeting nodes, where their movements

are only allowed along the grid lines. The fundamental motivation behind studying the

gathering over meeting nodes problem in infinite grids is to investigate the solvability

of the gathering problem where both the movements of the robots and the gathering

points are restricted. The gathering problem has been extensively studied in the discrete

domain [47, 87, 88, 113], where the movements of the robots are restricted only along

the edges of the input graph. However, the gathering point was not assumed to be

1This chapter of the thesis is based on the following publications:

1. Subhash Bhagat, Abhinav Chakraborty, Bibhuti Das, Krishnendu Mukhopadhyaya: Gathering
over Meeting Nodes in Infinite Grid. Fundamenta Informaticae 187(1): 1-30 (2022)

2. Subhash Bhagat, Abhinav Chakraborty, Bibhuti Das, Krishnendu Mukhopadhyaya: Gathering
over Meeting Nodes in Infinite Grid. Algorithms and Discrete Applied Mathematics - 6th In-
ternational Conference, CALDAM 2020, Hyderabad, India, February 13-15, 2020, Proceedings,
Pages: 318-330
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restricted. The rationale behind considering the meeting nodes might be of practical

use. In general, the gathering problem requires the robots to coordinate their movements

and meet at a location that they are not aware of beforehand. However, the gathering

may be limited to some specific regions or points. Another possibility is that robots may

need to gather at one of the designated points in many real-life applications, e.g., one

of the base stations, charging stations, etc.

3.2 Contribution

This chapter considers gathering over meeting nodes problem in an infinite grid by

asynchronous oblivious mobile robots. The problem asks for a deterministic distributed

algorithm that gathers the robots at one of the meeting nodes within a finite amount

of time. We have shown that even if the robots are endowed with multiplicity detection

capability, some configurations remain ungatherable. It includes the following collection

of configurations:

1. Configurations admitting a unique line of symmetry such that the line of symmetry

does not contain any robots or meeting nodes.

2. Configurations admitting rotational symmetry with no robots or meeting nodes

on the center of rotation.

We have proposed a deterministic distributed algorithm to solve the problem, starting

from the remaining configurations. We have studied the efficiency of the proposed al-

gorithm in terms of the total number of moves executed by the robots. A lower bound

has been derived for the total number of movements performed by any algorithm for

solving the problem. We have proved that any algorithm that solves the gathering over

meeting nodes problem requires Ω(Dn) moves, where D is the larger side of the initial

minimum enclosing rectangle of all the robots and meeting nodes and n is the number

of robots. Our proposed algorithm requires O(Dn) moves. It has been proved that the

proposed algorithm requires O(D) epochs to terminate. The lower bound regarding the

total number of epochs required to terminate is O(D), which proves that the proposed

algorithm is asymptotically optimal with respect to the number of moves and time in

epochs.
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Organization: The rest of the chapter is organized as follows. The next section focuses

on the robot model and provides some preliminary definitions and notations. Section

3.4 provides the formal description of the gathering problem. A sufficient condition for

the solvability of the gathering task has also been stated. In Section 3.5, we presented a

deterministic distributed algorithm for solving the gathering over meeting nodes prob-

lem. Section 3.6 provides a lower bound for the complexity of the gathering problem in

terms of the number of moves. A lower bound for the time complexity of the algorithm

has also been presented in this section, where the time has been measured in terms of

epochs. In this section, we have also provided a complexity analysis for our proposed

algorithm. Section 3.7 concludes the chapter with some future directions to work with.

3.3 Model and Definitions

3.3.1 Model

The robots are assumed to be autonomous, anonymous, homogeneous, dimensionless

and oblivious. They do not have any explicit means of communication. They have an

unlimited and unobstructed visibility range, i.e., each robot can observe the entire grid.

The robots do not have any agreement on a global coordinate system and chirality. Each

robot perceives the configuration with respect to its ego-centric local coordinate system.

Initially, the robots are assumed to be at the distinct nodes of the input grid. Each active

robot executes Look-Compute-Move(LCM) cycle under an asynchronous scheduler. A

robot can instantly move to one of its adjacent nodes along the grid lines. The movement

of a robot is instantaneous, i.e., any robot performing a Look operation observes all the

other robot’s positions only at the nodes of the input grid graph. We have assumed that

the robots are endowed with local-weak multiplicity detection capability.

3.3.2 Definitions

In this subsection, we have proposed some terminologies and definitions. These termi-

nologies and definitions are relevant in understanding the problem definition.

• System Configuration:
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– P = (Z, E′): infinite path graph where the vertex set is the set of integers Z

and the edge set is denoted by the ordered pair E′ = {(i, i+ 1)|i ∈ Z}.

– Cartesian product of the graph P × P : input grid graph.

– V and E: set of nodes and edges of the input grid graph, respectively.

– d(u, v): Manhattan distance between the nodes u and v, which is the usual

l1 norm.

– R = {r1, r2, . . . , rn}: a set of robots deployed at the nodes of the grid.

– ri(t): position of the robot ri at time t > 0. When there is no ambiguity, r

will represent both the robot and the position occupied by it.

– R(t) = {r1(t), r2(t), ..., rn(t)}: multiset of robot positions at time t. At t = 0,

ri(t) ̸= rj(t), for all ri(t), rj(t) ∈ R(t). However, at t > 0, ri(t) may be equal

to rj(t), for some ri(t), rj(t) ∈ R(t).

– M = {m1,m2, . . . ,ms}: set of meeting nodes located at the nodes of the grid

graph.

– C(t) = (R(t), M): system configuration at time t (Figure 3.1).

r3

r4

r5

m1

m2 m4r2

m3

A B

CD

r6 r1

m5

r7

Figure 3.1: Example of a system configuration. The crosses represent meeting points,
and the black circles represent the positions of the robots.

• Symmetry: An automorphism of a graph G = (V , E) is a bijective map ϕ : V →
V such that u and v are adjacent if and only if ϕ(u) and ϕ(v) are adjacent. The

automorphism of graphs can be extended similarly to define the automorphism of

a configuration. Let µt : V → {0, 1, 2, 3, 4, 5} at any time t ≥ 0 be defined as a
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function, where:

µt(v) =



0 if v is an empty node

1 if v is a meeting node without any robot positions on it

2 if v is a single robot position on a meeting node

3 if v is a robot multiplicity on a meeting node

4 if v is a single robot position not on any meeting node

5 if v is a robot multiplicity not on any meeting node

Without any ambiguity, we denote µt by µ. An automorphism of a configuration

C(t) is an automorphism ϕ of the input grid graph such that µ(v) = µ(ϕ(v)) for

all v ∈ V . The set of all automorphisms of a configuration forms a group which is

denoted by Aut(C(t), µ). If |Aut(C(t), µ)| = 1, then the configuration is asymmet-

ric. Otherwise, the configuration is said to be symmetric. Note that the function

µ denotes the status or type of a node, i.e., µ(v) denotes whether the node v is

an empty node, a meeting node without any robot positions on it, a meeting node

with a single or multiple robots on it, or a single or multiple robot positions not

lying on any meeting node. We assume that the grid is embedded in the Cartesian

plane. Hence, a grid can admit only three types of symmetry, namely, translation,

reflection and rotation. Since the number of robots and meeting nodes is finite, a

translational symmetry is not possible. A configuration admits a reflection sym-

metry if it is invariant after a reflection with respect to an axis passing through

the geometric center of the grid. A unique line of symmetry characterizes a re-

flection symmetry. The line of symmetry can be horizontal, vertical, or diagonal

and can pass through the nodes or edges of the graph. A configuration admits a

rotational symmetry if it remains invariant with respect to rotations. The angle

of rotation and the center of rotation characterize rotational symmetry. The angle

of rotation can be 90◦ or 180◦, whereas the center of rotation can be a node, a

center of an edge, or the center of a unit square. Note that if a configuration

admits symmetry, then no algorithm can distinguish between a robot r and its

symmetric image. Consequently, a robot and its symmetric image(s) may decide

to move simultaneously. A pending move may exist if an algorithm permits at

least two robots to move at the same time. Due to the asynchronous nature of
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the scheduler, it may so happen that one of the robots that is allowed to move

completes its entire Look-Compute-Move cycle while one of the other robots does

not perform the Move phase.

• Partitive automorphism: Given an automorphism ϕ ∈ Aut(C(t), µ), the cyclic

subgroup of order k generated by ϕ is given by {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦ ϕ, . . . , ϕk−1},
where ϕ0 denotes the identity of the cyclic subgroup. Let H be any subgroup of

Aut(C(t), µ). We define a relation ρ as follows: For some x, y ∈ V , we say that

x and y are related by the relation ρ if there exists an automorphism γ ∈ H such

that γ(x) = y. Note that the relation ρ is an equivalence relation defined on the

set of vertices V . The equivalence class of the node x is defined as the orbit of x

[113] and is denoted by H(x). These orbits form a partition of the set V since they

represent disjoint equivalence classes. An automorphism ϕ ∈ Aut(C(t), µ) is called

partitive on V ′′ ⊂ V , if the cyclic subgroup H = {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ◦ϕ, . . . , ϕk−1}
generated by ϕ has order k > 1 and |H(u)| = k for each u ∈ V ′′.

Suppose a configuration admits a unique line of symmetry l such that l does not

pass through any node. Then, there exists an automorphism ϕ ∈ Aut (C(t), µ)

that is partitive on the set of nodes V ′′ = V . The cyclic subgroup H generated

by ϕ with k = 2 is given by H = {ϕ0, ϕ1}. Similarly, assume that a configuration

admits rotational symmetry where the center of rotation c is not a node. If the

angle of rotation is 90◦, then there exists an automorphism ϕ ∈ Aut (C(t), µ) which

is partitive on the set of nodes V ′′ = V and the cyclic subgroup H generated by ϕ

with k = 4 is given by H = {ϕ0, ϕ1, ϕ2, ϕ3}.
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Figure 3.2: An example illustrating the identification of the key corner.

• Configuration view: Next, we define the view of a robot relative to the location

of the robot and in terms of its local coordinates. For this, we first introduce the

definition of the minimum enclosing rectangle. The main goal of introducing the
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idea of view is to provide each robot with the same set of information about the

entire configuration, which is frequently based on distances.

Let MER denote the minimum enclosing rectangle of R∪M. MER is defined as

the smallest grid-aligned rectangle that contains all the robots and meeting nodes.

Assume that the dimension of MER is p × q. We define the length of a side of

MER in terms of the number of grid edges on them. A senary string of length

pq is constructed as follows: Starting from a corner of MER, proceeding in the

direction parallel to the width of MER and scanning the entire grid sequentially,

we consider all the grid lines of MER column by column. While scanning the grid,

we associate µ(v) to each node v that the string encounters. Proceeding similarly,

we can define the string associated to the same corner and encounter the nodes of

the grid in the direction parallel to the length of the grid. For a corner i, let the

two strings defined be denoted by sij and sik (In Figure 3.2, for the corner A, the

strings associated are defined by sAB and sAD). Similarly, two senary strings of

length pq are associated with each corner of MER. As a result, there are eight

senary strings of length pq, which are associated with the corners of MER.

First, consider the case when MER is a non-square rectangle. We can distinguish

the two strings associated to a particular corner by considering the string that

progresses in the direction parallel to the side of the minimum length. Consider any

particular corner i of MER. Assume that |ij| < |ik|. The direction parallel to ij is

considered as the string direction associated to i. We define si = sij as the string

representation associated to the corner i (In Figure 3.2, for the corner A, as |AB| >
|AD|, the string direction is associated along AD. Here, sAD is defined by sAD =

001001400004000000000000404000400401000000100). The direction parallel to the

larger side (i.e., sik) is defined as the non-string direction associated to the corner

i (In Figure 3.2, sAB is the non-string direction). In the case of a square grid,

between the two strings associated to a corner, the string representation is defined

as the string which is lexicographically larger, i.e., si = max(sij , sik), where the

maximum is defined according to the lexicographic ordering of the strings.

Lemma 3.3.1. In an asymmetric configuration, all the strings associated to the

corners of MER are different.
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Proof. For the sake of contradiction, assume that at least two strings associated to

the corners of MER are equal. Without loss of generality, assume that MER =

ABCD. We consider the following cases.

Case 1. Two strings associated to two adjacent corners are equal. Without loss

of generality, assume that the strings sAD and sBC associated to the strings A and

B are equal. This implies that for every pair of nodes a in the strings sAD and b

in the string sBC , µ(a) = µ(b). According to the definition of the symmetry of a

configuration, it is an automorphism of a configuration such that µ(v) = µ(ϕ(v)),

for all v ∈ V . The fact that µ(a) = µ(b) implies that there is a single line of

symmetry that passes through the center of the grid-line joining the nodes A and

B.

Case 2. Two strings associated to two non-adjacent corners are equal. It can be

proved similarly that in this case, the configuration admits a rotational symmetry

with the angle of rotation being 180◦.

Case 3. The strings associated to one particular corner are equal. It should be

noted that this can happen only when the MER is a square. It can be proved

similarly that in this case, the configuration is symmetric with respect to the

diagonal line of symmetry passing through that particular corner.

It can be proved similarly that if four strings associated to the corners are equal,

then the configuration must admit a rotational symmetry with the angle of rotation

being 90◦. This proves that if at least two strings are equal, then the configuration

must admit either a line of symmetry or rotational symmetry. By contradiction,

this proves that if the configuration is asymmetric, then all strings associated to

the corners are different.

Corollary 3.3.2. If a configuration is asymmetric, then there always exists a

string which is lexicographically largest.

Proof. According to Lemma 3.3.1, all the strings associated to the corners ofMER

are different. This implies that the strings can be ordered according to the lex-

icographic ordering. Hence, there always exists a lexicographically largest string

among all possible strings.
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If both the strings associated with a particular corner are equal, then one of the

directions is arbitrarily selected as the string direction. In Figure 3.2, l is the

line of symmetry for the meeting nodes. sAD is the lexicographic largest string.

Without loss of generality, let si be the largest lexicographic string among all the

strings associated to the corners of MER. Then we refer to i as the key corner.

In Figure 3.2, A is the key corner. A corner that is not a key corner is defined

as a non-key corner. The definition of the key corner is similar to one defined by

Stefano et al. [113]. If all the robots and meeting nodes lie on a single line, then

MER is a p× 1 rectangle with A = D and B = C, and the length of AD and BC

is 1. Note that, in this case, sAD and sDA refer to the same string. The meeting

nodes are symmetric when the strings sAD and sDA are equal. The configuration

view of a node is defined as the tuple (d′, x), where d′ denotes the distance of a

node from the key corner in the string direction and x denotes the status of the

node, i.e., x = µ(v).
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Figure 3.3: The meeting nodes are asymmetric and D is the unique leading corner.

Lemma 3.3.3. If a configuration is asymmetric, there always exists a robot with

the maximum configuration view.

Proof. As the configuration is asymmetric, there always exists a unique key corner.

Consider the unique key corner and the string direction si associated to the unique

key corner i. Without loss of generality, let Ô be the ordering of the robots defined

according to the order in which they appear in si. Consider the robot r, which has

the highest order in Ô. It should be noted that r has the maximum configuration

view among all the robots. Hence, the proof follows.

• Symmetricity of the set M: We define MERF as the smallest grid-aligned

rectangle that contains all the meeting nodes. Define the function ft : V → {0, 1}
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at any time t as follows:

ft(v) =


0 if v is not a meeting node

1 if v is a meeting node

We can define a string αi similar to si. The only difference is that instead of

µ(v), each node v is associated with ft(v). If the meeting nodes are asymmet-

ric, then there exists a unique lexicographic largest string αi (directly follows

from the proof of Lemma 3.3.1). If the meeting nodes are not asymmetric, then

the meeting nodes are said to be symmetric. The corner with which the lexico-

graphic largest string αi is associated is defined as the leading corner. In Fig-

ure 3.3, αDA = 01000001000000010100000000001001000, αAD = 000100010000000

00101000000100000010, αBC= 00010010000000000101000000010000010 and αCB =

01000000100000010100000000010001000. αDA is the largest lexicographic string

among the α′
is and D is the leading corner.

3.4 Gathering over Meeting Nodes Problem

In this section, we consider the problem definition for gathering. A distributed deter-

ministic gathering algorithm for gathering n ≥ 2 robots has been proposed.

3.4.1 Problem Definition and Impossibility Results

This subsection formally defines the gathering over meeting nodes problem in an infinite

grid.

3.4.1.1 Problem Definition:

Given a configuration C(t) = (R(t), M), the gathering over meeting nodes problem in

an infinite grid asks the robots to gather at one of the meeting nodes within a finite

time. In an initial configuration, all the robots occupy distinct nodes of the grid. We

say a configuration is final at time t if the following conditions hold:

• all the robots are on a single meeting node.
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• all robots are stationary.

• any robot taking a snapshot in the look phase at time t will decide not to move.

Our proposed algorithm is a deterministic distributed algorithm that gathers all the

robots at a single meeting node within a finite amount of time.

3.4.1.2 Partitioning of the initial configuration:

All the configurations can be partitioned into the following disjoint classes.

1. I1− This includes the following class of configurations.

(a) I11− M is asymmetric (Figure 3.3).

(b) I12− M is symmetric with respect to a unique line of symmetry l and there

exists at least one meeting node on l. R∪M may be asymmetric or symmetric

with respect to l (Figure 3.4(a)).

(c) I13−M is symmetric with respect to rotational symmetry with c as the center of

rotation and there exists a meeting node on c. R∪M may be either asymmetric

or symmetric with respect to rotational symmetry (Figure 3.5(a)).

2. I2− This includes the following class of configurations.
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Figure 3.4: (a) I12- configuration: There exist meeting nodes on l. (b) I31- configu-
ration: There do not exist any meeting nodes on l, but there exists a robot position on

l. (c) I41- configuration without robots or meeting nodes on l.

(a) I21− M is symmetric with respect to a unique line of symmetry l. R ∪ M is

asymmetric and there does not exist any meeting node on l (Figure 3.2).

(b) I22−M is symmetric with respect to rotational symmetry. R∪M is asymmetric

and there does not exist a meeting node on c.
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Figure 3.5: (a) I13- configuration with a meeting node on c. (b) I32- configuration
without a meeting node on c, but there exists a robot position on c. (c) I42- configu-

ration without a robot or meeting node on c.

3. I3− This includes the following class of configurations.

(a) I31− M is symmetric with respect to a unique line of symmetry l. R ∪ M is

symmetric with respect to l. There does not exist any meeting node on l, but

there exists at least one robot position on l (Figure 3.4(b)).

(b) I32− M is symmetric with respect to rotational symmetry with c as the center

of rotation. R ∪ M is symmetric with respect to rotational symmetry. There

does not exist a meeting node on c, but there exists a robot position on c (Figure

3.5(b)).

4. I4− This includes the following class of partitive configurations.

(a) I41− M is symmetric with respect to a unique line of symmetry l. R ∪ M is

symmetric with respect to l and there does not exist any meeting node or robot

position on l (Figure 3.4(c)).

(b) I42− M is symmetric with respect to rotational symmetry with c as the center

of rotation. R∪M is symmetric with respect to rotational symmetry and there

does not exist any meeting node or robot position on c (Figure 3.5(c)).

Let I denote the set of all initial configurations. Each time a robot is active, it observes

the configuration in its Look phase and determines the current class of configuration to

which it belongs.

3.4.2 Impossibility Result

This subsection considers all configurations for which the gathering over meeting nodes

problem is unsolvable in an infinite grid.
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Theorem 3.4.1. Given an initial configuration C(0), let V ′ ⊂ V be a subset of nodes

such that V ′ ∩R(0) = ∅. Assume that the robots are operated under a fully-synchronous

scheduler. If there exists an automorphism ϕ that is partitive on the set V \ V ′ and

ϕ(v′) = v′, for each v′ ∈ V ′, then there does not exist any deterministic algorithm that

can ensure gathering on a node in V \ V ′.

Proof. Let H be the cyclic subgroup generated by ϕ and k > 1 be the size of the

corresponding orbits. If possible, let algorithm A solve the gathering over meeting

nodes problem and ensure gathering over a meeting node m ∈ V \V ′. This implies that

starting from C(0), all the robots reach a final configuration. Suppose, in the initial

configuration, there exists a robot r on a node v ∈ V \ V ′ in the input grid graph.

Since the scheduler is assumed to be fully-synchronous, all the robots in the orbit H(v)

are activated at the same time. As each robot in H(v) has identical views, A cannot

distinguish the robots in H(v) deterministically. There exist different execution paths

of the algorithm A, but the scheduler may choose a particular execution of A, where the

destinations of each robot in H(v) are the same. Since there is no robot position on V ′,

the configuration symmetry cannot be deterministically broken by allowing the robots

to move from V ′. We will prove the result by using induction on the number of rounds.

Base Case: By the assumption of the initial configuration, the configuration is partitive

on the set V \ V ′ at round 0.

Inductive hypothesis: Assume that the configuration is partitive on the set V \V ′ at

round t ≥ 1.

Induction Step: Let r be an active robot at round t that decides to move from node v

to node u. We need to prove that the configuration remains partitive on the set V \ V ′

at round t+ 1. At round t+ 1, the following cases are to be considered.

1. v ∈ V \ V ′ and u ∈ V ′. Note that at round t, the robots in H(v) have identical

views and they execute the same deterministic algorithm A. As a result, there

exists at least one execution of A out of different execution paths of A, where each

robot in H(v) moves towards the same node u. Each robot belonging to the other

orbit H(v′), where v′ ̸= v, may move towards the same node u by the execution

of A. Under this execution, the configuration remains partitive on the set V \ V ′

at round t + 1. In Figure 3.6(a), v is the node that is occupied by the robot r1.
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Figure 3.6: (a) Each robot decides to move towards u at round t. (b) Each robot on
H(v) moves towards u on l under the execution of A at round t+1. The configuration
remains partitive after the movement. The circle on u represents a multiplicity node.

Here, V ′ = l, i.e., V ′ is the set of nodes belonging to the line of symmetry l. In

Figure 3.6(b), under the execution of A, each robot moves towards u on l.

l

m1 m2
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(a) (b)

vuu r1 r2

Figure 3.7: (a) Each robot on v decides to move towards distinct nodes of H(u) at
round t. (b) The robots on v move towards distinct nodes of H(u) under the execution

of A at round t+ 1. The configuration remains partitive after the movement.

2. v ∈ V ′ and u ∈ V \ V ′. Note that, in the initial configuration, R(0) ∩ V ′ = ∅.
Therefore, there must exist some round 0 < t′ < t at which a robot r′ moves from

a node w ∈ V \ V ′ to the node v ∈ V ′. There exist different execution paths of

the algorithm A, but the scheduler may choose a particular execution of A, where

the destinations of each robot in H(w) are the same node v. As a consequence,

the number of robots on v at round t′ + 1 is n = ak, where a denotes the number

of orbits (there might be different robots moving from different orbits towards v).

Since each robot on V ′ lies on a multiplicity node v, they have identical views.

As the gathering must be ensured on a meeting node belonging to the set V \ V ′,

there exists at least one execution of A in which a robots from v move towards u′

at round t+1, for each distinct nodes u′ ∈ H(u). Thus, the configuration remains

partitive on the set V \ V ′ at round t+ 1. In Figures 3.7(a) and 3.7(b), under the
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execution of A, the robots on v move towards the nodes belonging to the orbit

H(u) and creates multiplicity at those nodes.
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r3 r4
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l

Figure 3.8: (a) Each robot on H(v) decides to move towards H(u) on V \ l at round
t. (b) Each robot on H(v) decides to move towards H(u) on V \ l at round t+1 under

the execution of A. The configuration remains partitive after the movement.
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Figure 3.9: (a) Each robot on v decides to move towards u at round t. (b) Each
robot on v moves towards u at round t + 1. The configuration remains partitive after

the movement.

3. v ∈ V \ V ′ and u ∈ V \ V ′. There exists at least one execution of A in which the

destinations of each robot r′ on the node v′ is some node u′, where v′ ∈ H(v) and

u′ ∈ H(u). Since the configuration was partitive on the set V \ V ′ at round t, the

configuration remains partitive on the set V \ V ′ at round t+1. In Figures 3.8(a)

and 3.8(b), the robots on the nodes H(v) move towards the nodes belonging to

H(u).

4. v ∈ V ′ and u ∈ V ′. Note that, since in the initial configuration, R(0) ∩ V ′ = ∅,
there must exist some round 0 < t′ < t at which a robot r′ moves from a node

w ∈ V \ V ′ to the node v ∈ V ′. There exists at least one execution of A, where

the destinations of each robot in H(w) are the same node v. At round t + 1, it

might be the case that each robot on v moves towards u under the execution of

A. Thus, the configuration remains partitive on the set V \ V ′ at round t+ 1 (In

Figures 3.9(a) and 3.9(b), the robots on v move towards u).
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Starting from C(t) and with the execution of A, C(t + 1) remains partitive on the

set V \ V ′ at round t + 1. Therefore, by the principle of mathematical induction, the

configuration C(t) remains partitive on the set V \ V ′ at any round t ≥ 0. Since the

configuration remains partitive on the set V \V ′ at round t+1, no algorithm can ensure

gathering of the robots at a meeting node. In fact, to ensure gathering, there must exist

a node x ∈ V \ V ′ such that |H(x)| = 1, but under the execution of the algorithm A,

the size of each orbit is |H(x)| = k and k ≥ 2, for all x ∈ V \ V ′. This contradicts the

assumption that all the robots reach a final configuration under the execution of the

algorithm A. Thus, we have proved that gathering cannot be ensured at a meeting node

belonging to V \ V ′.

If C(0) is partitive on the node set V \V ′, then from Theorem 3.4.1 it follows that there

must exist at least one meeting node m ∈ V ′ where gathering will be finalized. In this

proof, we have considered the scheduler to be fully-synchronous. Since the impossibility

result holds for fully-synchronous scheduler and the assumption of fully-synchronous

scheduler is stronger than that of asynchronous scheduler, the impossibility result holds

even for asynchronous scheduler. As a result, we state the following corollary without

proving it.

Corollary 3.4.2. Given an initial configuration C(0), let V ′ ⊂ V be a subset of nodes

such that V ′ ∩ R(0) = ∅. Assume that the robots are operated under an asynchronous

scheduler. If there exists an automorphism ϕ that is partitive on the set V \ V ′ and

ϕ(v′) = v′, for each v′ ∈ V ′, then there does not exist any deterministic algorithm that

can ensure gathering on a node in V \ V ′.

Let V ′ be the set of nodes on l, if C(0) ∈ I41. Otherwise, let V ′ be the node {c}, if
C(0) ∈ I42. Now, we have the following corollary:

Corollary 3.4.3. If C(0) ∈ I4, then the gathering over meeting nodes problem is un-

solvable.

Proof. First, consider the case when C(0) ∈ I41. This implies that C(0) is partitive on

the node set V \ l. According to Theorem 3.4.1, the gathering must be ensured at a

meeting node on l. Since there does not exist any meeting node on l, gathering cannot

be ensured at l. Therefore, the gathering over meeting nodes problem is unsolvable.
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The proof holds similarly in the case when C(0) ∈ I42, where C(0) is partitive on the

node set V \ {c}.

Corollary 3.4.4. If an initial configuration is partitive on the set V , then it cannot be

a final configuration.

Proof. Assume to the contrary that the configuration C(0) is partitive on the set V , and

C(t) can be a final configuration. This implies that starting from C(0), there must exist

a distributed deterministic algorithm A, which ensures the gathering of the robots on a

meeting node. First, consider the case when the configuration is symmetric with respect

to a single line of symmetry l. Since the initial configuration is partitive on the set V ,

l must be a line passing through the edges of the input grid graph. As the gathering

must be ensured on a meeting node belonging to l, the configuration cannot be a final

configuration.

Otherwise, if the configuration is symmetric with respect to rotational symmetry, the

center of rotation must be a center of an edge or the center of a unit square. As the

gathering must be ensured on a meeting node belonging to c, the configuration cannot

be a final configuration.

For the rest of the chapter, we assume that if a configuration admits a unique line of

symmetry l, then l passes through the nodes of the graph. Otherwise, if a configuration

admits a rotational symmetry, then the center of rotation is a node. With this assump-

tion, let U denote the set of all initial configurations which are ungatherable according to

Corollary 3.4.3. In other words, U represents the following collection of configurations.

• admitting a unique line of symmetry l and no meeting node or robot position on

l.

• admitting rotational symmetry with no meeting node or robot on c.

3.5 Algorithm

This section describes our main algorithm, Gathering(). The algorithm ensures gath-

ering over a meeting node for all the initial configurations belonging to the set I \ U .
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Figure 3.10: (a) The meeting nodes are asymmetric. (b) The meeting nodes are
symmetric with respect to l, and there exists meeting nodes m5 and m6 on l.

The pseudo-code of the algorithm Gathering() is given in Algorithm 3.1. We will see

later that if the meeting nodes are asymmetric, then they can be ordered. Even if the

meeting nodes are symmetric with respect to l, and there exist meeting nodes on l, then

the meeting nodes on l are orderable.

First, consider the case when the meeting nodes are asymmetric. Note that according

to the definition of symmetry of the set M, there exists a unique lexicographic largest

string αi associated with the unique leading corner. In Figure 3.10 (a), D is the unique

leading corner and αDA is the unique largest lexicographic string. Consider the largest

lexicographic string αi associated with the unique leading corner and the meeting nodes

that appear in the string representation of αi. Without loss of generality, let O1 be the

ordering of the meeting nodes defined according to the order in which they appear in

αi. Let O1 = (m1,m2, . . .ms) denote this particular ordering of the meeting nodes. In

Figure 3.10(a), (m1,m2,m5,m6,m3,m4) is the ordering O1. Note that this particular

ordering remains invariant while the robots move towards any meeting node. While

the ordering of the meeting nodes remains invariant, each robot can select the meeting

nodes according to the ordering and finalize the gathering at the meeting node.

Next, assume the case when the meeting nodes are symmetric with respect to a unique

line of symmetry l and there exists at least one meeting node at l. If l is a horizontal

or vertical line of symmetry, then there exist two leading corners. Consider the meeting

nodes on l ordered according to their appearances in the string directions associated

to the leading corners. Without loss of generality, let O2 = (m′
1,m

′
2, . . . ,m

′
z) be this

particular ordering of the meeting nodes at l. In Figure 3.10(b), C and D are the leading

corners. (m5,m6) is the ordering O2. Here z denotes the total number of meeting nodes

lying at l. It may be noted similarly that this particular ordering remains invariant while

the robots move toward any meeting node. If l is a diagonal line of symmetry and there
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exists a unique leading corner, then the ordering of the meeting nodes on l is defined

with respect to the distance from the leading corner.

Observation 1. If the meeting nodes are asymmetric, then they are orderable.

Observation 2. If the meeting nodes are symmetric with respect to a unique line of

symmetry l, and there exists at least one meeting node on l, then the meeting nodes on

l are orderable.

3.5.1 Gathering()

In this subsection, a deterministic distributed algorithm Gathering() has been proposed

to solve the gathering over meeting nodes problem in an infinite grid graph. Our pro-

posed algorithm solves the gathering problem for all the configurations belonging to the

set I\U and consists of at least two robots. The algorithm Gathering() works according

to the class of configurations that each robot perceives in its local configuration view.

The strategy of the algorithm is to find a single meeting node such that all the robots

can agree on it and gather at that node within a finite amount of time. If |M| = 1,

then all the robots move towards the unique meeting node and finalize the gathering.

Therefore, for the rest of the chapter, we assume that |M| ≥ 2. The unique meeting

node, which is considered for gathering is defined as the target meeting node.

Algorithm 3.1: Gathering()

Input: C(t) = (R(t), M) ∈ I \ U
1 if C(t) ∈ I11 then
2 Each robot moves towards the meeting node ms having the highest order with respect to

O1 ;

3 else if C(t) ∈ I12 then
4 Each robot moves towards the meeting node mz on l having the highest order with respect

to O2 ;

5 else if C(t) ∈ I13 then
6 Each robot moves towards the meeting node on c ;
7 else if C(t) ∈ I2 then
8 GatheringAsym();
9 else if C(t) ∈ I3 then

10 SymmetryBreaking() ;
11 GatheringAsym();
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3.5.1.1 I1

Depending on whether the initial configuration C(0) belongs to I11, I12 and I13, the
following cases are considered:

1. C(0) ∈ I11. According to Observation 1, since the meeting nodes are asymmetric,

they are orderable. Consider the ordering O1 of the meeting nodes, defined with

respect to the unique leading corner. The meeting node ms having the highest

order with respect to O1 is selected as the target meeting node. All the robots

move towards ms and finalize the gathering at it. In Figure 3.10(a), D is the

leading corner and (m1,m2,m5,m6,m3,m4) is the ordering O1. m4 is the meeting

node that has the highest order in O1. m4 is selected as the target meeting node.

