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Abstract

Message Authentication Codes (or MACs) are symmetric-key primitives that ensure
the authenticity as well as the integrity of messages. The sender generates an authen-
tication tag (based on a message and a secret key) which can be verified on the re-
ceiver’s end. Two paradigms for building block cipher based MACs of the form Hash-
then-PRP: 1) Parallelizable or PMAC-type, 2) Sequential or CBC-type. PMAC, sPMAC,
PMAC1, LightMAC etc. are examples of PMAC-type MACs. Whereas OMAC, XCBC,
TMAC, GCBC are examples of CBC-type MACs. Obtaining length independent (tight)
bounds for these constructions has been a challenging problem. The goal of this thesis
is to obtain length independent (tight) bounds for as many important constructions as
possible and devise a novel technique that can be employed for various constructions
and has a scope of generalization.

PMAC-TYPE MACS: Firstly, in chapter 3, we demonstrate why a claim about tight se-
curity of a PMAC variant proposed by Naito is wrong. Together with that, we state a
necessary and sufficient condition to correctly establish that claim. Secondly, in the
same chapter, we propose a variant of PMAC1 which has tight security for a rea-
sonable range of message lengths. Then we prove the tight security of sPMAC for
a weaker notion of independence (of hash). Next, in chapter 4, we analyze secu-
rity bounds for LightMAC: We show tight security of 1k-LightMAC (single-key version
of the original LightMAC) which holds for a range of lengths (both upper and lower
bounded). Moreover, we show an attack on 1k-LightMAC for sufficiently small-length
messages. Besides we propose two new variants of 1k-LightMAC, namely, LightMAC-
swp and LightMAC-ds, both of which achieve length independent tight security for a
fairly good range of lengths. Here we employ a novel sampling technique, dubbed
“Reset-sampling”, as a subroutine of H-coefficient setup. It helps get tight bounds.
Then, in the last chapter (5) of this part, we try to get a generalized view of the PMAC
family. We develop technical concepts necessary to cover a large class of parallelizable
MACs of the form hash-then-PRP. As the main results of this chapter, we prove the se-
curity bound in terms of the collision probability of the underlying hash function, both
for independent keys and single-keyed versions of a generic member of the PMAC
family. As a corollary to this, we apply this result to get birthday-bound security for a
simplified version of PMAC+, under some assumptions. Moreover, a similar bound for
1k-LightMAC as well follows directly from the main result.

CBC-TYPE MACS: In chapter 6, we obtain O( q
2

2n + qℓ2

2n ) bound for OMAC using reset-
sampling . This is the best-known bound for it. Although it is not “length independent”
in an exact sense, it behaves almost like a birthday bound with some consideration. We
obtain similar bounds for XCBC and TMAC also. In this way, we become successful in
establishing tight security for all CBC-MAC variants, except the original one.
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Chapter 1

Introduction

1.1 Cryptology: A Brief Note on its Past and Present

It is often said that human civilization has been concerned with “secure” communica-

tion for ages. However, it is not entirely true. Most of the time in history, it has been

a direct concern for mainly those who held power, certainly not the majority of people.

The insecurity of losing political power compelled the rulers of a society to take the

question of “secure” exchange of information seriously. In ancient ages, Kings had pro-

moted the knack of “code-making” (as well as “code-breaking”) which was nothing

but a nascent form of Cryptology.

However, it is only very recently that Cryptology has emerged as a scientific discipline

for studying secure communication through insecure channel. The journey from Classical

Cryptology to Modern Cryptology attained a qualitative leap just around the middle of

the last century. A huge range of factors is behind this development. Not delving much

into that, we can certainly say that the modern aspect of worldwide communication

has made the question of “secure” communication a universal concern unlike before.

Moreover, with the advent of the Internet and modern communicative capitalism, a

complex relationship between the interests of the state and its citizens (and also among

different groups of citizens) regarding the question of security/ secrecy has arisen. The

question of security has manifested itself in many antagonistic forms like in the debate

of surveillance vs privacy [27]. We can find a detailed history of the development of

Cryptology in [56] – tracing its long journey from the ancient past to the present time

of Internet.

Although sometimes, the two terms Cryptography and Cryptology are used interchange-

ably, Cryptology is actually a more general term [57]. It, as a discipline, contains two

3



Chapter 1. Introduction 4

complementary sub-disciplines: Cryptography and Cryptanalysis. Cryptography deals

with designs of schemes for secure communication, whereas, Cryptanalysis deals with

analyzing attacks on those schemes.

The modern journey of Cryptology started only after Claude Shannon laid the founda-

tions of the area of information theory and cryptology in proper mathematical terms

and rigor. Modern Cryptology is based on mathematical concepts like probability, com-

plexity theory, number theory, etc. Shannon’s two papers, named A Mathematical The-

ory of Communication [88] and Communication Theory of Secrecy Systems [89], in 1948–49,

were pioneering in the area of Modern Cryptology. Together with these two works, an-

other seminal paper by Diffie and Hellman needs to be mentioned. In their paper New

Directions in Cryptography [31], published in 1976, they made some new identifications

or security goals like integrity, authenticity etc. These new aspects add to the previously

existing dimensions of confidentiality.

There are two paradigms for modern cryptographic schemes [92]: Symmetric-key (or se-

cret key) and Assymetric-key (or public key). In symmetric-key setting, a common secret

key is shared beforehand. The encryption and decryption of the messages (or plain-

texts) use this shared key. Whereas in a public key setting, each communicating party

holds different keys for the encryption and decryption processes. Except for the pre-

requisite of some key-sharing protocol, symmetric-key schemes are much faster than the

public ones in a computational sense. However, these two paradigms are “complimen-

tary” in a way since these initial key-sharing protocols required for any symmetric-key

setting do not follow the symmetric-key paradigm itself. Instead, they are part of the

public key cryptographic world. Thus most of the modern real-world communication

protocols are a mixing of both symmetric and public key protocols.

In this thesis, we will be confined to the symmetric-key cryptographic setting, without

being bothered about initial key-sharing protocols.

1.2 Provable Security in symmetric-key Cryptography

SECURITY OBJECTIVES: Data confidentiality (or privacy) and data authenticity (and a

related idea of data integrity) are the basic objectives of any cryptographic scheme.

Confidentiality ensures that a third party does not be able to eavesdrop when there is

communication between two parties (through an insecure channel). Whereas, data au-

thenticity (or integrity) ensures that one party after recieving a secret information from

another party gets able to verify whether she has got the information from the authen-

tic sender (or the secret information has not been tampered midway). Encyption schemes
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like CTR [79], CBC encryption [79], OCB encryption [59, 85, 86], CMC [43], EME [44],

HCTR [94], HEH [87] etc. are designed to fulfil the purpose of confidentiality. Mes-

sage Authentication Codes or MACs like CBC family [5, 9, 10, 15, 37, 47, 60, 97], ECBC

[84], FCBC [84], EMAC [84], PMAC variants [16, 39, 85, 98, 99], XMACR [6], PCS [12],

LightMAC [62], LightMAC+[69] etc ensure data authenticity as well as integrity. Authen-

ticated encryption schemes like OCB family [59, 85, 86], GCM [63], CCM [80], COLM [2]

etc. ensure both confidentiality and authenticity.

PROVABLE SECURITY: Defining these security objectives in a precise mathematical way

(with respect to a probabilistic game-playing model) and obtaining security bounds as

mathematical proofs constitute the domain of operation of provable security.

In general, any cryptographic scheme consists of two things: a primitive and a mode of

operation. Blockciphers such as AES [77] which operate on short (and fixed length) mes-

sages are used as primitives. Security results of the primitives are proven heuristically,

mostly depending upon its analysis over a long period of time. Modes of operation like

CBC or PMAC are used to accodomodate messages with variable length. Any mode

of operation is based upon a primitive. Security results for modes of operation are

information-theoretic results, i.e., an adversary is allowed to have unbounded amount of

time.

1.3 Message Authentication Codes

Message Authentication Codes (or MACs) are symmetric-key scheme, which ensure

message authenticity as well as integrity. A MAC schemeM is a pair of two algorithms:

• M+ – an algorithm which generates an authentication tag

• M− – an algorithm which verifies the authenticity of a tag

The basic principle of a MAC schemeM, instantiated with a secret key K, is as follows:

Whenever the sender wants to send a message m to the receiver, she sends (m, t), where

the authentication tag t is the output of the tag generating algorithm, i.e., t =M+(K,m).

When the receiver receives a pair (m′, t′) of message and tag, she runs the verifying

algorithmM−(K,m′, t′), which checks the equality t′ =? M+(K,m′). See section 2.2.3

of chapter 2 for a formal definition of MAC.

There are several ways to construct MAC schemes. Non-deterministic MACs are con-

structed using nonces (an extra input other than the message and key). In deterministic

MAC schemes, no nonce is used. A detailed discussion on this can be found in [51].
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NONCE BASED MACS: Constructions like Wegman-Carter (WC) MACs [96], WMAC

[14], XMACC [6], EWCDM [26], DWCDM [30], nEHtM [36] etc, are examples of stateful

MACs. Nonce repetition is either strictly non-permissible or permissible in a restricted

way in these cases. For examples, security of WC MAC is compromised when a nonce

repeats, but in case of EWCDM or DWCDM, beyond birthday bound security is achived

for unique nonce and birthday bound security for repeating nonce. In a different style,

in some constructions such as XMACR [6], MACRX [7], RMAC [50], FRMAC [49], EHtM

[66], RWMAC [66] etc, nonce values are sampled at random for each invocation of the

algorithm. One thing is common in all these constructions: block cipher (or, keyed

family of random permutations) is used as the underlying primitive. However, this is

not the whole scenario. Some nonce based constructions use public permutations as their

building blocks also.

MACS BASED ON PUBLIC PERMUTATIONS: In [34], Dutta and Nandi discussed why

using block cipher as primitive is not the only option for building nonce based MACs.

They replaced the block cipher in nEHtM with a public (random) permutation and

dubbed the new constructions as nEHtMp. They also showed that nEHtMp achieves

beyond birthday bound security.

In this thesis, we will study block cipher based deterministic MAC schemes of the form

hash-then-PRP. We will focus on two paradigms covering a large class of these kinds of

MACs:

• Parallelizable or PMAC-type MACs

• Sequential or CBC-type MACs

Before entering into the discussion on these two types, we mention some other deter-

ministic schemes of block cipher based MACs.

BLOCK CIPHER BASED MACS NOT OF THE FORM HASH-THEN-PRP: A good number

of deterministic, block cipher based MAC schemes fall under the category of Double

Block Hash-then-Sum or DbHtS [29]. Constructions like Sum-ECBC [97], PMAC+[98],

3kf9 [100], LightMAC+[69] had been proved to be beyond birthday bound secure DbHtS

constructions by Datta et al. [29] and Kim et al. [58]. However, recently Shen et al. [90]

has enhanced these results and made the beyond birthday bound securities valid also

in case of multi-users.



Chapter 1. Introduction 7

π π . . . ππ

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

m[1] m[2] m[ℓ− 1]

γ1∆ γ2∆ γℓ−1∆
0

∆ ⊕⊕⊕ ⊕⊕⊕. . . ⊕⊕⊕ π

padn(m[ℓ])

t

Figure 1.3.1: PMAC: Here, γ1, γ2, . . . is the sequence of Gray code and π is a keyed
block cipher (or a random permutation when we analyze the construction).

1.3.1 PMAC-type MACs

PMAC VARIANTS: The majority of block cipher based MACs iterate a block cipher in

a sequential manner (e.g., Cipher Block Chaining or CBC)[9, 11, 15, 37]. On the other

hand, PMAC, introduced by Black and Rogaway [16], is a parallelizable block cipher

based MAC. A slightly simplified version of PMAC based on an n-bit block cipher eK
can be described as follows (also illustrated in Fig. 1.3.1):

PMACK(m1, . . . ,mℓ) := eK
(
eK(m1 ⊕ γ1 ·∆)⊕ · · · ⊕ eK(mℓ ⊕ γℓ ·∆)

)
where m1, . . . ,mℓ are n-bit elements, called blocks. The sequence of constants γ1, γ2, . . .

is known as the Gamma code. Due to its full parallel nature, PMAC can possibly outper-

form sequential block cipher based MACs significantly under parallel implementation.

We believe it is worth re-evaluating PMAC-type constructions under the current trend

of “parallelizable” (pipeline, super-scalar, vector, and multi-core) CPUs. A forthcoming

vectorized AES instruction [32] can make AES-based parallel design much faster.

The designers of PMAC proved an upper bound of σ2/2n on the PRF-advantage for any

adversary making a total of q queries, each of length at most ℓ blocks (of n-bits), and

a total of σ ≤ ℓq blocks. This was later improved to ℓq2/2n by Minematsu and Mat-

sushima [67], and then to qσ/2n by Nandi and Mandal [76]. Recently, Luykx et al. [61]

showed that one can construct a pair of messages which will collide with probability

roughly ℓ/2n, leading to a distinguishing attack with advantage ℓ/2n for q = 2. Later

Gaži et al. [40] constructed a q-query distinguishing attack for PMAC with advantage

ℓq2/2n. However, this attack requires a large coset in the order of ℓ in ℓ consecutive

masking elements. They have shown that the Gray code (used in the original PMAC)

contains such a large coset. However, an existence of such large cosets for other types

of masking (e.g., xtimes based masking in PMAC 1 [85]) is still an open problem.

LIGHTMAC: Lightweight cryptography endeavors to safeguard communications in

resource-constrained environments. The advent of Internet of Things has given a great
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impetus to this field of research in the last decade or so. As a result, several standard-

ization efforts have tried to systematize the field, most notably the CAESAR competi-

tion [20], NIST lightweight cryptography standardization project [78], and the ISO/IEC

standardization [1]. Specifically, the ISO/IEC-29192-6:2019 standard [1] specifies three

message authentication code (or MAC) algorithms for lightweight applications. MACs

are symmetric-key primitives that achieve data authenticity and integrity. The ISO/IEC

standard recommends LightMAC [62], Tsudik’s keymode [93] and Chaskey-12 [68] as

the three MAC algorithms. In this paper, we focus on LightMAC.

LightMAC, by Luykx et al. [62], is a parallelizable block cipher-based MAC. For an n-

bit block cipher E instantiated with keys K1 and K2, and a global parameter s < n, a

simplified1 version of LightMAC can be defined as:

LightMACK1,K2
(m) := EK2(EK1(x[1])⊕ · · · ⊕ EK1(x[ℓ− 1])⊕m[ℓ]∥10s−1), (1.1)

where (m[1], . . . ,m[ℓ]) denotes the (n − s)-bit parsing of the input message m, and

x[i] = ⟨i⟩s∥m[i] for 1 ≤ i ≤ ℓ − 1, where ⟨i⟩s denotes the s-bit binary representation of

x. For obvious reasons s is also called the counter size. The counter-based encoding

in LightMAC is inherited from some earlier MAC designs such as the XOR MACs by

Bellare et al. [6] and Bernstein’s protected counter sums [12]. The use of counter-based

encoding limits the rate—ratio of the number of n-bit blocks in the message m to the

number of block cipher calls required to process m. For example, LightMAC requires 4

calls to process a message of length 3n bits when the counter size s = n/4, whence the

rate is 3/4. Ideally, the rate should be as high as possible, with rate 1 or higher consid-

ered as holy grail. Dutta et al. [35] give optimal counter-based encoding strategies for

some scenarios, resulting in significant speed-up. However, LightMAC still falls short

on this account when compared to some other MAC schemes such as OMAC [47] and

PMAC [16] etc.

EK1 EK1
. . . EK1

⟨1⟩s∥m[1] ⟨2⟩s∥m[2] ⟨ℓ− 1⟩s∥m[ℓ− 1]

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ EK2 t. . .

padn(m[ℓ])

Figure 1.3.2: LightMAC evaluated over an ℓ-block padded message m.

This construction and its security analysis are very similar to that of PCS [12]. These

constructions can be viewed as the hash-then-PRP or hash-then-PRF composition [18]

and hence the PRF-advantage is bounded by the collision probability of the underlying
1assuming all messages have length (n− s)r for some 1 ≤ r ≤ 2s.
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hash. The designers of LightMAC (similar to the analysis of PCS) have proved that

underlying hash of the construction has about 1/2n collision probability for any pair

of messages. This would prove the PRF-advantage is about q2/2n which is easily seen

to be tight. However, the above composition cannot be applied when both underlying

hash and the final block cipher call use same key. However, following the analysis of

[75], the single key variant (i.e. LightMACK,K) can be shown to have σq/2n or ℓ · q2/2n

PRF-advantage.

However, LightMAC design is quite simple as it minimizes all auxiliary operations other

than the block cipher call, which reduces the overhead to a minimum. For this reason,

LightMAC is expected to have more compact implementations as compared to PMAC.

Further, LightMAC is parallelizable like PMAC which enables it to exploit the parallel

computing infrastructure, whenever available. As a result, LightMAC is a quite flexible

algorithm, as it has qualities suitable for both memory-constrained environments as

well as high performance computing.

1.3.2 CBC-type MACs

Given an n-bit block cipher E instantiated with a key K, the CBC-MAC construction

is defined recursively as follows: For any x ∈ {0, 1}n, CBCEK
(x) := EK(x). For all

m = (m[1], . . . ,m[ℓ]) ∈ ({0, 1}n)ℓ where ℓ ≥ 2,

0n ⊕⊕⊕

m[1]

EK ⊕⊕⊕

m[2]

EK ⊕⊕⊕

m[3]

· · · ⊕⊕⊕

m[ℓ]

EK t

Figure 1.3.3: Evaluation of CBCEK
function over an ℓ-block message m..

we define

CBCEK
(m) := EK(CBCEK

(m[1], . . . ,m[ℓ− 1])⊕m[ℓ]) (1.2)

For constructions like ECBC, FCBC and EMAC, Pietrzak [84] showed a bound of O(q2/2n)

for ℓ < 2n/8. Later, Jha and Nandi [52] discovered a flaw in the proof of the earlier

bound and showed a bound of O(q/2n/2) up to ℓ < 2n/4. However, in these construc-

tions an extra (independent) block cipher is called at the end. Considering the num-

ber of block cipher calls, XCBC [15, 67], TMAC [60, 67] and OMAC [47, 74] are better

choices (see chapter 6 for more details). XCBC uses two independent masking keys

for the last block which are used depending on whether the last block is padded or

not. In case of TMAC, these two keys are not independent but one is derived from the

other. OMAC is much better in this respect. Here both keys are derived from the block

cipher only. Classical bound for these constructions was O(σ2/2n) [15, 60], σ being
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the total number blocks among all messages. Later in a series of work [48, 67, 74, 76]

the improved bounds for XCBC, TMAC, PMAC and OMAC are shown in the form of

O(q2ℓ/2n), O(σ2/2n) and O(σq/2n).

1.4 Outline of the Thesis: Motivation and Contributions

LENGTH INDEPENDENT SECURITY BOUNDS: It is well-known [8, 41, 75] that variable

input length (VIL) pseudorandom functions (or PRFs) are good candidates for deter-

ministic MACs. Indeed, almost all the security bounds on deterministic MAC schemes,

in fact, quantify their PRF security. In the following discussion q and ℓ denote the num-

ber of queries and an upper bound on query-length, respectively.

In applications where we process large messages or where most of the messages are

of lengths much smaller than ℓ, a bound of the form O(q2/2n) (length independent)

is much desired, as compared to say a bound of O(ℓq2/2n). However, “length inde-

pendence” in absolute sense is not achievable in these cases. We can at most obtain

bounds where ℓ terms can be dropped for suitable ranges of ℓ. Key motivation of this

thesis is to have tight bounds (which are “length independent” in this sense) for as

many important PMAC-type and CBC-type MAC constructions as possible. Moreover,

another motivation is to develop a general strategy of getting these kinds of bounds.

Chapterwise motivation and contributions are given below.

1.4.1 PMAC Variants

MOTIVATION: With respect to designs like PMAC, Gaži et al. [39] proved O(q2/2n)

bound for a simplified variant of PMAC, called sPMAC, albeit with comparatively ex-

pansive masking methods. For example, the masking function should be a 4-wise in-

dependent function. Most efficient algebraic instantiations of such a function require

at least four keys and several field multiplications. Very recently, Naito [70] proposed

a variant of PMAC1, which uses two powering-up maskings (instead of one used in

PMAC1). He showed O(q2/2n) advantage provided ℓ ≤ 2n/2.

OUR CONTRIBUTIONS: Our contributions are threefold –

1. REVISITING NAITO’S VARIANT OF PMAC1: As of now, Naito’s PMAC1 variant

[70], sometimes also referred as NPMAC in this paper, is the only known rate-1

PMAC-like construction that achieves ℓ-free security bound (for ℓ < 2n/2). We
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show that the security analysis of this construction is incorrect (see Section 3.2). Fur-

ther, we state an equivalent problem which must be solved to prove the ℓ-free

security of this construction. However, we are not able to solve that equivalent

problem. So the exact security of Naito’s variant is still an open problem. Naito

subsequently updated the construction [72] in light of our observations. This up-

dated variant achieves ℓ-free security for ℓ < 2n/2 (see Section 3.3).

2. RELAXING THE SECURITY PRECONDITION FOR sPMAC: In [39], sPMAC is shown

to have ℓ-free security bound up to ℓ < 2n/2 when the underlying masking func-

tion is 4-wise independent hash. We relax the 4-wise independence condition to 2-wise

almost XOR universality (see Section 3.3).

3. PMAC2 – A SIMPLE VARIANT OF PMAC1: As we still lack of an ℓ-free secure

PMAC variant with efficient masking function, our next part is aimed to solve

this problem. We propose a simple variant of PMAC1, called PMAC2, and we

show almost tight security O(q/2n/2) (see Table 1.4.2). More precisely, we prove

the following theorem (in Section 3.5).

Security Analysis of PMAC2: Let ℓ denote the number of blocks present in the

longest query and σ denotes the total number of blocks present in q queries alto-

gether. Then,

Advprf
PMAC2(q, ℓ, σ) ≤

2q2 + σ

2n
+ µ

where µ ≤ q
2n/2 if ℓ ≤ 2n/4 and µ ≤ σ1.5

2n if 2n/4 < ℓ ≤ 2n−2.

Table 1.4.1: A comparative summary of several PMAC variants. Here q denotes the
number of queries, ℓ denotes the upper bound on query-length, and σ denotes the

upper bound on total number of blocks present in all queries.

Mode Security bound Length restriction Number of masking keys

PMAC [16] q2ℓ/2n - 1

PMAC1 [85] q2ℓ/2n - 1

NPMAC1 [70] q2/2n ℓ < 2n/2 2

PMAC3 [72] q2/2n ℓ < 2n/2 3

PMAC2[Section 3.5] q/2n/2 ℓ ≤ 2n/4 1

σ1.5/2n 2n/4 < ℓ ≤ 2n−2 1

1 The security analysis of this construction is shown to be incorrect in this paper.

Publication status: Chapter 3 is based on our paper [22], published in IACR Transac-

tions of Symmetric Cryptology 2021(2).
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1.4.2 LightMAC and its single-key variants

MOTIVATION: ISO standards are widely used in communication protocols such as TLS,

Bluetooth protocol, Zigbee etc. Being an ISO standard for lightweight cryptography,

LightMAC is also widely recognized as a suitable MAC candidate for deployment

in resource-constrained environments. Possibly, its simple and compact design and

query-length independent security are the main reasons behind this perception. On a

closer look, we see that the two independent keys greatly simplify the security argu-

ment of LightMAC. Due to the independence of keys, it can be viewed as an instance of

the Hash-then-PRF paradigm [9, 95], and hence the PRF security bound follows directly

from LightMAC output collision probability.

However, maintaining two block cipher keys could be a burden in memory-constrained

environments. Currently LightMAC with 2 keys requires 256 bits for key (128-bit block

cipher key). Instead, one-key variants of LightMAC use 128 bits, which is a signifi-

cant optimization in memory footprint both in hardware and software. The problem

is further aggravated when implementations store precomputed round keys to reduce

latency. For example, in case of AES128 [77], this precomputation would require 176

bytes of memory per key. This motivates us to look into the problem of minimizing

the number of keys in LightMAC, while maintaining the query-length independence.

Specifically, we ask the following question:

† : Is there a single-key LightMAC variant which achieves similar query-length independent

bounds as two-key LightMAC?

As it turns out, the answer to this question is not straightforward. Recall the description

of LightMAC from Eq. (1.1). Let yi := EK1(xi) and y⊕ := y1 ⊕ · · · ⊕ yℓ−1 ⊕ mℓ∥10s−1.

We call xi and yi the i-th intermediate input and outputs, respectively and y⊕ and t =

EK2(y
⊕) the final input and output, respectively. There are two non-trivial bottlenecks

(see section 4.1.2) in answering the above questions:

1. Collisions between intermediate input and final input, and

2. Collisions between intermediate output and final output.

The naive way to handle these two cases is to bound the probability of these events to

O(q2ℓ/2n) as there are at most qℓ intermediate inputs/outputs and q final inputs/out-

puts. Clearly, this naive approach leads to a degradation in the security. So,

⋆ : we need a more sophisticated strategy to prove the security of single-key LightMAC.
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Yet another approach is to explicitly separate the final inputs from intermediate inputs

by fixing some input bit to 0 in intermediate inputs and 1 in final inputs. This will help

in resolving the first bottleneck. However, the second bottleneck is still present. Hence,

the resulting construction is not as straightforward as two-key LightMAC. Further, do-

main separation also introduces slight changes in the standardized design, which is not

appreciated by end-users, in general. So,

⋆⋆ : variants with very small modifications over the original LightMAC algorithm will be

preferred.

In this paper, we aim to answer † in affirmative using ⋆ and ⋆⋆ as general guidelines.

OUR CONTRIBUTIONS: Our contributions are twofold:

First, in section 4.2, we study the single-key LightMAC, denoted as 1k-LightMAC, and

give the following results:

(A) 1k-LightMAC is as secure as two-key LightMAC, while the query-lengths are lower bounded

by (n − s) bits and upper bounded by (n − s)min{2n/4, 2s} bits. In other words,

we show a security bound of O(q2/2n) for 1k-LightMAC, while (n − s) ≤ ℓ ≤
(n− s)min{2n/4, 2s}.

(B) To justify the lower bound on the message length ℓ in the aforementioned result,

we demonstrate an O(n)-query forgery attack on 1k-LightMAC when the adversary is

allowed to make short queries of length less than (n− s) bits.

Second, in section 4.4, we propose two close variants of 1k-LightMAC, dubbed as LightMAC-

swp and LightMAC-ds and show the following results:

(C) LightMAC-swp — a variant of 1k-LightMAC, obtained by swapping the position of

message blocks and counter values — is as secure as two-key LightMAC while ℓ ≤
(n − s)min{2n/4, 2s}. Note that the security result for LightMAC-swp does not

require the lower bound on ℓ.

(D) LightMAC-ds — a variant of 1k-LightMAC, obtained by introducing a 1-bit domain

separation — is asymptotically as secure as two-key LightMAC, i.e., it achieves security

bound of O(q2/2n) while ℓ ≤ (n−s)2s−1. The restriction on length is due to the loss

of 1-bit from counter for domain separation.

In order to circumvent the two bottlenecks discussed in section 4.1.2, we use a novel

sampling approach, called the reset-sampling – a proof style much in the same vein as
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Table 1.4.2: A comparative summary of several birthday-bound block cipher based
MAC algorithms. Here q denotes the number of queries, ℓ denotes the bound on

query-length, and s denotes the counter size.

Mode #BC Keys Aux. memory1 PRF Bound Restriction2

EMAC [5, 10] 2 0 O
(

q

2n/2

)
[52] ℓ ≤ n2n/4

ECBC,FCBC [15] 3 0 O
(

q

2n/2

)
[53] ℓ ≤ n2n/4

XCBC [15] 1 2n O
(

q2ℓ
2n

)
[67] ℓ ≤ n2n/3

OMAC [47] 1 n O
(

q2ℓ
2n

)
[73] ℓ ≤ n2n/4

PMAC [16] 1 n Θ( q
2ℓ
2n

) [39, 67, 76] -

PMAC3 [70] 2 3n O
(

q2

2n

)
[22, 70] ℓ ≤ n2n/2

LightMAC [1, 62] 2 s O
(

q2

2n

)
[62] ℓ ≤ (n− s)2s

1k-LightMAC 1 s O
(

q2

2n

)
(n− s) ≤ ℓ ≤ (n− s)min{2n/4, 2s}

LightMAC-swp 1 s O
(

q2

2n

)
ℓ ≤ (n− s)min{2n/4, 2s}

LightMAC-ds 1 s O
(

q2

2n

)
ℓ ≤ (n− s)2s−1

1 The memory used to store masking keys or counter value.
2 Upper bound on query-lengths for which the given security bound holds.

the reprogramming of random oracles [38]. At the highest level, reset-sampling can

be viewed as a subroutine in H-coefficient [82, 83] or Expectation method [45] based

proofs that can be employed in order to transform a possibly bad transcript into a good

transcript given that certain conditions are fulfilled. In other words, it resets some bad

transcript into a good transcript. For example, in our analysis of 1k-LightMAC and

LightMAC-swp, we reset the intermediate outputs appropriately whenever the corre-

sponding intermediate input collides with some final input.

Table 1.4.2 gives a comparison of LightMAC, 1k-LightMAC, LightMAC-swp, and LightMAC-

ds with several popular birthday-bound block cipher based MAC mode of operation.

We deliberately refrain from enumerating beyond-the-birthday bound modes for a fair

comparison, as they require relatively more memory and/or key material (due to the

BBB security requirement). From the table, it is clear that the four LightMAC candidates

are overall better than other modes considering security vs block cipher key size and

security vs auxiliary memory. Further, 1k-LightMAC is almost as good as LightMAC as

long as (n− s) ≤ ℓ ≤ (n− s)min{2n/4, 2s}.

PRACTICAL SIGNIFICANCE: Our results are restricted in terms of the length of mes-

sages, especially, 1k-LightMAC which effectively bounds the message length to roughly

235.5 bytes for 128-bit block size. However, we believe that this is a minor issue. Indeed,

many real life communication protocols limit the message lengths to much less than 1
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Gigabyte. For example, SRTP [3] limits the payload length to at most 1 Megabyte. So,

the impact of length restriction could, in fact, be minimal in most applications. Further-

more, we emphasize that 1k-LightMAC can be used as a drop-in replacement, since the

required changes are minimal. This is particularly a compelling feature for the intended

application area of the ISO/IEC-29192-6:2019 standard, i.e. resource constrained envi-

ronments, where additional deployment or maintenance cost is highly undesirable. In

summary, our results have significant practical importance due to the ISO/IEC stan-

dardization of LightMAC and the inherent advantages of 1k-LightMAC, LightMAC-swp,

and LightMAC-ds over LightMAC.

Publication status: Chapter 4 is mostly based on our paper [23], published in Advances

in Cryptology – ASIACRYPT 2021. The complete chapter is based on an extended version

of this paper.

1.4.3 PMAC family: Towards a generalization

MOTIVATION: The main motivation of this chapter is to have tight analysis of a wide

class of single keyed PMAC-type constructions. This might help us to find some par-

allel constructions which could have ℓ-free PRF advantage. Let us first consider a

variant of single keyed LightMAC in which we apply domain separation to the final

block cipher call with the other intermediate calls. More precisely, let the final out-

put be eK(1∥HK(m1, . . . ,mℓ)) where HK(m1, . . . ,mℓ) = chop1(eK1(0∥m1∥⟨1⟩s) ⊕ · · · ⊕
eK1(0∥mℓ∥⟨ℓ⟩s)) and chopt denotes the function which chops t bits. One may think that

the analysis of this construction would be similar to the two-keyed LightMAC and hence

we may get ℓ-free bound for it. Unfortunately, the hash-then-PRP analysis is still not

applicable to this single-key (or dependent system) setting. As the final inputs cannot

collide with other intermediate inputs, the q final outputs are stochastically dependent

with the internal ℓq outputs, since they cannot collide due to the domain separation.

Hence, proving q2/2n bound for this variant is still not obvious.

OUR CONTRIBUTIONS: We first define a family of parallelizable hash functions, de-

noted as xPHash, based on block cipher. The parallelizable MAC, denoted as xPMAC,

is simply a hash-then-PRP where the hash function is xPHash. Many known parallel

designs fall into this class. For example, PMAC, PMAC 1, LightMAC are instantiations

of this general construction.

In this paper we analyze this class when it is instantiated by the single key, i.e., the key

of the final call of the block cipher is same as that used in the hash computation. Let

xPMAC be such a construction with an underlying hash function xPHash. In Theorem
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5.2.1 of in Sect. 5.1, we show that PRF-advantage of xPMAC is at most

O(
q2

2n
) + collxPHash(q, ℓ), ∀ℓ ≤ 2n/4 (1.3)

where collxPHash(q, ℓ) denotes the collision probability of the underlying hash function.

A similar result also holds for a single-keyed construction (as shown in Theorem 5.2.2

in Sect. 5.1). In almost all constructions the collision probability is at least q2/2n and

hence the collision probability is the tight estimate of the PRF advantage. So, our result

mainly reduce the PRF advantage computation to get an exact estimate of the maxi-

mum collision probability.

• The collision probability for the hash LightHash (the underlying hash for Light-

MAC) is about 1/2n. So we can conclude that the single keyed version of Light-

MAC has PRF advantage about q2/2n which is clearly tight.

• Under some reasonable assumption, the same tight bound is true for PMAC where

the masking of PMAC+ is used instead of the Gray coding.

This masking of PMAC+ is a 2-wise independent function. Gazi et al. proved the col-

lision probability of the hash of PMAC based on 4-wise independent masking is about

1/2n. They have also showed a counter-example of 2-wise independent masking for

which the collision probability is ℓ/2n. However, we have shown that the optimum

collision probability can be achieved by a 2-wise independent masking.

Publication status: A research paper based on chapter 5 is in preparation for submis-

sion.

1.4.4 OMAC, XCBC and TMAC

MOTIVATION: Continuing the discussion in section 1.3.2, we can further state an inter-

esting fact: in [55], Jha et al. showed that if we use PRF instead of a block cipher in

these constructions there is an attack with roughly Ω(q2ℓ/2n) advantage which is tight.

No such attack is known in presence of block cipher. This gives an implicit motivation

to study the exact security of these constructions in presence of block ciphers. In this

chapter we aim to show birthday-bound security for these block cipher based MACs

for a suitable range of query-length.

In a different paradigm but with similar motivations, recently Chattopadhyay et al.

[23] showed birthday-bound security for another standardized MAC called LightMAC

[62]. However, similar result for original PMAC [16] is still an open problem (although
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a result is available for its variant in [22]). In addition to the improved bound for Light-

MAC, Chattopadhyay et al. proposed a new proof approach called the reset-sampling

method. They also hinted (via a very brief discussion) that this method could be useful

for proving better security for OMAC. However, the discussion in [23] is over-simplistic

and contains no formal analysis of bad events. Indeed, the reset-sampling is more in-

volved than anticipated in [23], giving rise to some crucial and tricky bad events. To

their credit, they do say that

A more formal and rigorous analysis of OMAC using reset-sampling will

most probably require handling of several other bad events, and could be

an interesting future research topic.

In this chapter of the thesis, we take up this research topic and give a complete and

rigorous analysis.

OUR CONTRIBUTIONS: In section 6.1, we show that the PRF advantages for OMAC,

Table 1.4.3: Summary of security (PRF advantage) bounds for the CBC-MAC family.
Here n, q, ℓ, and σ denote the block size, number of queries, maximum permissible

message length, and sum of message lengths of all q queries, respectively.

Scheme
State-of-the-art This paper

Bound Restriction Bound Restriction

CBC-MAC [37] O (σq/2n) [52, 53] ℓ = o
(
2n/3

)
- -

EMAC [5, 10] O
(
q2/2n

)
+O

(
qℓ2/2n

)
[52, 53] - - -

ECBC [15] O
(
q2/2n

)
+O

(
qℓ2/2n

)
[52, 53] - - -

FCBC [15] O
(
q2/2n

)
+O

(
qℓ2/2n

)
[52, 53] - - -

XCBC [15]
O

(
q2ℓ/2n

)
[67]1 ℓ = o

(
2n/3

)
O

(
q2/2n

)
+O

(
qℓ2/2n

)
-

O
(
σ2/2n

)
[48]1 -

TMAC [60]
O

(
q2ℓ/2n

)
[67]1 ℓ = o

(
2n/3

)
O

(
q2/2n

)
+O

(
qℓ2/2n

)
-

O
(
σ2/2n

)
[48]1 -

OMAC [47] O (σq/2n) [74] ℓ = o
(
2n/3

)
O

(
q2/2n

)
+O

(
qℓ2/2n

)
-

1 σ2 and q2ℓ are incomparable, as they depend on the query length distribution.

XCBC and TMAC are upper bounded by O
(
q2/2n

)
+O

(
qℓ2/2n

)
, which is almost tight

in terms of the number of queries q while ℓ ≪ 2n/4. This bound is not exactly the

birthday bound O
(
q2/2n

)
, but for any fixed target advantage, in terms of the limit

on q it behaves almost like the birthday bound for a fairly good range of ℓ (see the
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Figure 1.4.1: For ϵ = 2−1 Figure 1.4.2: For ϵ = 2−64

Figure 1.4.3: (log ℓ, log q)-Trade-off Graph for the bounds of OMAC: For two dif-
ferent choices of the target advantage, ϵ = 2−1 (on the left), and ϵ = 2−64 (on the
right), the above graphs show the relation between X = log ℓ and Y = log q. Here
n = 128. The dashed curve, the dotted curve and the continuous curve represent the
relations for ideal birthday bound, the bound in [74] and the exact form of the bound

shown in this paper respectively.

following discussion). The proof of our security bound is given in section 6.2 and fol-

lows the recently introduced reset-sampling approach [23]. These improved bounds,

in combination with previous results [52, 53] for EMAC, ECBC and FCBC, completely

characterize (see Table 1.4.3) the security landscape of CBC-MAC variants for message

lengths up to 2n/4 blocks.

