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Abstract

ON THE CONCRETE SECURITY OF LATTICE-BASED REDUCTIONS TO

LWE

by Subhadip Singha

Lattice-based cryptography is a highly regarded contender for post-quantum standard-

ization by NIST. NIST has already chosen “CRYSTALS-KYBER” a lattice-based public-key

encryption and key-establishment algorithm and “CRYSTALS-DILITHIUM”, a lattice-based

digital signature algorithm. The current lattice-based schemes are based on Oded Regev’s

original construction, which sparked significant interest in the cryptographic community

due to its post-quantum security and the equivalence between worst-case and average-case

hardness.

Oded Regev’s cryptographic scheme is built upon a problem called “Learning with Error”

(LWE), which is a generalization of the “Learning Parity with Noise” (LPN) problem. This

scheme is straightforward to implement and has gained attention for its simplicity. Previ-

ously, Mikolas Ajtai demonstrated the worst-case to average-case equivalence for a set of

hard lattice problems. Regev’s seminal paper demonstrated that the security of LWE-based

cryptosystems could rely on the hardness of worst-case lattice problems. While this result is

theoretically groundbreaking, the reduction from hard lattice problems to LWE is not tightly

bound, which limits its practical applicability.

The tightness of a reduction is a critical factor often underestimated. The tightness gap

of a reduction quantifies the concreteness of the reduction, and a tight reduction is valuable

for translating theoretical hardness guarantees into practical scenarios. Cryptography, as a

field, prioritizes practical applicability. Non-tight reductions lead to less efficient systems but

they have practical applications. Regev’s work has prompted numerous follow-up studies.

One significant effort aimed to make the reduction classical, as the original reduction was

quantum-based. Additionally, subsequent research has focused on enhancing the efficiency

of LWE-based cryptosystems by utilizing various algebraic variants of lattices, such as ideal

and module lattices.

We thoroughly investigate these major reductions to unveil their true significance in

terms of reduction tightness. Furthermore, we conduct a concrete security analysis of these

reductions and identify several areas for improvement.
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Notation

R,Q,Z,C,N : Reals, Rationals, Integers, Complex Numbers, Natural Numbers

H : Defined in 2.4.3 , inner product space isomorphic to Rn

log x : logarithm of x to the base 2

lnx : natural logarithm of x

Λ, L : a lattice in H

λ1(Λ) : minimum distance of the lattice Λ

λn(Λ) : the least real number such that Λ has n linearly independent vectors

with the length of the longest being equal to this number

ηε(Λ) : smoothing parameter for a lattice Λ

K : underlying number field

M : Module over number field K

n : degree of the number field K, dimension of lattice Λ

OK , R : ring of integers of K

σ : canonical embedding of a number field into H

I∗ : the dual of the lattice σ(I)

I∨ : the conjugate dual of the lattice σ(I)

LWE : Learning with Error

SVP : Shortest Vector Problem

SIVP : Shortest Independent Vector Problem

GIVP : Generalized Independent Vector Problem

CVP : Closest Vector Problem

BDD : Bounded Distance Decoding Problem

GDP : Gaussian Decoding Problem

a, s : Vectors are written in bold letters
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Chapter 1

Introduction

Effective and secure communication across different geographical locations has been a chal-

lenging endeavor throughout history. However, with the advent of the digital age, significant

advancements have been made in this field. Achieving effective communication involves en-

suring that messages reach their intended recipients accurately. On the other hand, the

security aspect of communication focuses on guaranteeing that only the intended recipients

can access and comprehend the messages.

In addition to effectiveness and security, the speed of communication has become a crit-

ical factor in the digital era. Faster communication is essential in various domains, such

as streaming services, high-resolution video calling, online gaming, and more. Enormous

amounts of data are transmitted over the internet in a matter of milliseconds.

Unfortunately, the importance of secure communication is often underestimated or over-

looked by a large portion of users. However, cryptography plays a crucial role in addressing

the challenges of digital communication, especially in ensuring confidentiality, integrity, and

authenticity of data transmission.

In simple terms, cryptography is the science of ensuring secure communication. The word

“cryptography” originates from two Greek words: “krypto’s,” meaning “hidden” or “secret,”

and “graphien,” meaning “to write.” Although the concept of cryptography has existed in

society for a long time, we often do not explicitly acknowledge it.

Secure communication between two parties, such as a sender and a receiver, can be

achieved through the use of a shared piece of information known only to them, known as

the secret key. The sender encrypts a message or plaintext using an encryption function

that takes two input parameters: the message and the secret key. The result of this process

is known as a “ciphertext.” The receiver then decrypts the ciphertext using a decryption

function that takes the ciphertext and the shared secret key as inputs and produces the

original plaintext.

To maintain the integrity of the communication, the decryption process must yield the

same message as the original plaintext. It is assumed that the encryption and decryption

functions are publicly available, while the secret key is known exclusively to the communi-
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4 Introduction

cating parties.

In this context, an adversary is someone who seeks to compromise the security of the

communication by attempting to discover the secret key or intercept the message as it is

transmitted through publicly accessible communication channels. The use of cryptography

helps protect against such unauthorized access and ensures the confidentiality and authen-

ticity of the communication between the parties involved.

Cryptography plays a vital role in ensuring various aspects of digital communication,

including confidentiality, integrity, and authenticity.

Confidentiality in communication refers to the assurance that only authorized individuals

can comprehend and access the secret message being communicated. It is essential to prevent

adversaries from gaining any knowledge about the confidential message.

Data integrity ensures that the communicated message remains unchanged and unaltered

during transmission. The recipient should be able to verify that the received message is

identical to the one sent, without any unauthorized modifications.

Data authenticity is the assurance that the receiver of the message can verify the identity

of the sender. This ensures that the message originates from the claimed source and has not

been forged or tampered with by unauthorized parties.

In conventional cryptography, also known as symmetric key cryptography, the sender and

receiver share a common secret, referred to as the secret key. This shared secret key is used

for secure communication between them. Examples of symmetric key cryptography include

widely used algorithms like AES [DR02], DES, RC4, Salsa20 [Ber08] etc.

By addressing these aspects of digital communication, cryptography provides a robust

and secure framework for exchanging information while safeguarding the confidentiality,

integrity, and authenticity of the transmitted data.

Asymmetric key cryptography, also known as public key cryptography, emerged after

the development of symmetric key cryptography. In this cryptographic approach, the com-

municating parties do not share any secret data before communication begins. Each party

possesses a pair of keys: a public key, which is publicly known, and a private key, which is

kept confidential.

The generation of these key pairs relies on cryptographic algorithms that are based on

mathematical problems referred to as “Trapdoor” functions. A Trapdoor function is a special

type of “One-Way Function”, meaning it is easy to compute in one direction but challenging
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to invert without specific information known as the “trapdoor”.

To create a public key, the secret key is input into the trapdoor function. However, given

only the public key and the trapdoor function, it is computationally infeasible to deduce the

secret key. The sender encrypts the message using the recipient’s public key, and the receiver

decrypts the message using their private key.

The Diffie-Hellman protocol [DH76], introduced by Diffie and Hellman in 1976, is one

of the oldest known cryptographic schemes based on public key cryptography. This pro-

tocol marked a significant breakthrough in the field of cryptography as it enabled secure

communication between parties without the need for a shared secret key before initiating

communication. During the key exchange process, two parties communicate over a public

channel using their secret key and the other party’s public key. Through this exchange, they

establish a shared secret without having access to each other’s secret keys.

The key exchange protocol in public key cryptography allows for secure communica-

tion between parties even when they have not previously shared any secret information. It

has since become a fundamental component in modern cryptographic systems, providing a

powerful and secure means of exchanging information over public channels.

A key notion that is closely connected to public key cryptography is “provable security”.

A cryptographic scheme is provably secure if the security of the scheme can be proved by a

mathematical ‘proof’ or a ‘reduction’. In a proof or a reduction, the adversarial capabilities

of the attacker are defined by an adversarial model. The proof aims to show that the

attacker must solve the underlying computational hard problem to breach the security of

the cryptographic scheme. In the case of the Diffie-Hellman protocol, the hard problem is

the computational Diffie-Hellman (CDH) problem. Another celebrated public key crypto-

system, “RSA” [RSA78], is based on the RSA assumption. These are number-theoretic

problems that are assumed to be hard to solve for any adversary where the power of the

adversary is computationally bounded. One distinct thing to notice is that the CDH problem

and RSA assumption are hard to solve on classical computers. Implicitly, we assume that

the adversary has access to only classical computers.

In 1996, Shor [Sho97] presented a polynomial-time algorithm for prime factorization and

discrete logarithms on a quantum computer. These breakthroughs theoretically pose a sig-

nificant threat to cryptographic systems like Diffie-Hellman and RSA. However, in practice,

breaking these schemes with practical parameters requires a high-scale quantum computer,

which has not been realized as of now. The development of a practical high-scale quantum

computer is an ongoing challenge. The emergence of quantum computing has highlighted the
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need to develop cryptographic algorithms that can withstand attacks from quantum com-

puters. This field of study is known as post-quantum cryptography, where cryptographic

protocols are designed to be quantum-safe.

Over the past two decades, cryptographic research has yielded promising results in the

realm of post-quantum cryptography. Various candidates, such as code-based cryptogra-

phy, lattice-based cryptography, and multivariate cryptography, have been proposed and are

believed to be resistant to attacks from quantum computers.

In this thesis, the focus is on lattice-based cryptography, which is considered a strong

candidate for post-quantum secure communication. By exploring lattice-based cryptographic

schemes, this research aims to contribute to the development of quantum-safe cryptographic

protocols to safeguard communications in the presence of powerful quantum computers.

In a seminal work, Regev [Reg09] introduced the Learning with Errors (LWE) problem

and emphasized its significance in lattice-based cryptography. Informally, the LWE problem

involves solving a system of linear equations with errors. Solving a system of linear equations

is a relatively straightforward task, and the well-known Gaussian elimination method can

achieve it in polynomial time relative to the dimension of the system. However, when errors

are introduced in each equation, the problem becomes significantly harder.

A simplified version of the LWE problem is known as “Learning Parity with Noise”

(LPN), which operates with a modulus of ‘2’, unlike LWE, which can have any modulus.

Naively solving the LPN problem using Gaussian elimination would require exponential

time. However, Blum, Kalai, and Wasserman [BKW03] devised a more efficient algorithm

that requires sub-exponential time relative to the dimension.

LWE-based cryptographic systems are readily implemented using the parameters of LWE,

such as the dimension of LWE and the error parameter associated with it. The breaking of

an LWE-based crypto-system translates into solving hard lattice problems through a series

of reductions. To have high confidence in the security of an LWE-based cryptosystem, a

tight reduction to a hard lattice problem is essential.

The “tightness” of a reduction refers to how closely the reduction preserves the security

properties of the original cryptographic problem. In the context of cryptography, reductions

are used to establish the hardness of a new problem by showing that breaking the new prob-

lem would allow an attacker to break an existing well-studied problem. If the reduction is

“tight”, it means that the hardness of the new problem is essentially equivalent to the hard-

ness of the original problem, providing a strong security guarantee. On the other hand, if the
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reduction is “loose”, it means that the new problem’s hardness is not as closely related to

the original problem’s hardness, leaving potential vulnerabilities and weaker security guar-

antees. A loose reduction may lead to overestimating the security level of the new problem

or failing to fully understand its cryptographic implications. In summary, a tight reduc-

tion ensures that the security properties of a new cryptographic problem are well-founded

and directly linked to the known hardness of an established problem, while a loose reduc-

tion may introduce uncertainties and weaken the overall security analysis. By exploring the

LWE problem and its connections to lattice-based cryptography, researchers aim to develop

robust and secure cryptographic protocols that can withstand various attacks and ensure

the confidentiality and integrity of transmitted data.

Suppose we have a polynomial-time reduction from problem P to another problem Q.

Additionally, assume that we have an oracle O capable of solving problem Q in time T1.

The tightness gap of the reduction is denoted by G, and it signifies the relation between

solving P and Q through the reduction, with the time taken estimated as G·T1. Now, let’s

consider the fastest known algorithm to solve problem P , which requires time T2 for the

chosen parameters. The assumption is that the algorithm to solve P through the reduction

will not surpass the efficiency of the known fastest algorithm for P . Due to this assumption,

we can derive the implicit relationship T1 ≥ T2/G. By leveraging this relation, we can

carefully select appropriate parameters such that T1 ≥ 2128 is satisfied. Since problem P is

a well-studied hard lattice problem, the time complexity T2 for solving it with our chosen

parameters is exponential. As a result, we can deduce that T2/G ≥ 2128 when G is reasonably

small or the reduction is tight. Consequently, this implies that T1 ≥ 2128. This mathematical

relationship places constraints on the lower bound of the algorithm’s time complexity that

attempts to solve Q. It effectively translates the hardness of problem P to problem Q in a

concrete manner.

In this thesis, we extensively discuss various lattice-based reductions, including those

in [Reg09, BLP+13, LPR13, LS15, PRS17]. Despite their differences, all these reductions

share a common structure characterized by a nested sequence of intermediate reductions.

Throughout this chain of reductions, we observe that the tightness gaps multiply from one

reduction to the next. When an algorithm A calls on algorithm B m times, and B in turn

calls on algorithm C n times, there are mn calls on algorithm C. As a result, the cumulative

tightness gaps in the reductions become significant, making the security guarantees practi-

cally meaningless for the chosen parameter values. This observation underscores the critical

importance of carefully addressing and analyzing the tightness gaps at each step of the re-
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duction chain. Without mitigating these issues, the overall security of the cryptographic

scheme may be compromised, especially when considering practical parameter settings.

The importance of LWE in the context of lattice-based cryptography is underscored

by the fact that several submissions made to the ongoing NIST process for selecting a

new public key standard based their security on the LWE problem and several of its vari-

ants. Notable LWE-based proposals which are in various rounds of the NIST process are

Frodo [ABD+19], Kyber [ABD+09], LAC [LLJ+19], NewHope [AAB+19], Round5 [BBF+19a]

and Saber [DKRV19]. After the third round, NIST selected Kyber [ABD+09] as the final-

ist from the LWE-based cryptographic encryption category. Bernstein [Ber19] performed a

comparative study of the provable security of these and other lattice-based proposals. For

practical interest, we thoroughly investigate the aspect of concrete security for the LWE-

based cryptosystems and related reductions in this thesis.

1.1 Overview of the Thesis

This thesis is focused on lattice-based cryptography, which is recognized as one of the primary

candidates for post-quantum cryptography. The structure of the thesis is briefly outlined as

follows. In Chapter 2, we set the notation and describe other prerequisite materials required

for the rest of the thesis. Chapter 3 consists of a brief survey of the relevant works present

in the literature.

Chapter 4 is the first contributory chapter. As mentioned earlier, Regev [Reg09] intro-

duced the LWE problem and showed a reduction from a worst-case lattice problem to the

breaking of a cryptosystem. This worst-case to average-case reduction has been later claimed

to be a major theoretical advantage of cryptosystems based on lattices. The entire analysis

in [Reg09] was done in an asymptotic setting where the lattice dimension n is allowed to go

to infinity.

A later work [CKMS16] performed a concrete analysis of the reductions in [Reg09]. This

exercise determined the tightness gap of the reduction in concrete terms as a function of n,

the dimension of the lattice. It turned out that the tightness gap of reductions in [Reg09]

can indeed be very large. For example, for n = 1024, it was argued that the tightness gap

is about 2504 and so the worst-case to average-case reduction in [Reg09] cannot be used to

argue about the security of cryptosystems with lattice dimension n = 1024.

The reduction in [Reg09] is a cascade of three smaller reductions. The first reduction is
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from the Smallest Independent Vector Problem (SIVP) to the problem of Discrete Gaussian

Sampling (DGS). The second reduction is from DGS to (search) LWE, while the third re-

duction is from search-LWE to average case decisional LWE (DLWEac). There is a further

reduction from DLWEac to that of breaking the cryptosystem.

The second reduction, i.e., the one from DGS to LWE, is the main contribution of [Reg09].

A key step in this reduction consists of verifying solutions to LWE. This verification is done

using a statistical test. It has been proved in [Reg09] that asymptotically the success prob-

ability of the statistical test is exponentially close to one. The statistical test is used many

times in the entire reduction, and the success probability of the statistical test determines

the overall success probability of the complete reduction. We take a close look at the success

probability of the statistical test. Using the standard Hoeffding inequality, we determine an

upper bound on the error of the statistical test. This in turn leads to a lower bound on the

success probability of the test and then to a lower bound on the success probability of the

entire reduction.

In Chapter 5, we focus our discussion on the module and ideal lattices and correspond-

ingly on module-LWE and ring-LWE. Regev’s discovery opened a new direction in the field

of lattice-based cryptography. Many cryptographic applications were built based on this

hardness assumption. These assumed to be quantum-safe cryptographic applications are

inefficient to be used for practical purposes due to the size of the keys in these applica-

tions. This problem has been answered positively by Lyubashevsky et al. [LPR13] by using

an algebraic variant of LWE and naming it ring-LWE. Many cryptosystems have based

their security on the hardness of variants of the ring-LWE problem, namely module-LWE.

Reductions in Lyubashevsky et al. [LPR13] are significant, concerning the practical imple-

mentation of lattice-based cryptosystems but the results presented in it are also asymptotic.

As previously mentioned, asymptotic results may not always reflect practical scenarios when

certain parameters are constrained. The concrete tightness gap analysis of the ring variant

of LWE [LPR13] has been thoroughly investigated in [KSSS22].

Based on the results of [Reg09], [LPR13] and [BLP+13] Langlois and Stehlé proposed

[LS15] which focuses on the worst-case to average-case reductions for module lattices. Lan-

glois and Stehlé [LS15] aimed to achieve an optimal solution by combining the strengths of

both general lattices, based on hardness assumption [Reg09], and ideal lattices, known for

their implementation efficiency [LPR13]. Results presented in [LS15] is the stepping stone for

the LWE-based crypto-systems, selected by NIST as the candidates for the post-quantum

cryptosystem. That is why it is necessary to ask about the tightness of the reductions
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in [LS15] to be used in practice.

Our purpose is to analyze this reduction in concrete terms. Previous analysis [CKMS16,

SS21] shows that Regev’s [Reg09] results were not tight enough for practical purposes. The

reductions in [LS15] suffer from a significant tightness gap, making them unsuitable for

practical purposes. This concern has been addressed and commented upon in [KSSS22].

We thoroughly analyze the issue related to the tightness gap of [LPR13] and [LS15] in this

chapter. We also comment on the lower bound of values of the approximation factor γ of

SIVP and also on the value of the modulus of the ring-LWE and module-LWE problems.

Chapter 6 completes our discussion on ring LWE and ideal lattices. In Chapter 5, we point

out various concrete security issues in the reductions of [LPR13] other than the tightness

gap. The main problem is the use of the cyclotomic number field. The motivation behind

the choice of a cyclotomic number field is efficient computations. The cyclotomic number

fields provide automorphisms between different embeddings of the number field, which is

used for the security reductions in [LPR13]. On the other hand, the hardness of SVPγ and

SIVPγ are equivalent in cyclotomic settings for ideal and module lattices. The hardness of

SIVPγ for general lattices is strictly greater than the hardness of SIVPγ for ideal lattices.

So, efficiency is given more importance over security. That may not be a popular school

of thought in cryptography. Also, cyclotomic rings are a very narrow class of rings, and

these rings are distributed very sparsely when we consider the set of all number fields.

Cryptographic applications may need a general class of rings. Peikert, Regev, and Stephens-

Davidowtz [PRS17] positively answer this problem by providing a reduction for any rings

and modulus. As we work out the reductions to find out the tightness gap of the end-to-end

reduction, we find that this reduction is too loose to be useful for practical purposes. The

lower bound of approximation factor γ of ring-SIVP problem is same as in Chapter 5

Chapter 7 is dedicated to the concrete security analysis of results by Brakerski et al.

[BLP+13] One major problem left open by Regev was whether there was a classical reduction

from a worst-case lattice problem to LWE. The initial answer to this problem was provided

by Peikert [Pei09]. While this represented progress, Peikert’s reduction was not considered

to be satisfactory since either an exponential size modulus is required or the lattice problem

considered is not one of the standard problems. Later work by Brakerski et al. [BLP+13]

built on Peikert’s work to show a classical reduction from a standard lattice problem to LWE

avoiding the exponential size modulus.

The works of Regev [Reg09], Peikert [Pei09] and Brakerski et al. [BLP+13] are all in the

asymptotic setting hence the lattice dimension is allowed to go to infinity. However, practical
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cryptosystems have a fixed value of the lattice dimension. So, it is of utmost interest to know

what kind of security assurance one obtains from the results of [Reg09, Pei09, BLP+13] for

practical cryptosystems. In Chapter 8, we follow up on [CKMS16, SS21] and perform a

concrete security analysis of the tightness gap of the reduction in [BLP+13]. The reduction

of Peikert [Pei09] is a step in the reduction performed by Brakerski et al. [BLP+13]. As a

first step, we work out the tightness gap of Peikert’s reduction. Then we follow the proof

strategy in Brakerski et al. [BLP+13] and finally work out the end-to-end tightness gap of the

classical reduction from the gap shortest vector problem to the LWE. There are two aspects

to the concrete analysis. The first is a quadratic loss in the lattice dimension, and the second

is a loss of tightness. The loss of tightness in this classical reduction is more than that of

the original quantum reduction by Regev [Reg09]. The quadratic loss in the dimension was

already pointed out in [BLP+13]. Due to this quadratic loss, Brakerski et al. put forward

the open question of obtaining a reduction without such a loss mentioning that this would

amount to a full de-quantization of Regev’s reduction. However, the paper [BLP+13] does

not consider the issue of the loss in tightness. Our analysis [SS20] shows that due to this

loss of tightness, the reduction is not very meaningful in practice, especially for determining

the sizes of the parameters of a cryptosystem that would purportedly enjoy the protection

offered by the hardness of a well-studied worst-case lattice problem.

In Chapter 8, we extensively examine the tightness gap issues in all the lattice-based

reductions presented in the previous chapters. We delve deeper into the significance of

practice-oriented provable security and its necessity. We explore the potential consequences

of loose reductions and highlight the importance of achieving tight security bounds. To pro-

vide a concrete analysis, we present tabulated results for various practical parameter ranges,

offering a comprehensive understanding of the cryptographic schemes’ security under real-

world conditions. Moreover, we thoroughly discuss the drawbacks of employing structured

lattices instead of general lattices in lattice-based cryptography, emphasizing the need to

carefully consider the trade-offs between implementation efficiency and security guarantees.

Chapter 9 concludes the thesis and provides highlights of each chapter along with the

importance of tightness gap analysis. Furthermore, our work includes providing valuable

insights and directions for future research endeavors concerning concrete security aspects in

the field of lattice-based cryptography. These directions aim to enhance the understanding

of practical security guarantees and facilitate the development of more robust and efficient

cryptographic protocols for real-world applications.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter focuses on the fundamental concepts that form the basis of this thesis. The

central objects of interest are lattices and lattice-based cryptography. Lattices come in

various variants, and we will explore their properties for all relevant types. Additionally,

we delve into the preliminaries related to cryptography, with a specific focus on public key

cryptography. Several lattice problems, known for their computational hardness and on

which the hardness assumption of cryptographic constructions is based, will be discussed.

To provide a comprehensive understanding of the ring and module version of the LWE

problem, we explore the basics of algebraic number theory, which are essential for its analysis.

Throughout this thesis, we rely on concepts from abstract algebra and linear algebra, and in

this chapter, we present the fundamental ideas to ensure clarity and consistency in subsequent

discussions.

2.2 Basic Definitions

We define a vector v = (v1, . . . , vn) of dimension n in the column vector form. A row vector

will be considered as the transpose of v or vT. A n × n dimensional symmetric matrix M

with real entries is positive-definite if the real number vTMv is positive for every non-zero

real row vector v.

Definition 1 (Norm). Norms generalize the notion of length from Euclidean space. Norm

on a vector space V over a subfield of C is a function from V to R, denoted by ||v||, satisfying

the following properties.

1. ||av|| = |a| · ||v|| (positive homogeneity) where a is a scalar.

2. ||u+ v|| ≤ ||u||+ ||v|| (triangle inequality).

3. If ||v|| = 0, then v = 0 (separating point).

13
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Let n be a positive integer. For a vector a = (a1, . . . , an) in Rn or Cn , the l2-norm of

a is defined to be ||a||2 = (|a1|2 + · · ·+ |an|2)
1/2

, the lp-norm of a is defined to be ||a||p =

(|a1|p + · · ·+ |an|p)1/p
and the l∞-norm of a is defined to be ||a||∞ = maxi∈[n]|ai|. We

exclusively work with l2 and l∞ norm for most of this thesis.

We denote the open ball in Rn of unit radius by Bn, i.e., Bn = {x ∈ Rn : ‖x‖ < 1}.

Definition 2 (Distance or Metric). A distance function d is a non-negative function on

V × V , d : V × V 7→ R≥0 satisfying

1. d(u, v) = d(v, u).

2. d(u, v) ≥ 0 and d(u, v) = 0 if and only if u = v.

3. d(u, v) ≤ d(u,w) + d(w, v).

, where V is a vector space.

Note 1. In this case, V need not be over a subfield of the field of the complex numbers.

Given a distance function, one can define the norm as a distance from 0.

Definition 3 (Inner Product Space). Let V be a vector space over a field F (where F is

either R or C). An inner product is a function 〈, 〉 : V × V 7→ F satisfying

1. 〈u, v〉 = 〈v, u〉, i.e., the complex conjugate.

2. 〈u, v〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

3. 〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉.

Lemma 1. If a, b, c are reals such that a > 0 and aλ2 + 2bλ + c ≥ 0 for all real λ, then

b2 < ac.

Theorem 2 (Cauchy-Schwartz Inequality). If u, v ∈ V , where V is an inner product space,

then

|〈u, v〉|2 ≤ ||u|| × ||v||.

Definition 4 (Orthogonal Vectors). If u, v ∈ V , then u is orthogonal to v if 〈u, v〉 = 0.

Let, W be a subspace of V , s.t.,

W⊥ = {x ∈ V : 〈x,w〉 = 0 for all w ∈ W}.



Basic Definitions 15

Property: 1. 1. W⊥ is a subspace of V .

2. W ∩W⊥ = {0}, i.e., if w ∈ W and w ∈ W⊥, then 〈w,w〉 = 0⇒ w = 0.

Definition 5 (Orthogonal Set). An orthogonal set {v1, . . . , vn} ⊆ V is a set such that

〈vi, vj〉 = 0 for all 1 ≤ i < j ≤ n.

Definition 6 (Orthonormal Set). An orthonormal set is an orthogonal set such that each

vector in the set has norm one.

Property: 2. An orthonormal set is linearly independent.

Property: 3. If {v1, . . . , vn} is orthonormal and w ∈ V , then

u = w − 〈w, v1〉v1 − · · · − 〈w, vn〉vn

is orthogonal to each v1, . . . , vn.

Proposition 3. If V is an inner product space, then ||v|| ∆
=
√
〈v, v〉 defines a norm on V .

2.2.1 Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonalization is the process to obtain an orthonormal basis for finite-

dimensional inner product space. Orthogonalization has huge significance and usage in the

field of lattices.

Theorem 4 (GSO). Any finite-dimensional inner product space has an orthonormal basis.

Proof. Let {v1, . . . , vn} be any basis. Let u1 = v1 and

w1 =
v1

||v1||
.

So, ||w1|| = 1. Let,

u2 = v2 − 〈v2, w1〉w1, w2 = u2
||u2||

u3 = v3 − 〈v3, w1〉w1 − 〈v3, w2〉w2, w3 = u3
||u3||

...

ui = vi − 〈vi, w1〉w1 − · · · − 〈vi, wi−1〉wi−1, wi = ui
||ui||

The set of vectors {w1, . . . , wn} forms a orthonormal basis.
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Let b1, . . . , bn
GSO7−→ b̃1, . . . , b̃n. Since, b̃1, b̃2, . . . , b̃n are orthonormal, we have

span(̃b1)⊥ = span(̃b2, b̃3, . . . , b̃n)

span(̃b1, . . . , b̃i−1)⊥ = span(̃bi, . . . , b̃n)

Notation: Given a basis b1, . . . , bn, let πi denote the projection on the space span(̃b1,

. . . , b̃i−1)⊥.

Theorem 5. If W is a subspace of Rm, then any x ∈ Rm can be written uniquely as x = y+z,

where y ∈ W and z ∈ W⊥.

In general, the GSO of (b1, . . . , bn) is (π1(b1), π2(b2), . . . , πn(bn)) = (̃b1, b̃2, . . . , b̃n).

2.2.2 Algebraic Structures

Now we define a few algebraic structures like the ring, ideal, prime ideal, module, etc.

Abstract Algebra by Dummit and Foote [DF04] provides these concepts in lucid ways.

Definition 7 (Ring). A ring is a non-empty set R together with two binary operators + and

· (commonly interpreted as addition and multiplication, respectively) satisfying the following

conditions:

1. Additive associativity: For all a, b, c ∈ R, (a+ b) + c = a+ (b+ c),

2. Additive commutativity: For all a, b ∈ R, a+ b = b+ a,

3. Additive identity: There exists an element 0 in R such that for all a ∈ S, 0 + a =

a+ 0 = a,

4. Additive inverse: For every a ∈ R there exists −a ∈ R such that a+(−a) = (−a)+a =

0,

5. Left and right distributivity: For all a, b, c ∈ S, a ∗ (b + c) = (a ∗ b) + (a ∗ c) and

(b+ c)·a = (b ∗ a) + (c·a),

6. Multiplicative associativity: For all a, b, c ∈ R, (a ∗ b) ∗ c = a ∗ (b ∗ c) (a ring satisfying

this property is sometimes explicitly termed an associative ring).

The set of integers Z forms a ring under usual addition and multiplication.
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Definition 8 (Ideal). An ideal is a non-empty subset I of elements in a ring R that forms

an additive group and has the property that, whenever x ∈ R and y ∈ I, then x·y and y·x
belong to I.

For example, the set of even integers is an ideal in the ring of integers Z.

Definition 9 (Prime Ideal). A prime ideal is a non-empty subset I of a ring R such that if

a·b ∈ I, then either a ∈ I or b ∈ I.

For example, in the integer ring Z, the ideal a = 〈p〉 (i.e., the multiples of p) is prime

ideal whenever p is a prime integer.

Definition 10 (Module). Let, R be a ring. A non-empty set M is said to be an R-module

if M is an abelian group under an operation ‘+’, s.t., for every r ∈ R, and m ∈M , there is

an element rm (defined as scalar multiplication) in M , s.t.,

1. r(a+ b) = ra+ rb

2. r(sa) = (rs)a

3. (r + s)a = ra+ sa

for all a, b ∈M and r, s ∈ R.

Modules are “vector spaces” defined over a ring.

2.3 Lattice

Lattice makes up most of this thesis. We not only discuss the basics of the lattices but also

present standard results related to lattices. “An Introduction to the Geometry of Numbers”

by Cassels [Cas59] provides thorough discussion on lattice. These standard results have been

used rigorously in the later part of the thesis.

Definition 11 (Lattice). Given n linearly independent vectors b1, . . . ,bn ∈ Rm, the lattice

generated by them is

L(b1, . . . ,bn) =

{
n∑
i=1

xibi : xi ∈ Z

}
.
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We refer to {b1, . . . ,bn} as a basis of the lattice. Equivalently, if we define B as the m×n ma-

trix whose columns are b1, . . . ,bn, then the lattice generated by B is L(B) = L(b1, . . . ,bn) =

{Bx|x ∈ Zn}. We say that the rank of the lattice is n and its dimension is m. If n = m, the

lattice is called a full-rank lattice.

t

(0, 0)

b2

b1

||b2||

||b1||

Figure 2-1: An example lattice.