2. C(0) ∈ I12. There exists at least one meeting node on l. According to Observa-

tion 2, the meeting nodes on l are orderable. Since the meeting nodes are fixed,

the ordering remains invariant during the movement of the robots. Consider the

ordering O2 = (m1,m2, . . .mz) of the meeting nodes on l. The meeting node mz

on l having the highest order with respect to O2 is selected as the target meeting

node. All robots move towards the meeting node mz, and the gathering is finalized

at mz. In Figure 3.10(b), C and D are the leading corners and (m5,m6) is the

ordering O2. m6 is the meeting node on l, which has the highest order among all

the meeting nodes on l according to O2. m6 is selected as the target meeting node.

3. C(0) ∈ I13. There exists a meeting node (say m) on c. All robots move towards

m and finalize the gathering at m. In Figure 3.11(a), m5 is selected as the target

meeting node. In Figure 3.11(b), all robots move towards m5.
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Figure 3.11: (a) I13- configuration with meeting node on c. m5 is selected as the
target meeting node. (b) The gathering is finalized by moving the robots towards m5.
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Lemma 3.5.1. If C(0) ∈ I1, then the target meeting node remains invariant during the

execution of the algorithm Gathering() at any time t > 0.

Proof. Depending on whether the initial configuration C(0) belongs to I11, I12 and I13,
the following cases are considered.

Case 1. C(0) ∈ I11. All robots agree on the ordering O1 of the meeting nodes. As the

ordering O1 of the meeting nodes depends only on the position of the unique leading

corner, the ordering remains invariant during the movement of robots. Therefore, the

meeting node having the highest order in O1 also remains invariant. As a result, the

target meeting node remains invariant.

Case 2. C(0) ∈ I12. The target meeting node mz is selected as the meeting node

on l having the highest order with respect to O2. Since the ordering depends only

on the positions of meeting nodes, it remains invariant while the robots move towards

mz. Consider the case when the configuration is symmetric. Even if the configuration

becomes asymmetric because of a possible pending move, l remains uniquely identifiable,

as it is also the line of symmetry for M.

Case 3. C(0) ∈ I13. The meeting node m on c is selected as the target meeting node.

Since c is also the center of the rotational symmetry of the meeting nodes, it remains

invariant while the robots move towards it.

Hence, the target meeting nodes remain invariant during the execution of the algorithm

at any time t > 0.

3.5.1.2 I2

Assume that the initial configuration C(0) ∈ I2. In this case, the meeting nodes are

symmetric, but the configuration is asymmetric. Even there does not exist any meeting

node on l ∪ {c}. Here, each robot executes GatheringAsym(). The overview of the

procedure GatheringAsym() is as follows:

Overview of the procedure: The procedure comprises the following phases: Guard

Selection and Placement, Creating Multiplicity on Target Meeting Node and Finalization

of Gathering. Since the robots are oblivious, each robot determines its current phase by

analyzing the current configuration in its local configuration view. Note that since the
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meeting nodes are symmetric, any ordering of the meeting nodes in the initial configura-

tion depends on the robot positions and may change during the movement of the robots.

In order to fix a particular ordering of the meeting nodes, a robot denoted as a guard is

selected and placed in the Guard Selection and Placement phase. Each non-guard robot

moves towards the target meeting node in the Creating Multiplicity on Target Meeting

Node phase. The guard is selected and placed in such a way that during the execu-

tion of the procedure GatheringAsym(), it remains uniquely identifiable by the other

robots. The main strategy of the algorithm is to maintain the invariance of the target

meeting node in the Creating Multiplicity on Target Meeting Node phase. Finally, in

the Finalization of Gathering phase, the guard moves toward the target meeting node.

While the guard moves, it moves in a shortest path toward the target meeting node.

Guard Selection and Placement: In this phase, a single robot is selected as the

guard. The guard is selected and placed in such a way that it remains uniquely iden-

tifiable by the other robots during the execution of the procedure GatheringAsym().

Let MERF denote the minimum enclosing rectangle of all the meeting nodes. First,

assume that the meeting nodes are symmetric with respect to a unique line of symmetry

l, and there does not exist any meeting node on l. Since the configuration is asymmetric,

there always exists a unique key corner. As a result, a unique robot with the maximum

configuration view exists. Let d1 denote the maximum distance between a meeting node

from l. Similarly, let d2 denote the maximum distance between a robot position from l.

We next consider the following cases.
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Figure 3.12: (a) A′B′C ′D′ is the minimum enclosing rectangle MERF of all meeting
nodes. ABCD is theMER. (b) r7 is selected as a guard and moves towards an adjacent
node away from l. Finally, it moves toward its closest corner. The transformed MER

is A′′BCD′′.

1. There exists at least one robot position outside the rectangle MERF . This implies

that there exists at least one robot position at a distance d2 > d1 from l. If there are
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multiple such robots at a distance d2, consider the unique robot with the maximum

configuration view. Let r be the unique robot with the maximum configuration

view. r is selected as the guard, and it moves towards an adjacent node away

from l. This movement results in creating a unique robot that is at the maximum

distance from l. In Figures, 3.12(a) and 3.12(b), r2 and r7 are the robots outside

the MERF and at the farthest distance from l. r7 is the robot with the maximum

configuration view as B is the key corner. r7 move towards an adjacent node.

2. Each robot position is either inside or on the rectangle MERF . This implies that

any robot can be at the maximum distance d2 from l and d2 ≤ d1. Consider the

robot farthest from l. If there are multiple such robots, consider the unique robot

r with the maximum configuration view. r is selected as the guard and it moves

toward an adjacent node away from l. r continues its movement and the moment

r reaches a node which is outside the rectangle MERF , d2 becomes greater than

d1. The rest of the procedure follows similarly like the previous case.

Once the guard becomes the unique farthest robot from l, it moves toward the closest

corner of MER in the direction parallel to the string direction. If the guard is closest to

two corners of MER, then it moves towards an arbitrary corner. In Figure 3.12(b), r7

moves towards D′′. The procedure progresses similarly when the meeting node admits

rotational symmetry, and there does not exist any meeting node on c. In that case, d1

and d2 are defined as the distances from c. The pseudo-code corresponding to this phase

is given in Algorithm 3.2.

Algorithm 3.2: GuardSelection()

Input: C(t) = (R(t), M)
1 if there exists at least one robot position outside MERF then
2 if there exists exactly one robot position r outside MERF then
3 r is selected as the guard ;
4 else
5 The unique robot r farthest from l ∪ {c} and with the maximum configuration view is

selected as the guard ;

6 r moves toward an adjacent node away from l ∪ {c} and finally towards its closest corner;

7 else if each robot is inside or on MERF then
8 if there exists a unique robot r farthest from l ∪ {c} then
9 r is selected as the guard;

10 else
11 The unique robot r farthest from l ∪ {c} and with the maximum configuration view is

selected as the guard ;

12 r moves toward an adjacent node away from l ∪ {c} and continues its movement unless it is
outside MERF ;
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Lemma 3.5.2. During the execution of the procedure GuardSelection(), the guard re-

mains uniquely identifiable by the robots.

Proof. First, assume that the meeting nodes are symmetric with respect to l and there

do not exist any meeting nodes on l. The proof follows similarly when the configuration

admits rotational symmetry, and there does not exist any meeting node on c. The

following cases are to be considered.

Case 1. There exists at least one robot position outside the rectangle MERF . Note

that there may be multiple such robots. If there exists precisely one such robot r, then

according to the procedure GuardSelection(), r is selected as a guard. Otherwise, if

there are multiple such robots, the unique robot r with the maximum configuration view

is selected as the guard. r moves towards an adjacent node v away from l. The moment

it reaches v, it becomes the unique farthest robot from l. While the guard moves towards

the corner, it remains the unique farthest robot from l. As the guard is selected as the

unique farthest robot from l, it remains uniquely identifiable by the other robots.

Case 2. Each robot position is inside or on the rectangle MERF . In this case, the

robot position farthest from l is selected as a guard. Note that there may be multiple

such robots. The procedure GuardSelection() ensures that the guard is selected as the

unique robot r, which is farthest from l and with the maximum configuration view in

case of a tie. The moment r moves towards an adjacent node away from l, it becomes

the unique farthest robot from l. r continues its movement unless it becomes the unique

robot outside the rectangle MERF . The rest of the proof follows from Case 1.
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Figure 3.13: (a) The configuration after the execution of GuardSelection. m1 is
selected as the target meeting node. (b) Each non-guard moves towards m1 and creates
a multiplicity on m1. The MER becomes A′′′B′C ′D′′. The circle on m1 represents a

robot multiplicity on m1.
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According to Lemma 3.5.2, the guard is the unique robot which is farthest from l∪ {c}.
As a result, the guard will not have any symmetric image with respect to l∪{c}, and the

configuration remains asymmetric. Once the guard is selected and placed, we consider

the corner of MER as being occupied by the guard. Starting from that corner, we scan

the entire MER in the direction parallel to the string direction and associate each node

v to ft(v). As a result, we would get a binary string. Consider the ordering of the

meeting nodes according to their positions in the string representation. We define the

particular ordering by O′′.

Creating Multiplicity on Target Meeting Node: In this phase, each non-guard

robot moves towards the target meeting node m. Since R ∪ M is asymmetric, there

exists a unique ordering of the meeting nodes with respect to the guard. Note that the

ordering remains invariant unless the guard moves. Each robot agrees on the ordering

O′′ of the meeting nodes. The target meeting node m is selected as the meeting node

that is closest to the guard. If there are multiple such meeting nodes, consider the

unique meeting node m that has the minimum order in O′′ as the target meeting node.

Let n1 denote the total number of distinct robot positions. If n1 ≥ 3, then each non-

guard moves towards m by executing MakeMultiplicity() (In Figures 3.13(a) and 3.13

(b), m1 is the closest meeting node from the guard. Each non-guard moves towards

m1). This would result in creating a robot multiplicity at m. Note that during this

movement, the robots may create multiplicity on a meeting node other than m. We

have to ensure that, during this phase, m remains invariant and uniquely identifiable.

All the non-guard robots move towards m sequentially, i.e., the non-guard robots that

are closest to m move first. The pseudo-code corresponding to this phase is given in

Algorithm 3.3.

Algorithm 3.3: MakeMultiplicity()

Input: C(t) = (R(t), M)
1 if there exists a unique meeting node m closest to the guard then
2 Each robot selects m as the target meeting node;
3 else
4 Let m be the closest meeting node from the guard that has the minimum order in O′′ ;
5 Each robot selects m as the target meeting node;

6 Let r be a closest non-guard robot that is not on m;
7 r moves towards m in a shortest path ;

Lemma 3.5.3. During the execution of MakeMultiplicity(), the target meeting node

remains invariant.
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Proof. Since the configuration is asymmetric, there exists a unique ordering O′′ of the

meeting nodes with respect to the unique guard. The following cases are to be considered.

Case 1. The meeting nodes are symmetric with respect to l. If there exists a unique

meeting node m closest to the guard, it is selected as the target meeting node. Since

the position of the meeting nodes and the guard remains fixed during the execution

of MakeMultiplicity(), m remains invariant. When there are multiple closest meeting

nodes from the guard, the target meeting node m is selected as the unique meeting

node closest to the guard and that has the minimum order in O′′. Since the guard does

not move, the ordering O′′ remains invariant. Hence, m remains invariant during the

execution of MakeMultiplicity().

Case 2. The meeting nodes are symmetric with respect to rotational symmetry. The

target meeting node is selected similarly, as in Case 1. The rest of the proof follows

similarly as in the above case.

m1

m2 m4

m3

(a)

l

r7

A′ B′

C ′D′

A′′′

D′′

m1

m2 m4

m3

(b)

l

A′ B′

C ′D′

Figure 3.14: (a) The configuration after the execution of the procedure
MakeMultiplicity(). (b) r7 moves towards m1 and finalizes the gathering. The MER

becomes A′B′C ′D′.

Finalization of Gathering: In this phase, the guard executes GuardMovement().

Note that the robots are endowed with local-weak multiplicity detection capability. If

n1 = 2, then the guard can identify that it does not lie on a robot multiplicity node

and on a meeting node. The guard would start moving toward the other robot position

in a shortest path. All the other robots on the target meeting node m would identify

that they are already on a multiplicity node and they would not move. As a result,

the robots on m would remain on m. Since the target meeting node m is selected as

one of the meeting nodes closest to the guard, while the guard moves towards m in a

shortest path, it would not lie on any meeting node other than m in its movement path.

Eventually, the guard would finalize the gathering on m. In Figures 3.14(a) and 3.14(b),

r7 observes that it is not on a multiplicity node. It would move towards m1 and finalize
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the gathering at it. The pseudo-code corresponding to this phase is given in Algorithm

3.4.

Algorithm 3.4: GuardMovement()

Input: C(t) = (R(t), M)
1 if n1 = 2 then
2 Let r be the robot that does not lie on a robot multiplicity node and on a meeting node;
3 r moves towards the other robot position ;

3.5.1.3 I3

This subsection considers all initial configurations belonging to I3. Here, each robot ex-

ecutes SymmetryBreaking(). The algorithm description of the procedure is as follows:
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Figure 3.15: (a) I31-configuration. (b) Transformation of I31-configuration into an
asymmetric configuration by the movement of the robot r4.

Symmetry Breaking : In this phase, all the symmetric configurations which can be

transformed into asymmetric configurations are considered. A unique robot is identified

that allows the transformation. We have the following cases:

1. C(t) ∈ I31. In this class of configurations, at least one robot exists on l. Let r be

the unique robot on l having the maximum configuration view. r moves towards

an adjacent node that does not belong to l. In Figures 3.15(a) and 3.15(b), C

and D are the key corners. As a result, r4 is the unique robot on l that has the

maximum configuration view. r4 moves towards an adjacent node away from l,

and the configuration becomes asymmetric.

2. C(t) ∈ I32. In this class of configurations, there exists a robot (say r) on c. The

robot r moves towards an adjacent node. In Figures 3.16(a) and 3.16(b), the robot
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Figure 3.16: (a) I32-configuration. (b) Transformation of I32-configuration into an
asymmetric configuration by the movement of r9 on c.

r9 on c moves towards an adjacent node and the configuration transforms into an

asymmetric configuration. If the configuration admits rotational symmetry with

multiple lines of symmetry and there is a robot r at the center, r moves towards

an adjacent node. This movement creates a unique line of symmetry l′. However,

the new position of r might have a multiplicity. If that happens to be the robot

with the maximum view on l′, moving robots from there might still result in a

configuration with a line of symmetry. Even so, the unique line of symmetry l′

would still contain at least one robot position without multiplicity, and the number

of robot positions on l′ will be strictly less than the number of robots on the line

of symmetry in the original configuration. Thus, the repeated execution of the

procedure SymmetryBreaking() guarantees to transform the configuration into

an asymmetric configuration within a finite amount of time.

The pseudo-code corresponding to this phase is given in Algorithm 3.5. Once the config-

uration is transformed into an asymmetric configuration, GatheringAsym() is executed.

Suppose a robot multiplicity is created during the execution of SymmetryBreaking().

In that case, the robot that is farthest from l ∪ {c} and does not lie on a multiplicity

is selected as the guard. If there are multiple such farthest robots, then the guard is

selected as the farthest robot with the maximum configuration view. Note that such a

robot position always exists.

Lemma 3.5.4. If C(0) ∈ I \ U , then during the execution of Gathering(), C(t) /∈ U ,

for any t > 0.

Proof. According to Theorem 3.4.3, the ungatherable configurations can be character-

ized by the following conditions:
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Algorithm 3.5: SymmetryBreaking()

Input: C(t) ∈ I3
1 if C(t) ∈ I31 then
2 Let r be the robot on l with the maximum configuration view ;
3 Move r towards any adjacent node that does not belong to l;

4 else if C(t) ∈ I32 then
5 Let r be the robot on c ;
6 Move r towards any adjacent node;

1. configurations admitting a unique line of symmetry l and without any robot or

meeting nodes on l.

2. configurations admitting rotational symmetry with the center of rotation c and

without a robot or meeting node on c.

Depending on whether the initial configuration C(0) is in I1, I2, or I3, the following

cases are to be considered.

Case 1. Consider the case when C(0) ∈ I1. This includes all those configurations where
the meeting nodes are either asymmetric or symmetric with at least one meeting node

on l ∪ {c}. Since the meeting nodes are fixed nodes located on the nodes of the grid,

C(t) /∈ U , for any t > 0.

Case 2. Consider the case when C(0) ∈ I2. Since the configuration is asymmetric,

there exists a unique key corner. According to Lemma 3.5.2, during the execution

of the procedure GuardSelection, the configuration remains asymmetric, as the guard

contains no symmetric image with respect to l ∪ {c}. Note that the guard is the unique

farthest robot from l∪{c}. Since the guard does not move in the Creating Multiplicity on

Target Meeting node phase and each non-guard moves towardsMERF , the configuration

remains asymmetric at any time t > 0. During the execution of GuardMovement(),

the guard moves towards the target meeting node and finalizes the gathering. Hence,

C(t′) /∈ U , for any t′ > t, where t′ denotes any instant of time after the execution of

GuardMovement().

Case 3. Consider the case when C(0) ∈ I3. There exists at least one robot position on l∪
{c}. At some time t > 0, the configuration transforms into an asymmetric configuration

by the execution of the procedure SymmetryBreaking(). The configuration remains

asymmetric at t′ > t, similar as in Case 2.
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This proves that if C(0) /∈ U , then during the execution of Gathering(), C(t) /∈ U , for
any t > 0.

Without loss of generality, let m be the target meeting node, selected after guards

placement at time t. Let d(t) =
∑

ri∈R(t)

d(ri(t),m).

Theorem 3.5.5. If C(0) ∈ I \ U with n ≥ 2, then by the execution of the algorithm

Gathering(), the gathering over meeting nodes problem is solved within finite time.

Proof. According to Lemma 3.5.4, if the initial configuration C(0) /∈ U , then C(t) /∈ U ,
for any t > 0. Depending on whether the initial configuration C(0) is in I1, I2, or I3,
the following cases are to be considered.

Case 1. C(t) ∈ I1. According to Lemma 3.5.1, the target meeting node m remains

invariant. Let t′ > t be an arbitrary point of time at which at least one robot starts

moving towards m. Therefore, d(t′) =
∑

ri∈R(t′)

d(ri(t
′), m) and d(t′) < d(t). This implies

that eventually, all the robots will reach m and the gathering is finalized at m within a

finite amount of time.

Case 2. C(t) ∈ I2. First, consider the execution of MakeMultiplicity(). Let t′ > t

be an arbitrary point of time after the guard selection and placement phase. As-

sume that at least one non-guard robot has completed its LCM cycle at t′. We have

d(t′) =
∑

ri∈R(t′)

d(ri(t
′), m). According to Lemma 3.5.3, the target meeting node remains

invariant. If there is at most one robot position which is not on m at time t′, then the

execution of GuardMovement() is started. Otherwise, let r be any non-guard robot

that has computed its LCM cycle at time t′. Since r has moved at least one node closer

to m, we have d(t′) < d(t). This implies that eventually, all the non-guard robots will

reach m and execution of GuardMovement() will be started.

Next, we consider the execution of procedure GuardMovement(). Assume that at time

t′′, the guard (say r) starts moving towards m in a shortest path. At t′′, d(t′′) =

d(r(t′′),m) (All other robots are already on m). Since r would move at least one node

closer to m, d(t1) < d(t′′) at t1 > t′′. Let t2 > t1 > t′′ be the point of time at which

r reaches m. As d(r(t2),m) = 0, d(t2) = 0. Therefore, eventually, all the robots will

finalize gathering at m.
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Case 3. C(t) ∈ I3. In this case, SymmetryBreaking() is executed. The transformed

configuration becomes either asymmetric or may admit a unique line of symmetry. By

the repeated execution of SymmetryBreaking(), the configuration becomes asymmetric.

The rest of the proof follows from Case 2.

Hence, execution of the algorithm Gathering() eventually solves the gathering over

meeting nodes problem within a finite time.

3.6 Lower bounds

A B

mr1 r2 r3 rn−1 rn

Figure 3.17: A configuration showing the lower bound in terms of the number of
movements required to finalize the gathering.

In this section, we study the efficiency of our algorithm in terms of the total number of

moves. We have also analyzed the time complexity of the proposed algorithm in terms

of the number of epochs. Let n denote the total number of robots deployed at the nodes

of the input grid graph. Consider a configuration C(t), where the dimension of MER

is 1 × (n + 1). Assume that there is a single meeting node that is placed at one of the

corners of MER, and all the other n nodes of the grid are occupied by the n robots

(In Figure 3.17, m is the single meeting node and MER = AB). Since the gathering

problem requires all the n robots to be placed at the unique meeting node, the total

number of moves executed by the robots is given by, 1+2+3 . . .+n =
n(n− 1)

2
. Hence,

any algorithm solving the gathering over meeting nodes problem requires Ω(n2) moves.

Next, assume that D = max{p, q}, where p and q are the dimensions of the initial

MER and if D = Ω(n), then any algorithm solves the gathering problem in Ω(Dn)

moves. Hence, we have the following theorem.

Theorem 3.6.1. Any gathering algorithm for solving the gathering over meeting nodes

problem requires Ω(Dn) moves.

Next, assume that in each epoch, the robot r1 is the last robot that gets activated. As a

result, in each epoch, r1 moves only a unit hop towards m, which results in Ω(D) epochs

for the termination to occur. Hence, we have the following theorem.
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Theorem 3.6.2. Any gathering algorithm for solving the gathering over meeting nodes

problem requires Ω(D) epochs.

3.6.1 Analysis of the Algorithm Gathering()

Number of moves

• During the Symmetry Breaking phase, only O(1) moves are required in order to

break the symmetry.

• In the Guard Selection and Placement phase, at most, one robot may be required

to move away from the initial MER. The total number of moves during this phase

is O(D).

• In the Creating Multiplicity on Target Meeting Node phase, all the non-guard

robots move towards the target meeting node in a shortest path. The total number

of moves in this phase is O(Dn).

• Finally, in the Finalization of Gathering phase, only the guard moves toward the

target meeting node. The number of moves in this phase is O(D).

Hence, we have the following result.

Theorem 3.6.3. Algorithm Gathering() solves the gathering over meeting nodes prob-

lem in Θ(Dn) moves if the initial configuration belongs to the set I \ U .

Time Complexity

• The Symmetry Breaking phase requires only O(1) epochs to terminate.

• In the Guard Selection and Placement phase, at most, one robot may be required

to move away from the initial MER. The total number of epochs during this

phase is O(D).

• In the Creating Multiplicity on Target Meeting Node phase, all the non-guard

robots move towards the target meeting node in a shortest path. The total number

of epochs in this phase is O(D).
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• Finally, in the Finalization of Gathering phase, only the guard moves toward the

target meeting node. The number of moves in this phase is O(D).

Hence, we have the following result.

Theorem 3.6.4. Algorithm Gathering() solves the gathering over meeting nodes prob-

lem in Θ(D) epochs if the initial configuration belongs to the set I \ U .

3.7 Conclusion

In this work, we have studied the gathering over meeting nodes problem in an infi-

nite grid where the robots have local-weak multiplicity detection capability. A subset

of all the initial configurations has been shown to be ungatherable. A deterministic

distributed algorithm for solving the gathering problem has been proposed for the re-

maining configurations with n ≥ 2, where n is the number of robots in the system. We

have discussed the efficiency of the proposed algorithm in terms of the total number of

moves and epochs executed by the robots. We have proved that the algorithm solves

the gathering over meeting nodes problem in Θ(Dn) moves and Θ(D) epochs, where D

is the length of the larger side of the initial MER.





Chapter 4

Optimal Gathering over Weber

Meeting Nodes in Infinite Grid 1

4.1 Overview of the Problem

In Chapter 3, we studied the gathering over meeting nodes problem on a grid-based

terrain. The problem requires a deterministic distributed algorithm that ensures the

gathering of the robots at one of the meeting nodes. Although the proposed algorithm

was asymptotically optimal with respect to the number of moves performed by the robots

in order to ensure the gathering of the robots, the proposed algorithm was not optimal

with respect to the exact number of moves performed by the robots. The main aim of

this chapter is to study the problem under the optimization constraint that the sum

of the distances traveled by the robots is minimized while accomplishing the gathering

task. In order to complete the gathering task, the robots must select a unique meeting

node and move towards it in such a way that the sum of the lengths of the shortest

paths from each robot to the selected meeting node is minimized. A meeting node that

minimizes the sum of the distances from all the robots is defined as a Weber meeting

node. This chapter presents the study of optimal gathering over Weber meeting nodes

problem, where the gathering is restricted to Weber meeting nodes.

1This chapter of the thesis is based on the following publication: Subhash Bhagat, Abhinav
Chakraborty, Bibhuti Das, Krishnendu Mukhopadhyaya: Optimal Gathering over Meeting Nodes in
Infinite Grid. International Journal of Foundations of Computer Science Vol. 34, No. 01, pp. 25-49
(2023)
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4.2 Contribution

This chapter proposes a deterministic distributed algorithm for optimal gathering over

Weber meeting nodes problem, where the initial configurations comprise at least seven

robots. The robots are deployed at the nodes of an infinite grid. The optimization

criterion considered in this chapter is the minimization of the total number of moves

made by the robots to finalize the gathering. Di Stefano et al. [114] proved that to ensure

gathering by minimizing the total number of moves, the robots must gather at one of

the Weber points. In our restricted gathering model, the robots must gather at one of

the Weber meeting nodes to ensure gathering with a minimum number of moves. In this

chapter, it has been shown that there exist some configurations where gathering over

Weber meeting nodes cannot be ensured, even if the robots are endowed with multiplicity

detection capability. This includes the following collection of configurations:

1. Configurations admitting a single line of symmetry without any robot or Weber

meeting node on the reflection axis.

2. Configurations admitting rotational symmetry without a robot or a meeting node

on the center of rotation.

In this chapter, we assumed that the robots are endowed with global-strong multiplicity

detection capability. We have shown that, without such an assumption, there are con-

figurations where gathering cannot be accomplished as soon as a multiplicity is created.

However, there are initial configurations where gathering can be ensured over a meet-

ing node but not on the set of Weber meeting nodes. This includes the configuration

admitting a single line of symmetry without any robots or Weber meeting nodes on the

reflection axis, but at least one meeting node exists on the reflection axis. The feasibility

of solving the gathering over meeting nodes has been studied in that case.

Organization: The following section describes the robot model and the notations used

in the chapter. Section 4.4 provides the formal definition of the problem and the impossi-

bility results for the solvability of the gathering task. Section 4.5 proposes a deterministic

distributed algorithm to solve the optimal gathering over Weber meeting nodes problem.

Section 4.6 describes the correctness of the proposed algorithm. Section 4.7 discusses

the optimal gathering for the configurations where gathering over a meeting node can
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be ensured but cannot be ensured over a Weber meeting node. Finally, in Section 4.8,

we conclude the chapter with some discussion about future research.

4.3 Model and Definitions

The robots are assumed to be autonomous, anonymous, homogeneous, dimensionless

and oblivious. They do not have explicit means of communication. The robots have

global visibility, i.e., they can observe the entire grid. They do not have any agreement

on a global coordinate system and chirality. Each robot perceives the configuration with

respect to its local coordinate system, with the origin as its current position. Initially,

the robots are assumed to be at the distinct nodes of the input grid. Each active

robot executes Look-Compute-Move(LCM) cycle under an asynchronous scheduler. The

movement of a robot is instantaneous, i.e., any robot performing a Look operation

observes all the other robot’s positions only at the nodes of the input grid graph. The

robots are endowed with global-strong multiplicity detection capability.

• Symmetry: In Chapter 3, the robots are endowed with local-weak multiplicity

detection capability. This chapter assumes that the robots are endowed with

global-strong multiplicity detection capability. Therefore, in this chapter, we define

symmetry slightly differently than we did in chapter 3.

Let λt : V → N be a function denoting the number of robots on each node v ∈ V

at any time t ≥ 0. A symmetry of a configuration is defined with respect to

an automorphism of a configuration, where an automorphism of a configuration

denoted by Aut((C(t), ft, λt)) is an automorphism ϕ of the input grid graph such

that ft(v) = ft(ϕ(v)) and λt(v) = λt(ϕ(v)) for all v ∈ V , where ft is the function

defined in Chapter 3.

• Weber meeting node: In the initial configuration, the robots are deployed at

the distinct nodes of the grid graph and hence λt(v) ≤ 1, ∀v ∈ V . In the final

configuration, all the robots are on a single meeting node m ∈ M. In the final

configuration, each robot must gather at one of the meeting nodes, with the opti-

mization constraint that the sum of the distances traveled by the robots must be

minimized. For a configuration to be final, there must exist an m ∈ M such that

λt(m) = n and λt(v) = 0 for each v ∈ V \ {m}. The consistency of a node m ∈ M
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Figure 4.1: (a) In this figure, the crosses represent the meeting node and black circles
represent robot positions. (b) m2 remains the unique Weber meeting node, but robots
will not be able to compute it correctly if they do not have global-strong multiplicity

detection capability.

at any time t is defined as ct(m) =
∑
v∈V

d(v,m) λt(v). A node m ∈ M is defined

as a Weber meeting node if it minimizes the value ct(m). In other words, a Weber

meeting node m is a meeting node that minimizes the sum of the distances from

all the robots to itself. A Weber meeting node may not be unique in general. Let

W (t) denote the set of all Weber meeting nodes at some time t. A deterministic

distributed algorithm that gathers all the robots at a Weber meeting node via the

shortest paths will be optimal with respect to the total number of moves made by

the robots.

The robots are equipped with global-strong multiplicity detection capability, i.e.,

they can detect the exact number of robots occupying any node. Without this

assumption, the Weber meeting nodes cannot be detected correctly by the robots

as soon as a multiplicity is created. As a result, the total number of moves made

by the robots to accomplish the gathering might not be optimized. For exam-

ple, consider the configuration in Figure 4.1(a). If the robots compute the Weber

meeting node in this configuration, a unique Weber meeting node would be com-

puted. In Figure 4.1(a), m2 is the unique Weber meeting node. Due to the robot’s

movement, if the configuration in Figure 4.1(b) is reached where robots r2 and

r3 move towards m2 and create a multiplicity mt2. Similarly, r4, r5 and r6 move

towards m2 and creates a multiplicity mt1. Without the global-strong multiplicity

detection capability, robots will not be able to compute the unique Weber meet-

ing node correctly. This example shows that without assuming strong multiplicity

detection capability, the gathering over Weber meeting nodes is no longer possible

as soon as a multiplicity is created.

• Minimum Enclosing Rectangle: As in chapter 3, MER = ABCD denotes the
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Figure 4.2: ABCD denotes the minimum enclosing rectangle MER. Example show-
ing the lexicographic ordering of the strings.

minimum enclosing rectangle of R∪M. For a corner i, let the two strings defined

are denoted by αij and αik. The length of any such string is pq. The strings αij

and αik are as defined in chapter 3. Thus, there are a total of eight strings of

distances of length pq that are obtained by traversing MER. If the meeting nodes

are asymmetric, there exists a unique string, which is lexicographically maximum

among all the possible strings (follows directly from Lemma 3.3.1). In Figure 4.2,

the minimum lexicographic string is αDC= (0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,

0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0). Here aDC= ((0, 0), (1, 0), (1, 0), (0, 1), (0, 0), (0,

1), (1, 0), (0, 0), (1,0), (0, 1), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0,

1), (1, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0),(0, 1)). If any two possible strings

are equal, then the meeting nodes are said to be symmetric. Note that the corner

associated with the maximum lexicographic string is defined as a leading corner,

and the string associated with the leading corner is defined as the string direction

for the respective corner. In the case where MER is a square grid between the

two strings associated to a corner, the string direction is defined in the direction

which is lexicographically larger, i.e., αi = max(αij , αik), where the maximum is

defined according to the lexicographic ordering of the strings.