A NOTE ON THE TIGHTNESS AND IMPROVEMENT IN BOUNDS: Comparison among

the known best bound for OMAC [74] B1(ℓ, q) = 10q2ℓ/2n, the ideal birthday bound

Bid = q2/2n and the bound B2(ℓ, q) proved in this paper (see Theorem 6.1.1) will be best

understood if we look closely at those bounds in a slightly involved manner. We write

“ log ” to mean log base 2. We show the trade-off curve of the parameters X = log ℓ

and Y = log q for a fixed choice of advantage value, say, ϵ = 2−a for some a ∈ N in the

graph2 presented in Figure 1.4.3.

We can write our bound as B2(ℓ, q) ≈ 16q2

2n + 2qℓ2

2n as the remaining terms are dominated

by these two terms. Now,

Bid : Y =
n− a

2

B1 : X + 2Y = n− a− log 10

B2 : log(16 · 22Y + 2 · 22X+Y ) = n− a.

2Using GeoGebra Classic available at https://www.geogebra.org/classic

https://www.geogebra.org/classic
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Looking at the equation related to the bound B2 we can see that it is actually a combi-

nation of two linear equations: 2Y = n − a − 4 and 2X + Y = n − a − 1, the choice

depending on whether 16q2/2n or 2qℓ2/2n dominates. Precisely, the curve expressing

the relation between log ℓ and log q in B2 is {(X,Y ) : X ≤ n/4, Y = min{(n − a −
4)/2, n− a− 1− 2X}}. From the above linear equations two important facts about the

curve related to B2 can be noticed:

• It remains very close to the straight line corresponding to Bid from (0, n−a−42 ) to

(n−a+2
4 , n−a−42 ) and then moves downward.

• At around (n−a+1
3 , n−a−53 ) it starts to degrade below the curve related to B1 .

For example, if we take (n, a) = (128, 32), the bound proved in this paper is very close

to the birthday bound for ℓ ≤ 225 and even after degrading, it remains better than

the bound in [74] till ℓ ≤ 232. Moreover, if we take (n, a) = (128, 64), q remains 230

until ℓ ≤ 216 and degrades below the existing bound only after ℓ ≥ 222. Thus, if we

consider the advantage in general terms, we can always take the minimum among the

advantage proved in this paper and that proved in [74].

Publication status: Chapter 6 is based on our paper [24] which has been published in

Advances in Cryptology – ASIACRYPT 2022.





Chapter 2

Preliminaries

2.1 Setup

BASIC NOTATIONS: For any positive integer n, we write [n] := {1, . . . , n}. We write

xq to denote a q-tuple (x1, . . . , xq). We write X ←$ X to represent that X is a uniform

random variable taking values from a finite nonempty set X . For any non-empty set

A, A∗ denotes the set ∪i≥0Ai consisting of all the finite strings of elements from A

(including the empty string also).

Throughout, ρρρD ←$ FuncD denotes a random function, and πππ ←$ Perm denotes a ran-

dom permutation. We simply write the random function as ρρρ, when D is understood

from the context.

NOTATIONS ON BLOCKS: Throughout the paper n denotes the security parameter as

well as the bit size of the underlying permutation. We call the set B := {0, 1}n block

set and elements of the set blocks. We define B+ = ∪i≥1Bi. For any binary string m ∈
{0, 1}∗, we denote the number of bits of m as |m| and we write ∥m∥ := ⌈|m|/n⌉.1 We

use “∥” to denote concatenation operations on bit strings. For a message m ∈ {0, 1}nl,
we write m = m[1]∥ · · · ∥m[l] with m[i] ∈ {0, 1}n for all i ∈ [l].

NOTATIONS ON BLOCK FUNCTIONS AND PERMUTATIONS: We call a function block

function if the range of the function is the block set. The set of all block functions

defined over a set D is denoted as FuncD. The set of all permutations over the block set

(also called block permutation) is denoted as Perm.

1When m is a set we also write |m| to denote the size of the set m. So the notation |m| should be clear
from the context.

21
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A keyed block function F with key space K and domain D is a block function over

K ×D. We also view it as an indexed family of functions, where K is the index set, i.e.,

for each K ∈ K, we associate a function FK(·) := F (K, ·).

MULTISET: Informally, a multiset X is a variant of set in which we allow elements to re-

peat. One can equivalently define a multisetX by a set {(x,m) : x ∈ X , x appears m times in X}.
We write X o to denote the set of all elements x which appears odd times in X . Note

that, X o by definition is a set which can be empty. We say X is evenly repeated if

X o = ∅.

Example 2.1. Let X := {a, b, a, b, b, c} be a multiset. We represent it by the following set

{(a, 2), (b, 3), (c, 1)}. Note thatX o = {b, c}. Similarly, for a multisetY := {a, b, a, b, b, b, c, c},
Yo = ∅ and hence Y is evenly repeated.

Given a block function π, we use shorthand notation π⊕(X ) :=
⊕

x∈X π(x). With this

notation, it is easy to see that (the empty sum represents 0n)

π⊕(X ) = π⊕(X o) for every multiset X , (2.1)

and hence π⊕(X ) = 0n whenever X is evenly repeated multiset.

BINARY FIELD: In this paper, we view the block set B as the Galois field GF(2n). We

fix a primitive polynomial p(x) := p0 ⊕ p1x ⊕ · · · ⊕ pnx
n where pi ∈ {0, 1}. Note that

p0 = pn = 1 (as it is a primitive polynomial). The field multiplication “·” between two

field elements is defined through the primitive polynomial. We abuse the notation 2 to

denote a primitive element of the underlying field GF(2n).

2.2 Mathematical Notions

2.2.1 Hash Functions

In the following, let H be a keyed block function with keyspace K and domain D.

COLLISION PROBABILITY: For distinct m,m′ ∈ D, we define collision probability as

collH(m,m′) := Pr[H(K,m) = H(K,m′) : K ←$ K].

When D ⊆ {0, 1}∗, the collision probability can depend on the size of the inputs. We

write

collH(ℓ) = max
m ̸=m′

|m|,|m′|≤ℓ

collH(m,m′).
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We generalize the above definition for more than two inputs. For q distinct inputs

m1, . . . ,mq ∈ D, we write

collH(mq) := Pr(∃i < j,H(K,mi) = H(K,mj) : K ←$ K), and

collH(q, ℓ, σ) := max
mq :|mi|≤ℓ∑q
i=1 |mi|≤σ

collH(mq).

By using the union bound, collH(q, ℓ, σ) ≤
(
q
2

)
collH(ℓ).

Definition 2.2.1 (Universal hash function). The keyed block function H is called an

ϵ-universal hash if for all distinct m,m′ ∈ D, collH(m,m′) ≤ ϵ.

Definition 2.2.2 (XOR universal hash function). The keyed block function H is called

an ϵ-almost XOR universal hash if for all distinct m,m′ ∈ D and δ ∈ B,

Pr(H(K,m)⊕H(K,m′) = δ : K ←$ K) ≤ ϵ.

Definition 2.2.3 (k-wise independent hash function). The keyed block function H is

called a k-wise independent if for all distinct m1, . . . ,mk ∈ D and for all y1, . . . , yk ∈ B,

Pr(H(K,m1) = y1, . . . ,H(K,mk) = yk : K ←$ K) = 1

2kn
.

The following observations are easy to establish.

1. A random function is k-wise independent for any k.

2. A 2-wise independent hash function is 2−n-AXU.

For more details on hash functions, one can see the papers [21, 95, 96].

2.2.2 Pseudorandom Functions and the Hash-then-RP Paradigm

Definition 2.2.4 (Pseudorandom function). Let F be a keyed block function over a finite

set D with a finite key space K. The PRF-advantage of any oracle adversary A against F

is defined as

Advprf
F (A) :=

∣∣Pr(AFK = 1 : K ←$ K)− Pr(AρρρD = 1)
∣∣ .

The maximum PRF-advantage of F is defined as

Advprf
F (q, ℓ, σ) = max

A
Advprf

F (A),
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where the maximum is taken over all adversaries A making at most q queries, each of

length at most ℓ, and the total length of all queries at most σ, i.e., σ ≤ ℓq.

HK πππm t

Figure 2.2.1: The Hash-then-RP paradigm.

HASH-THEN-RP CONSTRUCTION: Let H : K × D → B be a keyed hash and πππ be

an n-bit random permutation. The composition πππ ◦ HK is called the Hash-then-RP

construction, where K ←$ K. When πππ is replaced with ρρρ, the resulting composition is

called the Hash-then-RF. These constructions have been studied in [21, 91]. Many PRF

constructions can be viewed as instances of Hash-then-RP/RF. For example, EMAC

[5, 10], ECBC, FCBC [15], LightMAC [62] and protected counter sum [12]. Proposition

2.2.5 gives the PRF advantage for Hash-then-RP construction.

Proposition 2.2.5. Let H be a keyed block function with keyspace K and domain D. Then, we

have

Advprf
πππ◦H(q, ℓ, σ) ≤ collH(q, ℓ, σ) +

q(q − 1)

2n+1
.

So, if H is an ϵ-universal hash function, then

Advprf
πππ◦H(q, ℓ, σ) ≤ q(q − 1)

2

(
ϵ+

1

2n

)
.

We skip a formal proof here as Proposition 2.2.5 is a well-known result. The readers are

referred to [39] for a formal proof.

2.2.3 Message Authentication Codes

Let P,K,N , T denote the space of plaintexts (messages), keys, nonces and tags, respec-

tively. A message authentication code (or, MAC)M is a pair (M+,M−) where

M+ : K ×N × P → T

M− : K ×N × P × T → {T,F}

We call M+ and M− as tag generation and tag verification algorithms, respectively.

For any (K,N,m, t) ∈ K × N × P × T , M−(K,N,m, t) := T if M+(K,N,m) = t;

otherwiseM−(K,N,m, t) := F. Note that, for any (K,N,m) ∈ K ×N × P , we always

haveM−(K,N,m,M+(K,N,m)) = T. For brevity, we writeM+(K, ·) andM−(K, ·)
asM+

K andM−K , respectively, for any K ←$ K. In this thesis, N = ∅, K, T ⊂ B+ and

P ⊂ {0, 1}∗.
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2.2.4 Security Definitions

DISTINGUISHERS: A (q, T )-distinguisher A is an interactive Turing machine, that

makes at most q oracle queries, each having at most ℓ length, sum of lengths of all

queries not exceeding σ, runs in time at most t, and outputs a single bit. For any oracle

O, we write A O to denote the output of A after its interaction with O. By convention,

t = ∞ denotes computationally unbounded (information-theoretic) and determinis-

tic distinguishers. In this paper, we assume that the distinguisher is non-trivial, i.e.,

it never makes a duplicate query. Let A(q, ℓ, σ, t) (or, A(q, t)) be the class of all non-

trivial distinguishers limited to q, ℓ, σ parameters (or, q queries) and t computations. A

distinguisher is also called an adversary.

PSEUDORANDOM FUNCTION: A (K,X ,Y)-keyed function F with key space K, domain

X , and range Y is a function F : K ×X → Y . We write FK(X) for F(K,X).

The pseudorandom function or PRF advantage of any distinguisher A against a (K,X ,Y)-
keyed function F is defined as

Advprf
F (A ) = AdvF;ρρρ(A ) :=

∣∣∣Pr[A FK = 1 : K←$ K]− Pr[A ρρρ = 1 : ρρρ←$ Func(X ,Y)]
∣∣∣ .

(2.2)

The PRF security of F against A(q, T ) is defined as

Advprf
F (q, T ) := max

A ∈A(q,T )
Advprf

F (A ).

PSEUDORANDOM PERMUTATION: A (K,B)-block cipher E with key space K and block

space B is a (K,B,B)-keyed function, such that E(K, ·) is a permutation over B for any

key K ∈ K. We write EK(X) for E(K,X).

The pseudorandom permutation or PRP advantage of any distinguisher A against a (K,B)-
block cipher E is defined as

Advprp
E (A ) = AdvE;πππ(A ) :=

∣∣∣Pr[A EK = 1 : K←$ K]− Pr[A πππ = 1 : πππ ←$ Perm(n)]
∣∣∣ .

(2.3)

The PRP security of E against A(q, T ) is defined as

Advprp
E (q, T ) := max

A ∈A(q,T )
Advprp

E (A ).

SECURITY OF A MAC: An adversary A here is supposed to make queries to both

M+
K andM−K where K ←$ K. It is said to forge the MACM if it gets T as a response
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to a query to the verification algorithm after playing the query-response game in any

arbitrary order. The interactive algorithm A (M+
K ,M−

K) returns 1 if it can forge. We define

(MAC) Advantage of A againstM as follows:

Advmac
M (A ) = Pr[A (M+

K ,M−
K) = 1 : K←$ K]

Security of a MAC is defined using this notion of MAC advantage. Suppose, an ad-

versary is allowed to make at most qm (and qv) queries to the tag generation (and tag

verification algorithm), each of length at most ℓm (and ℓv), sum of lengths of all queries

not exceeding σm (and σv) and t is the maximum permissible time. Then,

Advmac
M (q, ℓ, σ, t) := max{Advmac

M (A ) : A ∈ A(q, ℓ, σ, t)}

where q := qm + qv, ℓ := ℓm + ℓv and σ := σm + σv. Thus, security of the MACM is

parametrized by q, ℓ, σ and t. The less is the advantage, the more is the security of the

MAC (with respect to the security parameters). The following proposition establishes a

very interesting as well as useful relationship between the notions of PRF security and

MAC security.

Proposition 2.2.6 (PRF security implies MAC security). Suppose, M is a deterministic

MAC. Then the following result holds:

Advprf
M+(qm, ℓm, σm, t) ≤ ϵ =⇒ Advmac

M (q, ℓ, σ, t) ≤ ϵ+
qv
|T |

Proof of this theorem can be found in [5]. More discussion on the topics covered in this

section can be found in [19].

2.2.5 H-coefficient Technique

The H-coefficient technique by Patarin [82, 83] is a tool to upper bound the distinguish-

ing advantage of any deterministic and computationally unbounded distinguisher A

in distinguishing the real oracle R from the ideal oracle I. The collection of all queries

and responses that A made and received to and from the oracle, is called the transcript

of A , denoted as τ .

Let Θ1 and Θ0 denote the transcript random variable induced by A ’s interaction with

R and I, respectively. Let T be the set of all transcripts. A transcript τ ∈ T is said to be

attainable if Pr[Θ0 = τ ] > 0, i.e., it can be realized by A ’s interaction with I. Following
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these notations, we state the main result of H-coefficient technique in Theorem 2.2.7. A

proof of this theorem is available in multiple papers, including [25, 45, 65, 83]. The key

idea behind the proof is that the advantage of A is upper bounded by the statistical

distance of the random variables Θ1 and Θ0.

Theorem 2.2.7 (H-coefficient). For ϵ1, ϵ2 ≥ 0, suppose there is a set Tbad ⊆ T , that we call

the set of all bad transcripts, such that the following conditions hold:

• Pr[Θ0 ∈ Tbad] ≤ ϵ1; and

• For any τ /∈ Tbad, τ is attainable and
Pr[Θ1 = τ ]

Pr[Θ0 = τ ]
≥ 1− ϵ2.

Then, for any computationally unbounded and deterministic distinguisher A , we have

AdvR;I(A ) ≤ ϵ1 + ϵ2.

2.3 Useful Lemmas

We write x1, . . . , xr ∈dist X to mean that xi’s are distinct elements of a set X (of size

N ). The number of possible tuples (x1, . . . , xr) of distinct elements is denoted as (N)r

which is same as N(N − 1) · · · (N − r + 1).

For a finite set S, Y1, . . . ,Yt
wor←− S represents a without-replacement random sample.

In other words, for all distinct y1, . . . , yq ∈ S, Pr[Y1 = y1, . . . ,Yt = yt] = 1/(|S|)t. A

without-replacement sample can be equivalently described through a random permu-

tationπππ over a set S as follows: Let x1, . . . , xt be t distinct elements from the set S. Then

Y1, . . . ,Yt
wor←− S where Yi = πππ(xi) for all i. From this observation, we can conclude that

any subset of a without-replacement random sample is also a without-replacement ran-

dom sample. In particular, each element of the sample is uniformly distributed (but not

independently).

We now state some useful results from linear algebra.

Lemma 2.3.1. Let Y1, . . . ,Yt
wor←− S ⊆ F with |S| = N where F denotes a finite field. Let A

be a s × t matrix over F with rank r. We write the column vector (Y1, . . . ,Yt)
tr as Y. Then,

for any c ∈ F s, we have

Pr[A · Y = c] ≤ 1

(N − t)r
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Proof .Since the rank of the matrix A is r, we can identify 1 ≤ i1 < · · · < ir ≤ t such

that Yi1 , . . .Yir will be uniquely determined by the other variables. After conditioning

all other Y values, the probability that A · Y = c would be at most 1
(N−t+r−1)r which is

less than 1
(N−t)r .

Lemma 2.3.2. Let V1, .., Vt ∈ F s be nonzero s-dimensional vectors such that each entry of these

vectors are either 0 or 1. If the rank of these t vectors is t − 1 then there is a binary nontrivial

linear combination of Vi’s which gives zero vector. More formally, there exists b1, . . . , bt ∈
{0, 1} (not all zeros) such that

∑
i bi · Vi = 0s.

Proof of the above lemma can be found in several books on Algebra like [13, 33, 46].

A simple corollary of the lemma says that if three nonzero distinct vectors are linearly

dependent then the sum of these three vectors should be the zero vector.
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PMAC-type MACs
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Chapter 3

PMAC Variants

In this chapter, we analyze Naito’s variant [70] of PMAC and discuss a flaw in its se-

curity proof. We further give a new PMAC-type construction, dubbed as PMAC2, and

demonstrate its security proof. Moreover, we extend the result of length independent

security bound for sPMAC, as proved in [39], to 2-wise almost xor universal hash en-

codings.

3.1 Revisiting Simplified PMAC

DESCRIPTION OF sPMAC: Gaži et al. [39] proposed a generalized version of PMAC,

called sPMAC, to capture the underlying masking function for a wide class of PMAC

variants. In what follows N denotes the set of all natural numbers.

π π . . . π

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

m[1] m[2] m[l − 1]

τ(1) τ(2) τ(l − 1)

m[l]

⊕⊕⊕ ⊕⊕⊕. . . ⊕⊕⊕ π′ t

Figure 3.1.1: The simplified PMAC construction.

Definition 3.1.1 (sPHash). For any permutation π ∈ Perm and a block-valued function

τ ∈ FuncN (referred as masking function), we define the simplified PMAC hash or sPHash

over the message space B+ as follows:

31
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for all m := (m[1], . . . ,m[l]) ∈ Bl,

sPHashπ,τ (m) := m[l]⊕
l−1⊕
i=1

π(xτ (m, i)), where xτ (m, a) := m[a]⊕ τ(a). (3.1)

Clearly, sPHash is just an identity function for a single block message.

Now, given two permutations π, π′ ∈ Perm and a masking function τ ∈ FuncN, the sim-

plified PMAC or sPMAC construction (illustrated in Figure 3.1.1) is defined as follows:

for all m ∈ B+,

sPMACπ′,π,τ (m) := π′ (sPHashπ,τ (m)) .

We call K := (π′, π, τ) the key of sPMAC. A concrete variant of PMAC is determined

whenever we fix a sampling mechanism of the key K.

sPMAC OVER ARBITRARY-LENGTH MESSAGES: For m ∈ {0, 1}∗, we define

m := m[1], . . . ,m[l]
n←− m

to be the function that partitions m into l = |m∥10i|
n blocks of size n bits, where i is the

smallest non-negative integer such that |m∥10i| divisible by n. Note that, we make the

required concatenation even if |m| is divisible by n. sPMAC can be easily extended

for any arbitrary-length message m ∈ {0, 1}∗, as sPMAC(m) := sPMAC(m). As the

padding rule is injective, there is no loss of generality in ignoring the padding and

assuming all message sizes are multiple of n.

PMAC VARIANTS FROM sPMAC: Now, we describe some variants of PMAC as instanti-

ations of sPMAC by defining the sampling mechanism of the key K = (πππ,πππ′, τττ).

1. PMAC: We get the original PMAC [16] construction by setting πππ ←$ Perm, πππ′ = πππ,

and τττ(i) = γi ·πππ(0), where γi is the ith element of the Gray code sequence [42, 85].

2. PMAC1: We get PMAC1 [85] by setting πππ ←$ Perm, πππ′ = πππ, and τττ(i) = 2i · πππ(0),
where 2 is a fixed primitive element of the Galois field GF(2n).

3. Gaži et al.’s variants: In [39], Gaži et al. discussed two variants of PMAC. In both

of the cases, πππ,πππ′ ←$ Perm and τττ is sampled independent of πππ,πππ′. The two choices

of τττ are the following:

(a) τττ is a uniform random function.

(b) τττ is a 4-wise independent hash function.
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4. Naito’s variant of PMAC1: Naito proposed another variant of PMAC by setting

πππ,πππ′ ←$ Perm, and τττ(i) = 2i ·L1⊕ 23i ·L2 where L1, L2 ←$ B. In rest of the thesis,

we call this construction NPMAC.

N.B. In this thesis, for the sake of simplicity, we pad all the messages (including the

one whose length is a multiple of n). In the original PMAC(1), the last message block is

padded only when it is incomplete (not a multiple of n). In case of a complete message

m, final input in our simplified version is same as the final input of m∥10n−1 in the

original PMAC. Moreover, the message is processed in a slightly different manner in

the original PMAC(1): in case of a complete message there, a constant value is xored

in the final input. Xoring a constant value does not affect the collision probability.

These two considerations above imply that our analyses are directly applicable to the actual

PMAC(1) constructions.

UPPER BOUND ON THE PRF ADVANTAGE OF SPMAC: Any instance of sPMAC can be

viewed as an instance of Hash-then-RP, as long as πππ and πππ′ are sampled independently.

Thus, the result of Hash-then-RP is not applicable for PMAC and PMAC1 as πππ′ = πππ.

In this thesis, we consider only those instances of sPMAC that follow the Hash-then-RP

paradigm where πππ,πππ′, τττ are all sampled independently. Moreover, πππ and πππ′ are random

permutations and hence any PMAC variant (and its underlying hash) are completely

determined once we fix a distribution for the masking function τττ , say τ . We write

sPHashτ to represent sPHashπππ,τ and we write sPMACτ (m) := πππ′(sPHashτ (m)). We

can restate Proposition 2.2.5 in context of PMAC variants as follows.

Advprf
sPMACτττ

(q, ℓ, σ) ≤ collsPHashτττ (q, ℓ, σ) +
q(q − 1)

2n+1
(3.2)

≤ q(q − 1)

2
· collsPHashτττ (ℓ) +

q(q − 1)

2n+1
(3.3)

LOWER BOUND ON THE PRF ADVANTAGE OF SPMAC: Fix q distinct messages m1, . . . ,mq

such that

collsPHashτττ (q, ℓ, σ) = collsPHashτττ (m1, . . . ,mq).

In other words, the message tuple maximizes the collision probability. Now, we define

a (non-adaptive) PRF distinguisher A for sPMAC that exploits collisions in sPMAC

outputs.



Chapter 3. PMAC Variants 34

1. A makes 2q queries, namely m1,m1∥0n, . . . ,mq,mq∥0n to its oracle O (which is

either sPMACτττ , i.e. the real oracle, or a random function, ρρρ, i.e. the ideal oracle).

2. A returns 1, if for some i ̸= j, O(mi) = O(mj) as well as O(mi∥0n) = O(mj∥0n),
and 0 otherwise.

Note that, in case of real oracle, collision for mi and mj implies collision for mi∥0n and

mj∥0n too. So, Pr(AsPMACτττ = 1) = collsPHashτττ (m1, . . . ,mq), whereas, Pr(Aρρρ = 1) ≤
q(q−1)
22n+1 . So,

Advprf
sPMACτττ

(A) ≥ collsPHashτττ (m1, . . . ,mq)−
q(q − 1)

22n+1
.

≥ collsPHashτττ (q, ℓ, σ)−
q(q − 1)

22n+1
. (3.4)

It is clear from Eq. (3.2) and (3.4) that collsPHashτττ (q, ℓ, σ) is a very close estimate for

Advprf
sPMACτττ

, i.e., we have

collsPHashτττ (q, ℓ, σ)−
q(q − 1)

22n+1
≤ Advprf

sPMACτττ
(A) ≤ collsPHashτττ (q, ℓ, σ) +

q(q − 1)

2n+1
. (3.5)

In other words,
∣∣∣Advprf

sPMACτττ
(A)− collsPHashτττ (q, ℓ, σ)

∣∣∣ ≤ q(q − 1)

2n+1
.

3.1.1 Collision Analysis of sPMAC [39]

We fix two distinct messages m := (m[1], . . . ,m[l]),m′ := (m′[1], . . . ,m′[l′]) with num-

ber of blocks l := lm and l′ := lm′ respectively. We also assume l ≤ l′. Let mchop :=

(m[1], . . . ,m[l − 1]) denote the message m after removing the last block. Similarly, we

write m′chop for the message m′. Let

V := {(M,a) |M ∈ {m,m′}; 1 ≤ a ≤ lM − 1}

be called index set. For any masking function τ , recall the definition of xτ (also referred

as input function) from Eq. (3.1). xτ can be viewed as a block function defined over

V . For a masking function τ , we write the multiset corresponding to all inputs for the

chopped message mchop as

Xτ (mchop) := {xτ (m, 1), xτ (m, 2), . . . , xτ (m, l − 1)}.

We similarly define Xτ (m
′
chop) for the message m′ and Xτ (mchop,m

′
chop) := Xτ (mchop)∪

Xτ (m
′
chop). Note that Xτ (mchop,m

′
chop) actually depends on mchop and m′chop.
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Definition 3.1.2 (cross-canceling masking function). A masking function τττ is called

cross-canceling with respect to mchop and m′chop if Xτττ (mchop,m
′
chop) is evenly repeated.

Let

θτττ (mchop,m
′
chop) := Prτττ (τττ is cross-canceling with respect to (mchop,m

′
chop)),

and θτττ (ℓ) := max θτττ (mchop,m
′
chop), where the maximum is taken over all distinct mchop,m

′
chop

with l, l′ < ℓ. θτττ (ℓ) is referred as the cross-cancellation probability of τττ .

A proof of the following lemma is available in [39, Lemma 2]. Similar result is also

proved in [61, Proposition 1], albeit under a slightly different notational setup. We give

another proof here for the sake of completeness.

Lemma 3.1.3 ([39]). For any random masking τττ , we have

collsPHashτττ (ℓ) ≤ θτττ (ℓ) +
1

2n − 2ℓ
.

Proof. Let m,m′ be two distinct messages with |m|, |m|′ ≤ ℓ. Now, the event sPHashτττ (m) =

sPHashτττ (m′) can be divided in the following two disjoint events:

• A : sPHashτττ (m) = sPHashτττ (m′)∧ τττ is cross-canceling with respect to (mchop,m
′
chop)

• B : sPHashτττ (m) = sPHashτττ (m′) ∧ τττ is not cross-canceling with respect to

(mchop,m
′
chop)

The probability of event A can be bounded by θτττ (mchop,m
′
chop). Let us look at the event

B. For simplicity of notation let us denote the multiset Xτ (mchop,m
′
chop) by X . Then

from Eq. (2.1) we have
⊕

x∈X o

πππ(x) = m[l] ⊕ m[l′]. Since X o ̸= ∅, we can choose some

x1 ∈ X o and bound Pr[B] as follows:

Pr[B] ≤ Prπππ
[
πππ(x1) = ⊕x ̸=x1πππ(x)⊕m[l]⊕m′[l′]

]
≤ 1

2n − l − l′
≤ 1

2n − 2ℓ
(3.6)

In the first inequality we are considering x-values only from X o. The second inequality

follows from probability of πππ(x1) after we sample all other πππ-values in a without re-

placement manner. Since we are left with exactly one choice among at least 2n − l − l′

many values here, we get the bound. The third inequality is obvious.

Therefore,

collsPHashτττ (m,m′) ≤ θτττ (m,m′) +
1

2n − 2ℓ
.
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We get the required result by taking maximum over all m,m′ such that m ̸= m′ and

|m|, |m′| ≤ ℓ in both sides of the above inequality.

EXTENSION OF CROSS-CANCELLATION PROBABILITY OVER q MESSAGES. In [39], the

idea of cross-cancellation is defined for two messages. Here, we extend the idea to more

than two messages. For the sake of simplicity of notation we will write θτττ (m,m′) (and

τ is cross-canceling with respect to m,m′) instead of θτττ (mchop,m
′
chop) (and τ is cross-

canceling with respect to mchop,m
′
chop). We say τττ to be cross-canceling with respect to

mq if τττ is cross-canceling with respect to mi,mj for some 1 ≤ i < j ≤ q. Let

θτττ (m
q) := Prτττ (τττ is cross-canceling with respect to mq),

and θτττ (q, ℓ, σ) := max θτττ (m
q), where the maximum is taken over all q distinct messages

each with at most ℓ− 1 blocks, having at most σ − q blocks altogether.

Lemma 3.1.4. For any random masking τττ , we have

θτττ (q, ℓ, σ) ≤ collsPHashτττ (q, ℓ, σ) ≤ θτττ (q, ℓ, σ) +
q(q − 1)

2(2n − 2ℓ)
.

Proof. Suppose, m1, . . . ,mq are q messages for which θτττ (m
q) = θτττ (q, ℓ, σ). Let T denote

the set of all realizable masking functions. Let Ti,j ⊆ T denote the set of all cross-

canceling masking functions with respect to (mi,mj). Then, θτττ (mq) := Pr(τττ ∈ ∪i<jTi,j).
Let m′i = mi∥0n for 1 ≤ i ≤ q. Now, for any τ ∈ Ti,j , sPHashτ (m

′
i) = sPHashτ (m

′
j)

holds (also denoted as colli,j). So,

θτττ (q, ℓ, σ) = Pr(τττ ∈ ∪i<jTi,j) ≤ Pr(∪i<jcolli,j) ≤ collsPHashτττ (q, ℓ, σ).

Now, we show the upper bound. We fix q distinct messages m1, . . . ,mq such that

collsPHashτττ (m
q) = collsPHashτττ (q, ℓ, σ). Let µ := Pr(τττ is cross-canceling with respect to mq).

collsPHashτττ (m
q) ≤ µ+

∑
τ∈T \∪i<jTi,j

Pr(∃i < j,πππ⊕(X o
τ (mi,mj)) = mi[li]⊕mj [lj ] ∧ τττ = τ)

≤ µ+
∑

τ∈T \∪i<jTi,j

Pr(∃i < j,πππ⊕(X o
τ (mi,mj)) = mi[li]⊕mj [lj ])× Pr(τττ = τ)

≤ Pr(τττ is cross-canceling with respect to mq) +
q(q − 1)

2(2n − 2ℓ)
,

where the last inequality is obtained by conditioning on the output of πππ on all elements

in X o
τ (mi,mj) except one. Note that this is possible only because X o

τ (mi,mj) ̸= ∅ since

τ is not a cross-canceling function.
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Corollary 3.1.5. For any random masking function τττ , we have

θτττ (q, ℓ, σ)−
q2

22n+1
≤ Advprf

sPMACτττ
(q, ℓ, σ) ≤ θτττ (q, ℓ, σ) +

q(q − 1)

2(2n − 2ℓ)
+

q(q − 1)

2n+1

≤ q(q − 1)

2
· θτττ (ℓ) +

q(q − 1)

2(2n − 2ℓ)
+

q(q − 1)

2n+1
.

Corollary 3.1.5 follows from Eq. (3.2) and Lemma 3.1.4 in combination with the obser-

vation that θτττ (q, ℓ, σ) ≤
(
q
2

)
θτττ (ℓ).

To achieve O(q2/2n) bound, it is sufficient to show θτττ (ℓ) ≤ c/2n for some constant c

(should be independent of ℓ). Sometimes, it is possible to show this for a range of

values of ℓ instead of all values of ℓ. Sometimes, it might be difficult to obtain ℓ-free

bound for θτττ (ℓ). However, it might be possible to show ℓ-free bound for the θτττ (q, ℓ, σ)

by considering all q messages together. In this case, first part of the above corollary

could be used to obtain an ℓ-free security bound. When ℓ ≤ 2n−2, Corollary 3.1.5 is

simplified to

Advprf
sPMACτττ

≤ q2

2
·
(
θτττ (ℓ) +

3

2n

)
. (3.7)

SOME EXAMPLES OF CROSS-CANCELLATION PROBABILITY: We list some known re-

sults on the cross-cancellation probability of some masking functions.

1. In [39], Gaži et al. show the following bounds on cross-cancellation probability:

(a) If τττ is a uniform random function, then θτττ (ℓ) ≤ 21−n.

(b) If τττ is a 4-wise independent hash function, then θτττ (ℓ) ≤ 22−n.

2. For the masking function τττ(i) = 2i ·Li⊕23i ·L2, Naito proved the following result

[70, Section 4.2: Bounding p2coll] whenever L1, L2 ←$ B:

θτττ (ℓ) ≤ 22−n, while ℓ ≤ 2n/2. (3.8)

3.2 An Observation on Naito’s PMAC Variant

In this section, we revisit a claim of [70] regarding the cross cancellation probability of

two powering-up maskings.
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3.2.1 A Flaw and Its Effect on the Proof of NPMAC [70]

As mentioned in section 3.1, Naito proved Eq. (3.8) with respect to the cross cancel-

lation probability of two powering-up maskings. The proof relies on five cases [70,

Section 4.2: Type-1 to Type-5]. The most crucial and general of these cases is Type-5.

Naito made the following claim with respect to this case.

CLAIM IN [70, Type-5 case in Section 4.2]: The following system of equations, denoted (E),
in L1 and L2 such that {i1, i2} ≠ {i3, i4},

(2i1 ⊕ 2i2)L1 ⊕ (23i1 ⊕ 23i2)L2 = c1

(2i3 ⊕ 2i4)L1 ⊕ (23i3 ⊕ 23i4)L2 = c2

has rank two (i.e. the equations are always linearly independent).

The author argues as follows: If the equations are not linearly independent then 2i1 ⊕
2i2eq2i3 ⊕ 2i4 and 23i1 ⊕ 23i2eq23i3 ⊕ 23i4 . From this, by using simple calculation, one

can obtain i1eqi2eqi3eqi4. This leads to a contradiction of the assumption that {i1, i2} ≠
{i3, i4}, and hence the linear dependence assumption is false. The author thus con-

cludes that the system (E) will always have rank 2. In other words, for fixed i1, i2, i3, i4,

the system has a unique solution for the pair (L1, L2).

FLAW IN THE ARGUMENT: Unfortunately, linear dependency and consistency of the

two equations over GF(2n) can be equivalently written as

2i1 ⊕ 2i2 = c · (2i3 ⊕ 2i4) (3.9)

23i1 ⊕ 23i2 = c · (23i3 ⊕ 23i4) (3.10)

where c2 = c · c1. Clearly, whenever c ̸= 1, the claim on (E) is not correct. In [70], the

author only considers the c = 1 case. Next, we show a concrete counterexample for

this.

COUNTEREXAMPLE FOR THE RANK CLAIM: First, we can rewrite Eq. (3.9) and (3.10) as

(2i1 ⊕ 2i2) · (23i3 ⊕ 23i4) = (2i3 ⊕ 2i4) · (23i1 ⊕ 23i2) (3.11)

We show a counterexample for n = 16. Similar examples can be constructed for other

values of n as well. Consider the field GF(216) generated by x = 2 with multiplication

defined by the minimal polynomial x16+x5+x3+x+1. Using simple algebra one can
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show that i1 = 1, i2 = 24, i3 = 14 and i4 = 18 satisfies Eq. (3.11). Plugging in the same

values in Eq. (3.10), one can get

c = 212 ⊕ 29 ⊕ 28 ⊕ 27 ⊕ 26 ⊕ 25 ⊕ 22 ⊕ 2⊕ 1.

This proves that the system (E) can be of rank 1 as well. And, the number of such

i1, i2, i3, i4 is at least 1. Whereas, Naito incorrectly argues that the number of such

quadruples is 0.

EFFECT ON THE CURRENT PROOF: The system (E) is fixed once we fix the quadruple

(i1, i2, i3, i4). In [70], the number of i1, i2, i3, i4 indices corresponding to the system (E)
is bounded by O(ℓ2) which can be further bounded by O(2n) (since ℓ ≤ 2n/2). This

bound is fine as long as the rank of system (E) is 2, as this will mean that we get an

overall cross-cancellation probability bound of O(2−n). However, given the evidence

that (E) can have rank 1, a bound of O(ℓ2) is not desirable, as it will result in an overall

cross-cancellation probability bound of O(ℓ2/2n) which is worse than O(ℓ/2n) bound

for the existing PMAC.

3.2.2 Further Discussion on the Security of NPMAC

From previous discussions, it is clear that the question of ℓ-free security for NPMAC is

far from resolved. Going by the existing proof strategy [70], we get θτττ (ℓ) = O(ℓ2/2n)

bound. Looking ahead momentarily, Proposition 3.3.3 shows that we can achieve O(ℓ/2n)

for any O(2−n)-AXU masking function. This result also applies to NPMAC as the two

powering-up maskings is obviously a O(2−n)-AXU. But, this is as far as we could reach.

In what follows, we discuss some bottlenecks in resolving this question one way or an-

other.

Let us denote the number of quadruples satisfying Eq. (3.11) by N . Our counterexam-

ple in the previous subsection shows that N = Ω(1) and due to Proposition 3.3.3 we can

give a trivial upper bound of N = O(ℓ). Now, to prove or disprove the ℓ-free security

claim we need an exact estimate of N .