A lattice is a Z-module. A lattice can also be defined as a discrete additive subgroup of

Rm. We define the span of Lattice as follows

Span of a lattice L(B) = span(L(B))

= {By : y ∈ Rn},

In this thesis, we work with full-rank lattices only, i.e., m = n. Let b1, . . . ,bn denote the

columns of B. The Gram-Schmidt orthogonalisation (GSO) of b1, . . . ,bn will be denoted as

b̃1, . . . , b̃n. GSO of B will be needed in various places in this thesis.

Definition 12 (Fundamental Parallelepiped of a Lattice).

P(B) = {Bx : x ∈ Rn, 0 ≤ xi < 1};

where B is a lattice basis.

Property: 4 (Properties of Fundamental Parallelepiped).
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1. The only lattice point in P(B) is the origin (0, . . . , 0)T .

2. P(B) induces a tiling of span(L(B)), i.e., span(L(B)) can be written as

∪c∈L(B){c+ P(B)}.

Definition 13 (Determinant of a Lattice). Let Λ = L(B). Then the determinant of Λ is the

volume of P(B), i.e.,

det(Λ) =
√

det(BTB)

or is equal to | det(B)| if B is a full rank basis.

Definition 14 (Successive Minima of a Lattice). Fix a lattice Λ. Define

λ1(Λ) = min{||x|| : x ∈ Λ, x 6= 0}

So, λ1(Λ) is the length of the shortest non-zero vector in Λ. Similarly define λ2(Λ), . . . , λn(Λ)

such that

λi(Λ) = inf{r : dim(span(Λ ∩ B̄(0, r))) ≥ i};

where B̄(0, r) denotes a closed ball of radius r centered at 0.

Lattice problems like SVP, and SIVP deals with successive minima of a lattice. We state

and prove theorems on successive minima in the following section.

2.3.1 Bounds on Successive Minima

Blichfeldt’s Theorem

Theorem 6. For any lattice Λ ⊆ Rn, and a (measurable) set S ⊆ Rn such that vol(S) >

det(Λ), there exists points z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Minkowski’s Convex Body Theorem

We need the following definitions to prove the convex body theorem.

Definition 15. (Convex Set) In a convex set S, if x, y ∈ S, then for t ∈ (0, 1), tx+(1−t)y ∈
S.
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Definition 16. (Centrally Symmetric Set) In a centrally symmetric set S, if x ∈ S, then

−x ∈ S.

Theorem 7. (Minkowski′s Convex Body Theorem) Let Λ be a full rank lattice of rank

n. Then, for any centrally symmetric convex set S ⊆ Rn, if vol(S) > 2n det(Λ), then S will

contain a point of Λ.

Proof. Given the centrally symmetric convex set S ⊆ Rn, let us define the set Ŝ such that

Ŝ =
1

2
S = {x : 2x ∈ S}.

The volume of this set Ŝ is

vol(Ŝ) = 2−nvol(S) > det(Λ).

By (Blichfeldt’s) Theorem 6, since vol(Ŝ) > det(Λ), there are two points y1, y2 ∈ Ŝ such that

y1 − y2 ∈ Λ. Let y1 = z1/2 and y2 = z2/2 where z1, z2 ∈ S. Since S is a centrally symmetric

set, −z2 ∈ S. Also as S is a convex set, we have

z1

2
+

(−z2)

2
=
z1

2
− z2

2
∈ S ⇒ y1 − y2 ∈ S.

2.3.2 Dual Lattice

Definition 17 (Dual Lattice). The dual of a lattice L is denoted as L∗ and is defined to be

the set of all vectors y ∈ Rn, such that 〈x,y〉 ∈ Z for all x ∈ L.

If lattice L = 2Zn = {2y : y ∈ Zn}, then (2Zn)∗ = 1
2
Zn. Also if lattice L = Zn = {y : y ∈

Zn}, then (Zn)∗ = Zn

Definition 18 (Dual Basis). Let Bm×n be a basis of a lattice L. The dual basis of B is

defined to be the unique basis Dm×n, s.t.,

1. span(B) = span(D).

2. 〈bi, dj〉 = δi,j =

{
1 if i = j;

0 o.w.;

i.e., BTD = In = identity matrix of rank n.
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Following are a few standard results related to a lattice and its dual.

Proposition 8. If D is the dual basis of B, then (L(B))∗ = L(D).

Proposition 9. For any lattice Λ, (Λ∗)∗ = Λ.

Proposition 10. For any lattice Λ, det(Λ∗) = 1
det(Λ)

.

Proposition 11. For any rank n lattice Λ, λ1(Λ) · λ1(Λ∗) ≤ n.

Proposition 12. For any rank n lattice Λ, λ1(Λ) · λn(Λ∗) ≥ 1.

The following theorem is very important regarding the successive minima of lattices and

their dual and provides an upper bound on the value on λ1(Λ) · λn(Λ∗).

Theorem 13 (Transference Theorem (Bauaszyczyk, 1993) [Ban93]). For any rank n lattice

Λ,

1 ≤ λ1(Λ)λn(Λ∗) ≤ n.

2.3.3 Smoothing Parameter

Let ρs(x) = e−π||x/s||
2

be an n-dimensional Gaussian distribution (See Definition 23) over

Rn and νs(x) = ρs(x)
sn

is the density function of a Gaussian distribution over Rn. A vector

chosen randomly following ν1(x) = ρ1(x) = ρ(x) has length at most
√
n with probability

1 − 2−Ω(n). This result can be extended to show that a vector chosen randomly following

νs(x) has length at most s
√
n with probability at least 1− 2−Ω(n). Suppose a lattice vector

is chosen “uniformly” and some Gaussian noise is added to it. As the noise increases, the

result begins to look like it is uniformly distributed.

Consider two distributions:

D0: A vector chosen from P(B) according to uniform density function on P(B).

D1: A vector is chosen from Rn following νs(x) and reduced modulo the lattice.

Lemma 14. The statistical distance between D0 and D1 is at most 1
2
ρ1/s(Λ

∗\{0}).

The above discussion motivates the following definition.
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Definition 19 (Smoothing Parameter [MR07]). For any ε > 0, the smoothing parameter

of the lattice Λ is the minimum value of s, s.t.,

ρ1/s(Λ
∗\{0}) ≤ ε.

The smoothing parameter is denoted as ηε(Λ).

To see why this is well-defined, notice that ρ1/s(Λ
∗ \ {0}) is a continuous and strictly

decreasing function of s with

lim
s→0

ρ1/s(Λ
∗ \ {0}) =∞ and lim

s→∞
ρ1/s(Λ

∗ \ {0}) = 0.

Using this definition, the above result can be restated as follows:

for any s ≥ ηε(Λ), the statistical distance between the uniform distribution on P(B)

and the distribution obtained by sampling from νs and reducing the result modulo

P(B) is at most 1
2
ε.

Informally speaking, the smallest amount of Gaussian noise that “smooths out” the

discrete structure of a lattice Λ, is called the smoothing parameter of the lattice. The

smoothing parameter is connected with various parameters of a lattice. The following results

highlight a few of them.

Claim 15. For any ε < 1
100

, ηε(Λ) ≥ 1
λ1(Λ∗)

.

Corollary 16. For any ε < 1
100

, ηε(Λ) ≥ λn(Λ)
n

.

Claim 17 ([MR07, Lemma 3.2]). For any ε ≥ 2−n+1, ηε(Λ) ≤
√
n

λ1(Λ∗)
.

Corollary 18. For any ε ≥ 2−n+1, ηε(Λ) ≤
√
nλn(Λ).

Lemma 19 ([Reg09, Claim 2.13]). For any lattice L and any ε > 0

ηε(L) ≥
√

ln 1/ε

π
.

1

λ1(L∗)
≥
√

ln 1/ε

π
.
λn(L)

n

2.4 Algebraic Number Theory

To work with ideal lattice, module lattice, ring LWE, and module LWE, we need some

concepts of algebraic number theory.
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2.4.1 Number Field

A number field is a finite extension of Q, the field of rationals. Let K be a number field.

Then K = Q(ζ), where ζ is a complex root of a monic irreducible polynomial f(x) ∈ Q[x].

K can be considered as a vector space over Q. If f(x) is a polynomial of degree n then K

is an n-dimensional vector space with {1, ζ1, ζ2, · · · , ζn−1} as a basis. This is also called the

power basis of K over Q. Here f(x) is the minimal polynomial of ζ.

2.4.2 Ring of Algebraic Integers of a Number Field

An algebraic integer is a root of a monic polynomial with integer coefficients. The set of

algebraic integers in a number field forms a ring under usual addition and multiplication

operations. We call this ring, the ring of algebraic integers. Let R be the ring of integers of

the number field K. R is a free Z module of rank n.

2.4.3 Space H

The space H is useful to work with ring LWE and module LWE.

Let s1 and s2 be non-negative integers such that s1 + 2s2 = n. The space H ⊂ Rs1×C2s2

is defined as

H = {(x1, . . . , xn) ∈ Rs1×C2s2 : xs1+s2+j = xs1+j, j = 1, . . . , s2}. (2.1)

Using the inner product on H induced on it by Cn, it can be shown that H is isomorphic to

Rn as an inner product space. For j ∈ [n], let ej ∈ Cn be the vector which has 1 in its j-th

component and 0 elsewhere. An orthonormal basis for H is given by {hi}i∈[n] , where for j ∈
[s1], hj = ej and for s1 < j ≤ s1+s2, hj = (ej+ej+s2)/

√
2, hj+s2 =

√
−1(ej−ej+s2)/

√
2. When

x ∈ H is written in terms of the orthonormal basis as x =
∑n

i=1 aihi with (a1, . . . , an) ∈ Rn

, the norm of x is simply ||(a1, . . . , an)||.

All the previous definitions related to lattices can be defined on H in the same way these

are defined on Rn, because of the equivalence of H and Rn as an inner product space.
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2.4.4 Canonical Embedding

Let K = Q(ζ) be a number field and ζ is a complex root of a monic irreducible polynomial

f(x) ∈ Q[x]. f(x) has n roots over C. We know that complex roots come in pairs and let s1

be the number of real roots and 2s2 be the number of complex roots so that s1 + 2s2 = n.

Suppose that the roots are ordered as ζ1, . . . , ζn, where ζ1, . . . , ζs1 are real and ζs1+j = ζs1+s2+j

for j = 1, . . . , s2. Let σi : K → C be the embedding of K in C obtained by extending the map

ζ 7→ ζi. Thus, an n-dimensional number field K has exactly n injective ring homomorphism

or embeddings σi : K → C, i ∈ {1, . . . , n} that fixes every element of Q. The canonical

embedding σ : K → Rs1×C2s2 is defined as σ(x) = (σ1(x), , · · ·σn(x)). Note that for any

x ∈ K, and i = 1, . . . , s2, σs1+i(x) = σs1+s2+i(x), so that σ(K) ⊂ H.

2.4.5 Trace and Norm

The trace and norm of any x ∈ K are respectively defined as Tr(x) =
∑n

i=1 σi(x) and

N(x) = Πn
i=1σi(x).

2.4.6 Ideals of a Number Field

Any ideal I ⊆ R, of the ring of an algebraic integer of a number field K, is called an

integral ideal. I is a non-empty additive subgroup of R that is closed under multiplication

by elements of R. An integral ideal is also an n-dimensional free Z module which means

that it can be generated by Z linear combinations of some basis {I1, . . . , In} ⊂ R.

A fractional ideal is a nonempty set J ⊂ K, such that dJ ⊆ R is an integral ideal for

some d ∈ R. Like integral ideals, fractional ideals are also free Z modules.

A fractional ideal J also has Z-basis {J1, . . . , Jn} ⊂ K. Fractional ideals form a multi-

plicative group in K with R as the identity element. The inverse of a fractional ideal J as

an element of the multiplicative group is denoted as J −1 = {x ∈ K : xJ ⊆ R}.

2.4.7 Norm of an Ideal

The norm of an integral ideal I is defined to be N(I) = #(R/I). As a fractional ideal J ∈ K
is a set such that dJ is an integral ideal of R for some d ∈ R, the norm of a fractional ideal

J is defined to be N(J ) = N(dJ )/|N(d)|.
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2.4.8 Dual of an Ideal

Dual of an ideal J in the number field K is defined as J ∨ = {x ∈ K : Tr(xJ ) ⊆ Z}. We

have the relation J ∨ = J −1 · R∨ between dual and inverse of an ideal in K. Every integral

ideal of R including R is trivially a fractional ideal, so we can also define dual of R as R∨

using the same relation.

2.4.9 Ideal Lattice

If J ⊂ K is a fractional ideal, under canonical embedding σ(J ) forms a lattice in H, this we

call an ideal lattice. Ideal lattice σ(J ) is of dimension n. The ideal lattice σ(J ) has basis

{σ(J1), . . . , σ(Jn)} where {J1, . . . , Jn} ⊂ K is the Z-basis of J in K. Note that the ideal

lattice σ(J ∨) corresponding to the ideal J is the same as the dual lattice up to complex

conjugation, i.e. σ(J ∨) = σ(J )∗. In practice, we often refer to J as an ideal lattice in place

of σ(J ) as an abuse of notation.

2.4.10 Cyclotomic Polynomial

The m-th cyclotomic polynomial Φm(x) is defined as the product of the terms x−ζ, where ζ

ranges over all primitive m-th roots of unity in C. Now an m-th root of unity is a primitive d-

th root of unity for some divisor d of m, so xm−1 is the product of all cyclotomic polynomials

Φd(x) with d a divisor of m. In particular, let n = pr be a prime power. Since a divisor of

pr is either pr or a divisor of pr−1, we have

Φpr(x) =
xp

r − 1

xpr−1 − 1
=
tp − 1

t− 1
= 1 + t+ · · ·+ tp−1 (2.2)

where t = xp
r−1

. If x = 1 then t = 1, and it follows that Φpr(1) = p.

2.4.11 Cyclotomic Number Field

Let Φm(x) be the m-th cyclotomic polynomial for m ≥ 1. Let the degree of the m-th

cyclotomic polynomial is n = ϕ(m). The m-th cyclotomic number field K is Q(ζ) where

ζ is a root of Φm(x). Let, {1, ζ, ζ2 . . . , ζn−1} be the power basis of K over Q. In case of

cyclotomic number field, the power basis {1, ζ, ζ2 . . . , ζn−1} is also the Z-basis of the ring of

algebraic integer R of cyclotomic number field K, so R = Z[x]/Φm(x).
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Let q be a prime number such that q = 1 mod m so that q = km+1 for some non-negative

integer k. Noting that Z∗q = 〈g〉 for a generator g, it follows that the element ω = gk has

order m in Z∗q. The m-th cyclotomic polynomial factors over Zq as Φm(x) =
∏

i∈Z∗m
(x− ωi).

Consequently, 〈q〉 =
∏

i∈Z∗m
qi, where qi = 〈q, x−ωi〉 is a prime ideal of R having norm q, so

N(qi) = q. Note that the ideals qi have been indexed by elements of Z∗m rather than by the

integers {1, . . . , n}.

The field K has n automorphisms τk(ζ) = ζk, for k ∈ Z∗m. It follows that for k ∈ Z∗m,

τk(qi) = qik−1 mod m and τ−1
k = τk−1 mod m. Also, for k ∈ Z∗m, R and R∨ are fixed by τk and

so τk(Rq) = Rq. Hence, if a is distributed uniformly in Rq, then τk(a) is also distributed

uniformly in Rq. Here Rq represents the set of residue classes of R modulo qR.

For i ∈ Z∗m, it can be shown that the quotient group R∨/(qiR
∨) has cardinality q and the

representatives of the q distinct cosets can be taken to be the elements of the set {0, . . . , q−1}.
The cardinality of the set R∨q is qn. Using the Chinese Remainder Theorem (CRT), it can

be shown that there is an isomorphism I from R∨q to ⊕i∈Z∗m(R∨/(qiR
∨)). Further, I can

be efficiently computed in both the forward and the backward directions. For i ∈ Z∗m, let

wi ∈ {0, . . . , q−1} represent a coset of R∨/(qiR
∨). Given (wi)i∈Z∗m , it is possible to efficiently

construct w ∈ R∨q such that the i-th component of I(w) is represented by wi. For the sake

of notational convenience, we let w denote I−1((wi)i∈Z∗m).

2.4.12 Isomorphism in a Number Field

Using Chinese Remainder Theorem [Gau66], Lyubashevsky, Peikert and Regev [LPR13] have

shown an isomorphism between Rq and Iq, where I is any ideal of R, where q is an arbitrary

positive integer. Similarly isomorphism can be shown between R∨q and I∨q .

2.5 Module

We have already defined the module in Section 2.2.2. Now, we define the module in the con-

text of algebraic number theory. These definitions are equivalent but the following definition

is needed for our analysis of the module and ideal lattice.

Definition 20. Let K be a number field with R its ring of integers and d, d′ ∈ N. Let

M ⊆ Kd. M is an R-module of rank d′ ≤ d if it is closed under addition by elements of M

and multiplication by elements of R.
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When d′ = d, we refer to the module M as a full-rank R-module. In this thesis we work

with full rank modules only.

It is a finitely generated module if there exists a finite family {bk}k of vectors in Kd such

that M =
∑

k R·bk. The dual of a module M ⊆ Kd is denoted by M∨ and is defined by

M∨ = {x ∈ Kd : Tr(〈x, y〉) ⊆ Z ∀y ∈M}.

2.5.1 Module Lattice

We can define module lattices similarly to ideal lattices defined in Section 2.4.9 using

canonical embedding. Using d canonical embeddings in Section 2.4.4, we define a map

Σ = (σ, . . . , σ). Now the map Σ defines a canonical embedding from Kd → Hd. The

canonical embedding Σ : Kd → Hd is defined as Σ(x) = (σ(x1), , · · ·σ(xd)) where x ∈ Kd

and x = (x1, . . . , xd). As H is isomorphic to Rn, the canonical embedding Σ maps Kd into

RN , where N = n·d. Similar to ideal lattices, Σ(M) is a module lattice. If the underlying

number field K is of degree n and the rank of the module M is d, then the corresponding

module lattice will have dimension N = n·d. Similar to the dual ideal lattice, the module

lattice Σ(M∨) corresponding to the module M is the same as the dual lattice up to complex

conjugation, i.e. Σ(M∨) = Σ(M)∗ and similar to ideal lattice, we often refer M as a module

lattice in place of Σ(M) as an abuse of notation.

Norm of elements of a module: For any vector x ∈ Kd we define the Euclidean norm

of ||x||2 = (
∑

i∈[d]

∑
j |σj∈[n](xi)|2)

1/2
. We also define the infinity norm of x ∈ Kd in three

different ways as follows ||x||∞ = maxi,j |σj(xi)|, ||x||∞,2 = maxi(
∑

j |σj∈[n](xi)|2)
1/2

and

||x||2,∞ = maxj(
∑

i∈[d] |σj(xi)|
2)

1/2
. Different definitions of the norm of an element of a

module are consistent with the definition of norm defined in Definition 1. These different

definitions are applicable in different scenarios of module lattice in the latter part of this

thesis. Once the notion of module lattice is established, we can talk about all the lattice

properties and results restricted to module lattices.

2.6 Statistical Results

Statistical results play a pivotal role in this thesis. Firstly, the error distribution for LWE

is a Gaussian distribution. Gaussian distribution in various forms has been used, e.g, single
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variable Gaussian distribution, multivariate Gaussian distribution, or discrete and contin-

uous Gaussian distribution. In the case of multivariate gaussian distribution, the require-

ment varies from elliptical to spherical Gaussian distribution. Different forms of Chernoff-

Hoeffding bound are required to estimate the probability of events in different parts of this

thesis. Also, statistical hypothesis testing is used in various places. These statistical ele-

ments are defined in this section before using these in the contributory sections in the later

part of this thesis.

Definition 21 (Normal Distribution). The normal distribution with mean µ and standard

deviation σ is denoted as N (µ, σ). The probability density function f(x) of N (µ, σ) is the

follwing

f(x) =
1√

2πσ2
exp{−1

2
(
x− µ
σ

)
2

}; −∞ ≤ x ≤ ∞.

For α ∈ (0, 1), Ψα is the probability distribution obtained by sampling from N (0, α/
√

2π)

and reducing the result modulo 1.

Definition 22 (Multivariate Normal/Gaussian Distribution). The multivariate Gaussian

distribution of k-dimensional random vector X = (X1, . . . , Xk) is denoted as N (µ,Σ) where

µ = E[X] = (E[X1], . . . ,E[Xk]).

and k × k co-variance matrix

Σi,j = E[(Xi − E[Xi])(Xj − E[Xj])] = Cov[Xi, Xj].

such that 1 ≤ i ≤ k and 1 ≤ j ≤ k. The inverse of the covariance matrix is called the

precision matrix and is denoted by Q = Σ−1. The multivariate Gaussian distribution is said

to be “non-degenerate” when the co-variance matrix Σ is positive definite. The probability

density function f(x1, . . . , xk) is the following

fX(x1, . . . , xk) =
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)√
(2π)k|Σ|

where x = (x1, . . . , xk) is a real k-dimensional column vector and |Σ| is the determinant of

Σ.

Definition 23 (Continuous Gaussian Distribution). For s > 0, the Gaussian function ρs(x)

is defined by

ρs(x) = exp
(
−π||x||2/s2

)
, x ∈ Rn.
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As H is isomorphic to Rn as an inner product space, continuous Gaussian distribution can

be defined in the same way for x ∈ H. The continuous Gaussian probability distribution over

Rn or H is denoted by Ds and defined by

Ds(x) = s−nρs(x).

Ds is the n-dimensional normal distribution with mean vector (0, . . . , 0) and co-variance

matrix diag(σ2, . . . , σ2) where σ = s/
√

2π. If X1 and X2 are two independent random

variables following Ds1 , and Ds2 respectively, then X1 +X2 follows D√
s21+ss2

.

Definition 24 (Discrete Gaussian Distribution). For x ∈ Rn and s > 0, define ρs(x) =

exp
(
−π||x||2/s2

)
. For a countable set A, define ρs(A) =

∑
x∈A ρs(x). The discrete Gaussian

distribution DA,s on a countable set A, assigns to an element v ∈ A the probability as

following

DA,s(v) = ρs(v)/ρs(A)

.

The following two results of discrete Gaussian distribution over lattices are very useful

for our analysis

Lemma 20 ([Ban93, Lemma 1.4(i)]). For any lattice L and a ≥ 1, ρa(L) ≤ anρ(L).

Lemma 21 ([Ban93, Lemma 1.5(i)]). Let Bn denote the Euclidean unit ball. Then, for any

lattice L and any r > 0, ρr(L \
√
nrBn) < 2−2n·ρr(L), where L \

√
nrBn is the set of lattice

points of norm greater than
√
nr.

While the first lemma is self-explanatory, the second one says that the probability of

sampling lattice points outside the unit ball Bn in the Euclidean space using discrete Gaussian

distribution is negligible. Hence, the output vectors will have a length less than
√
nr with a

probability exponentially close to 1.

Definition 25 (Statistical Distance). Let X be a random variable taking values in a set D

and S be a subset of D. By fX(S) we denote the probability that X takes values in S. Given

two random variables X and Y over D, the statistical distance between them is denoted as

∆(X, Y ) and is defined to be ∆(X, Y ) = maxS⊆D |fX(S)− fY (S)|.
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2.6.1 Hoeffding Inequality

We describe Hoeffding’s inequality [Hoe63] for the sum of independent random variables.

This result presents the additive form of the Hoeffding bound.

Theorem 22 (Hoeffding Inequality). Let, X1, X2, . . . , Xλ be a finite sequence of independent

random variables, such that for all i = 1, . . . , λ, there exists real numbers ai, bi ∈ R, with

ai < bi and ai ≤ Xi ≤ bi. Let X =
∑λ

i=1Xi. Then for any positive t > 0,

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2

Lλ

)
and Pr[X − E[X] ≤ −t] ≤ exp

(
−2t2

Lλ

)
;

where Lλ =
λ∑
i=1

(bi − ai)2.

2.6.2 Chebyshev’s Inequality

We state Chebyshev’s inequality [Als11] for a random variable taking real values.

Theorem 23 (Chebyshev’s Inequality). Let X (integrable) be a random variable with finite

expected value µ and finite non-zero variance σ2. Then for any real number k > 0,

Pr(|X − µ| ≥ k) ≤ σ2

k2
.

2.7 Learning with Error (LWE)

Learning with Error (LWE) is one of the central objects of this thesis other than lattices.

The LWE problem has been the basis of many lattice-based cryptographic schemes. We

define LWE as related to different algebraic variants of lattices. We also discuss different

search and decisional problems of LWE.

2.7.1 Average case Problem versus Worst case Problem

In cryptography, we often use these terms “Average Case, Worst case” with computa-

tionally hard problems. Public-key cryptography is based on one-way functions that are easy

to compute but hard to reverse. For example, it’s easy to multiply two large prime numbers
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to get their product, but hard to factor that product back into the two numbers. The cryp-

tographic constructions are based on factoring, the assumption is that it is hard to factor

numbers chosen from a certain distribution. How do we choose this certain distribution?

One obvious choice is not to choose from numbers with small factors or even factors. In this

case, the problem of factoring can be solved easily. So, we need to fix the distribution for

the factoring problem in the order for it to be hard to break. The distribution must cover

a non-negligible fraction of the instances of the given problem. The “Average Case” simply

refers to this situation. An average-case problem is “Hard” for instances of the problem

chosen from a certain distribution. The “Worst Case” refers to the case where except with

a non-negligible fraction of instances of a problem is hard to break.

Most conventional cryptosystems rely on average-case problems. Ajtai’s [Ajt96] seminal

work discovered that hard lattice problems can be made basis to construct the cryptographic

secure system. The worst-case hardness guarantee of some hard lattice problems can be used

for proving the security of cryptographic constructions. What it means is that if an adversary

succeeds in breaking the cryptographic scheme, even with some small probability, then the

adversary can also solve any instance of a certain lattice problem. Subsequently, Ajtai and

Dwork [AD97] published cryptosystems whose security is based on the worst-case hardness

of some lattice problems.

2.7.2 LWE Distributions

Regev introduced the LWE problem in his seminal paper [Reg09]. The LWE distribution

is closely related to the LWE problem. In the LWE problem, a user is given polynomial

samples as input from the LWE distribution. The requirement is to output the unknown of

the LWE distribution. Here we define different LWE distributions.

Definition 26 (LWE Distribution). Let p ≥ 2 be an integer. Let χ be a probability distribu-

tion on Zp. Let n be a positive integer and fix s ∈ Zn
p . The distribution Ap,s,χ on Zn

p × Zp is

defined as follows. Choose a uniformly at random from Zn
p ; e from Z following χ and output

(a, 〈a, s〉+ e). Let φ be a probability density function on T = (0, 1). The distribution Ap,s,φ is

defined as follows. Choose a uniformly at random from Zn
p ; e from T following φ and output

(a, 〈a, s〉/p+ e), where the addition is performed modulo 1.

We need this definition in Chapters 4 and 7 when dealing with Euclidean lattices. Equiv-

alently we define LWE distributions related to a different algebraic variant of lattices as

follows.
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Definition 27 (Ring-LWE Distribution). Let K be a number field and R be the ring of an

algebraic integer of K. For a fractional ideal J in K and an integer q ≥ 2, let Jq denote the

set of residue classes of J modulo qJ . Let T = H/σ(R∨) denote H modulo σ(R∨). Suppose

s ∈ R∨q and a ∈ Rq. There are elements x ∈ R∨ and y ∈ R such that s = x + qR∨ and

a = y + qR. Define the result of the operation a·s to be xy + qR∨ which is in R∨q . One

can show that the operation is well-defined. Similarly, the result of the operation (a·s)/q is

defined to be xy/q + R∨ which is in (1/q)R∨ modulo R∨. By σ((a·s)/q) we will denote the

element σ(xy/q) + σ(R∨) of T. For s ∈ R∨q and a positive real number r, a sample from the

ring-LWE distribution A
(R)
s,r over Rq×T is (a, σ((a·s)/q) + e mod σ(R∨)), where a is chosen

uniformly at random from Rq and e is chosen from H following the distribution Dr .

We use this definition in Chapter 5 and 6 when dealing with ideal lattices. Next, we define

module-LWE distribution which we use in Chapter 5 when working with module lattices.

Definition 28 (Module-LWE Distribution). Let K be a number field, R be the ring of an

algebraic integer of K, M be a module with rank d, and M ⊆ Kd. Let T = H/σ(R∨) denote

H modulo σ(R∨). For s ∈ (R∨q )d and a positive real number r, a sample from the module-

LWE distribution A
(M)
s,r over (Rq)

d×T is (a, σ(〈a·s〉/q) + e mod σ(R∨)), where a is chosen

uniformly at random from (Rq)
d and e is chosen from H following the distribution Dr .

2.7.3 LWE Problems

Learning problem has been studied for ages from different research aspects. Regev [Reg09]

made the “Learning with Error” (LWE) problem famous by showing cryptographic construc-

tions based on the parameters of LWE and showing a reduction from hard lattice problems

to it, thus projecting the security of the crypto-system. Here we define different worst-case

and average-case LWE problems along with their search and decision versions.

Definition 29 (Search LWE). Fix a positive integer n and an integer p ≥ 2. Let χ be

a distribution on Zp. The learning with errors problem LWEp,χ is the following. For any

s ∈ Zn
p , given samples from Ap,s,χ, it is required to output s. Similarly, for a probability

density function φ on T, the LWEp,φ is the following. For any s ∈ Zn
p , given samples from

Ap,s,φ, it is required to output s.

Let A be an algorithm which solves LWEp,χ, has access to an oracle Ws,r (say) where

r ≤ α is known. Ws,r returns independent samples from As,φ when queried. A is allowed to to

adaptively query Ws,r a number of times and outputs s′ ∈ Zn
p . The success of the algorithm A
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is measured by the probability that s′ = s. LWEp,χ is solvable only if α < ηε(Z). Otherwise,

LWE distribution essentially becomes a uniform distribution over Zn
p × Zp. This argument

is true for the following variants of LWE problems. Only the parameters change as per the

problems.

If the number of samples is m, then the problem is denoted as LWEn,m,p,χ. Similarly,

for a probability density function φ on T, the LWEn,m,p,φ problem is the following. For

uniform random s in Zn
p , given samples from Ap,s,φ, it is required to output s. If the number

of samples is m, then the problem is denoted as LWEn,m,p,φ. When φ = Ψα, the problem

LWEn,m,p,φ is more conveniently written as LWEn,m,p,α.

Next, we define different variants of the decision version of LWE. In the decision LWE

problem, the job is to distinguish between two input distributions when samples from either

LWE distribution or uniform distribution on the same domain are given as input.

Definition 30 (Decision LWE (Worst-Case)). Let s be an arbitrary element of Zn
q . The

worst-case decision version of the LWE problem is to distinguish the uniform distribution

over Zn
q × T from Aq,s,α with probability exponentially close to 1.

Here in the worst-case problem, the success probability of an algorithm solving the prob-

lem has to be exponentially close to 1 and the algorithm has to solve the problem for any

arbitrarily chosen value of unknown vector s from Zn
q .

Definition 31 (Decision LWE (Average-Case)). The average-case version of the decision

LWE problem, decLWEn,m,q,α, is to distinguish the uniform distribution Zn
q × T from Aq,s,α

for a non-negligible fraction of all possible s, where a list of m independent samples of the

relevant distribution is provided as input.

Unlike the worst-case problem, the average-case problem is a bit relaxed. An algorithm

solving

decLWEn,m,q,α, has to succeed for a non-negligible portion of all possible unknown vector s

with a non-negligible probability. Regev [Reg09] showed a polynomial time reduction from

the worst-case decision LWE problem to the average-case decision LWE problem.