• Potential Weber meeting nodes: In general, the Weber meeting node in an

infinite grid is not unique. If it is possible to gather at one of the Weber meeting

nodes, then all the robots must decide to agree on a common Weber meeting node

for gathering. Depending on the symmetricity of the set M, the number of leading

corners is 1, 2 or 4, respectively. Consider the Weber meeting nodes representing

the last Weber meeting nodes in the string directions associated with the leading

corners. Note that the number of Potential Weber meeting nodes can be at most

eight. Let Wp(t) denote the set of such Weber meeting nodes at time t ≥ 0. The

set Wp(t) is defined as the set of Potential Weber meeting nodes.
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• Key corner: In this chapter, the definition of a key corner is slightly different

from the definition mentioned in chapter 3. We define the key corner as follows:

Consider all the leading corners of MER and the strings αi associated with each

leading corner i. Assume that there exist at least two leading corners. Without

loss of generality, assume that i and j are the leading corners and the strings

parallel to ij and ji are the string directions associated with the leading corners.

The string aij is defined as follows: Starting from the corner i, scan the grid

along the string direction of i, i.e., along ij and associate the pair (ft(v), λt(v))

to each node v (Figure 4.2). The string aji is defined similarly. Consider the

strings aij and aji. If C(t) is asymmetric, there always exists a unique string that

is lexicographically smaller between the strings (The proof follows from Lemma

3.3.1. If aij is lexicographically smaller than aji, then the corner i is defined as

the key corner. If C(t) is symmetric, there may exist more than one key corner.

Similarly, the strings bi, for each non-leading corner i is defined.

In [114], it was proved that a Weber point remains invariant under the movement of a

robot towards itself. In our restricted gathering model, where gathering can be finalized

only on meeting nodes, we have the following lemma.

Lemma 4.3.1. Let m be a Weber meeting node in a given configuration C(t). Suppose

C(t′) denotes the configuration after a single robot or a robot multiplicity moves towards

the Weber meeting node m. Then the following results hold.

1. m ∈ W (t′)

2. W (t′) ⊆ W (t)

Proof. 1. By definition we have, ct(m)=
∑
v∈V

d(v,m)λt(v) andW (t) = {m| min
m∈M

ct(m)}.
Suppose r(t) = a and r(t′) = b, i.e., r has moved from the vertex a to b along a

shortest path towardsm in the time interval [t, t′]. After the movement of the robot

r, λt′(a) and λt′(b) become λt(a) - 1 and λt(b) + 1, respectively. Since b lies on the

shortest path from r to m and d(a, b) = 1, ct′(m) became ct(m) + d(b,m) - d(a,m),

which is again equivalent to ct(m) - 1. Therefore, min
m∈M

ct′(m) = min
m∈M

ct(m) - 1 and

hence m ∈ W (t′). Similarly, if a robot multiplicity moves from some vertex a to b

at time t′ via any shortest path towards m, then after the movement of the robot
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multiplicity, λt′(a) and λt′(b) becomes λt(a) - j and λt(b) + j, respectively, where

j ≥ 2 denotes the number of robots that move from node a to b. This implies

that, ct′(m) = ct(m)- j and hence, min
m∈M

ct′(m) = min
m∈M

ct(m)- j. Therefore, the

Weber meeting nodes in the new configuration C(t′) are the Weber meeting nodes

of C(t), which are on the some shortest path from r to m. Hence m ∈ W (t′).

2. Assume that m ∈ W (t′). This implies that m minimizes the value c′t(m). The first

part of the proof implies that min
m∈M

ct′(m) = min
m∈M

ct(m)- j, where j ≥ 1 denotes

the number of robots that move from node a to b. In other words, no node can

become a Weber meeting node if it was not before the move. Therefore, m must

belong to W (t) and hence W (t′) ⊆ W (t).

A

B C

D
r1

r2 r3

r4 r5

r6

m1 m2

m3

m4

m5

m6 m7

Figure 4.3: Multiple Weber meeting nodes in a configuration.

This lemma proves that the Weber meeting node remains invariant under the movement

of robots towards itself via a shortest path. The Weber meeting node is not unique in

general. In Figure 4.3, the configuration admits rotational symmetry. There are three

Weber meeting nodes m3,m4 and m5 in the configuration.

Observation 3. Let C(0) be any initial configuration that admits rotational symmetry.

Assume that the center of the rotational symmetry c contains a meeting node m. Then

m is a Weber meeting node.

4.4 Problem Definition and Impossibility Results

In this section, we have formally defined the problem. A partitioning of the initial

configurations has also been provided in this section.
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4.4.1 Problem Definition

Let C(t) = (R(t), M) be a given configuration. The goal of the optimal gathering

over Weber meeting nodes problem is to finalize the gathering at one of the Weber

meeting nodes of C(0). We have proposed a deterministic distributed algorithm that

ensures gathering over a Weber meeting node, where the initial configuration consists

of at least seven robots. If |W (t)| = 1, then all the robots finalize the gathering at the

unique Weber meeting node. Otherwise, all the robots must agree on a common Weber

meeting node and finalize the gathering.

4.4.2 Partitioning of the Initial Configurations

All the initial configurations can be partitioned into the following disjoint classes.

1. I1−: Any configuration for which |W (t)| = 1 (Figure 4.4(a)).

2. I2−: Any configuration for which M is asymmetric and |W (t)| ≥ 2. In Fig-

ure 4.4(b), m2 and m3 are the Weber meeting nodes. A is the leading corner.
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r7 m1
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r1 r3

r4 r5r2
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D

m3

r6

m4

(b)

r7

Figure 4.4: (a) I1 configuration. (b) I2 configuration.

3. I3− Any configuration for which M admits a unique line of symmetry l and

|W (t)| ≥ 2. This can be further partitioned into:

(a) Ia
3− C(t) is asymmetric. In Figure 4.5(a), m3 is the unique Weber meeting

node A is the key corner. m1 and m4 are the Weber meeting nodes.

(b) Ib
3− C(t) is symmetric with respect to the line l. This can be further parti-

tioned into:
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Figure 4.5: (a) Ia
3 configuration. (b) Ib1

3 configuration. (c) Ib2
3 configuration.

• Ib1
3 − there exists at least one Weber meeting node on l. In Figure 4.5(b),

m2 and m3 are the Weber meeting nodes.

• Ib2
3 − there exists at least one robot position on l but no Weber meeting

nodes on l. In Figure 4.5(c), m3 is a meeting node on l, but not a Weber

meeting node on l. r1 and r4 are the robot positions on l.

• Ib3
3 − there does not exist any Weber meeting node or robot position on

l, but there may exist a meeting node on l. In Figure 4.7(a), a meeting

node m1 on l exists, but it is not a Weber meeting node. m3 and m4 are

the Weber meeting nodes.

• Ib4
3 − there does not exist any meeting node or robot position on l.

m1

m2

m3

m4

r1

r2

r3

r4

r5

r6

A

B C

D

(a)

A

B C

D
r1

r2 r3

r4 r5

r6

m1 m2

m3

m4

m5

m6 m7

(b)

m1

m2

m3

m4

r1

r2
r3r4

r5 r6

A

B C

D

r9

r7

r8

(c)

Figure 4.6: (a) Ia
4 configuration. (b) Ib1

4 configuration. (c) Ib2
4 configuration.
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Figure 4.7: (a) Ib3
3 configuration. (b) Ib3

4 configuration without robots or meeting
nodes on c.
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4. I4− Any configuration for which M admits rotational symmetry with center of

rotation c and |W (t)| ≥ 2. M may or may not admit multiple lines of symmetry.

This can be further partitioned into:

(a) Ia
4− C(t) is asymmetric. In Figure 4.6(a), m2 and m3 are the Weber meeting

nodes.

(b) Ib
4− C(t) is symmetric with respect to rotational symmetry, or C(t) may

admit a single line of symmetry. First, assume that C(t) admits rotational

symmetry with or without multiple lines of symmetry. This can be further

partitioned into:

• Ib1
4 − there exists a meeting node on c. In Figure 4.6(b), m3, m4 and m5

are the Weber meeting nodes.

• Ib2
4 − there does exist a meeting node on c, but there exists a robot

position on c. In Figure 4.6(c), m1, m2, m3 and m4 are the Weber

meeting nodes. Robot r9 is on the center of rotation.

• Ib3
4 − there does not exist any meeting node or robot positions on c (Fig-

ure 4.7(b)).

If C(t) admits a single line of symmetry, it might be the case that there do not exist any

robot positions or meeting nodes on c, but there do exist at least one robot position or

meeting nodes on the line of symmetry. In that case, the partitioning of the configuration

proceeds similarly, as in Ib
3. We assume that if the meeting nodes are symmetric with

respect to a single line of symmetry, then l is the line of symmetry. Similarly, if the

meeting nodes are symmetric with respect to rotational symmetry, then c is the center

of rotational symmetry. Since the partitioning of the initial configurations depends only

on the position of meeting nodes, which are fixed nodes, all the robots can determine

the class of configuration in which it belongs without any conflict. Let I denote the set

of all initial configurations.

Lemma 4.4.1. If the initial configuration C(0) ∈ Ib3
3 ∪ Ib3

4 , then the gathering over

Weber meeting nodes problem cannot be solved.

The proof of the above lemma can be observed as a corollary to Theorem 3.4.1, proved

in Chapter 3. In Chapter 3, it was proved that Ib4
3 is ungatherable. Let U denote the set
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of all configurations for which gathering over a Weber meeting node cannot be ensured.

According to Lemma 4.4.1, this includes all the configurations,

1. admitting a single line of symmetry l, and l ∩ (R∪W (t)) = ∅.

2. admitting rotational symmetry with center c and {c} ∩ (R∪M) = ∅.

Note that according to Observation 3, if c is a meeting node on c, then it must be a

Weber meeting node.

4.5 Algorithm

4.5.1 Overview of the Algorithm

In this subsection, a deterministic distributed algorithm has been proposed to solve the

optimal gathering problem by gathering each robot at one of the Weber meeting nodes.

The proposed algorithm works for all the configurations C(t) ∈ I \(U ∪Ib4
3 ) consisting of

at least seven robots. The main strategy of the algorithm is to select a Weber meeting

node among all the possible Potential Weber meeting nodes and allow the robots to

move toward the selected Weber meeting node. The proposed algorithm mainly consists

of the following phases: Guard Selection, Target Weber meeting node Selection, Leading

Robot Selection, Symmetry Breaking, Creating Multiplicity on Target Weber meeting

node and Finalization of Gathering. In the Target Weber meeting node Selection phase,

the Potential Weber meeting node for optimal gathering is selected. The Weber meeting

node selected for gathering is defined as the target Weber meeting node. A set of robots

denoted as guards are selected in the Guard Selection phase. This phase slightly differs

from the Guard Selection and Placement phase mentioned in Chapter 3. In this chapter,

guards are selected in order to ensure that the initial MER remains invariant. In the

Leading Robot Selection phase, a robot is selected as the leading robot and placed. A

unique robot is selected and allowed to move toward an adjacent node in the Symmetry

Breaking phase. This movement of the robot transforms a symmetric configuration into

an asymmetric configuration. In this chapter, the Symmetry Breaking phase proceeds

similarly as the Symmetry Breaking phase mentioned in Chapter 3. All the non-guard

robots move towards the target Weber meeting node, thus creating a multiplicity on
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it in the Creating Multiplicity on Target Weber meeting node phase. Finally, all the

guards move towards the uniquely identifiable (robots have global-strong multiplicity

detection capability) target Weber meeting node in the Finalization of Gathering phase

and finalize the gathering.

4.5.2 Half-planes and Quadrants

Assume that the initial configuration C(0) is asymmetric. First, consider the case when

the locations of the meeting nodes are symmetric with respect to a single line of sym-

metry l. The line l divides MER into two half-planes. The half-planes defined in this

section are open half-planes, i.e., the half-planes exclude the nodes on l. If the meeting

nodes are symmetric with respect to rotational symmetry and c is the center of rotation,

then consider the lines l and l′, which pass through c. These lines are perpendicular

to each other and divide the MER into four quadrants. The quadrants defined in this

section are open quadrants, i.e., the quadrants exclude the nodes belonging to the lines

l and l′. A configuration is said to be balanced if the following conditions hold:

1. C(0) ∈ Ia
3 and the half-planes delimited by l contain an equal number of robots.

2. C(0) ∈ Ia
4 . Assume that there exist at least two quadrants that contain the

maximum number of Potential Weber meeting nodes. Suppose more than one

quadrant contains either the maximum or the minimum number of robots among

all the specified quadrants. In that case, the configuration is said to be balanced.

If the initial configuration is not balanced, then it is an unbalanced configuration. An

initial configuration C(0) satisfies the following conditions:

• C1: there exists a unique half-plane or quadrant that contains the maximum num-

ber of Potential Weber meeting nodes.

• C2: there exists multiple half-planes or quadrants that contain the maximum

number of Potential Weber meeting nodes. Any configuration C(0) satisfying

condition C2 is said to satisfy C21, if C(0) is balanced. Otherwise, it satisfies C22

if the initial configuration is unbalanced.



4.5. Algorithm 79

Demarcation of the half-planes for fixing the target

Initial Configuration C(0) H+

satisfy C1 The unique half-plane containing the Potential

Weber meeting nodes

satisfy C21 ∧ l is a horizon-

tal or vertical line of sym-

metry

The unique half-plane not containing the key cor-

ner

satisfy C21 ∧ l is a diago-

nal line of symmetry ∧ ∃ a

unique leading corner

The half-plane which lies in the direction of AD, if

aAD is lexicographically larger than aAB

satisfy C21 ∧ l is a diagonal

line of symmetry ∧ ∃ two

leading corners

The half-plane containing the corners A and D, if

aAD is lexicographically larger than aCD

satisfy C22 The unique half-plane with the maximum number

of robots

Table 4.1: Demarcation of the half-planes

• C3: there does not exist any Potential Weber meeting node on the half-planes or

on the quadrants.
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Figure 4.8: Examples showing the demarcation of the half-planes.
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Figure 4.9: Examples showing the demarcations of the quadrants.
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4.5.2.1 Demarcation of the Half-planes for fixing the target

Assume that the meeting nodes are symmetric with respect to a single line of symmetry

l. Note that | Wp(t) |≤ 2. Further, assume that | Wp(t) |= 2 and C(0) does not satisfy

C3. This implies that there exists at least one Potential Weber meeting node located

at the half-planes. Note that if l is a diagonal line of symmetry, then there may exist

one or two leading corners. If there exists a unique leading corner, then without loss

of generality, let A be the leading corner. Otherwise, if there exist two leading corners,

then assume that A and C are the leading corners and the string directions associated

to the corners A and C are along the sides AD and CD, respectively. H+ is defined

according to Table 4.1. The other half-plane delimited by l is defined as H−. In Figure

4.8 (a), m3 and m4 are the Weber meeting nodes. H+ is defined as the half-plane with

the maximum number of robots. In Figure 4.8 (b), A and D are the leading corners.

A is the key corner. m2 and m4 are the Weber meeting nodes. H+ is defined as the

half-plane not containing the key corner A.

4.5.2.2 Demarcation of Quadrants for fixing the target

First, consider the case when the meeting nodes are symmetric with respect to rotational

symmetry without multiple lines of symmetry and Wp(t) ≥ 2. The quadrant H++ is

defined according to Table 4.2. The other quadrants are defined as follows.

• H−+:- The quadrant adjacent to H++ with respect to the line l.

• H+−:- The quadrant adjacent to H++ with respect to the line l′.

• H−−:- The quadrant which is non-adjacent to H++.

In Figure 4.9(a) m1 and m2 are the Weber meeting nodes. H++ denotes the unique

quadrant with the maximum number of robots. In Figure 4.9 (b), m1 and m2 are

the Weber meeting nodes. The quadrants containing the corners C and D contain the

maximum number of robots. D is the key corner. H++ denotes the quadrant with the

maximum number of robots and not containing the unique key corner.

If MER is a square, and the configuration admits multiple lines of symmetry, there can

be at most four lines of symmetry. If there are more than two lines of symmetry, the
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Demarcation of the quadrants for fixing the target

Initial Configuration C(0) H++

satisfy C1 The unique quadrant containing the maximum

number of Potential Weber meeting nodes

satisfy C21 ∧ the angle of rotation is 180◦

∧ ∃ at least one quadrant that contains the

Potential Weber meeting nodes as well as

the leading corners

The unique quadrant containing the leading cor-

ner with which the largest lexicographic string

ai is associated, and that contains the maximum

number of robots

satisfy C21 ∧ the angle of rotation is 180◦

∧ the quadrants that contain the Potential

Weber meeting nodes do not contain the

leading corners

The unique quadrant containing the non-leading

corner with which the largest lexicographic

string bi is associated, and that contains the

maximum number of robots

satisfy C21 ∧ the angle of rotation is 90◦ The quadrant containing the corner with which

the largest lexicographic string ai is associ-

ated, and that contains the maximum number

of robots

satisfy C22 The unique quadrant with the maximum num-

ber of robots

satisfy C3 ∧ unbalanced The unique quadrant containing the minimum

number of robots

satisfy C3 ∧ balanced The unique quadrant that contains the smallest

lexicographic string ai associated with the lead-

ing corner and containing the minimum number

of robots

Table 4.2: Demarcation of the quadrants.

two lines that are perpendicular to each other and do not pass through any corner of

MER are selected and considered as l and l′. Consider the quadrants delimited by the

lines l and l′. The quadrants are defined similarly, as in the case when MER admits

rotational symmetry without multiple lines of symmetry.

4.5.3 Phases of the Algorithm

The proposed algorithm mainly consists of the following phases.

4.5.3.1 Guard Selection

In this phase, a set of robots is selected as guards in order to keep the initial MER

invariant. If there do not exist any meeting nodes on a side of the boundary of MER,

then there must exist at least one robot on that particular side of the boundary. Guards

are selected in such a way that they remain uniquely identifiable. If a side of the
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boundary ofMER contains at least one meeting node, then a guard robot is not required

for that particular side of the boundary. Therefore, consider the case when the boundary

of MER does not contain any meeting nodes. Consider the robots which are on the

boundary of the MER. First, assume that C(t) is asymmetric. Let G denote the set of

guards. Let GC denote the set of guard corner and is defined as follows.

• The unique leading corner, if the meeting nodes are asymmetric.

• The leading corner contained in H+, if the meeting nodes are symmetric with

respect to a horizontal or vertical single line of symmetry l. The unique key corner

contained in H+, if the meeting nodes are symmetric with respect to a diagonal

line of symmetry.

• The leading corner contained in H++, if the meeting nodes are symmetric with

respect to rotational symmetry.
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Figure 4.10: Example configuration showing the Guard Selection phase.

The robot positions on the sides adjacent to the unique guard corner and closest to the

guard corner are considered as guards. Similarly, the robots that are farthest from the

guard corner measured along the string direction and lying on the sides non-adjacent to

the guard corner are also considered as guards. Note that in each case, there are exactly

four guard robot positions that are selected in this phase (In Figure 4.10(a), B is the

leading corner contained in H+. Robots r2 and r3 are selected as guards). If C(t) is

symmetric with respect to a unique line of symmetry l and l is a horizontal or vertical

line of symmetry, there are exactly two leading corners. Consider the robot positions on

the sides adjacent to the leading corners and which are closest to the leading corners.

These two robots and their symmetric images are selected as guards. The robots which

are farthest from the leading corners and lying on the side which is non-adjacent to the
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Target Weber meeting node Selection

Configuration C(t) Target Weber meeting node

Admitting a unique Weber meeting node,

i.e., |W (t)| = 1

The unique Weber meeting node

Admitting a unique Potential Weber meet-

ing node, i.e., |Wp(t)| = 1

The unique Potential Weber meeting node

I3 ∧ there exists a Weber meeting node on

l

The northernmost Weber meeting node on l

Ia
3 ∧ there does not exist any Weber meet-

ing node on l ∧ |Wp(t) = 2| ∧ l is a hori-

zontal or vertical line of symmetry

The Potential Weber meeting node in H+.

Ties are broken by considering the Potential

Weber meeting node, which appears last in

the string direction associated to the leading

corner in H+

Ia
3 ∧ there does not exist any Weber meet-

ing node on l ∧ |Wp(t) = 2| ∧ l is a di-

agonal line of symmetry ∧ there exists a

unique leading corner

The Potential Weber meeting node in H+

which appears last in the string direction as-

sociated to the unique leading corner

Ia
3 ∧ there does not exist any Weber meet-

ing node on l ∧ |Wp(t) = 2| ∧ l is a diagonal

line of symmetry ∧ there exist two leading

corners

The Potential Weber meeting node in H++

that appears last in the string direction asso-

ciated to the key corner in H+

I4 ∧ there exists a Weber meeting node on
c

The Weber meeting node on c

Ia
4 ∧ there does not exist a Weber meet-

ing node on c ∧ |Wp(t)| ≥ 2 ∧ there does

not exist any Weber meeting node on the

quadrants

The Potential Weber meeting node which is

closest from the unique key corner in the string

direction and lying on either l or l′

Ia
4 ∧ there does not exist a Weber meeting

node on c ∧ |Wp(t)| ≥ 2 ∧ there exists a

Weber meeting node on the quadrants

The Potential Weber meeting node in H++

which is farthest from the leading corner con-

tained in H++ in the string direction.

Table 4.3: Target Weber meeting node selection.

leading corners are also selected as guards. Hence, there are exactly six guard robots

that are selected when C(t) is symmetric with respect to l. In Figure 4.10(b), B and C

are the leading corners. Robots r1, r2, r3 and r6 are selected as guards. Otherwise, if l

is a diagonal line of symmetry and there exists a unique leading corner, then the robots

positions on the sides adjacent to the leading corner and are closest to the leading

corner are selected as guards. The robot positions on the sides non-adjacent to the

leading corner and farthest from the leading corner are also selected as guards. Note

that they are symmetric images of each other. If there are two leading corners, the

robots which are closest to the leading corners and lying on the sides adjacent to the

leading corners are selected as guards. Note that if C(t) is symmetric with respect to

rotational symmetry, then since the center of rotational symmetry is also the center of
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fixed meeting nodes and gathering is finalized at the center, the Guard Selection phase

is not executed in this case.

Algorithm 4.1: TargetWeberMeetingNodeSelection()

Input: C(t) = (R(t), M)
1 if C(t) ∈ I1 then
2 Select the unique Weber meeting node m;
3 else if C(t) ∈ I2 then
4 Select the unique Potential Weber meeting node ;
5 else if C(t) ∈ I3 then
6 if C(t) is asymmetric and l ∩W (t) ̸= ∅ then
7 Select the northernmost Weber meeting node on l
8 else if C(t) is asymmetric and (l ∩W (t) = ∅ ∧ |Wp(t)| = 1) then
9 Select the unique Potential Weber meeting node ;

10 else if C(t) is asymmetric and (l ∩W (t) = ∅ ∧ |Wp(t)| = 2) then
11 if there exists a unique leading corner in H+ then
12 Select the Potential Weber meeting node in H+, which appears last in the string

direction associated to the unique leading corner;

13 else if there exist two leading corners in H+ then
14 Select the Potential Weber meeting node that appears last in the string direction

associated to the key corner in H+ ;

15 else if C(t) is symmetric with respect to the line l then
16 Select the northernmost Weber meeting node on l ;

17 else if C(t) ∈ I4 then
18 if C(t) is asymmetric and {c} ∩W (t) ̸= ∅ then
19 Select the Weber meeting node on c;
20 else if C(t) is asymmetric and ({c} ∩W (t) = ∅∧ | Wp(t) |= 1) then
21 Select the unique Potential Weber meeting node ;
22 else if C(t) is asymmetric and ({c} ∩W (t) = ∅∧ | Wp(t) |≥ 2) then
23 if All the Potential Weber meeting nodes lie either on line l or l′ then
24 Select the Potential Weber meeting node which is farthest from the unique key

corner in the string direction and lying on either l or l′;

25 else if there exists a Potential Weber meeting node lying on the quadrants then
26 Select the Potential Weber meeting node in H++ which is farthest from the

leading corner contained in H++ in the string direction ;

27 else if C(t) is symmetric with a meeting node on the center of rotation c then
28 Select the meeting node on c;

4.5.3.2 Target Weber Meeting Node Selection

In this phase, the Weber meeting node for gathering is selected. The target Weber

meeting node must remain invariant during the execution of the algorithm. Depending

on the class of configuration to which C(t) belongs, the target Weber meeting node is

selected according to Table 4.3. The pseudo-code corresponding to this phase is given in

Algorithm 4.1. Consider the case when C(t) ∈ Ia
4 and there exists a Weber meeting node

on the quadrants. Further, assume that |Wp(t)| ≥ 2. If there exist two string directions

corresponding to the unique leading corner in H++, the target Weber meeting node is
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Leading Robot Selection

Configuration C(t) Leading Robot

Ia
3 ∧ there exists a robot on l The northernmost robot on l

Ia
3 ∧ there does not exist any robot on l The robot closest to l and lying on H−. Ties

are broken by considering the robot on H−

which is farthest from the leading corner con-

tained in H− in the string direction

Ia
4 ∧ there exists a robot either on l or l′ The robot closest to the target Weber meeting

node and lying on l or l′. Ties are broken by

considering the robot either on l or l′ which
is closest from the leading corner contained in

H++ in the string direction

Ia
4 ∧ there does not exist any robot on l

and l′ ∧ there exists a non-guard robot in

a quadrant adjacent to H++

The robot lying on a quadrant adjacent to

H++ and closest to the target Weber meet-

ing node. Ties are broken by considering the

robot, which is closest from the leading corner

contained in H++ in the string direction

Ia
4 ∧ there does not exist any robot on l

and l′ ∧ there does not exist any non-guard

robot in the quadrants adjacent to H++

The robot lying on the quadrant non-adjacent

to H++ and closest to the target Weber meet-

ing node. Ties are broken by considering the

robot, which is closest from the leading corner

contained in H++ in the string direction

Table 4.4: Leading Robot Selection.

selected as the Potential Weber meeting node in H++, which appears first in the string

ai.

If the meeting nodes are symmetric with respect to a unique line of symmetry l and there

exists at least one meeting node on l, the northernmost meeting node on l is defined

as the meeting node on l which is farthest from the leading corner(s). Similarly, the

northernmost robot on l is defined.
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Figure 4.11: Balanced Ia
3 configuration. Example configuration showing the Leading

Robot Selection phase.
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4.5.3.3 Leading Robot Selection

If the initial configuration is balanced and asymmetric, a robot r is selected as a leading

robot in the Leading Robot Selection phase. In Figure 4.11, m2 and m4 are the Weber

meeting nodes lying on different half-planes. m2 is selected as the target Weber meeting

node. Robot r2 is selected as the leading robot. The leading robot moves towards the

half-plane or quadrant containing the target Weber meeting nodem. While r reaches the

half-plane or the quadrant containingm, the configuration transforms into an unbalanced

configuration, and the asymmetry of the configuration remains invariant. Since the

initial configuration is balanced, assume that C(t) ∈ I3 ∪ I4. Further, assume that

the initial configuration does not satisfy the condition C3. Depending on the class of

configuration to which C(t) belongs, the leading robot is selected according to Table 4.4.

In case the configuration is in Ia
4 and there exists a robot on l (resp. l′), the leading

robot first moves along the line l (resp. l′) and when it becomes collinear with m, it

starts moving along l′ (resp. l).

4.5.3.4 Symmetry Breaking

In this phase, all the symmetric configurations that can be transformed into asymmetric

configurations are considered. A unique robot is identified that allows the transforma-

tion. The following cases are to be considered.

1. C(t) ∈ Ib2
3 . In this class of configurations, at least one robot exists on l. Let r

be the northernmost robot on l. r moves towards an adjacent node that does not

belong to l, and the configuration becomes asymmetric.

2. C(t) ∈ Ib2
4 . In this class of configurations, there exists a robot (say r) on c. This

phase proceeds similarly in the case when C(t) ∈ I32, considered in the Symmetry

Breaking phase in Chapter 3.

4.5.3.5 Creating Multiplicity on Target Weber meeting node

The target Weber meeting nodem is selected in the Target Weber meeting node Selection

phase. Since there is a unique target Weber meeting node m, all the non-guard robots

move towards m in the Creating Multiplicity on Target Weber meeting node phase.
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Note that since the guards do not move during this phase, the MER remains invariant.

As a result, m remains invariant. Eventually, a robot multiplicity is created on m while

the non-guards move toward it. Depending on the class of configuration to which C(t)

belongs, the following cases are to be considered.

1. C(t) ∈ I1 : All the robots move towards the unique Weber meeting node m. In

Figure 4.4 (a), each robot moves towards the unique Weber meeting node m3.

2. C(t) ∈ I2 : All the non-guards move towards the unique Potential Weber meeting

node, which is selected as the target meeting node m on l. In Figure 4.4 (b), each

robot moves towards the unique Potential Weber meeting node m3.

3. C(t) ∈ I3 : If C(t) ∈ Ia
3 and there exists a Weber meeting node on l, each

non-guard moves towards the target meeting node m. Since the northernmost

agreement depends on the position of meeting nodes, m remains invariant while

the non-guards move towards it.

Next, consider the case when C(t) ∈ Ia
3 and there does not exist anyWeber meeting

node on l. A leading robot in the Leading Robot Selection phase transforms a

balanced configuration into an unbalanced configuration. All the non-guard robots

from H− move towards m. This movement is required in order to ensure that H+

remains invariant. While such robots reach H+, all the non-guard robots in H+

move towards m, thus creating a multiplicity on m. In Figure 4.5 (a), the target

Weber meeting node is m1, lying on H+.

Finally, if C(t) ∈ Ib1
3 , each non-guard which is closest tom, moves towardsm either

synchronously or there may be a possible pending move due to the asynchronous

behavior of the scheduler. Ties are broken by considering the closest robots which

are farthest from the leading corners in their respective string directions. In Figure

4.5 (b), each robot moves towards the Weber meeting node m2 on l.

4. C(t) ∈ I4 : First consider the case when the target Weber meeting node m is the

center of rotational symmetry c. Each robot moves towards m on c. In Figure 4.6

(b), each robot moves towards the Weber meeting node m3 on c.

Next, consider the case when C(t) ∈ Ia
4 and the target Weber meeting node m is

on H++. After the Leading Robot Selection phase, each non-guard robot in the

quadrants different fromH++ as well as on the lines l or l′ moves towards the target
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Weber meeting node m in H++. First, the non-guards in the quadrants adjacent to

H++ and the robots on l or l′ move towards H++. While they reach H++, the non-

guards in the quadrants non-adjacent to H++ move towards H++. This movement

is required in order to ensure that H++ remains invariant. While such non-guards

reach H++, each non-guards in H++ moves towards m, thus creating a robot

multiplicity on m. Otherwise, consider the case when the target meeting node m

is on either l or l′. First, all the non-guards in H++ move towards m. While they

reach l or l′, the other non-guards move towards m. This movement is required

in order to ensure that H++ remains invariant. Finally, a robot multiplicity is

created at m.

If there exist eight Potential Weber meeting nodes, then there exist exactly two

Potential Weber meeting nodes in H++. There exist two string directions corre-

sponding to the unique leading corner in H++. The robot closest to the target

meeting node m and appearing first in ai, which is not on m, moves towards m.

After such a move of the robot, it ensures that m remains invariant during the

procedure. The procedure proceeds similarly as before.

Note that if the configuration is asymmetric or symmetric with respect to rotational

symmetry, there may exist at most four robot positions that are not on m during this

phase. Otherwise, if the configuration is symmetric with respect to a horizontal or

vertical line of symmetry, there may exist at most six robot positions that are not on m.

4.5.3.6 Finalization of Gathering

Let m be the target Weber meeting node, where a robot multiplicity is created during

the Creating Multiplicity on Target Weber meeting node phase. The following are the

cases in which the robots will identify that the Finalization of Gathering is in progress:

1. The configuration has at most four robot positions that are not on m, which

includes robot multiplicity. Moreover, each side of the MER contains at most one

robot position.