We could neither construct a counterexample where N = Ω(ℓ), nor show that N =

O(1). This indeed looks like a hard problem requiring an involved analysis of the prop-

erties of GF(2n). Interestingly, a similar hardness remains for PMAC1 as well [39, 61]

that involves a study of the additive subgroups (and their cosets) of GF(2n).

Note that, (E) is a simplified version of the actual system of equation that we have to an-

alyze. In the actual system, c1 and c2 are not arbitrary. In fact, for some M1,M2,M3,M4 ∈
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{m,m′},
c1 = M1[i1]⊕M2[i2], c2 = M3[i3]⊕M4[i4],

and thus, c = (M3[i3]⊕M4[i4]) · (M1[i1]⊕M2[i2])
−1.

Clearly the simplification, though sufficient to discuss the flaw, could possibly degrade

the bound as we count some inconsistent systems of equations as well. We say that a

quadruple (i1, i2, i3, i4) is valid if the resulting system of equation (E) is consistent. At

the moment, we do not see any approach to exploit the exact nature of c to get a better

estimate for the number of valid quadruples satisfying Eq. (3.11).

In summary, to prove or disprove the ℓ-free security of NPMAC, we have to bound:

The number, N , of valid quadruples (i1, i2, i3, i4) that satisfy

(2i1 ⊕ 2i2) · (23i3 ⊕ 23i4) = (2i3 ⊕ 2i4) · (23i1 ⊕ 23i2).

We leave it as an open problem to find an exact estimate for N , which in turn gives

tight security bound for NPMAC. In fact, even a sub-optimal bound better than Ω(1)

(in case of lower bound) or O(ℓ) (in case of upper bound), say in the order of a slowly

growing function of ℓ, could be a great improvement.

3.3 Relaxing the Security Precondition for sPMAC

Gaži et al. [39] showed that a 4-wise independent masking function is sufficient to

achieve ℓ-free security bound up to ℓ ≤ 2n/2. In this section, we relax the 4-wise inde-

pendence condition to a weaker notion. Our relaxed notion of universality is inspired

by the flaw discovered in section 3.2.

3.3.1 2-wise Almost XOR Universal Hash Function

We extend the definition of AXU hash functions to jointly consider two pairs of mes-

sages and their hash output differences.

Definition 3.3.1 (2-wise AXU). A hash function H is called ϵ 2-wise AXU (or ϵ-2AXU)

if for any distinct {m1,m2}, {m3,m4} and δ1, δ2 ∈ B, we have

Pr(H(K,m1)⊕H(K,m2) = δ1 : K ←$ K) ≤ ϵ,

Pr(H(K,m1)⊕H(K,m2) = δ1, H(K,m3)⊕H(K,m4) = δ2 : K ←$ K) ≤ ϵ2.
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Clearly, any ϵ-2AXU hash function is also an ϵ-AXU hash function. We usually expect

ϵ = O(1/2n) and hence the joint probability for the two linear equations is O(1/22n).

Mennink defined a very close variant, called AXU3, in [64]. In that definition m3 = m1

(and hence m2 ̸= m4). He also gave an example of AXU3 (and its higher order variants)

using finite field arithmetic.

2AXU IS STRICTLY WEAKER THAN 4-WISE INDEPENDENCE: It is easy to see that a

4-wise independent hash function is 2−n-2AXU. However, every 2AXU hash function

need not be 4-wise independent. Consider the following example due to Naito [71, 72].

Similar example can also be found in [64] as an example of AXU4 (see [64] for definition)

hash function.

Example 3.1. Let L1, L2, L3 ←$ B. For a fixed primitive element 2 of GF(2n) and any i, let

us define

τττ(i) := 2i · L1 ⊕ 22i · L2 ⊕ 23i · L3.

It can be easily shown that τττ is O(2−n)-2AXU. However, for any distinct i1, i2, i3, i4 and

y1, y2, y3, y4 we cannot get probability 1/24n for the following event:

2ij · L1 ⊕ 22ij · L2 ⊕ 23ij · L3 = yj ,∀j ∈ {1, 2, 3, 4}.

In other words, the above masking function is not 4-wise independent.

Remark 3.3.2. The two powering-up maskings used in [70] is not 2−n-2AXU hash. How-

ever, Naito addressed this issue in [72] and proposed an alternate “three powering-

up maskings” which is same as our example 3.1. He has given a dedicated proof for

this construction whereas our proof for this one follows from our general treatment of

2AXU hash functions.

3.3.2 PRF Security of sPMAC

From Corollary 3.1.5, we know that the PRF advantage of sPMAC is bounded by the

cross-cancellation probability of the underlying masking function. We have closely re-

visited all the existing proof strategies for upper bounding the cross-cancellation proba-

bility and have found a unified way to present all these proofs. This approach also helps

in understanding the requirements from the masking function for achieving length in-

dependent PRF advantage. We state two results unifying the proofs of existing and

some new constructions. The proofs of these results is postponed to section 3.4.
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Proposition 3.3.3. Suppose τττ is ϵ-AXU. Then, θτττ (ℓ) ≤ 2ℓϵ. Hence, by using Corollary 3.1.5,

we have

Advprf
sPMACτττ

(q, ℓ, σ) ≤ q2ℓϵ+
q2

2(2n − 2ℓ)
+

q2

2n+1
.

Proposition 3.3.3 gives the security bound for PMAC and PMAC1 when the outer per-

mutation is replaced by an independent random permutation and the masking key is

sampled independently. A dedicated analysis is required when we consider outer per-

mutation same as the inner one and the masking key is derived from the permutation,

like the original PMAC and PMAC1.

The bound in Proposition 3.3.3 is not ℓ-free as it has q2ℓϵ term (which came due to

cross-cancellation probability). In the following result, we show how we can improve

this term if we apply a stronger masking function. Gaži et al. [39] proved a similar

result for 4-wise independent masking function. However, we can easily extend their

result to the weaker notion of 2AXU masking function.

Theorem 3.3.4. Suppose τττ is ϵ-2AXU. Then, θτττ (ℓ) ≤ max{2ϵ, 4ℓ2ϵ2}. Hence, by using

Corollary 3.1.5, we have

Advprf
sPMACτττ

(q, ℓ, σ) ≤ max{q2ϵ, 2q2ℓ2ϵ2}+ q2

2(2n − 2ℓ)
+

q2

2n+1
.

So, when ϵ = 1/2n and ℓ ≤ 2
n−1
2 then

Advprf
sPMACτττ

(q, ℓ, σ) ≤ 5q2

2n+1
.

Theorem 3.3.4 also works (up to ℓ ≤ 2n/2) for a uniform random masking function

and 4-wise independent masking function as these are also 1/2n-2AXU hash functions.

However, in case of uniform random function, a more precise analysis (as shown in

[39]) gives θρρρ(ℓ) ≤ 2/2n for all values of ℓ.

Remark 3.3.5. Our result is a bit stronger than the result proved in [39] as every 2AXU

hash function need not be 4-wise independent hash function.

Remark 3.3.6. Theorem 3.3.4 gives an alternate proof of ℓ-free security for Naito’s up-

dated variant [72] with three powering up masking (see example 3.1).

3.4 Proof of Theorem 3.3.4

Before we delve into the proofs of Proposition 3.3.3 and Theorem 3.3.4, we describe

a graph-based description of input collisions that would help us to have some visual

presentation of cross-canceling masking function.
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3.4.1 Input Collision Graph and Covering Bound Lemma

GRAPH NOTATIONS: For a set V , let [V ]2 denote the set of all doubleton subsets of V .

So, size of the set [V ]2 is
(|V |

2

)
:= |V |(|V | − 1)/2. A graph G is a pair (V,E) where E ⊆

[V ]2. We call V and E the vertex and edge set of the graph, respectively. We also denote

V (G) and E(G) to denote the vertex set and edge set of the graph G, respectively. An

edge is an element {u, v} ∈ E and we also say that u is adjacent to v. Given a graph

G = (V,E) and a subset V ′ ⊆ V , the subgraph restricted at V ′, denoted as G(V ′), has

vertex set V ′ and the edge set [V ′]2 ∩ E. A path from u to v of length t is a sequence of

distinct elements (w0 := u,w1, . . . , wt := v) such that wi−1 is adjacent to wi for all i ∈ [t].

A component C (or connected component) is a subset of V such that for every u, v ∈ C

either u = v or there is a path from u to v. A component C of a graph G is called clique

if all pairs of the components are adjacent. We call a graph G evenly partitioned if all

components of G have even sizes.

INPUT COLLISION GRAPH: Recall the index set V := {(M,a) | M ∈ {m,m′}; 1 ≤ a ≤
lM − 1} for two distinct messages m and m′ of length l = lm and l′ = lm′ , respectively,

such that l ≤ l′. To each masking function τ , we associate a collision graph Gτ with the

vertex set V such that any two vertices (M1, a1) and (M2, a2) are said to be adjacent if

xτ (M1, a1) = xτ (M2, a2). So an input collision graph is always disjoint union of cliques.

A graph G′ over V is called τ -realizable if there is a realizable masking function τ such

that Gτ = G′. Let G be the set of all such realizable graphs. Among all realizable graphs,

we are interested in some special graphs, namely evenly partitioned graph. Let Geven be

the set of all realizable graphs which are evenly partitioned. The following observation

is straightforward from the definition of cross-canceling masking function.

Claim 3.4.1. A masking function τττ is cross-canceling if and only if the induced input

collision graph Gτττ is evenly partitioned.

Due to Corollary 3.1.5, it is now sufficient to bound the probability to realize any evenly

partitioned graph (equivalent to realizing a cross-canceling masking function). Now,

we identify a subset of vertices for which restricted subgraph over that subset is evenly

partitioned whenever the graph is evenly partitioned. Let

V= := {(M,a) : M ∈ {m,m′}, a ≤ l, l′, m[a] = m′[a]}.

So, (m, a) ∈ V= if and only if (m′, a) ∈ V=. For any such (m, a), we obviously have

xτ (m, a) = xτ (m
′, a) for all masking functions τ (not necessarily cross-canceling mask-

ing function). Hence, for any realizable input collision graph Gτ , {(m, a), (m′, a)} is an
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edge of the graph and we call those edges vertical (all other edges will be non-vertical).

On the other hand, if (m, a) /∈ V= then (m, a) and (m′, a) are not adjacent whenever

these are defined. Let V ̸= := V \ V= and

I ̸= := {a : either (m, a) ∈ V ̸= or (m′, a) ∈ V ̸=}.

We can rewrite the set I ̸= as union of the interval [l + 1, l′] (can be the empty set) and

{a : a ≤ l, l′ and m[a] ̸= m′[a]}. As m ̸= m′, we have V ̸= ̸= ∅. Given any graph G we

denote G ̸= := G(V ̸=), the subgraph restricted on the set of vertices V ̸=.

Now any connected component of Gτ consists of a connected component of G ̸=τ with

some additional pairs of vertices from V=. Hence, we have the following result.

Claim 3.4.2. For all masking functions τττ , Gτττ is evenly partitioned if and only if G ̸=τττ is

evenly partitioned.

Now, we explain a method by which we can obtain an upper bound on the cross-

canceling probability θτττ (ℓ) or θτττ (q, ℓ, σ). Let G ̸=even be the collection of all evenly par-

titioned realizable graphs over the vertex set V ̸=. Due to above claim, this is same as

the collection of all restricted subgraphs with vertex set V ̸= of all evenly partitioned

realizable graphs.

Definition 3.4.3 (covering collection of edges). Let I be some index set such that for

every i ∈ I we have an edge set Ei ⊆ [V ̸=]2. The collection E := {Ei : i ∈ I} is said to

cover evenly partitioned graphs if for all G ∈ G ̸=even, there exists i := iG ∈ I such that

Ei ⊆ E(G).

For any edge e := {(M1, a1), (M2, a2)} ∈ [V]2, we say that event e(τττ) holds if

τττ(a1)⊕ τττ(a2) = ce := M1[a1]⊕M2[a2].

We extend the above definition to an edge set E as follows: An event E(τττ) holds if for all

edges e ∈ E, e(τττ) holds. All these events are defined based on the randomness of τττ only

and we simply write Pr(e) or Pr(E) to denote the probability that the corresponding

event holds under the randomness of τττ .

Lemma 3.4.4 (Covering Bound Lemma). Suppose {Ei : i ∈ I} covers evenly partitioned

graphs, then we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤
∑
i∈I

Pr(Ei)

Proof. Let T ∗ denote the set of all cross-canceling masking functions with respect to

(m,m′). For every Ei, let Ti denote the set of all masking function τ such that Ei ⊆
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E(G ̸=τ ). Now, we claim that T ∗ ⊆ ∪iTi. For any τ ∈ T ∗, Gτ is an evenly partitioned

graph and hence (using Claim 3.4.2) for some i, Ei ⊆ E(G ̸=τ ) ⊆ E(Gτ ). Thus, τ ∈ Ti. So

the claim holds. The result follows from union bound.

3.4.2 Proof of Proposition 3.3.3

Let i be the smallest element in I ̸=. We use shorthand notation ei(v) and e′i(v) to denote

edges {(m, i), v} and {(m′, i), v}, respectively, whenever these are defined. Let V ̸=i :=

V ̸= \ {(m, i), (m′, i)}.

As (m′, i) has an edge for any evenly partitioned graph G ∈ G ̸=even, there must exist

(M, j) with j > i and M ∈ {m,m′} such that (m′, i) is adjacent to (M, j). So, we define

the following collection of edge sets of size one.

Ei := {Ev := e′i(v) : v ∈ V
̸=
i }.

From the above discussion, it is clear that this covers all evenly partitioned graphs.

Now, using the fact that τττ is ϵ-AXU, we have Pr(E(M,j)) = Pr(τττ(i) ⊕ τττ(j) = m′[i] ⊕
M [j]) ≤ ϵ (since j ̸= i). So, using the covering bound lemma (Lemma 3.4.4) we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤
∑
v∈V ̸=

i

Pr(Ev) ≤ (l + l′)ϵ.

As l, l′ ≤ ℓ, we have θ(ℓ) ≤ 2ℓϵ. This completes the proof.

3.4.3 Resuming the Proof of Theorem 3.3.4

Here, we first assume that |I ̸=| > 2, and we denote the first, second and third smallest

elements of I ̸= as i1, i2 and i3, respectively. For 1 ≤ j ≤ 3, V ̸=j := V ̸= \{(m, ij), (m
′, ij)},

and we use shorthand notation ej(v) and e′j(v) to denote edges {(m, ij), v} and {(m′, ij), v},
respectively, whenever these are edges over V (they may not be edge as some of the ver-

tices may not be present in V).

In the previous proof for AXU masking function, edge sets are singleton and hence

the probability for any such edge set can be at best O(1/2n) (as we deal with a single

equation). Now, we are considering doubleton edge sets, hoping that probability to

realize any edge set is about O(1/22n) (as we assume stronger masking function), to

achieve better security. Consider the following collections of doubleton edge sets:

1. E1 := {{e′1(M, i2), e
′
3(v)} : v ∈ V

̸=
3 ,M ∈ {m,m′}},
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2. E2 := {{e′1(M1, j1), e
′
2(M2, j2)} : (M1, j1) ∈ V ̸=1 ∩ V

̸=
2 , (M2, j2) ∈ V ̸=2 }.

We claim that the collection E := E1 ∪ E2 is a covering collection of edges. Fix any

evenly partitioned graph G over V ̸=. The vertex (m′, i1) should be adjacent to some

other vertex.

CASE 1: Suppose, (m′, i1) is adjacent to (M, i2) then the vertex (m′, i3) should be adja-

cent to (M, j) for some j ̸= i3. So, we can use an appropriate edge set from E1.

CASE 2: Suppose, (m′, i1) is adjacent to (M, j) for some M ∈ {m,m′} and j ≥ i3. Then,

(m′, i2) should be adjacent to (M, j) for some j ̸= i2. So, we can use an appropriate

collection from E2.

Thus, E is indeed a covering collection of edges. Now, we fix any edge set E :=

{e′1(M1, i2), e
′
3(M2, j)} ∈ E1 where j ̸= i3. Then, for c1 = m′[i1] ⊕ M1[i2] and c2 =

m′[i3]⊕M2[j], we have

Pr(E) = Pr(τττ(i1)⊕ τττ(i2) = c1, τττ(i3)⊕ τττ(j) = c2) ≤ ϵ2,

where the inequality follows from the definition of ϵ-2AXU. Similarly, for any edge set

E ∈ E2, one can show that Pr(E) ≤ ϵ2. Note that |E1| ≤ 2(l + l′) and |E2| ≤ (l + l′ −
2) · (l + l′ − 4). So, |E| ≤ (l + l′)2 ≤ 4ℓ2. By using the covering bound Lemma (Lemma

3.4.4), we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤
∑
E∈E

Pr(E) ≤ 4ℓ2ϵ2.

Now, the only remaining case is |I ̸=| = 2 (|I ̸=| cannot be 1 as this would contradict the

existence of evenly partitioned graph). In this case, we have only two possibilities of

evenly partitioned graphs, each occurring with at most ϵ probability (using ϵ-2AXU).

So, we have

Prτττ (τττ is cross-canceling with respect to (m,m′)) ≤ 2ϵ.

The result follows by combining the two cases for |I ̸=|.

3.5 PMAC2: A Simple Variant of PMAC1

Now we propose a simple variant of PMAC1 which we call PMAC2 (see Fig. 3.5.1).

Given any message m′ ∈ {0, 1}∗ we append a bit 1 followed by a smallest sequence of

zeros so that the padded message has size multiple of n. Let m := (m[1], . . . ,m[l]) ∈



Chapter 3. PMAC Variants 47

π π . . . ππ

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

m[1] m[2] m[l − 1] m[l]

L α1L αl−2L
0

L ⊕⊕⊕
α

⊕⊕⊕ ⊕⊕⊕
α

. . . π′ t

Figure 3.5.1: PMAC2: A message m is padded with 10∗ to get m[1]||m[2]|| . . .m[l] where
each m[i] is an n-bit string. L is obtained asπππ(0) whereπππ ←$ Perm. Here α is a primitive

element of the field GF (2n).

Bl be a padded message. As it is an injective padding, we define the construction

after the padding. Let πππ and πππ′ be two independent random permutations (for a real

construction we use a block cipher instantiated by two independent keys). We compute

the final output of PMAC2(m) as follows:

PMAC2πππ,πππ′(m)

1 : Input: m = m[1]∥ . . . ∥m[l]

2 : L← πππ(0)

3 : for i = 1 to l − 1, do x[i]← m[i]⊕ αi−1 · L

4 : Hπππ ← m[l]⊕
l−1⊕
i=1

αl−i−1πππ(x[i])

5 : return πππ′(Hπππ)

Theorem 3.5.1. (Main Theorem: Bound for Hash Collision Probability of PMAC2)

collH(q, ℓ, σ) =
q2 + σ

2n
+ µ

where µ ≤


q

2n/2 if ℓ ≤ 2n/4

σ1.5

2n if 2n/4 < ℓ ≤ 2n−2.

We prove this theorem in the next subsection. The PRF-advantage of our construction

will follow from hash-then-prp result:

Advprf
PMAC2(q, ℓ, σ) ≤ collH(q, ℓ, σ) +

q2

2n+1
.

Remark 3.5.2. The original proof for PMAC works perfectly in the case of PMAC2 and

hence the security of PMAC2 is also bounded by the security bound of PMAC. Our
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result gives a different bound of PMAC2 which essentially gives tighter bounds in the

cases of ℓ < 2n/4 and ℓ ≥ 2n/4 such that ℓ < q. In all other cases we can take the usual

bound for PMAC. To be precise, we can always choose the minimum between the usual

bound for PMAC and the bound obtained here.

3.5.1 Proof of Theorem 3.5.1

Let mq = (m1, . . . ,mq) be a q-tuple of distinct messages. Let ℓi = ∥mi∥, ℓ := maxi ℓi

and σ :=
∑

i ℓi. For simplicity we will write H(m) instead of Hπππ(m) for any message

m. We want to bound coll(mq) := Prπππ←$Perm[∃i ̸= j, H(mi) = H(mj)]. Note that we

use the masking function τL(i) := αi−1 · L where L = πππ(0). For every i ̸= j, we have

already defined a graph GτL(mi,mj) (defined previously as GτL for any block function

τ and a pair of distinct messages m,m′). Note that, we explicitly associated the graph

GτL with the corresponding message pair (mi,mj) as we are dealing with multiple

message pairs. We will drop this parametrization whenever the message pair is known

from the context. Here, for simplicity, we will denote any vertex by (k, a) instead of

(mk, a). GτL is essentially a disjoint union of cliques. For any clique C in GτL we define

βC :=
⊕

(k,a)∈C

αℓk−1−a

Definition 3.5.3. A masking function τL (or simply L) is cross linear canceling for some

i ̸= j, if βC = 0 for every clique C in GL(mi,mj). We define

θ′(mq) := PrL[∃i ̸= j, τL is cross linear cancelling for i, j].

AVOIDING ZERO INPUT. We first avoid zero block as an input of πππ since it already

appears to define our masking key L. We define the following event:

bad0 : ∃i, a, xi[a] = 0

Clearly, Pr[bad0] ≤ σ
2n as for every (i, a), Pr(xi[a] = 0) = 1/2n.

It is easy to see that if L is cross linear canceling for i, j, then H(mi) = H(mj). Therefore,

a similar statement like Lemma 3.1.3 holds:

Lemma 3.5.4.

coll(mq) ≤ θ′(mq) +
q2

2(2n − 2ℓ)
+

σ

2n
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Proof. Let H(mi) = H(mj) for some i < j ∈ [q]. Then one of the following three events

must happen:

• bad0

• A(i, j) : τL is cross linear canceling for i, j ∧ H(mi) = H(mj)

• B(i, j) : τL is not cross linear canceling for i, j, ∧ H(mi) = H(mj) ∧ ¬bad0

Therefore,

coll(mq) ≤ Pr[∪i<jA(i, j)] + Pr[∪i<jB(i, j)] + Pr[bad0]

≤ θ′(mq) + Pr[∪i<jB(i, j)] +
σ

2n

(3.12)

since Pr[∪i<jA(i, j)] ≤ θ′(mq) and Pr[bad0] ≤ σ
2n .

Let us now consider the event B(i, j). That τL is not cross linear canceling for i, j im-

plies that there exists a component C1 in the graph GτL(mi,mj) such that βC1 ̸= 0. For

any component C of the graph, we get a unique value, say x(C) such that xk(a) = x(C)

for any (k, a) ∈ C. Note that for any two distinct components C and C ′, x(C) ̸= x(C ′).

Thus

H(mi) = H(mj) ⇐⇒ βC1 · πππ(x(C1)) =
⊕
C ̸=C1

βC · πππ(x(C))⊕m[ℓi]⊕m[ℓj ].

With the assumption ¬bad0, we can bound the probability of B(i, j) using the ran-

domness of πππ(x(C1)) (since βC1 ̸= 0) after we sample πππ-values for all other compo-

nents in a without replacement manner. Since the maximum number of components in

GτL(mi,mj) is ℓi + ℓj , we get

Pr[B(i, j)] ≤ 1

2n − ℓi − ℓj
≤ 1

2n − 2ℓ
(3.13)

Therefore, applying union bound on ∪i<jB(i, j) we get the required bound for coll(mq)

directly from Eq. (3.12).

Now, it suffices to bound θ′(mq). For the time being we assume that ℓi = ℓ for all i.

Later we will relax the assumption and complete our proof.

Lemma 3.5.5.

θ′(mq) ≤ min{qℓ2, 2q2ℓ}
2n+1

Proof. For any i < j, we let ai,j := min I ̸=(mi,mj). Consider the following two events:
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• bad1 : ∃i ∈ [q], ∃b, c ∈ [ℓ− 1], b < c, such that xi[b] = xi[c]

• bad2 : ∃i < j ∈ [q], ∃b ∈ [ℓ − 1], b ̸= ai,j , such that (xi[ai,j ] = xj [b]) ∨ (xi[ai,j ] =

xi[b])

· · · · · ·

· · · · · ·

· · ·
(i, ai,j) (i, c)

(j, b)
· · ·

· · · · · ·

· · · · · · · · · · · ·

(i, ai,j)

(j, b) (j, c)

· · · · · ·

· · ·

· · · · · ·
(i, ai,j)(i, b) (i, c)

· · ·

Figure 3.5.2: One of these is a necessary subgraph of a cross linear canceling graph for
two messages with same block-lengths. A red or (solid) black line between two nodes
signifies equality between them. Red is used when two blocks with different positions

collide. Black is used when two blocks with same position collide.

Using randomness of L, we can easily bound the probability of the above two bad

events.

Pr[bad1] ≤
qℓ2

2n+1

Pr[bad2] ≤
2q2ℓ

2n+1

(3.14)

We claim that if L is cross linear canceling for some message pair (mi,mj), then both

bad events bad1 and bad2 hold. We first note that 2n − 1 > ℓ > 1. Now consider the

clique C of GτL(mi,mj) that contains (i, ai,j). From the definition of βC and the as-

sumption that ℓi = ℓj , we note that βC can be zero only if C contains at least three

vertices. Figure 3.5.2 illustrates all possible types of sub-clique of C, containing exactly

three vertices, one of which is (i, ai,j). It is obvious to see that at least two of the ver-

tices must appear in the same query, whence we establish that bad1 holds. Further,

Figure 3.5.2 shows all possible way in which xi[ai,j ] is connected to some vertex, which

establishes that bad2 must hold. This validates our claim. The proof follows from Eq.

(3.14).

HANDLING DIFFERENT LENGTH QUERIES:

Claim 3.5.6. If two messages mi and mj are of different length then τ is not cross linear

canceling for i, j.

To show this, suppose τ is cross linear canceling for i, j. Without any loss of generality

assume ∥mi∥ > ∥mj∥. Then each βC must be 0. Thus the sum over all βC where C is a

clique in Gτ must also be 0. Note that

⊕
C

βC =

∥mi∥−1⊕
i=∥mj∥

αi
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which can never be 0 since α is a primitive element of GF (2n).

Now, we group together all the messages with same block-lengths. Precisely, for any

l ∈ [ℓ], we define the following notations:

Sl := {i ∈ [q] : ∥mi∥ = l}; sl := |Sl|;

Note that
∑

l sl = q,
∑

l sll = σ.

Moreover, for any l ∈ [ℓ], we define mSl := (mi1 , . . . ,misl
) where {i1, . . . , isl} denotes

the set Sl in ascending order. Therefore,

θ′(mSl) = Pr[∃i ̸= j ∈ Sl s.t. L is cross linear cancelling for i, j].

Using Claim 3.5.6 and Lemma 3.5.5 we have

θ′(mq) ≤
∑
l

θ′(mSl) ≤ µ :=
∑
l

µl where µl :=
min{sll2, 2s2l l}

2n+1
. (3.15)

In the remainder, we derive upper bounds on µ depending upon the range of ℓ values.

First, consider ℓ ≤ 2n/4. In this case, we have µl ≤ sl
2n/2 which implies

µ ≤ q

2n/2
. (3.16)

Now, consider ℓ > 2n/4. Using the fact that for positive reals a and b,
√
ab ≥ min{a, b},

we have

µ =
∑
l

µl ≤
∑
l

√
2(sll)

1.5

2n+1

≤ σ1.5

2n
, (3.17)

where the second inequality follows from the fact that Σia
r
i ≤ (Σiai)

r for positive ai

and r > 1, and Σlsll = σ. Theorem 3.5.1 can be proved by plugging in the suitable

values of µ from the above equations in Lemma 3.5.4, assuming ℓ ≤ 2n−2.

3.6 Key Results At a Glance

• Security analysis of NPMAC as described in [70] is shown to be incorrect in section

3.2. Further we state an equivalent problem that must be solved in order to get
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a length independent bound for this construction. This problem is still an open

problem.

• Theorem 3.3.4 shows a length independent bound (upto ℓ < 2n/2) for sPMAC

whenever the underlying masking function is ϵ-2AXU.

• Theorem 3.5.1 shows that PMAC2 is a novel PMAC variant which attains a length

independent security bound for ℓ ≤ 2n/4.



Chapter 4

LightMAC and Its Single-key

Variants

LightMAC is a suitable candidate for lightweight cryptographic implementation as a

MAC. In this chapter, we briefly discuss the proof for a length independent bound

for LightMAC, exploiting its hash-then-PRP nature. Then we prove results with sim-

ilar bounds for single-key LightMAC and its two variants. Here, we employ a novel

technique, called reset-sampling, under the general H-coefficient proof environment.

4.1 Revisiting LightMAC

LightMAC is a block cipher-based parallelizable PRF construction by Luykx et al. [62]. It

uses a counter-based encoding of input message blocks, much in the same vein as some

of the previously proposed constructions like XMACC and XMACR [6] and protected

counter sums [12]. Algorithm 4.1.1 gives the algorithmic description of LightMAC and

Figure 4.1.1 gives a pictorial illustration.

Throughout the rest of this paper, we refer to x[i] and y[i] as intermediate input and

output, respectively, for all i ∈ [ℓ − 1] and y⊕ and t are referred as the final input and

output, respectively.

Note that, the block size n and counter size s are application specific parameters that

are fixed before any invocation. In order to argue the security of LightMAC, we must

have ⟨i⟩s ̸= ⟨j⟩s. When i = 2s + j for some j ∈ [2s − 1], then ⟨i⟩s = ⟨j⟩s. So, the

maximum number of blocks in the padded message, denoted ℓmax, must be less than

2s. This will ensure that all the counters will be different.

53
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Algorithm 4.1.1 LightMAC based on an n-bit block cipher E instantiated with two keys
K1,K2. Here s denotes the counter size.

1: function LightMACEK1
,EK2

(m)
2: y⊕ ← 0n

3: (m[1], . . . ,m[ℓ])
n−s←− m

4: for i = 1 to ℓ− 1 do
5: x[i]← ⟨i⟩s∥m[i] ▷ encoding ⟨i⟩s and m[i] into x[i]
6: y[i]← EK1(x[i]) ▷ encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] ▷ accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[ℓ]) ▷ accumulating final block of message

10: t← EK2(y
⊕) ▷ tag generation

11: return t
12: end function

EK1 EK1
. . . EK1

⟨1⟩s∥m[1] ⟨2⟩s∥m[2] ⟨ℓ− 1⟩s∥m[ℓ− 1]

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ EK2 t. . .

padn(m[ℓ])

Figure 4.1.1: LightMAC evaluated over an ℓ-block padded message m.

4.1.1 Hash-then-PRP and the Security of LightMAC

For some ϵ ≥ 0, a (K, {0, 1}≤(n−s)2s ,B)-keyed function H is called an ϵ-universal hash

function if for all distinct m,m′ ∈ {0, 1}≤(n−s)2s , we have

Pr[K←$ K]HK(m) = HK(m
′) ≤ ϵ.

Universal hash functions are very useful in constructing PRFs via the Hash-then-PRP1

paradigm [39, 95]. In this paradigm, given independently keyed ϵ-universal hash func-

tion HK and block cipher EK′ , we define the Hash-then-PRP composition as EK′ ◦HK .

It is well-known that

Advprf
EK′◦HK

(q, T ) ≤ Advprp
E (q, T ′) +

(
q

2

)(
1

2n
+ ϵ

)
, (4.1)

where T ′ = T + qO(TE) and TE denotes the runtime of E.

We skip the proof of this result as it is available in multiple papers including [39, 54].

An informal justification for Eq. (4.1) is based on the observation that if the input to

EK′ is distinct for all q queries then the outputs behave as “almost uniform at random”.

The probability that some inputs to EK′ collide is bounded by
(
q
2

)
ϵ.

1Here, we say PRP instead of PRF to highlight the use of block cipher based finalization.
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PRF SECURITY OF LightMAC: Consider a (K, {0, 1}≤(n−s)2s ,B)-keyed function LightHash,

defined by the following mapping:

∀m ∈ {0, 1}≤(n−s)2s , LightHashEK1
(m) := y⊕,

where y⊕ is the final input corresponding to m in LightMACEK1
,EK2

(m). Now, we can

view LightMAC as an instantiation of Hash-then-PRP, by redefining LightMAC as

LightMACEK1
,EK2

(m) := EK2(LightHashEK1
(m)).

Suppose, LightHashπππ1
is an ϵLH-universal hash for πππ1 ←$ Perm(n). Then, using Eq. (4.1),

we have

Advprf
LightMAC(q, T ) ≤ 2Advprp

E (σ, T ′) +

(
q

2

)(
1

2n
+ ϵLH

)
, (4.2)

where σ denotes the total number of blocks in all q padded queries, and T ′ = T +

σO(TE) and TE denotes the runtime of E.

In [35, 62], it has been shown that ϵLH ≤ 1/(2n − 2ℓmax), where ℓmax is the upper bound

on the query-length in blocks. It is simply because for any m ̸= m′ with lengths ℓ, ℓ′

respectively, the event LightHashπππ1
(m) = LightHashπππ1

(m′) is identical with

ℓ−1⊕
i=1

πππ1(x[i])
ℓ′−1⊕
j=1

πππ1(x
′[j]) = padn(m[ℓ])⊕ padn(m

′[ℓ′]). (4.3)

Now, since m ̸= m′, either (x[1], . . . , x[ℓ− 1]) ̸= (x′[1], . . . , x′[ℓ′ − 1]), or

(x[1], . . . , x[ℓ− 1]) = (x′[1], . . . , x′[ℓ′ − 1]) ∧ padn(m[ℓ]) ̸= padn(m
′[ℓ′]).

The second case has zero probability. In the first case, assuming ℓ ≥ ℓ′, we have at

least one block say x[i] which is distinct from all other blocks. Then, the probability

of the event defined in Eq. (4.3) can be bounded above by probability that πππ1(x[i])

attains a certain value conditioned on the output of πππ1 on all other x[j] and x′[j′] values

for j ∈ [ℓ − 1] \ {i} and j′ ∈ [ℓ′ − 1]. There are at most 2ℓmax such values, i.e., πππ1 is

already sampled on at most 2ℓmax points. Therefore, the probability is bounded above

by 1/(2n − 2ℓmax).

By combining this bound with Eq. (4.2), we get the desired result for LightMAC in the

following proposition.

Proposition 4.1.1. For ℓmax < min{2n−2, 2s}, we have

Advprf
LightMAC(q, T ) ≤ 2Advprp

E (σ, T ′) +
1.5q2

2n
,
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where σ denotes the total number of blocks in all q padded queries, and T ′ = T + σO(TE) and

TE denotes the runtime of E.

4.1.2 Bottlenecks for Single-key LightMAC

We have just seen that the query-length independent security argument for LightMAC

comes quite easily from the Hash-then-PRP paradigm. This is possible because K1

and K2 are independent of each other. A natural direction to explore is the relaxation:

K1 = K2 = K, i.e., LightMAC instantiated with a single key. Formally, we define the

single-key LightMAC construction as follows:

1k-LightMACEK
:= LightMACEK ,EK

.

We remark that the additional nomenclature 1k-LightMAC is just for the sake of brevity. In-

deed, 1k-LightMAC and LightMAC are algorithmically equivalent. We have just instantiated

K1 = K2 = K.

First thing to note is that Hash-then-PRP is no longer applicable as the hash function

HK and block cipher EK are no longer independent. So, we have to look for a dedicated

proof.

Suppose the adversary makes q queries m1, . . . ,mq and the corresponding tuple of in-

termediate inputs and outputs are denoted xi = (xi[1], . . . , xi[ℓi−1]) and yi = (yi[1], . . . , yi[ℓi−
1]), respectively. Similarly, the final input and output for the q queries is denoted y⊕i

and ti, respectively. Consider the events:

Icoll : ∃(i, a) ∈ [q]× [ℓi − 1], j ∈ [q], such that xi[a] = y⊕j ;

Ocoll : ∃(i, a) ∈ [q]× [ℓi − 1], j ∈ [q], such that yi[a] = tj ;

Icoll denotes the event that a final input collides with some intermediate input and

Ocoll denotes the analogous event for output collisions (see Figure 4.1.2).

In a dedicated proof we must take care of these cases as they may lead to inconsistent

transcripts. For example, it is possible that xi[a] = y⊕j (Icoll holds) but yi[a] ̸= tj or

vice-versa. The probability of realizing such a transcript is zero in the real world. In

fact, one can easily create such inconsistencies by first making a query m1 = ⟨1⟩s, and

then making another query m2 = 10n−s−1∥x, where x is any arbitrary bit string. Clearly,

x2[1] = y⊕1 , which implies that Icoll holds. In section 4.2.1, we show how this helps in

mounting an efficient distinguishing attack on 1k-LightMAC using very short messages.

Interestingly, if we swap the positions of counter and message block, then this trivial
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eK . . . eK . . . eK

∗ Xi[j] ∗

⊕⊕⊕. . . ⊕⊕⊕ ⊕⊕⊕ eK ∗. . .

... ...
∗

∗

...

eK eK

∗

. . . eK

∗ ∗

...

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕. . . eK ∗

...
...

Y ⊕i′

eK . . . eK . . . eK

∗ ∗ ∗

⊕⊕⊕. . . ⊕⊕⊕ ⊕⊕⊕ eK ∗. . .

...
...

∗

Yi[j]

∗

...

eK eK

∗

. . . eK

∗ ∗

...

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕. . . eK Ti′

...
...

Figure 4.1.2: Icoll (left) and Ocoll (right) events. In each case, labels with same color
are equal, and double lines between two labels signify equality between the corre-

sponding variables.

collision is no longer possible. Indeed, in section 4.3 we show that the resulting variant

is secure. Since our main goal is to study the standardized algorithm, we first simply

assume that messages are at least (n − s) bits long, thereby ensuring that at least one

block cipher call is made in the hash layer. But, this only helps to avoid collisions in the

corner case. We still have to consider the possibility of Icoll and Ocoll in the general

case. We have to ensure that such inconsistencies do not occur with high probability.

A straightforward bound on these events introduces a bound of the form O(q2ℓmax/2
n)

since there are at most qℓmax many (i, a) pairs and q choices for j. However, we aim to

do better than this. In the next two sections, we show how we can handle these events

in better way.