Suppose s is chosen uniformly at random from {0, 1}n. The binLWEn,m,q,α problem is to

distinguish the uniform distribution over Zn
q × T from Aq,s,α, where a list of m independent

samples of the relevant distribution is provided as input. The difference between the decLWE

and the binLWE problem lies in the method to select the secret s. Given n, q ≥ 1 and

α ∈ (0, 1), binLWEn,m,q,≤α is the problem which requires to solve binLWEn,m,q,β for any

β ≤ α [BLP+13].
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2.7.4 Ring LWE Problems

Lyubashevsky, Peikert, and Regev [LPR10] first introduced the ring LWE problem. This

is an algebraic variant of LWE problem [Reg09]. Ring LWE problem has been discussed

in [LPR10, PRS17, LS15] extensively. Here in this section different variants of ring LWE

problems are defined and discussed exclusively.

Definition 32 (Search Ring-LWE Problem). The search version of ring-LWE problem is

denoted by RLWEq,≤α for a real number α > 0 and q ≥ 2 is the following. For any s ∈ R∨q ,

and a positive real value r ≤ α, given access to arbitrarily many sample from A
(R)
s,r , find s.

Definition 33 (Decision Ring-LWE Problem). Let r > 0 be a real number and q ≥ 2

be an integer. The decision version of the ring-LWE problem, denoted ring-DLWEq,r, is the

following. Let s be chosen uniformly at random from R∨q . The task is to distinguish with non-

negligible advantage between arbitrarily many independent samples from A
(R)
s,r and the same

number of samples generated independently and uniformly from Rq×T, where T = H/σ(R∨).

This definition of ring-DLWEq,r is basically for an average-case problem. In case of

a worst-case ring-DLWEq,r problem, an algorithm solving the problem needs to solve the

problem for any arbitrary value of s with probability exponentially close to 1.

2.7.5 Module LWE Problems

Module LWE problems are very similar to ring LWE problems. Inspired by ring LWE,

Langlois and Stehlé came up with reductions for the module version of LWE [LS15]. We

define different variants of module LWE problems in this section.

Definition 34 (search module-LWE Problem). The search version of module-LWE problem

is denoted by MLWEq,≤α for a real number α > 0 and q ≥ 2 is the following. For any

s ∈ (R∨q )d, and a positive real value r ≤ α, given access to arbitrarily many sample from

A
(M)
s,r , find s.

Definition 35 (decision module-LWE Problem). Let r > 0 be a real number and q ≥ 2 be

an integer. The decision version of the module-LWE problem, denoted module-DLWEq,r, is

the following. Let s be chosen uniformly at random from (R∨q )d. The task is to distinguish

with non-negligible advantage between arbitrarily many independent samples from A
(M)
s,r and

the same number of samples generated independently and uniformly from (Rq)
d×T, where

T = H/σ(R∨).
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Like ring-LWE problems, this definition of module-DLWEq,r is basically for an average-

case problem. In case of a worst-case module-DLWEq,r problem, an algorithm solving the

problem needs to solve the problem for any arbitrary value of s with probability exponentially

close to 1.

2.8 Lattice Problems

Here in this section, we define some standard lattice problems which will be used extensively

in the later part of the thesis. Standard lattice problems include Short Vector Problem

(SVP), Short independent Vector Problem (SIVP), Generalized independent Vector Problem

(GIVP), Discrete Gaussian Sampling (DGS), Closest Vector Problem (CVP) and Bounded

Distance Decoding Problem (BDD) along with different variants of these problems.

Definition 36 (SVP). Given an n-dimensional lattice L, find a vector x ∈ L such that

||x|| = λ1(L).

An algorithm solving the SVP problem has to output a non-zero shortest vector from the

given lattice. SVP is considered to be a hard problem.

Definition 37 (GapSVPγ). The problem GapSVPγ is the following: An instance is a pair

(B, d), where B is a basis of an n-dimensional lattice L = L(B) and d > 0 is a real number.

The instance is a YES instance if λ1(L) ≤ d and it is a NO instance if λ1(L) ≥ γ(n) · d.

GapSVP is a decision version of SVP, more precisely, a promise problem version of SVP.

A promise problem is a variant of the decision problem. The lattice is presented by a basis B.

As per the definition, it is promised that λ1(L) is outside the range of (d, γ(n) · d). GapSVP

is considered to be a standard lattice problem which is assumed to be hard for Euclidean

lattices while this problem is solvable in polynomial time for ideal lattices.

Definition 38 (GapSVPζ,γ). The problem ζ-to-γ-GapSVP (denoted as GapSVPζ,γ) was

introduced in [Pei09]. For functions ζ(n) ≥ γ(n) ≥ 1, an instance of GapSVPζ,γ is a pair

(B, d), where B is a basis of an n-dimensional lattice L = L(B) for which λ1(L) ≤ ζ(n),

mini‖b̃i‖ ≥ 1, and 1 ≤ d ≤ ζ(n)/γ(n). The instance is a YES instance if λ1(L) ≤ d and it

is a NO instance if λ1(L) > γ(n) · d.

GapSVPζ,γ is considered to be a less standard lattice problem. Though, it has been used

to show a classical reduction from a lattice problem to LWE by Peikert [Pei09]. It has been
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shown in [Pei09] that for ζ(n) ≥ 2n/2, the GapSVPζ,γ is equivalent to the standard GapSVPγ.

Showing a classical reduction from a standard lattice problem to the LWE has been one of

the open problems till today. Peikert [Pei09] used GapSVPζ,γ to show the existence of a

classical reduction but eventually falls short due to a restriction over the modulo parameter

of LWE as the conditions ζ(n) ≥ 2n/2, makes the modulo exponential.

Definition 39 (SIVP). Given an n-dimensional lattice L, the algorithm must output n

linearly independent lattice vectors (v1, v2, . . . , vn) so that max||vi|| ≤ max
B
||bi|| where the

right hand side considers all basis B = {b1, . . . , bn} of the lattice L.

An algorithm solving the SIVP has to output n shortest independent lattice vectors,

given a lattice by a basis B. Basically in SIVP, we need to output the set of lattice vectors

corresponding to the set of successive minima (λ1, . . . , λn).

From the descriptions of SVP and SIVP, it is evident that these two problems are closely

related. If we have an algorithm for SIVP, the SVP problem becomes trivial but the other

way is not straightforward as SIVP is strictly harder than SVP.

Definition 40 (SIVPγ). Let γ(n) ≥ 1 be a function from the naturals to the naturals.

The problem SIVPγ is the following: An instance is a basis B of an n-dimensional lattice

L = L(B) and the task is to obtain a set of n linearly independent vectors from L whose

lengths are at most γ(n) · λn(L).

SIVPγ is another search variant of SIVP. SIVP1 is SIVP. As γ(n) ≥ 1, SIVPγ is a bit

relaxed version of the absolute SIVP problem.

Definition 41 (GIVPϕ
γ ). Given an n-dimensional lattice L, the algorithm must output n

linearly independent lattice vectors v1, v2, . . . , vn so that max||vi|| ≤ γ(n) · ϕ(L) where γ(n) ≥
1 is the approximation factor and ϕ denotes an arbitrary real-valued function on the lattice.

GIVPϕ
γ is a generalization of SIVPγ. GIVPϕ

γ coincides with SIVPγ when the real-valued

function ϕ(L) = λn(L). The GIVP is considered to be a less standard lattice problem. In

Chapter 4 we discuss the reduction from GIVP to LWE problem.

As discussed previously in Section 2.4.9, a fractional ideal I ∈ K, under canonical em-

bedding σ(I) forms a lattice (ideal lattice) in H. In general, we use I to denote the ideal

lattice generated by fractional ideal I. All the lattice problems can be defined similarly on

ideal lattices. We define and discuss the ideal lattice problems that are used in this thesis.
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Definition 42 (Ideal SVP). An instance of the γ-approximate shortest vector problem for

an n-dimensional number filed K, denoted by K-SVPγ, is a fractional ideal I in K and it is

required to find a nonzero x ∈ I such that ||x|| ≤ γ·λ1(I).

Here, we try to solve the appropriate SVP problem over the ideal lattice I. Similarly, we

can define the SIVPγ like before but on ideal lattices as follows.

Definition 43 (Ideal SIVP). An instance of the γ-approximate shortest independent vector

problem, denoted by K-SIVPγ, requires finding n linearly independent elements in I all of

whose norms are at most γ·λn(I).

Similar to ideal lattices, we define module lattices in Section 2.5.1. Using d canonical

embeddings, the map Σ : Kd → Hd is defined. A module M ∈ Kd forms an n·d-dimensional

lattice under the map Σ, which we call a module lattice. Here K is an n-dimensional number

field. In general, we use M to denote the module lattice generated by module M . We define

two module lattice problems that are used in the later part of this thesis.

Definition 44 (module SVP). An instance of the γ-approximate shortest vector problem for

a module M , denoted by M-SVPγ, is a module lattice M in Kd and it is required to find a

nonzero x ∈M such that ||x|| ≤ γ·λ1(M).

Module SVP is the approximate version of SVP on module lattice M . Similarly, we define

SIVP on module lattices as follows.

Definition 45 (module SIVP). An instance of the γ-approximate shortest independent vector

problem, denoted by M-SIVPγ, requires finding n linearly independent elements in M all of

whose norms are at most γ·λn(M).

One of the key problems that are discussed in the lattice reductions is the “Discrete

Gaussian Sampling Problem” or the DGS problem in short. In the DGS problem, a lattice

L or a basis B of a lattice is given as input along with a real value r. A discrete Gaussian

distribution is defined over the set of lattice points of L with width r. An algorithm solving

DGS needs to output a sample from lattice L, according to the discrete Gaussian distribution.

The formal definitions of different variants of DGS are as follows.

Definition 46 (DGS). Let ϕ be a real-valued function defined on euclidean lattices. The

discrete Gaussian sampling problem is denoted by DGSϕ is the following. An instance is a

pair (B, r), where B is a basis of an n-dimensional lattice L = L(B) and r > ϕ(L) is a real

number. The task is to obtain a sample from DL,r.
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Similarly, we define ring DGS and module DGS as follows. The ring DGS is the discrete

Gaussian sampling over ideal lattices and module DGS is the same over module lattices.

Definition 47 (Ring DGS). Let Γ be a real-valued function defined on fractional ideals of

K. The discrete Gaussian sampling problem in K is denoted by K-DGSΓ is the following:

Given a fractional ideal I ∈ K and r ≥ Γ(I), the task is to obtain a sample from DI,r.

Definition 48 (Module DGS). Let Γ be a real-valued function defined on module M of Kd.

The discrete Gaussian sampling problem in M is denoted by M-DGSΓ is the following: Given

a module M ∈ Kd and r ≥ Γ(M), the task is to obtain a sample from DM,r.

The DGS problem in general is considered to be a standard hard lattice problem. In the

reductions from lattice problems to LWE of different algebraic variants, the lattice problem

is chosen to be different variants of DGS, as defined above. Lattice problems like SIVP or

SVP are polynomial time reducible to DGS [Reg09].

Definition 49 (CVP). Let B be a basis of an n-dimensional lattice L = L(B) in Rn. For

any t ∈ Rn, define

dist(t, L(B))
∆
= min{||t− y|| : y ∈ L(B).

The “Closest vector Problem” or CVP is, given a basis B for a lattice L and t ∈ Rn, find

y ∈ L(B), s.t., dist(t,y) = dist(t, L(B)).

An algorithm for CVP tries to find out the nearest lattice vector to a given point in the

span of the lattice. CVP also comes in different variations. This definition of CVP is the

search version. Likewise, we can define decision, promise, etc. versions of CVP, although

the search version is enough for our analysis. We need the following version of CVP in most

of the lattice-based reductions, analyzed in this thesis.

Definition 50 (BDD). A variant of the CVP is considered in [Reg09]. An instance is a

triplet (B, d,x), where B is the basis of an n-dimensional lattice L = L(B), d is a positive

real number with d < λ1(L)/2, and x ∈ Rn which is within distance d of L. The task is to

find the closest lattice point to x.

This problem is also known as the bounded distance decoding problem [LLM06]. Since

d < λ1(L)/2, the output closest vector is unique.

Definition 51 (GDP). Let L ⊂ H be a lattice and g > 0 be a Gaussian parameter, then

given a coset e + L where e← Dg, the Gaussian decoding problem GDPL,g is to find e.
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2.9 Lattice Results

This section refers to a few results related to lattices that are used in various places in the

thesis for our analysis of lattice-based reductions. Here we state and briefly describe the

results for readability of the later part of the thesis.

We start with the improved bootstrapping theorem. This theorem is used in all the

lattice-based reductions, we talk about in this thesis. Bootstrapping theorem is used to

generate lattice vectors from discrete Gaussian distribution with a reasonably large width.

The basic goal is to sample lattice vectors from discrete Gaussian distributions with a small

width. The first step to achieve this goal is to sample from DGS with large width using the

Bootstrapping algorithm then iteratively narrow down the width to get the desired output.

Bootstrapping algorithm ensures that sampling from discrete Gaussian with specified width

is possible.

Theorem 24 ([GPV08]). Let B be an n×n basis matrix of an n-dimensional lattice L = L(B)

and r ≥ maxi‖b̃i‖ · ω(
√

log n). There exists a sampling algorithm which on input B and r

returns a sample that is within negligible statistical distance from DL,r.

Here b̃i’s are GSO of the basis of lattice L with basis B.

The next theorem is a reduction from a search LWE problem to a worst-case decision

LWE problem. The width of the Gaussian error distribution in the decision version of LWE

is more than that of the search LWE problem. This theorem is used in the analysis of the

classical lattice-based reduction in Chapter 7.

Theorem 25 ([MP11, Theorem 3.1]). Let q have prime factorization q = p1
e1 · · ·pkek for

pairwise distinct poly(n)-bounded primes pi with each ei ≥ 1 and let 0 < α < 1/ω(
√

log n).

Let l be the number of prime factors pi < ω(
√

log n)/α. There is a probabilistic polynomial

time reduction from solving search-LWEq,α in the worst case with overwhelming probability

to solving decision-LWEq,α′ on the average with non-negligible advantage for any α′ ≥ α such

that α′ ≥ ω(
√

log n)/pi
ei for every i, and (α′)l ≥ α·ω(

√
log n)

1+l
.

This theorem is also used in Chapter 7. This theorem is particularly a reduction from

decision LWE problems to another decision LWE problem with the unknown from the set

(0, 1)n. The former decision LWE problem has its unknown in (0, 1)k, where k ∈ O(
√
n).

Both the LWE problems have the same modulo and an equal number of LWE samples

provided to them. The width of the Gaussian error distribution increases in the case of the

later LWE problem.
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Theorem 26 ([BLP+13, Theorem 4.1]). Let k, q ≥ 1, and m ≥ n ≥ 1 be integers, and let

ε ∈ (0, 1/2), α, δ > 0, be such that n ≥ (k+1) log2 q+2 log2 (1/δ), α ≥
√

ln(2n(1 + 1/ε))/π/q.

There exist three (transformation) reductions from LWEk,m,q,α to binLWEn,m,q,≤
√

10nα, such

that for any algorithm for the latter problem with advantage ζ, at least one of the reductions

produces an algorithm for the former problem with advantage at least

(ζ − δ)/(3m)− 41ε/2−
∑

p|q, p prime

p−k−1

The next theorem is also referred to in Chapter 7.

Theorem 27 ([BLP+13, Corollary 3.2]). For any m,n ≥ 1, q ≥ q′ ≥ 1, (B, δ)-bounded

distribution D over Zn, α, β > 0 and ε ∈ (0, 1/2) such that

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε))·(B/q′)2
,

there is an efficient reduction from LWEn,m,q,≤α to LWEn,m,q′,≤β that reduces the advantage

by at most δ + 14εm

Here a distribution D over Zn is (B, δ)-bounded, for B, δ ∈ R, if the probability that

x← D has norm greater than B is at most δ. Corollary 3.2 of [BLP+13] is stated in terms

of (B, δ) distribution D. In this context, D is the uniform distribution over {0, 1} which is

(
√
n, 0)-bounded.

The next result states that if we sample around n2 number of samples from a discrete

Gaussian distribution over a lattice, the sample set of n2 samples will contain n linearly

independent lattice vectors with probability exponentially close to 1. To achieve this goal

the width of the discrete Gaussian distribution has to be more than two times the smoothing

parameter of the lattice under consideration. This is an intermediate result for the reduction

from SIVP to DGS problem.

Corollary 28 ([Reg09, Corollary 3.16]). Let L be an n-dimensional lattice and let r be such

that r ≥ 2ηε(L) where ε ≤ 1/10. Then, the probability that a set of n2 vectors chosen

independently from DL,r contains no n linearly independent vectors is exponentially small.

Lemma 29 ([GG00]). For any constants c, d > 0 and any z ∈ Rn with ||z|| ≤ d and

d′ = d·
√
n/(c log n), we have ∆(U(d′·Bn), U(z + d′·Bn)) ≤ 1 − 1/poly(n), where U denotes

the uniform distribution over the domain given as input parameter.
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For a real number d and z ∈ Rn, the open ball in Rn centered at z and of radius d will be

denoted as z + d · Bn. The notation w
$←− z + d · Bn denotes the choice of a vector w drawn

uniformly from z +d · Bn. Here U denotes the uniform distribution over the ball of radius d′.

The next result is a polynomial time reduction from the worst-case decisional LWE

problem to the average-case decisional LWE problem. Here, we have a distinguisher that

distinguishes the LWE distribution from a uniform distribution for a non-negligible portion

of all possible values of the LWE unknown with non-negligible probability and the task to

form a distinguisher that distinguishes the same two distributions for all possible values of the

LWE unknown with probability exponentially close to 1. The cryptographic constructions

are based on the parameters of the average case decisional LWE problem. The reduction

from worst-case decisional LWE problem to average case decisional LWE problem is the

last step in the cascade of reductions showing search LWE problem reduces to average case

decisional LWE problem.

Lemma 30 ([Reg09, Lemma 4.1]). Let n, p ≥ 1 be some integers and χ be some distribution

on Zp. Assume that we have access to a distinguisher W that distinguishes Ap,s,χ from a

uniform distribution over Zn
p×Zp for a non-negligible fraction of all possible s. Then there

exists an efficient algorithm W ′ that for all s accepts with probability exponentially close to

1 on inputs from Ap,s,χ and rejects with probability exponentially close to 1 on inputs from a

uniform distribution over Zn
p×Zp.

The last result mentioned here is a reduction from GIVP or SIVP to DGS problem.

The reduction is one of the critical reductions to achieve the end-to-end reduction from the

standard lattice problem to the decisional LWE problem. This reduction has been analyzed

in greater depth in Chapter 4.

Lemma 31 ([Reg09, Lemma 3.17]). For any ε = ε(n) ≤ 1/10 and any φ(L) ≥
√

2ηε(L),

there is a polynomial time reduction from GIVP2
√
nφ to DGSφ, where L is the lattice under

consideration.
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Chapter 3

Brief Literature Survey

3.1 Introduction

In this chapter, we present a concise literature survey relevant to the focus of this thesis,

which revolves around lattice-based cryptography and its related challenges. The primary

focus of this thesis is on lattice-based cryptography and the issues it addresses. This chap-

ter aims to provide the reader with ample references to initiate their study in the field of

lattice-based cryptography. The survey begins by exploring the need for lattice-based cryp-

tography as a viable post-quantum cryptographic solution. We look at the security concerns

surrounding conventional number-theoretic cryptographic schemes and the potential impact

of quantum computing on their security. As a result, lattice-based constructions emerge as

promising candidates due to the absence of known efficient quantum algorithms for certain

lattice-based computational problems

Conventional number-theoretic cryptography, such as the Diffie-Hellman protocol [DH76],

ElGamal cryptosystem [Gam84], and RSA cryptosystem [RSA78], relies on the presumed

hardness of problems like the computational Diffie-Hellman problem or integer factoriza-

tion in certain groups, and the RSA assumption. However, Shor’s [Sho97] polynomial-time

quantum algorithm for prime factorization or discrete log problem poses a theoretical threat

to these cryptosystems. This breakthrough result implies that in a future where large-

scale quantum computers become a reality, conventional number-theoretic systems will be

insecure. On the other hand, lattice-based constructions offer promising solutions for post-

quantum cryptography as there are currently no known efficient quantum algorithms for

some computational problems based on lattices. This makes cryptographic constructions

relying on the hardness of these lattice problems viable candidates for achieving security in a

post-quantum world. Lattice-based constructions are characterized by their algorithmic sim-

plicity and high parallelizability, involving linear operations on vectors and matrices modulo

relatively small integers. Notably, Ajtai’s [Ajt96] seminal work demonstrated the asymptotic

equivalence between worst-case and average-case lattice problems, while the work of Cai and

Nerurkar[CN97] provided further confidence in this equivalence. Consequently, there exists

the possibility of cryptographic constructions that achieve security based on the hardness of

43
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worst-case lattice problems, at least in an asymptotic sense.

In this thesis, we closely observe the hardness of a few hard lattice problems, viz, SVP,

CVP, SIVP, etc. In the following sections, we provide a few major algorithms for these

problems.

3.2 Algorithms for hard lattice problems

The lattice problems under consideration are the search and the decision versions of SVP

and CVP. Informally in SVP, the job is to find a lattice vector of the shortest length, given

a lattice, and in CVP, we try to find out the lattice vector, nearest to a given point over the

span of the lattice. These problems are studied extensively over the last few decades and no

polynomial-time classical or quantum algorithm has been found yet. Hence, these problems

appear to be intractable. Few approximation algorithms have been discovered but they are

also intractable for constant and polynomial approximation factors.

3.2.1 Shortest Vector Problem (SVP)

It is known that SVP is NP-hard [Ajt98] under randomized reductions to solve exactly

and also NP-hard to approximate under randomized reductions within at least constant

factors [DKS98, HR07, Kho05, Kho10, Mic00]. We can split the solutions of SVP into

two classes of algorithms requiring super-exponential time 2ω(n) and poly(n) memory, and

algorithms requiring both exponential time and space 2Θ(n) in the lattice dimension.

The first class of algorithms mostly includes lattice enumeration by Kannan [Kan83],

Phost [Poh81], Fincke and Pohst [FP85] and by Schnorr and Euchner [SE94]. The first class

of algorithms also includes random sampling reduction methods like by Schnorr [Sch03] and

by Aono and Nguyen [AN17].

The second class of algorithms includes lattice sieving like by Ajtai, Kumar, and Sivaku-

mar [AKS01], by Micciancio and Voulgaris [MV10], by Becker et al. [BDGL15] etc. This class

of algorithms also contains methods by computing the Voronoi cell of the lattice [AEVZ02],

[MV10] and methods by discrete Gaussian sampling [ADRS15]. A hybrid SVP algorithm

using sieving, and enumeration proposed by Doulgerakis, Laarhoven, and Weger [DLdW20].

To solve the γ -approximation version SVPγ for γ > 1, the best-known approaches are

based on using lattice basis reduction. For large γ = 2Ω(n), the Lenstra-Lenstra-Lovász
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(LLL) [LLL82] algorithm can find a solution in time polynomial in the lattice dimension.

Like LLL, the variants of LLL [Sch87] and [AKS01] obtain sub-exponential approximation

factors.

Schnorr [Sch91] showed that deterministic polynomial time algorithms can solve the

GapSVPβ for β = 2O(n(log logn)2/ logn), whereas Ajtai, Kumar, and Sivakumar [AKS01] showed

that probabilistic algorithms can achieve a slightly better approximation factor of

β = 2O(n log logn/ logn).

Few known algorithms obtain polynomial or better approximation factors such as [AKS01,

Kan83, MV10, ADRS15, KS01] either require super-exponential time or exponential time and

space.

We discuss two well-known algorithms below briefly. First is the LLL and second is the

greedy sieving algorithm. More detailed analysis of these algorithms can be found in lecture

notes by Regev [Reg04].

LLL Algorithm

Lenstra-Lenstra-Lovasz (LLL) [LLL82] algorithm is an approximation algorithm for the SVP.

The LLL algorithm runs in polynomial time and outputs an approximation within an expo-

nential factor of the correct answer. It is a practical method with enough accuracy in solving

integer linear programming, factorizing polynomials over integers, and breaking cryptosys-

tems. Let B = {b1, b2, . . . , bn} be an n dimensional basis for a lattice L. Let {b̃1, b̃2, . . . , b̃n}
be set of vectors we get after performing Gram-Schmidt Orthogonalization (GSO)[See Sec-

tion 2.2.1] over the vectors of B. We can write the following.

• {b1, b2, . . . , bn}
GSO−−→ {b̃1, b̃2, . . . , b̃n}

• µi,j =
〈bi ,̃bj〉
〈̃bi ,̃bj〉

• b̃i = bi − µi,1b̃1 − · · · − µi,i−1b̃i−1

Let the basis B of the lattice L is said to be δ-LLL reduced if

1. |µi,j| ≤ 1
2
, for 1 ≤ j < i ≤ n.

2. δ||̃bi||2 ≤ ||µi+1,ib̃i+b̃i+1||2 = µ2
i+1,i||̃bi||2+||̃bi+1||2 (as b̃i and b̃i+1 are orthogonal vectors),

which implies that

||̃bi+1||2 ≥ (δ − µ2
i+1,i)||̃bi||2.



46 Brief Literature Survey

Thus, the goal of the LLL algorithm is the following. Given a basis for a lattice, transform

the basis to one which is LLL-reduced.

Claim 32. Let b1, . . . , bn be a δ-LLL reduced basis for a lattice L. Then ||b1|| ≤ ( 2√
4δ−1

)
n−1

λ1(L).

The algorithm works for 1 ≤ δ ≤ 1
4
. If we take δ = 3/4, the above equation simplifies to

||b1|| ≤ 2
n−1
2 λ1(L). Thus b1 is an approximation for the shortest vector within an exponential

approximation factor. Now we present the LLL algorithm in the following manner.

Algorithm 1 LLL Algorithm

1: An integer basis B = {b1, . . . , bn}, i.e., b1, . . . , bn ∈ Zm;

2: Start Compute b̃1, . . . , b̃n from B performing Gram-Schmidt Orthogonalization;
3: Reduction Step:
4: for i← 2 down to n do
5: for j ← i− 1 down to 1 do
6: if |µi,j| > 1

2
then;

7: qi,j ←
⌊
〈bi ,̃bj〉
〈̃bj ,̃bj〉

⌉
;

8: bi ← bi − qi,jbj;
9: end if

10: end for
11: end for
12: Swap Step:
13: if ∃ a i, s.t. δ||bi||2 > ||µi+1,ib̃i + b̃i+1||2 then;
14: swap bi and bi+1 go to the Start step;
15: end if

Note that when the algorithm terminates it returns a δ-LLL reduced basis. Next, we

discuss the greedy sieving algorithm

Greedy Sieving Algorithm

The greedy sieving Algorithm for finding the shortest vector of a lattice is an exact ran-

domized algorithm for SVP in time 2O(n). This algorithm is due to Ajtai, Kumar, and

Sivakumar [AKS01]. There is a deterministic O(2n logn) algorithm by Kannan [Kan87] We

start by noting that it is enough to solve SVP for instances where the length of the shortest

vector is in some known range.

Lemma 33. Given an algorithm A that finds a shortest nonzero vector in lattices for which

2 ≤ λ1(L(B)) < 3,
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we can find a shortest nonzero vector in any lattice in time that is greater by a factor of at

most O(n).

Greedy Seiving Let R > 0. Suppose there are N points in B(0, R). The algorithm will

mark some points as ‘centers’ such that, for any of the N points there will be a center within

distance at most R/2.

O

R
x1

x2

x3

x4

x5x6

Let the points be x1, . . . , xN . Then the algorithm computes a function η : {1, . . . , N} →
{1, . . . , N}, s.t., xη(i) is the center corresponding to xi. Following is the algorithm for “Greedy

Sieving”.

Algorithm 2 Greedy Seive

1: x1, . . . , xN .
2: ‘Grow” a set of centers C.
3: C ← {x1}
4: for xi ∈ {x1, . . . , xN} do
5: if ∃ j, s.t., xj ∈ C and ||xi − xj|| < R/2 then
6: η(i) = j
7: else η(i) = i and add xi to C
8: end if
9: end for

Lemma 34. The number of centers returned by Algorithm 2 is ≤ 5n.

We now describe the SVP algorithm.

3.2.2 Closest Vector Problem (CVP)

The closest vector problem (CVP) is at least as hard as SVP. Goldreich et al. [GMSS99]

showed that hardness of approximate CVP implies hardness of approximate SVP. Ajtai,

Kumar, and Sivakumar [AKS02] showed a Turing reduction from SVP to CVP. Though the
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Algorithm 3 Greedy Seiving Algorithm for SVP

1: Input: B, s.t., λ1(L(B)) ∈ [2, 3);
2: Output: v, s.t., ||v|| = λ1(L(B));
3: R0 ← n×max

i
||bi||;

4: Choose N = 28n logR0 points x1, . . . , xN independent and uniform at random from
B(0, 2).;

5: Compute yi ≡ xi mod P(B). Let Z = {(x1, y1), . . . , (xN , yN)};
6: R← R0;
7: while (R > 6) do;
8: Apply the sieving algorithm to the y vectors in Z. The result is a set C of at most

5n centers and a map η : {0, . . . , N} 7→ {0, . . . , N}, s.t., ||yi − yη(i)|| ≤ R/2. Let
J = {(xi, yi) : i ∈ C}. Then;

9: Z ← Z\J ;
10: For (xi, yi) which remains in Z, set (xi, yi) to (xi, yi − (yη(i) − xη(i))). Note that

xi − {yi − (yη(i) − xη(i))} = (xi − yi)︸ ︷︷ ︸
L(B)

+ (yη(i) − xη(i))︸ ︷︷ ︸
L(B)

∈ L(B). ||yi − (yη(i) − xη(i))|| =

||yi − yη(i) + xη(i)|| ≤ ||yi − yη(i)||+ ||xη(i)|| ≤ R/2 + 2 [Since, xη(i) ∈ B(0, 2)];
11: R← R/2 + 2;
12: end while;
13: For all pairs (xi, yi), (xj, yj) ∈ Z, consider the difference (xi− yi)− (xj − yj) and output

the shortest such vector.;

approximate version of CVP is also at least as hard as the approximate version of SVP but

from the practical perspective, both are considered to be equally hard [Yas21] which is due

to the embedding of Kanan [Kan87].

The hardness of the closest vector problem was thoroughly analyzed by Micciancio, which

can be found in [Mic01a]. Babai’s [Bab86] “Nearest Plane Algorithm” is one of the famous

approximation solutions for CVP with approximation factor 2(2/
√

3)
n
, where n is the lattice

dimension. Aggarwal, Dadush, and Davidowitz’s [ADS15] algorithm solves CVP in 2n+O(n)

time and time. This is a randomized algorithm to solve exact CVP over Euclidean lattices.

An approximate Voronoi cells-based solution for CVP is proposed by Doulgerakis, Laarhoven,

and Weger [DLdW19]. Dadush, Regev, and Davidowitz’s [DRS14] approximate algorithm

for CVP with approximation factor O(n/
√

log n) is better than the previously best-known

algorithm for CVP with preprocessing by Lagarias, Lenstra Jr. and Schnorr [LJS90] which

has approximation factor O(n1.5).
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Babai’s Nearest Plane Algorithm

Let Bm×n be the basis of a lattice L ∈ Rm and t ∈ Rm, find x ∈ L, s.t.,

dist(t,x) ≤ 2n/2dist(t, L(B)).

This is called the Babai’s nearest plane algorithm [Bab86]. This is a polynomial time

approximation algorithm for CVP with an exponential approximation factor. We present

Babai’s nearest plane algorithm in an algorithmic form in the following.

Algorithm 4 Babai’s nearest plane algorithm.

1: Input: An integer basis B = {b1, . . . , bn}, i.e., b1, . . . , bn ∈ Zm and t ∈ Zm;
2: Output: x ∈ L, s.t., dist(t,x) ≤ 2n/2dist(t, L(B)).;
3: Run 3

4
-LLL on B and the output is over-written as B = {b1, . . . , bn}.