2. The configuration has exactly six robot positions that are not on m, which in-

cludes robot multiplicity. Moreover, there exist exactly two sides of the MER

that contain two robot positions and are symmetric images of each other.
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In this phase, all the guards move towardsm. During their movement, they do not create

any multiplicity on a Weber meeting node other than m. In order to ensure this, all the

guards first move along the boundary of MER, and when it becomes collinear with m, it

starts moving towards m. A guard robot moves by minimizing the Manhattan distance

between m and itself. This implies that during their movement, no other multiplicity

would be created on any other Weber meeting node and gathering would be finalized on

m.

4.5.4 Optimal Gathering()

Our main algorithm, Optimal Gathering(), considers the following cases: If C(t) ∈ I1,
then each robot finalizes the gathering on the unique Weber meeting node.

Otherwise, consider the case when the meeting nodes are asymmetric and there exist

multiple Weber meeting nodes. There exists a unique Potential Weber meeting node.

The guards are selected in the Guard Selection phase. Each non-guard moves towards

the unique Potential Weber meeting node, creating a multiplicity on it. Finally, the

guards move towards the multiplicity and finalize the gathering at it.

Next, consider the case when the configuration is balanced and asymmetric. A leading

robot is selected in the Leading Robot Selection phase, which transforms the configura-

tion into an unbalanced configuration. The guards are selected in the Guard Selection

phase. In the Creating Multiplicity on the Target Weber meeting node phase, each

non-guard moves towards the target Weber meeting node selected in the Target Weber

meeting node Selection phase. Finally, the guards move towards the multiplicity and

finalize the gathering.

If C(t) is symmetric and there exists a Weber meeting node on l ∪ {c}, the gathering

is finalized at the target Weber meeting node m selected in the Target Weber meeting

node Selection phase. Otherwise, if the configuration is symmetric and there exists

a robot on either l or c, then in the Symmetry Breaking phase, the configuration is

transformed into an asymmetric configuration, and the algorithm proceeds similarly as

in the case when the configuration is asymmetric. Note that, in case C(t) ∈ Ib
3, there

may exist exactly six robots that are selected as guards. In case n = 7, there must

exist at least one robot position on l. The northernmost robot on l moves towards an
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adjacent node away from l if there do not exist any Weber meeting nodes on l. Hence,

the configuration becomes asymmetric, and the algorithm proceeds similarly, as in the

asymmetric case for n = 7. Otherwise, if there exists at least one Weber meeting node

on l, the northernmost Weber meeting node m on l is selected as the target Weber

meeting node. The closest robot on l and the northernmost, in the case of a tie, moves

towards m. While each non-guard moves towards m, it remains invariant. After the

non-guards reach m, m remains uniquely identifiable and the gathering is finalized in

the Finalization of Gathering phase.

4.6 Correctness

In this section, we describe the correctness of our proposed algorithm. Lemmas 4.6.1

and 4.6.2 prove that the leading robot remains invariant during the movement towards

its destination.

Lemma 4.6.1. If C(t) ∈ Ia
3 , then in the Leading Robot Selection phase, the leading

robot remains the unique robot while it moves towards the half-plane H+.

Proof. Let C(t) be any balanced configuration that belongs to Ia
3 . Since the configura-

tion is balanced and asymmetric, the number of robots in the two half-planes delimited

by l is equal and there exists a unique key corner. If there exists at least one robot

position on l, then the northernmost robot on l is the leading robot. The northernmost

robot moves towards an adjacent node away from l, and the configuration becomes un-

balanced. Consider the case when there does not exist any robot position on l. Without

loss of generality, assume that l is a vertical line of symmetry. Let r be the leading

robot in H− selected in the Leading Robot Selection phase. Without loss of generality,

let A be the unique key corner and aAD = a1, a2, . . . , apq is the unique smallest lexico-

graphic string associated to the corner A. Similarly, let B be the other leading corner

and aBC = b1, b2, . . . , bpq be the string associated to B. Let ui and vi denote the nodes,

which the positions ai and bi represent in aAD and aBC , respectively. Since the meeting

nodes are symmetric, ft(ui) = ft(vi), for each i = 1, 2 . . . , pq. As aAD = a1, a2, . . . , apq

is the unique smallest lexicographic string among the a′is, there must exist a position

k′ such that λt(uk′) = 0 < λt(vk′) = 1. Without loss of generality, let i be the position

of the leading robot in aAD. Let k be the first position, where λt(uk) and λt(vk) differ.



4.6. Correctness 91

Note that, λt(uk)=0 and λt(vk) = 1. We have to prove that after the movement of the

leading robot, aAD <l aBC , where
′ <′

l denotes the relation that aAD is lexicographically

smaller than aBC . Assume that at time t′, the leading robot moves towards an adjacent

node. Depending on the possible values of i and k in aAD, the following cases are to be

considered.

Case 1. The position of i is less than k in aAD. While the leading robot moves towards

l, λt(ui) becomes 0, but λt(vi) equals 1. After the movement of the leading robot towards

an adjacent node, aAD <l aBC .

Case 2. The position of i is equal to k in aAD. Since each robot is deployed at distinct

nodes of the grid in the initial configuration, this case is not possible.

Case 3. The position of i is greater than k in aAD. While the leading robot moves

towards l, the position k remains invariant. After the movement of the leading robot

towards an adjacent node, aAD <l aBC .

Note that, after a single movement of the leading robot towards l, it becomes the unique

robot that is eligible to move towards H+. Since aAD remains the unique lexicograph-

ically smallest string at t′, H+ remains invariant. Clearly, after a finite number of

movements towards l, H+ remains invariant, and ultimately, the configuration becomes

unbalanced. The proof is similar when the meeting nodes admit a horizontal or a diag-

onal line of symmetry.

Lemma 4.6.2. If C(t) ∈ Ia
4 , then in the Leading Robot Selection phase, the leading

robot remains the unique robot while it moves towards the target Weber meeting node.

Proof. Let C(t) be any balanced configuration that belongs to Ia
4 . Since the config-

uration is balanced and asymmetric, there exist at least two quadrants that contain

the maximum number of Potential Weber meeting nodes with the maximum number of

robots on such quadrants. We have to prove that while the leading robot moves towards

the target Weber meeting node, the quadrant H++ remains invariant. First, consider

the case when the leading robot r is on either l or l′. Note that in this case, r may be

one or more than one node away from H++. There is nothing to prove when r is one

node away from H++. In this case, a move of r transforms the configuration into an un-

balanced configuration. Therefore, consider the case when r is more than one node away

from H++. Without loss of generality, first assume that r is on l. Let MER = ABCD
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be such that the corner C is the corner diagonally opposite to A and the corners A

and B are separated by line l. Similarly, A and D are the corners separated by line l′.

H++ is the quadrant containing A. Let aAD = a1, a2, . . . apq and aBC = b1, b2, . . . bpq

be the strings associated to the corners A and B. While r moves along l, we have to

prove that aAD remains lexicographically larger than aBC . It is noteworthy that aAD

is lexicographic larger than aCB and aDA while r moves. Note that we have considered

the case when the string directions are along the width of the rectangle. Let i be the

position of the leading robot in aAD and aBC . Let ui and vi denote the nodes, which

the positions ai and bi represent in aAD and aBC , respectively. Since the meeting nodes

are symmetric, ft(ui) = ft(vi), for each i = 1, 2 . . . , pq. After a movement of the leading

robot along the line l and towards the corner A, note that the first position in which

the strings aAD and aBC differ, remains invariant. As a result, H++ remains invariant.

After a finite number of movements, the robot r becomes one node away from H++, and

the proof proceeds similarly as before. The proof is similar in the case when the string

directions are along the length of the rectangle. In that case, we have to compare the

strings aAB and aBA. The proof is trivial while comparing the strings aAB and aCD,

and aAB and aDC . Next, consider the case when the leading robot is on a quadrant

adjacent to H++. Without loss of generality, assume that the leading robot is on H+−.

While the leading robot moves, it can be observed that aAD is lexicographically larger

than aCB and aDA. We have to prove that aAD remains lexicographic larger than aBC

while the leading robot moves. Let i and j be the positions of the leading robot in aAD

and aBC , respectively. Note that i < j, as the leading robot is selected on H+−. Let k

be the first position for which bk < ak. Depending on the values of i, j and k in aAD,

we have the following cases.

Case 1. i < j < k. Note that before the move of the leading robot, ui−1 cannot be

a robot position as otherwise r would not be selected as a leading robot. After the

movement of the leading robot, ui−1 is a robot position, but vi−1 cannot be a robot

position as k is the first position where ak > bk. Therefore, aAD remains lexicographic

larger than aBC while the leading robot moves.

Case 2. i < j = k. Note that k is the first position where the strings aAD and aBC

differs. Since bj represents a robot position containing the leading robot and each robot

is deployed at the distinct nodes of the grid in the initial configuration, this case is not

possible.
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Case 3. i < k < j. The proof is similar to Case 1.

Case 4. i = k < j. This implies that ak contains a robot position. After the move of

the leading robot towards the target Weber meeting node, ak−1 is a robot position in

aAD and bk−1 is not a robot position. As a result, ak−1 > bk−1. Therefore, aAD remains

lexicographic larger than aBC while the leading robot moves.

Case 5. k < i < j. In this case, ak must represent a robot position. After a move of r

towards the target Weber meeting node, ak > bk. Therefore, aAD remains lexicographic

larger than aBC while the leading robot moves.

The proof is similar when the string directions are along the lengths of MER. Next,

consider the case when the leading robot r is selected on a quadrant non-adjacent to

H++. Without loss of generality, we assume that r first starts moving towards l′. The

proof is similar when r first moves towards l. While the leading robot moves, it can be

observed that aAD is lexicographically larger than aCB and aDA. We have to prove that

aAD remains lexicographic larger than aBC while r moves. Let i and j be the positions

of the leading corner in aAD and aBC , respectively. Note that i > j, as the leading robot

is selected on H−−. Let k be the first position for which bk < ak. Depending on the

values of i, j and k in aAD, we have the following cases.

Case 1. i > j > k. After the movement of the leading robot towards l′, the position

k remains invariant. Therefore, aAD remains lexicographic larger than aBC while the

leading robot moves.

Case 2. i > j = k. Since each robot is deployed at the distinct nodes of the grid in the

initial configuration, this case is not possible.

Case 3. i = k > j. There must not be a robot position at the node represented by

ak−1, as otherwise, r would not be selected as the leading robot. After the move of the

leading robot towards the target Weber meeting node, ak−1 is a robot position while

bk−1 cannot be a robot position, as k is the first position for which bk < ak. Therefore,

aAD remains lexicographic larger than aBC while the leading robot moves.

Case 4. k > i > j. Note that ai−1 cannot be a robot position before the move, otherwise

r would not be selected as the leading robot. After a move of r, ai−1 is a robot position,

but bi−1 cannot be a robot position as k is the first position where ak and bk differ.

Therefore, aAD remains lexicographic larger than aBC while the leading robot moves.
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Case 5. j < k < i. After a move of r, it may be the case that k = i − 1 in aAD. In

that case, λt(ui−1) = 2, but λt(vi−1) = 0. Otherwise, the proof is similar as ak > bk.

Therefore, aAD remains lexicographic larger than aBC while the leading robot moves.

As a result, the leading robot remains invariant while it moves towards its destination.

The next three lemmas prove that the target Weber meeting node remains invariant in

the Creating Multiplicity on the Target Weber meeting node phase.

Lemma 4.6.3. If C(t) ∈ I2 ∪ Ib1
3 ∪ Ib1

4 , then the target Weber meeting node remains

invariant in the Creating Multiplicity on Target Weber meeting node phase.

Proof. In the Creating Multiplicity on Target Weber meeting node phase, all the non-

guard robots move towards the target Weber meeting node. According to Lemma 4.3.1,

the Weber meeting node remains invariant under the movement of robots towards itself.

The following cases are to be considered.

Case 1. C(t) ∈ I2: Since the meeting nodes are asymmetric, there exists a unique

Potential Weber meeting node. The unique Potential Weber meeting node is selected

as the target Weber meeting node. The unique Potential Weber meeting node of a

configuration is defined with respect to the position of the leading corner. The leading

corner remains invariant unless the MER changes. As the guards do not move in the

Creating Multiplicity on Target Weber meeting node phase, theMER remains invariant.

Hence, the target Weber meeting node remains invariant.

Case 2. C(t) ∈ Ib1
3 : The northernmost Weber meeting node on l is selected as the

target Weber meeting node. Since the northernmost agreement depends on the position

of the leading corner(s), the agreement remains invariant unless the MER changes. As

the guards do not move in the Creating Multiplicity on Target Weber meeting node

phase, the MER remains invariant. Hence, the target Weber meeting node remains

invariant.

Case 3. C(t) ∈ Ib1
4 : The center of rotational symmetry c is the target Weber meeting

node. Since c is also the center of rotational symmetry for the meeting nodes, the target

Weber meeting node remains invariant.
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Lemma 4.6.4. If C(t) ∈ Ia
3 , then the target Weber meeting node remains invariant in

the Creating Multiplicity on Target Weber meeting node phase.

Proof. The meeting nodes are symmetric with respect to a single line of symmetry l.

In the Creating Multiplicity on Target Weber meeting node phase, all the non-guard

robots move towards the target Weber meeting node on l. Note that the MER remains

invariant unless the guard moves. The following cases are to be considered.

Case 1. There exists at least one Weber meeting node on l. The northernmost Weber

meeting node on l is selected as the target Weber meeting node. Since the northernmost

agreement depends on the position of the leading corner(s), and the leading corner(s)

remains invariant unless the MER changes, the agreement remains invariant. Hence,

the target Weber meeting node remains invariant.

Case 2. C(0) satisfy C1. We have to prove that H+ remains invariant in the Creating

Multiplicity on Target Weber meeting node phase. Note that, in this phase, all the

non-guards move towards the target Weber meeting node. According to Lemma 4.3.1,

the Weber meeting nodes remain invariant while the robots move towards it. As MER

remains invariant unless the guard robot moves, the leading corner(s) remains invariant.

Since the Potential Weber meeting nodes are defined with respect to the positions of the

leading corner(s), H+ remains invariant. Hence, the target Weber meeting node remains

invariant.

Case 3. C(0) satisfy C2. The target Weber meeting node is selected in the half-plane

H+. We have to prove that H+ remains invariant while the robots move towards the

target Weber meeting node. The following subcases are to be considered.

Subcase 1. C(0) satisfy C22. H+ is the half-plane that contains the maximum number

of robots. All the non-guard robots in H− move towards the target Weber meeting node

in H+. During this movement of the robots, H+ still contains the maximum number of

robots. Hence, the target Weber meeting node remains invariant.

Subcase 2. C(0) satisfy C21. The leading robot in H− moves towards the target We-

ber meeting node in H+, resulting in transforming the configuration into an unbalanced

configuration. While the leading robot moves towards H+, the unique lexicographic
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smallest string ai remains invariant according to Lemma 4.6.1. As the key corner re-

mains invariant, H+ remains invariant. The moment, the leading robot reaches l, the

configuration becomes unbalanced. The rest of the proof follows from the previous case.

Lemma 4.6.5. If C(t) ∈ Ia
4 , then the target Weber meeting node remains invariant in

the Creating Multiplicity on Target Weber meeting node phase.

Proof. Since C(t) ∈ Ia
4 , the meeting nodes are symmetric with respect to rotational

symmetry. Let c be the center of the rotational symmetry for M. According to Lemma

4.3.1, the Weber meeting nodes remain invariant while all the robots move towards it.

The following cases are to be considered.

Case 1. There exists a Weber meeting node on c. It is selected as the target Weber

meeting node. Since c is the center of rotational symmetry for the fixed meeting nodes,

the target Weber meeting node remains invariant while the robots move towards it.

Case 2. C(0) satisfy C1. The target Weber meeting node is selected in H++ as the

Weber meeting node, which is farthest from the leading corner in the string direction

and contained in H++. Note that since the guards do not move during this phase, the

MER remains invariant. As a result, the Potential Weber meeting nodes and H++

remain invariant. Hence, the target Weber meeting node remains invariant.

Case 3. C(0) satisfy C2. We have to prove that H++ remains invariant while the robots

move towards the target Weber meeting node. Considering such quadrants that contain

the maximum number of Potential Weber meeting nodes, the target Weber meeting

node is selected as the Potential Weber meeting node in H++. Ties are broken by

considering the Weber meeting node in H++, which is farthest from the leading corner

in H++ in the string direction. If C(0) satisfies C22, first, all the non-guard robots in the

quadrants adjacent to H++ and on l ∪ l′ move towards the target Weber meeting node

in H++. Finally, the other non-guard robots move towards m. Since H++ is the unique

quadrant that contains the maximum number of robot positions, it still contains the

maximum number of robots while all such robots reach H++. Hence, the target Weber

meeting node remains invariant. Otherwise, if C(0) satisfies C21, there exists more

than one quadrant that contains the maximum number of robot positions. Considering

such quadrants and the corners contained in those quadrants. H++ is the quadrant

containing the largest lexicographic string among those a′is that are associated with the
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leading corners contained in such quadrants. A leading robot is selected in the Leading

Robot Selection phase and is allowed to move towards the target Weber meeting node

in H++. While the leading robots move towards the target Weber meeting node in

H++, H++ remains invariant according to Lemma 4.6.2. As a result, the configuration

becomes unbalanced. The rest of the proof follows similarly, as in the case, when C(0)

satisfies C22.

Case 4. C(0) satisfy C3. The target Weber meeting node is selected on either l or l′.

Note that, in this case, if the configuration is unbalanced, H++ is the quadrant that

contains the minimum number of robots. Otherwise, if the configuration is balanced,

then H++ is the quadrant containing the smallest lexicographic string among all those

a′is. In both cases, all the non-guard robots on l∪ l′, and the non-guard robots on H++,

move towards the target Weber meeting node m. After such robots reach H++, H++

remains the unique quadrant with the minimum number of robots. As a result, H++

remains invariant. Hence, the target Weber meeting node remains invariant.

The next two lemmas prove that any initial configuration C(0) ∈ I \ U , would never

reach a configuration C(t) ∈ U , at any point of time t > 0 during the execution of the

algorithm Optimal Gathering().

Lemma 4.6.6. Given C(0) ∈ I3 and t > 0 be an arbitrary instant of time at which at

least one robot has completed its LCM cycle. If C(0) /∈ Ib3
3 , then during the execution

of the algorithm Optimal Gathering(), C(t) /∈ Ib3
3 .

Proof. According to Lemma 4.3.1, the Weber meeting nodes remain invariant while the

robots move towards it. Since the meeting nodes admit a single line of symmetry l and

there does not exist any Weber meeting node on l, assume that C(0) ∈ Ia
3 ∪ Ib2

3 . The

following cases are to be considered.

Case 1. C(0) ∈ Ia
3 . Note that there does not exist any Weber meeting node on l,

otherwise according to Lemma 4.3.1, C(t) /∈ Ib3
3 . Depending on the position of Potential

Weber meeting nodes, the following subcases may arise.

Subcase 1. C(0) satisfy C1. All the non-guard robots in H− ∪ l move towards the

target Weber meeting node in H+. So, at any arbitrary instant of time t > 0, C(t)

remains asymmetric and hence C(t) /∈ Ib3
3 .
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Subcase 2. C(0) satisfy C2. If the configuration is unbalanced, all the robots in H−∪ l

move towards the target Weber meeting node in H+. As a result, the configuration

remains unbalanced and hence asymmetric. Otherwise, if the configuration is balanced,

the leading robot moves towards the target Weber meeting node at some time t′ > 0.

According to Lemma 4.6.1, the configuration remains asymmetric during its movement

and ultimately, the configuration becomes unbalanced. Proceeding similarly, as in the

unbalanced case, at any arbitrary instant of time t > 0, C(t) remains asymmetric and

hence C(t) /∈ Ib3
3 , where t denotes an instant of time such that t ≥ t′.

Case 2. C(0) ∈ Ib2
3 . Assume that at time t′ > 0, the northernmost robot on l moves

towards an adjacent node away from l, which transforms the configuration into an un-

balanced asymmetric configuration. The rest of the proof follows from the previous case.

Hence, C(t) /∈ Ib3
3 , where t denotes an instant of time such that t ≥ t′.

Lemma 4.6.7. Given C(0) ∈ I4 and t > 0 be an arbitrary instant of time at which at

least one robot has completed its LCM cycle. If C(0) /∈ Ib3
4 , then during the execution

of the algorithm Optimal Gathering(), C(t) /∈ Ib3
4 .

Proof. According to Lemma 4.3.1, the Weber meeting nodes remain invariant while the

robots move towards it. Since the meeting nodes admit rotational symmetry and there

does not exist any Weber meeting node on c, assume that C(0) ∈ Ia
4 ∪ Ib2

4 . Otherwise,

C(t) /∈ Ib3
4 . The following cases are to be considered.

Case 1. C(0) ∈ Ia
4 . If there exists a Weber meeting node on c, then all the robots

move towards it and finalize the gathering. According to Lemma 4.3.1, since the Weber

meeting node remains invariant while all the robots move towards it, C(t) /∈ Ib3
4 . Con-

sider the case when there does not exist any Weber meeting node on c. The following

subcases may arise.

Subcase 1. C(0) satisfy C1. All the non-guard robots from the other quadrants as well

on l or l′ move towards the target Weber meeting node in H++. So, at any arbitrary

instant of time t > 0, C(t) remains asymmetric and hence C(t) /∈ Ib3
4 .

Subcase 2. C(0) satisfy C2. If the configuration is unbalanced, all the robots in the

quadrants different from H++ as well as the robots on l or l′ move towards the target

Weber meeting node in H++ in the Creating Multiplicity on Target Weber meeting node

phase. While such a robot reaches H++, the configuration remains unbalanced and
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hence asymmetric. If the configuration is balanced, a leading robot is selected in the

Leading Robot Selection phase. According to Lemma 4.6.2, the configuration remains

asymmetric during the movement of the leading robot towards the target Weber meeting

node at some time t′ > 0. While the leading robot reaches H++, the configuration

becomes unbalanced and remains asymmetric. So, at any arbitrary instant of time

t > 0, C(t) /∈ Ib3
4 , where t denotes an instant of time such that t ≥ t′.

Subcase 3. C(0) satisfy C3. All the robots in H++, move towards the target Weber

meeting node. After all the robots in H++, reach the target Weber meeting node m, all

the non-guard robots from the other quadrants as well as on l or l′ move towards m, thus

creating a multiplicity on m. During this robot movement, C(t) remains asymmetric

and hence C(t) /∈ Ib3
4 .

Case 2. C(0) ∈ Ib2
4 . Assume that at time t′ > 0, the robot on c moves towards one

of the adjacent nodes, which transforms the configuration into a configuration that may

be asymmetric or admits a single line of symmetry. Proceeding similarly, as in the case

of C(0) ∈ Ia
3 ∪ Ia

4 , at any arbitrary instant of time t > 0, C(t) remains asymmetric and

hence C(t) /∈ Ib3
4 , where t ≥ t′.

Theorem 4.6.8. If the initial configuration belongs to the set I \U , then the algorithm

Optimal Gathering() ensures gathering over Weber meeting nodes.

Proof. Assume that C(0) ∈ I \ U . If C(t) is not a final configuration for some t ≥ 0,

each active robot executes the algorithm Optimal Gathering(). According to the Lemmas

4.6.6 and 4.6.7, any initial configuration C(0) ∈ I \U , would never reach a configuration

C(t) ∈ U , during the execution of the algorithm Optimal Gathering() at any point of

time t > 0. The following cases are to be considered.

Case 1. There exists a unique Weber meeting node. All the robots move towards the

unique Weber meeting node and finalize the gathering.

Case 2. There exists more than one Weber meeting node. The target Weber meeting

node is selected in the Target Weber meeting node Selection phase. According to the

Lemmas 4.6.3, 4.6.4 and 4.6.5, the target Weber meeting node remains invariant during

the execution of the algorithm Optimal Gathering(). If C(0) is a balanced configura-

tion, then a leading robot is selected in the Leading Robot Selection phase. Lemmas

4.6.1 and 4.6.2 ensure that the leading robot remains invariant during its movement.
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The movement of the leading robot ensures that the configuration transforms into an

unbalanced configuration.

Without loss of generality, assume that m is the target Weber meeting node. Assume

that, at any point of time t, there exists at which at least one robot r has completed

its LCM cycle. If r is a non-guard robot, then it must have moved at least one unit

distance towards m at time t′ > t. Since each non-guard robot moves towards m via

a shortest path in the Creating Multiplicity on Target Weber meeting node phase, this

implies that eventually at time t′′ > t′, there exists a robot multiplicity on m. Finally,

in the Finalization of Gathering phase, since the robots have global strong-multiplicity

detection capability, all the guard robots move towards m and finalize the gathering

without creating any other multiplicity on a meeting node. Since each robot finalizes

the gathering, by moving towards m via a shortest path, gathering over Weber meeting

nodes is ensured.
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Figure 4.12: (a) C(0), (b) C(t1), (c) C(t2)

4.7 Optimal Gathering for C(t) ∈ U

We have proposed a deterministic distributed algorithm that ensures gathering over a

Weber meeting node for any initial configuration C(0) ∈ I \ U . Let U ′ ⊂ U denote

the set of all the initial configurations which admit a unique line of symmetry l and no

Weber meeting nodes or robot positions exist on l. However, there exists at least one

meeting node on l. The set U ′ includes the initial configurations for which gathering

is feasible on a meeting node. Note that, if C(t) ∈ U \ U ′, then it is ungatherable.

To ensure gathering deterministically, the target point must lie on l. At this point of

time, one optimal feasible solution for a configuration C(0) ∈ U ′ would be to finalize the

gathering at a meeting node m ∈ l at which the total number of moves is minimized.
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Ties may be broken by considering the northernmost such meeting node. Another very

important assumption that is not highlighted much in the literature is that initially,

all the robots are static. The correctness of our proposed algorithm fails to hold when

the optimal target point is dynamically selected. As a consequence, termination may

not be guaranteed with an optimal number of moves. For example, we consider one

possible execution for an initial configuration C(0) = ({r1, r2}, {m1,m2,m3,m4}) in

Figure 4.12(a). At t = 0, m3 and m4 are the Weber meeting nodes. Between m1 and

m2, the number of total moves will be minimized if the robots gather at m1. While r1

and r2 start moving towards m1, there may be a pending move due to the asynchronous

behavior of the scheduler. Consider the case when r2 has completed its LCM cycle

while r1’s move is pending. At t = t1 > 0, m3 becomes the unique Weber meeting

node (Figure 4.12(b)). At t2 > t1, assume that r1 has reached m1 and r2 has moved

by one hop distance towards m3. At t2, m1 becomes the unique Weber meeting node

(Figure 4.12(c)). Next, the gathering will be finalized eventually at m1. Initially, the

minimum number of moves required to finalize the gathering is 8 (Figure 4.12(a)). The

number of moves required to finalize the gathering in this execution is 10. It is not

guaranteed that the minimum number of moves required to finalize the gathering in the

initial configuration is achievable.

4.8 Conclusion

In this chapter, the optimal gathering over Weber meeting nodes problem has been in-

vestigated over an infinite grid. The objective function is to minimize the total distance

traveled by all the robots. We have characterized all the configurations for which gath-

ering over a Weber meeting node cannot be ensured. For the remaining configurations,

a deterministic distributed algorithm has been proposed that solves the gathering over

Weber meeting nodes for at least seven robots.





Chapter 5

Gathering over Heterogeneous

Meeting Nodes

5.1 Overview of the Problem

This chapter considers the gathering over heterogeneous meeting nodes problem in an

infinite grid. In this problem, two finite and disjoint sets of homogeneous robots placed

at the nodes of an infinite grid graph are considered. Additionally, the grid graph

consists of two finite and disjoint sets of prefixed meeting nodes that are located at

the nodes of the grid. The goal of the study is to propose a distributed algorithm that

requires all robots in the first team to gather at one of the meeting nodes of the first type

and all robots in the second team to gather at one of the meeting nodes of the second

type. The robots can distinguish between the two different kinds of meeting nodes. A

robot cannot identify the members of its team. However, it is assumed that a robot is

capable of identifying its own team. We next discuss the motivation behind studying

this problem.

In Chapter 3, we have studied the gathering over meeting nodes problem in an infinite

two-dimensional grid. It may be possible that in many real-life applications, different

tasks are required to be performed simultaneously by different groups of robots. We

consider the following example: We have two different kinds of robots, three that clean up

dust (like the iRobot Roomba) and two that mop (like the iRobot Brava). Cleaning two

levels of a certain house is one of the two tasks. One or two dust cleaning robots, coupled

103
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with a single mopping robot, are needed for the tasks, depending on how much dust has

gathered at each level [61]. Bhagat et al.[13] considered two groups of homogeneous

robots having two different objectives. One group of robots needs to solve the gathering

problem while the other group of robots solves the Circle Formation problem. More

precisely, the problem considers two teams of anonymous robots Rg and Rf , where the

goal of the robots in Rg is to achieve gathering, while the goal of the robots in Rf

is to solve the Circle Formation problem. The robots are located at distinct points in

the same space and they are unaware of which of the robots they observe is a member

of their own team. A distributed algorithm was proposed that allows each team to

solve its problem asynchronously and with non-rigid movements. In this chapter, we

have considered two different types of homogeneous robots with the objective that they

gather at two different meeting nodes in an infinite grid.

The fundamental challenge to solve the problem arises because of the anonymity and

asynchrony of the robots. In [31], the gathering on meeting points problem has been

considered. This problem requires that each robot must gather at one of the predeter-

mined fixed points. The problems in [31, 13] were considered in the continuous domain.

The robots can move in any arbitrary direction in the continuous domain and even by

infinitesimal distance. This motivates us to consider the gathering over heterogeneous

meeting nodes problem in the discrete model, where the movement of a robot is restricted

along the edges of the graph and to an adjacent node in one step. In this chapter, the

proposed algorithm ensures that no collision among the robots occurs at any point of

time if they are located within the minimum enclosing rectangle of the meeting nodes.

However, collisions exist at two different nodes, which are at a sufficiently large distance

from the minimum enclosing rectangle of the meeting nodes. It is important to note that

collision-free paths are not created only to prevent robot collisions. The main reason for

avoiding collision is to avoid forming unstable multiplicities, which include robots from

different teams. So, the main challenge arises in proposing collision-less algorithms when

the robots are deployed at the nodes of an infinite grid. It should be noted that since the

robots are oblivious, one of the main challenges in designing algorithms is to maintain

the invariance of the targets where each robot decides to finalize the gathering. We have

shown later that the target may change if there exists multiplicity at some nodes, where

the multiplicity corresponds to robots of different types.
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5.2 Contribution

This chapter proposes a deterministic distributed algorithm that solves the gathering

over heterogeneous meeting nodes problem within a finite time. The initial configura-

tions of the robots and the meeting nodes for which the gathering problem is unsolvable

have been characterized, and a distributed gathering algorithm has been proposed for the

remaining initial configurations. The proposed algorithm runs in Θ(dn) moves, where d

is the diameter of the minimum enclosing rectangle of all the robots and meeting nodes

in the initial configuration and n is the total number of robots in the system. We mea-

sure the time complexity of our algorithms in epochs. The proposed algorithm runs in

O(dn) epochs. It has been proved that the lower bound for any algorithm that solves

the problem requires Ω(Dn) moves and Ω(D) epochs.

Organization: The next section describes the formal description of the model. Some

basic definitions and notations are presented in this section. In this section, a parti-

tioning of the initial configurations has also been stated. Section 5.4 is dedicated to the

formal description of the algorithm along with the correctness proofs. The efficiency

of the algorithm has also been studied in this section, where the efficiency is measured

with respect to the number of moves and time in epochs. The chapter is concluded with

some potential future directions in Section 5.5.

5.3 Gathering over Heterogeneous Meeting Nodes Prob-

lem

In this section, we first provide the basic definitions and notation necessary for the

understanding of the proposed results.

• Recall from Chapters 3 and 4 that R(t) denotes the set of all such distinct nodes

occupied by the robots in R at time t, i.e., R(t) ⊂ V such that each node in R(t)

contains at least one robot on it at time t.