4.2 Security of 1k-LightMAC

This section is devoted to the PRF security of 1k-LightMAC. First, we demonstrate a

short messages attack on the construction that justifies the later imposition of a lower

bound on the message lengths in order to prove security.

4.2.1 A Short Message Attack on 1k-LightMAC

Suppose the counter size s ≤ n−2
2 and the adversary is allowed to make short length

queries. Then, we construct a distinguisher A against 1k-LightMACπππ
2 in the following

2Note that, the attack is demonstrated for the best possible primitive, i.e., a random permutation. For
actual instantiations, we may even get better attacks.
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manner:

1. Initialize L1 = L2 = ∅.

2. For (i, b) ∈ [q]× {0, 1}:

(a) Make query M
(b)
i := ⟨i⟩s∥b. Let the corresponding oracle response be T

(b)
i .

(b) Insert the triple (i, b,T
(b)
i ) in the list L1 indexed by (i, b).

3. For j ∈ [2q]:

(a) Consider ⟨j⟩q := j1∥ · · · ∥jq.

(b) Extract (i, ji,T
(ji)
i ) from L1 for all i ∈ [q].

(c) Compute Sj := T
(j1)
1 ⊕ · · · ⊕ T

(jq)
q .

(d) Insert the tuple (j,Sj) in the list L2 indexed by j.

4. In list L2, find j such that ⌊Sj⌋s+1 = 0s+1, where ⌊Sj⌋s+1 denotes the least signifi-

cant (s+ 1) bits of Sj .

5. Let

Mj := j1∥10n−s−2∥ · · · ∥jq∥10n−s−2∥0n−s−1,

Mj′ := ⌈Sj⌉n−s−1,

where ⌈Sj⌉n−s−1 denotes the most significant (n− s− 1) bits of Sj .

6. Query Mj and Mj′ and let the corresponding oracle responses be Tj and Tj′ .

7. If Tj = Tj′ then return 1, else return 0.

Observe that Y⊕j = Sj ⊕
(
0n−s−1∥10s

)
and Y⊕j′ = ⌈Sj⌉n−s−1∥10s. Let GBA denote the

event that A finds an index j at line 4. Now, it is easy to see that Y⊕j = Y⊕j′ if and

only if GBA occurs. Thus, A returns 1 with probability 1, when it is interacting with

1k-LightMACπππ, provided it is able to find the index j in list L2. On the other hand, A

returns 1 with probability 2−n, when it is interacting with a uniform random function

ρρρ. Formally, we have

Advprf
1k-LightMACπππ

(A ) =
∣∣∣Prπππ[A 1k-LightMACπππ = 1]− Prρρρ[A

ρρρ = 1]
∣∣∣

=

∣∣∣∣Prπππ[A 1k-LightMACπππ = 1 ∧ GBA]− 1

2n

∣∣∣∣
=

∣∣∣∣Prπππ[GBA]− 1

2n

∣∣∣∣
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≥
∣∣∣∣Prρρρ[GBA]− 1 + e−

q(q−1)

2n+1 − 1

2n

∣∣∣∣
≥

∣∣∣∣e− 2q

2s+1 − e−
q(q−1)

2n+1 +
1

2n

∣∣∣∣ ,
where the first inequality follows from the statistical distance between a without re-

placement sample of size q and a with replacement sample of size q (the so called birth-

day bound), and the second inequality follows from the generalized birthday attack

and the fact that |x| = |−x|. Clearly, the advantage approaches 0.5 for q ≈ s+1 = O(n).

Thus, the single-keyed construction is insecure when the adversary is allowed to make

short (less than (n− s) bits) message queries.

Note that, the attack works by first finding out 2q intermediate input-output pairs by

repeatedly creating Icoll event using Step 2(a) and 5. This is possible trivially because

the adversary can fix final input via short (s + 1)-bit queries. Throughout this section,

we assume that messages are at least (n− s)-bit long. This assumption is used to avoid

some trivial bad events, as discussed in section 4.1.2.

Theorem 4.2.1. Let q, ℓmin, ℓmax, σ, t > 0. For ℓmin ≥ 2, q+4ℓmax ≤ 2n−1, the PRF security

of 1k-LightMAC against A(q, T ) is given by

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +
1.5q2

2n
+

7.5q3ℓ2max

22n
+

4q4ℓ2max

23n
+

2σ

2n
,

where q denotes the number of queries, ℓmax (res. ℓmin) denotes an upper (res. lower) bound on

the number of blocks in any padded query, σ denotes the total number of blocks present in all q

queries, T ′ = T + σO(TE) and TE denotes the runtime of E.

Further assuming ℓmax ≤ min{2n/4, 2s} and q ≤ min{2
3n
4
−2, 2

n
2
−1.51}, we have

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +
4q2

2n
+

2σ

2n
.

The proof of this theorem is described in the rest of this section. First of all, we switch to

the information-theoretic setting, i.e., EK is replaced with πππ ←$ Perm(n) via a standard

hybrid argument. Formally, we have

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +Advprf
1k-LightMACπππ

(q,∞). (4.4)

So it is enough to bound the PRF security of 1k-LightMACπππ, henceforth also referred

as the real oracle. We apply the H-coefficient technique to bound this term. Fix any

A ∈ A(q,∞) such that

Advprf
1k-LightMACπππ

(q,∞) = Advprf
1k-LightMACπππ

(A ).
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Going forward, we will bound the advantage of A .

4.2.2 Description of Oracles and their Transcripts

4.2.2.1 Real Oracle:

The real oracle corresponds to 1k-LightMACπππ. It responds faithfully to all the queries

made by A . Once the query-response phase is over, it releases all the intermediate

inputs and outputs to A .

In addition, the real oracle releases three binary variables, namely, FlagT, FlagZ, and

FlagY, all of which are degenerately set to 0. The utility of these flags will become

apparent from the description of ideal oracle. For now, it is sufficient to note that these

flags are degenerate in the real world.

Formally, we have Θ1 := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ,FlagY), where

• M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈ {0, 1}≤(n−s)2
s

for all i ∈ [q]. In addition, for all i ∈ [q], let ℓi :=
⌊
|Mi|
n−s

⌋
+ 1.

• T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where Ti ∈ B.

• X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th query,

i.e., for all a ∈ [ℓi − 1], Xi[a] = ⟨a⟩s∥Mi[a].

• Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the i-th

query, i.e., for all a ∈ [ℓi−1], Yi[a] = πππ(Xi[a]). In addition, let Ỹ⊕ := (Y⊕1 , . . . ,Y
⊕
q ),

where Y⊕i :=
⊕

a∈[q] Yi[a]⊕ padn(Mi[ℓi]) for all i ∈ [q].

• FlagI = 0 for all I ∈ {T,Z,Y}.

Note that, X̃ is completely determined from M̃. We have included it in the transcript just

for the sake of simplicity. From the definition of 1k-LightMAC, we know that πππ(Y⊕i ) =

Ti for all i ∈ [q]. So, in the real world we always have (X̃, Ỹ⊕) ↭ (Ỹ, T̃), i.e., (X̃, Ỹ⊕)

is permutation compatible with (Ỹ, T̃). We keep this observation in our mind when we

simulate the ideal oracle.

4.2.2.2 Ideal oracle:

We reuse the variable notations from the real oracle description to represent the ideal

oracle transcript Θ0, i.e., Θ0 := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ,FlagY). This should not cause
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any confusion, as we never consider the random variables Θ1 and Θ0 jointly, whence

the probability distributions of the constituent variables will always be clear from the

context. The ideal oracle transcript is described in three phases, each contingent on

some predicates defined over the previous stages. Specifically, the ideal oracle first

initializes FlagT = 0, FlagZ = 0, FlagY = 0, and then follows the sampling mechanism

given below:

PHASE I (QUERY-RESPONSE PHASE): In the query-response phase, the ideal oracle

faithfully simulates ρρρ ←$ Func({0, 1}≤(n−s)2s ,B). Formally, for i ∈ [q], at the i-th query

Mi ∈ {0, 1}≤(n−s)2
s
, the ideal oracle outputs Ti ←$ B. The partial transcript generated

at the end of the query-response phase is given by (M̃, T̃, X̃), where

• M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

• X̃ = (X1, . . . ,Xq), where Xi = (Xi[1], . . . ,Xi[ℓi − 1]) and Xi[a] := ⟨a⟩s∥Mi[a] for all

(i, a) ∈ [q]× [ℓi − 1].

Now, we define a predicate on T̃:

BadT : ∃i ̸= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT is set to 1, and Ỹ = (Y1, . . . ,Yq) is defined degenerately:

Yi[a] = 0n for all (i, a) ∈ [q] × [ℓi − 1]. Otherwise, the ideal oracle proceeds to the next

phase.

PHASE II (OFFLINE INITIAL SAMPLING PHASE): Onward, we must have Ti ̸= Tj when-

ever i ̸= j, and FlagT = 0, since this phase is only executed when BadT is false. In the

offline phase, the ideal oracle initially makes the following sampling:

(Rx1 , . . . ,Rxσ′ )
wor←− B \ T̃,

where (x1, . . . , xσ′) is an arbitrary ordering of the set

X(X̃) := {x : x = Xi[a], (i, a) ∈ [q]× [ℓi − 1]}.

Next, the ideal oracle sets

– Zi[a] := Rx if x = Xi[a], for all (i, a) ∈ [q]× [ℓi − 1], and

– Z⊕i :=
⊕ℓi−1

a=1 Zi[a]⊕ padn(Mi[ℓi]).
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At this stage we have Zi[a] = Zj [b] if and only if Xi[a] = Xj [b]. In other words, X̃ ↭ Z̃.

But the same might not hold for Z⊕ and T̃. Now, we define four predicates on (Z̃, X̃):

BadZ1 : ∃i ̸= j ∈ [q], such that Z⊕i = Z⊕j .

BadZ2 : ∃(i, a) ∈ [q]× [ℓi − 1], such that Xi[a] = Z⊕i .

BadZ3 : ∃i ̸= j ̸= k ∈ [q], a ̸= b ∈ [ℓi − 1], such that

(Xi[a] = Z⊕j ) ∧ (Xi[b] = Z⊕k ).

BadZ4 : ∃i ̸= j ̸= k ∈ [q], a ∈ [ℓi − 1], b ∈ [ℓj − 1], such that

(Xi[a] = Z⊕j ) ∧ (Xj [b] = Z⊕k ).

We write BadZ := BadZ1∨BadZ2∨BadZ3∨BadZ4. Looking ahead momentarily, BadZ will

represent bad scenarios that are difficult to fix in the third stage. For example, BadZ1

leads to permutation incompatibility between Z⊕ and T̃ which is not desirable. We will

discuss utility of the other three predicates in the description of next phase.

If BadZ is true, then FlagZ is set to 1, and Ỹ = (Y1, . . . ,Yq) is again defined degenerately,

as in the case of BadT. Otherwise, the ideal oracle proceeds to the next phase.

PHASE III (OFFLINE RESETTING PHASE): At this point, we know that BadZ is false. In

this phase, we will define the complete transcript generated in the ideal world, i.e., Θ0,

by appropriately defining Ỹ. Remember, our goal is to maintain (X̃, Ỹ⊕) ↭ (Ỹ, T̃).

Definition 4.2.2 (full collision index). Any query index i ∈ [q] is called a full collision

index if ∃ a ∈ [ℓi − 1], j ∈ [q] such that Xi[a] = Z⊕j . Additionally, let

• I := {i ∈ [q] : Z⊕j = Xi[a], for some a ∈ [ℓi − 1], j ∈ [q]}.

• J := {j ∈ [q] : Z⊕j = Xi[a] for some (i, a) ∈ [q]× [ℓi − 1]}.

• FCT := {(i, a, j) : i, j ∈ [q], a ∈ [ℓi − 1] such that Z⊕j = Xi[a]}. Sometimes, we also

use F̃CT := {(i, a) ∈ [q]× [ℓi − 1] : ∃j ∈ [q] such that Z⊕j = Xi[a]}.

We refer to i ∈ I and j ∈ J as full-collision and resetting index, respectively.

Observe that we can simply set Ỹ = Z̃, whenever I = ∅, since ¬(BadT ∨ BadZ) holds.

However, we need a more involved method when I ̸= ∅. Next, we use a novel sam-

pling approach, called reset-sampling, in context of the sampling for Ỹ.
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π. . . . . .

⊕⊕⊕. . . . . . π

Xi[a]

π

Xj [1] padn(Mj [ℓj ])

. . .

. . . ⊕⊕⊕ π∗ Tj

Yi[a] Z⊕j

Figure 4.2.1: Resetting of Yi[a] due to collision Xi[a] = Z⊕
j . The red double line rep-

resents a collision arising in phase II sampling. The blue dashed edge represents the
corresponding resetting in phase III sampling.

Reset-sampling: The sampling of Ỹ is done in two stages:

STAGE 1: For all (i, a) ∈ [q]× [ℓi − 1], set Yi[a] = Zi[a].

STAGE 2: For all (i, a, j) ∈ FCT, reset Yi[a] = Tj .

Finally, define Y⊕ := (Y⊕1 , . . . ,Y
⊕
q ), where Y⊕i =

⊕
a∈[q] Yi[q]⊕ padn(Mi[ℓi]).

In the second stage, we have reset Yi[a] from Zi[a] to Tj for all (i, a, j) ∈ FCT. This fixes

the previous inconsistency issue, i.e., Xi[a] = Z⊕j and Yi[a] ̸= Tj . Figure 4.2.1 gives a

pictorial view of this step. The following must hold due to the condition ¬BadZ:

• For each (i, a) ∈ I × [ℓi− 1], there is a unique choice for j (if exists) such that Yi[a]

is reset to Tj . Otherwise, ¬BadZ1 is violated.

• Continuing the previous point, we must have j ̸= i. Otherwise, ¬BadZ2 is vio-

lated. Indeed, i = j incurs a trivial inconsistency: (Yi[a] = Ti) ∧ (Xi[a] ̸= Y⊕i ) due

to the resetting mechanism.

• For each i ∈ I, there exists at most one a ∈ [ℓi − 1], such that Yi[a] is reset.

Otherwise, ¬BadZ3 is violated.

• For all j ∈ J , none of the intermediate outputs are reset. Otherwise, ¬BadZ4 is

violated.

To summarize, the ideal oracle ensures that for each full collision index at most one

intermediate output is reset, and the resetting index is uniquely determined. Further,

a full collision index cannot be a resetting index. Thus, ¬BadZ helps in avoiding trivial

inconsistencies as well as keeping the resetting to a minimum. Now, we define two

predicates on (X̃, Z̃, Ỹ):
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BadY1 : ∃i ̸= j, k ∈ [q],∃a ∈ [ℓi − 1], b ∈ [ℓk − 1], such that

(Xi[a] = Z⊕j ) ∧ (Y⊕i = Xk[b]).

BadY2 : ∃i ̸= j ̸= k ∈ [q],∃a ∈ [ℓi − 1], such that (Xi[a] = Z⊕j ) ∧ (Y⊕i = Y⊕k ).

We write BadY := BadY1 ∨ BadY2. It is easy to see that BadY simply handles the new

inconsistencies that may arise due to the reset sampling. For example, BadY1 represents

the scenario where resetting leads to collision between intermediate and final inputs.

Similarly, BadY2 represents the scenario where resetting leads to collision between two

final inputs.

If BadY is true, then FlagY is set to 1, and Ỹ is redefined degenerately, as in the case of

BadT and BadZ. At this point, the ideal oracle transcript is completely defined.

Intuitively, if the ideal oracle is not sampling Ỹ degenerately at any stage, then we must

have (X̃, Ỹ⊕) ↭ (Ỹ, T̃). We justify this intuition in the following proposition.

Proposition 4.2.3. For ¬(BadT ∨ BadZ ∨ BadY), we must have (X̃, Ỹ⊕) ↭ (Ỹ, T̃).

Proof. We have

• X̃ ↭ Z̃, by definition of Z̃. Moreover the resetting guarantees Z̃ ↭ Ỹ. Thus,

X̃ ↭ Ỹ.

• We have Yi[a] = Tj if and only if Xi[a] = Z⊕j . Now, ¬BadZ4 implies that j ̸∈ I
thus, Y⊕j = Z⊕j . Therefore, Yi[a] = Tj ⇒ Xi[a] = Y⊕j . Also, Xi[a] = Y⊕j implies

j ̸∈ I (due to ¬BadY1), thus, Z⊕j = Y⊕j . This gives us Xi[a] = Y⊕j ⇒ Yi[a] = Tj

from the second stage sampling of Y. Thus, Xi[a] = Y⊕j ⇔ Yi[a] = Tj .

• ¬BadZ ∧ ¬BadY and definition of Y imply that Y⊕i ’s are distinct. Also, ¬BadT im-

plies that Ti’s are distinct. Thus Ỹ⊕ ↭ T̃.

These observations suffice to conclude that (X̃, Ỹ⊕) ↭ (Ỹ, T̃).

4.2.3 Transcript Analysis

SET OF TRANSCRIPTS: Given the description of transcript random variable corre-

sponding to the ideal oracle, we can define the set of transcripts T as the set of all

tuples τ = (m̃, t̃, x̃, ỹ,flagT, flagZ, flagY), where
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• m̃ = (m1, . . . ,mq), where mi ∈
(
{0, 1}≤(n−s)2s

)
for i ∈ [q]. For i ∈ [q], let ℓi =⌊

|mi|
n−s

⌋
+ 1.

• t̃ = (t1, . . . , tq), where ti ∈ {0, 1}n for i ∈ [q];

• x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[ℓi−1]) for i ∈ [q], and xi[a] = ⟨a⟩s∥mi[a]

for all a ∈ [ℓi − 1];

• ỹ = (y1, . . . , yq), where yi = (yi[1], . . . , yi[ℓi − 1]) for i ∈ [q], and yi[a] ∈ B for all

a ∈ [ℓi − 1].

• flagT, flagZ, flagY ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,Z,Y}, then yi[a] = 0n for all (i, a) ∈ [q]× [ℓi − 1].

2. if flagT = 0, then ti’s are all distinct.

3. if flagI = 0 for all I ∈ {T,Z,Y}, then (x̃, ỹ⊕) ↭ (ỹ, t̃).

The first two conditions are obvious from the ideal oracle sampling mechanism. The

last condition follows from Proposition 6.2.3 and the observation that in ideal oracle

sampling for any I ∈ {T,Z,Y}, FlagI = 1 if and only if BadI is true. Note that, condition

3 is vacuously true for real oracle transcripts.

BAD TRANSCRIPT: A transcript τ ∈ T is called bad if and only if the following predi-

cate is true:

(FlagT = 1) ∨ (FlagZ = 1) ∨ (FlagY = 1).

In other words, we term a transcript bad if the ideal oracle sets Ỹ degenerately. Let

Tbad := {τ ∈ T : τ is bad.}.

All other transcript τ ′ = (m̃, t̃, x̃, ỹ,flagT,flagZ,flagY) ∈ T \ Tbad are called good. From

the preceding characterization of the set of transcripts, we conclude that for any good

transcript τ ′, we must have (x̃, ỹ⊕) ↭ (ỹ, t̃). Henceforth, we drop flagT, flagZ, flagY

notations for any good transcript with an implicit understanding that flagT = flagZ =

flagY = 0.

To apply the H-coefficient theorem we have to upper bound the probability Pr [Θ0 ∈ Tbad]
and lower bound the ratio Pr [Θ1 = τ ]/Pr [Θ0 = τ ] for any τ ∈ T \ Tbad.
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Lemma 4.2.4 (bad transcript analysis). For 4ℓmax + q ≤ 2n−1, we have

Pr [Θ0 ∈ Tbad] ≤
3q2

2n+1
+

2.5q3ℓ2max

22n
+

4q3ℓmax

22n
+

4q4ℓ2max

23n
+

2σ

2n
.

The proof of this lemma is postponed to section 4.2.4.

GOOD TRANSCRIPT: Now, fix a good transcript τ = (m̃, t̃, x̃, ỹ). Let σ′ := |x̃|. Since, τ

is good, we have (x̃, ỹ⊕) ↭ (ỹ, t̃). Then, we must have |ỹ⊕| = q. Further, let |x̃∩ỹ⊕| = r.

Thus, |x̃ ∪ ỹ⊕| = q + σ′ − r.

Real world: In the real world, the random permutationπππ is sampled on exactly q+σ′−r
distinct points. Thus, we have

Pr [Θ1 = τ ] =
1

(2n)q+σ′−r
. (4.5)

Ideal world: Here, the probability computation is slightly involved due to the two stage

sampling employed in the ideal oracle. First of all, we have

Pr
[
T̃ = t̃

]
=

1

2nq
, (4.6)

since each Ti is sampled uniformly from the set B independent of others. Now, observe

that all the full collision and resetting indices are fully determined from the transcript

τ itself. In other words, we can enumerate the set F̃CT. Now, since the transcript is

good, we must have |F̃CT| = |x̃ ∩ ỹ⊕| = r, and for all indices (i, a) /∈ F̃CT, we have

Yi[a] = Zi[a]. Thus, we have

Pr
[
Yi[a] = yia ∧ (i, a) /∈ F̃CT | T̃ = t̃

]
= Pr

[
Zi[a] = yia ∧ (i, a) /∈ F̃CT | T̃ = t̃

]
=

1

(2n − q)σ′−r
, (4.7)

where the second equality follows from the fact that truncation3 of a without replace-

ment sample from a set of size (2n − q) is still a without replacement sample from the

same set. We have

Pr [Θ0 = ω] = Pr
[
T̃ = t̃

]
× Pr

[
Ỹ = ỹ | T̃ = t̃

]
≤ 1

2nq
× Pr

[
Yi[a] = yi[a] ∧ (i, a) /∈ F̃CT | T̃ = t̃

]
=

1

2nq
× 1

(2n − q)σ′−r
. (4.8)

3Removing some elements from the tuple.
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The above discussion on good transcripts can be summarized in shape of the following

lemma.

Lemma 4.2.5. For any τ ∈ T \ Tbad, we have

Pr [Θ1 = τ ]

Pr [Θ0 = τ ]
≥ 1.

Proof. The proof follows from dividing Eq. (6.9) by Eq. (6.12).

From H-coefficient Theorem 2.2.7 and Lemma 6.2.4 and 6.2.5, we get

Advprf
1k-LightMACπππ

(A ) ≤ 3q2

2n+1
+

2.5q3ℓ2max

22n
+

4q3ℓmax

22n
+

4q4ℓ2max

23n
+

2σ

2n
. (4.9)

Theorem 4.2.1 follows from Eq. (4.4) and (6.13).

4.2.4 Proof of Lemma 6.2.4

We have

Pr [Θ0 ∈ Tbad] = Pr [(FlagT = 1) ∨ (FlagZ = 1) ∨ (FlagY = 1)]

= Pr [BadT ∨ BadZ ∨ BadY]

≤ Pr [BadT]× Pr [BadZ|¬BadT]× Pr [BadY|¬(BadT ∨ BadZ)]

We will handle the three terms on the right hand side separately. Before delving further,

we introduce few more notations.

FEW MORE NOTATIONS: For simplicity, we denote the last padded block of any mes-

sage mi by mi[ℓi] instead of padn(mi[ℓi]). For any (i, a) with i ∈ [q], a ∈ [ℓi], Z
⊕\a
i (res.

Y
⊕\a
i ) denotes

⊕
b̸=a Zi[b]⊕mi[ℓi] (res.

⊕
b̸=a Yi[b]⊕mi[ℓi]).

While we bound the probability of bad events, we need to deal with system of equa-

tions in Z variables. Note that Z can be viewed asπππ(X) for the corresponding X variable.

We will often employ Lemma 2.3.1 implicitly (without referring at each application) to

bound the probability that these system of equations hold.

1. Bounding Pr [BadT]: Since, we have at most
(
q
2

)
choice for i, j, and for each such

pair, Ti = Tj holds with exactly 2−n probability. Thus, we have

Pr [BadT] ≤ q2

2n+1
. (4.10)
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2. Bounding Pr [BadZ|¬BadT]: Here, we have four cases.

(a) BadZ1 : ∃i ̸= j ∈ [q], such that Z⊕i = Z⊕j . This is similar to BadT above. We

have

Pr [BadZ1|¬BadT] ≤ q2

2 · (2n − q − 2ℓmax)
.

(b) BadZ2 : ∃(i, a) ∈ [q]× [ℓi − 1], such that Xi[a] = Z⊕i . It is easy to see that

Pr [BadZ2|¬BadT] ≤
q∑

i=1

ℓi − 1

2n − q − ℓmax
≤ σ

2n − q − ℓmax
.

(c) BadZ3 : ∃i ̸= j ̸= k ∈ [q], a, b ∈ [ℓi − 1], such that (Xi[a] = Z⊕j ) ∧ (Xi[b] = Z⊕k ).

Here, j ̸= k implies that the system of equations has rank 2. Thus, using

Lemma 2.3.1, we have

Pr [BadZ3|¬BadT] ≤ q3ℓ2max

12(2n − q − 2ℓmax)2
.

(d) BadZ4 : ∃i ̸= j ̸= k ∈ [q], a ∈ [ℓi − 1], b ∈ [ℓj − 1], such that (Xi[a] = Z⊕j ) ∧
(Xj [b] = Z⊕k ). Using similar argumentation as above, we have,

Pr [BadZ4|¬BadT] ≤ q3ℓ2max

12(2n − q − 2ℓmax)2
.

Combining all the four cases and assuming q + 2ℓmax ≤ 2n−1, we have

Pr [BadZ|¬BadT] ≤ q2

2n
+

0.34q3ℓ2max

22n
+

2σ

2n
(4.11)

3. Bounding Pr [BadY|¬(BadT ∨ BadZ)]: Here, we have two cases:

(a) BadY1 : ∃i, j, k ∈ [q], ∃a ∈ [ℓi − 1], b ∈ [ℓk − 1] such that (Xi[a] = Z⊕j ) ∧
(Y⊕i = Xk[b]). By virtue of resetting mechanism and ¬BadZ, we arrive at an

equivalent system of Z-equations

Z⊕j = Xi[a]

Z
⊕\a
i = Xk[b]⊕ Tj

We claim that the system always has rank 2. This can be argued as follows:

Suppose the system has rank less than 2. Then, we must have Z⊕j ⊕ Xi[a] ⊕
Z
⊕\a
i ⊕Xk[b]⊕Tj = 0n. However, Z̃ are sampled from B \ T̃. Hence, Tj does

not cancel out trivially. So, we must always have rank 2. Now if the rank is

2, then we can always rewrite the system of equations such that we have an
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equation in Tj and another equation involving some Z variables. Then, the

first equation holds with at most 1/2n probability (using the randomness of

Tj) and conditioned on this the second equation holds with probability at

most 1/(2n − q − 2ℓmax). Thus, we have

Pr [BadY1|¬(BadT ∨ BadZ)] ≤ q3ℓ2max

2n(2n − q − 2ℓmax)
.

(b) BadY2 : ∃i, j, k ∈ [q], ∃a ∈ [ℓi − 1], such that (Xi[a] = Z⊕j ) ∧ (Y⊕i = Y⊕k ).

Here we get Xi[a] = Z⊕j ∧ Z
⊕\a
i = Y⊕k ⊕ Tj which changes according to the

following subcases:

Case A: when k ̸∈ I: Then the above system becomes

Z⊕j = Xi[a]

Z
⊕\a
i = Z⊕k ⊕ Tj

Using similar argumentation as before we can conclude that the system

has rank 2. Therefore, we have

Pr [BadY2 ∧ Case A|¬(BadZ ∨ BadT)] ≤ q3ℓmax

(2n − q − 3ℓmax)2
.

Case B: when k ∈ I: In this case we have the following system of equa-

tions:

Z⊕j = Xi[a]

Z⊕l = Xk[b]

Z
⊕\a
i ⊕ Z

⊕\b
k = Tj ⊕ Tl

We must have j ̸= l. Otherwise we will have Z⊕i = Z⊕k which again

violates ¬BadZ. Thus, j ̸= l. Now, j ̸= l and ¬BadZ implies that Z⊕j ̸= Z⊕l .

Then, following a similar line of argument as before, we conclude that

the system has rank 3. Therefore, we have

Pr [BadY2 ∧ Case B|¬(BadZ ∨ BadT)] ≤ q4ℓ2max

2n(2n − q − 4ℓmax)2
.

Combining all the cases with the assumption that q + 4ℓmax ≤ 2n−1, we have

Pr [BadY|¬(BadT ∨ BadZ)] ≤ 2q3ℓ2max

22n
+

4q3ℓmax

22n
+

4q4ℓ2max

23n
. (4.12)

The result follows from summing up Eq. (4.10)-(4.12).
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4.3 LightMAC-swp

In section 4.1.2, we hinted that a simple change in message block pre-processing —

how the counter and message blocks are concatenated — might help in avoiding the

short message attack (see section 4.2.1) on 1k-LightMAC. Here we describe this variant

and show that it achieves the same security bound as 1k-LightMAC, albeit without any

restrictions on minimum length of the messages.

4.3.1 Description of LightMAC-swp

We obtain LightMAC-swp by just a small change in each intermediate input. It is de-

scribed in Algorithm 4.3.1.

Algorithm 4.3.1 LightMAC-swp based on an n-bit block cipher E instantiated with a key
K. Here s denotes the counter size.

1: function LightMAC− swpEK
(m)

2: y⊕ ← 0n

3: (m[1], . . . ,m[ℓ])
n−s←− m

4: for i = 1 to ℓ− 1 do
5: x[i]← m[i]∥⟨i⟩s ▷ encoding ⟨i⟩s and m[i] into x[i]

6: y[i]← EK(x[i]) ▷ encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] ▷ accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[ℓ]) ▷ accumulating final block of message

10: t← EK(y⊕) ▷ tag generation
11: return t
12: end function

4.3.2 Security of LightMAC-swp

Note that for messages with more than one block, the same security proof for 1k-

LightMAC works for LightMAC-swp too. For two messages one of which is single block,

the inconsistency as discussed in section 4.1.2 can not happen here, since both counter

and the padding rule apply to the “right" (i.e., least significant bits) of a message block

and these two concatenated values are different. Therefore, in case of LightMAC-swp,

the security result holds for single block messages also. This justification suffices to

give the following result.

Theorem 4.3.1. Let q, ℓmin, ℓmax, σ, t > 0. For ℓmin ≥ 2, q+4ℓmax ≤ 2n−1, the PRF security

of 1k-LightMAC against A(q, T ) is given by

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +
1.5q2

2n
+

7.5q3ℓ2max

22n
+

4q4ℓ2max

23n
+

2σ

2n
,
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where q denotes the number of queries, ℓmax (res. ℓmin) denotes an upper (res. lower) bound on

the number of blocks in any padded query, σ denotes the total number of blocks present in all q

queries, T ′ = T + σO(TE) and TE denotes the runtime of E.

Further assuming ℓmax ≤ min{2n/4, 2s} and q ≤ min{2
3n
4
−2, 2

n
2
−1.51}, we have

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +
4q2

2n
+

2σ

2n
.

4.4 LightMAC-ds: Another Variant of Single-key LightMAC

In the previous section we showed that single-key LightMAC achieves query-length in-

dependent security bounds while ℓmin ≥ 2 and ℓmax ≤ 2n/4. Now, we propose a simple

variant of LightMAC that achieves query-length independent security unconditionally.

4.4.1 Description of LightMAC-ds

For any x ∈ B and k < n, let chopk(x) denote the most significant n − k bits of x.

The complete algorithmic description of LightMAC-ds is given in Algorithm 4.4.1. It

Algorithm 4.4.1 LightMAC-ds based on an n-bit block cipher E instantiated with a sin-
gle key K. Here the counter size is s − 1. Highlighted lines point to the algorithmic
differences with the LightMAC algorithm.

1: function LightMAC-dsEK
(m)

2: y⊕ ← 0n

3: (m[1], . . . ,m[ℓ])
n−s←− m

4: for i = 1 to ℓ− 1 do
5: x[i]← 0∥⟨i⟩s−1∥m[i] ▷ encoding ⟨i⟩s−1 and m[i] into x[i]

6: y[i]← EK(x[i]) ▷ encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] ▷ accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[ℓ])

10: t← EK(1∥chop1(y⊕))
11: return t
12: end function

is clear from the description that LightMAC-ds uses the familiar technique of domain

separation to generate two “almost independent” instances of E. Specifically, we fix the

most significant 1-bit of the block cipher input to

• 0 in the processing of encoded message blocks (see line no. 5 in Algorithm 4.4.1).

• 1 in the tag generation call (see line no. 10 in Algorithm 4.4.1).
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Since 1-bit is reserved for domain separation, the effective counter size is reduced to

s − 1 for some global parameter s < n. Thus, the maximum message length can be at

most (n − s)2s−1, which is a slight drop from (n − s)2s in case of LightMAC, for large

value of n and s.

4.4.2 Security of LightMAC-ds

Surprisingly (or not), the security argument for LightMAC-ds is quite similar to the one

for single-key LightMAC. In fact, it is slightly easy to argue the security here, as we have

already ensured ¬Icoll (see section 4.1.2) by the virtue of domain separation. How-

ever, we still have to handle Ocoll (see section 4.1.2) which would require a slight care

while sampling the intermediate outputs in the ideal world. Note that, such complica-

tions do not arise in case of LightMAC for the obvious reason of independence between

the primitives used to generate the intermediate and final outputs. The PRF security of

LightMAC-ds is presented in Theorem 4.4.1.

Theorem 4.4.1. Let q, ℓmax, T > 0. For q + 2ℓmax ≤ 2n−1, the PRF security of A against

A(q, T ) is given by

Advprf
LightMAC-ds(q, T ) ≤ Advprp

E (σ + q, T ′) +
2.5q2

2n
,

where ℓ denotes an upper bound on the number of blocks in any padded query, T ′ = T +O(TE)

and TE denotes the runtime of E.

As expected, the proof is quite similar and a bit easier than the proof of theorem 4.2.1.

As the first step, we apply the hybrid argument to get

Advprf
LightMAC-ds(q, T ) ≤ Advprp

E (σ + q, T ′) +Advprf
LightMAC-dsπππ

(q,∞). (4.13)

We are interested in a bound on the PRF security of LightMAC-dsπππ, henceforth also

referred as the real oracle. Fix any A ∈ A(q,∞) such that

Advprf
LightMAC-dsπππ

(q,∞) = Advprf
LightMAC-dsπππ

(A ).

Going forward, we will bound the advantage of A using H-coefficient technique.
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4.4.3 Description of Oracles and their Transcripts

4.4.3.1 Real Oracle:

The real oracle is defined analogously as in the proof of Theorem 4.4.1. We describe it

just for the sake of completeness. The real oracle faithfully responds to all the queries

made by A . Once the query-response phase is over, it releases all the intermediate

inputs and outputs to A . Additionally, the real oracle releases two binary flags, FlagT

and FlagZ, that are degenerately set to 0. Formally, we have

Θ1 := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ),

where

• M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈ {0, 1}≤(n−s)2
s−1

for all i ∈ [q]. In addition, for all i ∈ [q], let ℓi :=
⌊
|Mi|
n−s

⌋
+ 1.

• T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where Ti ∈ B.

• X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th query,

i.e., for all a ∈ [ℓi − 1], Xi[a] = 0∥⟨a⟩s−1∥Mi[a].

• Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the i-th

query, i.e., for all a ∈ [ℓi−1], Yi[a] = πππ(Xi[a]). In addition, let Ỹ⊕ := (Y⊕1 , . . . ,Y
⊕
q ),

where Y⊕i :=
⊕

a∈[ℓi−1] Yi[a]⊕ padn(Mi[ℓi]) for all i ∈ [q].

• FlagT = FlagZ = 0.

Let chop1(Ỹ⊕) = (1∥chop1(Yi[1]), . . . , 1∥chop1(Yi[ℓi − 1])). It is straightforward to see

that in the real world we always have (X̃, chop1(Ỹ
⊕)) ↭ (Ỹ, T̃), i.e., (X̃, chop1(Ỹ⊕)) is

permutation compatible with (Ỹ, T̃).

4.4.3.2 Ideal oracle:

We reuse the notations from real oracle description to represent the variables in the

ideal oracle transcript Θ0, i.e.

Θ0 := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ).
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The ideal oracle transcript is described in two phases, with the second one contingent

on some predicate defined over the first stage. Specifically, the ideal oracle initializes

FlagT = FlagZ = 0, and then follows the sampling mechanism given below:

PHASE I (QUERY-RESPONSE PHASE): In the query-response phase, the ideal oracle

faithfully simulates ρρρ ←$ Func({0, 1}≤(n−s)2s−1
,B). Formally, for i ∈ [q], at the i-th

query Mi ∈ {0, 1}≤(n−s)2
s−1

, the ideal oracle outputs Ti ←$ B. The partial transcript

generated at the end of the query-response phase is given by (M̃, T̃, X̃), where

• M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

• X̃ = (X1, . . . ,Xq), where Xi = (Xi[1], . . . ,Xi[ℓi−1]) and Xi[a] := 0∥⟨a⟩s−1∥Mi[a] for

all (i, a) ∈ [q]× [ℓi − 1].

Now, we define a predicate on T̃:

BadT : ∃i ̸= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT = 1, and Ỹ = (Y1, . . . ,Yq) is defined degenerately: Yi[a] = 0n

for all (i, a) ∈ [q]× [ℓi − 1]. Otherwise, the ideal oracle proceeds to the next phase.

PHASE II (OFFLINE SAMPLING PHASE): In the offline phase, the ideal oracle initially

makes the following sampling:

(Rx1 , . . . ,Rxt)
wor←− B \ T̃,

where (x1, . . . , xt) is an arbitrary ordering of the set

X(X̃) := {x : x = Xi[a], (i, a) ∈ [q]× [ℓi − 1]}.

Next, the ideal oracle sets

– Zi[a] := Rx if x = Xi[a], for all (i, a) ∈ [q]× [ℓi − 1], and

– Z⊕i :=
⊕ℓi−1

a=1 Zi[a]⊕ padn(Mi[ℓi]).