4: B = {b1, . . . , bn}
GSO−→ {b̃1, . . . , b̃n}

5: b← t
6: for j ← n down to 1 do

7: b← b− cbj, where c =
⌊
〈b,b̃j〉
〈b̃j ,b̃j〉

⌉
8: end for
9: Return (b− t)

3.3 Learning with Error Problem

The “Learning with error” problem or the “LWE” is a generalized version of the “Learning

with parity with noise” problem or the “LPN” problem. The definition of LWE can be found

in Section 2. It is the solving of a system of linear equations with errors. Generally, the

Gaussian elimination method is used to solve the unknown for a system of linear equations

when there is no error. In this case, the time required for solving the problem is polynomial

in the problem parameter. The problem becomes significantly hard for non-zero error. We

discuss extensively the reduction from hard lattice problems to the LWE problem. The

LWE-based cryptographic schemes are the central object of this thesis. These problems

have been studied extensively and are believed to be intractable.

A naive algorithm to solve LWE is to use the Gaussian elimination method to find

a solution with low confidence and repeat the process exponentially many times to build

confidence in the solution. This algorithm asymptotically requires 2O(n logn) samples and

time.
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The maximum likelihood algorithm [Muk20] performs better than the naive algorithm to

solve LWE. It uses the idea that the approximate solution to the LWE using O(n) equations is

the correct one. That is why running time is exponential but only requires polynomial-many

equations. This algorithm asymptotically requires O(n) samples and 2O(n logn) time.

Blum, Kalai, and Wasserman [BKW03] (BKW) made a critical improvement to the LWE

algorithms. Their algorithm requires 2O(n) both time and samples asymptotically. In this

algorithm, the n unknowns are partitioned into (log n) blocks of size (n/ log n) each. Then

it constructs the unknown vector recursively by finding a collision in log n blocks. Albrecht

et al. [ACF+15] performed a concrete analysis of the asymptotic complexity of the BKW

algorithm. Duc, Tramèr, and Vaudenay’s [DTV15] algorithm for LWE is an improvement

over Albrecht et al. [AFFP14]. Albrecht et al. [AFFP14] is a variant of the original BKW

algorithm where the focus is on the secrets of small length in reduced time complexity.

Arora and Ge [AG11] showed a sub-exponential time algorithm for LWE and derived

a relation between the error parameter and the time taken by the algorithm. The LWE

problem is used to show the hardness of generalized learning problems [KS06] using the

celebrated result of Regev [Reg05]. The cryptographic applications of LWE are [ACPS09,

BFKL93, HB01, GRS08].

3.4 Cryptographic Schemes

In this section, we enlist a few of the renowned cryptographic schemes which are considered

to be the pioneer and significant for the field of lattice-based cryptography. Though the

content is not exhaustive, we provide enough schemes which are proposed over the last three

decades.

The first lattice-based cryptographic scheme was proposed in 1996 by Ajtai [Ajt96].

Thereafter Ajtai and Dwork [AD97] gave the first lattice-based public key encryption scheme

which has asymptotic worst-case security assurance which is considered the main flavor

for lattice-based cryptosystems by many researchers. The collision-resistant hash function

(CRHF) from lattices by Goldreich, Goldwasser, and Halevi’s [GGH96] also came out subse-

quently. This security of the CRHF is based on the worst-case hardness ofO(n3)-approximate

SIVP. Regev’s [Reg03] early public key cryptosystem is also based on a hard lattice prob-

lem unique-SVP. The equivalence between unique-SVP and the standard lattice problem

like GapSVP is proved by this results [LM09, Pei09]. Goldreich, Goldwasser, and Halevi
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(GGH) [GGH97] proposed another public key encryption and a digital signature scheme

whose security is based on the hardness of CVP. GGH has public key size and encryption

time both in O(n2) where n is the security parameter. The work of Goldreich, Goldwasser,

and Halevi was inspired by Ajtai [Ajt96] and McElieces code-based cryptosystem [McE78].

In 1998, Hoffstein, Pipher, and Silverman came up with NTRU [HPS98] which is a

cryptographic scheme based on the lattice and uses polynomial rings. The famous NTRU is

different than the other cryptographic scheme based on the lattice as NTRU has no security

proof but it is efficient from a practical point of view. Recently a variant of NTRU is proven

secure asymptotically by Stehlé and Steinfeld [SS11]. Based on the ideas of NTRU and GGH,

two lattice-based digital signature schemes have been proposed [HPS01, HHP+03]. Nguyen

performed the cryptanalysis of the GGH encryption scheme for practical parameters [Ngu99].

Later digital signature scheme of GGH and NTRU was broken by Nguyen and Regev [NR06,

NR09]. Micciancio proposed the result [Mic01b] to improve lattice-based cryptosystems

using the Hermite normal form.

Regev’s [Reg05] work is considered to be groundbreaking in the field of lattice-based

cryptography. He introduced the well-known “Learning with Errors” (LWE) problem and

gave the first public key encryption scheme based on the hardness of LWE. Few other public

key encryption schemes other than [Reg05] which are secure against chosen plaintext attacks

(CPA) are [KTX07, PVW08]. LWE-based public key encryption schemes which are secure

against chosen ciphertext attacks (CCA) are [PW08, Pei09]. Peikert, Vaikuntanathan, and

Waters [PVW08] proposed an oblivious transfer protocol based on LWE. Few of the identity-

based encryption schemes which are based on LWE are [CHKP10, ABB10, GPV08],

Regev showed that the average-case LWE problem is as hard as the worst-case lattice

problems. This reduction from LWE to lattice problem is quantum in nature. Piekert [Pei09]

provided a classical algorithm for lattice reduction but the reduction has serious limita-

tions. The lattice problem it considers is not a standard lattice problem. If we make the

lattice problem standard, the LWE modulo becomes exponential. Though it was a step-

ping stone to making the reduction fully classical. Brakerski, Langlois, Peikert, Regev, and

Stehlé [BLP+13] proposed the improved classical reduction from LWE to lattice problem.

Cryptographic constructions based on [Reg05] had two limitations, viz, speed and key size.

This problem was answered by Lyubashevsky, Peikert, and Regev [LPR13] in a positive

manner by using ideal lattice, an algebraic variant of lattices. Though cryptographic con-

structions based on [LPR13] are efficient and speedy, they are not as secure or versatile

as the cryptographic constructions based on [Reg05]. Stehlé, Steinfeld, Tanaka, and Xa-
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gawa’s [SSTX09] is an example of public key encryption based on the hardness of ideal

lattices. The gap between the two reductions [Reg05] and [LPR13] was eliminated by Lan-

glois and Stehlé [LS15] by using module lattices.

Banerjee, Peikert, and Rosen [BPR12] came up with the concept of learning with round-

ing or LWR which is a deterministic error variant of LWE where the Gaussian error of LWE

is replaced by rounding. LWR-based protocols do have the asymptotic worst to average case

hardness guarantee [BPR12] and LWR is at least as hard as LWE asymptotically [AKPW13,

BPR12, BGM+16, PRS17]. LWE-based proposals which are in the second round of the NIST

process are Frodo [ABD+19, BCD+16], Kyber [ABD+09, BDK+18], LAC [LLJ+19, LLZ+18],

NewHope [AAB+19, ADPS16], NTRU Prime [BCLvV17], Round5 [BBF+19a, BBF+19b,

SBG+18], and Saber [DKRV19, DKRV18, KMRV18, BDK+21, KDB+22, GMK+22]. Ky-

ber [ABD+09] is selected as the finalist in the fourth round and it is a module LWR-based

public key encryption scheme where the security is based on the hardness of module lattices.

3.5 Concrete Analysis

Concrete security analysis of cryptographic schemes is often overlooked by a large portion

of the cryptographic community. In this thesis, we focus on the tightness gap of reductions

for lattice-based cryptographic constructions. This is one of the important aspects of con-

crete security analysis in cryptography. Bellare [Bel97, Bel98] was a pioneer in pointing out

the need for concrete security as part of practice-oriented provable security for both sym-

metric and public key cryptographic constructions. Subsequently, Bellare, Desai, Jokipii,

and Rogaway [BDJR97] studied symmetric key encryption schemes from a concrete secu-

rity point of view and analyzed the concrete complexity of reductions among different no-

tions of security. Bellare, Canetti, and Krawczyk [BCK96] analyzed the concrete security

of pseudorandom functions, also [BR09] this work performs concrete security for Waters’

IBE scheme. Koblitz and Menezes re-examined “Provable Security” from the view of con-

crete security in [KM07, KM06]. A similar kind of approach and analysis can be found

in [KM08, Men12, CMS11, KM19]. Concrete security in lattice-based reduction was first

talked about in [CKMS16] by Chatterjee, Koblitz, Menezes, and Sarkar. The tightness gap

for lattice-based reductions is mainly focused in [CKMS16]. Walter [Wal17] studied exten-

sively the concrete security of lattice-based cryptography.
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Quantum Reduction from GIVP to LWE

4.1 Introduction

In Regev’s work [Reg09], he presented a polynomial-time reduction from the GIVP (a variant

of the Shortest Independent Vectors Problem), a worst-case lattice problem to the average-

case decisional LWE problem. In this chapter, we focus on evaluating the tightness of this

reduction. This reduction is composed of multiple sub-reductions, each contributing to the

overall tightness gap. We meticulously examine each sub-reduction and explore opportunities

for optimization where feasible. By analyzing the tightness gap of each sub-reduction and

combining them, we can derive the tightness gap as a function of lattice dimension, LWE

error terms, and other relevant parameters. The security of LWE-based cryptosystems relies

on the hardness of the average-case decisional LWE problem. As the parameters of the

cryptosystem are directly linked to those of LWE, the tightness gap can be measured directly

for a given cryptosystem. This measurement allows us to assess the practical feasibility of

the cryptosystem. It is important to note that Regev’s reduction involves a quantum step

alongside classical ones. The quantum part significantly influences the overall tightness gap.

In this chapter, we estimate the tightness gap of Regev’s reduction, and in the concluding

section, we discuss in detail the implications of a high tightness gap.

4.1.1 Outline of the Analysis

The reductions in [Reg09] are divided into three parts. The first part is a reduction from

approximate GIVP to the DGS problem. The second part is the reduction between DGS

to search LWE problem, while the third part describes the reduction from the search LWE

problem to the decision LWE problem. The following sections describe the concrete analysis

of each part. To obtain the end-to-end reduction from the approximate GIVP to decision

LWE, we combine the three parts in the concluding section.
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4.1.2 Parameters of the Reductions

We need to fix three parameters, a positive integer n that will denote the degree of the

underlying lattice L; an integer p ≥ 2 that we use to define the LWE problem; and a positive

real number α such that αp ≥ 2
√
n. In the asymptotic setting, p and α are considered to be

functions of n.

4.2 Reduction from GIVP to DGS

The first reduction (Lemma-3.7 of [Reg09]) is between two lattice problems, namely GIVP

and DGS. We state the theorem here.

Theorem 35. For any lattice L,ε = ε(n) ≤ 1
10

and any ϕ(L) ≥
√

2ηε(L), there is a polyno-

mial time reduction from GIVP
ϕ(L)

2
√
n

to DGSϕ(L).

The GIVP to DGS reduction follows from the following algorithms, A0 and A1 where A0

calls A1. We want to determine the number of times A0 calls A1. We briefly describe the

algorithms below.

Algorithm A0: Solves GIVP
ϕ(L)

2
√
n

for ϕ(L) ≥
√

2ηε(L). The input to this algorithm is a

lattice L. The output is a set of n linearly independent vectors of L and the longest of which

is at most 2
√
nϕ(L).

Algorithm A1: Solves DGSϕ(L) for ϕ(L) ≥
√

2ηε(L). The input is a pair (L, r), where L

is a lattice and r ≥ ϕ(L). The output is a sample from the distribution DL,r.

We review the proof here. The objective is to output a set of n linearly independent

vectors whose longest vector has length at most 2nλn(L). The algorithmA0 uses LLL [LLL82]

algorithm to obtain a set B0 of n linearly independent vector such that the output vectors

will have length at most 2
√
nϕ(L). If d0 is the length of the longest vector in B0 then it

will satisfy that λn(L) ≤ d0 ≤ 2nλn(L) For i = 0, . . . , 2n, let ui = d0/2
i. For each i in

{0, . . . , 2n} algorithm A0 does the following. It invokes A1 a total number of n2 times on

the input (L, ui) to obtain a set Si of n2 elements of L chosen independently from DL,ui . A0

looks for a set Bi of n linearly independent vectors in each of Si and outputs the shortest

set found.
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We claim that with high probability A0 returns n linearly independent vectors whose

longest vector length is at most 2
√
nϕ(L). Firstly if ϕ(L) ≥ d0 then length of vectors in B0

are at most 2
√
nϕ(L) trivially. On the other hand, it can be shown that there exists an i in

{0, . . . , 2n} such that ϕ(L) < ui ≤ 2ϕ(L), using the lemma 19. The proof for the existence

of such an i is as follows.

Proof. Here ϕ(L) ≥
√

2ηε(L) and ηε(L) ≥
√

ln 1/ε
π
.λn(L)

n
with ε ≤ 1

10
. Hence, we get ϕ(L) ≥√

2 ln 10
π
.λn(L)

n
, which evaluates to ϕ(L) ≥ 1.21 · λn(L)

n
.

Assume that ui > ϕ(L), which implies that ui = d02−i > ϕ(L)

=⇒ d02−i > ϕ(L)

=⇒ λn(L)2n−i > ϕ(L)

=⇒ λn(L)2n−i > 1.21 · λn(L)

n

=⇒ 2n−i >
1.21

n

If i = 0, the relation 2n−i > 1.21
n

holds for all n > 0 and if i = 2n, the relation 2n−i > 1.21
n

does not hold for n > 0. Again ui = 2·ui+1, so the values of ui are decreasing for i ∈ [0, 2n].

Hence we will get an i, for which ui > ϕ(L) and ui+1 ≤ ϕ(L), or equivalently ϕ(L) < ui ≤
2ϕ(L).

Let î be the value of i for which ϕ(L) < uî ≤ 2ϕ(L). Corollary 28 ensures that when

we choose n2 vectors independently from DL,r, we get n linearly independent vectors with

probability exponentially close to 1. The requirement of this result is to have r ≥
√

2ηε and

ε ≤ 1/10. In this particular case of ours, we choose n2 vectors independently from DL,uî
. The

two constraints ε ≤ 1/10 and uî ≥ ϕ(L) ≥
√

2ηε are also satisfied. So, we will get n linearly

independent vectors from DL,uî
. Further, with high probability, the n linearly independent

vectors are of length at most uî
√
n due to Lemma 21, which states that discrete gaussian

samples are of length at most
√
nr, where r is the width of the Gaussian distribution. Again,

we have uî ≤ 2ϕ(L), which implies that output vectors for î is less than 2
√
nϕ(L).

Proposition 36. We record the following results.

1. A0 invokes A1 a total of n3 times. Hence the tightness gap of this reduction, namely
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GIVP to DGS is n3.

2. Based on the DGS parameter that is used in 37,(Section 4.3) r ≥
√

2n · ηε(L)/α, we

may take the DGS parameter ϕ(L) =
√

2n · ηε(L)/α, as n is positive integer and α < 1

and ϕ(L) satisfies the condition that ϕ(L) ≥
√

2ηε(L).

4.3 From DGS to LWE

Reduction from DGS to LWE is the pivotal result of [Reg09]. We analyze the result in greater

detail in this section from the perspective of tightness. The following is a restatement of

Theorem 3.1 of [Reg09] which is the main result of [Reg09].

Theorem 37. Let L be a lattice of dimension n, p ≥ 2 be an integer and α ∈ (0, 1)

be a real number. Given an oracle for LWEp,Ψα, it is possible to sample from DL,r where

r ≥
√

2n · ηε(L)/α, αp > 2
√
n.

For r ≥
√

2n · ηε(L)/α, define ri = r · (αp/
√
n)i for i = 1, . . . , 3n. The proof of the

theorem is provided in [Reg09] as a sequence of nested oracle calls. In the following, we

rewrite the oracle calls and the other computations required for the proof in [Reg09] in an

algorithmic form. The required subroutines and data structures are as follows. Let I be a

polynomial in n, which is the dimension of the lattice L.

solveLWEp,Ψα(I): This is the oracle to solve LWEn,I,p,Ψα . The list I consists of I samples

from Ap,s,Ψβ for some 0 < β ≤ α. Note that the oracle is guaranteed to work correctly

if β = α, otherwise it might return an incorrect result.

verifyLWE(s′, I): The input I contains I samples from As,Ψβ . This algorithm returns true

if s = s′, otherwise it returns false.

solveCVP(p)(L∗,L, z): Here L∗ is the dual lattice of L; L contains I samples from DL,ri for

some i ∈ {1, . . . , 3n}; z is within distance λ1(L)/2 of L∗. Returns the coefficient vector

modulo p of the vector in L∗ which is closest to z.

solveCVP(L∗,L, z): The inputs L∗,L and z are as in the case of solveCVP(p). Returns a

point of L∗ which is closest to z.

quantumSample(): Uses solveCVP(L∗,L, ·) as an oracle and some quantum computation to

return a sample from DL,ri−1
. The list L contains I samples from DL,ri .



From DGS to LWE 57

solveDGS(p, α, r): Uses the oracle solveLWEp,Ψα(·) to return a sample from DL,r where

r ≥
√

2n · ηε(L)/α. Note that the description of the algorithm solveDGS provides the

proof of Theorem 37.

In the algorithm descriptions, we will make use of the following two subroutines mentioned

below.

1. bootstrap(L, r): Here L is a lattice and r >
√

2n · ηε(L)/α. Returns a list L containing

I independent samples from DL,r3n where r3n = r · ((αp)/(
√
n))3n. bootstrap uses the

LLL [LLL82] algorithm to find reduced basis for L. Let B be the new basis of L and

P(B) be a fundamental parallelepiped of L. The sampling procedure samples a vector

x from Rn following gaussian distribution of width r3n then modulo x by P(B) and

subtracts the resultant part from the original vector and outputs the result as the

final output of bootstrap. The output distribution of bootstrap subroutines is within a

negligible statistical distance of DL,r3n .

2. reconstruct(x): This is used in solveCVP to reconstruct the closest vector by first apply-

ing a nearest neighbor algorithm and then retracing through the results returned by the

repeated calls to solveCVP(p). Following Algorithm 6, we use solveCVP(p) on the input

vector and find the nearest lattice vector modulo p, thereafter we subtract the modulo

part from the original vector and divide the resultant vector by p, consequently, we

get another vector which is closer to lattice than the initial vector by a factor of 1/p.

We repeat this procedure on the resultant vector and go on for a total of n times. The

resultant vector at the end of n iterations becomes very close to a lattice point such

that the Babai’s [Bab86] algorithm can be employed to find the nearest lattice point

of the resultant vector. Once the nearest lattice point is determined, we construct the

closest lattice point of the original vector iteratively. At the first iteration, using the

vector given by Babai’s algorithm and the result by solveCVP(p) at the n-th iteration,

we construct the nearest lattice point for the (n − 1)-th iteration. Using this vector

and the result by solveCVP(p) at the n− 1-th iteration, we construct the nearest lattice

point for the (n − 2)-th iteration and so on. At the end of the n-th iteration, we get

the closest lattice vector to the original vector.

4.3.1 Concrete Analysis

The number of times the oracle solveLWE is called is determined by the following factors.
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Algorithm 5 Algorithm to solve DGS using an LWE oracle.

1: function solveDGS(p, α)
2: L ← bootstrap(L, r);
3: for i← 3n down to 1 do
4: L′ ← {};
5: for j ← 1 to I do
6: y← quantumSample() (using solveCVP(L∗,L, ·) as an oracle);
7: L′ ← L′ ∪ {y};
8: end for
9: L ← L′; ri−1 = ri · (

√
n)/(αp);

10: end for
11: return one element from L.
12: end function.

Algorithm 6 Algorithm to solve CVP.

1: function solveCVP(L∗,L, z)
2: z1 ← z;
3: for k ← 1 to n do
4: ak ← solveCVP(p)(L∗,L, zk);
5: zk+1 ← (zk − L∗ak)/p;
6: end for
7: s← reconstruct(zn+1);
8: return s.
9: end function.

1. The loop in solveDGS has 3n iterations. In the i-th iteration I samples of DL,ri are

used to generate I samples of DL,ri−1
. Generating each sample of DL,ri−1

requires a

call to quantumSample which in turn generates a call to solveCVP. So, the subroutines

quantumSample and solveCVP are both called a total of 3n·I times.

2. The loop in solveCVP has n iterations and in each iteration, a call to solveCVP(p) is

made. So, each call to solveCVP generates n calls to solveCVP(p). One of the reviewers

of this thesis has commented that a single solveCVP(p) call is enough to execute

solveCVP for a typical choice of p as we can use the samples from DL,r. While

this is quite interesting to note, we don’t have any proof for this claim.

3. In solveCVP(p), the set Z contains about I2 values. So, the loop from Steps 9 to 21

makes about n·I2 calls to solveLWE and to verifyLWE. So, each call to solveCVP(p)

generates n·I2 calls to solveLWE and to verifyLWE.
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Algorithm 7 Algorithm to solve CVP(p).

1: function solveCVP(p)(L∗,L, z)
2: Z ← set of all integer multiples of I2α2 in the range (0, α2];
3: I ← {};
4: for v in L do
5: a← L−1v mod p;

6: e
$← N (0, α/(2

√
π));

7: I ← I ∪ {(a, 〈z,v〉/p+ e mod 1)};
8: end for
9: for γ in Z do

10: I ′ ← {};
11: for i← 1 to n do
12: for (a, e) ∈ I do

13: ε
$← Ψ√γ;

14: I ′ ← I ′ ∪ {(a, e+ ε)};
15: end for
16: s′ ← solveLWEp,Ψα(I ′);
17: if verifyLWE(s′, I ′) returns true then
18: return s′;
19: end if
20: end for
21: end for
22: end function.

4. Algorithm 7 ensures outputting correct s with probability at least 1/2 and also ensures

that when the input list I ′ is closest to As,Ψα , the solveLWEp,Ψα outputs the correct s

in one of n iterations with probability at-least (1 − 2n), thus making the the failure

probability at most 2−n. In the context of concrete security where n is around 1024,

the failure probability is at most 2−1024 and that is way more than sufficient. In this

case, a failure probability of 2−200 would be sufficient to consider. Hence the choice

of the number of iterations in the inner loop is very pessimistic in favor of making

the whole process more reliable. We can safely choose a large constant in place of n

for the number of iterations in the inner loop, thus making the calls for solveLWE and

verifyLWE limited to a constant multiple of I2 instead of nI2.

Proposition 38. Algorithm solveDGS has the following properties.

1. The solveLWE oracle is called T = 3n2I3 times.

2. Algorithm verifyLWE is also called T times.
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Algorithm 8 Algorithm to verify an LWE solution.

1: function verifyLWE(s′, I ′)
2: Let m ≤ I be a positive integer;
3: Choose m pairs (a1, x1), . . . , (am, xm) from I ′;
4: w ← 0;
5: for i← 1 to m do
6: yi ← xi − 〈ai, s′〉/p;
7: w ← w + cos(2πyi);
8: end for
9: z ← w/m;

10: Let t ∈ (0, 1);
11: if z > t then
12: return true
13: else
14: return false
15: end if
16: end function.

3. A total of 3n·I quantum computations are required.

Remark: Each quantum computation in [Reg09] is on a state of n logR qubits where

R ≥ 23nλn(L∗) is an integer. For example, if we take I = n, the number of quantum

computations required is 3n2 where each computation is on at least (3n2 +n log λn(L∗)) bits.

The cost of quantum computation increases quadratically with n. For n = 1024, about 3

million logical qubits will be required. In comparison, factoring a 2048-bit RSA modulus

requires around 4000 to 5000 logical qubits.

The VerifyLWE algorithm is based on the proof of Lemma 3.6 of [Reg09]. We highlight

two aspects of VerifyLWE that is not present in this proof.

1. The parameter m is not present in the proof. The proof starts by considering n samples.

This is achieved by setting m = n in VerifyLWE. Note that the set I ′ has cardinality

I and so m can be at most I.

2. The parameter t is not present in the proof. The proof considers the rejection threshold

to be 0.02. This is achieved by setting t = 0.02 in VerifyLWE.

The choices of m = n and t = 0.02 are sufficient for asymptotic analysis. We show later that

these choices are sub-optimal for concrete analysis.
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Algorithm verifyLWE is essentially a test of the hypothesis. In verifyLWE, the pairs in I ′

are of the form (a, 〈a, s〉/p+ e) where e follows Ψβ. The test statistic is the variable z. Let

ξ0 be the distribution of z when s = s′ and let µ0 be the corresponding mean of z; let ξ1 be

the distribution of z when s 6= s′ and let µ1 be the corresponding mean of z. The following

have been proved by Regev [Reg09].

• ξ0 = Ψα so that µ0 = exp(−πα2) ≥ 0.04 for α < 1. Note that µ0 > t = 0.02.

• µ1 = 0.

The computation performed by verifyLWE is a test of hypothesis between H0 : s = s′ versus

H1 : s 6= s′.

Two types of errors are to be considered.

e0 = Pr[Type-1 error] = Pr[reject H0 when it is true] = Pr
z∼ξ0

[z ≤ t]; (4.1)

e1 = Pr[Type-2 error] = Pr[accept H0 when it is false] = Pr
z∼ξ1

[z > t]. (4.2)

A Type-1 error will result in the correct value of s′ being rejected and so the entire reduction

will not succeed. A Type-2 error will result in an incorrect value of s′ being accepted. This

incorrect value of s′ will be passed on to verifyCVP(p) and then on to verifyCVP resulting in

an incorrect solution to the CVP problem. So, again, the entire reduction will fail. So, it is

required to ensure that both Type-1 and Type-2 errors are small.

For i = 1, . . . ,m, let vi = cos(2πyi). Then v1, . . . , vm take values in the interval [−1, 1].

Applying the Hoeffding inequality (Section 2.6.1 of Chapter 2) to v1, . . . , vm and z = (v1 +

· · ·+ vm)/m, provides the following upper bounds on e0 and e1.

e0 = Pr
z∼ξ0

[z ≤ t] = Pr
z∼ξ0

[z − µ0 ≤ −(µ0 − t)] ≤ exp
(
−m(µ0 − t)2/2

)
; (4.3)

e1 = Pr
z∼ξ1

[z > t] = Pr
z∼ξ1

[z − µ1 > t− µ1] ≤ exp
(
−mt2/2

)
. (4.4)

If s′ = s, then the probability that verifyLWE makes an error is at most e0; if s′ 6= s, then the

probability that verifyLWE makes an error is at most e1. So, the probability that verifyLWE

makes an error is at most max(e0, e1) and so the probability that verifyLWE is successful is

at least

(1−max(e0, e1)) = (1−max(exp
(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)).
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Proposition 38 shows that verifyLWE is called a total of 3n2I3 times by solveDGS. The

probability that all of these calls are successful, is at least

PS =
(
1−max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)
)3n2I3

. (4.5)

Again from Proposition 38, the number of calls to solveLWE made by solveDGS is T = 3n2I3

and so the tightness gap of the reduction from DGS to LWE is at most

G = T/PS = 3n2I3 ·
(
1−max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)
)−3n2I3

. (4.6)

4.3.2 Numerical Results

To compute numerical values, we need to specify the values of the parameters m, I, and t.

We consider two scenarios. The first scenario corresponds to the values used in the proof of

Lemma 3.6 of [Reg09]. The second scenario corresponds to an alternative analysis where we

change the value of the rejection threshold and consider values of α which occur in practice.

Concrete analysis of the proof Lemma 3.6 of [Reg09]. As mentioned earlier, the

proof of Lemma 3.6 of [Reg09] corresponds to setting m = n and t = 0.02. Using m = n and

t = 0.02, (4.6) simplifies to the following.

G = T/PS = 3n2I3 · (1− exp (−n/5000)))−3n2I3 . (4.7)

Setting I = n (which minimises the right hand side of (4.7)), we have evaluated T , PS and G

for various values of n. It turns out that for n ≤ 350000, G is determined primarily by 1/PS

while for n ≥ 400000, the value of 1/PS becomes negligible. For 2 ≤ n ≤ 350000, the value

of G remains very high, for example for n = 350000, log2(log2(G)) ≈ 11.68. For n = 400000,

log2(log2(G)) ≈ 6.83. The parameter n is the dimension of the underlying lattice. So, if the

lattice dimension is to be chosen based on the proof of Lemma 3.6 of [Reg09], then the value

of n has to be at least 400000. The codes for the calculation can be found in section 4.7. We

use SAGE [SJ05] and Magma [BCP97] software to perform the calculations.

Alternative concrete analysis. The statistical test performed by verifyLWE is essentially

a test for the means µ0 and µ1 = 0 of the distributions ξ0 and ξ1 respectively. A natural value

of the rejection threshold t is the choice µ0/2 = exp(−πα2)/2. This makes G depend on the
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value of α. A higher value of α makes the LWE problem more difficult but, also results in a

worse tightness gap in the reduction from DGS to LWE. On the other hand, most practical

cryptosystems consider α to be at most 1/
√
n. To account for α ∈ (0, 1/

√
n), one may set

t = exp(−π/n)/2. Using t = exp(−π/n)/2 gives the following expression for G.

G = T/PS = 3n2I3 · (1− exp (−m exp(−2π/n)/8)))−3n2I3 . (4.8)

As in the previous concrete analysis, setting I = n and m = n, we have computed the values

of T , PS, and G for various values of n. In this case, we observe that the value of PS becomes

very close to 1 for values of n as small as 100. So, under this alternative concrete analysis,

the value of G is determined entirely by T and is equal to 3n6 for most practical values of n.

To summarise, the value of the rejection threshold t plays an important role in the

concrete analysis. If the value of t is set to be equal to 0.02 as in the proof of Lemma

3.6 of [Reg09], then extremely high lattice dimensions are required for an even somewhat

meaningful tightness gap.

On the other hand, choosing the rejection threshold to be mid-way between the means

of the two distributions and considering α to be at most 1/
√
n, there is no noticeable effect

of PS on the tightness gap for reasonable values of n. In this case, the tightness gap is given

entirely by the number of oracle calls T .

4.4 Search-LWE to Decision-LWE

This section is divided into three subsections. Each of the subsections contains a reduction

for two intermediate problems. Combining these three reductions, we obtain a reduction

from search LWE to decision LWE.

4.4.1 Search-LWE (Continuous) to Search-LWE (Discrete)

In the previous section, we dealt with the continuous version of the search LWE problem. The

cryptographic applications are based on the discrete version of the decisional LWE problem.

This section deals with the reduction from continuous search LWE to discrete search LWE

problems. So, this is one step towards achieving the end goal. Regev’s Lemma 4.3 of [Reg09]

provides the procedure to do so. Let us have an oracleW2 to solve the discrete search version

of the LWE problem. We need to find an algorithmW1 to solve the continuous search version
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of the LWE problem. W1 is presented with As,Ψα . Here, As,Ψα = (a, 〈a, s〉/p+ e), where the

addition is performed modulo 1, a and s are from Zn
p , e is from T following Ψα. W1 performs

discretization procedure on As,Ψα by multiplying p with the second element of As,Ψα and

truncates it to nearest integer value. As, b ∈ T, multiplying it with p and truncating it

to its nearest integer produces elements in Zp. Thus the discretization procedure correctly

transforms LWE samples from As,Ψα to As,ξ where ξ follows Gaussian distribution over Zp.

W2 takes the new samples and outputs correct s.

Proposition 39. We record the following observations.

1. Here W1 calls W2 only one time.

2. Number of samples needed for both W1 and W2 are the same.

4.4.2 Search-LWE (Discrete) to Decision-LWE(Worst Case)

The following reduction is between search and decision variants of LWE problems. Both the

problems under consideration are worst-case problems. Lemma 4.2 of [Reg09] describes an

algorithm to reduce the discrete search version of LWE to the decisional LWE in the worst

case. We describe this lemma to work out the tightness gap of this reduction. LetW3 be the

distinguisher to solve the worst-case decision version of LWE (DLWEwc). W3 takes a list as

an input. The list contains samples from As,ξ distribution or from the uniform distribution

over Zn
p ×Zp. W3 accepts when the input list is from the distribution As,ξ, otherwise rejects.