• R consists of two teams of homogeneous and disjoint sets of robots, namely R1

and R2 that are deployed at the nodes of an infinite grid graph G.
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• M ⊂ V denotes the finite set of meeting nodes. The nodes in M are partitioned

into two subsets M1 and M2, such that M = M1 ∪M2 and M1 ∩M2 = ϕ. The

robots can distinguish between the two different types of meeting nodes.

In this chapter, we propose a gathering algorithm for solving the problem of gathering

over heterogeneous meeting nodes problem. In this context, a gathering algorithm is

a deterministic distributed algorithm that gathers all the robots in R1 (resp. R2) at

a meeting node in M1 (resp. M2). If no deterministic algorithm can be proposed to

ensure the robot’s gathering at meeting nodes, we say an initial configuration is un-

gatherable. In addition, a gathering algorithm ensures that, regardless of the adversary,

the robots will gather at the meeting nodes. Next, we introduce the notion of symmetry

of a configuration and view of a configuration. These definitions are relevant in un-

derstanding the concepts of symmetric configurations and the symmetric configurations

which are ungatherable, i.e., no gathering algorithm can ensure the gathering of such

configurations.
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Figure 5.1: The crosses represent meeting nodes and the circles represent robots. The
two teams of robots and meeting nodes are denoted by blue and red colors, respectively.

5.3.1 Symmetry of a configuration and Configuration View

Before proceeding to the definition of symmetry, recall from Chapter 3 that we have

defined a function µt. In this chapter, since the set of meeting nodes is partitioned into

M1 and M2, the definition of µt is slightly different from the definition mentioned in

Chapter 3. Hence, we define the function µt : V → {0, 1, 2, 3, 4, 5, 6, 7, 8} at time t in
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the following way.

µt(v) =



0 if v /∈ M∪R(t) i.e., v is an empty node

1 if v ∈ M1 \ R(t) i.e., v is a meeting node in M1 not containing any robot

2 if v ∈ M2 \ R(t) i.e., v is a meeting node in M2 not containing any robot

3 if v ∈ M1 ∩R(t) s.t. v is a meeting node in M1 and contains exactly one robot

4 if v ∈ M2 ∩R(t) s.t. v is a meeting node in M2 and contains exactly one robot

5 if v ∈ M1 ∩R(t) s.t. v is a meeting node in M1 and contains multiple robots

6 if v ∈ M2 ∩R(t) s.t. v is a meeting node in M2 and contains multiple robots

7 if v ∈ R(t) \M s.t. v contains exactly one robot

8 if v ∈ R(t) \M s.t. v contains multiple robots

Without any ambiguity, we define µt by µ.

• Let C(t) = (R(t),M) denote the system configuration at time t.

• The strings s′is are defined similarly as in Chapter 3. The only difference lies in

defining the function µ. In Figure 5.1, DA is the string direction associated to the

unique key cornerD. Here, sDA=1700701020000770000700000000001000700000200

770000.

• Symmetricity of the set M: In Chapter 3, we have defined MERF as the

smallest grid-aligned rectangle containing all the meeting nodes. Since, the set of

meeting nodes M is partitioned into disjoint subsets M1 and M2 the modified

definition of the function ft : V → {0, 1, 2} as follows:

ft(v) =


0 if v is not a meeting node

1 if v is a meeting node in M1

2 if v is a meeting node in M2

The strings α′
is are defined similarly as in Chapter 3. Recall that the corner with

which the largest lexicographic string αi is associated is defined as the leading cor-

ner. In Figure 5.1, AB′C ′D is the MERF and D is the unique leading corner. Here
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αDC′=100000020000000010000000000000000002100000. The configuration view of a

node is defined similarly as in Chapter 3.

5.3.2 Problem Definition and Ungatherability Results

This subsection states the formal definition of the problem and a theorem that provides

a necessary condition for a configuration to be ungatherable. First, we describe the

formal definition of the problem.

A set R consisting of n ≥ 5 robots is deployed at the nodes of an infinite grid graph. The

robots deployed are of two different types. Let R1 and R2 denote the two homogeneous

and disjoint teams of robots that are deployed at the nodes of the infinite grid graph G

given as input. M is a finite set of meeting nodes located at the nodes of the graph.

The set M of meeting nodes consists of two disjoint sets of meeting nodes M1 and M2.

The robots in each team can distinguish between the meeting nodes. However, a robot

cannot identify its team members. The goal of gathering over heterogeneous meeting

nodes problem is to reach a final configuration (F), where all robots in R1 (resp. R2)

gather at a meeting node in M1 (resp. M2) and the gathering must terminate within

a finite amount of time.

If the initial configuration C(0) is partitive on the node set V \ V ′, then Theorem

3.4.1 ensures that there must exist at least one meeting node m ∈ V ′ where gathering

over a meeting node is ensured. In this chapter, note that the robots are unaware of

the team to which the other robots belong. It may be possible that a robot in R1 is

symmetric either with respect to a single line of symmetry or rotational symmetry, and

its symmetric image is a robot belonging to R2. In that case, an algorithm may be

proposed under the execution of which the symmetry can be broken. In other words,

a gathering algorithm may exist where the symmetric robots have different execution

paths. This ensures that the execution of the algorithm can break the symmetry. In

order to characterize the ungatherable configurations, we first define the symmetricity

of the set R. We first define a function ht : V → {0, 1} at any fixed time t ≥ 0 by:

ht(v) =


0 if v is a free node

1 if v contains a robot position
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i.e., ht(v) is defined as an indicator variable on the set of nodes V , which equals 1 when

the node contains a robot’s position at time t. Without any ambiguity, we denote ht by

h.

While considering the corners of MER, we can define a string ci similar to si. The only

difference is that we associate h(v) to each node v instead of µ(v). The strings ci for

each corner are defined similarly. Let us assume that the robots have the capability to

detect the team to which the other robot belongs. In that case, we consider the following

definition.

Definition 5.3.1. Let C(t) = (R(t),M) denote the system configuration at time t.

We say that if there exists a unique lexicographic largest string ci, then the set R is

asymmetric. Otherwise, the set R is said to be symmetric (Figure 5.2 (a)).
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Figure 5.2: (a) R is symmetric, but R1 and R2 are not independently symmetric.
(b) R is symmetric. R1 and R2 are independently symmetric.

We define another function color: V → {0, 1, 2} by:

color(v) =


0 if v is not a robot position

1 if v is a robot in R1

2 if v is a robot in R2

Considering the corners of MER, we can similarly associate the pair (ht(v), color(v)) to

each node v and define the strings ci.

Definition 5.3.2. Let C(t) = (R(t),M) denote the system configuration at time t. In

the definition of the symmetricity of R, where the strings ci are defined according to
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the color function, R is symmetric if and only if R1 and R2 are both independently

symmetric (Figure 5.2(b)).

The next corollaries of the theorem provide a characterization of the configurations that

are ungatherable in our setting and even in a stronger model than that of the model

assumed in the chapter.

Corollary 5.3.3. Assume the initial configuration C(0) is such that it is symmetric

with respect to l and R1 and R2 are independently symmetric. Furthermore, there do

not exist meeting nodes of both types on l and R∩ l = ϕ. Then, the initial configuration

is ungatherable.

Proof. The proof of the corollary is a direct outcome of Theorem 3.4.1. Let the initial

configuration C(0) be the same as in the statement of Corollary 5.3.3 and A be a

deterministic distributed algorithm that solves the gathering over heterogeneous meeting

nodes problem. In other words, starting from any initial configuration C(0), there exists

an algorithm A which allows C(0) to reach a configuration F in which the robots in

R1 (resp. R2) gathers at one of the meeting nodes in M1 (resp. M2). Consider the

scheduler to be fully-synchronous. According to the problem definition, since no robots

exist on l, the gathering must occur at the meeting nodes on l. There exists at least

one execution path of A, in which a move of any robot r would result in the symmetric

image of r performing the same move. As there does not exist any robot position on l, it

is impossible to break the symmetry. Hence, in order to ensure gathering over a meeting

node, there must exist at least one meeting node belonging to M1 and at least one

meeting node belonging to M2 on l. Thus, the initial configuration is ungatherable.
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Figure 5.3: (a) Ungatherable configuration admitting a single line of symmetry. (b)
Ungatherable configuration admitting rotational symmetry.
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Corollary 5.3.4. Assume the initial configuration C(0) is such that it is symmetric with

respect to rotational symmetry and R1 and R2 are independently symmetric. Further-

more, there does not exist a robot on c, i.e., R∩{c} = ϕ. Then, the initial configuration

is ungatherable.

Proof. Let the initial configuration C(0) be the same as in the statement of Corollary

5.3.4 and A be a deterministic distributed algorithm that solves the gathering over

heterogeneous meeting nodes problem. In other words, starting from the initial config-

uration C(0), there exists an algorithm A which allows C(0) to reach a configuration F
in which the robots in R1 (resp. R2) gathers at one of the meeting nodes in M1 (resp.

M2). As there does not exist a robot position on c, a direct consequence of Theorem

3.4.1 implies the robots can gather only at c. Since the gathering must be ensured at

two different meeting nodes and there may exist at most one meeting node on c, the

gathering is impossible.

We assumed that the scheduler to be fully-synchronous for the purposes of the proofs.

The impossibility result holds true even if the robots are activated under an asyn-

chronous scheduler, as the assumption of fully-synchronous scheduler is stronger than

that of asynchronous scheduler. We denote the set of all ungatherable configurations U
according to the configurations listed in the corollaries 5.3.3 and 5.3.4 (Figures 5.3 (a)

and 5.3 (b)).

5.3.3 Partitioning of the Initial configuration

In this subsection, we provide a partitioning of the initial configurations. Let I denote

the set of all initial configurations. The algorithm divides all the initial configurations

which do not belong to the set U that it processes into the following disjoint classes,

along with configurations produced during execution.

The algorithm executes according to the class of configurations each robot perceives in

its local configuration view. All the initial configurations belonging to the set I \ U can

be partitioned into the following disjoint classes.

1. I1: M is asymmetric (Figure 5.4(a)).
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Figure 5.4: (a) I1-configuration. (b) I2-configuration. l contains meeting nodes
m6 ∈ M1 and m5 ∈ M2. (c) I3-configuration. l does not contain any meeting node

belonging to M1.

2. I2: M is symmetric with respect to a unique line of symmetry l and C(t) is

asymmetric. There exist meeting nodes of both types on l (Figure 5.4(b)).

3. I3: M is symmetric with respect to a unique line of symmetry l or rotational

symmetry, and C(t) is asymmetric. In case M is symmetric with respect to l,

there do not exist meeting nodes of both types on l (Figure 5.4(c)).
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Figure 5.5: (a) I41-configuration with a meeting node m5 belonging to M1 and a
meeting node m6 belonging to M2 on l. (b) I42 configuration with a robot r9 on l. (c)

I5-configuration with a robot position r4 on c.

4. I4: C(t) is symmetric with respect to a unique line of symmetry l. This can be

further partitioned into:

(a) I41: There exists meeting nodes m1 ∈ M and m2 ∈ M2 on l (Figure 5.5(a)).

(b) I42: There does not exist meeting nodes of both types on l, but there exists

a robot position r on l (Figure 5.5 (b)).

5. I5: C(t) is symmetric with respect to rotational symmetry, with c being the center

of rotation, and there exists a robot position on c (Figure 5.5(c)).

It can be checked that the set {I1, I2, I3, I4, I5} forms a partition of the set I \ U .
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5.4 Algorithm

This section describes our main algorithm 2-nodeGathering(). The algorithm solves the

gathering over heterogeneous meeting nodes problem for all the initial configurations

belonging to the set I \U , where the initial configuration consists of at least five robots.

In particular, in subsection 5.4.1, we describe the overview of the strategy underlying

the algorithm. Before proceeding to the overview of the proposed algorithm, we define

stable and unstable multiplicity nodes.

Definition 5.4.1. A multiplicity node is said to be stable if the robots at the multiplicity

belong to the same team of robots. Otherwise, a multiplicity node is said to be unstable.

Note that a robot cannot distinguish between a stable and unstable multiplicity node.

The main crux of the algorithm is to avoid unstable multiplicities throughout the exe-

cution. We will see later in subsection 5.3, that the avoidance of unstable multiplicities

is necessary to correctly determine whether the proposed algorithm successfully accom-

plished the gathering process.

5.4.1 Overview

In the following subsection, we provide a general idea of our algorithm that executes

according to the partitioning of the initial configurations. The following cases are to be

considered.

Case 1. Consider the case when the initial configuration C(0) ∈ I1 ∪ I2. First, assume

the case when the meeting nodes are asymmetric, i.e., C(0) ∈ I1. According to Obser-

vation 1 in Chapter 3, let O1 be the ordering of the meeting nodes defined according to

the order in which they appear in the string αi. Let O1 = (m1,m2, . . .ms) denote this

particular ordering of the meeting nodes. The ordering of the meeting nodes remains

invariant while the robots move toward the meeting nodes. As a result, the robots can

select the meeting nodes according to the ordering and finalize the gathering at those

meeting nodes.

Next, assume the case when the meeting nodes are symmetric with respect to a unique

line of symmetry l and there exists at least one meeting node of both types on l. If l is a

horizontal or vertical line of symmetry, then there exist two leading corners. According
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to Observation 2 of Chapter 3, let O2 = (m′
1,m

′
2, . . . ,m

′
z) be this particular ordering of

the meeting nodes on l. If l is a diagonal line of symmetry and there exists a unique

leading corner, then the ordering of the meeting nodes on l is defined with respect to

the distance from the leading corner. In this case, the targets for gathering are selected

with respect to the ordering O2. In the next subsection, the targets for gathering are

formally described.

Case 2. Consider the case when C(0) ∈ I3. In this case, the meeting nodes are either

symmetric with respect to a single line of symmetry l or rotational symmetry. If the

meeting nodes are symmetric with respect to l, then there do not exist meeting nodes

of both types on l. In this case, the procedure GatheringAsym() is executed. The

procedure for solving the gathering in such configurations is divided into various phases.

The main crux of the procedure is to maintain the asymmetry of the initial configuration.

The procedure mainly consists of the following phases:

• In the Guard Selection and Placement (GS) phase, a robot is selected as a guard

and placed. The guard is selected and placed in such a way that it remains

invariant during the execution of the algorithm. This phase is mostly similar

to Guard Selection and Placement phase described in Chapter 3. However, the

destination of the guard in this case is different from the destination mentioned in

Chapter 3.

• The potential target meeting nodes for gathering are selected in the Target Meeting

Nodes Selection (TMS) phase.

• In the Pivot Selection (PS) phase, a set of robots is selected from the non-guard

as pivots.

• In the Move to Destination (MD) phase, each non-pivot robot moves towards

a destination node, which is at a sufficiently large distance from MERF . This

movement is done in such a way that no multiplicity nodes are created at the

target meeting nodes during the movement.

• In the Creating Multiplicity on the Target Meeting Node phase, stable multiplicities

are created at the target meeting nodes.

• The gathering is finalized at the target meeting nodes in the Finalisation of Gath-

ering (FG) phase.
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Predicates and their Definitions

Predicates C(0) Definitions

a1 There exists meeting nodes of both types on the unique line of

symmetry l

a2 There exists at least one robot position on the unique line of sym-

metry l

a3 There exists at least one robot position on the center of rotational

symmetry c

a4 The configuration is neither a nearly rotational configuration nor

a nearly reflective configuration

Table 5.1: Predicates and their definitions

Case 3. Consider the case when C(0) ∈ I42 ∪ I5. In this class of configurations, a

procedure AllowtoMove() is executed to transform the symmetric configurations into

asymmetric configurations. The rest of the procedure follows similarly from the previous

case.

Case 4. Consider the case when C(0) ∈ I41. In this class of symmetric configurations,

the gathering is finalized at the target meeting nodes on the unique line of symmetry.

Consider a symmetric configuration with no robot positions or meeting nodes of both

types on l. Consider the case when the configuration is symmetric without any robot

position or meeting nodes of both types on l. Further, assume that R1 and R2 are not

independently symmetric. In that case, each robot starts moving towards the meeting

nodes, which appear last in the string direction associated to the leading corners. Since

the robots are not independently asymmetric, while the robots move, there exists an

instant of time in which the configuration transforms into an asymmetric configuration.

The rest of the procedure proceeds similarly as in the case when the configuration is

asymmetric.

5.4.2 Formalization of the Algorithm 2-nodeGathering()

In this subsection, we provide a formal description of the algorithm that solves the

gathering over heterogeneous meeting nodes problem. First, we define some predicates

that are relevant to understanding the formal description of the algorithm (Table 5.1).

Next, we give a formal description of the algorithm in the form of a table (Table 5.2),

according to the predicates mentioned in Table 5.1.
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Formalization of the Algorithm 2-nodeGathering()

Initial Configuration C(0) Procedure

I1 Each robot moves towards their respective targets, se-

lected according to the ordering O1 of the meeting nodes

I2 Each robot moves towards their respective targets, se-

lected according to the ordering O2 of the meeting nodes

I3 ∧ ¬a4 GatheringAsym()

I3 ∧ a4 AllowtoMove()

I4 ∧ a1 The gathering is ensured at the meeting nodes on the

unique line of symmetry

I4 ∧¬a1 ∧ a2 AllowtoMove()

I5 ∧a3 AllowtoMove()

Table 5.2: Formalization of the Algorithm 2-nodeGathering()

In the following subsections, the algorithm is formally described according to the class

of configurations each robot perceives in its local configuration view. The pseudo-code
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Figure 5.6: Example of the configurations illustrating the statements of Lemmas 5.4.2
and 5.4.3

description of the Algorithm 2-nodeGathering() is given in Algorithm 5.1.

5.4.2.1 I1

If C(t) ∈ I1, the meeting nodes are asymmetric. According to Observation 1, each robot

fixes a specific ordering O1 of the meeting nodes. The meeting node m1 ∈ M1 having

the highest order in O1 among all the meeting nodes in M1 is selected as one of the

target meeting nodes. Similarly, the meeting node m2 ∈ M2 having the highest order

in O1 among all the meeting nodes in M2 is selected as the other target meeting node.

Each robot in R1 moves towards m1 and finalizes the gathering at m1. Similarly, each

robot in R2 moves towards m2 and finalizes the gathering at m2. Since the ordering O1

depends on the position of fixed meeting nodes, the targets remain invariant while the
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Algorithm 5.1: 2-nodeGathering()

Input: Configuration C(t) = (R(t),M) ∈ I \ U
1 if C(t) ∈ I1 then
2 Each robot fixes a specific ordering O1 of the meeting nodes;
3 Each robot in R1 (resp. R2) moves towards the meeting node m1 ∈ M1

(resp. m2 ∈ M2) having the highest order in O1;
4 else if C(t) ∈ I2 then
5 Each robot fixes a specific ordering O2 of the meeting nodes on l;
6 Each robot in R1 (resp. R2) moves towards the meeting node m′

1 ∈ M1

(resp. m′
2 ∈ M2) on l having the highest order in O2 ;

7 else if C(t) ∈ I3 and C(t) is neither nearly reflective nor nearly rotational
configuration then

8 GatheringAsym();
9 else if C(t) ∈ I3 and C(t) is either a nearly reflective or a nearly rotational

configuration then
10 AllowtoMove();
11 GatheringAsym();

12 else if C(t) ∈ I4 then
13 if C(t) ∈ I41 then
14 GatheringSym() ;

15 else if C(t) ∈ I42 then
16 AllowtoMove() ;
17 GatheringAsym() ;

18 else if C(t) ∈ I5 then
19 AllowtoMove() ;
20 GatheringAsym() ;

robot moves towards their respective targets. In Figure 5.6 (a), D is the leading corner.

The ordering O1 is defined as O1 = (m1,m5,m2,m4,m3). m3 and m4 are selected as

the target meeting nodes. So, we have the following lemma.

Lemma 5.4.2. If C(0) ∈ I1, then the target meeting nodes remain invariant during the

execution of the algorithm 2-nodeGathering() at any time t > 0.

Proof. The proof follows from Lemma 3.5.1.

5.4.2.2 I2

If C(t) ∈ I2, the meeting nodes are symmetric with respect to a single line of symmetry

l. In addition to that, there exists at least one meeting node belonging to the set M1

and there exists at least one meeting node belonging to the set M2 at l. According to

Observation 2, there exists an ordering of the meeting nodes lying on l. Each robot fixes
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a specific ordering O2 of the meeting nodes on l. Consider the meeting nodem′
1 ∈ M1∩l,

which has the highest order in O2 among all the meeting nodes belonging to M1 ∩ l.

Similarly, consider the meeting node m′
2 ∈ M2 ∩ l, which has the highest order in O2

among all the meeting nodes belonging to M2 ∩ l. m′
1 and m′

2 are selected as the target

meeting nodes. In Figure 5.6 (b), C and D are the leading corners. The ordering O2

is defined as, O2 = (m8,m5,m6,m7). m5 and m7 are selected as the target meeting

nodes. Each robot in R1 (resp. R2) moves towards m′
1 (resp. m′

2) and finalizes the

gathering at those meeting nodes. Since l is the line of symmetry for the meeting nodes,

the ordering O2 depends only on the position of the fixed meeting nodes. As a result,

the ordering remains invariant while the robots move toward their respective targets.

Hence, the target meeting nodes remain invariant during the execution of the algorithm

at any time t > 0. Therefore, we have the following lemma.

Lemma 5.4.3. If C(0) ∈ I2, then the target meeting nodes remain invariant during the

execution of the algorithm 2-nodeGathering() at any time t > 0.

Proof. The proof follows from Lemma 3.5.1.

5.4.2.3 I3 ∪ I42 ∪ I5

If C(t) ∈ I3, the meeting nodes are either symmetric with respect to a single line of

symmetry l or rotational symmetry. If the meeting nodes are symmetric with respect to l,

there do not exist meeting nodes of both types on l. In case C(t) ∈ I42∪I5, the symmetric

configurations are transformed into asymmetric configurations belonging to I3. We begin

this subcase by introducing some definitions that are relevant in the algorithm design

of some special class of configurations that are asymmetric and a movement of a robot

towards an adjacent node transforms those configurations into symmetric configurations.

Definition 5.4.4. Let u be a node of the input graph containing a robot position r.

Consider all the half-lines starting from the node u containing the robot position r. Scan

all those half-lines and associate ht(v) to each node v, that the half-line encounters. A

string terminates when the last node occupied by a robot in the half-line is encountered.

The four strings that are generated by the robot r are denoted by βleft(r), βright(r),

βtop(r) and βbottom(r) [28].
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Next, assume that the initial configuration C(0) is such that the meeting nodes are

symmetric with respect to rotational symmetry. Let r be the robot at the center of

rotation c. Then, we have the following definition.

Definition 5.4.5. Consider all the strings generated by the robot r. The strings are

said to be nearly equal if the adjacent nodes of c are occupied by the robots and can be

obtained from one another by reversing one occurrence of the substring 01. That is, the

strings can be made equal by moving a robot toward an adjacent node whose movement

is pending. A configuration is said to be nearly rotational if the strings generated by the

central robot r are nearly equal.
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Figure 5.7: (a) Nearly rotational configuration. (b) Nearly reflective configuration.

Next, assume that the initial configuration C(0) is such that the meeting nodes are

symmetric with respect to a unique line of symmetry l. Let r be the unique robot on l

that has the maximum configuration view.

Definition 5.4.6. Consider the strings βleft(r) and βright(r) as the strings generated

by r and which terminate away from l. The strings βleft(r) and βright(r) are said to

be nearly equal if the strings βleft(r) and βright(r) can be obtained from one another by

just reversing one occurrence of the substring 01. A configuration is said to be nearly

reflective, if the strings βleft(r) and βright(r) are nearly equal.

In Figure 5.7(a), the strings generated by the robot r are given by {110, 110, 110, 101}.
The blue circles at m1, m2, m3 and m4 represent robot positions belonging to R1 at the

meeting nodes of type M1. The red circle at the top denotes a meeting node m8 with

a robot position on it. In Figure 5.7(b), the strings generated by the robot r and which

terminate away from l are given by {1010, 1001}.

Now, we will explain the Symmetry Breaking (SB) phase, in which symmetric configura-

tions belonging to I42 ∪I5 are transformed into asymmetric configurations belonging to
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I3. Later, we will proceed with the procedure of executing the gathering of all configura-

tions belonging to I3. This phase is similar to the Symmetry Breaking phase, explained

in Chapter 3. However, in this chapter, this phase executes without the occurrence of

any multiplicity.

SB Phase: Consider the case when the initial configuration belongs to I42 ∪ I5. The

configurations considered in this phase include those that admit a line of symmetry l

with robots on l and those that admit rotational symmetry with robots on c. A unique

robot is allowed to move toward an adjacent node, thus transforming the configuration

into an asymmetric configuration. While moving the unique robot on l ∪ {c}, it may

result in forming an unstable multiplicity at one of the target meeting nodes. In order

to avoid such a scenario, each robot performs the procedure AllowtoMove().

AllowtoMove(): First, assume that C(0) ∈ I42. Let r be the unique robot on l with

the maximum configuration view and v be the node of the graph containing r. Define

Nl(v)={u : u is adjacent to v and u /∈ l}. If there exists a node u ∈ Nl(v) such

that u is not a robot position, then r moves towards u, and the configuration becomes

asymmetric. Otherwise, consider the case when all the nodes belonging to Nl(v) contain

robot positions. The robot position representing the last 1 in the strings βleft(r) and

βright(r) generated by the robot r are allowed to move towards an adjacent node away

from l. Due to the asynchronous behavior of the scheduler, there may be a possible

pending move, and the configuration may transform into a nearly reflective configuration.

The procedure AllowtoMove() moves exactly those robots whose moves are pending. As

only two robots are allowed to move at any instant of time, the procedure allows the

configuration to regain its symmetry by identifying the pending move. Execution of

the procedure AllowtoMove() continues unless there exist nodes in Nl(v) which do not

contain any robot positions. While there is a space around r, then r moves towards an

adjacent node. The procedure proceeds similarly, as in the case when Nl(v) does not

contain any robot positions.

Next, consider the case when C(0) ∈ I5. Let r be the robot on c and v be the central

node of the graph containing r. Define Nc(v) = {u : u is adjacent to v}. The procedure

follows similarly, as in the above case, when Nc(v) does not contain any robot positions.

Consider the case when Nc(v) contains robot positions. The robot positions representing

the last 1 in the strings generated by the robot r are allowed to move towards an
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adjacent node, away from c. Due to the asynchronous behavior of the scheduler, there

may be a possible pending move. As a result, the configuration may become nearly

rotational configuration. Execution of the procedure AllowtoMove() continues unless

there exist nodes in Nc(v) which do not contain any robot positions. This procedure

allows regaining the symmetry of the configuration by moving the robots whose moves

are pending. Suppose the configuration admits multiple lines of symmetry and Nc(v)

does not contain any robot positions. In that case, r moves towards an adjacent node,

transforming the configuration into a configuration admitting a unique line of symmetry.

The rest of the procedure follows similarly, as in the case when C(0) ∈ I42. Hence, we

have the following lemma.

Lemma 5.4.7. Procedure AllowtoMove() transforms any configuration C(0) ∈ I42 ∪
I5 into an asymmetric configuration which is neither a nearly reflective nor a nearly

rotational configuration.

The pseudo-code description of this phase is given in Algorithm 5.2.

Algorithm 5.2: AllowtoMove()

Input: C(t) = (R(t), M) ∈ I42 ∪ I51 ∪ (I3 such that C(t) is either a nearly
reflective or a nearly rotational configuration)

1 if C(t) ∈ I42 then
2 Let r be the unique robot on l with the maximum configuration view ;
3 Nl(v)={u : u is adjacent to v and u /∈ l} ;
4 if Nl(v) does not contain any robot positions then
5 r moves towards an adjacent node ;

6 else
7 The last robots in the strings βleft(r) and βright(r) move towards an adjacent node

unless Nl(v) does not contain any robot positions ;

8 else if C(t) ∈ I5 then
9 Let r be the robot on the center of rotation c;

10 Nc(v) : {u : u is adjacent to v};
11 if Nc(v) does not contain any robot positions then
12 r moves towards an adjacent node ;

13 else
14 The last robots in the strings generated by r move towards an adjacent node unless

Nc(v) does not contain any robot positions ;

We next move to the case where the initial configuration belongs to I3 and such that

it is neither a nearly reflective nor a nearly rotational configuration. In this case, each

robot executes GatheringAsym(). The main crux of the procedure is to maintain the

asymmetry of the configuration. The overview of the procedure GatheringAsym() is

summarized in Table 5.3. In Table 5.3, the Boolean variable on the left is true if and only
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if the condition on the right is satisfied. Note that the initial configuration corresponds

to the predicate ¬C1 ∧ ¬C2 ∧ ¬C3 ∧ ¬C4 ∧ ¬C5, while the final configuration corresponds

to the predicate C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5. The pseudo-code corresponding to the procedure

GatheringAsym() is given in Algorithm 5.3.

Algorithm 5.3: GatheringAsym()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration

1 GuardSelection();
2 TargetMeetingNodesSelection() ;
3 PivotSelection() ;
4 MovetoDestination() ;
5 CreateMultiplicity() ;
6 GuardMovement() ;

GS Phase: In this phase, a guard is selected and placed in such a way that it remains

invariant during the execution of this phase. The main objective of this phase is to keep

the target meeting nodes invariant during the execution of the algorithm. This phase

proceeds similarly as in the Guard Selection and Placement phase in Chapter 3. The

main difference, in this case, is the destination where the guard is placed. In this regard,

the guard is placed at a sufficiently large distance from MERF .

Consider the smallest enclosing rectangle MERF of the meeting nodes. Assume that the

meeting nodes are symmetric with respect to a unique vertical line of symmetry l. The

algorithm executes similarly in the case when l is a horizontal line of symmetry. Recall

from chapter 3, that d1 is the horizontal distance from l to the boundary of MERF ,

Predicates and their Definitions

Predicates C(0) Definition

C1 The guard is placed at a distance of d′′ = max{4d1, 4d′1} from l, where

d1 is the length of the farthest meeting node from l and d′1 is the length

of the second farthest robot from l

C2 All the non-pivot robots in R1 (resp. R2) are at the nodes D1 (D2),

where D1 is the node which is at a distance d1 away from the guard and

lies between l ∪ {c} and the guard. Similarly, D2 is the node that is at

a horizontal distance 2d1 away from the guard and lies between l ∪ {c}
and the guard. The pivots are the robots that are selected in the Pivot

Selection (PS) phase.

C3 All the pivots are at the target meeting nodes

C4 The non-guards are at the target meeting nodes

C5 The guard is at the target meeting node

Table 5.3: Predicates and their Definitions
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i.e., 2d1 denotes the length of the rectangle MERF . Depending on the positions of the

robots in the initial configuration, the following cases are to be considered.

1. Each robot is inside or on the rectangle MERF . Let r be the robot at the maximum

distance from l. If multiple such robots exist, the ties are broken by considering the

robot with the maximum configuration view. The robot r is selected as the guard. r

moves towards a node v that is at a horizontal distance of 4d1 from l. In Figure 5.8, r5

is the robot farthest from l and having the maximum configuration view. In Figure 5.9,

r5 moves towards a node which is at a distance of 4d1 from l. Note that while the guard

moves towards its destination, it remains invariant.

2. There exists a unique robot r outside the MERF . The unique robot r is selected as

the guard. The guard moves towards a node v that is at a distance of 4d1 from l. In

this case, the dimension of the transformed MER becomes 4d1 × q.

3. There exists more than one robot outside the rectangle MERF . If there exists a

unique robot r farthest from l, then r is selected as a guard. Let r′ be the robot that

is second farthest from l and at a distance d′1 from l. r moves towards a node u that is

at a distance of 4d′1 from l. In case there is more than one robot outside the rectangle

MERF , the guard r is selected as the robot which is farthest from l and with the

maximum configuration view. While r moves towards an adjacent node away from l, it

becomes the unique farthest robot from l. The rest of the procedure follows from the

case when there exists a unique robot r farthest from l.