At this stage we have Zi[a] = Zj [b] if and only if Xi[a] = Xj [b]. In other words, X̃ ↭ Z̃.

But the same might not hold for chop1(Z̃⊕) and T̃. Now, we define a predicate on (Z̃, X̃):

BadZ : ∃i ̸= j ∈ [q], such that chop1(Z
⊕
i ) = chop1(Z

⊕
j ).
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Note that, ¬BadZ ensures chop1(Z̃
⊕) ↭ T̃, that when coupled with the X̃ ↭ Z̃ due to

the sampling mechanism ensures (X̃, chop1(Z̃
⊕)) ↭ (Z̃, T̃). Intuitively, this makes the

ideal world almost similar to the real world.

If BadZ is true, then FlagZ = 1, and Ỹ := (Y1, . . . ,Yq) is again defined degenerately, as

in the case of BadT. Otherwise, Ỹ := Z̃. At this point, the transcript random variable for

the ideal world is completely determined.

4.4.4 Transcript Analysis

SET OF TRANSCRIPTS: Given the description of the transcript random variable corre-

sponding to the ideal oracle, we can define the set of transcripts T as the set of all tuples

τ = (m̃, t̃, x̃, ỹ,flagT, flagZ), where

• m̃ = (m1, . . . ,mq), where mi ∈
(
{0, 1}≤(n−s)2s−1

)
for i ∈ [q]. Let ℓi =

⌊
|mi|
n−s

⌋
+ 1

for i ∈ [q].

• t̃ = (t1, . . . , tq), where ti ∈ {0, 1}n for i ∈ [q];

• x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[ℓi−1]) for i ∈ [q], and xi[a] = 0∥⟨a⟩s−1∥mi[a]

for all a ∈ [ℓi − 1];

• ỹ = (y1, . . . , yq), where yi = (yi[1], . . . , yi[ℓi − 1]) for i ∈ [q], and yi[a] ∈ B for all

a ∈ [ℓi − 1].

• flagT, flagZ ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,Z}, then yi[a] = 0n for all (i, a) ∈ [q]× [ℓi − 1].

2. if flagT = 0, then ti’s are all distinct.

3. if flagI = 0 for all I ∈ {T,Z}, then (x̃, chop1(Ỹ
⊕)) ↭ (ỹ, t̃).

BAD TRANSCRIPT: A transcript τ ∈ T is called bad if and only if the following predi-

cate is true:

(FlagT = 1) ∨ (FlagZ = 1).

In other words, we term a transcript bad if the ideal oracle sets Ỹ degenerately. Let

Tbad := {τ ∈ T : τ is bad.}.
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All other transcript τ ′ = (m̃, t̃, x̃, ỹ,flagT, flagZ) ∈ T \ Tbad are called good. It is pretty

straightforward to deduce that for any good transcript we must have (x̃, chop1(ỹ
⊕)) ↭

(ỹ, t̃).

Lemma 4.4.2 (bad transcript analysis). For q + 2ℓmax ≤ 2n−1, we have

Pr [Θ0 ∈ Tbad] ≤
2.5q2

2n
.

Proof. We have

Pr [Θ0 ∈ Tbad] = Pr [(FlagT = 1) ∨ (FlagZ = 1)]

= Pr [BadT ∨ BadZ]

≤ Pr [BadT]× Pr [BadZ|BadT].

We will handle the two terms on the right hand side separately:

1. Bounding Pr [BadT]: Since, we have at most
(
q
2

)
choice for i, j, and for each such

pair, Ti = Tj holds with exactly 2−n probability. Thus, we have

Pr [BadT] ≤ q2

2n+1
. (4.14)

2. Bounding Pr [BadZ|¬BadT]: Fix two indices i ̸= j. Now, we can have two cases:

(a) ℓi = ℓj : Since Mi ̸= Mj , we must have at least one index a, such that Mi[a] ̸=
Mj [a], which implies that Xi[a] ̸= Xj [a]. Further, note that Xi[a] ̸= Xk[b] for

all (k, b) ∈ {i, j}× [ℓk − 1]. Then, by conditioning on the value of Zk[b] for all

(k, b) ∈ {i, j} × [ℓk − 1] \ {(i, a)}, we bound the probability that chop1(Z
⊕
i ) =

chop1(Z
⊕
i ) to at most 2/(2n−q−2ℓmax), where the factor of 2 in the numerator

is due to 1-bit chopping. There are at most
(
q
2

)
choices for i, j, so in this case

the probability is at most q2/(2n − q − 2ℓmax).

(b) ℓi ̸= ℓj : Without loss of generality we assume that ℓi > ℓj . Then, applying

exactly the same argumentation as used in the preceding case with (i, a) =

(i, ℓi − 1), we can bound the probability in this case to at most q2/(2n − q −
2ℓmax).

Since the two cases are mutually exclusive, we have

Pr [BadZ|¬BadT] ≤ q2

(2n − q − 2ℓmax)
. (4.15)
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The result follows by summing up Eq. (4.14) and (4.15) and using q+2ℓmax ≤ 2n−1.

GOOD TRANSCRIPT: Fix a good transcript τ = (m̃, t̃, x̃, ỹ, 0, 0). Let σ′ := |x̃|. Since, τ is

good, we have (x̃, chop1(ỹ
⊕)) ↭ (ỹ, t̃). Then, we must have |chop1(ỹ⊕)| = q. Further,

x̃ ∩ chop1(ỹ
⊕) = ∅ due to domain separation. Thus, |x̃ ∪ chop1(ỹ

⊕)| = q + σ′.

Real world: In the real world, the random permutation πππ is sampled on exactly q + σ′

distinct points. Thus, we have

Pr [Θ1 = τ ] =
1

(2n)q+σ′
. (4.16)

Ideal world: In the ideal world, first T̃ is sampled in with replacement fashion from

a set of size 2n. Then, exactly σ′ values are sampled corresponding to Ỹ in without

replacement fashion from a set of size 2n − q. Thus, we have

Pr [Θ0 = τ ] =
1

2nq
× 1

(2n − q)σ′
. (4.17)

On dividing Eq. (4.16) by (4.17), we get

Pr [Θ1 = τ ]

Pr [Θ0 = τ ]
≥ 1.

From H-coefficient Theorem 2.2.7 and Lemma 4.4.2, we get

Advprf
LightMAC-dsπππ

(A ) ≤ 2.5q2

2n
. (4.18)

Theorem 4.4.1 follows from Eq. (4.13) and (4.18).

4.5 Key Results At a Glance

• An O(n)-query forgery attack on 1k-LightMAC is shown in section 4.2.1 when the

adversary is allowed to make short queries of length less than n− s.

• Theorem 4.2.1 shows that 1k-LightMAC is as secure as two-key LightMAC when-

ever the query-lengths are in the range [n− s, (n− s)min{2n/4, 2s}].
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• Theorem 4.3.1 shows that LightMAC-swp – a novel single-key variant of LightMAC

is as secure as two-key LightMAC whenever query-lengths are upper bounded by

(n− s)min{2n/4, 2s}.

• Theorem 4.4.1 shows that LightMAC-ds – another single-key variant of LightMAC

achieves birthday bound security while the query-lengths are upper bounded by

(n− s)2s−1.



Chapter 5

PMAC Family: Towards a

Generalization

Continuing the discussion in the previous chapters, we will try to have a generalized

view of the PMAC family in this chapter. In this direction, we will give essential defini-

tions required for this discussion. Moreover, some interesting general results will also

be proven. Let us start with the general setup and will delve deeper step by step.

Here, for the sake of simplicity, we will use a slightly different version of the origi-

nal PMAC-type constructions: instead of simply xoring the last block itself (with other

intermediate outputs), we will xor its encrypted output.

5.1 Family of Parallelizable MACs

5.1.1 Hash Function Family

Suppose H is a family of hash functions mapping the set of all arbitrary binary strings

{0, 1}∗ to B. For any m ̸= m′ ∈ {0, 1}∗, we define collH(m,m′) by the collision proba-

bility Pr[H(m) = H(m′)] where H ←$ H. The maximum collision probability for a pair

of distinct inputs having at most ℓ n-bit blocks is denoted as collH(ℓ) or collH(ℓ). This

can be further generalized to q distinct inputs m1, . . . ,mq. We write collH(m1, . . . ,mq)

to denote the probability Pr[∃i ̸= j,H(mi) = H(mj)] under the randomness of H ←$ H.

The maximum collision probability for q messages, denoted as collH(q, ℓ) or collH(q, ℓ)

is then defined as max collH(m1, . . . ,mq) where the maximum is taken over q distinct

inputs m1, . . . ,mq such that ∥mi∥n ≤ ℓ. So, by definition collH(2, ℓ) is same as collH(ℓ).

79
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Definition 5.1.1 (universal hash function [21]). A hash function family H is called ϵ(ℓ)

universal function if collH(ℓ) ≤ ϵ(ℓ), for all ℓ.

For any hash function familyH, using the union bound we have

collH(q, ℓ) ≤
(
q

2

)
· collH(ℓ).

For PHash (the underlying hash of PMAC), authors of [39] had shown that collPHash(q, ℓ)

is about ℓq2/2n and collPHash(ℓ) is about ℓ/2n. So the above inequality is tight.

Remark 5.1.2. It is worth to remark that collH(q, ℓ) = Θ(
(
q
2

)
· collH(ℓ)) is not true in

general. In [17], authors had shown that the collision probability of the CBC-MAC is

at least log ℓ/2n. However, authors of [52, 84] had shown that the collision probability

of CBC-MAC for q messages is at most q2/2n for all ℓ ≤ 2n/4. This may happen due to

a certain restriction imposed on the pair of messages for which the maximum collision

probability is achieved. The same restriction may not be achieved for all pairs of q

messages. For example, in case of CBC-hash, the restriction is that one input should be a

prefix of the other and the larger one contains O(ℓ) many zero blocks after the common

prefix. This condition clearly cannot be achieved for all pairs of any q messages for

large q.

5.1.2 Hash-then-PRP

We first recall the hash-then-PRP paradigm and its known security analysis. Let e be an

n-bit blockcipher with a plaintext space B and a key-space K. LetH be a hash function

family mapping arbitrary binary strings to n-bit block. On an input m ∈ {0, 1}∗, Hash-

then-PRP construction outputs eK(H(m)) where K ←$ K and H ←$ H are sampled

independently. The PRF advantage of this construction (based on random permutation

πππ replacing the underlying block cipher eK) can be shown to be at most

collH(q, ℓ) + q2/2n+1.

By using PRP-PRF switching lemma [4], we can replace the random permutation by the

random function ρρρ at the cost of q2/2n+1 advantage. The basic idea of the remaining

part of the proof is that as long as there is no collision among the hash outputs, the

ρρρ returns random values and hence the composition function behaves like a random

function defined over the arbitrary input space. We now justify that this bound is tight

for most of the cases. Note that q2/2n+1 is the probability for collision of a random

function.
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(Case A) collH(q, ℓ) > cq2/2n+1 for some constant c > 1:

If an adversary queries those q messages for which the collision probability of the un-

derlying hash function is maximized then it gets collisions with probability collH(q, ℓ).

Hence, the distinguishing advantage based on collision is at least (c − 1)q2/2n+1. The

maximum distinguishing advantage is at most (c+ 1)q2/2n+1.

(Case B) collH(q, ℓ) ≤ cq2/2n+1 for some constant c < 1:

Suppose there are q inputs for which no collision on the hash functions occurs. This is

true for LightMAC, PMAC and many other parallelizable MACs. For all these construc-

tions, we can choose inputs which only differ in one block. Then, due to permutation

property, no collision among final outputs is occurred. The distinguishing advantage

for those adversaries based on non-collision is q2/2n+1. Hence, once again in those

cases we obtain the tight bound.

5.1.2.1 Hash-then-PRP with Single-Key:

The proof for independent hash-key based construction is not applicable for dependent

key settings. We cannot bound the PRF advantage of the composition HeK ◦ eK where

the hash function H is itself based on the block cipher eK . A domain separation mecha-

nism can avoid the collisions between a final input and intermediate inputs of the block

cipher. But, this cannot avoid the non-collision among the q final outputs and about σ

many intermediate outputs. If we carry similar analysis as hash-then-PRP (or σq/2n

analysis of PMAC as in [75]), we can only prove that the distinguishing advantage is

at most σq/2n where σ is in the order of ℓq. However, the collision probability of the

underlying hash function for q messages may not be in that order. In fact, we show that

some hash functions (namely the first chain hash of PMAC+, and the underlying hash

of LightMAC) have collision probability in the order of q2/2n. Thus, the tight analysis

of single-keyed constructions even with domain separation is still an open problem. In

this paper we study the PRF advantage of the single-keyed composition for a special

structure of hash function, namely a family of parallelizable hash. We define this family

below.

5.1.3 A Family of Parallelizable Hash xPHash

We first define a family of parallelizable hash based on a masking key ∆ and the block

cipher eK . However, the masking key can be derived by calling the block cipher for

fixed inputs and hence it can be a purely single keyed construction. For the sake of

simplicity we first begin with the case having an independent masking key, in case
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. . . y⊕

Figure 5.1.1: PHash for generic PMACX ,π

it is required (e.g., LightMAC does not require any masking key). A hash function is

basically computed in three steps (see Fig. 5.1.1):

– Encoding the Message: We first encode the message m into (x[1], . . . , x[ℓ]) ∈ Bℓ.

This encoding can be deterministic (in this case no masking key is needed) or can

be defined using a masking key ∆. Let us denote this encoding as a function

X (m). We also write ℓ as ∥m∥. In general ∥m∥ and ∥m∥n are same or differ by at

most one.

– Parallel Block Cipher Calls: Then, we apply block cipher in parallel to all these

blocks obtained through encoding. More precisely, we compute y[i] = eK(x[i])

for all i ∈ [ℓ].

– Sum the Outputs of the Block Cipher: Finally, the hash output is defined as the

sum y⊕ = y[1]⊕ · · · ⊕ y[ℓ].

We call the hash function xPHash and denote it as xPHash. We also write the final

output as xPHashX ,K(m). When the encoding function is understood from the context

we simply write xPHash∆,K(m) or xPHashK(m) (in case the masking key is not used).

The hash for the simplified version of LightMAC, PMAC etc. can be instantiated by our

generalized hash xPHash as demonstrated below. In all these cases we only have to

describe the encoding function as the rest are same for all constructions.

Hash for LightMAC. Let 0 < s < n be some fixed parameter. Given a message m,

we pad 10d such that |m∥10d| is a multiple of (n − s). We choose d to be the smallest

nonnegative integer which satisfies the above condition. Let the padded message be

(m[1], . . . ,m[ℓ]) ∈ ({0, 1}n−s)ℓ. Now, the encoding of the message is defined as X (m) =

(x[1], . . . , x[ℓ]) ∈ Bℓ where x[i] = ⟨i⟩s∥m[i] and ⟨i⟩s is the s-bit binary representation of

i. So the maximum size of ℓ should be at most 2s − 1 and hence the maximum message

size which can be processed in this encoding is at most (n− s)(2s − 1)− 1.
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π π . . . π
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⊕⊕⊕ ⊕⊕⊕. . . H

α∆1

α2∆2

α2∆1

α4∆2

αℓ∆1

α2ℓ∆2

Figure 5.1.2: The underlying first chaining hash function used in PMAC+.

Hash for PMAC. Given a message m, we once again pad 10d for a smallest non-negative

d such that m∥10d is a multiple of n. Let the padded message be (m[1], . . . ,m[ℓ]) ∈ Bℓ.

In this encoding a masking key ∆ is used. Let γ1, γ2, . . . be the Gamma code. Now,

the encoding of the message is defined as X (m) = (x[1], . . . , x[ℓ]) ∈ Bℓ where x[i] =

m[i]⊕ γi ·∆.

Hash for PMAC1. The encoding function for PMAC1 is similar to PMAC. Let α be a

primitive element in the underlying field GF (2n). We define X (m) = (x[1], . . . , x[ℓ]) ∈
Bℓ where x[i] = m[i]⊕αi·∆. In general for any sequence of distinct elements ω1, ω2, . . . , ωℓ

we can define the i block of the encoding of a PMAC-type construction as x[i] = m[i]⊕
ωi ·∆.

Hash for PMAC+. The encoding function for PMAC+ is little more stronger than PMAC

in which two masking keys ∆1,∆2 are used. In this encoding, the i block of the encod-

ing of a PMAC-type construction as x[i] = m[i]⊕αi ·∆1⊕α2i ·∆2. This is illustrated in

Fig 5.1.2.

N.B. In this chapter, by PMAC+ we mean a simplified version of the original PMAC+.

This version is nothing but a variant of PMAC (except the direct xoring of the last block

of message) where the endoding of PMAC+ is used instead of the Gamma code. The

original PMAC+, as described by Kan Yasuda in [98], has two layers at the intermediate

output level and falls in the cateory of DbHtS which has been proven to be beyond

birthday bound secure by Datta et al. in [29] and Kim et al. in [58]. The version of

PMAC+ we have used here has an advantage because it needs not go through an extra

layer of computation (which includes O(ℓ) many multiplication by a primitive element

of GF(2n)).
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5.1.3.1 Collision Probability for xPHash

We have already seen that the collision probability of the underlying hash function

plays an important role in the PRF advantage. In this subsection, we show how to get

an exact form of the collision probability. This would be useful in our tight analysis. We

first begin with defining odd set for a message with respect to an encoding function.

Definition 5.1.3 (odd set). Let X be an encoding function. We define the odd-set corre-

sponding to the message m (with respect to the encoding function X ) as

oddX (m) = {x ∈ B : #{j ∈ [ℓ] : x[j] = x} is odd} (5.1)

where X (m) = (x[1], . . . , x[ℓ]).

So odd set basically collects all those blocks in X (m) which appears odd many times.

The significance of the odd set definition is prominent when we compute xPHashX ,K(m).

Note that xPHashX ,K(m) is same as
⊕ℓ

i=1 eK(x[i]). So for all those blocks x which ap-

pear even times get canceled in the above sum. In other words,

xPHashX ,K(m) =
⊕

x∈oddX (m)

eK(x). (5.2)

Definition 5.1.4 (colliding hash). We say that an encoding function X is colliding for a

pair of messages m1,m2 if oddX (m1) = oddX (m2). Otherwise, we call it non-colliding.

We define colliding advantage as

Advxcoll
X (ℓ) = max

m1,m2
∥m1∥,∥m2∥≤ℓ

Pr[X is collding for m1,m2] (5.3)

Note that when X is deterministic, the above would be either zero or one. Whenever X
is colliding for a pair of messages, the hash values also collide for sure. However, the

converse need not be true. But, it can be shown that the collision probability of the hash

for non-colliding X is very small. In particular, we have the following useful bound.

Lemma 5.1.5. Let H := xPHashX ,πππ be a parallelizable hash function based on an encoding

function X and the random permutation πππ (replacing the block cipher). Then,

collH(q, ℓ) ≤
(
q

2

)
×
(
Advxcoll

X (ℓ) +
1

2n − 2ℓ

)
(5.4)

Proof . Suppose, m1,m2 are two messages with ℓ1, ℓ2 blocks respectively. Then, the

collision event, denoted as coll, xPHashX ,πππ(m1) = xPHashX ,πππ(m2) is equivalent to the
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equation of random variables

⊕
x∈odd(m1)

πππ(x) =
⊕

x∈odd(m2)

πππ(x) (5.5)

The probability that odd(m1) = odd(m2) holds, is at most Advxcoll
X (ℓ).

For notational simplicity we denote πππ(x) as Yx. Whenever odd(m1) ̸= odd(m2) holds

the collision event can be written as ⊕x∈JYx = 0 where J = (odd(m1) \ odd(m2)) ∪
(odd(m2) \ odd(m1)) ̸= ∅. So by applying Lemma 2.3.1, we have

Pr[odd(m1) ̸= odd(m2) ∧ coll] = Pr[odd(m1) ̸= odd(m2) ∧ ⊕x∈JYx = 0]

≤ 1

2n − 2ℓ
.

By combining both cases and applying union bound, the desired result follows.

Definition 5.1.6. We say that X is ϵ-blockwise universal if for all bit strings m,m′ (not

necessarily distinct), and for all i ̸= j with i ≤ ∥m∥ and j ≤ ∥m′∥, the following holds:

Pr[X (m)[i] = X (m′)[j]] ≤ ϵ (5.6)

Moreover, it is called ϵ-blockwise regular if for all c ∈ B, m ∈ {0, 1}∗ and i ≤ ∥m∥,

Pr[X (m)[i] = c] ≤ ϵ (5.7)

5.1.4 A Parallelizable MAC Family

In this paper our main focus is to analyze single-keyed version of hash-then-PRP where

the hash function is xPHash. More formally, we describe our MAC family, called xP-

MAC, as follows: Let X denote a collection of functions, also called encoding functions,

from {0, 1}∗ to B+. We assume X ←$ X and K ←$ K are independent.

xPMACX ,K(m)

1 : Input : m ∈ {0, 1}∗

2 : (x[1], ..., x[ℓ])← X (m)

3 : y[i]eK [x[i]] for i = 1, . . . , ℓ

4 : y⊕ ← y[1]⊕ ...⊕ y[ℓ]

5 : t← eK(y⊕)

6 : return t
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Figure 5.1.3: Generic PMACX ,π

If the key of X is ∆ we sometimes write the above MAC as xPMAC∆,K or simply

xPMACK (whenever ∆ is not present or when it is derived from the underlying block

cipher itself). Let πππ ←$ Perm be the random permutation. When we replace the block

cipher by the random permutation, we write the MAC as xPMAC∆,πππ or xPMACπππ (see

Fig.5.1.3).

WELL KNOWN CANDIDATES OF THE FAMILY: PMAC, PMAC1 and single-key version

of LightMAC are some candidates of the family. We have already defined the under-

lying hash functions H for these constructions. The final output is simply defined as

eK(H(m)) where the same eK is used to define the hash H. Note that the original Light-

MAC is defined for two independent keys and can be defined as eK′(H(m)).

5.2 Main Theorems

Theorem 5.2.1 (main result). Suppose X is ϵ-blockwise universal and independent of the

block cipher key. Let xPMAC be the MAC based on X and eK . Then,

Advprf
xPMAC(q, ℓmax, σ, t) ≤ Advprp

e (σ, t′) +

(
q

2

)
×Advxcoll

X (ℓmax)+

36q2

2n
+ 16q2 · ϵ+ ℓmax · σ · ϵ.

provided ℓmax ≤ 2n/4.

Theorem 5.2.2 (single-keyed version of the main result). Suppose X∆ is ϵ′-block wise

regular and universal where ∆ = (∆1, . . . ,∆k) and ∆i = eK(i). Then the PRF advantage of
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the single keyed construction, denoted as 1k-xPMAC is at most

Advprf
1k-xPMAC(q, ℓmax, σ, t) ≤ Advprp

e (σ, t′) +

(
q

2

)
×Advxcoll

X (ℓmax)+

36q2

2n
+ 16q2 · ϵ+ ℓmax · σ · ϵ+

k(k + 2q)

2n+1
+

4kq

2n
+

2σk

2n
.

provided ℓmax ≤ 2n/4.

We postpone the proof of the above two main theorems in Sect. 5.3. We note that

for almost all encoding we can choose ϵ ≤ 2−n. Moreover, k is usually very small con-

stant. So, we can further simplify the bound for the main theorem as q2Advxcoll
X (ℓmax)+

O( q
2

2n ) +O( q

2
n
2
).

5.2.1 Applications of Main Theorems

Now we give two applications of our main theorems.

Proposition 5.2.3. The masking of underlying encoding XPMAC+ of PMAC+ uses two masks

∆1,∆2 and a primitive element α from F2n . Suppose, the primitive element α is chosen such

that 1 + αi + αj + αk ̸= 0 for all i, j, k ≤ 2n/4.Then, for all ℓ ≤ 2n/4,

Advxcoll
XPMAC+

(ℓ) ≤ 4

2n

Proof . Let m,m′ be such that odd(m) = odd(m′). Note that for any i, j,

x[i] = x′[j]⇒ ∆1 + (αi + αj)∆2 = (αi + αj)−1(m[i] +m′[j])

x[i] = x[j]⇒ ∆1 + (αi + αj)∆2 = (αi + αj)−1(m[i] +m[j])

x′[i] = x′[j]⇒ ∆1 + (αi + αj)∆2 = (αi + αj)−1(m′[i] +m′[j])

(5.8)

Suppose, p = ∥m∥, p′ = ∥m′∥.

Case 1: (One of m and m′ is prefix of another.) Without any loss of generality, we can as-

sume that m′ is a prefix of m. Then, m = m′∥m[(p′+1)...p]. Now, odd(m) = odd(m′)⇒
odd(m[(p′ + 1)...p]) = ∅⇒ ℓ− p is even.

Case when p− p′ = 2 : In this case, x[p′ + 1] = x[p′ + 2] which is actually ∆1 + (αp′+1 +

αp′+2)∆2 = C for C = (αp′+1 + αp′+2)−1(m[p′ + 1] +m[p′ + 2]) by 5.8. We are left with

only one equation with random variables ∆1,∆2 and fixed choice of coefficient and
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constant. Therefore, Pr ≤ 1
N .

Case when p− p′ ≥ 4 : Let j1 ∈ [(p′ + 2) . . . p] such that x[p′ + 1] = x[j1]. Since p− p′ ≥ 4

and odd(m[(p′ + 1)...p]) = ∅, we can find distinct i2, j2 ∈ [(p′ + 2) . . . p] which are

different from j1 and x[i2] = x[j2]. Now, from 5.8, we have a system of two equations

with appropriate C1, C2:

∆1 + (αp′+1 + αj1)∆2 =C1

∆1 + (αi2 + αj2)∆2 =C2

The above system has rank=2 due to the assumption on α. For each of j1, i2, j2 we have

at most ℓ-many choices. Therefore, Pr ≤ ℓ3

N2 .

Case 2: (m,m′ are not prefix of one another.) Let m = (m[1], . . . ,m[p]) and m′ =

(m′[1], . . . ,m′[p′]) with p ≥ p′. We define

NEQ(m,m′) = {i ∈ [p′] : m[i] ̸= m′[i]}.

For simplicity it will be denoted by NEQ henceforth. Note that i ∈ NEQ⇔ x[i] ̸= x′[i].

Case when |NEQ| = 1 : Let NEQ = {i1}. Then there exists j ̸= k such that x[i] =

x[j] and x′[i] = x[k]. Thus, from 5.8, we get the following system of equations with

appropriate C1, C2:

∆1 + (αi1 + αj)∆2 =C1

∆1 + (αi1 + αk)∆2 =C2

(5.9)

It has rank=2 since j ̸= k. Therefore, in this case, Pr ≤ ℓ2

N2 .

Case when |NEQ| ≥ 2 : Suppose i1, i2 are the first two (increasing order wise) indices

from NEQ. If x[i1](or x[i2]) matches with x[j] or x′[j] and x′[i1](or x′[i2]) matches with

x[k] or x′[k] for some j ̸= k, then we get a ℓ2

N2 bound following the same line of argument

as the previous case. Suppose it does not happen for both x[i1] and x[i2]. Then, we have
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j1, j2 (both different from i1, i2) such that x[i1] = x[j1] and x[i2] = x[j2]. 5.8 gives us the

following system of equations with appropriate C1, C2:

∆1 + (αi1 + αj1)∆2 =C1

∆1 + (αi2 + αj2)∆2 =C2

(5.10)

By virtue of the assumption on α, we have that the above system has rank=2 (otherwise

αi1 + αj1 = αi2 + αj2 ⇒ 1 + αj1−i1 + αi2−i1 + αj2−i1 = 0). Therefore, Pr ≤ ℓ2

N2 . This

completes the proof of our proposition.

Corollary 5.2.4. Let ∆i = eK(i), i = 1, 2 (masking keys are generated by the underlying

block cipher). Let PMAC+′ denote the single-keyed hash-then-PRP based on the underlying

single chain hash of PMAC+. Assume that the primitive element α satisfies the condition that

for all i, j, k ≤ 2n/4, αi + αj + αk ̸= 1 Then,

Advprf

PMAC+′(q, ℓmax, σ, t) ≤ Advprp
e (σ, t′) +

54q2

2n
+
( q2
2n

)1/2
+

11q + 4σ

2n
(5.11)

provided ℓmax ≤ 2n/4.

This follows directly from our single-keyed version of the main theorem (with k =

2) and the above proposition. We note that the underlying encoding function is 2−n-

blockwise universal and regular.

Now we state similar result for 1k-LightMAC also. We get this directly from the above

single-keyed version of the main result, without any exclusive analysis for this con-

struction. That is why this bound is slightly worse than what we get at chapter 4. Due

to counter encoded with the message blocks, the colliding probability for the LightMAC

encoding is zero. Moreover, it is 0-blockwise universal (we do not need regular prop-

erty as there is no masking key). Hence, we have the following PRF advantage for

1k-LightMAC.

Advprf
1k-LightMAC(q, ℓmax, σ, t) ≤ Advprp

e (σ, t′) +
36q2

2n
(5.12)

provided ℓmax ≤ 2n/4.
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5.3 Proof of the Main Theorem

By using the classical hybrid argument (moving from the block cipher eK to the random

permutation πππ), we have

Advprf
xPMAC(q, ℓ, σ, t) ≤ Advprp

e (σ, t′) +Advprf
xPMACX ,πππ

(q, ℓ, σ) (5.13)

So it is enough to bound the PRF advantage of the hybrid construction xPMACX ,πππ (now

onwards, we call it real world). We apply H-technique to bound the second term. We

apply the extended version of H-technique in which after the query-response phase

is over, the adversary gets some additional information. We first define how the real

world works.

REAL ORACLE: The real world faithfully simulates the real construction and releases

the internal variables, namely all random permutation outputs and the masking key.

It first samples X ←$ X and πππ ←$ Perm independently. On i query Mi, it just re-

turns ti := xPMACX ,πππ(Mi). Once the query-response phase is over, it also returns the

encoding function X (equivalently the masking key which uniquely determines the en-

coding function), and all outputs of πππ during the computation of the underlying hash

xPHash(Mi) for all i. More formally, let

M̃ = (M1, . . . ,Mq), T̃ = (T1, . . . ,Tq)

be the q-tuple of distinct queries and its corresponding responses. For all i ∈ [q], we

write xi = X (Mi). Let ℓi = ∥Mi∥ and so we can write xi as (xi[1], . . . , xi[ℓi]) (tuple of

intermediate inputs). For all i, a, we write yi[a] := πππ(xi[a]). The tuple of intermediate

outputs for i query is yi := (yi[1], . . . , yi[ℓi]). We also write the tuples of all intermediate

inputs and outputs for all queries as X̃ = (x1, . . . , xq), Ỹ = (y1, . . . , yq) respectively. The

transcript for the real oracle is defined as

τreal = ((M̃, t̃), X , Ỹ) ∈ ({0, 1}∗)q ×Bq ×X × (B+)q

which uniquely determines τ ′real := ((M̃, t̃), X̃, Ỹ) ∈ ({0, 1}∗)q × Bq × (B+)q × (B+)q.

Let y⊕i = yi[1]⊕ · · · ⊕ yi[ℓi].

Definition 5.3.1 (permutation compatible). Two tuples a, b on same index set J are said

to be permutation compatible if a[j1] = a[j2] ⇔ b[j1] = b[j2] for every j1, j2 ∈ J . It is

denoted by A ∼ B.

Note that two tuples a and b are permutation compatible if and only if there is a per-

mutation π such that π(a[j]) = b[j] for all j. In other words, equality patterns among a
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values exactly matches with the equality patterns among b values. From the definition

of xPMAC, we know thatπππ(y⊕i ) = ti for all i. So, (X̃, y⊕) is permutation compatible with

(Ỹ, t̃). We keep this observation in our mind when we simulate the ideal oracle.

Definition 5.3.2 (real world transcript). A transcript is a tuple τ = (m̃, t̃,X , ỹ) ∈ ({0, 1}∗)q×
Bq × X × Bσ where σ =

∑
i ℓi where ℓi = ∥mi∥. As described above, a transcript

τ determines uniquely a tuple τ ′ = (m̃, t̃, x̃, ỹ) (applying X function to mi for all i).

We call it a real world transcript if (x̃, ỹ⊕) is permutation compatible with (ỹ, t̃) where

ỹ⊕ = (y⊕1 , . . . , y
⊕
q ) and y⊕i = yi[1]⊕ · · · ⊕ yi[ℓi].

From the definition of transcript for real oracle it is clear that real oracle always realizes

a real world transcript. Suppose σ′ (≤ σ) is the number of distinct blocks present in

(ỹ, t̃). Then,

Pr[τreal = τ ] =
1

|X |
× 1

(2n)σ′
. (5.14)

IDEAL ORACLE: On i query Mi, the ideal oracle returns Ti values randomly from B.

We define BadT holds if T values collide. Clearly,

Pr(BadT) ≤ q2

2n+1
. (5.15)

Throughout the ideal oracle we define different bad events and we bound the probabil-

ity of those events. When we proceed with the definition of the subsequent variables,

we can assume that the all previous bad events do not hold (for the completeness of

the ideal oracle, one can define the remaining transcript arbitrarily whenever a bad

sets true). So, let us assume that T is a q-tuple of distinct blocks. We write query and

response tuples as M̃ and T̃ respectively. Note that the query tuple is completely de-

termined by the response tuple. We write ℓi = ∥Mi∥ and ℓmax = maxi ℓi. Once the

query-response phase is over, it samples the encoding function X randomly and inde-

pendently from the query and responses. We say that BadEncode holds if

1. the encoding function X is a colliding function for the message tuple or

2. For some i, there exists a < b ≤ ℓi such that xi[a] = xi[b].

As the hash function ϵ-block-wise universal, the probability that xi[a] = xi[b] holds for

any fixed i, a, b, is at most ϵ. So, by using the union bound,

Pr(BadEncode) ≤
(
q

2

)
·Advxcoll

X (ℓ) + ℓmax · σ · ϵ. (5.16)
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So let us assume that BadT and BadEncode do not hold. We can then sample the y values

randomly depending on the equalities among x-values. We define the y values in two

stages. At the first stage we sample z-values so that Z̃ is permutation compatible with

X̃. Let I be the set of pairs (i, a), for all a ∈ [ℓi] and i ∈ [q]. In the second stage, we reset

some z-values chosen in the first stage. The revised tuple would be denoted as Ỹ.

First stage: Let

zx
wor←− B for every x ∈ ¶ := {x : x = xi[a], (i, a) ∈ I}

and define z⊕i := ⊕azi[a] where zi[a] := zx for x = xi[a]. In other words, z-values

sampled as if these are computed through a random permutation πππ on all x-values.

More precisely, the distribution of Z̃ := (zi[a] : (i, a) ∈ I) is same as that of (πππ(xi[a]) :

(i, a) ∈ I). So Z̃ is permutation compatible with X̃. As the final outputs are sampled

independently, the permutation compatibility between (X̃, Z̃⊕) and (Z̃, T̃) may not hold.

Let us first define two types of collisions which would be required to define our second

stage sampling to make it permutation compatible.

Definition 5.3.3 (full collision and t-collision index). 1. A query index i ∈ [q] is called

a full collision index if xi[a] = z⊕j for some (i, a) ∈ I, j ∈ [q]. The set of all full colli-

sion indices is denoted by IFC.

2. A query index i ∈ [q] \ IFC is called a t-collision index if zi[a] = tj for some (i, a) ∈
I, j ∈ [q]. The set of all t-collision indices is denoted by ITC.

By definition these two sets are disjoint.

We want z⊕i to be fresh for any i ∈ I ̸= := IFC ∪ ITC. This would actually help us to

satisfy the permutation compatible property (and hence to be a real-world realizable

transcript). Keeping this in mind, we define the bad event which occurs due to the first

stage sampling (i.e. due to z-values)

Definition 5.3.4 (BadZ). for some i, j, k ∈ [q], a ∈ [ℓj ], b ∈ [ℓk],

BadZ1: z⊕i = z⊕j for some i ̸= j;

BadZ2: z⊕i = xj [a] ∧ Z⊕j = xk[b];

BadZ3: zj [a] = Ti ∧ z⊕j = xk[b];

Let us assume that BadZ does not hold. So all the values of z⊕ := (z⊕i : i ∈ [q]) are

distinct. The same is true for T̃. Hence,
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π. . . . . .

⊕⊕⊕. . . . . . π

Xi[a]

π π

Xj [1] Xj [ℓj ]

. . .

. . . ⊕⊕⊕ π∗ ∗
Zi[a] Z⊕j

Tj

Figure 5.3.1: Resetting of z in case of full-collision. Here the red line represents a
collision in the first stage sampling. The blue dotted edge represents the resetting in

the second stage sampling.

rvz⊕ ∼ T̃. For all i ∈ IFC there is a for which xi[a] = z⊕j for some j ∈ [q]. So we must

redefine zi[a] to tj . We should apply this revision to all those blocks for which full-

collision happen. After doing this revision, for all i ∈ ITC, there is a such that zi[a] = tj

for some j. We should not keep this as it is since xi[a] ̸= z⊕j (note, i ̸∈ IFC). So we must

revise them to some other values which do not appear anywhere in z values or t values.

Second stage: Sampling at the second stage is defined as follows: Given a good z we

reset it to y now by keeping most of the variables unchanged.

• Let JFC be the set of all query indices j such that z⊕j = xi[a] for some (i, a) ∈ I.

For all these j, we define Rj as zi[a]. For all other values of j, we sample Rj in a

without replacement manner from the set Bq \ ({t1, ..., tq} ∪ {zi[a] : (i, a) ∈ I}).

• We initially set y← z.

• For all those (i, a), xi[a] = z⊕j (i.e. i ∈ IFC), we define yi[a] = tj .

• For all those (i, a) which does not satisfy the above condition and xi[a] = tj (i.e.

i ∈ ITC), we define yi[a]← Rj .