W3 works for an arbitrary value of s ∈ Zn
p with success probability exponentially close to

1. Here, ξ follows the gaussian distribution over Zp. We need to construct an algorithm for

W2 to solve the search version of LWE on discrete gaussian error distribution ξ. W2 has a

list of samples from As,ξ. The procedure works as follows. We find the elements of s one by

one. FirstW2 tries to find s1, or the 1-st element of s. It takes a sample (a, b) from As,ξ and

transforms it to (a′, b′) := (a + (l, 0, . . . , 0), b + l·k), where l is chosen uniformly at random

from Zp and k ∈ Zp. We see that a′ is uniform over Zn
p as a is uniform over Zn

p and l is

uniform over Zp. If b is uniform over Zp this implies b′ is also uniform over Zp. So, (a′, b′) is

uniform over Zn
p × Zp if (a, b) is uniform over Zn

p × Zp. On the other hand, if (a, b) is drawn

from As,ξ and k = s1, (a′, b′) becomes a valid sample from As,ξ. The rest cases where (a, b) is

drawn from As,ξ and k 6= s1, (a′, b′) maps to samples over uniform distribution over Zn
p ×Zp

as p is here is a prime integer. W2 providesW3 with transformed samples as input. It checks

for which value of k ∈ Zp, W3 accepts. As p = poly(n), it is easy to repeat the procedure
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for each value of k. Thus the first element of s can be found with probability exponentially

close to 1 with the help of W3. The same procedure is repeated for each n element of s and

s is fully recovered.

Proposition 40. We record the following observations.

1. Here W2 calls W3 a total of n·p times.

2. Number of samples needed for both W1 and W2 are the same.

4.4.3 Decision-LWE (Worst Case) to Decision-LWE (Average Case)

Here we describe the reduction from the worst case to the average case decision LWE problem.

Lemma 4.1 of [Reg09] provides an algorithm for the same. LetW4 be a distinguisher for the

average case decision-LWE problem(DLWEac). We need to construct a distinguisher W3 for

the worst-case decision-LWE problem(DLWEwc). For δ1, δ2 ∈ (0, 1], we say that W4 is an

(δ1, δ2)-distinguisher if W4 has advantage at least δ2 for at least a proportion δ1 of the set of

possible s ∈ Zn
p . The distinguisherW4 takes an input list of length l. Our goal is to construct

a distinguisher W3 which will work for arbitrary s ∈ Zn
p with probability exponentially close

to 1.

We describe the reduction in Algorithm 9 and elaborate on the same in detail. W3 has

access to a list L = (a,b) of polynomial many samples either from As,ξ or from uniform

distribution over Zn
p × Zp, where ξ follows a Gaussian distribution over Zp. We define a

transformation over the list L as follows and prepare a list L′. The list L′ = (a, b + 〈a, t〉),
where t ∈ Zn

p . If L is from As,ξ, then L′ is from As+t,ξ. On the other hand if L is from a

uniform distribution over Zn
p ×Zp, then L′ is also from a uniform distribution over Zn

p ×Zp.

Algorithm 9 describes W3 which uses the distinguisher W4 as follows. It has two nested

loops. The outer loop runs I1 times and the inner loop runs I2 times. In each iteration of the

outer loop, W3 chooses a t uniformly at random from Zn
p . In each iteration the inner loop

using samples from the list L a list L′ is constructed as described above. Then another list T
is created, which contains uniform samples from Zn

p × Zp. In the last part of the inner loop,

W4 is called with the inputs T and L′ and captures the one-bit output in the variables cnt0

and cnt1 respectively. At the end of the inner loop, we capture the estimated probabilities

in the variables p̂0 and p̂1 respectively. Here p̂0 and p̂1 are the estimated probabilities of p0,

p1 that W4 accepts input from T and L′ respectively. If any of the I1 outer loop results in
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|p̂0 − p̂1| ≥ δ2/2, the algorithm returns 1 and halts otherwise return 0 and halts when this

condition is not satisfied by any of the I1 iterations.

Hypothesis testing can be used to analyze the errors that may occur in W3. Algorithm 9

may return an incorrect answer in two ways. First, when L is from uniform distribution and

it returns 1 and secondly when L is from As,ξ and it returns 0. The first is Type-1 failure

and the second is Type-2 failure. When L is from uniform distribution both lists T and L′

follow uniform distribution over Zn
p × Zp. For each of the I1 iterations of the outer loop we

have

Pr[p0 − δ2/4 ≤ p̂0 ≤ p0 + δ2/4] ≥ 1− 2exp(−I2δ2
2/8)

Pr[p1 − δ2/4 ≤ p̂1 ≤ p1 + δ2/4] ≥ 1− 2exp(−I2δ2
2/8)

due to the additive form of the Chernoff-Hoeffding bound (Section 2.6.1 of Chapter 2).

Both the lists T and L′ follow uniform distribution over Zn
p ×Zp, so p0 = p1. It implies that

Pr[|p̂0 − p̂1| ≤ δ2/2] ≥ 1 − 4exp(−I2δ2
2/8). So, for all I1 outer loop iterations the Type-1

failure probability becomes at most 4I1exp(−I2δ2
2/8), which is exponentially close to 0 for

I2 to be a constant multiplier of δ2
−2. We can safely assume I2 = δ2

−2 for the concrete

analysis.

When L is from As,ξ, L′ follows As+t,ξ and T follows uniform distribution irrespective of

the list L. Let ps+t,0 and ps+t,1 respectively denote the probabilities p0 and p1 corresponding

to a particular value of t. Similarly, let p̂s+t,0 and p̂s+t,1 respectively denote the estimates

p̂0 and p̂1 corresponding to a particular value of t. We say that a value s + t is good if

|ps+t,0 − ps+t,1| ≥ δ2. From the definition of an (δ1, δ2) distinguisher, the probability of a

good s + t is at least δ1. If we use the additive form of the Chernoff-Hoeffding bound for

good s + t, we get the following inequalities.

Pr[ps+t,0 − δ2/4 ≤ p̂s+t,0 ≤ ps+t,0 + δ2/4] ≥ 1− 2exp(−I2δ2
2/8)

Pr[ps+t,1 − δ2/4 ≤ p̂s+t,1 ≤ ps+t,1 + δ2/4] ≥ 1− 2exp(−I2δ2
2/8)

From above equations along with the condition that |ps+t,0 − ps+t,1| ≥ δ2 we get
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Pr[|p̂s+t,0 − p̂s+t,1| ≥ δ2/2] ≥ 1− 4exp(−I2δ2
2/8) (4.9)

which is exponentially close to 1 for I2 to be a constant multiplier of δ2
−2. As previously

we take I2 = δ2
−2.

Again from the definition of an (δ1, δ2) distinguisher, the probability of a good s is at

least δ1 for |ps,0− ps,1| ≥ δ2. So, we have execute the outer loop δ1
−1 times to ensure a good

s. Thus minimum value of I1 becomes a constant multiplier of δ1
−1. We can take I1 = δ1

−1

for our analysis.

Algorithm 9 Reducing DLWEwc to DLWEac

1: function W3(L)
2: for k = 1 to I1 do;
3: Choose a uniform t ∈ Zn

p ;
4: cnt0 ← 0, cnt1 ← 0;
5: for l = 1 to I2 do;
6: Obtain a list T of polynomial many samples from uniform distribution over

Zn
p × Zp ;

7: Compute L′ from L and t;
8: cnt0 ← cnt0 +W4(T ), cnt1 ← cnt1 +W4(L′);
9: end for

10: p̂0 ← cnt0/I2, p̂1 ← cnt1/I2;
11: if then|p̂0 − p̂1| > δ2/2;
12: return 1;
13: end if
14: end for
15: return 0;
16: end function.

Remark: In [Reg09], the values of I1 and I2 are taken to be δ1
−1 and δ2

−2 respectively to

make the Type-1 and Type-2 probabilities of the above analysis asymptotically zero. This

factor of an extra n is more than sufficient and this can be replaced by ln lnn which is

sufficient to make the Type-1 and Type-2 probabilities asymptotically zero and hence the

success probability of this reduction is asymptotically close to 1. In concrete terms, we

replace ln lnn factor by a constant.

Proposition 41. The following observations are related to the tightness of this reduction.

1. I1 = δ1
−1 and I2 = δ2

−2.
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2. Here W3 calls W4 a total of I1·I2 times.

3. The number of LWE samples required by W3 is I1I2l.

4.5 End to end Concrete Analysis

The complete reduction by Regev [Reg09] is from worst-case GIVP to average case decisional

LWE problem (DLWEac). This reduction consists of three parts.

• GIVP to DGS with tightness gap 2n3.

• DGS to LWE with tightness gap G given by (4.6).

• From Proposition 39, 40, 41, the number of samples required by the search LWE

problem is I = I1I2l which comes to as (δ1δ2
2)
−1
l. So from search LWE to DLWEac

with tightness gap becomes npI1I2 = np(δ1δ2
2)
−1

.

The main part of the entire reduction is the second reduction. For this case, we have

incorporated into the tightness gap the success probability of the statistical test required

by the algorithm for verifying LWE solutions. The above concrete analysis shows that by

appropriately setting the value of the rejection threshold and using values of α that are used

in practice, there is no noticeable effect of the success probability on the tightness gap.

So the tightness gap from GIVP to LWE or the search LWE is given by

G1 = 6n5(δ1δ2
2)
−3
l3, (4.10)

and the tightness gap from LWE to DLWEac is the following

G2 = np(δ1δ2
2)
−1
. (4.11)

We summarise the tightness gap analysis in the context of the end-to-end reduction from

GIVP to DLWEac in the form of the following theorem.

Theorem 42. Let L be a lattice of dimension n; p be a prime number greater than 2;

ε be a positive real number and ε ≤ 1
10

. Suppose there is a (δ1, δ2) distinguisher D that

solves DLWEac with error drawn from a Gaussian distribution over Zp. Then there is a
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quantum algorithm A requiring approximately 3n2 logical qubits to solve GIVP
ϕ(L)

2
√
n

, where

ϕ(L) =
√

2n · ηε(L)/α. The number of times A calls D is about

(2n3)·(3n2I3)·(pnI1I2) ≈ pn6(δ1δ2
2)
−4
l3. (4.12)

For practical cryptosystems p is taken to be a prime in the range between n2 and 2n2

and l is taken to be Õ(n) as per the discussion by Regev in [Reg09]. Taking p = n2 and

l = n, the expression (4.12) reduces to

n11·(δ1δ2
2)
−4
. (4.13)

We have reevaluated the values of G1 and G2 using the expressions from (4.10) and (4.11).

The results are as follows:

G1 reduces to n8 · (δ1δ2
2)−3, and G2 reduces to n3 · (δ1δ2

2)−1.

So, for this reduction the effect of G1 is greater than that of G2 in the context of the

end-to-end reduction from GIVP to DLWEac. In [CKMS16], it was argued that for n = 1024,

the tightness gap of the reduction from GIVP to DLWEac is about 2504. Incorporating the

revised number of oracle calls mentioned above, the tightness gap we get is the following.

Taking δ1 = 2−β1 and δ2 = 2−β2 , for n = 1024, the expression in (4.13) is 2110+4β1+8β2 .

4.6 Conclusion

In this chapter, we have incorporated the success probability of the statistical test for veri-

fying LWE solutions into an upper bound G on the tightness gap. If the rejection threshold

is picked as in the proof of Lemma 3.6 of [Reg09], then the tightness gap G is very high for

values of n as large as 350000, on the other hand, we show that by choosing a different value

of the rejection threshold and considering α to be at most 1/
√
n, there is no noticeable effect

of the success probability on the value of G for reasonable values of n

Our analysis has highlighted the sensitivity of concrete security analysis to the values

of underlying parameters in lattice-based cryptography. The choice of parameters plays a

crucial role in determining the practical security of these schemes. We have also shown

that the tightness gap of the end-to-end reduction is enormous for parameters within a

practical range. This highlights the challenges and limitations of achieving practical security

guarantees in lattice-based cryptosystems.
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It is important to note that the tightness gaps we obtain from the reductions serve as

upper bounds. In other words, they represent the worst-case scenario for the looseness of the

reductions. However, there is a possibility to reduce the upper bound of the tightness gap

through further analysis and optimizations. By carefully examining the reduction techniques,

fine-tuning the parameter choices, and exploring alternative approaches, it may be possible to

improve the tightness of the reductions. This involves delving deeper into the mathematical

properties of the lattice problems and the underlying cryptographic constructions to identify

potential areas for enhancement.

As we proceed with our investigation, we will determine the tightness gap of reductions

for other algebraic variants of lattices and perform a comparative study with the results

obtained in the following chapters. By analyzing a broader range of reductions and parameter

settings, we aim to gain a comprehensive understanding of the practical feasibility and

security implications of lattice-based cryptographic schemes.

4.7 Programs to Evaluate T , 1/PS and G for I = n

4.7.1 SAGE

RR = Reals(1000)

n = 400000

calls = RR(3*n^6)

logcalls = RR(log(calls))/RR(log(2))

loglogcalls = RR(log(logcalls))/RR(log(2))

a = RR(-n/5000)

b = RR(1/(1-e^a))

logb = RR(log(b))/RR(log(2))

loglogb = RR(log(b))/RR(log(2))

logPSinv = RR(calls * logb)

loglogPSinv = RR( log(logPSinv) )/ RR(log(2))

logloggap = RR( log(logcalls + logPSinv) ) / RR(log(2))

print loglogcalls

print loglogPSinv

print logloggap
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4.7.2 Magma

SetDefaultRealField(RealField(1000));

n:= 400000.0;

calls := 3*n^6;

a := (-n/5000.0);

b := 1/(1-Exp(a));

logPSinv := calls*Log(2,b);

loglogPSinv := Log(2,calls) + Log(2,Log(2,b));

loglogG := Log(2,Log(2,calls)+logPSinv);

print Log(2,Log(2,calls));

print loglogPSinv;

print loglogG;



72 Quantum Reduction from GIVP to LWE



Chapter 5

Reduction from module SIVP to module-

LWE

5.1 Introduction

In the previous chapter, we delved into the concept of concrete security and its relation to

the tightness gap in reductions for the approximate version of the GIVP to LWE problem.

Unfortunately, our findings raised concerns as we discovered that the reduction is loose.

This means that cryptographic applications relying on the hardness assumption of lattice

problems, such as GIVP, exhibit inefficiency in practical usage due to the large size of keys

required, and they inherently suffer from a loose tightness gap. Several works, including those

by Chatterjee et al. [CKMS16, SS21, KSSS22], have addressed this issue. Also, a quadratic

overhead is inevitable due to the use of LWE. However, an affirmative answer to this problem

was provided by Lyubashevsky, Peikert, and Regev [LPR13], who proposed an alternative

approach using an algebraic variant of LWE known as ring-LWE (Definition 32). The ring-

LWE scheme offers more efficient cryptographic applications compared to conventional LWE-

based schemes, making it a promising direction for overcoming the limitations imposed by

the loose tightness gap.

The inspiration for the use of the ring variant, known as ring-LWE, comes from the

NTRU cryptosystem [HPS98]. Ring-LWE has emerged as a significant advancement in the

field of post-quantum cryptography because cryptographic applications built on this scheme

are faster and require smaller keys compared to conventional LWE-based schemes. This

motivated the transition from LWE to ring-LWE in the first place. The seminal work of

Lyubashevsky, Peikert, and Regev [LPR13] provides a reduction of hard lattice problems for

ideal lattices (Definition 2.4.9) to the DLWE problem over a ring of integers. However, the

results presented in [LPR13] are asymptotic in nature, allowing the parameters, such as the

lattice dimension, to go to infinity. In practical scenarios, real-world applications usually

involve a specific set of parameters, for instance, a lattice with a dimension of 1024 would

be of great interest.

73
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While ring-LWE shows promise over LWE in terms of speed and key size, it still lacks

a guarantee of tightness in the reduction. To address this concern, we conducted an inves-

tigation into the tightness gap of the reductions in Lyubashevsky et al. [LPR13], as docu-

mented in our paper [KSSS22]. Unfortunately, our findings did not provide much promise

regarding the tightness gap of these reductions, which underscores the importance of further

research in this area to establish concrete security guarantees for ring-LWE-based crypto-

graphic schemes.

After three rounds of evaluation, NIST has selected “CRYSTALS-KYBER” as the fi-

nalist among the candidates for public-key encryption and key-establishment algorithm in

their post-quantum cryptography standardization process. CRYSTALS-KYBER’s security is

based on the module-LWE hardness assumption, which is another algebraic variant of LWE.

The security reductions for module-LWE follow a similar path as ring-LWE. Module-LWE’s

hardness assumption relies on standard hard problems like SIVP or GapSVP on module lat-

tices. The hardness results of module lattices were presented in a seminal work by Langlois

and Stehlé [LS15]. Their work focuses on worst-case to average-case reductions for mod-

ule lattices, taking inspiration from previous works such as [Reg09, LPR13, BLP+13]. The

selection of LWE-based cryptosystems by NIST for post-quantum cryptography candidates

further underscores the significance of the work in [LS15].

However, it is essential to question the tightness of the reductions in [LS15] given that

previous analyses [CKMS16, SS21] have shown that Regev’s reductions were not tight enough

for practical purposes. Similarly, the tightness gap of the reductions in [LS15] has also been

found to be significant, as commented in [KSSS22]. These observations highlight the need

for further research and analysis to ensure the practical feasibility and concrete security

guarantees of module-LWE-based cryptographic schemes.

Here in this chapter, we elaborate on the analysis in further detail.

5.1.1 Outline of the Analysis

The reduction in [LS15] can be divided into two parts. The first part is a reduction from

approximate module-SIVP to the search the module-LWE problem, while the second part is a

reduction from the search module-LWE problem to the decision module-LWE problem. The

concrete analysis of the first part is described in the first section and that for the second part

is described in the next section. The two parts are combined and the end-to-end reduction

from approximate module-SIVP to decision module-LWE is summarised in the concluding
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section.

5.2 Reducing M-SIVPγ to search module-LWEq,≤α

We need to fix four parameters, a positive integer n which denotes the degree of the un-

derlying number field K; a positive integer d which denotes the rank of the module M ; an

integer q ≥ 2 which is used to define the module-LWE problem; and a positive real number

α such that αq ≥ 2
√
d·ω(
√

log n) as mentioned in [LS15]. Once n and d are fixed, we can

talk about the dimension of the module or the module lattice M as N , where N = n·d. In

the asymptotic setting, q and α are considered to be functions of n.

The M -SIVPγ to module-LWEq,≤α reduction is obtained from the following sequence of

algorithms, in which Ai calls Ai+1 for 0 ≤ i ≤ 4. We briefly describe the algorithms below.

Algorithm A0: Solves M -SIVPγ where γ is the parameter of approximation factor. The

input is a module lattice M and the output is a set of N linearly independent elements of

M the longest of which is at most γ·λN(M).

Algorithm A1: Solves M -DGSΓ, where Γ is the width of the Gaussian distribution. The

input is a pair (M, r), where M is a module lattice of K and r ≥ Γ(M). The output is a

sample from the distribution DM,r.

Algorithm A2: This is a quantum algorithm which, given as input a module lattice M

and a set of samples chosen independently from DM,r , returns a sample from DM,r′ , where

r′ ≤ r/2.

Algorithm A3: Solves M -BDDM∨,ζ . The input is a tuple (M∨,y, I), where M∨ is module

lattice in Kd, y ∈ Kd, y = x + e0, x ∈M∨ and e0 = Σ−1(e) is a d dimensional error vector

in Kd and ||e||2,∞ ≤ δ where δ < λ1(M∨)/2. Additionally, A3 has access to a set of samples

I chosen independently from DM,r, here DM,r comes from the input of A2. The output is an

x′ ∈M∨ such that x′ = x except with negligible probability.

Algorithm A4: Solves q-BDDM∨,ζ . A4 has same input as A3. A4 outputs x′ mod q such

that x′ ≡ x mod q except with negligible probability.
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Algorithm A5: A5 solves module-LWEq,≤α. It has access to an oracle that generates

samples from the module-LWE distribution A
(M)
s,r (see Definition 28).

5.2.1 Reduction from M-SIVPγ to M-DGSΓ

The first reduction (Lemma-16 of [LS15]) is between two lattice problems. This lemma

is a module-restricted version of lemma 31. For this reduction, the relation between two

parameters of the problems, i.e. γ and Γ are the following for module lattice M .

Γ(M) =
γ·λN(M)

2
√
N

(5.1)

Lemma 16 of [LS15] requires

Γ(M) =
√

2d·ω(
√

log n)·ηε(M)/α (5.2)

and

γ =
√

8Nd·ω(
√

log n)·ηε(M)/(λN(M)·α) (5.3)

which is satisfied by (5.1). This reduction follows directly from lemma 31. The constraints

of the lemma are ε ≤ 1/10 and Γ(M) ≥
√

2ηε(M). The rank d of module M is at least

1, α < 1 and ω(
√

log n) > 1, which implies that Γ(M) ≥
√

2ηε(M). Lemma 16 of [LS15]

follows all the conditions for the lemma 31. So, given an algorithm A1 to solve M -DGSΓ, it

is possible to construct an algorithm A0 to solve M -SIVPγ.

We review the proof here. The objective is to output a set of N linearly independent

vectors whose longest vector has length at most 2NλN(M). Algorithm A0 uses the LLL

algorithm to obtain a set B0 of N linearly independent vector such that the output vectors

will have length at most 2NλN(M). If d0 is the length of the longest vector in B0, it will

satisfy that λN(M) ≤ d0 ≤ 2NλN(M) For i = 0, . . . , 2N , let ui = d0/2
i. For each i in

{0, . . . , 2N} algorithm A0 does the following. It invokes A1 a total number of N2 times on

the input (M,ui) to obtain a set Si of N2 elements of M chosen independently from DM,ui .

A0 looks for a set Bi of N linearly independent vectors in each of Si and outputs the shortest

set found.

The claim is that with high probability A0 returns N linearly independent vectors whose

longest vector length is at most 2
√
NΓ(M). Firstly if Γ(M) ≥ d0 then length of vectors in

B0 are at most 2
√
NΓ(M) trivially. On the other hand, it can be shown that there exists an i
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in {0, . . . , 2N} such that Γ(M) < ui ≤ 2Γ(M). Similar proof of this claim for general lattice

can be found in section 4.2 using the lemma 19. Hence, we record the following proposition.

Proposition 43. A0 invokes A1 a total of N3 times.

5.2.2 Reducing M-DGSΓ to module-LWEq,≤α

The reduction from M -DGSΓ to module-LWEq,≤α is adapted from [LPR13] and following

theorem is the restatement of the adapted module version, presented in lemma 17 of [LS15].

Theorem 44. Let M ⊆ Kd be a module of rank d > 0, over the ring of integers R of

the number field K of n dimension. Let α = α(N) ∈ (0, 1), q = q(N) ∈ N, such that

αq ≥ 2
√
d · ω(

√
log n). For some negligible ε = ε(N) = N−ω(1), there is a probabilistic

polynomial-time quantum reduction from M-DGSΓ to M-LWEq,≤α.

For r ≥
√

2n · ηε(L)/α, define ri = r · (αp/
√
d· log n)i for i = 1, . . . , 3n.

This theorem is analogous to the Theorem 3.1 of [Reg09], the main difference is that

in [LS15] we work with more algebraic structures. We adopt the same methodology used

in [SS21] to view the proof of the theorem in an algorithmic form. We need some subroutines

and the data structures are as follows.

solveMLWEq,≤α(L): This is the oracle to solve MLWEq,≤α. The list L consists of N c samples

from A
(M)
s,r , where r < α.

solveqModBDD(L,M∨, z): Here M∨ is the dual lattice of M ; L contains N c samples from

DM∨,ri for some i ∈ {1, . . . , 3N}; z is within distance λ1(M∨)/2 of M∨. Returns a

lattice vector in M∨ modulo qM∨ which is closest to z.

solveModBDD(L,M∨, z): The inputs L,M∨ and z are as in the case of solveqModBDD.

Returns a vector of M∨ which is closest to z.

quantumSample(): Uses solveModBDD(L,M∨, ·) as an oracle and some quantum computa-

tion to return a sample from DM∨,ri−1
. The list L contains N c samples from DM∨,ri .

solveDGS(p, α, r): Uses the oracle solveMLWEp,≤α(·) to return a sample from DM,r where

r ≥
√

2d·ω(
√

log(n))·ηε(M)/α. Note that the description of the algorithm solveDGS

provides the proof of Theorem 44.
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In the algorithm descriptions, we will make use of the following two subroutines mentioned

below. The detailed descriptions of the following subroutines in the case of general lattices

can be found in Section 4.3

1. bootstrap(M, r): Here M is a module lattice and r ≥
√

2d·ω(
√

log(n))·ηε(M)/α.

Returns a list L containing N c independent samples from DM,r3N where r3N = r ·
((αp)/(

√
d log n))3N .

2. reconstruct(x): This is used in solveModBDD to reconstruct the closest vector by first

applying a nearest neighbor algorithm and then retracing through the results returned

by the repeated calls to solveqModBDD.

The reduction from M -DGSΓ to MLWEq,≤α comprises different algorithms that we elab-

orate on now. Here DGS parameter Γ comes from (5.2). To solve the DGS problem with

parameter Γ, the algorithm A1 needs to be called with input pair (M, r), where M is the

module lattice and r ≥ Γ(M). Let us define ri = r·(αq/ω(
√
d log n))

i
for i = 0, . . . , 3N . Note

that ri ≥ 2ir due to the assumption that αq > 2ω(
√
d log n), hence r3N ≥ 23Nr. Following

the bootstrap(M, r) function, the algorithm A1 can sample from DM,r3N in polynomial time

without using any LWE oracle as r3N ≥ 22NλN(M).

Algorithm 10 Algorithm to solve M -DGSΓ using an M -LWEq,≤α

1: function solveDGS(q, α, y) // where r ≥ 22NλN(M)
2: L ← {bootstrap(M, r)};
3: for i← 3N down to 1 do
4: L′ ← {};
5: for j ← 1 to N c do
6: y← quantumSample(); // using solveModBDD(L,M∨,y) as an oracle
7: L′ ← L′ ∪ {y}
8: end for
9: L ← L′;

10: ri−1 ← ri · (
√
d log n)/(αq);

11: end for
12: return one element from L;
13: end function.

Following the description of algorithm 10, A1 prepares a list of N1 = N c samples S3N

from DM,r3N , referred to as initial list L. A1 runs a loop starting i = 3N to 1, where in

each iteration A2 is called N1 times with Si and returns a sample from DM,ri−1
, thus in total
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creating N1 samples from DM,ri−1
, referred to as L′. In the 3N th iteration A2 produces N1

samples from DM,r0 or DM,r as desired output.

A2 is the only quantum part of algorithm 10. A2 works with the output of A3. A3

solves M -BDD problem using A4 which solves q-BDD problem. As already mentioned, the

parameter set for both A3 and A4 is the same. At the ith iteration of algorithm 10, A3

solves M -BDDδi . A2 uses the M -BDDδi solver to produce samples from DM,ri−1
. A3 solves

M -BDDδi using A4 solving q-BDDδi . The values of δi must be less than λ1(M∨)/2.

We have r ≥ Γ(M) =
√

2d·ω(
√

log n)·ηε(M)/α and αq ≥ 2
√
d·ω(
√

log n) from initial

assumptions. Together they imply that r >
√

2q·ηε(M). Using δi = αq·ω(
√

logn)√
2nri

the lemma 19,

it can be shown that δi < λ1(M∨)/2 for i = 3N to 1.

We need to provide the algorithm A3 a vector y in RN along with the lattice M∨ and

find the closed lattice vector of the given vector y. The offset in y is a vector e, such that

||e||2,∞ ≤ δi in the ith iteration of algorithm 10 through the call to A2. The same set of

parameters is passed to A4 to solve M -BDD modulo q.

The description of A4 is shown in algorithm 11. A4 has three inputs, a module lattice

M∨, an element y ∈ Kd such that y = x + e0, where x ∈ M∨, e0 = Σ−1(e), here e0 ∈ Kd,

e ∈ Σ(Kd) or e ∈ Rnd and ||e||2,∞ ≤ δi, the third input is a set of points from Gaussian

distribution DM,ri . Here δi = αq·ω(
√

logn)√
2nri

. A4 solves BDD problem using A5 which solves

module-LWEq,≤α.

Using DM,ri and y, a list of LWE samples is prepared, where the unknown for the LWE

problem is the lattice vector x which is closest to given vector y. To make the samples

compatible for the LWE solver A5, each LWE sample is added with an error vector e′ chosen

according to Dα/
√

2.

The general task of A4 in solving an instance of q-BDDδi is similar to that of A5 in solving

module-LWEq,≤α. But there is a major difference. Algorithm A4 works with the lattice M∨

modulo q, whereas A5 works with the lattice (R∨)d modulo q. The reduction handles this

by using an element t ∈ M that gives an isomorphism from R mod q to M mod q and also

in the other direction between the dual lattices M∨ mod q and R∨ mod q. Langlois and

Stehlé [LS15] have extended the idea of isomorphism in number filed 2.4.12 and provided an

isomorphism between Rd
q and Mq and similarly they have shown isomorphism between dual

of these algebraic structures, i.e, between (R∨q )d and (M∨
q )d. Algorithm 12 describes how

M -BDD solver can be formed using a solver of q-BDD.

Proposition 45. We summarise the observations as follows.
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Algorithm 11 Algorithm to solve q-Mod-BDDM∨,d using oracles M -LWEq,≤α and DM,r

1: function solveqModBDD(L,M∨, z)
2: I← {};
3: for each v ∈ L do
4: e′

$←− Dα/
√

2;

5: a← θ−1(v mod qM); // where θ(·) is an isomorphism from Rd
q to Mq

6: b← {〈z,v〉/q + e′} mod R∨;
7: I← I ∪ {(a, b)};
8: end for
9: s← solveMLWEq,≤α(I);

10: return θ−1(s);
11: end function.

Algorithm 12 Algorithm to solve M -BDDM∨,d using a q-BDDM∨,d oracle

1: function solveModBDD(L,M∨, z)
2: z1 ← z;
3: for i← 1 to N do
4: ai ← solveqModBDD(L,M∨, zi);
5: zi+1 ← (zi − θ(ai))/q; // where θ(·) is the same isomorphism that was used in

solveqModBDD
6: end for
7: s← reconstruct(zN+1);
8: return s;
9: end function.

• A1 invokes A2 a total of 3N ·N1 times, where N1 = N c for positive integer c. We

deduce the exact value of N1 in the course of this analysis.

• A2 invokes the reverse circuit of A3 once.

• A3 invokes A4 a total of N times.

• A4 invokes A5 once.

5.2.3 The tightness gap in M-SIVPγ to module-LWEq,≤α

From propositions 43 and 45 we can infer that an algorithm A0 to solve

M -SIVP√8Nd·ω(
√

logn)·ηε(M)/(λN (M)·α) can be constructed using an algorithm A5 that solves

M -LWEq,≤α and the number of times A0 calls A5 approximately 3N5N1 times, where M
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is a module over number field K of rank d, K is a number field of dimension n, N = n·d,

α ∈ (0, 1) and N1 = N c for positive integer c.

5.3 Reducing search module-LWE to module-DLWE

The main result that connects the search module-LWE problem to the decision module-LWE

problem is the following.