While the guard reaches the node at a distance d′′ = max{4d1, 4d′1} from l, it finally

moves toward the closest corner. If there is more than one closest corner, it moves

arbitrarily toward one of its closest corners. The GS phase proceeds similarly in the

case when l is a diagonal line of symmetry. If l is a horizontal line of symmetry, then

d1 is defined as the vertical distance from l to the boundary of MERF . The distance

d′1 is also measured as a vertical separation from l. If the meeting nodes are symmetric

with respect to rotational symmetry, then d1 and d′1 denote the distance from c to the

boundary of MERF . In the following lemma, we will prove that the guard remains

invariant while it moves toward its destination. The pseudo-code description of this

phase is given in Algorithm 5.4.

Lemma 5.4.8. In the GS phase, the guard remains invariant while it moves toward its

destination.
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Figure 5.8: I3-configuration. Example configuration showing the GS phase.
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Figure 5.9: r5 is the guard. r5 moves towards a node at a large distance from
MERF = ABCD and finally towards the closest corner. MER is the rectangle

AB′C ′D.

Proof. The meeting nodes are symmetric with respect to either a unique line of sym-

metry l or rotational symmetry. We first assume the case when the meeting nodes are

symmetric with respect to a vertical line of symmetry l. The following cases are to be

considered.

Case 1. Each robot is inside or on the rectangle MERF . The guard r is selected as

the robot, which is farthest from l. If there are multiple such robots, then the guard is

selected as the robot which is farthest from l and has the maximum configuration view.

While r moves towards an adjacent node away from l, it becomes the unique farthest

from l. r remains the unique farthest robot from l while moving towards its destination.

Hence, the guard becomes uniquely identifiable by the other robots.

Case 2. There exists a unique robot r outside the rectangle MERF . r is selected as

the guard. Since r is the unique robot outside MERF , it is the unique farthest robot
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Algorithm 5.4: GuardSelection()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration, Length of MERF= 2d1

1 if each robot is inside or on the rectangle MERF then
2 if there exists exactly one robot r farthest from l then
3 r is selected as a guard and moves towards a node at a distance of 4d1

from l and finally towards its closest corner ;

4 else
5 The robot r farthest from l and having the maximum configuration view

is selected as a guard. r moves towards a node at a distance of 4d1 from
l and finally towards its closest corner ;

6 else if there exist robots outside the rectangle MERF then
7 if there is a unique robot r outside MERF then
8 r is selected as a guard and moves towards a node at a distance of 4d1

from l and finally towards its closest corner;

9 else if there exists more than one robot outside MERF then
10 if there exists a unique farthest robot r from l then
11 r is selected as a guard and moves towards a node u that is at a

distance of 4d′1 from l and finally towards its closest corner, where d′1
is the horizontal distance from l to the second farthest robot from l;

12 else
13 The robot r farthest from l and having the maximum configuration

view is selected as a guard. r moves towards an adjacent node and
becomes the unique farthest robot from l ;

from l. While r moves towards its destination, the invariance property of r follows from

the previous case.

Case 3. There exists more than one robot outside the rectangle MERF . The guard is

selected as the robot, which is at the maximum distance from l and with the maximum

configuration view in case of a tie. While the guard r moves towards an adjacent away

from l, it becomes the unique robot that is farthest from l. The invariance property of

r follows from the preceding cases while r moves towards its destination.

The proof is similar when l is a horizontal or a diagonal line of symmetry. The proof

is similar if the meeting nodes are symmetric with respect to rotational symmetry. The

only difference lies in defining the distances d1 and d′1. The distances are from c rather

than l.
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In the previous lemma, we have proved that the guard remains invariant while it moves

towards its destination. Finally, the guard is at a distance of d′′ = max{4d1, 4d′1} from

l. Hence, we have the following lemma.

Lemma 5.4.9. If C(0) ∈ I3, then the GS phase terminates with C1 = true.

TMS Phase: In this phase, the target meeting nodes for the gathering over hetero-

geneous meeting nodes problem are selected. The guard is selected in the GS phase.

Since the configuration is asymmetric, there exists an ordering of the meeting nodes

with respect to the guard. Consider the ordering O of the meeting nodes in Chapter 3,

according to their positions in the string direction associated to the corner. The ordering

remains invariant unless the guard moves. Consider m′ as the meeting node belonging

to the set M1 and closest to the guard among all the meeting nodes in M1. If there are

multiple such meeting nodes in M1, then m′ is selected as the closest meeting node in

M1, which has the highest order with respect to the ordering O. Similarly, let m′′ be

the meeting node in M2, which is closest to the guard and has the highest order with

respect to the ordering O among all the meeting nodes in M2. m
′ and m′′ are selected

as the target meeting nodes. In Figure 5.9, m2 and m4 are selected as the target meeting

nodes. The pseudo-code description of this phase is given in Algorithm 5.5.

Algorithm 5.5: TargetMeetingNodesSelection()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration

1 if there exists a unique meetings node m′ ∈ M1 and a unique meeting node
m′′ ∈ M2 which is closest to the guard then

2 Each robot in R1 (resp. R2) selects m
′ (resp. m′′) as the target meeting

node;
3 else
4 Let m′ (resp. m′′) be the meeting node in M1 (resp. M2) which is closest to

the guard and that has the highest order in O;
5 Each robot in R1 (resp. R2) selects m

′ (resp. m′′) as the target meeting
node ;

PS Phase: In this phase, some robots are selected from the non-guards as pivots. The

pivots guide the other non-pivot robots to move toward the target meeting nodes and

finalize the gathering process. Consider the fixed ordering O with respect to the guard.

The three robots that have the highest order in O are selected as the pivots. Let Rpiv

denote the set of all pivot robots. The pseudo-code description of this phase is given in

Algorithm 5.6.
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Algorithm 5.6: PivotSelection()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration

1 The three robots that have the maximum order in O are selected as the pivots ;

MD Phase: In this phase, the non-guards move towards destination nodes, which are

at a sufficiently large distance from the target meeting nodes. The movement is done in

such a way that no unstable multiplicity nodes are created at the target meeting nodes

during the movements. Note that while the guard reaches its destination node in the

GS phase, the MER changes. Depending on the initial configuration, the transformed

MER is such that its dimension becomes d′′ × q, where d′′ = max{4d1, 4d′1}. Assume

that the meeting nodes are symmetric with respect to a vertical line of symmetry l.

The procedure proceeds similarly in the case when l is a horizontal or diagonal line of

symmetry. The following definitions and notations are to be considered in the phase

description.

• The horizontal grid line passing through the guard and perpendicular to l is de-

noted by horizonl.

• Destination for R1 (D1) and R2 (D2): Let v be the node on horizonl, which is

at a distance d1 away from the guard and lies between l and the guard. D1 is the

node v. Let u be the node on horizonl, which is at a horizontal distance 2d1 away

from the guard and lies between l and the guard. D2 is the node u.

All the non-guard robots in R1 (resp. R2), excluding the pivot robots move towards D1

(resp. D2).

Note that while the non-guards excluding the pivots move towards their destinations,

an unstable multiplicity may occur on the target meeting nodes. In order to avoid such

a scenario, each robot ri ∈ R1 (resp. R2) moves towards D1 (resp. D2), depending on

whether ri ∈ R1 or R2, if it has a free path towards D1 (resp. D2). If there exists some

robot rj within a Manhattan distance of 2 from ri, and rj has a free path for moving

towards its destination, then ri checks whether it has a higher order than rj in O. If yes,

then ri moves, otherwise, it does not move. The pseudo-code description of this phase

is given in Algorithm 5.7.
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Algorithm 5.7: MovetoDestination()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration

1 Let horizonl be the horizontal grid line passing through the guard;
2 D1 is the node v lying on horizonl which is at a distance d1 away from the

guard and lies between l and the guard ;
3 D2 is the node u lying on horizonl which is at a horizontal distance 2d1 away

from the guard and lies between l and the guard ;
4 if ri has a free path towards D1 or D2 then
5 if ri has a higher order in O than any other rj that is within a Manhattan

distance of 2 from ri then
6 ri moves towards either D1 or D2 ;

7 else
8 ri does not move ;

9 else
10 ri does not move ;

If the meeting nodes are symmetric with respect to rotational symmetry, then D1 and

D2 are the destinations measured from c.

Lemma 5.4.10. No unstable multiplicity is created at the target meeting nodes during

the MD phase.

Proof. Notice that each target meeting node lies either inside or on the boundary of

the rectangle MERF . In order to ensure that no unstable multiplicity is created at

the target meeting nodes, the non-pivots must not collide while moving towards their

respective destinations D1 and D2. The two robots belonging to two different teams can

collide if and only if they have free paths toward their destinations and are separated

by a Manhattan distance of 2 units. Consider the case when two robots have free paths

towards their destinations D1 and D2 belonging to two different teams and are separated

by a Manhattan distance of 2 units. The algorithm ensures that exactly one robot moves

towards the destination in such a scenario by allowing the robot which has a higher order

in O to move towards its destination. Hence, no unstable multiplicity is created at the

target meeting nodes.

At the end of the MD phase, the non-pivots are at their destinations D1 and D2. Hence,

we have the following lemma.

Lemma 5.4.11. If C(0) ∈ I3, then the MD phase terminates with C2 = true.
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CM Phase: In this phase, all the non-guards move towards the target meeting nodes

and creates stable multiplicities at the target meeting nodes. First, the pivot robots

that are selected in the PS phase move toward the target meeting nodes. Since there

are three pivot robots selected in the PS phase, by the Pigeonhole principle, at least two

robots must belong to the same team of robots. The pivot robot(s) in R1 (resp. R2)

move towards the target meeting nodes m′ ∈ M1 (resp. m′′ ∈ M2) sequentially and

according to the order in O, i.e., the pivot which is closest to the guard and having the

minimum order in O first moves towards the target meeting nodes. While it reaches the

target meeting nodes, the other pivots start moving according to their ordering in O. A

pivot moves only when it finds that each non-pivot reaches either D1 or D2, depending

on whether the robot belongs to either R1 or R2. A pivot can determine whether each

non-pivot has reached its targets as the non-pivots are at least d1 distance from MERF .

This movement ensures that at least one stable multiplicity is created at one of the target

meeting nodes. Since the robots have global-weak multiplicity detection capability, all

the non-pivots start moving towards the target meeting nodes when a multiplicity is

created at one of the target meeting nodes. First, the robots in R2 move towards the

target meeting node m′′ belonging to the set M2 in a shortest path. While all the non-

guards in R2 reach m′′, the non-guards in R1 start moving towards the target meeting

node m′ belonging to the set M1, in a free path. The robots in R1 will only move

when it finds that there are no non-guards other than the non-guards residing in its

current node within a distance d1 from itself. As |R| ≥ 5, this movement creates stable

multiplicities at the target meeting nodes. The pseudo-code description of this phase is

given in Algorithm 5.8.

Lemma 5.4.12. During the CM phase, the target meeting nodes remain invariant.

Proof. In the TMS phase, the target meeting nodes are selected as the meeting nodes

m′ and m′′. m′ and m′′ are defined with respect to the ordering O. The ordering O
remains invariant unless the guard moves. As a result, the ordering remains invariant

while the non-guards move toward the target meeting nodes. Since the guard does not

move in the CM phase, the target meeting nodes remain invariant.

At the end of the CM phase, each non-guards are at the target meeting nodes. Hence,

we have the following lemma.



130 Chapter 5. Gathering over Heterogeneous Meeting Nodes

Lemma 5.4.13. If C(0) ∈ I3, the CM phase terminates with C3 = true and C4 = true.

Algorithm 5.8: CreateMultiplicity()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration

1 Let r1, r2 and r3 be the three pivot robots selected according to procedure
PivotSelection() ;

2 The robot closest to the target meeting nodes and having minimum order in O
among r1, r2 and r3 move towards the target meeting nodes;

3 if there exists a multiplicity at one of the target meeting nodes then
4 The closest non-guard and non-pivot belonging to R2 which is not at the

target meeting nodes, first move towards m′′. While the robots reach m′′,
the robots in R1 move towards m′;

5 else
6 The non-pivots do not move ;

FG Phase: In this phase, the guard moves towards one of the target meeting nodes

containing stable robot multiplicities. The guard moves towards either m′ or m′′, de-

pending on whether it belongs to either R1 or R2. It moves only when it is the unique

robot that is not at the target meeting nodes containing multiplicities. Since the target

meeting nodes are selected as the closest meeting nodes from the guard, the guard can

move in a free path towards m′ or m′′. As the robots are equipped with global-weak

multiplicity detection capability, the guard can detect whether it is on a multiplicity

node. The guard moves towards its respective destinations and thus, the gathering is

finalized at the target meeting nodes. The pseudo-code description of this phase is given

in Algorithm 5.9. At the end of the FG phase, the gathering is finalized at the target

Algorithm 5.9: GuardMovement()

Input: C(t) = (R(t),M) ∈ I3 and C(t) is neither a nearly rotational nor a
nearly reflective configuration

1 Let r be the unique robot that does not lie on a robot multiplicity node and not
on a meeting node;

2 r moves towards its respective target meeting node;

meeting nodes. Hence, we have the following lemma.

Lemma 5.4.14. If C(0) ∈ I3, the CM phase terminates with C5 = true.

The lemmas 5.4.9, 5.4.11, 5.4.13 and 5.4.14 ensure that starting from any initial config-

uration belonging to I3, such that the configuration is neither a nearly rotational nor a

nearly reflective configuration, reaches the final configuration within a finite amount of

time.
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5.4.2.4 I41

If C(t) ∈ I41, C(t) is symmetric with respect to a single line of symmetry, with both

types of meeting nodes at the line of symmetry. In this class of configuration, each robot

executes GatheringSym().

GatheringSym(): Consider the case when C(0) ∈ I41. First, assume that R1 and

R2 are independently symmetric. According to Observation 2, there exists a unique

ordering O2 of the meeting nodes on l. Consider the meeting node m′
1 ∈ M1 ∩ l, which

has the highest order in O2 among all the meeting nodes belonging to M1∩ l. Similarly,

consider the meeting node m′
2 ∈ M2∩ l, which has the highest order in O2 among all the

meeting nodes belonging to M2∩ l. m′
1 and m′

2 are selected as the target meeting nodes.

Each robot in R1 (resp. R2) moves towards m′
1 (resp. m′

2) only when it has a free path

toward their respective targets. To ensure this, all the closest robots which are not on

l and have the maximum view in case of a tie move toward their respective targets.

No other robots are allowed to move unless the closest robots reach the targets. Note

that exactly two symmetric robots move towards l at a particular instant of time. This

movement is done to ensure that there is at most one pending move. The robots can

identify this pending move by considering the previous position of the robot whose move

is pending, and the possible symmetry can be re-established. This movement ensures

that no multiplicity is created at the nodes unless the nodes are the target meeting

nodes during the execution of the algorithm. Thus, the gathering is finalized at the

target meeting nodes. While the robots not on l reach l, the robots on l move toward

the target meeting nodes. The pseudo-code description is given in Algorithm 5.10.

Finally, consider the case when C(0) ∈ I41 and R1 (resp. R2) are not independently

symmetric. The procedure follows similarly, as in the case when C(0) ∈ I3.

Algorithm 5.10: GatheringSym()

Input: C(t) = (R(t), M) ∈ I41
1 Let m′

1 and m′
2 be the meeting nodes on l belonging to M1 and M2 and having

the maximum order in O2 ;
2 Each closest robot in R1 (resp. R2) which is not on m′

1 (resp. m′
2) and having

the maximum configuration views, moves towards the target meeting nodes ;

Next, we will discuss the technical difficulty that may arise due to the presence of two

different types of meeting nodes and the presence of two different classes of robots. We
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will also discuss why the proposed algorithm avoids unstable multiplicities throughout

the execution. First, we discuss the main reason behind the avoidance of multiplicities

in our proposed algorithm.
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Figure 5.10: An example of a configuration showing that unstable multiplicity may
not successfully terminate the gathering.

m6 m2

m4

A B

D Cr2

r

l

4d1

d1

C ′

B′

m3

m1

m5

m7 m9

m8

v

m10

m11 m12

r2

Figure 5.11: The guard is at the node v at time t1.

Assume that there exist unstable multiplicity nodes at the target meeting nodes. In

Figure 5.10, m3 and m4 are the target meeting nodes containing unstable multiplicities.

Assume that at time t, the guard r is activated and it finds multiplicity nodes at the

meeting nodes m3 and m4. The guard cannot distinguish between a stable and an

unstable multiplicity. According to the procedure GatheringAsym(), the guard starts

moving towards m3. Assume that at time t1 > t, the guard is at node v (Figure 5.11).

Suppose that at the same time t1, one robot r2 belonging to R2 at m4 starts moving

towards m3 and it is one node away from m3. Note that the robot r2 moves because



5.4. Algorithm 133

the destination of r2 is m3 and not m4. Consequently, it might be the case that at time

t2 > t1, the guard finds that there are still robots that are not at the target meeting

nodes and accordingly, the guard might move towards the corner C ′ as it is also the

closest corner from v. Now, suppose that at time t3 > t2, the guard r is at the corner C ′

(Figure 5.12). As a result, one of the target meeting nodes changes from m4 to m2. Now,

suppose that the guard starts moving towards m3 at time t4 > t3. Note that at time t4,

the robot r2 must reach m3, otherwise the guard would not have started moving towards

its destination. Since we have assumed unstable multiplicity at m3 it might be the case

that there are multiple robots (say mt1) belonging to R1 that are on m3. At any time

t < t1, such robots might have decided to move towards m4, but due to the asynchronous

behavior of the scheduler, their move is pending. Consequently, there might exist a time

t5 > t4, the guard is at m3, all the robots belonging to R1, except the multiplicity mt1

are at m2, all the robots belonging to R2 are at m3 and the multiplicity mt1 is at m4

(Figure 5.13). Thus, in the final configuration, there are three multiplicity nodes. Since

the meeting nodes belonging to M1 are symmetric with respect to rotational symmetry,

and the robots in R1 are symmetric in the final configuration, the gathering can not be

terminated successfully.
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Figure 5.12: The guard is at the corner C ′ at time t3.

5.4.3 Correctness

Theorem 5.4.15. Algorithm 2-nodeGathering() solves the gathering over heteroge-

neous meeting nodes problem for any initial configuration belonging to the set I \ U .
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Figure 5.13: Final Configuration for the configuration in Figure 5.10.

Proof. Consider the following cases.

Case 1. C(0) ∈ I1. According to Lemma 5.4.2, the target meeting nodes remain

invariant during the movement of the robots towards themselves. As a result, each

robot in R1 (resp. R2) moves towards the target meeting nodes in M1 (resp. M2) and

finalizes the gathering at those meeting nodes.

Case 2. C(0) ∈ I2. According to Lemma 5.4.3, the target meeting nodes on l remain

invariant during the movement of the robots towards themselves. As a result, each

robot in R1 (resp. R2) moves towards the target meeting nodes in M1 (resp. M2) and

finalizes the gathering at those meeting nodes.

Case 3. C(0) ∈ I3 and C(0) is neither a nearly reflective nor a nearly rotational

configuration. A guard is selected and placed in the GS phase. According to Lemma

5.4.8, the guard remains invariant while it moves towards its destination. Since the guard

contains no symmetric image with respect to l, the configuration remains asymmetric

in the GS phase. The target meeting nodes are selected in the TMS phase according to

the position of the guard. The target meeting nodes remain invariant unless the guard

moves. The pivots are selected in the PS phase. Lemma 5.4.10 ensures that no unstable

multiplicities are created at the target meeting nodes in the MD phase. The pivots move

towards the target meeting nodes and create stable multiplicities at the target meeting

nodes. Since the robots have global-weak multiplicity detection capability, each non-

pivot moves towards the target meeting nodes only when it finds stable multiplicities

at the target meeting nodes in the CM phase. Lemma 5.4.12 ensures that the target
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meeting nodes remain invariant during the CM phase. Finally, in the FG phase, the

guard moves towards its target and finalizes the gathering.

Case 4. C(0) ∈ I42 ∪ I5 ∪ (I3 such that C(0) is either a nearly reflective or a nearly

rotational configuration). Lemma 5.4.7 ensures that the procedure AllowtoMove(),

transforms the configuration into an asymmetric configuration which is neither a nearly

reflective nor a nearly rotational configuration. The rest of the proof follows similarly

as in Case 3.

Case 5. C(0) ∈ I41 and R1 and R2 are independently symmetric. The procedure

GatheringSym() ensures that the gathering is finalized at the target meeting nodes on

l, without creating unstable multiplicities at the target meeting nodes.

Case 6. C(0) ∈ I41 and R1 and R2 are not independently symmetric. The proof follows

from Case 2.

5.4.4 Analysis of the Algorithm

In this subsection, the efficiency of the proposed algorithm has been studied. First, the

efficiency has been studied with respect to the total number of moves executed by the

robots. Next, we analyzed the time complexity of the algorithm in terms of the number

of epochs.

5.4.4.1 Efficiency with respect to the total number of moves

First, we discuss the lower bound regarding the total number of moves executed by any

algorithm that solves the gathering over heterogeneous meeting nodes problem. Consider

an infinite path graph, where MER = AB is of length n+ 2 and the nodes are labelled

as v1, v2, v3, . . . , vn, vn+1, vn+2 (Figure 5.14). Assume that each of the nodes v1, vi where

i ranges from 3 to (n+ 1) are occupied by the robots and v2 and vn+2 contain meeting

nodes m1 and m2. Let ri be the robot on vi. Without loss of generality, assume that

m1 ∈ M2 and m2 ∈ M1. The robot r1 must move towards m1 and the other robots

must move towards m2 in order to finalize the gathering. Under these assumptions, any

gathering algorithm that solves the gathering over heterogeneous meeting nodes problem

requires 1 + 2 + . . . n − 1 + 1 = Ω(n2) moves. Therefore, if d is the diameter of MER
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and d = Ω(n), then any algorithm solves the problem in Ω(dn) moves. Hence, we have

the following theorem.

A B

r1 m1 r2 r3 r4 rn m2

Figure 5.14: An example of a configuration showing the lower bound.

Theorem 5.4.16. Any gathering algorithm solving the gathering over heterogeneous

meeting nodes problem requires Ω(dn) moves.

Next, we discuss the analysis of our proposed algorithm 2-nodeGathering() in terms of

the total number of moves executed by the robots.

• In the SB phase, only the robots collinear with the unique robot on l having the

maximum configuration view move towards an adjacent node. The worst-case

scenario is the case when other robots occupy the nodes adjacent to the robot

on l, and there is no free space available for the adjacent robots to move away

from l. Therefore, it requires O(n) moves. In case the configuration is symmetric

with respect to rotational symmetry, it also requires O(n) moves in the worst-case

scenario.

• In the GS phase, only one robot is selected and allowed to move towards a node

that is at a large distance from l. The distance is a constant multiple of the initial

diameter of MER. Therefore, it requires O(d) moves.

• In the MD phase, the non-pivots are allowed to move towards nodes that are at

a sufficiently large distance from the initial MER. The distance is a constant

multiple of the initial diameter of MER. Since there are O(n) pivots, therefore this

phase executes in O(dn) moves.

• In the CM phase, all the non-guards move towards the target meeting node. The

total number of moves in this phase is O(dn).

• Finally, in the FG phase, only the guard moves toward the target meeting node.

Therefore, the number of moves in this phase is O(d).

Hence, the total number of moves performed by the algorithm is O(dn).

Theorem 5.4.17. The algorithm 2-nodeGathering() solves the gathering over hetero-

geneous meeting nodes problem in Θ(dn) moves.
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5.4.4.2 Efficiency with respect to the time complexity in epochs

Next, we discuss the analysis of our proposed algorithm 2-nodeGathering() in terms of

the time measured in epochs.

• In the SB phase, only the robots collinear with the unique robot on l having

the maximum configuration view move towards an adjacent node. The worst-case

scenario is the case when the nodes adjacent to the robot on l are occupied by other

robots, and there is no free space available for the adjacent robots to move away

from l. In order to avoid undesirable multiplicities, the robots move only when

the adjacent nodes do not contain any robot positions. Therefore, it requires

O(n) epochs. In case the configuration is symmetric with respect to rotational

symmetry, it also requires O(n) moves in the worst-case scenario. Therefore, this

phase terminates in O(n) epochs.

• In the GS phase, only one robot is selected and allowed to move towards a node

that is at a large distance from l. The total distance traveled by the guard is a

constant multiple of d1. Therefore, this phase terminates in O(d) epochs, since

d1 = O(d).

• In the MD phase, the non-pivots are allowed to move towards nodes that are at a

sufficiently large distance from the initial MER. The movement of the non-pivots

is sequential. At any moment of time, only one robot is allowed to move toward

its destination. Thus, each robot moves towards its destination in O(d) epochs,

and hence this phase terminates in O(dn) epochs.

• In the CM phase, all the non-guards move towards the target meeting node. The

maximum number of epochs required to terminate this phase is determined by the

maximum distance from the non-guards to the target meeting nodes. Therefore,

this phase terminates in O(d) epochs.

• Finally, in the FG phase, only the guard moves toward the target meeting node.

Therefore, this phase terminates in O(d) epochs.

Hence, the algorithm terminates inO(dn) epochs. Any algorithm that solves the problem

for the configuration in Figure 5.14 requires O(Dn) epochs to ensure the gathering. The

main reason behind this requirement of time is due to the selection of the guard in
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the Guard Selection and Placement phase. Note that the guard is selected in order

to maintain the asymmetry of the configuration. It might be the case that no guards

are required to ensure no ungatherable configurations are reached during the execution

of the algorithm. If no guards are selected and placed, it might be the case that the

sequential movements of the robots are avoided and the algorithm terminates in O(D)

epochs.

Note that a lower bound regarding the total time measured in epochs is Ω(d).

Therefore, we have the following theorem.

Theorem 5.4.18. The algorithm 2-nodeGathering() solves the gathering over hetero-

geneous meeting nodes problem in O(dn) epochs.

5.5 Conclusion

In this chapter, the gathering over heterogeneous meeting nodes problem has been stud-

ied in infinite square grids. We have shown that some configurations exist that remain

ungatherable. The set of all ungatherable configurations is denoted by U . A deter-

ministic distributed algorithm has been proposed for all the remaining configurations,

assuming that the initial configurations comprise at least five robots. The efficiency

of the proposed algorithm has been discussed in terms of the total number of moves

executed by the robots. The time complexity of the algorithm has been analyzed in

terms of epochs. However, the gathering algorithm is not optimal in terms of the exact

number of moves traveled by the robots in order to finalize the gathering. One immedi-

ate future task would be to consider the min-sum gathering over heterogeneous meeting

nodes problem, which requires minimizing the total number of robot moves.
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Parking Problem in Infinite Grids

6.1 Overview of the Problem

In this chapter, the parking problem for a swarm of mobile robots has been studied. The

robots are deployed at the nodes of an infinite grid, which has a subset of prefixed nodes

marked as parking nodes. Each parking node pi has a capacity of ki which is given as

input and represents the maximum number of robots a parking node can accommodate.

As a solution to the parking problem, robots need to partition themselves into groups so

that each parking node contains a number of robots which is equal to the capacity of the

node. It is assumed that the number of robots in the initial configuration represents the

sum of the capacities of the parking nodes. The robots are endowed with global-strong

multiplicity detection capability.

In Chapter 3, we studied the gathering over meeting nodes problem in an infinite two-

dimensional grid, where the objective is to gather all the robots at a unique fixed node.

The parking problem can be thought of as an extension to the gathering over meeting

nodes problem, where each fixed node is occupied by a number of robots equal to the

capacity of the fixed node in the final configuration. The parking problem can be viewed

as a variation of the partitioning problem [62], which requires the robots to divide

themselves into m groups, each consisting of k robots while converging into a small

area. Unlike the partitioning problem, the parking problem requires that each parking

node must contain robots exactly equal to its given capacity in the final configuration.

However, the capacities of the parking nodes may be different. Further, if the parking

139
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nodes are configured initially with equal capacities, then the problem is reduced to

the k-epf problem [12]. The k- epf problem is a generalized version of the embedded

pattern formation problem, where each fixed point contains exactly k robots in the final

configuration. In addition to the theoretical benefits, the parking nodes can also be seen

as base stations or charging stations with some allowable capacities. The robots may

need to recharge before they are corrupted.

6.2 Contribution

This chapter considers the parking problem over an infinite grid. The robots are de-

ployed at the nodes of an infinite grid comprising some prefixed parking nodes. Each

parking node pi has a capacity ki, which is the maximum number of robots it can ac-

commodate. We assume that the number of robots n equals
m∑
i=1

ki, where m is the total

number of parking nodes. The robots are assumed to be anonymous, autonomous, ho-

mogeneous and oblivious. The robots are activated under a fair asynchronous scheduler.

We have identified all the configurations and values of ki for which the problem cannot

be solved under this setup. A deterministic algorithm has been proposed to ensure the

solvability of the remaining configurations. We investigated the efficiency of the pro-

posed algorithm, where the efficiency was measured by the total number of movements

performed by the robots.

Organization: The next section, Section 6.3, focuses on various terminologies and def-

initions that are relevant in understanding the problem definition. Section 6.4 discusses

the partitioning of the initial configurations and the configurations for which the park-

ing problem is unsolvable. Section 6.5 describes the algorithm proposed for solving the

parking problem in infinite grids. Section 6.6 discusses the correctness of the proposed

algorithm. Finally, in Section 6.7, the chapter concludes with some future directions.

6.3 Model and Definitions

1. Parking Nodes: The input grid graph comprises of some prefixed nodes desig-

nated as parking nodes. The parking nodes are located at the nodes of the input

grid graph. Let P = {p1, p2, ..., pm} denote the set of parking positions. In the
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initial configuration, the parking nodes are located at the distinct nodes of the

grid. A robot may be deployed at one of the parking nodes initially.

2. Capacity of a parking node: The capacity of a parking node is defined as

the maximum number of robots the parking node can accommodate. A parking

node is said to be saturated if it contains exactly the number of robots equal to

its capacity. A parking node is said to be unsaturated if it is not saturated. Let

ct : V → N ∪ {0} be defined as a function, where:

ct(v) =


0 if v is not a parking node

capacity of the parking node otherwise

In the initial configuration, let ki be the capacity of a parking node pi, ∀i =

1, 2, . . . ,m.

3. System Configuration: C(t) = (R(t), P) denotes the system configuration at

any time t.

4. Symmetry of a Configuration: In Chapter 4, we define λ : V → N as the

function that denotes the number of robots on each node v ∈ V . In this chapter, an

automorphism of a configuration denoted by Aut((C(t), ft, λ) is an automorphism

ϕ of the input grid graph such that ct(v) = ct(ϕ(v)) and λ(v) = λ(ϕ(v)) for all

v ∈ V .

r1

r2

r3 r4

r5

r6

p1

p2 p3

p4

A B

CD

p5 p6

l

Figure 6.1: The configuration is symmetric with respect to l. The crosses represent
parking nodes and the black circles represent robot positions.

5. Configuration View: In this chapter, while defining the symmetry of a config-

uration, we have also considered the capacities of the parking nodes. As a result,

the definitions of the strings s′is are somewhat different from the definition men-

tioned in Chapter 3. While scanning the grid, each node v is associated to the pair
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(λ(v), ct(v)) that the string encounters. In Figure 6.1, assume that the capacity

of the parking nodes p1, p4, p5 and p6 are 2, respectively and the capacities of the

parking nodes p2 and p3 are 1. It should be noted that C and D are the key corner.

The lexicographic string associated with the corners C and D are sCB = sDA =

((0,0), (0,2), (0,0), (0,0), (0,0), (1,0), (0,0), (0,1), (0,0), (1,0), (0,0), (1,0), (0,0),

(0,0), (0,2), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0) (1,0), (0,0), (0,0), (0,2), (1,0),

(0,0), (0,1), (0,0), (1,0), (0,0), (0,2), (0,0), (0,0), (0,0)).

r1

r2

r3 r4

r5

r6

p1

p2 p3

p4

A B

CD p5

p6

Figure 6.2: Example configuration indicating the case when the parking nodes are
asymmetric.

6. Symmetry of the set P : We may define the symmetry of the set P in the

same way as we define the symmetry of a configuration. The smallest grid-aligned

rectangle that includes all the parking nodes is defined as MP .