Note that for all i ̸∈ I ̸=, y⊕i = z⊕i . In other words, due to the resetting of z values, only

for i ∈ I ̸=, z⊕i is changed to a new value y⊕i . For a good Z̃, z⊕i is fresh for all these i.

So we want that for all these i, y⊕i is fresh. In other words, being not fresh for all those

values would be defined to be bad.

Definition 5.3.5 (BadY). For some i, j, k ∈ [q], a ∈ [ℓi], b ∈ [ℓk] such that i < j,

BadY1.1: zi[a] = tj ∧ y⊕i = xk[b]
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π. . . . . .

⊕⊕⊕. . . . . . π

Xi[a]

∗
Zi[a] = Tj

Rj

Figure 5.3.2: Resetting of z in case of t-collision. Here the red equality represents the
collision in the first stage sampling. The blue dotted edge represents the resetting in

the second stage sampling.

BadY1.2: zi[a] = tj ∧ y⊕i = y⊕k

BadY2.1: xi[a] = z⊕j ∧ y⊕i = xk[b]

BadY2.2: xi[a] = z⊕j ∧ y⊕i = y⊕k

Lemma 5.3.6.

Pr[BadZ ∨ BadY] ≤ 2q2

2n
+

33q3ℓ2max

22n
+

ϵq3ℓmax

2n − σ
+

ϵq2ℓ2max

2n − σ
+

3ϵq4ℓ2max

(2n − σ)2
.

We give the proof of the lemma in Sect. 5.3.2. Finally, a transcript of the ideal world is

the tuple,

τideal := ((M̃, t̃),X , Ỹ).

As before, this also uniquely determines the tuple τ ′ideal := ((M̃, t̃), X̃, Ỹ).

GOOD/BAD TRANSCRIPT: A transcript is called bad if one of the bad events holds. More

precisely, bad is the event which is the union BadT ∨ BadEncode ∨ BadZ ∨ BadY. The set

of all bad transcripts is denoted as Vbad. From the Lemma 5.3.6, Eq. 5.15 and Eq. 5.16

the probability that an ideal transcript is bad is at most

3q2

2n
+
33q3ℓ2max

22n
+
2ϵq3ℓmax

2n
+
2ϵq2ℓ2max

2n
+
12ϵq4ℓ2max

22n
+ℓmax ·σ ·ϵ+

(
q

2

)
·Advxcoll

X (ℓ). (5.17)

Now we apply our assumption that ℓmax ≤ 2n/2. This would simply the above bound

for the bad event as

36q2

2n
+ 16q2 · ϵ+ ℓmax · σ · ϵ+

(
q

2

)
·Advxcoll

X (ℓ). (5.18)

The set of all good transcripts is denoted by V \ Vbad. It is easy to see from the above

discussion that for a good transcript (ỹ, t̃) is permutation compatible with (x̃, ỹ⊕). So, a

good transcript is always a real world transcript.
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Lemma 5.3.7. For all good transcript τ ,

Pr[τreal = τ ] ≥ Pr[τideal = τ ]

Proof. Let τ = (m̃, t̃,X , ỹ) be a good transcript which determines a tuple x̃. Since τ is

good (x̃, ỹ⊕) ∼ (ỹ, t̃). Let σ′ be the number of distinct blocks present in (x, y⊕). Fix any

q-tuple of distinct blocks r̃ = (r1, . . . , rq). To each r̃, we define a function

fr̃(ỹ) = z̃ where


zi[a] = rj if yi[a] = tj

zi[a] = tj if yi[a] = rj

zi[a] = yi[a] otherwise

Note that for every good transcript there is a tuple z̃ which is reset to ỹ as defined in

the second stage sampling. We claim that if z̃ is any such tuple which reset to ỹ in the

second stage sampling, there exists r̃ for which fr̃(ỹ) = z̃. To see this we define r̃ as

follows. For all i where z⊕i = xj [a] for some (j, a) ∈ I, we define ri as zj [a]. For all i

such that there is some (j, a) ∈ I with zj [a] = ti, we define ri as yj [a]. For all other i

values, we define ri arbitrarily. Now one can check that for this r̃, fr̃(ỹ) = z̃. So the

number of z̃ values which map to ỹ is at most 2nq. In other words, the set Sỹ, of all

pairs (z̃, r̃) which reset to ỹ has size at most 2nq. Let us now calculate Pr[τreal = τ ] and

Pr[τideal = τ ] for a good transcript τ . We already know that

Pr[τreal = τ ] =
1

|X |
× 1

(2n)σ′
(5.19)

Pr[τideal = τ ] =
1

|X |
× Pr[Ỹ = y]× 1

2nq

≤ 1

|X |
× 1

2nq
×

∑
(z̃,r̃)∈Sỹ

Pr[Z̃ = z̃ ∧ R = r̃]

≤ 1

|X |
× 1

2nq
×

∑
(z̃,r̃)∈Sỹ

1

(2n)σ′

≤ 1

|X |
× 1

(2n)σ′

This proves our result.

By using H-technique and the Eq. 5.18 (the bound for bad events) and Lemma 5.3.7

(the analysis for good transcripts) the proof of the theorem follows.
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5.3.1 Proof of 5.2.2

Now we briefly describe how the similar proof for purely single-keyed construction

works. The real world (actually the hybrid world where the block cipher is replaced

by the random permutation as before). The ideal world should now check whether the

inputs 1, . . . , k appears anywhere to the intermediate computations (except to compute

∆ values) and similarly, the ∆ values appeared anywhere in the intermediate outputs.

We need to add some additional bad events for this types of collision. More formally,

the ideal world works as follows. It samples ∆1, . . .∆k randomly (instead of X ) after

the query-response is over. In addition to BadEncode, we also have to add a bad event

for collision among ∆ values and collision between ∆ values and

rvt values. This costs extra k(k + 2q)/2n+1 probability. When we sample z values and

y values we need to avoid ∆ values. This would again cost 2σk/2n advantage. Finally,

the collision between z⊕ and y⊕ values with 1, . . . , k would cost 2kq/(2n − σ).

So in addition to the previous bad event probability we need to add the following for

bad events:
k(k + 2q)

2n+1
+

2kq

2n − σ
+

2σk

2n
.

By adding this additional bad probability to our previous theorem, we obtain our result

for single-keyed construction.

5.3.2 Proof of Lemma 5.3.6

First we set some new notations and introduce some required definitions before enter-

ing the proof of our left over lemmas.

NOTATIONS: For any (i, a) ∈ I, x\ai denotes the (ℓi − 1)-tuple (x[1], . . . , x[a − 1], x[a +

1], . . . , x[ℓi]). Similarly, Z⊕\ai (or Y
⊕\a
i ) denotes

⊕
b ̸=a Zi[b] (or

⊕
b ̸=a Yi[b]). When an

encoding xi = (xi[1], . . . , xi[ℓi]) of mi is given, we will write odd(xi) (or odd(x\ai )) to

mean odd(mi) (or {xi[b] : b ̸= a,#{c ∈ [ℓi] : c ̸= a, xi[c] = xi[b]} is odd }).

GENERALIZED DEFINITION OF ODD-SET: Zi[a], Z⊕i , Z⊕\ai are called z-terms. We define

odd(Zi[a]) = {xi[a]}, odd(Z⊕i ) = odd(xi), odd(Z⊕\ai ) = odd(x\ai ). We generalize the

odd-set definition further for any linear combination of z-terms:

odd(b1 · Zi[a]⊕ b2 · Z⊕j ⊕ b3 · Z⊕\bk ) := b1 · odd(Zi[a])△b2 · odd(Z⊕j )△b3 · odd(Z⊕\bk )

for b1, b2, b3 ∈ {0, 1}. Here, for sets A,B, A△B is the symmetric difference between A,B

defined as (A \B) ∪ (B \A). Also, 0 ·A means ∅ and 1 ·A means A. We say b1 · Zi[a]⊕
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b2 ·Z⊕j ⊕ b3 ·Z⊕\bk = uivb′1 ·Zi′ [a
′]⊕ b′2 ·Z

⊕
j′ ⊕ b′3 ·Z

⊕\b′
k′ if their corresponding odd sets are

equal.

Any equation involving z-terms are called z-equations. All z-equations that we will

consider for the rest of this section will be of the form

b1 · Zi[a]⊕ b2 · Z⊕j ⊕ b3 · Z⊕\bk = C

where b1, b2, b3 ∈ {0, 1} and C is a term without any z variable. For any such z-equation

E , the combination b1 · Zi[a] ⊕ b2 · Z⊕j ⊕ b3 · Z⊕\bk is denoted by zE . Here we will deal

only with system of equations having at most three z-equations. Rank of a system of

z-equation can be computed as follows:

1. One equation: A z-equation E has rank=1 if odd(zE) ̸= ∅ (we call it nonempty

equation).

2. Two equations: A system of two nonempty z-equations E1, E2 has rank=2 if odd(zE1) ̸=
odd(zE2).

3. Three equations: A system of three nonempty distinct z-equations E1, E2, E3 has

rank=3 if odd(zE1)△odd(zE2)△odd(zE3) ̸= ∅.

While we bound the probability of bad events, we need to deal linear equations in z

values. Note that z can be viewed as πππ(x) for the corresponding x value. To simplify

some of the bad events, we need to consider some auxiliary bad events. Auxiliary bad

event BadAux is defined as BadAux1 ∨ BadAux2.

Definition 5.3.8 (BadAux1). Zi[1] = Tj for some i, j ∈ [q].

The following bad event says that more than one full collision or t-collision cannot

occur for a same query index. This would help us to have simpler expression of y⊕

values. In particular, for all those i, z⊕i is reset to y⊕i , we only have to replace one

block of z values by another block of either r value or t value depending on whether it

corresponds to T-collision or full collision.

Definition 5.3.9 (BadAux2). For some i, j, k ∈ [q], a, b ∈ [ℓj ],

Zj [a]
∗1= Ti or Xj [a]

∗2= Z⊕i

and

Zj [b]
∗′1= Tk or Xj [b]

∗′2= Z⊕k , a ̸= b
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Bound for BadAux1: Clearly, we have

Pr[BadAux1] ≤ q2

2n
(5.20)

Remarks and Conventions.

1. In what follows we will use rank of system as computed above and lemma 2.3.1 time

and again to bound the probability of events. In the next calculation those references

are mentioned everywhere we use it. After that the references will be omitted to avoid

clumsiness.

2. While dealing with probability calculations of some bad event it will be assumed

that all bad events whose probabilistic bound has been obtained before do not occur

together with that event. For example bound for BadZ will actually mean bound for

BadZ ∧ ¬BadT ∧ ¬BadEncode ∧ ¬BadAux.

Bound for BadAux2:

Pr[BadAux2] ≤ 14q3ℓ2max

22n
(5.21)

This is basically union of four events two of which are identical. We bound the proba-

bility for each case individually:

∗1 ∧ ∗′1 : Corresponding system of equations to this case is Zj [a] = Ti ∧ Zj [b] = Tk. It

has rank 2 since Zj [a] =≡ Zj [b] implies Xj [a] = Xj [b] which is an BadEncode event due

to a ̸= b. Thus, applying lemma 2.3.1, we get Pr ≤ q3ℓ2max
2n(2n−1) .

∗1 ∧ ∗′2 : (having same probability with ∗2 ∧ ∗′1): Here, the system of equations under

consideration is Zj [a] = Ti ∧ Z⊕k = Xj [b]. For this case, we have two possibilities as

listed below.

Case 1: (ℓk = 1,Zk[1] ̸≡ Zj [a])

This case implies rank of Zj [a] = Ti ∧ Z⊕k = Xj [b] is 2. Thus, Pr ≤ q3ℓ2max
2n(2n−σ) by

lemma 2.3.1. Note that (ℓk = 1,Zk[1] ≡ Zj [a]) is not a valid possibility since it

implies BadAux1.

Case 2: (ℓk > 1,Zk[1] ̸≡ Zj [a])

This case implies that the system of equations of ∗1 ∧ ∗′2 has rank 2. Thus, Pr ≤
q3ℓ2max

2n(2n−σ) by lemma 2.3.1.
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∗2 ∧ ∗′2 : System of equations that we get in this case is Z⊕i = Xj [a] ∧ Z⊕k = Xj [b]. Now,

Z⊕i ≡ Z⊕k implies Xj [a] = Xj [b] for a ̸= b which is a BadEncode event. So, Z⊕i ̸≡ Z⊕k has

rank 2. Thus, Pr ≤ q3ℓ2max
(2n−σ)2 by lemma 2.3.1. After applying σ < 2n−1 (since otherwise,

the bound is vacuously true), we get the desired bound.

Bound for BadZ :

Pr[BadZ] ≤ q2

2n
+

4q3ℓ2max

22n
(5.22)

1. BadZ1 : Z⊕i = Z⊕j for some i < j. Therefore,

Pr[BadZ1] ≤ q2

2 · (2n − σ)

2. BadZ2 : z⊕i = Xj [a] ∧ Z⊕j = Xk[b] for some i, j, k ∈ [q], a ∈ [ℓj ], b ∈ [ℓk] such that i < j.

Now, Z⊕i ≡ Z⊕j can not happen since it implies odd(xi) = odd(xj) which is a BadEncode

event. Thus, Z⊕i ̸≡ Z⊕j and so the above system of equations has rank 2. Therefore,

Pr[BadZ2] ≤ q3ℓ2max

2 · (2n − σ)2

as we can choose the indices in q3ℓ2max/2 ways.

3. BadZ3 : Zj [a] = Ti ∧ Z⊕j = Xk[b] for some i, j, k ∈ [q], a ∈ [ℓj ], b ∈ [ℓk].

In this case, ℓj must be greater than 1. Otherwise, BadAux1 holds. So, ℓj > 1 implies

that the system of z-equations defining BadZ3 has rank 2. Therefore,

Pr[BadZ3] ≤ q3ℓ2max

2n(2n − σ)

Summing up bounds for all these cases and using the assumption that σ ≤ 2n−1, we

get the desired bound for BadZ.

Bound for BadY :

1. BadY1.1 : Zi[a] = Tj ∧ Y⊕i = Xk[b] for some i, j, k ∈ [q], a ∈ [ℓi], b ∈ [ℓk].
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Here again note that a > 1 to avoid BadAux1 event. The defining system of equations is

equivalent with Zi[a] = Tj ∧ Y
⊕\a
i = Xk[b] ⊕ Rj . This system has only one z-equation.

Randomness for the other equation will be calculated from Rj which can take a partic-

ular value with probability at most 1/(2n − σ). So, in this case we have

Pr ≤ q3ℓ2max

2n(2n − σ)

2. BadY1.2 : Zi[a] = Tj ∧ Y⊕i = Y⊕k for some i, j, k ∈ [q], a ∈ [ℓi].

It has two subcases.

Case 1:(k ̸∈ ITC)

In this case the defining system of equations of BadY1.2 is equivalent with Zi[a] =

Tj ∧ Y
⊕\a
i = Y⊕k ⊕ Rj which is bounded by Pr ≤ q3ℓmax

2n(2n−σ) .

Case 2:(k ∈ ITC)

Here we get Zi[a] = Tj ∧ Y
⊕\a
i = Y

⊕\c
k ⊕ Rj ⊕ Rl ∧ Zk[c] = Tl as an equivalent

system to the defining system of equations. We claim that it has rank=3. Note

that Y⊕\ai = Z
⊕\a
i and Y

⊕\c
k = Z

⊕\c
k because ¬BadAux2 prevents any tuple Rr to get

reset at two different places. Therefore, j ̸= l. Otherwise, it will imply Z⊕i = Z⊕k

which is an BadZ event. Rank 3 follows directly from j ̸= l. Therefore,

Pr ≤ q4ℓ2max

2n(2n − σ)2

3. BadY2.1 : Xi[a] = Z⊕i ∧ Y⊕i = Xk[b] for some i, j, k ∈ [q], a ∈ [ℓi], b ∈ [ℓk].

By simply following arguments like before we arrive at an equivalent system of z-

equations Z⊕j = Xi[a] ∧ Z
⊕\a
i = Xk[b] ⊕ Tj . When it has rank 2 (i.e., Z⊕j ̸≡ Z

⊕\a
i ) is

easily taken care of getting

Pr ≤ q3ℓ2max

2n(2n − σ)

So, suppose Z⊕j ≡ Z
⊕\a
i . Then we get a unique pi,j such that pi,j is the first index b with

xi[b] ̸= xj [b]. That means Xj [pij ] = Xi[c] or Xi[pij ] = Xj [c] for some c. So, the system of

z-equations Z⊕j = Xi[a] ∧ Z
⊕\a
i = Xk[b] ⊕ Tj reduces to a system of one z-equation and

also gives a equation in terms of hash collision. It gives

Pr ≤ q2ℓ2maxϵ

2n − σ
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4. BadY2.2 : xi[a] = z⊕j ∧ Y⊕i = Y⊕k for i, j, k ∈ [q] and a ∈ [ℓi].

Here we get xi[a] = z⊕j ∧ Z
⊕\a
i = y⊕k ⊕ tj which changes according to the following

subcases:

Case when k ̸∈ IFC: Then the above system becomes Z⊕j = Xi[a] ∧ Z
⊕\a
i = Z⊕k ⊕ Tj .

If Z⊕j ≡ Z
⊕\a
i ⊕ Z⊕k , then Xi[a] = tj giving

Pr ≤ ϵℓmaxq
3

2n − σ

Otherwise, the system has rank=2. Therefore,

Pr ≤ q3ℓmax

(2n − σ)2

Case when k ∈ IFC: In this case we have Z⊕j = Xi[a] ∧ Z⊕l = Xk[b] ∧ Z
⊕\a
i ⊕ Z

⊕\b
k =

Tj ⊕ Tl for b ∈ [ℓk], l ∈ [q] and the others as before. If Z⊕j ,Z
⊕
l ,Z

⊕\a
i ⊕ Z

⊕\b
k are

linearly independent, then

Pr ≤ q4ℓ2max

(2n − σ)3

Remaining case is when Z⊕j ,Z
⊕
l ,Z

⊕\a
i ⊕ Z

⊕\b
k are linearly dependent. Let us look

at this case.

Rank=1 is discarded since it implies Z⊕j = Z⊕l (by lemma 2.3.2) which is an BadZ

event. From lemma 2.3.2 we have that there are four possibilities for rank=2:

– Z⊕j ≡ Z⊕l

– Z⊕j ≡ Z⊕l ⊕ Z
⊕\a
i ⊕ Z

⊕\b
k

– Z⊕j ≡ Z
⊕\a
i ⊕ Z

⊕\b
k

– Z⊕l ≡ Z
⊕\a
i ⊕ Z

⊕\b
k

First possibility is discarded again for being an BadZ event. Third and fourth ones

are similar and have same probability. The second possibility is different-looking

but for being a ¬BadT event, it has the same probability as the third/fourth one.
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Third/fourth possibility: Z⊕j ≡ Z
⊕\a
i ⊕ Z

⊕\b
k ⇒ Xi[a] = Tj ⊕ Tl (similarly, Z⊕l =

Z
⊕\a
i ⊕ Z

⊕\b
k ⇒ Xk[b] = Tj ⊕ Tl).

Second possibility Z⊕j ≡ Z⊕l ⊕ Z
⊕\a
i ⊕ Z

⊕\b
k ⇒ Xi[a]⊕ Xk[b] = Tj ⊕ Tl.

Therefore,

Pr ≤ 3q4ℓ2maxϵ

(2n − σ)2

Now we sum all the above probabilities for BadY and apply the relation that σ ≤ 2n−1.

We get

Pr[BadY] ≤ 15q3ℓ2max

22n
+

ϵq3ℓmax

2n − σ
+

ϵq2ℓ2max

2n − σ
+

3ϵq4ℓ2max

(2n − σ)2
(5.23)

Summing up the bounds for BadAux, BadZ and BadY, we conclude the proof of the

lemma.

5.4 Key Results At a Glance

• Theorem 5.2.1 shows a relationship between Advprf
xPMAC and Advxcoll

X , while the

encoding X is blockwise universal and independent of the block cipher keys.

Similar result is shown for the single-key version in theorem 5.2.2, while a block-

wise regular and universal encoding is used. In both of these results, it is assumed

that the maximum query-length is upper bounded by 2n/4.

• From these relationships we obtained security bounds of O(q2/2n) for single-key

versions of PMAC+ and LightMAC in section 5.2.1. For PMAC+, the result is sub-

ject to an additional assumption on the primitive element used for masking of the

message blocks.
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Chapter 6

OMAC, XCBC and TMAC

In this chapter, we will prove security results for three important single keyed CBC-

type constructions: OMAC1 [47], XCBC [15] and TMAC [60]. We will follow the same

two-stage sampling strategy, dubbed as the reset-sampling technique, as we did in chap-

ter 4.

6.1 The CBC-MAC Family

Throughout, n denotes the block size, B := {0, 1}n, and any x ∈ B is referred as a block.

For any non-empty m ∈ {0, 1}∗, (m[1], . . . ,m[ℓm])
n←− m denotes the block parsing of m,

where |m[i]| = n for all 1 ≤ i ≤ ℓm − 1 and 1 ≤ |m[ℓm]| ≤ n. In addition, we associate a

boolean flag δm to each m ∈ {0, 1}∗, which is defined as

δm :=

−1 if |m| = nℓm,

0 otherwise.

For any m ∈ {0, 1}≤n, we define

m :=

m∥10n−|m|−1 if |m| < n,

m otherwise.

1This is same as CMAC [81]
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CBC FUNCTION: The CBC function, based on a permutation π ∈ Perm(n),2 takes as

input a non-empty message m ∈ B∗ and computes the output CBCπ(m) := yπm[ℓm]

inductively as described below:

yπm[0] = 0n and for 1 ≤ i ≤ ℓm, we have

xπm[i] := yπm[i− 1]⊕m[i],

yπm[i] := π(xπm[i]),
(6.1)

where (m[1], . . . ,m[ℓm])
n←− m. For empty message, we define the CBC output as

the constant 0n. Figure 6.1.1 illustrates the evaluation of CBC function over a 4-block

message m.

yπm[0] ⊕⊕⊕

m[1]

π ⊕⊕⊕

m[2]

π ⊕⊕⊕

m[3]

π ⊕⊕⊕

m[4]

π yπm[4]
xπ
m[1] yπm[1] xπ

m[2] yπm[2] xπ
m[3] yπm[3] xπ

m[4]

Figure 6.1.1: Evaluation of CBC function over a 4-block message m..

Given the definition of CBCπ, one can easily define all the variants of CBC-MAC. Here

we define XCBC, TMAC and OMAC, the three constructions that we study in this paper.

XCBC: The XCBC algorithm is a three-key construction, based on a permutation π ∈
Perm(n) and keys (L−1, L0) ∈ B2, that takes as input a non-empty message m ∈ {0, 1}∗,
and computes the output

XCBCπ,L−1,L0(m) := t = π
(

CBCπ (m
∗)⊕m[ℓm]⊕ Lδm

)
, (6.2)

where (m[1], . . . ,m[ℓm])
n←− m, and m∗ := m[1]∥ · · · ∥m[ℓm − 1].

TMAC: The TMAC algorithm is a two-key construction, based on a permutation π ∈
Perm(n) and key l ∈ B, that takes as input a non-empty message m ∈ {0, 1}∗, and

computes the output

TMACπ,l(m) := t = π
(

CBCπ (m
∗)⊕m[ℓm]⊕ µδm ⊙ l

)
, (6.3)

where (m[1], . . . ,m[ℓm])
n←− m, m∗ := m[1]∥ · · · ∥m[ℓm − 1], µ−1 and µ0 are constants

chosen from F2n (viewing B as F2n), such that µ−1, µ0, 1 ⊕ µ−1, 1 ⊕ µ0 are all distinct

and not equal to either 0 or 1, and ⊙ denotes the field multiplication operation over

2Instantiated with a block cipher in practical applications.
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F2n with respect to a fixed primitive polynomial. For the sake of uniformity, we define

Lδm := µδm ⊙ l in context of TMAC.

OMAC: The OMAC algorithm is a single-keyed construction, based on a permutation

π ∈ Perm(n), that takes as input a non-empty message m ∈ {0, 1}∗, and computes the

output

OMACπ(m) := t = π
(

CBCπ (m
∗)⊕m[ℓm]⊕ µδm ⊙ π(0n)

)
, (6.4)

where (m[1], . . . ,m[ℓm])
n←− m, m∗ := m[1]∥ · · · ∥m[ℓm − 1], µ−1 and µ0 are constants

chosen analogously as in the case of TMAC. For the sake of uniformity, we define Lδm :=

µδm ⊙ π(0n) in context of OMAC.

6.1.1 Tight Security Bounds for OMAC, XCBC and TMAC

The main technical result of this paper, given in Theorem 6.1.1, is a tight security bound

for OMAC for a wide range of message lengths. The proof of this theorem is postponed

to section 6.2. In addition, we also provide similar result for XCBC and TMAC in The-

orem 6.1.2. We skip the proof since it is almost identical to the one for Theorem 6.1.1,

and has slightly less relevance given that a more efficient and standardized algorithm

OMAC already achieves similar security. In what follows we define

ϵ′(q, ℓ) :=
16q2 + qℓ2

2n
+

8q2ℓ4 + 32q3ℓ2 + 2q2ℓ3

22n

+
3q3ℓ5 + 143q3ℓ6 + 11q4ℓ3

23n
+

17q4ℓ6 + 5462q4ℓ8

24n
.

Theorem 6.1.1 (OMAC bound). Let q, ℓ, σ, T > 0. For q + σ ≤ 2n−1, the PRF insecurity of

OMAC, based on block cipher EK, against A(q, T ) is given by

Advprf
OMACEK

(q, ℓ, σ, T ) ≤ Advprp
E (q + σ, T ′) +

4σ

2n
+ ϵ′(q, ℓ), (6.5)

where q denotes the number of queries, ℓ denotes an upper bound on the number of blocks per

query, σ denotes the total number of blocks present in all q queries, T ′ = T + σO(TE) and TE

denotes the runtime of E.

Theorem 6.1.2 (XCBC-TMAC bound). Let q, ℓ, σ, T > 0. For q+σ ≤ 2n−1, the PRF insecu-

rity of XCBC and TMAC, based on block cipher EK and respective masking keys (L, L−1, L0),

against A(q, T ) is given by

Advprf
XCBCEK,L−1,L0

(q, ℓ, σ, T ) ≤ Advprp
E (q + σ, T ′) + ϵ′(q, ℓ) (6.6)

Advprf
TMACEK,L

(q, ℓ, σ, T ) ≤ Advprp
E (q + σ, T ′) + ϵ′(q, ℓ) (6.7)
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where q denotes the number of queries, ℓ denotes an upper bound on the number of blocks per

query, σ denotes the total number of blocks present in all q queries, T ′ = T + σO(TE) and TE

denotes the runtime of E.

Proof of this theorem is almost same as that of Theorem 6.1.1. The bad event on a

collision on zero block input is redundant and hence dropped here. Rest of the proof

remains the same and so we skip the details.

Remark 6.1.3. Note that the actual advantage cannot exceed 1. Let us denote q2

2n = α

and qℓ2

2n = β. Looking at ϵ(q, ℓ) (where ϵ(q, ℓ) = ϵ′(q, ℓ) + 4σ
2n in case of OMAC and

ϵ(q, ℓ) = ϵ′(q, ℓ) in case of XCBC,TMAC), we see that any term in the expression is

upper bounded by c · αsβt for some constant c and s, t ≥ 0 such that at least one of

s and t is at least 1. As we can assume both α, β to be less than 1, each αsβt will be

less than or equal to α or β. Thus, the above PRF-advantage expressions for MAC ∈
{OMAC,XCBC,TMAC} can be written as

Advprf
MAC(q, ℓ, σ) = O

(
q2

2n

)
+O

(
qℓ2

2n

)
.

A NOTE ON THE PROOF APPROACH: In the analysis of OMAC, XCBC and TMAC, we

have to handle the case that the final input collides with some intermediate input, the

so-called full collision event. In earlier works the probability of this event is shown to

be q2ℓ/2n (as there are less than qℓ many intermediate inputs and q final inputs and

any such collision happens with roughly 1/2n probability). So, in a way they avoid

handling this tricky event by disallowing it all together. In this work, we allow full

collisions as long as the next intermediate input is not colliding with some other input

(intermediate or final). Looking ahead momentarily, this is captured in BadW3. We can

do this via the application of reset-sampling resulting in a more amenable (q2/2n +

qℓ2/2n) bound.

6.2 Proof of Theorem 6.1.1

Input and Output Tuples: In the context of CBC evaluation within OMAC, we refer to

xπm := (xπm[1], . . . , xπm[ℓm−1]) and yπm := (yπm[0], . . . , yπm[ℓm−1]) as the intermediate input

and output tuples, respectively, associated to π and m. We define the final input variable

as:

xπm[ℓm] := yπm[ℓm − 1]⊕m[ℓm]⊕ µδm ⊙ π(0n)

Clearly, the input and output tuples (including the final input) are well defined for

OMAC. Analogous definitions are possible (and useful in proof) for XCBC and TMAC
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as well. It is worth noting that the intermediate input tuple xπm is uniquely determined

by the intermediate output tuple yπm and the message m, and it is independent of the

permutation π. Going forward, we drop π from the notations, whenever it is clear from

the context.

As for the first step in the proof, we employ the standard hybrid argument to get

Advprf
OMACEK

(q, ℓ, σ, T ) ≤ Advprp
E (q + σ, T ′) +Advprf

OMACπππ
(q, ℓ, σ,∞). (6.8)

Now, it is sufficient to bound Advprf
OMACπππ

(q, ℓ, σ,∞), where the corresponding distin-

guisher A is computationally unbounded and deterministic. We employ the H-coefficient

technique (see section 2.2.5) to bound this term. In addition, we also employ the re-

cently introduced reset-sampling method [23] by Chattopadhyay et al. The remaining

steps of the proof are given in the remainder of this section.

6.2.1 Oracle Description and Corresponding Transcripts

Real Oracle: The real oracle corresponds to OMACπππ. It responds faithfully to all the

queries made by A . Once the query-response phase is over, it releases all the inter-

mediate inputs and outputs, as well as the masking keys L−1 and L0 to A . Recall that

L = πππ(0n).

In addition, the real oracle releases three binary variables, namely, FlagT, FlagW and

FlagX, all of which are degenerately set to 0. These flags are more of a technical require-

ment, and their utility will become apparent from the description of ideal oracle. For

now, it is sufficient to note that these flags are degenerate in the real world.

Formally, we have

Θ1 := (M̃, T̃, X̃, X̃∗, Ỹ, L−1, L0,FlagT,FlagW,FlagX),

where

• M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈ {0, 1}∗

for all i ∈ [q]. In addition, for all i ∈ [q], let ℓi :=
⌈
|Mi|
n

⌉
.

• T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where Ti ∈ B.

• X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th query.

• X̃∗ = (X1[ℓ1], . . . ,Xq[ℓq]), where Xi[ℓi] denotes the final input for the i-th query.
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• Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the i-th

query.

• L−1 and L0 denote the two masking keys. Note that L−1 and L0 are easily derivable

from L. So we could have simply released L. The added redundancy helps later

to establish the analogous connection between this proof and the proof for XCBC.

• FlagT = FlagW = FlagX = 0.

From the definition of OMAC, we know that πππ(Xi[a]) = Yi[a] for all (i, a) ∈ [q] × [ℓi].

So, in the real world we always have (0n, X̃, X̃∗) ↭ (L, Ỹ, T̃), i.e., (0n, X̃, X̃∗) is permutation

compatible with (L, Ỹ, T̃). We keep this observation in our mind when we simulate the

ideal oracle.

Ideal Oracle: We reuse the notations from real oracle description to represent the

variables in the ideal oracle transcript Θ0, i.e.,

Θ0 := (M̃, T̃, X̃, X̃∗, Ỹ, L−1, L0,FlagT,FlagW,FlagX).

This should not cause any confusion, as we never consider the random variables Θ1

and Θ0 jointly, whence the probability distributions of the constituent variables will

always be clear from the context.

The ideal oracle transcript is described in three phases, each contingent on some pred-

icates defined over the previous stages. Specifically, the ideal oracle first initializes

FlagT = FlagW = FlagX = 0, and then follows the sampling mechanism given below:

PHASE I (QUERY-RESPONSE PHASE): In the query-response phase, the ideal oracle

faithfully simulates ρρρ ←$ Func({0, 1}∗,B). Formally, for i ∈ [q], at the i-th query Mi ∈
{0, 1}∗, the ideal oracle outputs Ti ←$ B. The partial transcript generated at the end of

the query-response phase is given by (M̃, T̃), where

• M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

Now, we define a predicate on T̃:

BadT : ∃i ̸= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT is set to 1, and X̃, X̃∗, and Ỹ are defined degenerately: Xi[a] =

Yi[b] = 0n for all i ∈ [q], a ∈ [ℓi], b ∈ (ℓi − 1]. Otherwise, the ideal oracle proceeds to the

next phase.
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PHASE II (OFFLINE INITIAL SAMPLING PHASE): Onward, we must have Ti ̸= Tj when-

ever i ̸= j, and FlagT = 0, since this phase is only executed when BadT is false. In the

offline phase, the ideal oracle’s initial goal is to sample the input and output tuples in

such a way that the intermediate input and output tuples are permutation compatible.

For now we use notations W and Z, respectively, instead of X and Y, to denote the input

and output tuples. This is done to avoid any confusions in the next step where we may

have to reset some of these variables. To make it explicit, W and Z respectively denote

the input and output tuples before resetting, and X and Y denote the input and output

tuples after resetting.

Let P be a key-value table representing a partial permutation of B, which is initialized

to empty, i.e., the corresponding permutation is undefined on all points. We write

P.domain and P.range to denote the set of all keys and values utilized till this point,

respectively. The ideal oracle uses this partial permutation P to maintain permutation

compatibility between intermediate input and output tuples, in the following manner:

Initial sampling

L ←$ B \ T̃

L−1 ← µ−1 ⊙ L

L0 ← µ0 ⊙ L

P(0n) ← L

for i = 1 to q do

Zi[0] ← 0n

for a = 1 to ℓi − 1 do

Wi[a] ← Zi[a− 1] ⊕ Mi[a]

if Wi[a] ∈ P.domain

Zi[a] ← P(Wi[a])

else

Zi[a] ←$ B \
(
T̃ ∪ P.range

)
P(Wi[a]) ← Zi[a]

Wi[ℓi] ← Zi[ℓi − 1] ⊕ Mi[ℓi] ⊕ LδMi

At this stage we have Zi[a] = Zj [b] if and only if Wi[a] = Wj [b] for all (i, a) ∈ [q]× [ℓi−1]

and (j, b) ∈ [q] × [ℓj − 1]. In other words, (0n, W̃) ↭ (L, Z̃). But it is obvious to see

that the same might not hold between (0n, W̃, W̃∗) and (L, Z̃, T̃). In the next stage our

goal will be to reset some of the Z variables in such a way that the resulting input tuple

is compatible with the resulting output tuple. However, in order to reset, we have to

identify and avoid certain contentious input-output tuples.
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IDENTIFYING CONTENTIOUS INPUT-OUTPTUT TUPLES: We define several predicates

on (W̃, W̃∗), each of which represents some undesirable property of the sampled input

and output tuples.

First, observe that L is chosen outside the set T̃. This leads to the first predicate:

BadW1 : ∃(i, a) ∈ [q]× [ℓi], such that (Wi[a] = 0n) and (ℓi > 1 =⇒ a > 1).

since, if BadW1 is true, then (0n, W̃∗) is not compatible with (L, T̃). In fact, ¬BadW1 im-

plies that none of the inputs, except the first input which is fully in adversary’s control,

can possibly be 0n. This stronger condition will simplify the analysis greatly. The sec-

ond predicate simply states that the final input tuple is not permutation compatible

with the tag tuple, i.e., we have

BadW2 : ∃i ̸= j ∈ [q], such that Wi[ℓi] = Wj [ℓj ].

At this point, assuming ¬(BadW1∨BadW2) holds true, the only way we can have permu-

tation incompatibility is if Wi[a] = Wj [ℓj ], for some i, j ∈ [q] and a ∈ [ℓi − 1]. A simple

solution will be to reset Zi[a] to Tj , for all such (i, a, j). In order to do this, we need that

the following predicates must be false:

BadW3 : ∃i, j, k ∈ [q], a ∈ [ℓi − 1], b ∈ [ℓk], such that

(Wi[a] = Wj [ℓj ]) ∧ (Wi[a+ 1] = Wk[b]) ∧ Prefix(Mi,Mj) < max{a+ 1, b}.

BadW4 : ∃i, j, k ∈ [q], a ̸= b ∈ [ℓi − 1], such that

(Wi[a] = Wj [ℓj ]) ∧ (Wi[b] = Wk[ℓk]).

BadW5 : ∃i, j, k ∈ [q], a ∈ [ℓi − 1], b ∈ [ℓj − 1], such that

(Wi[a] = Wj [ℓj ]) ∧ (Wj [b] = Wk[ℓk]).

If BadW3 is true, then once Zi[a] is reset, we lose the permutation compatibility since,

the reset next input, i.e., Xi[a + 1] = Wi[a + 1] ⊕ Zi[a] ⊕ Tj = Mi[a + 1] ⊕ Tj ̸= Wk[b]

with high probability, whereas Zi[a + 1] = Zk[b] with certainty. BadW4 simply repre-

sents the scenario where we may have to apply the initial resetting to two indices in

a single message. Looking ahead momentarily, this may lead to contradictory induced

resettings. Avoiding this predicate makes the resetting operation much more manage-

able. Similarly, avoiding BadW5, is just proactive prevention of contradictory resetting
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at Zi[a], since if BadW5 occurs, then we may have a case where Xj [ℓj ] is reset due to

induced resetting, leading to the case, Xi[a] ̸= Xj [ℓj ] and Yi[a] = Tj , where recall that

Yi[a] is the resetting value of Zi[a]. We write

BadW := BadW1 ∨ BadW2 ∨ BadW3 ∨ BadW4 ∨ BadW5.