Theorem 46. [Modified Version of Theorem 10 of [LS15]] Let ε(N) = N−ω(1), α ∈ (0, 1) and

q ≥ 2, a prime with q ≤ poly(N) and q = 1 mod m, such that αq ≥ 2
√
d·ω(
√

log n). There

is a polynomial time classical reduction from solving M-LWEq,≤α to M-LWEq,Dξ , given only

bounded samples l, ξ = α(NN3l/log(NN3l))
1/4, N

1/4
3 >

√
N .

Here, N is the dimension of the underlying module lattice M ⊆ Kd, and d denotes the

rank of the module. Here N = n·d, n is the degree of the number filed K. Hence, N is also

the dimension of the unknown vector in module-LWE.

The factor M is not present in original Theorem 10 of [LS15]. This factor is the result

of the concrete security analysis of this very theorem. We provide the full calculation in the

later part of this chapter. Results for this section are applied to the Cyclotomic Number

field. A few basics of the Cyclotomic number field have been covered in Section 2.4.11 of

Chapter 2. More related results for the reductions in this section are discussed here.

Setup related to Cyclotomic Number Field

• ζ = ζm, the mth primitive root of unity.

• K = Q(ζ) of even degree n = ϕ(m), cyclotomic number field.

• R = OK = Z[ζ] is the ring of integers.

• q ≡ 1 mod m is a poly(n)-bounded prime.

• 〈q〉 =
∏

i∈Z∗m
qi

• Field automorphism τk(ζ) = ζk for k ∈ Z∗m
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Results needed for the Reduction: We describe the basic results related to the cyclo-

tomic number field in section 2.4.11. Here we add some more specific results related to the

following reductions. We know that cardinality of the set R∨q is qn and cardinality of the set

R∨/(qiR
∨) is q for i ∈ Z∗m. The representatives of the q distinct cosets of R∨/(qiR

∨) can

be taken to be the elements of the set {0, . . . , q − 1}. Chinese Remainder Theorem (CRT)

can be used to show that there is an isomorphism between R∨q and
⊕

i∈Z∗m
(R∨/(qiR

∨)).

Let I be the isomorphism between R∨q and
⊕

i∈Z∗m
(R∨/(qiR

∨)) and I. can be efficiently

computed in both the forward and the backward directions. We write I(w) = (wi)i∈Z∗m
,

where w ∈ R∨q and wi ∈ (R∨/(qiR
∨)) for i ∈ Z∗m. If we have wi’s for each i ∈ Z∗m we can

construct w such that w = I−1(wi)i∈Z∗m
. For i ∈ Z∗m, let wi ∈ {0, . . . , q − 1} represent a

coset of R∨/(qiR
∨). Given (wi)i∈Z∗m , it is possible to efficiently construct w ∈ R∨q such that

the i-th component of I(w) is represented by wi. For the sake of notational convenience,

we let w denote I−1((wi)i∈Z∗m). Extending the same way we can define an isomorphism I′

between (R∨q )d and (
⊕

i∈Z∗m
(R∨/(qiR

∨)))d. Here I′ is nothing but the simultaneous use of d

I isomorphisms. Extending the same logic we can say that I’ can be efficiently computed in

both the forward and the backward directions. Here the input to I′ is a vector w ∈ (R∨q )d

of d elements. Let w = (ŵ1, ŵ2, . . . , ŵd). So the i-th I of I′ will act on the element ŵi

the same way it is defined to work. Each I will output n elements from R∨/(qiR
∨) for

i ∈ Z∗m. Hence I′ will concatenate the outputs of I and provide n·d elements as output. Let

w = (ŵ1, ŵ2, . . . , ŵd) ∈ (R∨q )d as before, implies I′(w) = I(ŵ1), . . . ,I(ŵd). For an element

ŵi ∈ R∨q , we can have I(ŵi) = (wij)j∈Z∗m
where wij ∈ (R∨/(qjR

∨)) for j ∈ Z∗m. Again for the

sake of notational convenience, we let w denote (I−1((ŵ1i)i∈Z∗m), . . . ,I−1((ŵdi)i∈Z∗m)).

Hybrid Distribution (Ais,r): Let the representatives of Z∗m be chosen from the set {1, . . . ,m−
1} with the usual ordering. For i ∈ Z∗m, let i− denote the largest element in Z∗m which is

less than i with the convention that 1− is taken to be 0. The distribution Ais,r ∈ (Rq)
d×T

for i ∈ Z∗m∪{0}, an arbitrary s ∈ (R∨q )d and positive real number r is following. A sample

from A
(M)
s,r consists of a pair (a,b), where a ∈ (Rq)

d and b = σ(〈a·s〉/q) + e mod σ(R∨)),

where e is chosen from H following the distribution Dr. A sample from Ais,r is a sample from

A
(M)
s,r whose k-th component for k ≤ i has been randomised by adding a uniform random

hk ∈ {0, 1, . . . , q − 1} to the k-th component of 〈a·s〉.

For i ∈ Z∗m, let χ(i) be the following distribution over R∨q . For k ∈ Z∗m, choose hk ∈
{0, . . . , q − 1} as follows: hk = 0 for k > i; and for k ≤ i, the hk’s are chosen independently

and uniformly; return h = I−1((hk)k∈Z∗m).
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A sample from Ais,r is obtained as follows. For i ∈ Z∗m, let h be sampled from χ(i). Choose

(a,b) ← As,r and output (a,b + σ(h)/q mod σ(R∨)) as a sample from Ais,r; for i = 0, the

distribution A0
s,r is defined to be A

(M)
s,r .

A sample from Ais,r hides information about s with respect to the factors qk of 〈q〉 for

k ∈ Z∗m and k ≤ i. For i ∈ Z∗m or i = 0, as i increases from 0 to m − 1, information

about s is hidden in one more qi-component than in the previous step. At the beginning,

i.e. i = 0, all the components in the output of I carry information about s, while at the

end, i.e., i = m − 1, the element 〈a·s〉 + h is a uniform random element of R∨q which is

independent of both s and a. So for a sample (a,b) drawn from Am−1
s,r , a is uniform over Rq

and b is independent of a; further, b is the sum modulo σ(R∨) of a uniform random element

of σ(R∨q )/q and an element drawn from the distribution Dr. Consequently, a sample drawn

from Am−1
s,r is almost uniform over Rq × T.

5.3.1 Some Intermediate Problems

We need a few intermediate problems to reduce the search module-LWE problem to the

decision module-LWE problem.

qi-MLWEq,≤α: This is one of the variants of the search module-LWE problem. For i ∈ Z∗m
the qi-MLWEq,α problem is the following. Given access to A

(M)
s,r for some arbitrary s ∈ (R∨q )d

and and a positive real number r ≤ α find (s mod qiR
∨). Based on the result in the

previous section, let s = (s1, . . . , sd) ∈ (R∨q )d. So, I′(s) = I(s1), . . . ,I(sd). We need to find

ith components of I′(s) or the set {s′1, . . . , s′d}, such that s′j = ith component of I(sj) where

j ∈ [d] and i ∈ Z∗m.

Module DLWE (variable width) relative to qi: For i ∈ Z∗m and a positive real number

α, the module-VDLWEi
q,≤α problem is the following. Given access to Ais,r for s ∈ (R∨q )d,

positive real number r ≤ α and j ∈ {i, i−}, the requirement is to find j. In other words,

the solver must determine whether or not the i-th component of the distribution has been

randomized.

Module DLWE (fixed width) relative to qi Let i ∈ Z∗m and r0 > 0 be a real number.

The module-FDLWEi
q,r0

problem is the following. Choose s uniformly at random from (R∨q )d.

The requirement is to distinguish between Ais,r and Ai−s,r.
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Here we append F in front of DLWE to distinguish between the fixed-width error distri-

bution and the variable-width error distribution. In case of later, we append V.

A distinguisher D1 is a probabilistic polynomial-time algorithm that solves module-

FDLWEi
q,r0

problem. D1 takes a list T as an input. List T contains samples from Ajs,r0 ,

where j ∈ {i, i−}. D1 tries to predict j.

For a fixed s ∈ (R∨q )d , let ps,0(resp. ps,1) be the probability that D1 outputs 1 when T
consists of samples from Ai−s,r0 (resp. Ais,r0), where the probability is taken over all components

of the input other than s as well as the internal coin tosses of D1. The advantage of the

distinguisher is |ps,0 − ps,1|. For ε1, ε2 ∈ (0, 1], we say that D1 is an (ε1, ε2)-distinguisher if

D1 has advantage at least ε2 for at least a proportion ε1 of the set of possible s ∈ (R∨q )d.

Like the previous section, we define the algorithms that solve the intermediate problems.

• A6: an algorithm to solve qi-MLWEq,≤α.

• A7: an algorithm to solve module-VDLWEi
q,≤α.

• D1: a distinguisher to solve module-FDLWEi
q,r0

.

• D2: a distinguisher to solve module-DLWEq,r0 .

In the following sections, we describe each algorithm in greater detail to find the tightness

gap of each reduction. We need some subroutines for algorithmic representation of the

reductions, which are as follows.

solveQLWEq,≤α(I, i) : This is the oracle to solve qi-MLWEq,≤α. The list I consists of N c

samples from A
(M)
s,r , where r ≤ α.

solveVDLWEq,≤α(I, i) : This is the oracle to solve module-VDLWEi
q,≤α. The list I consists

of N c samples from A
(M)
s,r , where r ≤ α.

solveFDLWEq,≤α(I, i) : This is the oracle to solve module-FDLWEi
q,r0

. The list I consists

of N c samples from A
(M)
s,Dr0

, where r0 > α.

5.3.2 Reducing module-LWEq,≤α to qi-MLWEq,≤α

Algorithm 13 represents the reduction from module-LWEq,≤α to qi-MLWEq,≤α. Here we

provide a brief description of the algorithm. Algorithm A6 solves qi-MLWEq,≤α. We want to
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construct an algorithmA5 to solve module-LWEq,≤α. A5 computes s, whereasA6 computes i-

th components of I′(s). If all the component for i ∈ Z∗m can be computed, s can be computed

easily from the isomorphism I′. To compute all the components A5 uses automorphism. To

get j-th components from i-th component, it does the following. For each j ∈ Z∗m, let

k = j·i−1 mod m. A5 transforms the LWE samples by using automorphism on them, as

(τk(a), τk(b)). A5 provides (τk(a), τk(b)) to A6 whenever A6 makes oracle query for LWE

samples. Let A6 outputs sj as the j-th components of s. When all the components of I′(s)

are obtained, s is computed using I′ in the reverse direction.

Algorithm 13 Algorithm to solve M -LWEq,α using an qi-MLWEq,≤α oracle.

1: function solveMLWE(I, i)
2: for j ∈ Z∗m do
3: J ← {};
4: for each (a = (a1, . . . , ad),b = (b1, . . . , bd)) ∈ I do
5: a← (τj/i(a1), τj/i(a2), . . . , τj/i(ad)) ∈ (Rq)

d;
6: b← (τj/i(b1), τj/i(b2), . . . , τj/i(bd)) ∈ T;
7: J ← J ∪ {(a,b)};
8: end for
9: (t1j, t2j, . . . , tdj)← solveQLWEq,≤α(J , i);

10: t1j ← τ−1
j/i (t1j), . . . , tdj ← τ−1

j/i (tdj);
11: end for
12: for k = 1 to d do
13: sk ← I−1((tkj)j∈Z∗m

);
14: end for
15: return s = (s1, s2, . . . , sd)
16: end function.

Proposition 47. A5 invokes A6 a total of n times. The numbers of LWE queries made by

A5 and A6 are equal.

5.3.3 Reducing qi-MLWEq,≤α to module-VDLWEi
q,≤α

We have an oracle to solve module-VDLWEi
q,≤α, i.e. algorithm A7. We need to find an

algorithmA6 to solve qi-MLWEq,≤α. Let s = (s1, s2, . . . , sd) be secret vector. The algorithmic

representation of the procedure is described in algorithm 14, where we recover the i-th

component of I(s1). The same procedure can be repeated d times along with the change

in the vector v to find the i-th components of I′(s), or a vector (I(s1), . . . ,I(sd)). Each

component of I(si) can be represented by an element from the set {0, 1, . . . , q − 1}. So
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the actual output will be a vector of length d, where each element will be from the set

{0, 1, . . . , q−1}. Algorithm A6 does the following. For each x ∈ {0, 1, . . . , q−1}, it computes

an element g ∈ R∨q such that I(g) = x in the i-th component and I(g) = 0 in all other

components. A6 provides the LWE samples to A7 in following manner. Let (a,b) ∈ A(M)
s,r

where r ≤ α. A6 computes a vector v ∈ (Rq)
d such that the i-th components of I(y) are

chosen uniformly at random from {0, 1, . . . , q−1} and all other components of I(y) are equal

to zero. A6 computes a′ ← a + v and b′ ← b + σ((h + v·g)/q), where h ∈ R∨q is used to

randomises the first i− components of the output sample. A6 provides A7 with the samples

(a′,b′). When the value of x is equal to the i-th component of I(s1), then the samples

(a′,b′), input to A6 are from the distribution Ai−s,r, in all other cases the input samples are

from Ais,r. Hence A6 returns the corresponding x as the desired output only when A7 returns

i−. In order to find the i-th component of I(sj), we need to start the algorithm 14 with the

initial vector v = (0, . . . , y . . . , 0) ∈ (Rq)
d, i.e. y in the j-th component of v and all other

d− 1 components are set to 0.

Algorithm 14 Algorithm to solve qi-MLWEq,≤α using an module-VDLWEi
q,≤α oracle.

1: function solveQLWE(I, i)
2: Choose y ∈ Rq, s.t, y is uniformly random mod qi and is equal to 0 mod qj ∀ j 6= i,

and i, j ∈ Z∗m;
3: v = (y, 0, . . . , 0) ∈ (Rq)

d;
4: Choose h ∈ R∨q , s.t., h is uniformly random and independent mod qjR

∨ ∀ j < i and
equal to 0 mod qjR

∨ ∀ j ≥ i and i, j ∈ Z∗m;
5: for each g ∈ R∨q do
6: J ← {};
7: for each (a,b) ∈ I do
8: a′ ← a + v;
9: b′ ← b + σ((h+ v·g)/q);

10: J ← J ∪ {(a′,b′)};
11: end for
12: j ← solveVDLWE(J , i);
13: if j == i then
14: return g;
15: end if
16: end for
17: end function.

Proposition 48. A6 invokes A7 at most q·d times. The numbers of LWE queries made by

A6 and A7 are equal.



Reducing search module-LWE to module-DLWE 87

5.3.4 Reducing module-VDLWEi
q,≤α to module-FDLWEi

q,r0

In this section we investigate a polynomial time reduction between module-VDLWEi
q,≤α prob-

lem to module-FDLWEi
q,r0

problem. We have a distinguisher D1 to solve module-FDLWEi
q,r0

problem. We need to device an algorithm A7 to solve module-VDLWEi
q,≤α. The module-

VDLWEi
q,≤α problem is said to be a worst-case problem as we need to solve this for an

arbitrary value of s ∈ (Rq)
d. On the other hand, module-FDLWEi

q,r0
is said to be an aver-

age case problem as we need to solve this for the values of s chosen uniformly from (Rq)
d.

Though these terms (worst-case, average-case) have not been used explicitly in [LS15], the

main idea has been borrowed from [Reg09] and [LPR13]. We have distinguished these prob-

lems as variable-length error problems and fixed-length error problems respectively. The

reduction between these two problems has been stated in [LS15] for elliptical Gaussian error

distribution only. [LPR13] has presented this problem in both the settings, viz elliptical

and spherical Gaussian distributions. For practical purposes, only spherical distribution is

chosen. Hence we limit our focus only to spherical distributions (variable length or fixed

length) for the whole analysis.

Here we restate the simplified version of the lemma analogous to lemma 5.16 of [LPR13].

Originally in this lemma, the module-VDLWE problem has been stated for the family of

elliptical Gaussian distributions but here we consider the family of spherical Gaussian dis-

tributions.

Lemma 49. For α > 0, l ≥ 1 and for all i ∈ Z∗m, there is a randomized polynomial time

algorithm which reduces module-VDLWEi
q,≤α problem to module-FDLWEi

q,r0
problem, where

l is the number of LWE samples, N3
1/4 >

√
N and

r0 = α·( NN3l

ln (NN3l)
)
1/4

. (5.4)

We describe the reduction in the algorithm 15 and elaborate on the same in detail here.

A7 has access to a list T = ((ak,bk))1≤k≤l of l samples from Ajs,r, where r ≤ α and j ∈ {i, i−}.
We define another list T ′ = ((ak

′,bk
′))1≤k≤l where ak

′ = ak and bk
′ = bk + σ(〈ak, t〉) + fk(

mod σ(R∨)). Here t ∈ (R∨q )d and f1, f2, . . . , fl are chosen independently from Dr0 . Error

vector in bk follows Dr and fk follows Dr0 , hence error vector in bk
′ follows Dr′ where

r′ =
√
r2 + r2

0. So, the samples from T ′ are from Ajs+t,r′ . Now prepare another list T ′′

from T ′. In T ′′, ak remains unchanged but bk is modified as follows. bk = bk + σ(hk)/q(

mod (R∨)), where hk’s are uniformly random and independent mod qjR
∨ for j ≤ i and
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hk’s are 0 mod qjR
∨ for j > i. So in T ′′ we randomize first i components of 〈ak, s + t〉.

So, it is clear that T ′′ has samples from Ais+t,r′ .

We construct algorithm 15 to simulate A7 by using the distinguisher D1 as follows. It

has two nested loops. The outer loop runs N2 times and the inner loop runs N3 times. In

each iteration of the outer loop, A7 chooses t uniformly at random from (R∨q )d. In each

iteration the inner loop using samples from Ais,r0 a list T is constructed, then using T and

f1, f2, . . . , fl another two lists (T ′ and T ′′) are created. In the last part of the inner loop D1

is called with the inputs T ′ and T ′′ and captures the one bit output in the variables cnt0

and cnt1 respectively. At the end of the inner loop, we capture the estimated probabilities in

the variables p̂0 and p̂1 respectively. Here p̂0 and p̂1 is estimated probabilities of p0, p1 that

D1 accepts input from Ajs+t,r′ and Ais+t,r′ respectively. If any of the N2 outer loop results

in |p̂0 − p̂1| ≥ ε2/4, the algorithm returns i− and halts else it returns i and halts when this

condition is not satisfied by any of the N2 iterations.

Here D1 is an (ε1, ε2) distinguisher which works for samples error drawn from Dl
r0

, where

T ′ and T ′′ contains error samples from Dl
r′ . The following analysis shows how D1 works with

the input samples drawn from T ′ and T ′′. Methods of hypothesis testing can be adapted to

analyze the errors that may occur in algorithm 15. Algorithm 15 may return an incorrect

answer in two ways. First, when j = i it returns i−, and second when j = i− and it returns

i. The first is Type-1 failure and the second is Type-2 failure. When j = i both lists T ′ and

T ′′ follow Ais+t,r′ , so p0 = p1. For each of the N2 iterations of the outer loop we have

Pr[p0 − ε2/8 ≤ p̂0 ≤ p0 + ε2/8] ≥ 1− 2exp(−N3ε
2
2/32)

Pr[p1 − ε2/8 ≤ p̂1 ≤ p1 + ε2/8] ≥ 1− 2exp(−N3ε
2
2/32)

due to the additive form of the Chernoff-Hoeffding bound. As p0 = p1, it implies that

Pr[p̂0 − p̂1] ≥ 1 − 4exp(−N3ε
2
2/32). So, for all N2 outer loop iterations the Type-1 failure

probability becomes at most 4N2exp(−N3ε
2
2/32). When j = i−, T ′ follows Ai−s+t,r′ and T ′′

follows Ais+t,r′ . In any of the N3 iterations of the inner loop let z1, . . . , zl be the errors in

samples of T ′, T ′′. Let z be the concatenation of z1, . . . , zl, so z follows DN3l
r′ . Suppose

z follows DN3l
r0

instead of DN3l
r′ . Then we can use D1 appropriately. Here we change the

Gaussian error width from r′ to r0, later we will have to compute the correction factor

using Renyi Divergence. We denote the corresponding probabilities and their estimates by

p0, p1, p̂0 and p̂1 respectively. Let ps+t,0 and ps+t,1 respectively denote the probabilities p0
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and p1 corresponding to a particular value of t. Similarly, let p̂s+t,0 and p̂s+t,1 respectively

denote the estimates p̂0 and p̂1 corresponding to a particular value of t. Lastly let p̂s+t,z,0

and p̂s+t,z,1 respectively denote the estimates p̂0 and p̂1 corresponding to a particular value

of t and z. We say that a value s + t is good if |ps+t,0 − ps+t,1| ≥ ε2. From the definition of

an (ε1, ε2) distinguisher, the probability of a good s + t is at least ε1. If we use the additive

form of the Chernoff-Hoeffding for good s + t it follows.

Pr[ps+t,0 − ε2/4 ≤ p̂s+t,0 ≤ ps+t,0 + ε2/4] ≥ 1− 2exp(−N3ε
2
2/8)

Pr[ps+t,1 − ε2/4 ≤ p̂s+t,1 ≤ ps+t,1 + ε2/4] ≥ 1− 2exp(−N3ε
2
2/8)

From above equations along with the condition that |ps+t,0 − ps+t,1| ≥ ε2 we get

Pr[|p̂s+t,0 − p̂s+t,1| ≥ ε2/2] ≥ 1− 4exp(−N3ε
2
2/8) (5.5)

If we take N3 a constant factor of ε−2
2 the difference |p̂s+t,0 − p̂s+t,1| will be at least ε2/2

with probability at most 1.

N3 = O(ε−2
2 ) (5.6)

Given a good s + t, we say that z is good if |p̂s+t,z,0 − p̂s+t,z,1| ≥ ε2/4 holds. The

probability of a good z is at least ε2/4 (Refer Proposition 53). Now when we change the

error distribution from DN3l
r0

to DN3l
r′ , the probability of a good z under DN3l

r′ is at least

ε22/(256NN3l)
−1/2 (Refer Proposition 57). So the probability of a good pair (s + t, z) where

z follows DN3l
r′ is at least ε1ε

2
2/(256NN3l)

−1/2. If N2 is around (256NN3l)
1/2/ε1ε

2
2 then with

probability exponentially close to 1 a good tuple will be encountered in one of the iterations

of the outer loop. Type-2 failure can occur in two ways. The first way is that in none

of the N1 iterations, a good tuple is obtained. The second way is that for a good tuple,

the condition |p̂s+t,z,0 − p̂s+t,z,1| ≥ ε2/4 does not hold. The above analysis shows that the

probability of either of these errors is exponentially small.

Proposition 50. A7 invokes D1 at most N2·N3 times, which is about (256Nl)1/2N3
3/21/2

/ε1ε
2
2

or (ε1ε
5
2)
−1

(256Nl)1/2, where N3 is about ε−2
2 . The number of times A7 calls its LWE oracle

is about (ε1ε
5
2)
−1

(256N)1/2l3/2.
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Algorithm 15 Reducing module-VDLWEi
q,≤α to module-FDLWEi

q,r0

1: function solveFDLWE(L, i)
2: for k = 1 to N2 do;
3: Choose a uniform t ∈ (R∨q )d;
4: cnt0 ← 0, cnt1 ← 0;
5: for l = 1 to N3 do;
6: Obtain a list T of l samples from Ais,r0 ;
7: Choose f1, f2, . . . , fl independently from Dl

r0
;

8: Compute T ′ and T ′′ from T and f1, f2, . . . , fl;
9: cnt0 ← cnt0 +D1(T ′), cnt1 ← cnt1 +D1(T ′′);

10: end for
11: p̂0 ← cnt0/N3, p̂1 ← cnt1/N3;
12: if then|p̂0 − p̂1| ≥ ε2/4;
13: return i−;
14: end if
15: end for
16: return i;
17: end function.

5.3.5 Reducing module-FDLWEi
q,r0

to module-DLWEq,r0

The last reduction is from module-FDLWEi
q,r0

problem to module-DLWEq,r0 . We have al-

ready mentioned that distinguisher D2 is to solve module-DLWEq,r0 . So we need to have

distinguisher D1 from distinguisher D2 as an oracle. Let D2 be (δ1, δ2)-distinguisher. So, D2

has an advantage at least δ2 on a δ2 fraction of the set of possible values of s. As per the lemma

5.14 of [LPR13], there exists an i ∈ Z∗m, we can construct a (δ1/N, δ2/N)-distinguisher D1,

given D2 as an oracle. If D1 is a (ε1, ε2)-distinguisher, then we get ε1 = δ1/N and ε2 = δ2/N .

Lemma 5.14 of [LPR13] does not explicitly show how to construct D1 but rather proves its

existence. In order to determine proper i, we need to perform the end-to-end (M -SIVPγ to

module-DLWEq,r0) exercise for each possible i, i.e. N times, and select the set of independent

vectors of the smallest maximum length. We have already shown that N3 is around ε2, so

the value of N3 comes around the following

N3 = N2δ2
−2 (5.7)



Reducing search module-LWE to module-DLWE 91

5.3.6 The tightness gap in qi-MLWEq,≤α to module-DLWEq,r0

Here we need to find out the tightness gap of the end-to-end reduction from qi-MLWEq,≤α

to module-DLWEq,r0 . From Proportion 47, we get that A5 invokes A6 a total of n times.

From Proportion 48, we get that A6 invokes A7 at most q·d times. From Proportion 50,

we get that A7 invokes D1 at most N2·N3 times, which is about (256Nl)1/2N3
3/21/2

/ε1ε
2
2 or

(ε1ε
5
2)
−1

(256Nl)1/2, where N3 is about ε−2
2 . D1 and D2 are basically identical with related

parameters. So the number of times A5 calls D2 is about (Nq)·(ε1ε52)
−1·(256Nl)1/2. Putting

ε1 = δ1/N and ε2 = δ2/N we get that A5 calls D2 is about (N15/2q)·(δ1δ
5
2)
−1·(256l)1/2 ≈

(N15/2q)(δ1δ
5
2)
−1
l1/2. Now, we need to find the value N1, the number of queries made by

A5, A6 and A7 are all equal as per Proposition 47, 48 and 50. So, the number of LWE

queries made by A5 is about (ε1ε
5
2)
−1

(256N)1/2l3/2. Using the values of ε1 and ε2 the value of

N1 comes about N6(δ1δ
5
2)
−1

(256N)1/2l3/2 ≈ N13/2(δ1δ
5
2)
−1
l3/2. Here we take N3 = (δ2/N)−2

from Equation 5.7.

5.3.7 The tightness gap in M-SIVPγ to module-DLWEq,r0

The tightness gap for the entire reduction is the number of times A0 calls D2. From Sec-

tion 5.2.3, we get that A0 calls A5 approximately 3N5N1. From Section 5.3.6, we get that

A5 calls D2 approximately (N15/2q)(δ1δ
5
2)
−1
l1/2. Hence the total number of oracle calls is

about (N25/2q)(δ1δ
5
2)
−1·l1/2N1. Putting the estimated value of N1 = N13/2(δ1δ

5
2)
−1
l3/2, we

get the total tightness gap to be about (N19q)(δ1δ
5
2)
−2
l2. Additionally, we have a factor of N

in the number of times A0 calls D2, that we get from 5.3.5. If we use N = n·d in the above

figure we get the following. The number of times A0 calls D2 is around (n20qd20)(δ1δ
5
2)
−2
l2.

The quantum part of the reduction requires about 3(nd)2 logical qubits.

Theorem 51. Let K be the m-th cyclotomic number field having degree n = ϕ(m) and

R = OK be its ring of integers. Let M be a d rank module and a subset of Kd. So, the

dimension of the module M is N = n·d. Let r0 be a positive real number bounded from

above by O(
√

logN/N). Let δ1, δ2 ∈ (0, 1]. Let q be a prime greater than 2 such that

q ≡ 1 mod m and q > (2ω(
√

lnN)/r0) · (NN3`/ ln(NN3`))
1/4, where N3 is defined in the

course of the proof and has magnitude Õ(N2/δ2
2), and ` is a positive integer. Suppose there

is a (δ1, δ2)-distinguisher D2 which solves module-DLWEq,r0 given ` samples. Then there is a

quantum algorithm A0 requiring approximately 3N2 logical qubits to solve M-SIVPγ, where

γ = Õ(N5/4`1/4/(r0δ
1/2
2 )). The number of times A0 calls D2 is about (n20qd20)(δ1δ

5
2)
−2
l2
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5.4 Reduction from ideal SIVP to ring-LWE

The reduction for SIVP for module lattice to module-LWE [LS15] is a generalization of SIVP

for the ideal lattice to the ring-LWE by [LPR13]. In module lattice, the dimension of the

lattice and degree of LWE is N = n·d, where n is the degree of the number filed K and d is

the rank of module M . If we restrict M for d = 1, the algebraic setting corresponds to ideal

lattices of dimension N = n. The previous analysis is applied to the ring setting without

any change. So, we can talk about the tightness result for ideal lattice and ring-LWE by the

following theorem using Theorem 51. The analysis related to reduction from ideal SIVP to

ring-LWE can be found here [KSSS22].

Theorem 52. Let K be the m-th cyclotomic number field having degree n = ϕ(m) and

R = OK be its ring of integers. Let r0 be a positive real number bounded from above by

O(
√

log n/n). Let δ1, δ2 ∈ (0, 1]. Let q be a prime greater than 2 such that q ≡ 1 mod m and

q > (2ω(
√

lnn)/r0) · (nN2`/ ln(nN2`))
1/4, where N2 is defined in the course of the proof and

has magnitude Õ(n2/δ2
2), and ` is a positive integer. Suppose there is a (δ1, δ2)-distinguisher

D2 which solves ring-DLWEq,r0 given ` samples. Then there is a quantum algorithm A0

requiring approximately 3n2 logical qubits to solve K-SIVPγ, where γ = Õ(n5/4`1/4/(r0δ
1/2
2 )).

The number of times A0 calls D2 is about qn20`2 · (δ1δ
5
2)−2.

5.5 Details of the analysis in Section 5.3.4

We first show the lower bound on the probability of a good z for a good s + t.

Proposition 53. For a good s + t, under the error distribution D`N3
r0

the probability that z

is good is at least ε2/4.

Proof. Since s + t is good, we have |p̂s+t,0 − p̂s+t,1| ≥ ε2/2. Without loss of generality, we

assume p̂s+t,0 ≥ p̂s+t,1 + ε2/2. Let Z denote the set of all N3`-tuples z, and let Y denote the

subset of Z consisting of z such that p̂s+t,z,0 ≥ p̂s+t,z,1 + ε2/4. We claim that Y has measure

at least ε2/4. Assume the contrary. We then have

p̂s+t,0 =

∫
Y

p̂s+t,z,0D
`N3
r0

(z) +

∫
Z\Y

p̂s+t,z,0D
`N3
r0

(z)

<

∫
Y

1 ·D`N3
r0

(z) +

∫
Z

(p̂s+t,z,1 + ε2/4)D`N3
r0

(z)

≤ ε2/4 + p̂s+t,1 + ε2/4,
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a contradiction. This shows that the probability of z being good is at least ε2/4.

Next, we consider the effect of changing the error distribution from D`N3
r0

to D`N3

r′ . To do

this, we introduce a quantity whose logarithm is the Rényi divergence of order 2. Let k be

a positive integer. For two probability density functions1 P,Q : Hk → R≥0, let

R(P ||Q) =

∫
Hk

P (x)2

Q(x)
dx. (5.8)

By an abuse of notation, we write R(D||D′) to denote R(P ||Q), where D and D′ are the

distributions corresponding to P and Q respectively. For a measurable subset B of Hk, we

have,

(PrD[B])2 =

(∫
B

P (x)dx

)2

(5.9)

≤
(∫

B

P (x)2

Q(x)
dx

)(∫
B

Q(x)dx

)
(5.10)

≤
(∫

Hk

P (x)2

Q(x)
dx

)
PrD′ [B]

= R(D||D′)PrD′ [B]. (5.11)

The derivation of (5.10) from (5.9) is made using the Cauchy-Scharwz inequality2.