In this chapter, while defining the symmetry of P we have also considered the

capacities of the parking nodes. Each node v is associated to ct(v), while scanning

P. If the parking nodes are asymmetric, a unique lexicographic largest string αi

always exists. If the parking nodes are not asymmetric, then the parking nodes

are said to be symmetric. The corner with which the lexicographic largest string

αi is associated is defined as the leading corner, similar to as defined in Chapter

3. In Figure 6.2, assume that the capacity of each parking node is 1. With

this assumption, αDA = 01000001000000010100000000001001000 is the largest

lexicographic string among the α′
is. D is the leading corner. According to this

definition of symmetry of the set P, the parking nodes that are located in the

symmetric positions must have equal capacities.

Definition 6.3.1. Let C(0) be any given initial configuration. A parking node pi is

said to have a higher order than the parking node pj if it appears after pj in the string

representation αk, associated to the leading corner k of MER. Similarly, a robot ri has
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a higher order than rj if it appears after rj in the string representation αk, associated

to the leading corner k of MER.

According to this definition, if the configuration has two leading corners, then two park-

ing nodes have the highest order exist.

6.4 Problem Definition and Impossibility Results

6.4.1 Problem Definition

Let C(t) = ((R(t), P) denote the system configuration at any time t. Parking node pi

has a capacity ki, which is the maximum number of robots it can accommodate at any

instant of time. For each parking node pi, the capacity ki is given as an input. The

number of robots is assumed to be equal to
m∑
i=1

ki, where m is the total number of parking

nodes located at the nodes of an infinite grid. In an initial configuration, all the robots

occupy distinct nodes of the grid. The goal of the parking problem is to transform any

initial configuration into a final configuration satisfying the following properties:

• each parking node pi is saturated, i.e., pi contains exactly ki robots on it.

• each robot is stationary.

• any robot taking a snapshot in the look phase at some time t > 0 will decide not

to move.

Note that if each ki = 1, the problem is reduced to the embedded pattern formation

problem.

6.4.2 Partitioning of the initial configurations

The strategy for movement depends on the current configuration. The initial configura-

tions can be partitioned into the following disjoint classes:

1. I1: The parking nodes are asymmetric (see Figure 6.2 for illustration).
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Figure 6.3: Examples of I21, I221 and I222 configuration.

2. I2: The parking nodes are symmetric with respect to a unique line of symmetry

l. This class of configurations can be further partitioned into:

(a) I21: C(t) is asymmetric. In Figure 6.3(a), with the assumption that each

parking node has the same capacity 1, the configuration is asymmetric while

the parking nodes are symmetric with respect to l.

(b) I22: C(t) is symmetric with respect to l. This can be further partitioned into

the following disjoint classes:

i. I221: There exists at least one robot position on l. In Figure 6.3(b),

with the assumption that the capacity of each parking node is 2, C(t) is

symmetric with respect to l and there exist robot positions r1 and r4 on

l.

ii. I222: There does not exist any robot position or parking nodes on l. In

Figure 6.3(c), with the assumption that the capacity of each parking node

is 2, C(t) is symmetric with no robots or parking nodes on l.

iii. I223: There does not exist any robot position on l, but there is at least

one parking node on l. In Figure 6.4(a), with the assumption that the

capacity of each parking node not at l is 1 and there exists parking node

p5 at l with capacity 2, C(t) is symmetric with respect to l.

l

p1 p2

p3 p4

p5

A B

CD

r1 r2

r3

r4 r5

r6

p1

p2

p3

p4
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r2
r3
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B C

D

r6

r7

r4

c
p5

r8
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p2

p3

p4

r1

r2
r3

r5

A

B C

D

r6

r7

r4

c
p5

r8 r9

Figure 6.4: Examples of I223 configuration, I31 configuration and I321 configuration.
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3. I3: The parking nodes are symmetric with respect to rotational symmetry, with c

as the center of rotational symmetry. This class of configurations can be further

partitioned into:

(a) I31: C(t) is asymmetric. In Figure 6.4(b), with the capacity of each parking

node assumed to be 2, C(t) is asymmetric; the parking nodes are symmetric

with respect to rotational symmetry.

(b) I32: C(t) is symmetric with respect to c. This can be further partitioned into

the following disjoint classes:

i. I321: There exists a robot position on c. In Figure 6.4(c), with the

assumption that the capacities of parking nodes p1, p2, p3 and p4 equal 1

and the capacity of the parking node p5 equals 5, C(t) is symmetric with

respect to rotational symmetry. The robot r6 is at the parking node p5.

ii. I322: There does not exist any robot position or parking node on c. In

Figure 6.5(a), with the assumption that the capacity of each parking node

is 1, C(t) is symmetric with respect to rotational symmetry, without any

robot or parking node on c.

iii. I323: There exists a parking node on c, but no robot lies on c. In Figure

6.5(b), with the assumption that the capacities of the parking nodes p1,

p2, p3 and p4 equals 1 and the capacity of the parking node p5 equals 4,

C(t) is symmetric with respect to rotational symmetry with a parking

node p5 on c.

p1

p2

p3

p4

r1

r2

A

B C

D

r4

c

r3

p1

p2

p3

p4

r1

r2

A

B C

D

r4

c

r3 p5

r5

r6

r7

r8

Figure 6.5: Examples of I322 and I323 configuration.

It can be checked that the classes defined with respect to the partitioning are exhaus-

tive. Additionally, the partitioning can be checked to ensure that the subclasses are

exhaustive. We assume that if the parking nodes admit rotational symmetry, then l and

l′ are perpendicular lines passing through c. Note that these lines divide the grid into
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four quadrants. Consider the open quadrants, i.e., the quadrants excluding the nodes on

l∪ l′. If there are more than two lines of symmetry, the two lines that are perpendicular

to each other and do not pass through any corner of MP are selected and considered as

l and l′.

6.4.3 Impossibility Results

In this subsection, we define all those initial configurations and the values of the capac-

ities of the parking nodes for which the parking problem is unsolvable. We next state

the following impossibility results.

Lemma 6.4.1. Let A be any algorithm for the parking problem in infinite grids. If there

exists an execution of A such that the configuration C(t) contains a robot multiplicity,

then A cannot solve the parking problem.

Proof. In the initial configuration, the capacities of the parking nodes are given as input

to the robots. We have assumed that the capacity of a parking node pi is ki, where

ki ≥ 1 and i = 1(m). So, without loss of generality, we assume that the capacity of

each parking node is 1, i.e., in the final configuration, there must be exactly one robot

at each parking node. Moreover, we assume that the scheduler is fully-synchronous.

Suppose at time t > 0, a robot multiplicity is formed at one of the nodes. The robots

at the multiplicity have the same local view of the configuration. If the adversary forces

both the robots composing the multiplicity to perform the same move, the multiplicity

in C(t) is maintained for all C(t′), for t′ > t. As a result, the robots in the multiplicity

cannot reach different parking nodes. This proves that under the execution of A, the

robots cannot reach the final configuration.

This lemma ensures that during the execution of any algorithm that solves the parking

problem, the robots must perform a collision-less movement at all stages of the algo-

rithm. Suppose the robots are oblivious and not endowed with global-strong multiplicity

detection capability. In that case, they cannot detect whether exactly the ki number of

robots reaches the parking node pi. We formalize the result in the following lemma:

Lemma 6.4.2. Without the global-strong multiplicity detection capability of the robots,

the parking problem is unsolvable.
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Lemma 6.4.3. If the initial configuration C(0) ∈ I223 is such that the capacity of a

parking node on l is an odd integer. Then the parking problem is unsolvable.

Proof. Assume that there exists an algorithm A that solves the parking problem starting

from any arbitrary initial configuration in I223 and the capacity of the parking node p

on l is an odd integer. Without loss of generality, we assume that the capacity of p is

2k + 1, where k is a positive integer. Consider the scheduler to be semi-synchronous

with the additional constraint that a robot and its symmetric image with respect to l

are activated and perform the Look-Compute-Move cycle simultaneously. In that case,

a robot r and its symmetric image ϕ(r) have the same local view of the configuration

and they execute the same deterministic algorithm A. Assume that at time t > 0, there

exists a 2k number of robots on p. Since, the capacity of p is 2k+1, at time t′ > t, a robot

r must start moving towards p. As the configuration is symmetric, there exists at least

one execution of A out of different execution paths, where any move that r performs

according to A would result in a situation where ϕ(r) performs the same move. These

movements of the robots ensure that at any moment of time, the configuration remains

symmetric. Since there is no robot position on l in the initial setup and all robots move

in pairs, moving a robot r to l would also move ϕ(r) to the same node on l. While the

robots r and ϕ(r) move towards p, a multiplicity node is created at p, which cannot be

separated by any deterministic algorithm. Hence, the parking problem is unsolvable,

according to Lemma 6.4.1.

It follows from Lemma 6.4.3 that if C(t) admits multiple lines of symmetry and if there

exists a parking node on a line of symmetry with odd capacity, then also the problem is

unsolvable.

Corollary 6.4.4. If the initial configuration C(0) ∈ I323, then the parking problem

is unsolvable if the capacity of the parking node at c is neither a multiple of 4 nor 2,

depending on whether the angle of rotation is either 90◦ or 180◦.

Let U be the set of all configurations that are unsolvable according to Lemma 6.4.3 and

Corollary 6.4.4.
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6.5 Algorithm

This section proposes a deterministic distributed algorithm for solving the parking prob-

lem in infinite grids. A sufficient condition for an initial configuration to be unsolvable,

i.e., when the parking problem cannot be deterministically solved, is provided by the

impossibility results given in Subsection 6.4.3. The parking problem is solved using a

deterministic distributed algorithm in this section for all initial configurations except

those indicated in Lemma 6.4.3 and Corollary 6.4.4. The fundamental strategy of the

proposed algorithm is to identify a specific target parking node and permit a number of

robots to move towards it, where the number of robots is equal to the parking node’s

capacity. The target parking node is selected in a sequential manner and the procedure

executes unless each parking node becomes saturated. The proposed algorithm mainly

consists of the following phases: Guard Selection and Placement phase, Target Parking

Node Selection phase, Candidate Robot Selection phase, Guard Movement phase and

Symmetry Breaking phase. Suppose the parking nodes are symmetric and the configu-

ration is asymmetric. In that case, a guard is selected and moved in the Guard Selection

and Placement phase in such a way that the configuration remains asymmetric during

the execution of the algorithm. The robots identify the current configuration and deter-

mine whether a unique parking node could be selected for parking. If the configuration

is symmetric, two parking nodes may be chosen for parking at any given time during the

Target Parking Node Selection phase. The number of robots equaling the capacity of

the target parking node is selected in the Candidate Robot Selection phase and moves

toward the target parking node in a sequential manner. When the parking node(s) with

the highest orders become saturated, the next parking node is selected, which is unsat-

urated and has the highest order among all the unsaturated parking nodes. The process

continues until all parking nodes are saturated. During the Guard Movement phase, the

guard moves toward its respective target parking node. The symmetric configurations

that can be changed into asymmetric configurations are taken into consideration during

the Symmetry Breaking phase. A unique robot is selected and allowed to move toward

an adjacent node such that the configuration becomes asymmetric. In the subsequent

subsections, we observe that if the configuration is asymmetric or symmetric with a

parking node on l ∪ {c}, the robots can always select a unique parking node in order to

begin the parking formation process.
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6.5.1 Ordering of the parking nodes

In this subsection, we first consider all those configurations where the parking nodes

of the configurations can be ordered uniquely. This ordering is necessary to identify

a unique parking node, which will be selected by the robots in order to initialize the

parking formation. So, first, consider the case when the parking nodes are asymmetric.

According to the definition of the symmetry of the set P, there exists a unique lexico-

graphic string αi. As a result, there exists a unique leading corner. The ordering O1

of the parking nodes, in case the parking nodes are asymmetric, is defined similarly as

in Chapter 3. The ordering O2 is also defined similarly as in Chapter 3. Assume that

(p1, p2, . . . , pm) is the ordering O1 of the parking nodes. Similarly, let O2 be the ordering

(p1, p2, . . . , pz), where z denotes the number of parking nodes on l. Formally,

Observation 4. If the parking nodes are asymmetric, then they can be ordered.

Observation 5. If the parking nodes are symmetric with respect to a unique line of

symmetry l, then the parking nodes on l are orderable.

6.5.2 Guard Selection and Placement

In this subsection, we describe the Guard Selection and Placement phase. This phase is

similar but slight different to the phase description defined in Chapter 3. In this chapter,

we have introduced logical predicates to describe this phase.

Consider the case when the parking nodes are symmetric, but the configuration is asym-

metric, i.e., C(t) ∈ I21 ∪ I31. In this phase, a unique robot is selected as a guard and

placed in such a way that the configuration remains asymmetric during the execution

of the algorithm. Since the initial configuration is asymmetric, a unique largest lexico-

graphic string exists among the s′is associated to the corners. As a result, a unique key

corner and a robot with the maximum configuration view exist. The following notations

are used in describing the Guard Selection and Placement phase:

• Condition C1: There exists at least one robot position outside the rectangle MP .

• Condition C2: Each robot is inside the rectangle MP .

• Condition C3: There exists a unique farthest robot from l ∪ {c}.
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Guard Selection and Placement

Initial Configura-
tion (I21 ∪ I31)

Guard Position of the guard

C1 ∧ C3 The unique robot farthest
from l ∪ {c}

Current position of the guard

C1 ∧ ¬C3 The unique robot furthest
from l ∪ {c} and having the
maximum configuration view
among all the furthest robots

The unique robot moves to-
wards an adjacent node away
from l ∪ {c}

C2 ∧ C3 The unique robot furthest
from l ∪ {c}

The guard continues its move-
ment away from l∪{c}, unless
the condition C1 becomes true

C2 ∧ ¬C3 The unique robot furthest
from l ∪ {c} and having the
maximum configuration view
among all the furthest robots

The guard continues its move-
ment away from l ∪ {c} until
the condition C1 becomes true

Table 6.1: Guard Selection and Placement

Note that the condition C1 = true implies that d2 > d1 and the condition C2 = true

implies that d2 ≤ d1. Depending on the class of configurations to which C(t) belongs,

the phase is described in Table 6.1.

In Figure 6.6 (a), D is the key corner. r5, r6 and r7 are the farthest robots from l.

However, r5 is selected as the guard as it has the highest order among all the farthest

robots. In Figure 6.6 (b), r5 moves towards an adjacent node and it becomes the unique

farthest robot from l. While the guard is selected and placed, as the guard is the unique

farthest robot from l∪{c}, it does not have any symmetric image with respect to l∪{c}.
In case C(0) ∈ I31, and the final position of the guard is either on l or l′, then the guard

moves towards an adjacent node away from l or l′. As a result of this movement, the

guard will be positioned in one of the quadrants after this phase.
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Figure 6.6: Example showing the Guard Selection and Placement phase.
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6.5.3 Half-planes and Quadrants

In this subsection, we consider all asymmetric configurations where the parking nodes

are symmetric with respect to l ∪ {c}, i.e., C(0) ∈ I21 ∪ I31. First, consider the case

when C(0) ∈ I21. The line of symmetry l divides the entire grid into two half-planes.

We consider the open half-planes, i.e., the half-planes excluding the nodes on l. Let H1

and H2 denote the two half-planes delimited by l. We first introduce some notations

and definitions that are relevant in understanding the concepts of demarcations of the

half-planes.

1. UP (t)- Number of parking nodes which are unsaturated at time t.

2. Deficit Measure of a parking node pi (Dfpi(t)): The deficit measure Dfpi(t) of a

parking node pi at time t is defined as the deficit in the number of robots needed

to have exactly ki robots on pi.

3. K1 =
∑

pi∈H1

Dfpi(t) denotes the total deficit in order to have exactly
∑

pi∈H1

ki number

of robots at the parking nodes belonging to the half-plane H1.

4. K2 =
∑

pi∈H2

Dfpi(t) denotes the total deficit in order to have exactly
∑

pi∈H2

ki number

of robots at the parking nodes belonging to the half-plane H2.

Definition 6.5.1. Let C(t) be any initial configuration belonging to the set I21. C(t) is

said to be unbalanced if the two half-planes delimited by l contain an unequal number of

robots. Otherwise, the configuration is said to be balanced.

We next consider the following conditions.

1. Condition C4- There exists a unique half-plane that contains the minimum number

of unsaturated parking nodes.

2. Condition C5- K1 ̸= K2

3. Condition C6- The configuration is unbalanced.

4. Condition C7- The configuration is balanced and R∩ l ̸= ∅.

5. Condition C8- The configuration is balanced and R∩ l = ∅.



152 Chapter 6. Parking Problem in Infinite Grids

Demarcation of the half-planes for fixing the target

Initial Configuration (I21) H+

C4 The unique half-plane which contains the mini-

mum number of unsaturated parked nodes

¬ C4 ∧ C5 ∧ K1 < K2 H1

¬ C4 ∧ C5 ∧ K2 < K1 H2

¬ C4 ∧ ¬C5 ∧ C6 The unique half-plane with the maximum number

of robot positions

¬ C4 ∧ ¬C5 ∧ ¬ C6 ∧ C7 The northernmost robot on l move towards an

adjacent node away from l. The unique half-plane

with the maximum number of robot positions is

defined as H+

¬ C4 ∧ ¬C5 ∧ ¬ C6 ∧ ¬ C7 ∧ C8 The unique half-plane not containing the guard

Table 6.2: Demarcation of the half-planes

The half-plane Htarget or H+ is defined according to Table 6.2, where the parking at

the parking nodes initializes. The other half-plane is denoted by H−. In Figure 6.7 (a),

assume that the capacities of the parking nodes p1, p2, p3 and p4 are 1, 2, 1 and 3,

respectively. Therefore, K1 = 2 and K2 = 5. The half-plane with lesser Ki value (K1)

is selected as H+. In Figure 6.7 (b), assume that the capacities of the parking nodes

p1, p2, p3 and p4 are 3, 2, 2 and 3, respectively. Each of the half-planes contains the

same number of robots. Therefore, the configuration is balanced. The half-plane not

containing the guard r5 is defined as H+.
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Figure 6.7: Example configuration showing demarcations of half-planes.

Next, assume that the parking nodes are symmetric with respect to rotational symmetry.

Consider the lines l and l′ that pass through the center of MER. These lines divide

the entire rectangle into four quadrants. Let Qi be the quadrants that are defined by

the lines l and l′, where i ranges from 1 to 4. We consider the open quadrants, i.e.,

the quadrants exclude the nodes belonging to l and l′. Let Lj =
∑

pi∈Qj

Dfpi(t) denote

the total deficit in order to have exactly
∑

pi∈Qj

ki number of robots at the parking nodes

belonging to the quadrant Qj , where j ranges from 1 to 4.
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Definition 6.5.2. Let C(t) be any initial configuration belonging to the set I31. Consider

the quadrants with the minimum Lj value. C(t) is said to be unbalanced if there exists

a unique quadrant among such quadrant with minimum Lj value, with the maximum

number of robots. Otherwise, the configuration is said to be balanced.

According to the Definition 6.5.2, a configuration is said to be balanced if it contains at

least two quadrants with minimum Lj value and with the maximum number of robot

positions.

1. Condition C9- There exists a unique quadrant that contains the minimum number

of unsaturated nodes.

2. Condition C10- There exists a unique quadrant with the minimum Lj value, for

j = {1, 2, 3, 4}.

3. Condition C11- The configuration is unbalanced.

4. Condition C12- The configuration is balanced and (R∩ l ̸= ∅ ∨ R ∩ l′ ̸= ∅).

5. Condition C13- The configuration is balanced and R∩ l = ∅, R∩ l′ ̸= ∅.

Note that ¬C10 implies there exist at least two quadrants with the minimum Lj value.

The quadrant Qtarget or Q++, where the parking is initialized, is defined according to

Table 6.3, we consider t. The quadrants adjacent to Q++ with respect to l and l′ are

defined as Q−+ and Q+− respectively. Similarly, the quadrant non-adjacent to Q++ is

defined as Q−−. In Figure 6.8 (a), assume that the capacities of each of the parking

nodes are 2. As a result, each Lj equals 2. The quadrant with more number of robots is

defined as Q++. Consider the case when there are exactly two adjacent quadrants with

the minimum Lj value and with the maximum number of robots. Suppose one of such

quadrants contains the guard. In that case, the quadrant not containing the guard is

defined as Q++. In Figure 6.8 (b), assume that the capacities of the parking nodes p1, p2

and p3 are 2 and the capacity of the parking nodes p4 is 3. As a result, L1 = L2 = L3 = 2

has the minimum Lj value, where Qj is assumed as the quadrant containing the parking

node pj . However, the quadrants Q2 and Q3 contain the maximum number of robot

positions. Hence, the configuration is balanced. Q++ is defined as the quadrant not

containing the guard r8.
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Figure 6.8: Example configuration showing demarcations of quadrants.

Demarcation of the quadrants for fixing the target

Initial Configuration C(0) Qtarget

C9 The unique quadrant which contains the mini-

mum number of unsaturated parking nodes

¬ C9 ∧ C10 ∧ Lj is minimum Qj

¬ C9 ∧ ¬C10 ∧ C11 The unique quadrant with the maximum number

of robot positions

¬ C9 ∧ ¬C10 ∧ ¬ C11 ∧ C12 The robot on l or l′ with the highest order moves

along l ∪ l′ and when it is one move away from a

quadrant containing maximum number of robot

positions, then it moves towards an adjacent node

away from l ∪ l′. The unique quadrant with the

maximum number of robot positions is Qtarget

¬ C9 ∧ ¬C10 ∧ ¬ C11 ∧ ¬ C12 ∧ C13 In case there are two adjacent quadrants contain-

ing the minimum Lj value and maximum number

of robot positions, the unique quadrant that does

not contain the guard or the quadrant that is not

adjacent to the quadrant containing the guard if

more than two such quadrants exist

Table 6.3: Demarcation of the quadrants

Definition 6.5.3. Consider the half-lines starting from c and along the grid-lines. We

denote the wedge boundaries of the quadrants delimited by the lines l and l′ by Bi, where

i = {1, 2, 3, 4}.

6.5.4 Target Parking Nodes Selection

In this phase, the target parking node for the parking problem is selected. Depending

on the following classes of configurations, the phase is described in a tabular form in

Table 6.4. Let pguard be the closest parking node from the guard. If multiple such

parking nodes exist, then the parking node closest to the guard and having maximum

order is selected as pguard. We first assume that the target parking nodes are selected
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in P \{pguard}. We consider the following conditions that are relevant in understanding

this phase.

1. C14- There exist an unsaturated parking node on l.

2. C15- There exists an unsaturated parking node on c.

3. C16- All the parking nodes belonging to H+ are saturated.

4. C ′
16- All the parking nodes belonging to H− are saturated.

5. C17- All the parking nodes belonging to Q++ are saturated.

6. C18- All the parking nodes at the wedge boundaries corresponding to the quadrant

Q++ are saturated.

7. C19- All the parking nodes belonging to the quadrant Q−+ are saturated.

8. C20- All the parking nodes at the wedge boundaries corresponding to the quadrant

Q−+ are saturated.

9. C21- All the parking nodes belonging to the quadrant Q+− are saturated.

10. C22- All the parking nodes at the wedge boundaries corresponding to the quadrant

Q+− are saturated.

11. C23- All the parking nodes belonging to Q−− are saturated.

While all the parking nodes belonging to the set P \ {pguard} become saturated, pguard

becomes the target parking node. Note that ¬C14 implies that the parking nodes are

symmetric with respect to l and there either does not exist any parking node on l or

each parking node on l is saturated. Similarly, ¬C15 implies that the parking nodes

are symmetric with respect to rotational symmetry and there either does not exist any

parking node on c or the parking node on c is saturated. In Figure 6.7, A and B are

the leading corners. p1 is the parking node in H+ which has the highest order. The

target parking nodes are selected in the order (p2, p1, p4, p3). Similarly, in Figure 6.8,

the target parking nodes are selected in the order (p3, p2, p4, p1).
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Target Parking Node Selection

Initial Configuration C(0) Target Parking Node

I1 The parking node which is unsaturated and has the

highest order with respect to O1

I2 ∧ C14 The parking node on l which is unsaturated and
has the highest order with respect to O2

I21 ∧ ¬ C14 ∧ ¬ C16 The parking node, which is unsaturated and has the

highest order in H+ among all the unsaturated nodes in

H+

I21 ∧ ¬ C14 ∧ C16 ∧ ¬C ′
16 The parking node, which is unsaturated and has the

highest order in H− among all the unsaturated nodes in

H−

I22 ∧ ¬ C14 The two parking nodes that have the highest order

among all the unsaturated parking nodes and lying on

two different half-planes

I3 ∧ C15 The parking node on c

I31 ∧¬C15 ∧¬C17 The parking node in Q++ which is unsaturated and has

the highest order among all the unsaturated parking

nodes in Q++

I31 ∧¬C15 ∧C17 ∧ ¬C18 The parking node at the wedge boundaries correspond-

ing to Q++ which is unsaturated and has the highest

order among such nodes

I31 ∧¬C15 ∧C17 ∧ C18 ∧ ¬C19 The parking node in Q−+ which is unsaturated and has

the highest order among all the unsaturated parking

nodes in Q−+

I31 ∧¬C15 ∧C17 ∧ C18 ∧ C19 ∧ ¬C20 The parking node at the wedge boundaries correspond-

ing to Q−+ which is unsaturated and has the highest

order among such unsaturated parking nodes

I31 ∧¬C15 ∧C17 ∧C18 ∧C19 ∧C20 ∧¬C21 The parking node in Q+− which is unsaturated and has

the highest order among all the unsaturated parking

nodes in Q+−

I31 ∧¬C15 ∧C17 ∧C18 ∧C19 ∧C20 ∧C21 ∧
¬C22

The parking node at the wedge boundaries correspond-

ing to Q+− which is unsaturated and has the highest

order among such unsaturated parking nodes

I31 ∧¬C15 ∧C17 ∧C18 ∧C19 ∧C20 ∧C21 ∧
C22 ∧ ¬C23

The parking node in Q−− which is unsaturated and has

the highest order among all the unsaturated parking

nodes in Q−−

I32 ∧¬C15 The two or four parking nodes which have the highest

order among all the unsaturated nodes and lying on dif-

ferent quadrants or on the wedge boundaries

Table 6.4: Target Parking Nodes Selection



6.5. Algorithm 157

6.5.5 Candidate Robot Selection Phase

In view of Lemma 5.4.2, while a robot moves towards a parking node, it must ensure

collision-free movement. Otherwise, the problem becomes unsolvable. As a result, a

robot will move toward its target only when it has a path toward that target that

does not contain any other robot positions. Therefore, we first consider the following

definition.

Definition 6.5.4. A path from a robot to a parking node is said to be free if it does not

contain any other robot positions.

A robot would move toward its target only when it has a free path toward it. In this

phase, the candidate robot is selected and allowed to move toward the target parking

node. Let p ̸= pguard be the target parking node selected in the Target Parking Node

Selection phase. Depending on the different classes of configurations, the following cases

are to be considered.

1. C(t) is asymmetric. As a result, the robots are orderable. The robot that does not

lie on any saturated parking node and has the shortest free path to p is selected

as the candidate robot. If multiple such robots exist, the one with the highest

order among such robots is selected as the candidate robot. Once it starts moving

toward its destination, it will become the unique candidate robot.

2. C(t) is symmetric with respect to a single line of symmetry l and p is on l. If at

least one robot exists on l, then the Symmetry Breaking phase is executed, which

is discussed in the next subsection. As a result, assume that there is no robot

position on l. The two closest robots, which do not lie on any saturated parking

node and have shortest free paths towards p, are selected as the candidates for

p. Note that since the configuration is symmetric, the two candidate robots are

selected on different half-planes. If there are multiple such robots, the ties are

broken by considering the robots that lie on different half-planes and have the

highest order among all such robots.

3. C(t) is symmetric with respect to a single line of symmetry and p is on the half-

planes. The robot that does not lie on any saturated parking node and has a
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shortest free path toward p is selected as the candidate robot. Note that such

candidates are selected in both half-planes.

4. C(t) is symmetric with respect to rotational symmetry and p is on c. The robots

that are closest to p are selected as candidate robots. In this case, depending on

whether the angle of rotational symmetry is 180◦ or 90◦, two or four robots are

chosen as candidates.

5. C(t) is symmetric with respect to rotational symmetry, and the target parking

node p is located on a quadrant as well as on the wedge boundaries. First, assume

that the target parking node lies on a quadrant. The robot that does not lie on

any saturated parking node and has a shortest free path toward p is selected as

the candidate robot. It should be noted that such candidates are chosen from each

of the four quadrants, for each target parking node. Next, assume that the target

parking node is on a wedge boundary. The robot(s) not lying on any saturated

parking node and having a shortest free path towards the target is (are) selected

as candidate robot(s).

Next, assume that pguard is the target parking node. The candidates are selected as

the robot which has shortest free path towards pguard. Finally, the guard move towards

pguard. By the choice of the target parking node p, there always exists a half-line starting

from p, which does not contain any robot position. As a result, a free path always exists

between the candidate robot and p.

6.5.6 Guard Movement

Assume the case when the parking nodes are symmetric and the configuration is asym-

metric. The guard is selected and placed in the Guard Selection and Placement phase.

In the Guard Movement phase, the guard moves toward its respective destination and

the parking process is terminated. The guard moves only when it finds that, except for

one, all the parking nodes have become saturated. It moves towards its destination p in a

free path. By choice of p, there always exists one half-line from p in the grid, which does

not contain any robot position. As a result, such a free path always exists. The guard

moves towards its destination and each parking node become saturated, transforming

the configuration into a final configuration.
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6.5.7 Symmetry Breaking Phase

In this phase, the symmetric configurations that can be transformed into asymmetric

configurations are considered. The phase description is similar to the phase description

of Symmetry Breaking mentioned in Chapter 5. The list of all configurations that are

considered in this phase is as follows:

1. Configurations admitting a single line of symmetry l with at least one robot posi-

tion on l, i.e., C(0) ∈ I221.

2. Configurations admitting rotational symmetry with a robot on the center of rota-

tional symmetry, i.e., C(0) ∈ I331.

Let r be the robot on l with the maximum order, in case C(0) ∈ I221. That is, r appears

after every other robot that is on l in the string directions associated to the leading

corner(s). In case, C(0) ∈ I331, let r be the robot on c. It should be noted that while

the robot r on l∪{c}moves towards an adjacent node away from l∪{c}, the configuration
transforms into an asymmetric configuration. However, it might be possible that the

neighbors of r contain robot positions. The movement of the robot towards an adjacent

node might create a robot multiplicity node, resulting in an unsolvable configuration

according to Lemma 5.4.2. As a result, there must be free space available around r

so that it can move toward an adjacent node. Due to the asynchronous behavior of

the scheduler, there might be a possible pending move while the adjacent robots of r

move towards an adjacent node away from l ∪ {c}. Recall the definition of the function

ht : V → {0, 1} at any fixed time t. Consider the nearly rotational and nearly reflective

configurations defined in Chapter 5. The procedure AllowtoMove() transforms the

configuration into an asymmetric configuration.
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Figure 6.9: (a) Nearly rotational configuration. (b) Nearly reflective configuration.
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In Figure 6.9(a), the strings generated by the robot r are given by {110, 110, 110, 101}.
The circles at p1, p2, p3, p4 and p8 denote parking nodes with robot positions on them.

In Figure 6.9(b), the strings generated by the robot r and which terminate away from l

are given by {1010, 1001}.

6.5.8 Parking()

This section describes the main algorithm Parking(), which solves the parking problem

in infinite grids. The algorithm works according to the different classes of configura-

tions. Depending on the different classes of configurations, the following cases are to be

considered.

1. I1: In this case, the parking nodes are asymmetric. There exists a unique ordering

O1 of the parking nodes. Since the ordering O1 depends on the position of the fixed

parking nodes, it remains invariant during the movement of the robots. The target

parking node p is selected in the Target Parking Node Selection phase, which has

the highest order among all the unsaturated parking nodes. A candidate robot is

selected in the Candidate Robot Selection phase, which has a shortest free path

toward the target. The candidate robot moves towards the target parking node in

a free path. The number of candidate robots that are selected in the Candidate

Robot Selection phase for each target parking node equals its capacity. While p

becomes saturated, the next target parking node is selected as the unsaturated

parking node with the highest order in O1. The target parking nodes are selected

sequentially according to the ordering O1, and the process continues unless each

parking node becomes saturated.