If BadW is true, then FlagW is set to 1, and (X̃, X̃∗, Ỹ) is again defined degenerately, as in

the case of BadT. Otherwise, the ideal oracle proceeds to the next and the final phase,

i.e., the resetting phase.

PHASE III.A INITIAL RESETTING PHASE: At this stage we must have ¬(BadT ∨ BadW),
i.e., FlagW = FlagT = 0. We describe the resetting phase in two sub-stages. First, we

identify the indices affected by the initial resetting operation.

Definition 6.2.1 (full collision index). Any (i, a, j) ∈ [q] × [ℓi − 1] × [q] is called a full

collision index (FCI) if Wi[a] = Wj [ℓj ]. Additionally, let

FCI := {(i, a, j) : i, j ∈ [q], a ∈ [ℓi − 1], such that (i, a, j) is an FCI}

F̃CI := {(i, a) ∈ [q]× [ℓi − 1] : ∃j ∈ [q], such that (i, a, j) is an FCI}

The first sub-stage, executes a resetting for full collision indices in the following man-

ner:

1. For all (i, a, j) ∈ FCI, define Yi[a] := Tj ;

2. For all (i, a, j) ∈ FCI, define

Xi[a+ 1] := Wi[a+ 1]⊕ Zi[a]⊕ Yi[a] = Mi[a+ 1]⊕ Tj ⊕ 1a=ℓi−1 ⊙ LδMi
,

where 1a=ℓi−1 is an indicator variable that evaluates to 1 when a = ℓi − 1, and 0

otherwise.

Once the initial resetting is executed, it may result in new permutation incompatibil-

ities. This necessitates further resettings, referred as induced resettings, which require

that the following predicates are false:

BadX1 : ∃(i, a, j) ∈ FCI, k ∈ [q], b ∈ [ℓk] \ {1}, such that

( Xi[a+ 1] = Wk[b]) ∨ ( Xi[a+ 1] = 0n).
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BadX2 : ∃(i, a, j) ∈ FCI, k ∈ [q], such that

( Xi[a+ 1] = Mk[1]) ∧ (Mi[a+ 2, . . . , ℓi] = Mk[2, . . . , ℓk]).

BadX3 : ∃(i, a, j), (k, b, l) ∈ FCI, such that ( Xi[a+ 1] = Mk[1]).

BadX4 : ∃(i, a, k), (j, b, l) ∈ FCI, such that

( Xi[a+ 1] = Xj [b+ 1] ) ∧ (Prefix(Mi,Mj) < max{a+ 1, b+ 1}).

Here, the variable highlighted in red denotes the update after initial resetting. Let’s

review these predicates in slightly more details. First, BadX1, represents the situation

where after resetting the next input (highlighted text) collides with some intermediate

input or 0n. This would necessitate induced resetting at Zi[a + 1]. In other words, if

BadX1 is false then no induced resettings occur, unless the next input collides with some

first block input. This case is handled in the next two predicates. BadX2 represents the

situation when the next input collides with a first block and the subsequent message

blocks are all same. This would induce a chain of resetting going all the way to the final

input. As BadT is false, this would immediately result in a permutation incompatibility

since tags are distinct. If BadX2 is false, then the chain of induced resetting must end at

some point. BadX3 is used to avoid circular or contradictory resettings. It is analogous

to BadW5 defined earlier. If it is false, then we know that the k-th message is free from

resetting, so the induced resetting will be manageable. Finally, BadX4 represents the

situation when two newly reset variables collide. We write

BadX1234 := BadX1 ∨ BadX2 ∨ BadX3 ∨ BadX4

If BadX1234 is true, then FlagX is set to 1, and (X̃, X̃∗, Ỹ) is again defined degenerately,

as in the cases of BadT and BadW. Otherwise, the ideal oracle proceeds to the second and

the final sub-stage of resetting.

PHASE III.B INDUCED RESETTING PHASE: Here, the goal is to execute the induced

resettings necessitated by the initial resetting operation.

First, we define the index of induced resetting for each (i, a) ∈ F̃CI, as the smallest index j

such that Xi[a+ 1] = Mj [1] and

Prefix(Mi[a+2, . . . , ℓi],Mj [2, . . . , ℓj ]) = max{Prefix(Mi[a+2, . . . , ℓi],Mj′ [2, . . . , ℓj′ ]) : j
′ ∈ [q]},

i.e., Prefix(Mi[a+ 2, . . . , ℓi],Mj [2, . . . , ℓj ]) maximizes.
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Definition 6.2.2 (induced collision sequence). A sequence of tuples ((i, a+1, j, 1), . . . , (i, a+

p+ 1, j, p+ 1)) is called an induced collision sequence (ICS), if (i, a) ∈ F̃CI, and j is the

index of induced resetting for (i, a), where p := Prefix(Mi[a + 2, . . . , ℓi],Mj [2, . . . , ℓj ]).

The individual elements of an ICS are referred as induced collision index (ICI). Addi-

tionally, we let

ICI := {(i, a, j, b) : i, j ∈ [q], a ∈ [ℓi − 1], b ∈ [ℓj − 1], and (i, a, j, b) is an ICI.}

ĨCI := {(i, a) ∈ [q]× [ℓi − 1] : ∃(j, b) ∈ [q]× [ℓj − 1], and (i, a, j, b) is an ICI.}

Now, as anticipated, in the second sub-stage of resetting, we reset the induced collision

indices in the following manner:

1. For all (i, a, j, b) ∈ ICI, define Yi[a] := Zj [b];

2. For all (i, a, j, b) ∈ ICI, define

Xi[a+ 1] := Wi[a+ 1]⊕ Zi[a]⊕ Yi[a] = Mi[a+ 1]⊕ Zj [b]⊕ 1a=ℓi−1 ⊙ LδMi
,

where 1a=ℓi−1 is an indicator variable that evaluates to 1 when a = ℓi − 1, and 0

otherwise.

Given ¬BadX1234, we know that the induced resetting must stop at some point before

the final input. Now, it might happen that once the first chain of induced resetting

stops, the next input again collides which may result in nested resetting or permuta-

tion incompatibility. The predicates BadX5, BadX6, and BadX7 below represent these

scenarios.

• BadX5 : ∃(i, a, k, b) ∈ ICI, l ∈ [q], b ∈ [ℓl − 1], such that

( Xi[a+ 2 + p] = Wl[b]) ∨ ( Xi[a+ 2 + p] = 0n),

where p := Prefix(Mi[a+ 2, . . . , ℓi],Mk[2, . . . , ℓk]).

• BadX6 : ∃(i, a) ∈ F̃CI, (j, b, k, c) ∈ ICI, such that ( Xi[a+ 1] = Xj [b+ 2 + p] ),

where p := Prefix(Mj [b+ 2, . . . , ℓj ],Mk[2, . . . , ℓk]).

• BadX7 : ∃(i, a, k, c), (j, b, l, d) ∈ ICI, such that

( Xi[a+ 2 + p] = Xj [b+ 2 + p′] ) ∧ (Prefix(Mi,Mj) < max{a+ 2 + p, b+ 2 + p′}),
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where p := Prefix(Mi[a+2, . . . , ℓi],Mk[2, . . . , ℓk]), and p′ := Prefix(Mj [b+2, . . . , ℓj ],Ml[2, . . . , ℓl]).

Here, the variables highlighted in red and blue denote the update after initial resetting

and induced resetting, respectively. These predicates are fairly self-explanatory. First

BadX5 represents the situation that the immediate input after induced resetting collides

with some intermediate input or 0n. This may cause permutation incompatibility and

would lead to nested induced resetting at Zi[a + 2 + p]. BadX6 handles a similar colli-

sion with a full collision resetted variable, and BadX7 handles the only remaining case

where the immediate inputs after two different induced resetting collides. Note that,

¬(BadX5 ∨ BadX6 ∨ BadX7) would imply that for each message resetting stops at some

point before the final input, and the next input is fresh.3 We write

BadX := BadX1 ∨ BadX2 ∨ BadX3 ∨ BadX4 ∨ BadX5 ∨ BadX6 ∨ BadX7.

If BadX is true, then FlagX is set to 1, and (X̃, X̃∗, Ỹ) is again defined degenerately, as in

the case of BadT and BadW. Otherwise, for any remaining index (i, a) ∈ [q] × (ℓi − 1] \
(F̃CI ∪ ĨCI), the ideal oracle resets as follows:

1. define Yi[a] := Zi[a];

2. define Xi[a+ 1] := Wi[a+ 1].

At this point, the ideal oracle transcript is completely defined. Intuitively, if the ideal or-

acle is not sampling (X̃, X̃∗, Ỹ) degenerately at any stage, then we must have (0n, X̃, X̃∗) ↭

(L, Ỹ, T̃). The following proposition justifies this intuition.

Proposition 6.2.3. For ¬(BadT ∨ BadW ∨ BadX), we must have (0n, X̃, X̃∗) ↭ (L, Ỹ, T̃).

Proof. Let ¬(BadT∨ BadW∨ BadX) hold. Recall that (0n, W̃, W̃∗) may not be permutation

compatible with (L, Z̃, T̃). For any (i, a) ∈ F̃CI, there exists i′ ∈ [ℓi′ ] such that Wi[a] =

Wi′ [ℓi′ ] but Zi[a] ̸= Ti′ . We apply the initial resetting to solve this issue. However, as

a result of initial resetting, induced resetting takes place. Our goal is to show that the

non-occurrence of the bad events assures that the compatibilty is attained in the final

reset tuples (0n, X̃, X̃∗) and (L, Ỹ, T̃). We prove all possible cases as follows:

• Xi[a] = 0n ⇐⇒ Yi[a] = L: If a = 1 and Xi[a] = 0, then (i, a) /∈ F̃CI due to ¬BadW1.

Also, (i, 1) /∈ ĨCI. Thus, Yi[a] = Zi[a] = L and the converse also holds. Otherwise,

due to ¬BadX1, Xi[a] can not be equal to 0. Also, due to ¬BadW1, Yi[a] can not be

equal to L.

3Does not collide with any other input.



Chapter 6. OMAC, XCBC and TMAC 117

• Xi[a] = Xi′ [ℓi′ ] ⇐⇒ Yi[a] = Ti′ : For (i, a) ∈ F̃CI, this equivalence holds. Other-

wise, Xi[a] = Xi′ [ℓi′ ] can not hold due to ¬(BadX1 ∨ BadX5). Also Yi[a] = Ti′ can

not hold due to definition of T̃ and ¬BadX2.

• Xi[a] = Xj [b] ⇐⇒ Yi[a] = Yj [b]: To prove this part we divide it in the following

subcases:

– (i, a), (i, b) /∈ F̃CI ∪ ĨCI : Since in this case the variables are simply renamed

due to definitions of resetting and ¬BadW3, the result follows from W̃ ↭ Z̃.

– (i, a), (j, b) ∈ F̃CI : Since (i, a), (j, b) ∈ F̃CI, there exists unique i′, j′ ∈ [q],

such that Wi[a] = Wi′ [ℓi′ ] and Wj [b] = Wj′ [ℓj′ ]. Now, note that Xi[a] =

Wi[a] and Xj [b] = Wj [b] since F̃CI ∩ ĨCI = ∅ due to ¬BadW4; Wi′ [ℓi′ ] = Xi′ [ℓi′ ]

and Wj′ [ℓj′ ] = Xj′ [ℓj′ ] due to ¬BadW5. Therefore, we must have Xj′ [ℓj′ ] =

Wj′ [ℓj′ ] = Wj [b] = Xj [b] = Xi[a] = Wi[a] = Wi′ [ℓi′ ] = Xi′ [ℓi′ ], which is

possible if and only if i′ = j′ (since ¬BadW2 holds).

– (i, a), (j, b) ∈ ĨCI : Since (i, a), (j, b) ∈ ĨCI, there exists i′, j′ ∈ [q] and a′ ∈
[ℓi′ − 1], b′ ∈ [ℓj′ − 1], such that Xi[a] = Wi′ [a

′] and Xj [b] = Wj′ [b
′]. Further,

(i′, a′), (j′, b′) /∈ F̃CI ∪ ĨCI (due to ¬BadX3). If Xj [b] = Xi[a], then we have

Wj′ [b
′] = Wi′ [a

′]. This gives us Yj [b] = Zj′ [b
′] = Zi′ [a

′] = Yi[a] (due to

W̃ ↭ Z̃). Similarly, Xi[a] ̸= Xj [b] implies Yi[a] ̸= Yj [b].

– (i, a) ∈ F̃CI and (j, b) ∈ ĨCI : Since (i, a) ∈ F̃CI, there exists a unique i′ ∈ [q],

such that Xi[a] = Wi[a] = Wi′ [ℓi′ ] = Xi′ [ℓi′ ] (the first equality is due to

¬BadW4, the second equality is due to the definition of full collision, the third

equality is due to ¬BadW5). Since (j, b) ∈ ĨCI, we also have Xj [b] = Wj′ [b
′]. If

Xi[a] = Xj [b], then Wj′ [b
′] = Wi′ [ℓi′ ]. Thus, (j′, b′) = (i′, ℓi′) due to ¬BadX3.

Now, we have Yi[a] = Ti′ . Also, Yj [b] = Yj′ [b
′] = Yi′ [ℓi′ ] = Ti′ . Therefore,

Yi[a] = Yj [b]. Moreover, Xi[a] ̸= Xj [b] implies that Yi[a] ̸= Yj [b] due to similar

arguments as above and also ¬BadT.

– (i, a) ∈ ĨCI and (j, b) ∈ F̃CI : Similar as the above case.

– (i, a) ∈ F̃CI ∪ ĨCI and (j, b) /∈ F̃CI ∪ ĨCI : Since (j, b) /∈ F̃CI∪ĨCI, we have Xj [b] =

Wj [b] and Yj [b] = Zj [b]. Suppose, (i, a) ∈ F̃CI. Then Xi[a] = Xj [b] is not pos-

sible since it would imply that (j, b) ∈ F̃CI. Also, Yi[a] = Yj [b] is not possible

since it would contradict the definition of T̃. Now, suppose, (i, a) ∈ ĨCI.

Therefore, Xi[a] = Wi′ [a
′] for some i′ ∈ [q] and a′ ∈ [ℓi′ − 1]. If Xi[a] = Xj [b],

then Wj [b] = Xj [b] = Xi[a] = Wi′ [a
′]. So, Yj [b] = Zj [b] = Zi′ [a

′] = Yi[a].

Similarly, Xi[a] ̸= Xj [b] implies Yi[a] ̸= Yj [b].
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– (i, a) /∈ F̃CI ∪ ĨCI and (j, b) ∈ F̃CI ∪ ĨCI : Similar as the above case.

6.2.2 Transcript Analysis

SET OF TRANSCRIPTS: Given the description of transcript random variable corre-

sponding to the ideal oracle, we can now define the set of transcripts V as the set of

all tuples ν = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0,flagT, flagW, flagX), where

• m̃ = (m1, . . . ,mq), where mi ∈ {0, 1}∗ for i ∈ [q]. Let ℓi =
⌈
|mi|
n

⌉
for i ∈ [q].

• t̃ = (t1, . . . , tq), where ti ∈ B for i ∈ [q].

• x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[ℓi − 1]) for i ∈ [q].

• x̃∗ = (x1[ℓ1], . . . , xq[ℓq]).

• ỹ = (y1, . . . , yq), where yi = (yi[0] = 0n, yi[1], . . . , yi[ℓi − 1]) for i ∈ [q].

• l−1 = µ−1 ⊙ l, l0 = µ0 ⊙ l where l ∈ B and µ−1, µ0 are constants chosen from F2n

as defined before.

• flagT, flagW,flagX ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,W}, then xi[a] = yj [b] = 0n for all i, j ∈ [q], a ∈ [ℓi],

and b ∈ [ℓj − 1].

2. if flagT = 0, then ti’s are all distinct.

3. if flagI = 0 for all I ∈ {T,W,X}, then xi[a] = yi[a − 1] ⊕mi[a] and (0n, x̃, ỹ⊕) ↭

(l, ỹ, t̃).

The first two conditions are obvious from the ideal oracle sampling mechanism. The

last condition follows from Proposition 6.2.3 and the observation that in ideal oracle

sampling for any I ∈ {T,Z,X}, FlagI = 1 if and only if BadI is true. Note that, condition

3 is vacuously true for real oracle transcripts.

BAD TRANSCRIPT: A transcript ν ∈ V is called bad if and only if the following predi-

cate is true:

(FlagT = 1) ∨ (FlagW = 1) ∨ (FlagX = 1).
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In other words, we term a transcript bad if the ideal oracle sets (X̃, X̃∗, Ỹ) degenerately.

Let

Vbad := {ν ∈ V : ν is bad.}.

All other transcript ν ′ = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0,flagT,flagW,flagX) ∈ V \ Vbad are called

good. From the preceding characterization of the set of transcripts, we conclude that

for any good transcript ν ′, we must have (0n, x̃, x̃∗) ↭ (l, ỹ, t̃). Henceforth, we drop

flagT, flagW, and flagX for any good transcript with an implicit understanding that

flagT = flagW = flagX = 0.

Following the H-coefficient mechanism, we have to upper bound the probability Pr [Θ0 ∈ Vbad]
and lower bound the ratio Pr [Θ1 = ν]/Pr [Θ0 = ν] for any ν ∈ V \ Vbad.

Lemma 6.2.4 (bad transcript analysis). For q + σ ≤ 2n−1, we have

Pr [Θ0 ∈ Vbad] ≤
4σ

2n
+

16q2 + qℓ2

2n
+

8q2ℓ4 + 32q3ℓ2 + 2q2ℓ3

22n

+
3q3ℓ5 + 143q3ℓ6 + 11q4ℓ3

23n
+

17q4ℓ6 + 5462q4ℓ8

24n
.

The proof of this lemma is postponed to section 6.3.

GOOD TRANSCRIPT: Now, fix a good transcript ν = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0). Let σ be the

total number of blocks (and one additional for 0n) and σ′ := |x̃∪{0n}|. Since, ν is good,

we have (0n, x̃, x̃∗) ↭ (l, ỹ, t̃). Then, we must have |x̃∗| = q. Further, let |x̃ ∩ x̃∗| = r.

Thus, |{0n} ∪ x̃ ∪ x̃∗| = q + σ′ − r.

Real world: In the real world, the random permutationπππ is sampled on exactly q+σ′−r
distinct points. Thus, we have

Pr [Θ1 = ν] =
1

(2n)q+σ′−r
. (6.9)

Ideal world: In the ideal world, we employed a two stage sampling. First of all, we

have

Pr
[
T̃ = t̃,P(0n) = l

]
≤ 1

2nq
, (6.10)

since each Ti is sampled uniformly from the set B independent of others. Now, observe

that all the full collision and induced collision indices are fully determined from the

transcript ν itself. In other words, we can enumerate the set C̃I := F̃CI ∪ ĨCI. Now, since
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the transcript is good, we must have |C̃I| = σ − σ′ + |x̃ ∩ x̃∗| = σ − σ′ + r, and for all

indices (i, a) /∈ C̃I, we have Yi[a] = Zi[a]. Thus, we have

Pr
[
Yi[a] = yia ∧ (i, a) /∈ C̃I | T̃ = t̃

]
= Pr

[
Zi[a] = yia ∧ (i, a) /∈ C̃I | T̃ = t̃

]
=

1

(2n − q)σ′−r
, (6.11)

where the second equality follows from the fact that truncation4 of a without replace-

ment sample from a set of size (2n − q) is still a without replacement sample from the

same set. We have

Pr [Θ0 = ω] = Pr
[
T̃ = t̃

]
× Pr

[
Ỹ = ỹ | T̃ = t̃

]
≤ 1

2nq
× Pr

[
Yi[a] = yi[a] ∧ (i, a) /∈ C̃I | T̃ = t̃

]
=

1

2nq(2n − q)σ′−r
. (6.12)

The above discussion on good transcripts can be summarized in shape of the following

lemma.

Lemma 6.2.5. For any ν ∈ V \ Vbad, we have
Pr [Θ1 = ν]

Pr [Θ0 = ν]
≥ 1.

Proof. The proof follows from dividing (6.9) by (6.12).

Using Theorem 2.2.7, and Lemma 6.2.4 and 6.2.5, we get

Advprf
OMACπππ

(q, ℓ, σ,∞) ≤ 4σ

2n
+

16q2 + qℓ2

2n
+

8q2ℓ4 + 32q3ℓ2 + 2q2ℓ3

22n

+
3q3ℓ5 + 143q3ℓ6 + 11q4ℓ3

23n
+

17q4ℓ6 + 5462q4ℓ8

24n
. (6.13)

Theorem 6.1.1 follows from (6.8) and (6.13).

6.3 Proof of Lemma 6.2.4

In appendix A, we recall the definition and properties of a combinatorial tool, called

structure graphs [9, 52], which will be highly useful in our proof. Our aim will be to

bound the probability of bad events only when they occur in conjunction with some

“manageable” structure graphs. In all other cases, we upper bound the probability by

the probability of realizing an unmanageable structure graph. Formally, we say that

the structure graph GP(M̃) is manageable if and only if:

4Removing some elements from the tuple.
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1. for all i ∈ [q], we have Acc(GP(Mi)) = 0, i.e., each Mi-walk is a path.

2. for all distinct i, j ∈ [q], we have Acc(GP(Mi,Mj)) ≤ 1.

3. for all distinct i, j, k ∈ [q], we have Acc(GP(Mi,Mj ,Mk)) ≤ 2.

4. for all distinct i, j, k, l ∈ [q], we have Acc(GP(Mi,Mj ,Mk,Ml)) ≤ 3.

Let unman denote the event that GP(M̃) is unmanageable. Then, using Corollary A.0.5,

we have

Pr [unman] ≤ Pr [∃i ∈ [q] : Acc(GP(Mi)) ≥ 1] + Pr [∃i < j ∈ [q] : Acc(GP(Mi,Mj)) ≥ 2]

+ Pr [∃i < j < k ∈ [q] : Acc(GP(Mi,Mj ,Mk)) ≥ 3]

+ Pr [∃i < j < k < l ∈ [q] : Acc(GP(Mi,Mj ,Mk,Ml)) ≥ 4]

≤
∑
i∈[q]

(ℓi − 1)2

2n
+

∑
i<j∈[q]

(ℓi + ℓj − 2)4

22n
+

∑
i<j<k∈[q]

(ℓi + ℓj + ℓk − 3)6

23n

+
∑

i<j<k<l∈[q]

(ℓi + ℓj + ℓk + ℓl − 4)8

24n

≤ qℓ2

2n
+

8q2ℓ4

22n
+

121.5q3ℓ6

23n
+

5461.34q4ℓ8

24n
. (6.14)

From now on we only consider manageable graphs. Observe that apart from the fact

that a manageable graph is just a union of Mi-paths, there is an added benefit that it

has no zero collision. Let TU := ¬(BadT ∨ unman) and TUW := ¬(BadT ∨ unman ∨ BadW).

Now, we have

Pr [Θ0 ∈ Vbad] = Pr [(FlagT = 1) ∨ (FlagW = 1) ∨ (FlagX = 1)]

1
≤ Pr [BadT ∨ BadW ∨ BadX]

≤ Pr [BadT] + Pr [BadW|¬BadT] + Pr [BadX|¬(BadT ∨ BadW)]
2
≤ Pr [∃i ̸= j : Ti = Tj ] + Pr [BadW|¬BadT] + Pr [BadX|¬(BadT ∨ BadW)]

3
≤ q2

2n+1
+ Pr [unman] + Pr [BadW|TU] + Pr [BadX|TUW]

4
≤ 0.5q2 + qℓ2

2n
+

8q2ℓ4

22n
+

122q3ℓ6

23n
+

5462q4ℓ8

24n

+ Pr [BadW|TU] + Pr [BadX|TUW] (6.15)

Here, inequalities 1 and 2 follow by definition; 3 follows from the fact that Ti is chosen

uniformly at random from B for each i; and 4 follows from (6.14).
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BOUNDING Pr [BadW|¬(BadT ∨ unman)]: Let Ei = ¬(TU∨ BadW1∨ · · · ∨BadWi). We have

Pr [BadW|TU] ≤ Pr [BadW1|TU] + Pr [BadW2|E1] + Pr [BadW3|E2]

+ Pr [BadW4|E3] + Pr [BadW5|E4] (6.16)

We bound the individual terms on the right hand side as follows:

Bounding Pr [BadW1|TU]: Fix some (i, a) ∈ [q]× [ℓi]. The only way we can have Wi[a] =

0n, for 1 < a < ℓi, is if Zi[a − 1] = Mi[a]. This happens with probability at most

(2n − q)−1. For a = ℓi, the equation

µδMi
⊙ L⊕ Zi[ℓi − 1]⊕Mi[ℓi] = 0n

must hold non-trivially. The probability that this equation holds is bounded by at most

(2n − q − 1)−1. Assuming q + 1 ≤ 2n−1, and using the fact that there can be at most σ

choices for (i, a), we have

Pr [BadW1|TU] ≤ 2σ

2n
. (6.17)

Bounding Pr [BadW2|E1]: Fix some i ̸= j ∈ [q]. Since ¬unman holds, we know that

Acc(GP(Mi,Mj)) ≤ 1. We handle the two resulting cases separately:

(A) Acc(GP(Mi,Mj)) = 1: Suppose the collision source of the only accident are (i, a)

and (j, b). Then, we have the following system of two equations

Zi[a]⊕ Zj [b] = Mi[a+ 1]⊕Mj [b+ 1]

(µδMi
⊕ µδMj

)⊙ L⊕ Zi[ℓi − 1]⊕ Zj [ℓj − 1] = Mi[ℓi]⊕Mj [ℓj ]

Suppose δMi
̸= δMj

, i.e. µδMi
⊕ µδMj

̸= 0n. Using the fact that ¬BadW1 holds, we

infer that L /∈ {Zi[a],Zj [b],Zi[ℓi − 1],Zj [ℓj − 1]}. So, the two equations are linearly

independent, whence the rank is 2 in this case. Again, using Lemma A.0.6, and

the fact that there are at most q2/2 choices for i and j, and ℓ2 choices for a and b,

we get

Pr
[
BadW2 ∧ Case A ∧ δMi

̸= δMj
|E1

]
≤ q2ℓ2

2(2n − q − σ + 2)2
.

Now, suppose δMi
= δMj

, i.e. µδMi
⊕ µδMj

= 0n. Then, we can rewrite the system

as

Zi[a]⊕ Zj [b] = Mi[a+ 1]⊕Mj [b+ 1]

Zi[ℓi − 1]⊕ Zj [ℓj − 1] = Mi[ℓi]⊕Mj [ℓj ]
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We can have two types of structure graphs relevant to this case, as illustrated in

Figure 6.3.1. For type 1 all variables are distinct. So, the two equations are linearly

Type (1)

∗ ∗

Type (2)

∗ ∗

Figure 6.3.1: Accident-1 manageable graphs for two messages. The solid and dashed
lines correspond to edges inWi andWj , respectively. ∗ denotes optional parts in the

walk.

independent, whence the rank is 2 in this case. Again, using Lemma A.0.6, we get

Pr
[
BadW2 ∧ Case A ∧ δMi

= δMj
∧ Type 1|E1

]
≤ q2ℓ2

2(2n − q − σ + 2)2
.

For type 2, it is clear that Zj [ℓj−1] = Zi[ℓi−1]. So, we can assume that the second

equation holds trivially, thereby deriving a system in Zi[a] and Zj [b], with rank

1. Further, a and b are uniquely determined as ℓi − p and ℓj − p, where p is the

longest common suffix of Mi and Mj . So we have

Pr
[
BadW2 ∧ Case A ∧ δMi

= δMj
∧ Type 2|E1

]
≤ q2

2(2n − q − σ + 1)
.

(B) Acc(GP(Mi,Mj)) = 0: In this case, we only have one equation of the form

(µδMi
⊕ µδMj

)⊙ L⊕ Zi[ℓi − 1]⊕ Zj [ℓj − 1] = Mi[ℓi]⊕Mj [ℓj ]

If δMi
̸= δMj

, we have an equation in three variables, namely L, Zi[ℓi − 1], and

Zj [ℓj−1]; and if δMi
= δMj

, we have an equation in two variables, namely Zi[ℓi−1],
and Zj [ℓj − 1]. In both the cases, the equation can only hold non-trivially, i.e, rank

is 1. Using Lemma A.0.6, we get

Pr [BadW2 ∧ Case B|E1] ≤ q2

2(2n − q − σ + 1)
.

On combining the three cases, we get

Pr [BadW2|E1] ≤ q2

2n − q − σ + 1
+

q2ℓ2

(2n − q − σ + 2)2
. (6.18)

Bounding Pr [BadW3|E2]: Fix some i, j, k ∈ [q]. Since ¬unman holds, we must have

Acc(GP(Mi,Mj ,Mk)) ≤ 2. Accordingly, we have the following three cases:
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(A) Acc(GP(Mi,Mj ,Mk)) = 2: Suppose (α1, β1) and (α2, β2) are collision source lead-

ing to one of the accident, and (α3, β3) and (α4, β4) are collision source leading

to the other accident. Then, considering Wi[a] = Wj [ℓj ], we have the following

system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zα3 [β3]⊕ Zα4 [β4] = Mα3 [β3 + 1]⊕Mα4 [β4 + 1]

Zj [a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

The first two equations are independent by definition. Further, using ¬BadW1,

we can infer that the last equation is also independent of the first two equations.

Thus the system has rank 3. There are at most q3/6 choices for (i, j, k), and for

each such choice we have 3 choices for (α1, α2, α3, α4) and at most ℓ5 choices for

(β1, β2, β3, β4, a). Using Lemma A.0.6, we have

Pr [BadW3 ∧ Case A|E2] ≤ q3ℓ5

2(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source lead-

ing to the accident. First consider the case a < ℓi − 1 and b < ℓk. In this case, we

have the following system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zi[a]⊕ Zk[b− 1] = Mi[a+ 1]⊕Mk[b]

The first two equations are clearly independent. Further, since Mi ̸= Mk, the last

equation must correspond to a true collision as a consequence of the accident. So,

the rank of the above system is 2. Once we fix (i, j, k) and (a, b), we have at most

3 choices for (α1, α2), and β1 and β2 are uniquely determined as a + 1 − p and

b− p, where p is the largest common suffix of Mi[1, . . . , a+1] and Mk[1, . . . , b]. So,

we have

Pr [BadW3 ∧ Case B ∧ a < ℓi − 1 ∧ b < ℓk|E2] ≤
q3ℓ2

2(2n − q − σ + 2)2
.

Now, suppose a = ℓi − 1. Then we can simply consider the first two equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zj [ℓi − 2]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[ℓi − 1]
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Clearly, the two equations are independent. We have at most q3 choices for

(i, j, k), 3 choices for (α1, α2), and ℓ2 choices for (β1, β2). So we have

Pr [BadW3 ∧ Case B ∧ a = ℓi − 1|E2] ≤ q3ℓ2

2(2n − q − σ + 2)2
.

The case where a < ℓi − 1 and b = ℓk can be handled similarly by considering the

first and the third equations.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: In this case, we know that the three paths,Wi,Wj , and

Wk do not collide. This implies that we must have a = ℓi − 1, or b = ℓk or both,

in order for Wi[a + 1] = Wk[b] to hold. First, suppose both a = ℓi − 1 and b = ℓk.

Then, we have the following system of equations:

Zj [ℓi − 2]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[ℓi − 2]

(µδMi
⊕ µδMk

)⊙ L⊕ Zi[ℓi − 1]⊕ Zk[ℓk − 1] = Mi[ℓi]⊕Mk[ℓk]

Using the properties of µ−1 and µ0, and ¬BadW1, we can conclude that the above

system has rank 2. There are at most q3/6 choices for (i, j, k), and at most ℓ2

choices for (a, b). So, we have

Pr [BadW3 ∧ Case C ∧ a = ℓi − 1 ∧ b = ℓk|E2] ≤
q3ℓ2

6(2n − q − σ + 2)2
.

The remaining two cases are similar. We handle the case a = ℓi − 1 and b < ℓk,

and the other case can be handled similarly. We have the following system of

equations

Zj [ℓi − 2]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[ℓi − 2]

µδMi
⊙ L⊕ Zi[ℓi − 1]⊕ Zk[b− 1] = Mi[ℓi]⊕Mk[b]

If δMi
̸= δMj

, then using the same argument as above, we can conclude that the

system has rank 2, and we get

Pr
[
BadW3 ∧ Case C ∧ a = ℓi − 1 ∧ b < ℓk ∧ δMi

̸= δMj
|E2

]
≤ q3ℓ2

6(2n − q − σ + 2)2
.

So, suppose δMi
= δMj

. Now, in order for the second equation to be a consequence

of the first equation, we must have Zi[ℓi − 2] = Zj [ℓj − 1] and Zi[ℓi − 1] = Zk[b].

The only we way this happens trivially is if Mi[1, . . . , ℓi − 1] = Mj [1, . . . , ℓj − 1]

and Mi[1, . . . , ℓi − 1] = Mk[1, . . . , b]. But, then we have b = ℓi − 1, and once we fix

(i, k) there’s a unique choice for j, since Mj [1, . . . , ℓj − 1] = Mi[1, . . . , ℓi − 1] and
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Mj [ℓj ] = Mi[ℓi]⊕Mi[ℓi − 2]⊕Mk[b]. So, we get

Pr
[
BadW3 ∧ Case C ∧ a = ℓi − 1 ∧ b < ℓk ∧ δMi

= δMj
|E2

]
≤ q2

2(2n − q − σ + 1)
.

By combining all three cases, we have

Pr [BadW3|E2] ≤ q3ℓ5

2(2n − q − σ + 3)3
+

2q3ℓ2

(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
. (6.19)

Bounding Pr [BadW4|E3]: Fix some i, j, k ∈ [q]. The analysis in this case is very similar to

the one in case of BadW3|E2. So we will skip detailed argumentation whenever possible.

Since ¬unman holds, we must have Acc(GP(Mi,Mj ,Mk)) ≤ 2. Accordingly, we have the

following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same argu-

ment as used in Case A for BadW3|E2. So, we have

Pr [BadW4 ∧ Case A|E3] ≤ q3ℓ5

2(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source lead-

ing to the accident. Without loss of generality we assume a < b. Specifically,

b ≤ ℓi−1 and a ≤ b−2 due to ¬(BadW2∧BadW3). First consider the case b = ℓi−1.

In this case, considering Wi[b] = Wk[ℓk], we have the following system of equa-

tions

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[b− 1]⊕ µδMk
⊙ L⊕ Zk[ℓk − 1] = Mk[ℓk]⊕Mi[b]

Using a similar argument as used in previous such cases, we establish that the

two equations are independent. Now, once we fix (i, j, k), we have exactly one

choice for b, at most 3 choices for (α1, α2), and ℓ2 choices for (β1, β2). So, we have

Pr [BadW4 ∧ Case B ∧ b = ℓi − 1|E3] ≤ q3ℓ2

2(2n − q − σ + 2)2
.

Now, suppose b < ℓi − 1. Here we can have two cases:

(B.1) Wi is involved in the accident: Without loss of generality assume that α1 = i

and β1 ∈ [ℓi − 1]. Then, we have the following system of equations:

Zi[β1]⊕ Zα2 [β2] = Mi[β1 + 1]⊕Mα2 [β2 + 1]
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Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zi[b− 1]⊕ µδMk
⊙ L⊕ Zk[ℓk − 1] = Mk[ℓk]⊕Mi[b]

Suppose Zi[β1] = Zi[a − 1]. Then, we must have β1 = a − 1 as the graph is

manageable.In this case, we consider the first two equations. It is easy to see

that the two equations are independent, and once we fix i, j, k, there are at

most 2 choices for α2 and ℓ2 choices for (β1, β2), which gives a unique choice

for a. So, we have

Pr [BadW4 ∧ Case B.1 ∧ β1 = a− 1|E3] ≤ q3ℓ2

2(2n − q − σ + 2)2
.

We get identical bound for the case when Zi[β1] = Zi[b−1]. Suppose Zi[β1] /∈
{Zi[a − 1],Zi[b − 1]}. Then, using the fact that there is only one accident

in the graph and that accident is due to (i, β1) and (α2, β2), we infer that

Zα2 [β2] /∈ {Zi[a− 1],Zi[b− 1]}. Now, the only way rank of the above system

reduces to 2, is if Zi[a − 1] = Zk[ℓk − 1] and Zi[b − 1] = Zj [ℓj − 1] trivially.

However, if this happens then a and b are uniquely determined by our choice

of (i, j, k, β1, α2, β2). See Figure 6.3.2 for the two possible structure graphs

depending upon the value of α2. Basically, based on the choice of α2, a ∈
{ℓk, ℓk − β2 + β1}. Similarly, b ∈ {ℓj , ℓj − β2 + β1}. So, using Lemma A.0.6,

we get

Pr [BadW4 ∧ Case B.1 ∧ β1 /∈ {a− 1, b− 1}|E3] ≤ 2q3ℓ2

3(2n − q − σ + 2)2
.

Type (1)
a− 1

ℓk − 1 b− 1

ℓj − 1

Type (2)
b− 1

ℓj − 1a− 1

ℓk − 1

Figure 6.3.2: Manageable graphs for case B.1. The solid, dashed and dotted lines cor-
respond to edges inWi,Wj , andWk, respectively.