Proposition 54. The minimum value of c such that x2/
√

2x2 − 1 is less than 1 + c(x− 1)2

for x > 1 is c = 2.

Proof. We first show that for x > 1, x2/
√

2x2 − 1 < 1 + 2(x− 1)2. Let p(x) = (2x2− 1)(1 +

2(x− 1)2)2− x4. Then x2/
√

2x2 − 1 < 1 + 2(x− 1)2 if and only if p(x) > 0. The polynomial

p(x) factors as p(x) = (8x3 − 8x2 + 3x+ 9)(x− 1)3 = (8x2(x− 1) + 3x+ 9)(x− 1)3 which is

a sum and product of positive numbers for x > 1. Hence, it follows that p(x) > 0 for x > 1.

We next show that if the 2 in 1 + 2(x − 1)2 is replaced by c < 2, then the inequality

x2/
√

2x2 − 1 < 1 + c(x − 1)2 cannot hold when x is close to 1. We set ε = x − 1 and

1In Claim 5.11 of [LPR13], the density functions are considered to be over Rn. Here we consider density
functions over Hk.

2In the Cauchy-Scharwz inequality of the form
(∫

B
f(x)g(x)dx

)2 ≤ (∫
B
f(x)2dx

) (∫
B
g(x)2dx

)
, take

f(x) = P (x)/
√
Q(x) and g(x) =

√
Q(x).



94 Reduction from module SIVP to module-LWE

t = 4ε+ 2ε2 and use the Taylor series (1 + t)−1/2 = 1− t/2 + 3t2/8±O(t3). We have

x2

√
2x2 − 1

= (1 + ε)2(1 + 4ε+ 2ε2)−1/2

= (1 + 2ε+ ε2)(1− 2ε− ε2 + 3(4ε+ 2ε2)2/8±O(ε3))

= 1 + 2ε2 ±O(ε3).

For c < 2 and small ε, this is greater than 1 + cε2.

Proposition 55. Let k ≥ 1 be a positive integer and r1, r2 ∈ R+ be such that 1 < r2/r1 <

1+
√

ln(nk)/(nk)/2. Let Dr1 and Dr2 be the continuous Gaussian distributions on H having

widths r1 and r2 respectively. Then

R(Dk
r1
||Dk

r2
) ≤

(
1 +

1

2
· ln(nk)

nk

)nk
. (5.12)

Proof. Direct calculation from the definition of the continuous Gaussian distribution Dr on

H shows that for r > 0 and x > 1/
√

2, R(Dr||Dxr) = (x2/
√

2x2 − 1)n. For x > 1, from

Proposition 54, we have (x2/
√

2x2 − 1)n is smaller than (1 + 2(x− 1)2)n. So R(Dk
r1
||Dk

r2
) =

(R(Dr1||Dr2))
k ≤ (1 + ln(nk)/(2nk))nk.

Setting x = α2/r2
0 in the inequality 1 +x < (1 +x/2)2 for x 6= 0 and using (5.4), we have

1 ≤ r′

r0

=

√
r2 + r2

0

r0

≤

√
1 +

α2

r2
0

< 1 +
1

2
· α

2

r2
0

= 1 +
1

2

(
ln(NN3`)

NN3`

)1/2

. (5.13)

Applying Proposition 55 with k = N3`, r1 = r0 and r2 = r′, we obtain

R(D`N3
r0
||D`N3

r′ ) ≤ (1 + ln(NN3`)/(2NN3`))
NN3`. (5.14)

Proposition 56. The right hand side of (5.14) is about (NN3`)
1/2.

Proof. The approximation can be seen by setting x = (2NN3`)/(ln(NN3`)) and m =

(ln(NN3`))/2 in (1 + 1/x)mx ≈ em.

Proposition 57. For a good s + t, the measure of the set of good z under D`N3

r′ is at least

about ε22/(256NN3`)
1/2.

Proof. From Section 5.3.4, we have that for a good s + t the measure of the set of good z

under D`N3
r0

is at least ε2/4. In (5.11), considering B to be the set of good z and replacing k
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by N3`, we have

Pr
D
`N3
r′

[B] ≥

(
Pr

D
`N3
r0

[B]
)2

R(D`N3
r0 ||D`N3

r′ )
≥ ε22

16R(D`N3
r0 ||D`N3

r′ )
'

ε22
(256NN3`)1/2

.

Remark: 1. In [LPR13], the ratio r0/α is defined to be ((N`)/ ln(N`))1/4. If we use this

definition of r0/α, and take k = ` in Proposition 55, then instead of (5.14) we would obtain

R(D`N3
r0
||D`N3

r′ ) ≤ (R(D`
r0
||D`

r′))
N3 ≈ (N`)N3/2. (5.15)

Since N3 > N2, this would lead to super-exponential running time > NN2
.

5.6 Conclusion

Throughout this chapter, we have delved into the concept of the tightness gap of the reduction

from the SIVP in a module lattice to the module-LWE problem. We have thoroughly explored

the intricacies and implications of this reduction and examined various related issues. It is

crucial to acknowledge that the reduction we discussed from the ideal SIVP to ring-LWE

represents a specific and constrained version of the analysis. Nonetheless, the results and

insights gained from this analysis can be directly adapted and extended to the more general

case of module-LWE. Overall, this chapter serves as a valuable exploration of the tightness

gap of the reduction from module SIVP to module-LWE, providing valuable insights that

can be applied to other related reductions and cryptographic constructions.
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Chapter 6

Ring LWE for any Ring and any mod-

ulus

6.1 Introduction

In the previous chapter, we focused on concrete security and discussed the tightness gap

of reductions from SIVP on module lattices to the average case decision module LWE, as

presented in the seminal paper by Langlois and Stehlé [LS15]. The main idea of this reduction

is based on the work of Lyubashevsky, Peikert, and Regev [LPR13], where the main reduction

is presented for ideal lattices and ring-LWE. The tightness gap of reductions in both cases,

as discussed in [LPR13] and [LS15], is similar, and both reductions are constrained for

cyclotomic number fields.

The choice of a cyclotomic number field for the reductions in [LPR13] and [LS15] is

motivated by the desire for efficient computations. Cyclotomic number fields offer useful

automorphisms between different embeddings of a number field, which are utilized in the se-

curity reductions. However, it should be noted that the hardness of certain lattice problems,

such as SVPγ and SIVPγ, is equivalent in cyclotomic settings. While cyclotomic number

fields provide certain advantages in terms of efficiency, they also come with limitations. For

instance, in the case of Euclidean lattices, the hardness of SIVPγ is at least as hard as SVPγ.

However, the hard lattice problems are not as hard as in general lattices, especially in the re-

stricted settings of ideal lattices over a cyclotomic number field. Moreover, cyclotomic rings

represent a narrow class of rings, and they are distributed sparsely when considering the set

of all number fields. This limited generality poses challenges for ring LWE-based crypto-

graphic applications that may require a more diverse set of rings. This was one of the major

limitations of [LPR13]. Peikert, Regev, and Stephens-Davidowitz [PRS17] addressed this is-

sue by providing a reduction for any ring and modulus, aiming to achieve greater generality.

However, our investigation reveals that this reduction also lacks tightness, raising concerns

about the practical feasibility of cryptographic constructions based on such reductions.

Both the results presented in [Reg09] and [LPR13] utilize similar reduction techniques

97
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but in different ring settings. The main reduction in both the cases shows that the problem

known as DGS reduces to the search version of the LWE problem. Furthermore, there is an

additional reduction presented to further reduce the search version of LWE to the average-

case decision version of LWE. These reductions play a crucial role in establishing the security

of cryptographic constructions based on LWE and its ring variants. However, as mentioned

earlier, concerns have been raised about the tightness of these reductions, which may impact

the practical feasibility of the resulting cryptographic schemes.

In the work presented in [PRS17], the DGS problem is directly reduced to the decision

version of the LWE problem. Unlike previous reductions, where DGS was reduced to the

BDD problem as an intermediate step, this reduction takes a different approach. Instead of

reducing DGS to BDD, it is reduced to a variant of BDD known as the “Gaussian Decoding

Problem” (GDP). In the Gaussian Decoding Problem, the error vector e ∈ H is sampled

from a spherical Gaussian distribution Dr, where r is a parameter (see Definition 51). This

alternative reduction approach may offer advantages or insights into the hardness of certain

problems in the context of lattice-based cryptography. However, as with any cryptographic

reduction, the tightness of the reduction is a critical factor in assessing the practical security

of the resulting cryptographic schemes.

To proceed further, we will need the following definitions and results.

Definition 52 (The Set G). Define the set G as

G
∆
= {r = (r1, . . . , rn) ∈ (R+)n : rs1+s2+i = rs1+i,∀i ∈ [1, s2]}.

where n = s1 + 2s2.

Here, G is a set of n-dimensional vectors, where each component of the vectors is a

positive real number. For each vector, the last s2 elements are the same as the s2 elements

preceding it.

Definition 53 (Wr,υ,T [PRS17]). For r > 0, υ > 0, and T ≥ 1, define Wr,υ,T as the set of

cardinality (s1 +s2) ·(T +1) containing for each i = 1, . . . , s1 +s2 and j = 0, . . . , T the vector

ri,j ∈ G which is equal to r in all coordinates except in the ith, and the (i + s2)th if i > s1,

where it is equal to r · (1 + υ)j.

Definition 54 ([PRS17]). Fix an arbitrary f(n) = ω(log n). For α > 0, a distribution

sampled from Υα is an elliptical Gaussian Dr, where r ∈ G is sampled as follows:



Introduction 99

• for i = 1, . . . , s1, sample xi ← D1 and set

r2
i = α2 · x

2
i + f 2(n)

2
.

• For i = s1+i, . . . , s1 + s2, sample xi, yi ← D1/
√

2 and set

r2
i = r2

i+s2
= α2 · x

2
i + y2

i + f 2(n)

2
.

These definitions are taken from [PRS17] as these are integral for the analysis presented

in the following sections.

Random Self-Reduction of GDP The idea of random self-reduction is used to solve

GDP. It says that if we can solve GDP with non-negligible probability then we can solve

GDP with a probability exponentially close to 1 for a “smaller” error vector. The proposition

below formalizes this result. Therefore the main reduction will focus on reducing DGS to

GDP in the average case.

Proposition 58 ([PRS17]). If we are given access to an oracle that solves GDPL,r with

some non-negligible probability over the choice of the coset, then we can devise an algorithm

to efficiently solve GDPL,δr with all but negligible probability, where δ = δ(n) is any o(1)

function.

Now, we define and discuss two problems that have a critical role in the reduction under

consideration. The first one is the “Oracle Comparison Problem” or OCP and the second

one is the “Oracle Hidden Center Problem” or the OHCP.

Oracle Comparison Problem (OCP): Let O be an oracle with domain S and range

{0, 1}. So,

O : S → {0, 1}

and let

p(t) := Pr[O(t) = 1]

for any t ∈ S. So, p(t) measures the probability that the oracle O outputs 1 for a given

input t ∈ S. If S = R, then for any s ∈ R, let Os : R≥0 → {0, 1} denote the “suffix” oracle

defined as

Os(t) := O(s+ t).
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The “suffix” oracle Os works for input from non-negative real values. Here s is denoted

a shift. The OCP is defined as follows. The (ε, r)-OCP is a decision problem and more

specifically promise problem. The two input parameters of OCP are ε ≥ 0 which is considered

an error parameter and the other one is r > 0. Here we work with two “suffix” oracles Os1
and Os2 where the shifts of the corresponding “suffix” oracles are s1, s2 ∈ [−r, r]. The

underlying oracle is O : R→ {0, 1}. The (ε, r)-OCP outputs YES if s2 ≤ s1 − ε and NO if

s2 > s1. This definition is taken from [PRS17, Definition 4.1].

Oracle Hidden Center Problem (OHCP): Like OCP, OHCP deals with oracles that

are randomized. Firstly (ε, δ, β)-OHCP is an approximate search problem that takes three

parameters as input. The parameters ε and δ ∈ [0, 1), the third paramter β ≥ 1. OHCP has

access to the randomized oracles O : Rk × R≥0 → {0, 1}. This randomized oracle outputs 1

with probability p(t+ ln ||z− z∗||) when given (z, t) as input. Here z∗ ∈ Rk is the unknown

hidden center with constraint over the norm of the vector as δd ≤ ||z∗|| ≤ d, ||z− z∗|| ≤ βd,

d is a scale parameter with values from positive real numbers, d > 0. The function p is

also unknown here. The goal of the (ε, δ, β)-OHCP is to output some z ∈ Rk such that

||z− z∗|| ≤ εd. This definition directly follows from [PRS17, Definition 4.3].

In the subsequent sections, we will elaborate on how these two problems are connected

and how these are used to solve the GDP problem.

6.1.1 Outline of the Analysis

The analysis of the reductions in [PRS17] can be divided into two parts. The first part is a

reduction from approximate ideal-SIVP to the DGS problem. The reduction from module-

SIVP to the DGS problem over module lattices has been analyzed in Chapter 5. This

reduction is a generalized version of the reduction from approximate ideal-SIVP to the DGS

problem, as we have already mentioned that ideal lattices are module lattices with modules

of rank 1. The second part is the reduction between DGS to average-case decision ring

LWE problem. This is where the analysis differs from the analysis presented in Chapter 5

The concrete analysis of each part is described in the following sections. These two parts

are combined and the end-to-end reduction from approximate SIVP to decision LWE is

summarized in the concluding section of this chapter.
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6.1.2 Reduction Overview

The main contribution of [PRS17] is a reduction from the DGS problem to average-case

decision-RLWE for any ring and any modulus for RLWE. The reduction follows an itera-

tive approach like [Reg09, LPR13]. The concrete security aspects of which are analyzed in

Chapter 4 and Chapter 5 respectively. Here each iteration can be broadly divided into two

steps. The first is a classical step and the second is a quantum step. The classical part

uses a solver for GDP with the help of discrete Gaussian samples of larger width and an

average-case decisional RLWE oracle. The GDP solver is then used in the quantum part to

generate discrete Gaussian samples of a narrower width.

In concrete terms, the iterative step starts with a large value of r > 22nλn(I) such that

samples from DI,r can be generated classically without the help of the average-case decision

RLWE oracle. Here I is the ideal lattice generated by the fractional ideal I of the n-

dimensional number field K by using canonical embeddings (Refer Section 2.4). Now, with

help of the average-case decision RLWE oracle and polynomial many samples from DI,r, a

solver for GDPI∨,g is devised. The next step of the iteration is quantum where GDPI∨,g is

used to output polynomial many samples from DI,r′ , where r′ ≤ r/2.

The iterations continue until r reaches its desired value and output discrete Gaussian

samples of the desired width. Though this seems very similar to [Reg09, LPR13], the dif-

ference lies in the use of the “Oracle Hidden Center Problem” or the OHCP to solve GDP.

The OHCP problem is solved using an oracle that solves the “Oracle Comparison Problem”

(OCP), i.e. an OCP solver. The oracle for the OCP is simulated using the average-case

decision RLWE oracle. To analyze the reduction and calculate the tightness gap, we need

to look at how the above-mentioned problems are interlinked with each other to solve the

underlying GDP problem.

6.2 Reducing K-SIVPγ to search ring-LWEq,≤α

Fix three parameters, a positive integer n which denotes the degree of the underlying number

field K; an integer q ≥ 2 which is used to define the ring-LWE problem; and a positive real

number α such that αq ≥ 2·ω(1). In the asymptotic setting, q and α are considered to be

functions of n.

The K-SIVPγ to ring-LWEq,≤α reduction is obtained from the following sequence of

algorithms, in which Ai calls Ai+1 for 0 ≤ i ≤ 3. We briefly describe the algorithms.
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Algorithm A0: Solves K-SIVPγ(see Definition 43). The input is fractional ideal I and

the output is a set of n linearly independent elements of I the longest of which is at most

γ·λn(I).

Algorithm A1: Solves K-DGSΓ(see Definition 47). The input is a pair (I, r), where I is

a fractional ideal of K and r ≥ Γ(I). The output is a sample from the distribution DI,r.

Algorithm A2: This is a quantum algorithm which, given as input a fractional ideal I
and a set of samples chosen independently from DI,r , returns a sample from DI,r′ , where

r′ ≤ r/2.

Algorithm A3: Solves GDPI∨,ζ . The input is a coset (I∨ + e), where I is fractional ideal

in K, e ∈ K and e = σ−1(e) Each element of e is chosen according to the distribution Dξ

from H. Additionally, A3 has access to a set of samples chosen independently from DI,r.

The output is an e′ ∈ K such that e′ = e except with negligible probability.

Algorithm A4: A4 is a distinguisher ring-LWEq,≤α. It can distinguish between indepen-

dent samples over Rq×T, either from the ring-LWE distribution A
(R)
s,r (Definition 28) or from

uniform samples over Rq×T.

6.2.1 Reduction from K-SIVPγ to K-DGSΓ

This analysis is similar to the analysis we have done in Section 5.2.1. We do not repeat it

here, we only take the result of this part of the analysis in the following proposition.

Proposition 59. A0 invokes A1 a total of n3 times.

6.3 Reducing K-DGSΓ to ring-LWEq,≤α

In this section, we discuss two problems that will be integral to the reduction from DGS to

the decision ring LWE problem. First, we start with the results related to OCP and OHCP

and see how are these two problems connected.
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6.3.1 The Oracle Comparison Problem(OCP)

We begin with a result that is related to the OCP. We have previously defined OCP. The

following result states that we can have a polynomial time algorithm that solves OCP with

certain conditions 60.

Lemma 60 ([PRS17, Lemma 4.2]). There exsits a poly(τ)-time algorithm that takes as input

the confidence parameter τ ≥ 200 and solves (1/τ, τ)-OCP except with probability at most

exp(−τ), provided that the oracle O and the two shifts s1, s2 corresponding to the instance

of OCP satisfy the following conditions. There exists a p∞ ∈ [0, 1] and t∗ ≥ s1 such that

1. p(t∗)− p∞ ≥ 1/τ ;

2. |p(t)− p∞| ≤ 2 exp(−t/τ) for all t; and

3. p(t) is τ -Lipschitz, i.e. |p(t1)− p(t2)| ≤ τ |t1 − t2| for all t1, t2 ∈ R.

This lemma ascertains the existence of an algorithm for (1/τ, τ)-OCP which runs in

polynomial time in the parameter of τ under the stated conditions. The following algorithm

solves the (1/τ, τ)-OCP using the oracles Os1(·) and Os2(·) where s1 and s2 are unknown, as

per Lemma 60. The job is to determine the relation between s1 and s2.

The Algorithm 16 implements the solveOCP function which solves (1/τ, τ)-OCP. The solveOCP

function takes two input parameters, 1/τ and λ. Here τ is the OCP parameter and λ is used

to determine the threshold value for the distinguisher that we are interested to make through

this algorithm. The algorithm has two loops, one outer and one inner which is the nested

loop. The outer loop runs for 1 + T1 times and the nested inner loop runs N times for each

outer loop. The nested inner loop is used to count the number of ‘1’ as output from Os1(·)
and Os2(·) when given ‘i∆’ as input at the i-th iteration of the outer loop. At the end of

the inner loop the variable p̄
(k)
i captures the fraction of times Osk(i∆) outputs ‘1’, where

k ∈ {1, 2} and i ∈ {0, 1, . . . , T1}. Here p̄
(k)
i is the estimated probability that the randomized

oracle Osk(·) outputs 1 for input i∆. At the end of the outer loop, the p̄
(k)
i variables are

obtained for all the i’s. Next h̄k’s are obtained as per the maximum value (1+ i∆)|p̄(k)
i − p̄

(k)
T1
|

for all possible i’s. If the difference between h̄1 and h̄2 is bigger than some threshold value

the function returns 1 else it returns 0. Here the function maxi(1 + i∆)|p̄(1)
i − p̄

(1)
T1
| is a

monotonically non-increasing function of i. From the definition of OCP 6.1, we can say that

in case of NO instance where s2 > s1, we must have h̄1 − h̄2 < 0 due to the non-increasing
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Algorithm 16 Algorithm to solve (1/τ, τ)-OCP

1: function solveOCP(1/τ, λ) // where τ ≥ 200
2: for i← 0 to T1 := btmax/∆c do // Take T1 = 1000τ 10 and ∆ = 1

200τ8

3: cnt1 := 0
4: cnt2 := 0
5: for j ← 1 to N do // Take N = 200 lnT1

∆2 = 8× 106τ 16(10 ln τ + 3 ln 10)
6: cnt1 := cnt1 +Os1(i∆)
7: cnt2 := cnt2 +Os2(i∆)
8: end for
9: p̄

(1)
i := cnt1

N

10: p̄
(2)
i := cnt2

N

11: end for
12: h̄1 := maxi(1 + i∆)|p̄(1)

i − p̄
(1)
T1
| // Requires another T1 comparisons

13: h̄2 := maxi(1 + i∆)|p̄(2)
i − p̄

(2)
T1
| // Requires another T1 comparisons

14: if (|h̄2 − h̄1| > 1
τ2
· 1

1+100τ ln τ
− 2

λ
) then

15: return 1;
16: else
17: return 0;
18: end if
19: end function

nature of the function and for the YES instance h̄1 − h̄2 is non-negligible and more specifi-

cally h̄1 − h̄2 >
1
τ2
· 1

1+100τ ln τ
− 2

λ
. This threshold value is taken such that the distinguisher

(solveOCP) solves the OCP problem with a probability exponentially close to 1. This has

been captured in this algorithm. The conditions of the Lemma 60 justify this assertion.

The running time of this algorithm is one of the main concerns here. The solveOCP

function will be used to solve the OHCP in the following section under certain conditions 61.

Again the OHCP will be reduced to the decision ring LWE problem while solving the GDP

problem. Through this chain of reductions, the oracles that are used in solveOCP functions

are modeled by the oracles for the ring LWE problem. So it is necessary to count the time

required to execute the solveOCP function for tightness gap analysis.

Running time: The running time of Algorithm 16 is proportional to

2·(T1 + 1)N > 2·T1N
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If we take the following parameters

T1 = 1000τ 10, ∆ =
1

200τ 8
and N =

200 lnT1

∆2
= 8× 106τ 16(10 ln τ + 3 ln 10),

which were suggested in the STOC 2017 [PRS17] version of [LPR13], then the running time

is greater than

8× 109τ 26(10 ln τ + 3 ln 10) ≥ 59.89× 229 × 1061,

since τ ≥ 200, In general, the running time is proportional to

NT1 ≥ 5002t2maxτλT1 lnT1.

Now,

T1 =
tmax

∆
= 100τλt2max = 106τ 3λ(ln τλ)2.

Therefore, we have

NT1 ≥ 5002(100τ ln τλ)2 · τλ ·
(
106τ 3λ(ln τλ)2

)
ln(106τ 3λ(ln τλ)2)

= 25× 1014 · τ 6λ2 · (ln τλ)4 · (6 ln 10 + 3τ lnλ+ 2 ln(ln τλ)) . (6.1)

≈ 25× 1014 · τ 7λ2. (6.2)

6.3.2 The Oracle Hidden Center Problem(OHCP)

We have already defined the OHCP in Section 6.1. Here we state an important result

that indicates the existence of a polynomial time algorithm for the OHCP under certain

conditions.

Proposition 61. There exists is a poly(τ, k)-time algorithm that takes as input a confidence

parameter τ ≥ 20 ln(k+1) (and the scale parameter d > 0) and solves (exp(−τ), exp(−τ), 1+

1/τ)-OHCP in dimension k except with probability exp(−τ), provided that the oracle O cor-

responding to the OHCP instance satisfies the following conditions. For some p∞ ∈ [0, 1] and

s∗ ≥ 0,

1. p(s∗)− p∞ ≥ 1/τ ;

2. |p(s)− p∞| ≤ 2 exp(−s/τ) for any s; and

3. p(s) is τ -Lipschitz in s,
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where p(s) is the acceptance probability of O on input (0, s). Furthermore, each of the

algorithm’s oracle calls takes the form O(·, i∆) for some ∆ < 1 that depends only on τ and

k and 0 ≤ i ≤ poly(τ, k).

This result is taken from [PRS17, Proposition 4.4]. We describe the Algorithm 17 which

solves the (exp(−τ), exp(−τ), 1 + 1/τ)-OHCP problem.

Algorithm 17 Algorithm to solve (exp(−τ), exp(−τ), 1 + 1/τ)-OHCP using an oracle O∗(·)
that solves the OHCP problem for inputs (0, s)

1: function solveOHCP(τ, k) // where τ ≥ 20 ln(k + 1)
2: z0 := 0;
3: Set λ := 10τk2 lnT ;
4: for i← 0 to T do // where T + 1 = 2000τ 3k4

5: j
$←− {1, 2, . . . , k}

6: x
$←− [0, 1]

7: σ
$←− {−1,+1}

8: Set vi :=
σ exp(−2τx)ej√

τ2k
// where ej denotes the k-dimensional standard basis

vector
9: Set x1 := zi;

10: Set x2 := zi + vi;
11: if (solveOCP(1/λ, τ + λ) = YES) then
12: else
13: Set zi+1 := x1;
14: end if
15: end for
16: Return zT+1;
17: end function

The Algorithm 17 implements the solveOHCP function which solves the (exp(−τ), exp(−τ), 1+

1/τ)-OHCP using the solveOCP function. The solveOHCP function takes two input param-

eters, τ and k. Here τ is the OHCP parameter. This algorithm aims to find the hidden

center z∗ (OHCP Definition 6.1) of the oracle incrementally. The algorithm iterates T + 1

times. Each time, it tries to predict whether a vector zi is nearer to the center of the hidden

oracle z∗ by using the solveOCP function. The solveOCP function is implemented as a deci-

sion function in Algorithm 16 and has given access to two oracles, having certain properties.

Here in Algorithm 17, the solveOCP function is provided with two randomized oracles with

appropriate parameters such that all the constraints of the Lemma 60 are satisfied. Hence

the solveOCP function is used in finding the approximation of the hidden oracle center z∗.
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Next, we calculate the running time of this algorithm. The solveOHCP function will be

used to solve the GDP in the following section.

Running time: The running time of Algorithm 17 is therefore proportional to (T + 1)×
time taken for one (1/τ, τ + λ)-OCP oracle call. Recall that

λ = 10τk2 lnT ≈ 10τk2(3 ln 10 + ln 2 + 3 ln τ + 4 ln k)

⇒ τ + λ ≈ τ(1 + 10k2(3 ln 10 + ln 2 + 3 ln τ + 4 ln k))

= τϑ (say).

Then, by (6.1), the time taken for one (1/τ, τ + λ)-OCP oracle call is proportional to

25× 1014 · τ 6(τ + λ)2 · (ln τ(τ + λ))4 · (6 ln 10 + 3τ ln(τ + λ) + 2 ln(ln τ(τ + λ)))

= 25× 1014 · τ 8ϑ2 · (ln τ 2ϑ)4 ·
(
6 ln 10 + 3τ(ln τ + lnϑ) + 2 ln(ln τ 2ϑ)

)
.

Then the running time of Algorithm 17 is proportional to

2× 52 × 1017 · k4 · τ 11ϑ2 · (ln τ 2ϑ)4 ·
(
6 ln 10 + 3τ(ln τ + lnϑ) + 2 ln(ln τ 2ϑ)

)
.

Now we describe the main reductions of [PRS17] in further detail. As per our definition

in Section 6.2, A1 is the algorithm to solve K-DGS, that prepares an initial list of N0,

DGS samples and goes through 3n iterations, where in each iteration A1 invokes a quantum

circuit A2, N0 times, and in each invocation, A1 provides A2 with a list of DGS samples

and in return DGS samples with reduced by a factor of at least 2. Here, A2 is a quantum

algorithm. Finally A1 returns a sample from the last list that it prepares. The number

N0 of DGS samples is equal to the number of RLWE samples required by the average-case

decisional RLWE. A1 calls A2 a total of 3n·N0 times. A2 applies the reverse of an algorithm

A3 that solves the GDP problem. The construction of A3 is based on the distinguisher A4

which distinguishes ring-LWE distribution from the uniform distribution.

We now state the main theorem of [PRS17] and present an algorithmic representation of

the reduction. This is a reduction from the DGS over ideal lattices to the decisional ring

LWE for any ring and modulus.

Theorem 62 ([PRS17, Theorem 6.2]). Let K be an arbitrary number field of degree n and

R be the ring of an algebraic integer of K. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be an

integer such that αq ≥ 2 ·ω(1). There is a polynomial-time quantum reduction from K-DGSγ
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to average-case, decision R-LWEq,Υα for any

γ = max

{
η(I) ·

√
2

α
· ω(1),

√
2n

λ1(I∨)

}
. (6.3)

As before, we assume that η(I) ≥ ω(
√

logn)
λ1(I∨)

by Claim 19 and α <
√

log n/n which is true

for practical lattice-based crypto-systems, thus we get γ = η(I) ·
√

2
α
· ω(1). This reduction

is the main result of [PRS17] and is applicable for any number field and any modulus.

Specifically, the reduction binds K-DGS to average-case decision RLWE, directly bypassing

the requirement to first reduce to search RLWE and then to average-case decision RLWE

like [Reg09, LPR13]. Algorithm 18 is the algorithmic representation of the reduction.

Algorithm 18 Algorithm to solve K-DGSγ using an R-LWEq,Υα

1: function A1(I, r) // where r ≥ λ(I)
2: S3n ← {bootstrap(I, r3n)};
3: for i← 3n down to 1 do
4: Si−1 ← {};
5: for j ← 1 to N do
6: x ← A2(I,Si, d′i); (A2 invokes A3(I∨,Si, y) for a suitable y); // A2 is the

quantum function
7: Si−1 ← Si−1 ∪ {x}
8: end for
9: ri−1 ← ri · (

√
log n)/(αq);

10: end for
11: Return one element from S0;
12: end function

We now consider the reduction of K-DGSγ to R-LWEq,Υα in further details following the

Algorithm 18. The input to an algorithm to solve K-DGSγ is a pair (I, r), where I is an

ideal lattice generated by the fraction ideal I ∈ K and r ≥ γ(I). The existence of an

algorithm to solve K-DGSγ, is stated by Theorem 62. Algorithm 18 is an iterative algorithm.

Each iteration of Algorithm 18, is represented by the quantum algorithm referred to by the

Lemma 63. The algorithm referred to by the Lemma 63 is divided into two algorithms. One

is referred to by the Lemma 64 and the other by the Lemma 65.

Now, we describe Algorithm 18 in detail. Let r be a real number satisfying r ≥ γ(I).

For i = 0, . . . , 3n, define

ri = r · (αq/ω(1))i.
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Theorem 62 follows from the iterative step, which is sketched below. Start with a very

large value of r ≥ 22nλn(I), so that samples from DI,r for each r ∈ Wr,ζ,T can be generated

classically using the bootstrap function (see Section 4.3). This step is the same for all the

lattice-based reductions which followed the path first indicated by Regev [Reg09]. This

reduction from K-DGSγ to R-LWEq,Υα is iterative and the following lemma represents one

iteration.

Lemma 63 ([PRS17, Lemma 6.5]). Let α be a real number and q be a positive integer such

that α ∈ (0, 1) and q ≥ 2. Suppose I be an ideal lattice generated by the fractional ideal I of

a number filed K and let r ≥ 2q · η(I) such that

r′ =
r · ω(1)

αq
>

2n

λ1(I∨)
.

There exists a polynomial time quantum algorithm which takes polynomial many samples

from discrete Gaussian distribution DI,r for each r ∈ Wr,υ,T as input and has access to an

oracle that solves R-LWEq,Υα, outputs an independent sample from DI,r′, where υ = 1/poly(n),

T = poly(n), and a vector r′ ∈ G where r′ ≥ r′.