2. I2: In this case, the parking nodes are symmetric with respect to a single line of

symmetry l. However, C(t) may be either asymmetric or symmetric with respect

to l. First, assume the case when C(t) is asymmetric, i.e., C(0) ∈ I21. A guard is

selected in the Guard Selection and Placement phase. The configuration remains

asymmetric as the guard moves towards its destination because the guard has no

symmetric image with respect to l. There may or may not exist parking nodes on

l. First, suppose there is at least one unsaturated parking node on l. This implies

that the parking nodes at l can be ordered according to O2. The target parking
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node p is selected on l, which has the highest order among all the unsaturated

parking nodes on l. In the Candidate Robot Selection phase, a candidate robot is

selected and moves in a free path towards p. The target parking nodes are selected

sequentially according to the ordering O2 and the process continues unless each

parking node on l becomes saturated.

When all the parking nodes on l become saturated, the target parking node is

selected in H+ in the Target Parking Node Selection phase. We have proved in

the Correctness section that unless all the parking nodes in H+ become saturated,

it remains invariant. While all the parking nodes in H+ become saturated, the

target parking node is selected in H−, which is unsaturated and has the highest

order among all unsaturated parking nodes. Finally, the guard moves toward its

destination in the Guard Movement phase only when it finds that each parking

node except for one becomes saturated.

Next, assume the case when the configuration C(t) is symmetric with respect

to l. If C(t) ∈ I221, at least one robot position exists on l. The procedure

AllowtoMove() transforms the configuration into an asymmetric configuration.

The procedure executes by allowing a robot on l to move toward an adjacent node,

only when there is a free space available around r. This results in transforming

the configuration into an asymmetric configuration. The rest of the procedure

proceeds similarly as in the case when configuration C(0) ∈ I21. Next, assume the

case when C(0) ∈ I222. The target parking nodes are selected as the unsaturated

parking nodes with the highest orders. In this case, two parking nodes are selected

from the two different half-planes, one from each half-plane. The candidates are

selected in different half-planes and allowed to move towards their respective tar-

gets. The candidates either move synchronously or there may be a possible pending

move due to the asynchronous behavior of the scheduler. If the configuration trans-

forms into an asymmetric configuration, then the algorithm proceeds similarly as

in I21. Otherwise, if the configuration regains its symmetry, then the configura-

tion remains in I222. The algorithm proceeds unless each parking nodes become

saturated. Finally, consider the case when C(0) ∈ I223. Note that the configura-

tion of each parking node on l must be an even integer. Otherwise, the parking

problem is unsolvable, according to Lemma 6.4.3. If an unsaturated parking node

exists on l, then the target parking node is selected on l, which has the highest



162 Chapter 6. Parking Problem in Infinite Grids

order among all the unsaturated parking nodes on l. The two candidate robots

selected in the Candidate Robot Selection phase move towards the target parking

node either synchronously or there may be a possible pending move due to the

asynchronous behavior of the scheduler. While all the parking nodes on l become

saturated, the target parking nodes are selected in the two different half-planes.

The rest of the procedure proceeds similarly as in the case when C(0) ∈ I222.

3. I3: In this case, the parking nodes are symmetric with respect to rotational sym-

metry. However, C(t) may be either asymmetric or symmetric with respect to rota-

tional symmetry. First assume the case when C(t) is asymmetric, i.e., C(0) ∈ I31.
A guard is selected and placed in the Guard Selection and Placement phase, which

ensures that the configuration remains asymmetric during the execution of the al-

gorithm. First, assume the case when there exists a parking node p on c. p is

selected as the target parking node. A candidate robot is selected in the Can-

didate Robot Selection phase and allowed to move towards p. The number of

candidates selected equals the capacity of the parking node. The target parking

nodes are selected sequentially in the Target Parking Nodes Selection phase and

the algorithm proceeds until each parking node except for one becomes saturated.

While p becomes saturated, the target parking node is selected in Q++, which

has the highest order among all the unsaturated parking nodes in Q++. We have

proved in the Correctness section that Q++ remains invariant unless all the park-

ing nodes in Q++ become saturated. While the parking nodes in Q++ become

saturated, the quadrants adjacent to Q++ remain invariant. Finally, while all but

one parking node becomes saturated, the guard moves toward its destination in

the Guard Movement phase. The procedure terminates when the guard reaches

its destination.

Next, assume the case when C(t) is symmetric with respect to rotational sym-

metry. If C(t) ∈ I321, at least one robot position exists on c. The procedure

AllowtoMove() transforms the configuration into an asymmetric configuration by

allowing the robot on c to move toward an adjacent node, only when there is a free

space available around r. This results in transforming the configuration into an

asymmetric configuration. If C(t) ∈ I322, the target parking nodes are selected as

the unsaturated parking nodes with the highest order. Two or four parking nodes

are selected at any instant of time in the different quadrants, depending on whether
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the angle of rotation is either 180◦ or 90◦. The candidate robots are selected in

different quadrants and allowed to move toward their respective targets. The can-

didates move either synchronously or there may be a possible pending move due to

the asynchronous behavior of the scheduler. If the configuration transforms into

an asymmetric configuration, then the algorithm proceeds similarly as in I31. Oth-

erwise, if the configuration regains its symmetry, then the configuration remains

in I322. The algorithm proceeds unless each parking node becomes saturated. Fi-

nally, consider the case when C(0) ∈ I323. There exists a parking node p′ on c. It

should be noted that the capacity of p′ must be a multiple of 2. Otherwise, the

configuration would be unsolvable according to Corollary 6.4.4. If p′ is unsatu-

rated, then p′ is selected as the target parking node. The two or four candidate

robots are selected in the Candidate Robot Selection phase, depending on whether

the angle of rotation is 180◦ or 90◦. The candidates move towards their respective

targets either synchronously or there may be a possible pending move due to the

asynchronous behavior of the scheduler. While p′ becomes saturated, the target

parking nodes are selected in the quadrants as well as on the wedge boundaries.

The rest of the procedure proceeds similarly as in the case when C(0) ∈ I322.

6.6 Correctness

Lemma 6.6.1. In the Guard Selection and Placement phase, the guard remains invari-

ant while it moves towards its destination.

Proof. The proof follows from Lemma 3.5.2.

Lemma 6.6.2. During the execution of the algorithm Parking(), if the parking nodes

admit a single line of symmetry l, then H+ remains invariant.

Proof. The following cases are to be considered.

Case 1. Condition C4 holds. This implies that there exists a unique half-plane H+,

which contains a minimum number of unsaturated parking nodes. As a result, there

exists at least one saturated parking node in H+. The target parking node is selected

in H+ in the Target Parking Nodes Selection phase, which has the highest order among

all unsaturated parking nodes in H+. During the execution of the algorithm, no robot



164 Chapter 6. Parking Problem in Infinite Grids

at the saturated parking nodes is allowed to move. As a result, a saturated parking

node can never become unsaturated, and the half-plane with the minimum number of

unsaturated parking nodes remains invariant. Hence, H+ remains invariant.

Case 2. Condition ¬C4∧C5 holds. This implies that the number of unsaturated parking

nodes is the same in both the half-planes. However, K1 ̸= K2. Assume that K1 < K2.

The target parking node is selected in H+ with the minimum Ki value, i ∈ {1, 2}, i.e.,
the half-plane, which has the minimum total deficit measure. Suppose at time t > 0 a

candidate robot is selected in the Candidate Robot Selection phase and allowed to move

towards the target parking node. While this robot reaches the target parking node, the

value of K1 becomes much less than K2. Eventually, there exists a time t′ > t in which

at least one parking node in H+ becomes saturated. The rest of the proof follows from

Case 1.

Case 3. Condition ¬ C4 ∧ ¬C5 ∧ C6 holds. This implies that K1 = K2 and the

configuration is unbalanced. H+ is selected as the half-plane with the maximum number

of robots. The symmetry of the parking nodes is also defined with respect to their

capacities. As a result, according to the execution of the algorithm, a robot in H+ will

only move to the half-plane H− when all of the parking nodes in H+ become saturated.

There will eventually be a time t > 0, when a robot reaches the target parking node,

resulting in the value of K1 being less than the value of K2. The rest of the proof follows

from Case 2.

Case 4. Condition ¬ C4 ∧ ¬C5 ∧ ¬ C6 ∧ C7 holds. This implies the configuration is

balanced and at least one robot position exists on l. The northernmost robot on l moves

towards an adjacent node and the configuration becomes unbalanced, resulting in the

condition C6 evaluating to true. The rest of the proof follows from Case 3.

Case 5. Condition ¬ C4 ∧ ¬C5 ∧ ¬ C6 ∧ ¬C7 ∧C8 holds. This implies the configuration

is balanced and there do not exist any robot positions on l. H+ is selected as the half-

plane that does not contain the guard. The guard moves only when each parking node

except for one becomes saturated. As a result, the target parking node will be selected in

H+, unless each parking node in H+ becomes saturated. Hence, H+ remains invariant.

Lemma 6.6.3. During the execution of the algorithm Parking(), if the parking nodes

admit rotational symmetry, then Q++ remains invariant.
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Proof. The following cases are to be considered.

Case 1. Condition C9 holds. This implies that there exists a unique quadrant Q++,

that contains the minimum number of unsaturated parking nodes. As a result, there

exists at least one saturated parking node in Q++. The target parking node is selected

in Q++ in the Target Parking Nodes Selection phase, which has the highest order among

all unsaturated parking nodes in Q++. Since no robot lying on a saturated parking node

is allowed to move in the Candidate Robot Selection phase, a saturated parking node

can never become unsaturated. This implies that the minimum number of unsaturated

parking nodes in the quadrant remains invariant. Hence, Q++ remains invariant.

Case 2. Condition ¬ C9 ∧ C10 holds. This implies that the number of unsaturated

parking nodes in each quadrant is the same. However, there exists a unique quadrant

with a minimum Lj value, for some j ∈ {1, 2, 3, 4}, i.e., there exists a unique quadrant

with the minimum total deficit measure. Assume that the quadrant Qj has the minimum

Lj value. The target parking node is selected in Qj , which is demarcated as Q++.

Suppose at time t > 0, a candidate robot is selected in the Candidate Robot Selection

phase and allowed to move towards the target parking node in Q++. While this robot

reaches the target parking node, the value of Lj decreases further. As a result, Q++

remains the unique quadrant with the minimum Lj value. Eventually, there exists a

time t′ > t at which at least one parking node in Q++ becomes saturated. The rest of

the proof follows from Case 1.

Case 3. Condition ¬ C9 ∧ ¬C10 ∧ C11 holds. This implies that there exist at least two

quadrants with the minimum value of Lj . However, the configuration is unbalanced.

That is, there exists a unique quadrant with the minimum value of Lj and with the

maximum number of robot positions. Q++ is selected as the quadrant with the min-

imum Lj value and maximum number of robot positions. According to the execution

of the algorithm, a robot from the quadrant Q++ will move towards one of the wedge

boundaries only if each target parking node in Q++ is saturated. As a result, there

exists an instant of time, where a candidate robot reaches a parking node, resulting in

a unique quadrant with the minimum Lj value. The rest of the proof follows from Case

2.

Case 4. Condition ¬ C9∧¬C10∧¬C11∧C12 holds. The configuration is balanced. The

robot with the highest order among all the robots lying on l ∪ l′ first moves along l ∪ l′.
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Next, when it is one node away from the quadrant with the minimum Lj value and the

maximum number of robot positions, then it moves towards an adjacent node. This

results in transforming the configuration into an unbalanced configuration. The rest of

the proof follows from Case 3.

Case 5. Condition ¬ C9∧¬C10∧¬C11∧¬C12∧C13 holds. This implies the configuration

is balanced and there do not exist any robot positions on l ∪ l′. Q++ is selected as the

quadrant that is non-adjacent to the quadrant containing the guard or the quadrant

not containing the guard if there exist exactly two quadrants containing the maximum

number of robot positions and the minimum number of unsaturated parking nodes. The

guard moves only when each parking node except for one becomes saturated. As a result,

the quadrant non-adjacent to the quadrant containing the guard remains invariant. The

target parking node will be selected in Q++ unless each parking node in Q++ becomes

saturated. Eventually, there exists a time when each parking node in Q++ becomes

saturated. Hence, Q++ remains invariant.

Lemma 6.6.4. If the configuration is such that the parking nodes admit a unique line

of symmetry l, then during the execution of the algorithm Parking(), the target parking

nodes remain invariant.

Proof. The following cases are to be considered.

Case 1. There exists at least one unsaturated parking node on l. Let p be the target

parking node selected on l in the Target Parking Nodes Selection phase. As a result,

p is the unsaturated parking node on l, which has the highest order with respect to

O2. Since the ordering O2 depends only on the positions of the fixed parking nodes,

the ordering remains invariant while the robot moves towards it. Hence, p remains the

target parking node unless it becomes saturated.

Case 2. Each parking node on l is saturated and the configuration is asymmetric. The

following subcases are to be considered.

Subcase 1. There exists an unsaturated parking node in H+. Let p′ be the target

parking node in H+, selected in the Target Parking Nodes Selection phase. According to

Lemma 6.6.2, H+ remains invariant unless each parking node in H+ becomes saturated.

Since the ordering of the parking nodes is defined with respect to the leading corners and



6.6. Correctness 167

H+ remains invariant, p′ remains the target parking node unless it becomes saturated.

Hence, the target parking node remains invariant.

Subcase 2. Each parking node in H+ is saturated. Let p′′ be the target parking node

in H−, selected in the Target Parking Nodes Selection phase. It should be noted that a

parking node in H− is selected as a target parking node only when each parking node in

H+ becomes saturated. Since the ordering of the parking nodes is defined with respect

to the leading corners and H+ remains invariant, p′′ remains the parking node which has

the highest order in H− unless it becomes saturated. Hence, the target parking node

remains invariant.

Case 3. Each parking node on l is saturated and the configuration is symmetric. There

are two target parking nodes selected in two different half-planes. It should be noted

that the ordering of the parking nodes is defined with respect to the leading corner, and

the leading corners remain invariant while the robots move toward the target. While the

candidate robots move towards the target parking nodes, they remain the unsaturated

parking nodes with the highest order in their respective half-planes. Hence, the target

parking node remains invariant.

Lemma 6.6.5. If the configuration is such that the parking nodes admit rotational

symmetry, then during the execution of the algorithm Parking(), the target parking nodes

remain invariant.

Proof. The following cases are to be considered.

Case 1. There exists a parking node p on c, which is unsaturated. Since c is the center

of rotational symmetry for the parking nodes, it remains invariant while the robot moves

towards it. As a result, p remains the target parking node unless it becomes saturated.

Case 2. There does not exist a parking node on c or the parking node on c is saturated.

The configuration is asymmetric. First, assume that p ̸= pguard is the target parking

node. The following subcases are to be considered.

Subcase 1. The target parking node is selected in Q++. Let p′ be the target parking

node selected in Q++. As a result, p′ is the unsaturated parking node in Q++, which has

the highest order among all the unsaturated parking nodes inQ++. According to Lemma

6.6.3, Q++ remains invariant unless each parking node in Q++ becomes saturated. It

should be noted that the leading corners are defined with respect to the position of fixed
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parking nodes. The leading corners remain invariant while the robot moves toward the

target parking nodes. Since the ordering of the parking nodes is defined with respect

to the leading corners and Q++ remains invariant, p′ remains the target parking node

unless it becomes saturated. Hence, the target parking node remains invariant.

Subcase 2. The target parking node is selected on the wedge boundaries corresponding

to Q++. This implies that each parking node in Q++ becomes saturated. As Q++

remains invariant according to Lemma 6.6.3, the wedge boundaries corresponding to

Q++ remain invariant. Since the leading corners are defined with respect to the position

of fixed parking nodes, the unsaturated parking node with the highest order on the

wedge boundaries remains invariant. Hence, the target parking node remains invariant.

Subcase 3. The target parking node is selected on a quadrant adjacent to Q++. This

implies that each parking node in the wedge boundaries corresponding to Q++ becomes

saturated. It should be noted that since Q++ remains invariant, the quadrants adjacent

to Q++ remain invariant. As the leading corners are defined with respect to the position

of fixed parking nodes, the unsaturated parking node with the highest order on the

quadrants Q+− and Q−+ remains invariant. Hence, the target parking node remains

invariant.

Subcase 4. The target parking node is selected on the wedge boundaries corresponding

to Q+− and Q−+. Since Q+− and Q−+ remain invariant, the wedge boundaries corre-

sponding to Q+− and Q−+ remain invariant. As a result, the unsaturated parking node

having the highest order on the wedges remains invariant. Hence, the target parking

node remains invariant.

Subcase 5. The target parking node is selected in Q−−. This implies that each parking

node on the other quadrants and on the wedge boundaries becomes saturated. As a

result, at this stage of the algorithm, Q−− is the unique quadrant that has unsaturated

parking nodes. The target parking node is selected in Q−−, which is unsaturated and

has the highest order in Q−−. Since Q−− is the quadrant non-adjacent to Q++ and

Q++ remains invariant, the target parking node also remains invariant. Hence, the

target parking node remains invariant.

Let pguard be the target parking node. Note that pguard would be selected as the target

parking node only when each parking node becomes saturated. As a result, it remains

invariant.
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Case 3. There does not exist a parking node on c or the parking node on c is saturated.

The configuration is symmetric with respect to rotational symmetry. In that case, the

target parking nodes are selected as the unsaturated parking nodes with the highest

order. It should be noted that these targets are selected either on the quadrants or on

the wedge boundaries, and at any given time, there is a maximum of four parking nodes

selected as targets. Since the leading corners are defined with respect to the position

of fixed parking nodes, the parking nodes having the highest orders remain invariant.

Hence, the target parking nodes remain invariant.

Lemma 6.6.6. During the Candidate Robot Selection phase, the candidate robot remains

invariant.

Proof. The following cases are to be considered.

Case 1. C(t) is asymmetric. The candidate robot is selected as the robot that has

a shortest free path toward the target parking node. If there exists a unique such

robot, then while the candidate robot moves towards its target, it remains the unique

robot that has a shortest free path towards its target. Consider the case when there

are multiple such robots. Since C(t) is asymmetric, the robots are orderable. The

candidate is selected as the robot which has the highest order among such robots. While

the candidate moves an adjacent node toward the target, it becomes the unique robot

that has a shortest free path toward the target. The rest of the proof follows from the

previous case when there exists a unique robot that has a shortest free path toward the

target parking node. Hence, the candidate robot remains invariant.

Case 2. C(t) is symmetric with respect to a single line of symmetry l and the target

parking node is on l. The candidate robots are selected as the two symmetric robots that

have a shortest free path toward p. While they move toward p, they remain the robots

with a shortest free path toward p. If there are multiple such robots, the candidate

robots are the two robots with the highest order in their respective half-planes and have

a shortest free path toward p. While they move towards p, they remain the unique

robots in their respective half-planes that have a shortest free path towards p. Hence,

the candidate robot remains invariant.

Case 3. C(t) is symmetric with respect to a single line of symmetry l and the target

parking nodes are on the half-planes. It should be noted that in this case, a candidate
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robot is selected in each half-plane, for each target parking node. The candidates are

selected as the robots which have a shortest free path toward the target. While the

candidates move toward their respective targets, it remains the unique robot that has a

shortest free path toward their target. The proof proceeds similarly to the previous case

when there are multiple such robots for each target parking node. Hence, the candidate

robot remains invariant.

Case 4. C(t) is symmetric with respect to rotational symmetry and the target parking

node is on c. Depending on whether the angle of rotation is 90◦ or 180◦, two or four

candidate robots are selected. The robots with the shortest free path toward the target

are selected as candidate robots. While they move toward the target, they remain the

robots that have a shortest free path toward the target. Hence, the candidate robot

remains invariant.

Case 5. C(t) is symmetric with respect to rotational symmetry and the target parking

nodes are on the quadrants or on the wedge boundaries. It should be noted that in this

case, a candidate robot is selected in each quadrant or on the wedge boundaries, for each

target parking node. The candidates are selected as the robots which have a shortest

free path toward the target. While the candidates move toward their respective targets,

it remains the unique robot that has a shortest free path toward their target. Hence,

the candidate robot remains invariant.

Lemma 6.6.7. Procedure AllowtoMove() transforms any configuration in I221 ∪ I331
into an asymmetric configuration.

Proof. The proof follows from Lemma 5.4.7.

Theorem 6.6.8. Algorithm Parking() solves the Parking Problem in Infinite grids for

all configurations not belonging to the set U .

Proof. The algorithm Parking() proceeds according to the different classes of configura-

tions. The following cases are to be considered.

Case 1. C(0) ∈ I1: Since the parking nodes are asymmetric, the parking nodes are

uniquely orderable. The ordering remains invariant while the robots move toward the

target parking node. The target parking node can be selected in a unique manner.

According to Lemma 6.6.6, the candidate robot remains invariant while it moves toward
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the target parking node. While the target parking node contains a number of robots

equal to the capacity of the parking node, it becomes saturated. The process continues

unless each parking node becomes saturated. Hence, the algorithm Parking() solves the

parking problem for all configurations belonging to I1.

Case 2. C(0) ∈ I2: First consider the case when C(0) ∈ I21. In the Guard Selection

and Placement phase, a guard is selected and placed in such a way that the configuration

remains asymmetric during the execution of the algorithm. As a result, the configuration

C(t) /∈ U , for any t > 0. The target parking node is selected in the Target Parking Nodes

Selection phase, which remains invariant according to Lemma 6.6.4. The candidate

robot moves toward the target parking node. According to Lemma 6.6.6, the candidate

robot remains invariant while it moves toward the target parking node. When all the

parking nodes become saturated, the algorithm terminates. Next, consider the case

when C(0) ∈ I221. The procedure AllowtoMove() transforms the configuration into an

asymmetric configuration and the procedure proceeds similarly as before. If C(0) ∈ I222,
the target parking node is selected in the Target Parking Nodes Selection phase, which

remains invariant according to Lemma 6.6.4. The candidate robot moves toward the

target parking node. According to Lemma 6.6.6, the candidate robot remains invariant

while it moves toward the target parking node. The procedure terminates when all

the parking nodes become saturated. In case C(0) ∈ I223, first the parking nodes on l

become saturated and the rest of the procedure proceeds similarly as in the case when

C(0) ∈ I222.

Case 3. C(0) ∈ I3. First, consider the case when C(0) ∈ I31. The placement of

the guard in the Guard Selection and Placement phase ensures that the configuration

remains asymmetric during the execution of the algorithm Parking(). As a result, the

configuration C(t) /∈ U , for any t > 0. The target parking node is selected in the Target

Parking Nodes Selection phase, which remains invariant according to Lemma 6.6.5. The

candidate robot moves toward the target parking node. According to Lemma 6.6.6,

the candidate robot remains invariant while it moves toward the target parking node.

When all the parking nodes become saturated, the algorithm terminates. If C(0) ∈ I321,
then the procedure AllowtoMove() transforms the configuration into an asymmetric

configuration. The procedure Parking() proceeds similarly as before. If C(0) ∈ I322,
the target parking node is selected in the Target Parking Nodes Selection phase, which

remains invariant according to Lemma 6.6.5. The candidate robot moves toward the
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target parking node. According to Lemma 6.6.6, the candidate robot remains invariant

while it moves toward the target parking node. The procedure terminates when all the

parking nodes become saturated. In case C(0) ∈ I323, first the parking nodes on c

become saturated and the rest of the procedure proceeds similarly as in the case when

C(0) ∈ I322.

6.7 Conclusion

This chapter proposed a deterministic distributed algorithm for solving the parking

problem in infinite grids. The robots are placed at the nodes of an infinite grid graph,

which also includes some prefixed parking nodes. In the initial configuration, for each

parking node pi, there is a capacity ki, which is given as an input to the robots. We have

characterized all the initial configurations and the values of ki for which the problem is

unsolvable, even if the robots are endowed with strong multiplicity detection capability.

A deterministic algorithm has been proposed under the assumption that the robots are

endowed with global-strong multiplicity detection capability. We have also proved that

without this assumption, the parking problem is unsolvable.
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Conclusion

The main objective of this thesis has been the theoretical study of some variations of the

gathering problem, where the deployment region of the robots is an infinite grid graph.

In this chapter, we conclude the thesis by summarizing all the technical results from the

previous chapters and also highlighting some interesting directions for future research.

In Chapter 3, we studied the gathering over meeting nodes problem in an infinite grid

graph. We have proved that even if the robots are endowed with strong multiplicity

detection capability, some configurations remain ungatherable. These include the con-

figuration: which admits a single line of symmetry without any robots or meeting nodes

on the line of symmetry and those which admit rotational symmetry without any robot

or meeting node on the center of rotational symmetry. A distributed deterministic algo-

rithm has been proposed to solve the problem for a set of n ≥ 2 robots for the remaining

configurations. We have studied the efficiency of the proposed algorithm with respect

to the number of moves and analyzed the time complexity of the algorithm in terms of

epochs. The proposed algorithm solves the problem in Θ(Dn) moves, where D is the

larger side of the minimum enclosing rectangle and n is the number of robots in the

system. In terms of epoch, it requires Θ(D) epochs to accomplish the gathering task.

Problem 1: One future research direction would be to investigate randomized algo-

rithms to ensure gathering for configurations that have been shown to be ungatherable.
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Problem 2: The robots are assumed to be endowed with local-weak multiplicity detec-

tion capability. Considering the problem in a setting where the robots do not have any

multiplicity detection capability would be interesting.

In Chapter 4, we studied the optimal gathering over Weber meeting nodes problem in

infinite grids. The objective constraint is to minimize the total number of moves required

to accomplish the gathering. We have observed that if the robots gather at one of the

Weber meeting nodes, the total sum of the distances traveled by each robot in order to

accomplish the gathering is minimized. We have characterized all those configurations

where gathering over a Weber meeting node cannot be ensured, even if the robots have

global-strong multiplicity detection capability. These include the configuration: which

admits a single line of symmetry without any robots or Weber meeting nodes on the

line of symmetry and those which admit a rotational symmetry without any robot or

meeting node on the center of rotational symmetry. For the remaining configurations,

a distributed deterministic algorithm has been proposed to solve the problem for a set

of n ≥ 7 robots. In some initial configurations, the gathering cannot be ensured over a

Weber meeting node. However, the gathering may still be accomplished at one of the

meeting nodes. This includes the configuration that admits a single line of symmetry

without any Weber meeting nodes on the reflection axis, but at least one meeting node

exists on the axis. In that case, the feasibility of solving the problem has been studied.

Problem 3: The robots in this work have global-strong multiplicity detection capability.

One future direction could be to characterize all initial configurations in which optimal

gathering can be accomplished if the robots are equipped with global-weak multiplicity

detection capability.

Problem 4: One immediate direction for future research would be to consider the

problem under different optimization criteria. One optimization criterion would be to

study the min-max gathering over meeting nodes problem, where robots must gather at

a meeting point so that the maximum distance traveled by any robot is minimized.

Problem 5: Another future research direction would be to investigate the Optimal

Gathering over Weber Meeting Nodes in Infinite Grid problem with multiplicities in the

initial configuration.
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In Chapter 5, we studied the gathering over heterogeneous meeting nodes problem in

infinite grids. The initial configurations for which the gathering problem is not solvable

have been characterized and a distributed gathering algorithm has been proposed for

the remaining initial configurations. The number of robots is assumed to be at least five.

The efficiency of the proposed algorithm has been discussed in terms of the total number

of moves executed by the robots. The proposed algorithm runs in Θ(dn) moves, where d

is the diameter of the minimum enclosing rectangle of all the robots and meeting nodes.

We have also analyzed the time complexity of the algorithm in terms of the number of

epochs. The proposed algorithm terminates in O(dn) epochs. However, we have proved

that any algorithm that solves the problem requires O(d) epochs.

Problem 6: Another possible research direction would be to study distributed algo-

rithms that close the gap between the lower and upper time bounds of Gathering over

Heterogeneous Meeting Nodes problem.

The gathering algorithm is not optimal with respect to the exact number of moves

traveled by the robots in order to finalize the gathering. It would be interesting to

consider optimal algorithms that accomplish gathering by minimizing the number of

moves. We define this problem as the Min Sum Optimal Gathering over Heterogeneous

Meeting Nodes problem.

Problem 7: Investigate the Min Sum Optimal Gathering over Heterogeneous Meeting

Nodes problem.

In Chapter 6, we studied the parking problem in infinite grids. The robots are placed

at the nodes of an infinite grid graph, which also includes some prefixed parking nodes.

For each parking node pi, there is a capacity ki. We have characterized all the initial

configurations and the values of ki for which the problem is unsolvable. A deterministic

algorithm has been proposed for the remaining configurations to achieve the desired

goal.

In the initial configuration, we assumed that the number of robots equaled the sum of

the capacities of the parking nodes.

Problem 8: It would be interesting to investigate the problem in case the number of

robots is not equal to the sum of the capacities of the parking nodes.



176 Chapter 7. Conclusion

Contributions

Chapters Problem Assumptions Status

Chapter 3 Gathering over Meeting
Nodes Problem

ASY NC, local weak-
multiplicity capability

Solved for n ≥ 2
robots

Chapter 4 Optimal Gathering over
Weber Meeting Nodes
Problem in Infinite Grid

ASY NC, global-strong
multiplicity detection
capability

Solved for n ≥ 7
robots

Chapter 5 Gathering over Hetero-
geneous Meeting Nodes

ASY NC, global-weak
multiplicity detection
capability

Solved for n ≥ 5
robots

Chapter 6 Parking Problem in In-
finite Grids

ASY NC, global-strong
multiplicity detection
capability

Solved for n ≥ 2
robots

Table 7.1: Contributions

In case the number of robots in the initial configuration is less than the sum of the

capacities of the parking nodes, one interesting study could be to investigate the problem

with the objective of maximizing the number of saturated parking nodes. We define this

problem as the Maximum Saturated Parking Node Problem in infinite grids.

Problem 9: Investigate the Maximum Saturated Parking Node Problem in infinite grids.

We have investigated the different versions of the gathering over meeting nodes problem

in this thesis, where the robots are assumed to be transparent.

Problem 10: Another interesting problem would be to consider the problem under the

assumption that the robots are opaque.

Problem 11: Another variation of the problem could be to consider the gathering

problem by fat robots.

Another direction of future research would be to consider the complexity analysis of

the Algorithm Parking(). As a measure of complexity, either the total number of robot

movements or the time measured in epochs could be considered.

Problem 12: Analyse the complexity of the algorithm Parking().

The contributions of the thesis are summarized in Table 7.1.

The main objective of building such a system of robots is to solve real-life problems in an

efficient manner. The theoretical perspective of such systems has been the subject of ex-

tensive research over the past two decades. Another direction of future research could be
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to design algorithms for the model with limited visibility. Situations where the visibility

is limited to a certain radius would add more realistic insights into the problem. An-

other branch of research deals with human-centered intelligent robots. Human-centered

intelligent robots have become a significant area of research that covers all aspects of

robotic capabilities, including pattern recognition, intelligent control, navigation, motion

planning and human-robot interaction. We expect that combining the research in these

two fields in the future will lead to the development of a domain with strong theoretical

foundations and efficient practical applications.
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Fault-tolerant and self-stabilizing mobile robots gathering. In Shlomi Dolev, editor,

Distributed Computing, 20th International Symposium, DISC 2006, Stockholm,

Sweden, September 18-20, 2006, Proceedings, volume 4167 of Lecture Notes in

Computer Science, pages 46–60. Springer, 2006.
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Connectivity-preserving scattering of mobile robots with limited visibility. In

Shlomi Dolev, Jorge Arturo Cobb, Michael J. Fischer, and Moti Yung, editors,

Stabilization, Safety, and Security of Distributed Systems - 12th International

Symposium, SSS 2010, New York, NY, USA, September 20-22, 2010. Proceed-

ings, volume 6366 of Lecture Notes in Computer Science, pages 319–331. Springer,

2010.

[80] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier
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Wada. Gathering on rings for myopic asynchronous robots with lights. In Pascal

Felber, Roy Friedman, Seth Gilbert, and Avery Miller, editors, 23rd International

Conference on Principles of Distributed Systems, OPODIS 2019, December 17-

19, 2019, Neuchâtel, Switzerland, volume 153 of LIPIcs, pages 27:1–27:17. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[86] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi
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