(B.2) Wi is not involved in the accident: Without loss of generality assume α1 = j

and α2 = k. Then, we have the following system of equations:

Zj [β1]⊕ Zk[β2] = Mj [β1 + 1]⊕Mk[β2 + 1]

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zi[b− 1]⊕ µδMk
⊙ L⊕ Zk[ℓk − 1] = Mk[ℓk]⊕Mi[b]

Since the graph is manageable, {Zi[a−1],Zi[b−1]}∩{Zj [ℓj−1],Zk[ℓk−1]} ≠ ∅.
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Suppose {Zi[a − 1],Zi[b − 1]} = {Zj [ℓj − 1],Zk[ℓk − 1]}. Without loss of

generality, assume Zi[a− 1] = Zk[ℓk − 1] and Zi[b− 1] = Zj [ℓj − 1]. This can

only happen if the resulting graph is of Type 2 form in Figure 6.3.2, which

clearly shows that we have unique choices for a and b when we fix the other

indices. Now, suppose |{Zi[a − 1],Zi[b − 1]} ∩ {Zj [ℓj − 1],Zk[ℓk − 1]}| = 1.

Then, we must have Zi[a − 1] ∈ {Zj [β1],Zk[β2]} since a < b. Without loss of

generality we assume that Zi[a− 1] = Zk[β2] and Zi[b− 1] = Zj [ℓj − 1]. Using

similar argument as before, we conclude that a and b are fixed once we fix

all other indices. So using Lemma A.0.6, we get

Pr [BadW4 ∧ Case B.2|E3] ≤ 2q3ℓ2

3(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: In this case, we know that the three paths,Wi,Wj , and

Wk do not collide. We have the following system of equations:

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zi[b− 1]⊕ µδMk
)⊙ L⊕ Zk[ℓk − 1] = Mi[ℓk]⊕Mi[b]

Using a similar analysis as in case C of BadW3|E2, we get

Pr [BadW4 ∧ Case C|E3] ≤ q3ℓ2

6(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

By combining all three cases, we have

Pr [BadW4|E3] ≤ q3ℓ5

2(2n − q − σ + 3)3
+

3q3ℓ2

(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
. (6.20)

Bounding Pr [BadW5|E4]: Fix some i, j, k ∈ [q]. The analysis in this case is again similar

to the analysis of BadW3|E2 and BadW4|E3. We have the following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same argu-

ment as used in Case A for BadW3|E2. So, we have

Pr [BadW5 ∧ Case A|E4] ≤ q3ℓ5

2(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source lead-

ing to the accident. In this case, we have the following system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]
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Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zj [b− 1]⊕ µδMk
⊙ L⊕ Zk[ℓk − 1] = Mk[ℓk]⊕Mj [b]

We can have two sub-cases:

(B.1) Suppose the third equation is simply a consequence of the second equation.

Then, we must have δMi
= δMj

and Zi[a−1] = Zj [b−1] and Zj [ℓj−1] = Zk[ℓk−
1] must hold trivially, since the graph is manageable. We claim that a = b =

Prefix(Mi[1],Mj [1])+1. If not, then Mi[ℓi] = Mj [ℓj ] which in conjunction with

Zj [ℓj − 1] = Zk[ℓk − 1] implies that Wi[ℓi] = Wj [ℓj ] which contradicts BadW2.

So, using Lemma A.0.6, we get

Pr [BadW5 ∧ Case B.1|E4] ≤ q3ℓ2

2(2n − q − σ + 2)2
.

(B.2) The second and third equation are independent. Considering the sub-system

consisting of these two equations, and using Lemma A.0.6, we get

Pr [BadW5 ∧ Case B.2|E4] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations:

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zi[b− 1]⊕ µδMk
⊙ L⊕ Zk[ℓk − 1] = Mi[ℓk]⊕Mi[b]

Let r denote the rank of the above system. Using a similar analysis as in case B.1

above, we conclude that a = b = Prefix(Mi[1],Mj [1]) + 1 if r = 1. Using Lemma

A.0.6, we get

Pr [BadW5 ∧ Case C ∧ r = 1|E4] ≤ q2

2(2n − q − σ + 1)
.

Pr [BadW5 ∧ Case C ∧ r = 2|E4] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

By combining all three cases, we have

Pr [BadW5|E4] ≤ q3ℓ5

2(2n − q − σ + 3)3
+

5q3ℓ2

6(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
. (6.21)

Further, from Eq. (6.16)-(6.21), we have

Pr [BadW|TU] ≤ 2σ

2n
+

5q2

2(2n − q − σ + 1)
+

7q3ℓ2

(2n − q − σ + 2)2
+

3q3ℓ5

2(2n − q − σ + 3)3
. (6.22)
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BOUNDING Pr [BadX|TUW]: For brevity of presentation, we skip the rest of the proof

and keep it at Appendix A. In A.1, we show that

Pr [BadX|TUW] ≤ 2σ

2n
+

10q2

2n − q − σ + 1
+

15q3ℓ2 + q2ℓ3

(2n − q − σ + 2)2

+
12q3ℓ6 + 6q4ℓ3

(2n − q − σ + 3)3
+

8q4ℓ6

(2n − q − σ + 4)4
(6.23)

Combining Eq. (6.15), (6.22), and (6.23), we have

Pr [Θ0 ∈ Vbad] ≤
4σ

2n
+

16q2 + qℓ2

2n
+

8q2ℓ4 + 32q3ℓ2 + 2q2ℓ3

22n

+
3q3ℓ5 + 143q3ℓ6 + 11q4ℓ3

23n
+

17q4ℓ6 + 5462q4ℓ8

24n
. (6.24)

6.4 Key Results At a Glance

Theorems 6.1.1 and 6.1.2 show that OMAC,XCBC and TMAC achieve O(q2/2n)+O(qℓ2/2n)

security. This bound is almost tight in term of q if ℓ≪ 2n/4.
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Chapter 7

Summary and Future Works

In this chapter, we compile summary of the whole thesis in a chapterwise basis and

give some direction for possible futute works.

7.1 Summary

7.1.1 Summary of chapter 3

In this chapter, we revisited some difficulties in designing a PMAC variant that has

length independent security bound O(q2/2n) up to ℓ < 2n/2. Particularly, we took a

closer look at a recent PMAC variant by Naito [70] that claims to have length inde-

pendent security bound. We showed that the security proof of this construction has a

non-trivial gap which is not easy to fix. Indeed, we pose it as an open problem to prove

or disprove the ℓ-free security bound of O(q2/2n) for Naito’s construction. Apparently,

this problem could be as hard as a similar problem posed in context of PMAC1 [85].

On a positive note, we show that 2AXU (see section 3.3) masking function is sufficient

to achieve length independent security up to ℓ < 2n/2. This is a relaxation from the

4-wise independence condition used in [39]. Finally, we proposed a simple variant of

PMAC1, called PMAC2, that achieves ℓ-free security up to ℓ ≤ 2n/4. For the range

2n/4 < ℓ ≤ 2n−2, PMAC2 still achieves ℓ-free security while σ < 22n/3.
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7.1.2 Summary of chapter 4

In this chapter, we studied the single-key instance of LightMAC, an ISO/IEC stan-

dard for lightweight message authentication codes. Our main contribution is a query-

length independent security bound for 1k-LightMAC. Specifically, we showed that 1k-

LightMAC achieves PRF security bound of O(q2/2n) while (n−s) ≤ ℓ ≤ (n−s)min{2n/4, 2s}.
Further, we proposed a slight variant of LightMAC, called LightMAC-ds that achieves

security bound of O(q2/2n) while ℓ ≤ (n− s)2s−1.

7.1.3 Summary of chapter 5

In this chapter, we have reduced the problem of getting exact PRF advantage to find

colliding probability for a pair of messages. So it would be an interesting open problem

to study the collision probability for all masking of the form ωi ·∆ for some sequence of

distinct nonzero elements ω1, ω2, . . .. For example, analyzing colliding probability for

PMAC1 is still an open problem. In fact, we do not know any deterministic sequence

of constants ω1, ω2, . . . for which ωi ·∆ would give q2/2n PRF security advantage.

7.1.4 Summary of chapter 6

In this chapter, we proved that OMAC, XCBC and TMAC are secure up to q ≤ 2n/2

queries, while the message length ℓ ≤ 2n/4. As a consequence, we have proved that

OMAC – a single-keyed CBC-MAC variant – achieves the same security level as some

of the more elaborate CBC-MAC variants like EMAC and ECBC. This, in combination

with the existing results [52, 53], shows that the security is tight up to ℓ ≤ 2n/4 for all

CBC-MAC variants except for the original CBC-MAC.

7.2 Possible Future Works

The reset sampling may, in future, find wide applications in the analysis of single-

key variant of beyond birthday bound secure constructions, such as LightMAC+[69],

PMAC+[98] etc.

As mentioned before, all the analysis in chapter 5 is made for simplified version of

PMAC-type construction. In the original construction, the last message block is simply

xor-ed instead of encrypting the block. We believe that the similar analysis will go

through mostly. But this would involve much more notation and the proof will become
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further complex. Moreover, some additional requirement for the encoding function

would be required. Once this result is established, improving further for more general

construction would be an interesting research problem.

It could be an interesting future problem to extend our analysis and derive similar

bounds for CBC-MAC over prefix-free message space. In order to prove our claims,

we employed reset-sampling method as mentioned in the chapter 4, which seems to be

a promising tool in reducing the length-dependency in single-keyed iterated construc-

tions. Indeed, we believe that this tool might even be useful in obtaining better security

bounds for single-keyed variants of many beyond-the-birthday-bound constructions.





Appendix A

Structure Graphs

In this section, we recall the definition and properties of a combinatorial tool, called

structure graphs [9, 52]. Fix a tuple of q distinct messages m̃ = (m1, . . . ,mq), where

mi ∈ Bℓi . Let σi =
∑

j∈[i] ℓj , and σq = σ. Note that, we have assumed that the last block

of each message is full n-bit long (if not it can be suitably padded). Let Q := {(i, a) ∈
[q]× (ℓi − 1]}, and ≤ be a natural ordering over Q, defined as follows:

(i, a) ≤ (i′, a′) if and only if (i < i′) or (i = i′ and j ≤ j′).

In context of the poset (Q,≤) = (α1 ≤ · · · ≤ ασ), we can naturally define αi + j as αi+j

for any i ∈ [σ] and j ∈ [σ − i]. One can define subtraction analogously. Sometimes we

also use the subsetQ+ := Q\{(i, 0) : i ∈ [q]}. Going forward, we sometimes write vi[a]

succinctly as vα for any α = (i, a) ∈ Q and any appropriately defined notation v.

For the message tuple m̃ and a permutation π ∈ Perm(n), let z̃ denote the intermediate

output tuple generated in OMAC function evaluation over each of the q messages in m̃,

i.e., Zi[0] = 0n, Zi[a] = π(Zi[a− 1]⊕mi[a]), for all (i, a) ∈ Q. Let in(i, a) := min{(j, b) ≤
(i, a) : Zi[a] = Zj [b]}.

STRUCTURE GRAPHS: Given the message tuple m̃ and permutation π, the structure

graph Gπ(m̃) := (V, E), is an edge-labeled directed graph, where the set of vertices

V = {in(α) : α ∈ Q}, the set of edges E = {eα := (in(α− 1), in(α)) : α ∈ Q+}, and

edge eα is labeled mα for all α ∈ Q+. Note that, it is possible that eα = eβ for some

α, β ∈ Q+, i.e., they represent the same edge with obviously the same label. When

we consider a single message mr, the resulting subgraph is simply a walk, that we

call an mr-walk and denote asWr, starting at node (1, 0) and following the labels from

(mr[1], . . . ,mr[ℓr−1]). So, a structure graph can also be viewed as an union of mi-walks

for all i ∈ [q].
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(1, 0) (1, 1)

(1, 2)(1, 5)

1

02

7

4

Figure A.0.1: Structure graph corresponding to the messages m1 = (1, 0, 2, 0, 7, 1) and
m2 = (4, 1), and permutation π, with π(1) = 2, π(2) = 3 and π(4) = 5. The solid lines

correspond to edges inW1, and dashed lines correspond to edges inW2.

Example A.1. Let m1 = (1, 0, 2, 0, 7, 1) and m2 = (4, 1) be two messages and π(1) =

2; π(2) = 3; π(4) = 5 for some π ∈ Perm. Then, we have z1 = (0, 2, 3, 2, 3, 5) and

z2 = (0, 5). The corresponding structure graph Gπ(m1,m2), illustrated in Figure A.0.1, has

vertex set V = {(1, 0), (1, 1), (1, 2), (1, 5)} and edges set

E = {((1, 0), (1, 1)), ((1, 1), (1, 2)), ((1, 2), (1, 1)), ((1, 2), (1, 5)), ((1, 0), (1, 5))}.

COLLISIONS AND ACCIDENTS: Suppose that Gπ(m̃) is revealed edge by edge in an

orderly fashion following (Q+,≤). We say that an edge eα leads to a collision if in(α)

is already present in the partially revealed graph. A collision formed by edges eα and

eβ is generally denoted as (in(α− 1), in(β − 1); γ), where γ = in(α) = in(β). The only

exception occurs when γ = (1, 0) and there is no prior edge to (1, 0), in which case the

collision is denoted as (in(α− 1); γ), since prior to eα there’s no edge pointing to (1, 0).

This exceptional case is referred as a zero collision, and all other collisions are referred

as true collisions. We refer to in(α− 1) (and in(β − 1), if applicable) as collision source.

Note that it is not possible to recover the intermediate output tuple, by just looking

at a given structure graph. Indeed, multiple intermediate output tuples may give the

same structure graphs. However, a structure graph does preserve the collision relation

between intermediate outputs. More precisely, let Zin(α) denote the variable for the

intermediate output corresponding to the vertex in(α), and Z̃ = (Zin(α) : α ∈ Q).
Obviously, we must have Z1[0] = 0n, otherwise the resulting intermediate output tuple

is invalid. Now, any true collision (in(α− 1), in(β − 1); γ) implies a linear equation

Zin(α−1) ⊕ Zin(β−1) = mα ⊕mβ,

since both Zin(α−1)⊕mα and Zin(β−1)⊕mβ must equal π−1(Zγ). Any new true collision

can either give a linear equation that is linearly dependent on the linear equations due

to previously discovered true collisions, or it may give an independent linear equation.

True collisions of the latter type are referred as accidents. At a high level, accidents de-

note the “surprising” collisions in CBC function computation. Obviously, the number
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of true collisions is at least the number of accidents. The following definition due to Jha

and Nandi [52] gives a formula for the number of accidents.

Definition A.0.1 ([52]). Consider the structure graph Gπ(m̃) associated with the mes-

sage tuple m̃ and permutation π. Let S(Gπ(m̃)) be the system of linear equations formed

by the true collisions of Gπ(m̃), and let r denote the rank of S(Gπ(m̃)). Let Acc(Gπ(m̃))

be the set of accidents of Gπ(m̃). Then, the number of accidents is defined as

|Acc(Gπ(m̃))| =

r + 1 if Gπ(m̃) has a zero collision,

r otherwise.

Example A.2. Consider the structure graph from Figure A.0.1. Here, we have two true col-

lisions, namely ((1, 0), (1, 2); (1, 1)) and ((1, 0), (1, 2); (1, 5)), and the associated system of

equations is

Z1[0]⊕ Z1[2] = m1[1]⊕m1[3]

Z1[0]⊕ Z1[2] = m1[5]⊕m2[1]

Clearly, the two equations are dependent. So the graph has just one accident, and that accident

is ((1, 0), (1, 2); (1, 1)), since it occurs before ((1, 0), (1, 2); (1, 5)). We encourage the readers

to see [9, 52] for further exposition on true collisions and accidents.

EXISTING RESULTS ON STRUCTURE GRAPHS: We now recall some known and use-

ful combinatorial results on structure graphs. The proof of these results are already

available in [9, 52].

Lemma A.0.2 ([52]). For any structure graph G, if there is a vertex α with in-degree d then

Acc(G) ≥ d− 1. Moreover, if the graph has a zero collision then Acc(G) ≥ d.

Lemma A.0.3 ([9, 52]). The number of structures graphs associated to m̃ with a accidents is

at most
(
σ
2

)a. In particular, there exists exactly one structure graph with 0 accidents.

Lemma A.0.4 ([9, 52]). For any structure graph G with a accidents, we have

Pr
P
[GP(m̃) = G] ≤ 1

(2n − q − σ)a
,

where P denotes the partial function, introduced in Phase II of the ideal world sampling (see

section 6.2.1), that samples each new point in a without replacement manner from a set of size

(2n − q).
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Proof. The proof of this lemma is identical to the proof of [52, Lemma 2], with a small

change in the probability distribution. For all α ∈ Q+, the values for Zin(α) are now

chosen in a without replacement manner from a set of size (2n − q) (instead of 2n in

case of [52, Lemma 2]).

Corollary A.0.5 ([9, 52]). For a ∈ N and q + σ < 2n−1, we have

Pr
P
[Acc(GP(m̃)) ≥ a] ≤ σ2a

2an
,

AN EXTENSION OF LEMMA A.0.4: In addition to the system of linear equations S(GP(m̃)),

sometimes we also consider additional equations over the intermediate output vari-

ables tailor-made to our analysis. Suppose the system of these additional equations is

denoted simply by S ′(Z̃), and S ′(Z̃)∪S(GP(m̃)) denotes the system consisting of equa-

tions from both S(GP(m̃)) and S ′(Z̃). Let r denote the rank of the combined system of

equations, S ′(Z̃) ∪ S(GP(m̃)).

Suppose |Z̃| = t ≤ σ and let 10 be an indicator variable that results in 1 if GP(m̃)

has a zero collision, and 0 otherwise. Then, we can have at most (2n − q)t+10 valid

intermediate output tuples, since we must have Zin(α) ̸= Zin(β) whenever in(α) ̸= in(β),

whence the probability to realize one such valid intermediate output tuple is 1/(2n −
q)t+10 . Since the rank of S ′(Z̃)∪ S(Gπ(m̃)) is r, by simple linear algebraic argument we

know that by choosing the value of any t − r variables, we may get a unique solution

for the other r variables, in such a way that it also realizes Gπ(m̃) and satisfies S ′(Z̃).

Thus, the probability to realize an intermediate output tuple that results in GP(m̃) and

also satisfies S ′(Z̃) is bounded by at most (2n − q)t−r/(2
n − q)t+10 . We summarize

this discussion in the following result which extends Lemma A.0.4. We remark that a

similar result has already been proved in [28].

Lemma A.0.6. For any structure graph G and additional system of equations S ′(Z̃), we have

Pr
P

[
GP(m̃) = G ∧ S ′(Z̃) is satisfied

]
≤ 1

(2n − q − σ + r)r+10
,

where r denotes the rank of S ′(Z̃) ∪ S(GP(m̃)) and 10 is an indicator variable that results in 1

if GP(m̃) has a zero collision, and 0 otherwise.

Proof. The result follows from the preceding discussion by using the fact that t < σ.
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A.1 Bounding BadX|¬(BadT ∨ unman ∨ BadW)

Let TUW := ¬(BadT ∨ unman ∨ BadW), and Fi = ¬(TUW ∨ BadX1 ∨ · · · ∨ BadXi). We have

Pr [BadX|TUW] ≤ Pr [BadX1|TUW] + Pr [BadX2|F1] + Pr [BadX3|F2] + Pr [BadX4|F3]

+ Pr [BadX5|F4] + Pr [BadX6|F5] + Pr [BadX7|F6] (A.1)

We bound the individual terms on the right hand side as follows:

Bounding Pr [BadX1|TUW]: Fix some i, j, k ∈ [q]. Since ¬unman holds, we must have

Acc(GP(Mi,Mj ,Mk)) ≤ 2. Accordingly, we have the following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same argu-

ment as used in Case A for BadW3|E2. So, we have

Pr [BadX1 ∧ Case A|TUW] ≤ q3ℓ5

2(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source lead-

ing to the accident. Assuming a < ℓi−1 and 0 < b < ℓk−1, we have the following

system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[b− 1] = Mi[a+ 1]⊕Mk[b]⊕ Tj

Since the three equations involve an odd number of Z variables and¬BadW1 holds,

we can straightaway conclude that the system has rank 3. Note that it is true

irrespective of our choice of a, and k as long as b > 0. So, we have

Pr [BadX1 ∧ Case B ∧ b > 0|TUW] ≤ q3ℓ4

2(2n − q − σ + 3)3
.

If b = 0. The last equation simply boils down to the condition Tj = Mi[a + 1].

This gives a unique choice of j, once we fix i, a. Further, there are q choices for k,

3 choices for (α1, α2), and ℓ2 choices for (β1, β2). So, we get

Pr [BadX1 ∧ Case B ∧ b = 0|TUW] ≤ q2ℓ3

2(2n − q − σ + 2)2
.



Appendix A. Structure Graphs 142

(C) Acc(GP(Mi,Mj ,Mk)) = 0: Assuming a < ℓi − 1 and 0 < b < ℓk − 1, we have the

following system of equations

Zj [a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[b− 1] = Mi[a+ 1]⊕Mk[b]⊕ Tj

Using the same argument as applied in case B above, we get

Pr [BadX1 ∧ Case C|TUW] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

For b = 0, using the previous argument, we get

Pr [BadX1 ∧ Case B ∧ b = 0|TUW] ≤ σ

2n − q − σ + 1
.

By combining all three cases, we have

Pr [BadX1|TUW] ≤ 2σ

2n
+

q3ℓ5

(2n − q − σ + 3)3
+

q3ℓ2

6(2n − q − σ + 2)2
+

q2ℓ3

2(2n − q − σ + 2)2
.

(A.2)

Bounding Pr [BadX2|F1]: First note that once we fix i and k, a = ℓi − ℓk, and Tj =

Mk[1]⊕Mi[a+1] which in combination with ¬BadW2 gives a unique choice for j. So we

have at most q2/2 choices for (i, j, k, a). Now, considering Wi[a] = Wj [ℓj ], we have the

equation

Zj [a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Using Lemma A.0.6, we get

Pr [BadX2|F1] ≤ q2

2(2n − q − σ + 1)
. (A.3)

Bounding Pr [BadX3|F2]: Recalling the counting argument of previous case, we know

that j is fixed once we choose (i, k, a). Now, we can have three cases:

(A) Acc(GP(Mi,Mj ,Mk,Ml)) ≥ 2: We consider the system, consisting of any two acci-

dent equations and Wi[a] = Wj [ℓj ]. Using similar argument as used in Case A for
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BadW3|E2, and the counting argument, we get

Pr [BadX3 ∧ Case A|F2] ≤ 3q3ℓ5

(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk,Ml)) = 1: Suppose (α1, β1) and (α2, β2) are collision source

leading to the accident. We have the following system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[b− 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mk[b]

We can have two sub-cases:

(B.1) Suppose the third equation is a consequence of the second equation. Using

a similar line of arguments as used in case B.1 of BadW5|E4, we can conclude

that a and b have some fixed choices. In particular, a has at most 18 choices.

Then, using Lemma A.0.6, we have

Pr [BadX3 ∧ Case B.1|F2] ≤ 3q3ℓ2

(2n − q − σ + 2)2
.

(B.2) The last two equations are independent. Then, we can simply consider these

two equations and ignore the accident equation. Using Lemma A.0.6, we

have

Pr [BadX3 ∧ Case B.2|F2] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[b− 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mk[b]

Let r denote the rank of the above system. If r = 1, then we must have µδMj
= µδMl

and Mj [ℓj ]⊕Mi[a]⊕Ml[ℓl]⊕Mk[b] = 0n. Now, we can have two sub-cases:

(a) Mi[1, . . . , a− 1] = Mk[1, . . . , b− 1] and Mj [1, . . . , ℓj − 1] = Ml[1, . . . , ℓl − 1].

(b) Mi[1, . . . , a− 1] = Ml[1, . . . , ℓl − 1] and Mj [1, . . . , ℓj − 1] = Mk[1, . . . , b− 1].

In both cases, we consider the first equation for probability calculation. The two

cases are similar. So we only handle the second case. The key idea here is to note

that the i-th message shares a − 1 block prefix with l-th message and similarly

k-th message shares b− 1 block prefix with j-th message.
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Let S = {Mi[1, . . . , j] : (i, j) ∈ [q] × [ℓi]} ∪ {⊥} be the set of all prefixes over all

q messages. For any x ∈ S , we define pred(x) = x′, where x = x′∥y for some

y ∈ B. Consider a rooted tree T with vertices from S where ⊥ acts as the root of

the tree and there’s a directed edge (pred(x), x) for each x ∈ S \ {⊥}. Clearly, it

is a directed tree rooted at ⊥ and all leave nodes are the 1 ≤ i ≤ q messages Mi.

Except the leaves, all nodes have out-degree (denoted dx for the node x) at least

one. A node is called fork node if it has out-degree at least two. Let Fork denote the

set of all fork nodes. Now,
∑

x∈S dx = σ − 1. Then, we make the following claim.

Claim A.1.1.
∑

x∈Fork(dx − 1) = q − 1, and |Fork| ≤ q − 1.

Proof. All edges at the node x introduce exactly new dx − 1 messages. So the

first part is done. The second part also follows from the same argument. A new

message is introduced only when we have a forking. So the number of messages

should be at least the number of forking points.

Now let us come back to our problem. We have to choose two prefixes u and v

of length a − 1 and b − 1 blocks, respectively. Now, clearly u and v must be fork

nodes in T , as each of them have out-degree at least 2. We know that the number

of fork nodes can be at most q − 1 and for every such choices the probability that

first equation holds is at most 1/(2n − q − σ + 1). So, total probability for having

this types of equation is at most

∑
u,v∈Fork

dudv
2n − q − σ + 1

≤ 1

2n − q − σ + 1

[ ∑
u∈Fork

(du − 1)

]2

≤ q2

2n − q − σ + 1
.

So, combining the bound for the two sub-cases, we get

Pr [BadX3 ∧ Case C ∧ r = 1|F2] ≤ 2q2

2n − q − σ + 1
.

If r = 2, we get

Pr [BadX3 ∧ Case C ∧ r = 2|F2] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

Combining all three cases, we get

Pr [BadX3|F2] ≤ 3q3ℓ5

(2n − q − σ + 3)3
+

20q3ℓ2

6(2n − q − σ + 2)2
+

2q2

2n − q − σ + 1
. (A.4)

Bounding Pr [BadX4|F3]: (i, a), (j, b) ∈ F̃CI if and only if there exists k, l ∈ [q], such that

Wi[a] = Wk[ℓk] and Wj [b] = Wl[ℓl]. We first note that fixing (i, a), (j, b), and anyone of k
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and l fixed the remaining index, since Tk ⊕ Tl ⊕Mi[a]⊕Mj [b]. So we can have at most

q3ℓ2/6 choices for (i, j, k, l, a, b). As in the case of BadX3|¬F2, we can have three cases:

(A) Acc(GP(Mi,Mj ,Mk,Ml)) ≥ 2: Using similar argument as used in Case A for BadX3|F2,

and the counting argument, we get

Pr [BadX4 ∧ Case A|F3] ≤ 5q3ℓ6

(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk,Ml)) = 1: Suppose (α1, β1) and (α2, β2) are collision source

leading to the accident. We have the following system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− 1]⊕ µδMk
⊙ L⊕ Zk[ℓk − 1] = Mk[ℓk]⊕Mi[a]

Zj [b− 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mj [b]

We can have two sub-cases:

(B.1) Suppose the third equation is a consequence of the second equation. Using

prefix and suffix backtracing arguments, we can conclude that a, b, β1 and

β2 can be chosen in at most 18ℓ2 ways, once we fix α1 and α2. Then, using

Lemma A.0.6, we have

Pr [BadX4 ∧ Case B.1|F3] ≤ 3q3ℓ2

(2n − q − σ + 2)2
.

(B.2) The last two equations are independent. Then, we can simply consider these

two equations and ignore the accident equation. Using Lemma A.0.6, we

have

Pr [BadX4 ∧ Case B.2|F3] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[b− 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mk[b]

Using similar arguments as in case C of BadX3|F2, we get

Pr [BadX4 ∧ Case C ∧ r = 1|F3] ≤ q3ℓ2

6(2n − q − σ + 2)2
+

2q2

2n − q − σ + 1
.
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Combining all three cases, we get

Pr [BadX4|F3] ≤ 5q3ℓ6

(2n − q − σ + 3)3
+

20q3ℓ2

6(2n − q − σ + 2)2
+

2q2

2n − q − σ + 1
. (A.5)

Bounding Pr [BadX5|F4]: Similar counting argument as used in previous cases apply

here as well, i.e., index j is fixed once we choose (i, k, a). First, we handle the corner

case, when b = 0. In this case we get the system of equations

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[p+ 1] = Mi[a+ 2 + p]⊕ ⋆

where ⋆ = 0n if a + 2 + p ̸= ℓi, and µδMi
⊙ L otherwise. In both the cases, the two

equations are independent. So we get

Pr [BadX5 ∧ b = 0|F4] ≤ q2ℓ

2(2n − q − σ + 2)2
.

Assuming b > 0, we can have three cases:

(A) Acc(GP(Mi,Mj ,Mk,Ml)) ≥ 2: Using similar argument as used in Case A for BadX3|F2,

and the counting argument, we get

Pr [BadX5 ∧ Case A|F4] ≤ 3q3ℓ5

(2n − q − σ + 3)3
.

(B) Acc(GP(Mi,Mj ,Mk,Ml)) = 1: Suppose (α1, β1) and (α2, β2) are collision source

leading to the accident. Assuming a+2+p < ℓi and b < ℓl, we have the following

system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[p+ 1]⊕ Zl[b− 1] = Ml[b]⊕Mi[a+ 2 + p]

Now, we can have two cases:

B.1 Third equation is a consequence of the first equation. Then, using the pre-

viously used prefix and suffix backtracing arguments, we can conclude that

β1 and β2 have fixed choices. In particular, we have at most 3 choices for
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(β1, β2). So, using Lemma A.0.6, we get

Pr [BadX5 ∧ Case B.1|F4] ≤ 3q3ℓ2

(2n − q − σ + 2)2
.

B.2 Third equation is independent of the first equation. Then, we simply con-

sider the second and third equation, which are obviously independent. So,

using Lemma A.0.6, we get

Pr [BadX5 ∧ Case B.2|F4] ≤ q3ℓ2

6(2n − q − σ + 2)2
.

Now, assume a = ℓi − p− 2 and consider the two equations:

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[ℓi − p− 3]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[ℓi − p− 2]

The two equations are obviously independent due to the presence of L. So we get

Pr [BadX5 ∧ Case B ∧ a = ℓi − p− 2|F4] ≤ q3ℓ2

(2n − q − σ + 2)2
.

The case where a < ℓi = p− 2 and b = ℓl is similarly bounded.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: Assuming a + 2 + p < ℓi and b < ℓl, we have the

following system of equations

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[p+ 1]⊕ Zl[b− 1] = Ml[b]⊕Mi[a+ 2 + p]

The two equations are clearly independent due to the presence of L, whence we

have

Pr [BadX5 ∧ Case C ∧ a < ℓi − p− 2 ∧ b < ℓl|F4] ≤
q3ℓ2

6(2n − q − σ + 2)2
.

Suppose a = ℓi − p − 2. Then we can simply consider the first equation, whence

we get

Pr [BadX5 ∧ Case C ∧ a = ℓi − p− 2|F4] ≤ q2

2(2n − q − σ + 1)
.
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Finally assume a < ℓi − p − 2 and b = ℓl. Then, we have the following system of

equations

Zi[a− 1]⊕ µδMj
⊙ L⊕ Zj [ℓj − 1] = Mj [ℓj ]⊕Mi[a]

Zk[p+ 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mi[a+ 2 + p]

Using similar argument as in case C of BadX3|F2, we get

Pr [BadX5 ∧ Case C ∧ a < ℓi − p− 2 ∧ b = ℓl|F4] ≤
2q2

2n − q − σ + 1
+

q3ℓ2

6(2n − q − σ + 2)2
.

Combining all three cases, we get

Pr [BadX5|F4] ≤ 3q3ℓ5

(2n − q − σ + 3)3
+

27q3ℓ2

6(2n − q − σ + 2)2
+

3q2

(2n − q − σ + 1)
. (A.6)

Bounding Pr [BadX6|F5]: (i, a) ∈ F̃CI and (j, b) ∈ ĨCI if and only if there exists i′, k, l ∈ [q]

and c ∈ [ℓk − 1], such that Wi[a] = Wi′ [ℓi′ ], Wj [b− c] = Wl[ℓl] and Xj [b− c+ 1] = Mk[1].

We first note that fixing (i, a), j, k, b− c, and i′ fixes b, c, and l. So we can have at most

q4ℓ2/12 choices for (i, j, k, i′, l, a, b, c). As in the case of BadX3|¬F2, we can have three

cases:

(A) Acc(GP(Mi,Mj ,Mk,Ml,Mi′)) ≥ 2: In this case we consider the two accident equa-

tions along with Wi[a] = Wi′ [ℓi′ ] and Xi[a + 1] = Xj [b + 1]. We claim that all

four equations are independent due to odd number of Z variables (last equation

is univariate in Zk[c]). Then, we get

Pr [BadX6 ∧ Case A|F5] ≤ 4q4ℓ6

(2n − q − σ + 4)4
.

(B) Acc(GP(Mi,Mj ,Mk,Ml,Mi′)) = 1: Suppose (α1, β1) and (α2, β2) are collision source

leading to the accident. We have the following system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− 1]⊕ µδMi′
⊙ L⊕ Zi′ [ℓi′ − 1] = Mi′ [ℓi′ ]⊕Mi[a]

Zj [b− c− 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mj [b− c]

Zk[c] = Mj [b+ 1]⊕Mi[a+ 1]⊕ Ti′
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Again concentrating on whether the second and third equations are independent

or not, and using similar argumentation as before, we get

Pr [BadX6 ∧ Case B|F5] ≤ 5q4ℓ3

(2n − q − σ + 2)3
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations

Zi[a− 1]⊕ µδMi′
⊙ L⊕ Zi′ [ℓi′ − 1] = Mi′ [ℓi′ ]⊕Mi[a]

Zj [b− c− 1]⊕ µδMl
⊙ L⊕ Zl[ℓl − 1] = Ml[ℓl]⊕Mj [b− c]

Zk[c] = Mj [b+ 1]⊕Mi[a+ 1]⊕ Ti′

Using similar arguments as in previous cases, we get

Pr [BadX6 ∧ Case C|F5] ≤ q4ℓ2

4(2n − q − σ + 3)3
+

2q3ℓ

(2n − q − σ + 2)2
.

Combining all three cases, we get

Pr [BadX6|F5] ≤ 4q4ℓ6

(2n − q − σ + 4)4
+

6q4ℓ3

(2n − q − σ + 3)3
+

2q3ℓ

(2n − q − σ + 2)2
. (A.7)

Bounding Pr [BadX7|F6]: (i, a), (j, b) ∈ ĨCI if and only if there exists i′, j′, k, l ∈ [q], c ∈
[ℓk] and d ∈ [ℓl], such that Wi[a] = Wi′ [ℓi′ ], Wj [b− c] = Wj′ [ℓ

′
j ], Xi[a− c+1] = Mk[1] and

Xj [b − d + 1] = Ml[1]. We first note that fixing i,, j, k, l, a − c, and b − d, fixes a, b, c, d,

i′ and j′. So we can have at most q4ℓ2/12 choices for (i, j, k, l, i′, j′, a, b, c, d). As in the

case of BadX3|¬F2, we can have three cases:

(A) Acc(GP(Mi,Mj ,Mk,Ml,Mi′ ,Mj′)) ≥ 2: In this case we consider the two accident

equations along with Wi[a] = Wi′ [ℓi′ ], Wj [b] = Wj′ [ℓj′ ]. As in the previous cases,

we conclude that all four equations are independent. Then, we get

Pr [BadX7 ∧ Case A|F6] ≤ 4q4ℓ6

(2n − q − σ + 4)4
.

(B) Acc(GP(Mi,Mj ,Mk,Ml,Mi′)) = 1: Suppose (α1, β1) and (α2, β2) are collision source

leading to the accident. We have the following system of equations

Zα1 [β1]⊕ Zα2 [β2] = Mα1 [β1 + 1]⊕Mα2 [β2 + 1]

Zi[a− c− 1]⊕ µδMi′
⊙ L⊕ Zi[ℓi′ − 1] = Mi′ [ℓi′ ]⊕Mi[a− c]

Zj [b− d− 1]⊕ µδMj′
⊙ L⊕ Zj [ℓj′ − 1] = Mj′ [ℓj′ ]⊕Mj [b− d]
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Zk[c]⊕ Zl[d] = Mj [b+ 1]⊕Mi[a+ 1]⊕ Ti′ ⊕ Tj′

Again concentrating on whether the second and third equations are independent

or not, and using similar argumentation as before, we get

Pr [BadX7 ∧ Case B|F6] ≤ 6q4ℓ2

(2n − q − σ + 2)3
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations

Zi[a− c− 1]⊕ µδMi′
⊙ L⊕ Zi′ [ℓi′ − 1] = Mi′ [ℓi′ ]⊕Mi[a− c]

Zj [b− d− 1]⊕ µδMj′
⊙ L⊕ Zl[ℓj′ − 1] = Mj′ [ℓj′ ]⊕Mj [b− d]

Zk[c]⊕ Zl[d] = Mj [b+ 1]⊕Mi[a+ 1]⊕ Ti′ ⊕ Tj′

Using similar arguments as in previous cases, we get

Pr [BadX7 ∧ Case C|F6] ≤ q4ℓ2

4(2n − q − σ + 3)3
+

2q3

(2n − q − σ + 2)2
.

Combining all three cases, we get

Pr [BadX7|F6] ≤ 4q4ℓ6

(2n − q − σ + 4)4
+

7q4ℓ2

(2n − q − σ + 3)3
+

2q3

(2n − q − σ + 2)2
. (A.8)

Finally, accumulating all the bounds from Eq. (A.2)-(A.8), and assuming ℓ < q, we get

Eq. (6.23), i.e.,

Pr [BadX|TUW] ≤ 2σ

2n
+

10q2

2n − q − σ + 1
+

15q3ℓ2 + q2ℓ3

(2n − q − σ + 2)2

+
12q3ℓ6 + 6q4ℓ3

(2n − q − σ + 3)3
+

8q4ℓ6

(2n − q − σ + 4)4
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