The lemma says that if we are given polynomial many samples from discrete Gaussian

distribution of certain width and an oracle that solves the RLWE problem in polynomial

time, we can make a quantum circuit to produce polynomial many samples from discrete

Gaussian distribution of width at most half of the width of the discrete Gaussian distribution

of the given samples in polynomial time. As said before, one iteration of Algorithm 18

is represented by Lemma 63. This lemma is similar to the reductions we have already

discussed in previous sections. This algorithm can be divided into two sub-algorithms, viz,

one classical and another quantum. The quantum algorithm is dependent on the classical

one. As mentioned earlier, the classical algorithm is represented by the Lemma 64, and the

quantum algorithm is represented by Lemma 65. Hence Lemma 63 is the combination of

Lemma 64 and 65. Now we state the two lemmas from [PRS17] and describe them in the

following section. So, we can focus on the individual lemmas independently.

Lemma 64 ([PRS17, Lemma 6.6]). There exists a probabilistic polynomial-time classical al-

gorithm that given an oracle that solves average-case decision R-LWEq,Υα and input a number

α ∈ (0, 1) and an integer q ≥ 2 together with its factorization, a fractional ideal I in K, a

parameter r ≥
√

2q · ηε(I), and polynomial many samples from the discrete Gaussian distri-

bution DI,r for each r ∈ Wr,ζ,T (for some ζ = 1/poly(n) and T = poly(n)), solves GDPI∨,g

for any g = o(1) · αq/(
√

2r).
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As said earlier, this result is a classical result. This is a polynomial time reduction from

GDP to RLWE. This result is the main contribution of [PRS17] as this is where it differs

from [LPR13, LS15]. According to this lemma, if we have an average case decision RLWE

oracle and polynomial many samples from discrete Gaussian distribution, we can solve the

GDP problem over the dual lattice of an ideal lattice I ∈ K. The reduction uses discrete

Gaussian samples over the dual ideal. Lemma 64 solves GDPI∨,g for g = o(1) · αq/
√

2r by

using an oracle that solves GDPI∨,g′ , using self reduction, where g′ = αq/
√

2r. In particular,

the GDP is solved using an algorithm for OHCP. However, what we have with us is an RLWE

oracle. So, we need to devise the algorithm for OHCP according to the Proposition 61 using

the RLWE oracle. We discuss the proof of the Lemma 64 in detail to find out the tightness

gap of this reduction. We have two reductions in hand. One is from GDP to OHCP and

another is from OHCP to RLWE. We present these reductions in an algorithmic form in

Algorithm 19 and Algorithm 20 respectively.

Lemma 65 ([PRS17, Lemma 6.7]). There is an efficient quantum algorithm that, given any

n-dimensional lattice L, a real g < λ1(L∗)/(2
√

2n), a vector r ≥ 1, and an oracle that solves

GDPL∗,g (with all but negligible probability), outputs an independent sample from DL,r/(2g).

This lemma is the only quantum part of the whole reduction. This result produces DGS

samples of at most half of the given width, while it also takes a GDP solver over the dual

lattice as input. This lemma ensures that at the end of every iteration of the main iterative

procedure, we get DGS samples of a width of half of the width we start the iteration with.

Each call to the quantum procedure produces one DGS sample, thus we need polynomial

many calls to the quantum procedure to get polynomial many DGS samples.

6.3.3 GDP to OHCP Reduction

In this section, we describe the reduction from GDP to OHCP for a particular set of param-

eters of these problems. The OHCP oracle is used to approximate the error vector e, where

a coset e + I∨ ∈ H is given as input for GDP.

We are given a coset e + I∨ ∈ H as input for GDP. To solve it, we need to find the error

vector e ∈ H, where e is an n-dimensional vector. The OHCP oracle is used to approximate

each coordinate individually. Algorithm 19 runs with the target vector ei, the ith coordinate

of e and approximate each ei in order to approximate e. In other words, the approximation

is done coordinate-wise.
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Algorithm 19 Algorithm to solve GDPI∨,g using (exp(−τ), exp(−τ), 1 + 1/τ)-OHCP oracle

1: function A3(I∨,S, z) // where z = (z1, . . . , zn)
2: w← 0;
3: if (α > exp(−n)) then
4: for i = 1 to s1 + s2 do
5: if (i ≤ s1) then
6: xi ← solveOHCP(τ, 1); // solveOHCP is given access to oracle
O(S, i, zi, t), where exp(t) = (1 + ζ)j

7: w← w + (xi · ei);
8: else
9: xi ← solveOHCP(τ, 2); // solveOHCP is given access to oracle
O(S, i, zi, t), where exp(t) = (1 + ζ)j

10: w← w + (xi · ei + x̄i · ei+s2);
11: end if
12: end for
13: end if
14: ê← BabaiNearestPlane(I∨, z−w);
15: Return ê + w;
16: end function

Let Oi : R× R≥0 → {0, 1} for 1 ≤ i ≤ s1 and Oi : C× R≥0 → {0, 1} for s1 < i ≤ s1 + s2

be the oracles of the OHCP (Section 6.1) with hidden center ei as the i-th coordinate of

the vector e. We know that the oracles Oi in OHCP are randomized. The probability that

oracles outputs 1 or Pr[Oi(z, t) = 1] depends only on exp(t)|z − ei| (for z ∈ C with |z − ei|
sufficiently small). For Oracles Oi, k = 1 for 1 ≤ i ≤ s1 as the first s1 coordinates of e are

approximated using s1, solveOHCP function calls and k = 2 for s1 < i ≤ s1 + s2 as the next

2s2 cordinates are approximated using with s2, solveOHCP function calls . We implicitly

identify xi ∈ R2 with xi ∈ C in the natural way.

Let us define for 1 ≤ i ≤ s1, ki : R→ H as ki(z) = z · ei, and for s1 < i ≤ s1 + s2 define

ki : C→ H as ki(z) = z · ei + z̄ · ei+s2 , where ei ∈ Rs1 × C2s2 has 1 in the ith coordinate and

0 elsewhere.

Algorithm 19 starts with the assumption that α > exp(−n). If α ≤ exp(−n), then

with high probability e will satisfy that ||e|| ≤ 2−nλ1(I∨). Hence, Babai’s nearest plane

algorithm 3.2.2 can be used to solve the problem efficiently.

In Algorithm 19, the z ∈ e+I∨, i.e, z is an element from the coset. Algorithm 19 iterates

over i = 1 to s1 + s2. For each i, solveOHCP(τ, 1) represents a valid (exp(−τ), exp(−τ), 1 +

1/τ) OHCP instance with an oracle OHCP Oi with a confidence parameter τ , and a distance
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bound d′ = d/(1 + 1/τ) and hidden center as the ith coordinate of vector e, i.e. ei. As xi is

the output by solveOHCP(τ, 1) at the ith iteration, xi·ei represents n dimensional vector with

ith component being the approximation of the ith coordinate of vector e for i ≤ s1. Similarly

for s1 + s2 ≥ i > s1, (xi · ei + x̄i · ei) represents the approximation for ith and (i+ s2)th

coordinates. Hence w becomes the resulting approximation of the vector z. We can then

apply Babai’s Nearest Plane algorithm as ||z − w|| ≤ 2−nλ1(I∨). Thus we recover z using

solveOHCP function calls.

6.3.4 OHCP to RLWE Reduction

Now, we discuss the Algorithm 20 which shows how an OHCP oracle can be simulated using

an average-case decision R-LWE oracle with error vectors drawn from an elliptical Gaussian

distribution (See Definition 54).

Algorithm 20 Simulate (exp(−τ), exp(−τ), 1 + 1/τ)-OHCP oracle using R-LWEq,Υα

1: function O(S, i, z, t,y)
2: T ← {};
3: if (i ≤ s1) then
4: c← (z · ei);
5: else if (s1 < i ≤ s1 + s2) then
6: c← (z · ei + z̄ · ei+s2);
7: end if
8: Compute t ∈ I, such that, t · I−1 and 〈q〉 are co-prime;
9: for each v ∈ S do

10: err← Dαf(n)/
√

2; // where f(n) = ω(
√

log n) with f(n) ≤ n

11: a← θ−1
t (v mod qI); // where θt(·) an isomorphism from Rq to Iq and v ∈ K

whose image in H is v
12: b← (v · (y − c)/q) + err mod σ(R∨);
13: T ← T ∪ {(a,b)};
14: end for
15: b← R-LWEq,Υα(T );
16: if (b = 1) then
17: Return 1
18: else
19: Return 0
20: end if
21: end function

Algorithm 20 employs samples from DI,ri,j , where (1 + ζ)j = exp(t), on input (z, t) to
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OHCP oracles Oi. On these samples, the coset e − ki(z) + I∨, the parameter r, and the

distance bound d = f(n)αq/(
√

2r) are then applied the transformation from Lemma 66 with

the condition that f(n) ≤ n. Let the generated samples be Ai,z,t. For Ai,z,t, Oi invokes

the R-LWE oracle and outputs 1 if and only if it accepts. The following lemma is used by

the Algorithm 20 to convert a GDP instance on an ideal lattice to Ring-LWE samples using

discrete Gaussian samples over the dual lattice. This is how the solver for OHCP is simulated

through the decisional RLWE oracle.

Lemma 66 ([PRS17, Lemma 6.8]). There is an efficient algorithm that takes as input an

integer q ≥ 2 with known factorization, a fractional ideal I∨ ⊂ K, a coset e + I∨ and

bound d ≥ ||e||∞ = maxi |σi(e)|, a parameter r ≥ 2q · ηε(I), and samples from DI,r for some

r ≥ r. It outputs samples that are within a negligible statistical distance of the Ring-LWE

distribution As,r′ for a uniformly random s ∈ R∨q , where the coordinates of r′ are given by

(r′i)
2 = (ri|σi(e)|/q)2 + (rd/q)2.

6.3.5 Number of Oracle Calls:

Our main goal is to find the tightness of the above reduction which will help in finding the

tightness gap for end-to-end reduction. Let M2 be the number of times A3 calls A4. Let

each call to A4 require M1 samples. So the total number of samples required in all M2 calls

is equal to M1M2. So, the N0 number of DGS samples must be equal to M1M2, as this many

samples are needed to provide to A3 so that it can generate the required number of LWE

samples.

• Notice that Algorithm 19 calls solveOHCP calls s1 times with parameters τ and k = 1.

It is then followed by another s2 many calls to solveOHCP but with parameters τ and

k = 2.

• Algorithm 17 implements solveOHCP. Each solveOHCP function in turn calls solveOCP,

T+1 = 2000τ 3k4 times. T is a function of (τ, k) and k varies for for different solveOHCP

calls.

• Algorithm 16 implements solveOCP. Each solveOCP function calls the OCP oracle

2N ·T1 times. From the proof of Proposition 61, it is clear that the OCP oracles needed

to solve (exp(−τ), exp(−τ), 1 + 1/τ)-OHCP, using Lemma 60, are basically OHCP or-
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acles. Hence these OCP oracle calls are implemented through R-LWE oracles that we

have.

Hence, the number of times R-LWE is called is (s1·(1 + T )·2N ·T1 + s2·(1 + T )·2N ·T1).

From Algorithm 17, if k = 1, 1 + T = 2000τ 3 and if k = 2, 1 + T = 32000τ 3.

From Algorithm 16, we get λ = poly(τ), N ·T1 =

25× 1014 · τ 6λ2 · (ln τλ)4 · (6 ln 10 + 3τ lnλ+ 2 ln(ln τλ))

So, (s1·(1 + T )·2N ·T1 + s2·(1 + T )·2N ·T1)

= 50× 1017 · τ 9λ2 · (s1 + 16s2) · (ln τλ)4 · (6 ln 10 + 3τ lnλ+ 2 ln(ln τλ)).

So, M2 is the number of oracle calls needed to solve GDPI∨,g from the R-LWEq,Υα oracle. If

we ignore the logarithmic terms and replace s1 +16s2 with n, we get M2 = 50×1017 ·τ 10λ2 ·n
For simplicity of the calculation, we assume τ = λ. And τ and λ are at-least 100n2M1. Hence,

the the value of M2 becomes at-least 1043·n25 ·M1
12.

Proposition 67. Here are the few observations we make

1. following Proposition 58, nc GDPI∨,g oracle calls needed to solve GDPI∨,g′, where g =

o(1)g′ and c is positive integer.

2. M2 becomes at-least 1041·n23 ·M1
11.

3. Algorithm 18 has 3n iterations. So the total number of R LWE oracle calls is 3nc+1 ·N0.

4. N0 = M1·M2

6.4 Error from Spherical Gaussian Distribution

In this section, we will investigate a polynomial time reduction between ring-DLWEq,≤α

problem to ring-DLWEq,r0 problem. Suppose, we have a distinguisher D1 to solve ring-

DLWEq,r0 problem. We need to devise an algorithm A4 to solve ring-DLWEq,≤α. The

ring-DLWEq,≤α problem is a worst-case problem as one needs to solve it for any arbitrary

value of s ∈ Rq. On the other hand, ring-DLWEq,r0 is an average-case problem as one needs

to solve it for a non-negligible function of values of s when s is chosen uniformly at random

from Rq. The main idea comes from [Reg09, LPR13]. We have distinguished worst-case, and

average-case problems as variable length error problems (VDLWE) and fixed length error
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problems (FDLWE) respectively. In [LPR13, PRS17] the problem has been presented in

both the settings, viz elliptical and spherical gaussian distributions. We will limit our focus

only to spherical distributions (variable length or fixed length) for the whole analysis.

Here we restate a simplified version of the lemma analogous to Lemma 7.2 of [LPR13].

Originally in the lemma, the ring-VDLWE problem has been stated as a family of elliptical

Gaussian distributions but here we consider the family of spherical gaussian distributions.

Lemma 68. For α > 0 and l ≥ 1, there is a randomized polynomial time algorithm which

reduces ring-VDLWEq,≤α problem to ring-FDLWEq,r0 problem, where r0 = α·( nl
ln (nl)

)
1/4

and l

is the number of LWE samples.

We describe the reduction in Algorithm 21 and elaborate on the same in detail here.

A4 has access to a list T = ((ak,bk))1≤k≤l of l samples over Rq×T. A4 wants to identify

whether the samples are from As,r or from uniform distribution over Rq×T, where r ≤ α.

We define another list T ′ = ((ak
′,bk

′))1≤k≤l where ak
′ = ak and bk

′ = bk + fk( mod σ(R∨)).

Here f1, f2, . . . , fl are chosen independently from Dr0 . If T contains samples from As,r then

the error vector in bk follows Dr,while fk follows Dr0 , hence the error vector in bk
′ follows

Dr′ where r′ =
√
r2 + r2

0. So, the samples from T ′ are from As,r′ . If, on the other hand

T contains samples from uniform distribution over Rq×T, the resultant distribution list T ′

contains samples from uniform distribution over Rq×T. Next, we prepare another list T ′′.
First we sample a list T̂ of l samples from uniform distribution over Rq×T and add fi to the

second element of i-th sample of T̂ . The resultant list is T ′′.

In Algorithm 21, we incorporate a solver for A4 by using the distinguisher D1 as follows.

It has two nested loops. The outer loop runs N1 times and the inner loop runs N2 times. In

each iteration of the inner loop using samples from the list T , T̂ and f1, f2, . . . , fl creates two

lists T ′ and T ′′. In the last part of the inner loop D1 is called with the inputs T ′ and T ′′

and captures the one-bit output in the variables cnt0 and cnt1 respectively. At the end of

the inner loop, we calculate the estimated probabilities p̂0 and p̂1 respectively. Here p̂0 and

p̂1 are estimates of p0 and p1 with which D1 accepts the input T ′ and T ′′ respectively. If any

of the N1 outer loop results in |p̂0 − p̂1| ≥ ε2/4, the algorithm returns 1 and halts otherwise

it returns 0 and halts when this condition is not satisfied by any of the N1 iterations.

Here D1 is a (ε1, ε2) distinguisher which works when error samples are drawn from Dl
r0

.

But T ′ contains samples from Dl
r′ . So, on input T ′, D1 can make both Type-I and Type-II

errors. The following analyze how D1, a (ε1, ε2) distinguisher works for samples drawn from

As,r′ . Hypothesis testing methodology can be used to analyze the errors in Algorithm 21.
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Algorithm 21 may return an incorrect answer in two ways. First, when T ′ follows uniform

distribution and it returns 1 and second T ′ follows As,r′ and it returns 0. The first type of

error is called the Type-I error and the second type of error is called is Type-II error. When

T ′ follows uniform distribution, both the lists T ′ and T ′′ follow uniform distributions over

Rq×T, so p0 = p1. For each of the N1 iterations of the outer loop we have

Pr[p0 − ε2/8 ≤ p̂0 ≤ p0 + ε2/8] ≥ 1− 2exp(−N2ε
2
2/32)

Pr[p1 − ε2/8 ≤ p̂1 ≤ p1 + ε2/8] ≥ 1− 2exp(−N2ε
2
2/32)

due to the additive form of the Chernoff-Hoeffding bound. As p0 = p1, it implies that

Pr[p̂0 − p̂1] ≥ 1 − 4exp(−N2ε
2
2/32). So, for all N1 outer loop iterations the Type-1 failure

probability becomes at most 4N1exp(−N2ε
2
2/32). When T follows As,r, T ′ follows As,r′ . In

any of the N2 iterations of the inner loop let z1, . . . , zl be the errors in samples of T ′. Let

z be the concatenation of z1, . . . , zl, so z follows DN2l
r′ . Suppose z follows DN2l

r0
instead of

DN2l
r′ . Then we can use D1 appropriately. Here we change the Gaussian error width from

r′ to r0, later we will have to compute the correction factor using Renyi Divergence. We

denote the corresponding probabilities and their estimates by p0, p1, p̂0 and p̂1. Let ps,0 and

ps,1 respectively denote the probabilities p0 and p1 corresponding to a particular value of

s. Similarly, let p̂s,0 and p̂s,1 respectively denote the estimates p̂0 and p̂1 corresponding

to a particular value of s. Lastly let p̂s,z,0 and p̂s,z,1 respectively denote the estimates p̂0

and p̂1 corresponding to a particular value of s and z. We say that a value s is good if

|ps,0 − ps,1| ≥ ε2. From the definition of an (ε1, ε2) distinguisher, the probability of a good s

is at least ε1. If we use the additive form of the Chernoff-Hoeffding for good s it follows.

Pr[ps,0 − ε2/4 ≤ p̂s,0 ≤ ps,0 + ε2/4] ≥ 1− 2exp(−N2ε
2
2/8)

Pr[ps,1 − ε2/4 ≤ p̂s,1 ≤ ps,1 + ε2/4] ≥ 1− 2exp(−N2ε
2
2/8)

From above equations along with the condition that |ps,0 − ps,1| ≥ ε2 we get

Pr[|p̂s,0 − p̂s,1| ≥ ε2/2] ≥ 1− 2exp(−N2ε
2
2/8) (6.4)

If we take N2 a constant factor of ε−2
2 the difference |p̂s,0 − p̂s,1| will be at least ε2/2 with

probability at most 1.

Given a good s, we say that z is good if |p̂s,z,0 − p̂s,z,1| ≥ ε2/4 holds. The probability of

a good z is at least ε2/4 (Refer Proposition 53). Now when we change the error distribution



Error from Spherical Gaussian Distribution 117

from DN2l
r0

to DN2l
r′ , the probability of a good z under DN2l

r′ is at least ε22/(256NN2l)
−1/2 (Refer

Proposition 57). So the probability of a good pair (s, z) where z follows DN2l
r′ is at least

ε1ε
2
2/(256nN2l)

−1/2. If N1 is around (256nN2l)
1/2/ε1ε

2
2 then with probability exponentially

close to 1 a good tuple will be encountered in one of the iterations of the outer loop. Type-2

failure can occur in two ways. The first way is that in none of the N1 iterations, a good tuple

is obtained. The second way is that for a good tuple, the condition |p̂s,z,0 − p̂s,z,1| ≥ ε2/4

does not hold. The above analysis shows that the probability of either of these errors is

exponentially small.

Algorithm 21 Reducing ring-VDLWEi
q,≤α to ring-FDLWEi

q,r0

1: function solveFDLWE(L)
2: for k1 = 1 to N1 do;
3: cnt0 ← 0, cnt1 ← 0;
4: for k2 = 1 to N2 do;
5: Obtain a list T of l samples from L ;
6: Choose f1, f2, . . . , fl independently from Dl

r0
;

7: Compute T ′ and T ′′ from T , T̂ and f1, f2, . . . , fl;
8: cnt0 ← cnt0 +D1(T ′), cnt1 ← cnt1 +D1(T ′′);
9: end for

10: p̂0 ← cnt0/N2, p̂1 ← cnt1/N2;
11: if then|p̂0 − p̂1| ≥ ε2/4;
12: return 1;
13: end if
14: end for
15: return 0;
16: end function.

Proposition 69. We record the following observations.

1. A4 invokes D1 at most N1·N2 times, which is about (256nl)1/2N2
3/21/2

/ε1ε
2
2

or (ε1ε
5
2)
−1

(256nl)1/2, where N2 is about ε−2
2 .

2. The number of LWE samples needed by A4 is about M1 = (ε1ε
5
2)
−1

(256n)1/2l3/2.

Running time:

• Algorithm 21 makes 2N1N2 calls to the R-LWE oracle in the worst case.

• Since, Algorithm 20 makes one call to Algorithm 21, therefore the number of R-LWE

calls that Algorithm 20 makes is also 2N1N2
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6.5 End to end Concrete Analysis

The complete reduction by Regev [LPR13] is from worst-case ideal SIVP to average-case

decisional RLWE problem with spherical gaussian error. This reduction consists of three

parts.

• K-SIVPγ to K-DGSΓ is about n3.

• Reducing K-DGSΓ to ring-LWEq,≤α is about 3nc+1 ·N0.

• Oracle calls for ring-LWEq,≤α elliptical to spherical reduction is about (ε1ε
5
2)
−1

(256nl)1/2.

• N0 = M1·M2 and M2 = 1043·n25 ·M1
12 from Proposition 67.

• M1 = (ε1ε
5
2)
−1

(256n)1/2l3/2 from Proposition 69.

The overall tightness gap is given by the number of times A0 calls distinguisher D1. The

number is about

n3·3nc+1N0·M2·(ε1ε52)
−1

(256nl)1/2 ≈ nc+4·M1M2
2·(ε1ε52)

−1
(256nl)1/2

≈ 1086·nc+54·M1
25(ε1ε

5
2)
−1

(nl)1/2

≈ 1086·nc+54·((ε1ε52)
−1

(n1/2l3/2))
25
·(ε1ε52)

−1
(nl)1/2

= 1086·nc+67·l38·(ε1ε52)
−26

Theorem 70. Let K be a number filed of dimension n and R be the ring of integer of K.

Let r0 be a positive real integer and r0 = α·( nl
ln (nl)

)
1/4

, l is the number of LWE samples, q be

a integer greater than 2 and c be any positive integer. Suppose there is a (ε1, ε2) distinguisher

D that solves DLWEq,r0, then there is a quantum algorithm A requiring approximately 3n2

logical qubits to solve K−SIVP2
√

2ω(
√
n/α)·ηε(I)/λn(I), The number of times A calls D is about

1086·nc+67·l38·(ε1ε52)
−26

(6.5)
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6.6 Conclusion

In our analysis, we carefully examined the tightness gap of the reduction for any ring and

modulus, as presented in [PRS17]. The results of our analysis indicated that this reduction

does not provide a meaningful guarantee of real-world security. To put it in perspective,

we compared the tightness gap estimate of this reduction with those of other reductions for

module-LWE, ring-LWE, or LWE. It became evident that this reduction is not tighter than

the others by any means. A detailed discussion on the effect of tightness gap analysis is

presented in the concluding chapter of our thesis. In that chapter, we extensively compare

and contrast the tightness of various reductions and remark on their practical usability. By

doing so, we aim to gain a comprehensive understanding of the practical security implications

of the cryptographic constructions based on these reductions.
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Chapter 7

Classical Reduction from SIVP to LWE

7.1 Introduction

In Chapter 4, we analyzed the tightness gap of the reductions in [Reg09]. These results

are important from the theoretical aspects of the equivalence between the worst-case and

average-case hard problems. From a practical point of view, these results/reductions lack

a tightness guarantee. Cryptosystems based on the hardness of the LWE problem may be

prone to security risk due to the large tightness gap of its reductions. Another distinct

feature of the reductions obtained by Regev is quantum, i.e., the algorithm is required to

make some quantum computations.

A problem left open by Regev [Reg09] was whether there is a classical reduction from

a worst-case lattice problem to LWE. The initial answer to this problem was provided by

Peikert [Pei09]. While this represented progress, Peikert’s reduction was not considered to

be satisfactory since either an exponential size modulus is required or, the lattice problem

considered is not one of the standard problems. Later work by Brakerski et al. [BLP+13]

built on Peikert’s work to show a classical reduction from a standard lattice problem to LWE

avoiding the exponential size modulus.

The works of Regev [Reg09], Peikert [Pei09] and Brakerski et al. [BLP+13] are all in

the asymptotic setting where the lattice dimension is allowed to go to infinity. Practical

cryptosystems, on the other hand, have a fixed value of the lattice dimension. So, it is

interesting to know what kind of security assurance one obtains from the results of [Pei09,

BLP+13] for practical cryptosystems.

In this Chapter, we perform a concrete security analysis of the tightness gap of the

reduction in [BLP+13]. The reduction of Peikert [Pei09] is a step in the reduction performed

by Brakerski et al. [BLP+13]. As a first step, we work out the tightness gap of Peikert’s

reduction. Then we follow the proof strategy in Brakerski et al. [BLP+13] and finally work out

the end-to-end tightness gap of the classical reduction from the gap shortest vector problem

to the LWE. There are two aspects to the concrete analysis. The first is a quadratic loss in

the dimension of the lattice and the second is a loss of tightness. The loss of tightness in this

121
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classical reduction is more than that of the original quantum reduction by Regev [Reg09].

The quadratic loss in the dimension was already pointed out in [BLP+13]. Due to this

quadratic loss, Brakerski et al. put forward the open question of obtaining a reduction

without such a loss mentioning that this would amount to a full de-quantization of Regev’s

reduction. The paper [BLP+13], however, does not consider the issue of the loss in tightness.

Our analysis shows that due to this loss of tightness, the reduction is not very meaningful in

practice, especially for determining the sizes of the parameters of a cryptosystem that would

purportedly enjoy the protection offered by the hardness of a well-studied worst-case lattice

problem.

7.1.1 Outline of the Analysis

The reductions in [BLP+13] can be divided into three parts. The first part is a brief recap of

DGS to LWE reduction from Chapter 4. The second part is the reduction from the GapSVP

to LWE problem [Pei09], while the third part is a reduction from the GapSVP to Decision

LWE [BLP+13]. The concrete analysis of each part is described in the following sections.

7.2 Reducing DGS to LWE

Regev [Reg09] described a quantum algorithm that given access to an LWE oracle can solve

the SIVP (or, the GapSVP). In the first step, the SIVP is reduced to the DGS problem using

a classical algorithm. The main part of the proof is a quantum algorithm that reduces the

DGS problem to the LWE problem. The proof given by Regev [Reg09] is in an asymptotic

setting. A concrete analysis of the tightness gap in the reduction was carried out in [CKMS16]

and in more detail in Chapter 4.

Let p be a positive integer and α ∈ (0, 1). Assume that an oracle solveLWEn,I,p,Ψα
(I) is available for some polynomial I of n. The input I to the oracle consists of I samples

from Ap,s,Ψβ for some 0 < β ≤ α. The oracle is guaranteed to work correctly if β = α,

otherwise it might return an incorrect result. Let B be an n × n basis matrix of an n-

dimensional lattice L = L(B) and r is a real number satisfying r ≥
√

2n · ηε(L)/α. The goal

is to design an algorithm solveDGS(B, r) which returns a sample from DL,r using the oracle

solveLWEn,I,p,Ψα(I) where αp > 2
√
n.

Let ri = r · (αp/
√
n)i for i = 1, . . . , 3n. A list L containing samples from DL,r3n can be

created without using the LWE oracle. The algorithm solveDGS(B, r) starts with such a list
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and iterates a procedure over 3n steps with i going down from 3n to 1. The i-th step updates

the list L consisting of I samples from DL,ri with I samples from DL,ri−1
. At the end of the

procedure, a sample from the final list L is returned. Each iteration updates the list L using a

quantum sampling procedure I times. Each application of the quantum sampling procedure

uses a classical algorithm solveCVP(L∗,L, z), where L∗ is the dual lattice of L, L contains

nc samples from DL,ri for some i ∈ {1, . . . , 3n}, and z is within distance λ1(L∗)/2 of L∗.

The algorithm solveCVP solves the CVP problem for L∗. It is the algorithm solveCVP which

invokes the oracle solveLWEn,I,p,Ψα(I). So, the main part of the DGS-to-LWE reduction is

the design of the algorithm solveCVP.

In Regev’s reduction, solveCVP(L∗,L, z) solves the unique closest vector problem on L∗

using a list L of samples from DL,r with r ≥
√

2p ·ηε(L), and z is within distance αq/(
√

2r) <

λ1(L∗)/2 of L∗. As used in [Pei09], by interchanging the roles of L and L∗, it is possible to

invoke solveCVP(L,L, z) to solve the unique closest vector problem on L using a list L of

samples from DL∗,r with r ≥
√

2p · ηε(L∗), and z is within distance αq/(
√

2r) < λ1(L)/2 of

L. We record this as follows.

Proposition 71. [Reg09, Pei09] Let B be an n×n basis matrix for an n-dimensional lattice

L = L(B), p be a positive integer, r be a real number satisfying r ≥
√

2p·ηε(L∗) and α ∈ (0, 1)

be such that αp > 2
√
n. Let I be a polynomial in n. Given a list L consisting of I samples

from DL∗,r and an oracle solveLWEn,I,p,Ψα(I), where I consists of I samples from Ap,s,Ψβ
for some 0 < β ≤ α, there is an algorithm solveCVP(L,L, z), where z is within distance

αq/(
√

2r) < λ1(L)/2 of L, which finds the unique vector in L which is closest to z.

From Chapter 4, we have the following facts.

1. Algorithm solveCVP calls the oracle solveLWE a total of nI2 times.

2. The success probability of algorithm solveCVP is at least(
1−max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)
)nI2

(7.1)

where m is a positive integer which is upper bounded by I, µ0 = exp(−πα2), and

t ∈ (0, µ0) are chosen so as to maximise (7.1). Setting t = µ0/2, the expression in (7.1)

becomes (
1− exp

(
−m exp

(
−2πα2

)
/8
))nI2

(7.2)



124 Classical Reduction from SIVP to LWE

Using this lower bound for the success probability, it has been shown in [KSSS22] that an

upper bound on the tightness gap of the DGS to LWE reduction is the following.

3n2I3 ·
(
1− exp

(
−m exp(−2πα2)/8

)
)
)−3n2I3

. (7.3)

For most practical cryptosystems, α is at most 1/
√
n. Considering α = 1/

√
n, the tightness

gap given by (7.3) is essentially 3n2I3. The tightness gap of the reduction from DGS to LWE

has been extended to obtain the tightness gap of the reduction from SIVP to average-case

decision LWE in Chapter 4 and is given by the following expression.

n11·(δ1δ2
2)
−4
. (7.4)

Here δ1 and δ2 are non-negative integers such that average-case decision LWE can be solved

for a fraction n−δ1 of all the secrets with advantage at least n−δ2 and subsequent calculation

shows that I ≈ (δ1δ2
2)
−1
n (Refer section 4.5 of Chapter 4).

7.3 Reducing GapSVPζ,γ to LWE

Peikert [Pei09] showed a classical reduction of GapSVPζ,γ to LWEn,I,q,Ψα , where γ = γ(n) ≥
n/(α

√
log n), q = q(n) ≥ ζ(n) · ω(

√
log n/n) and I is a polynomial in n. The reduction

makes use of Proposition 71, i.e., it uses an LWE oracle to solve CVP.

Let B be an n×n basis matrix of an n-dimensional lattice L = L(B) and r ≥ maxi‖b̃i‖ ·
ω(
√

log n). By sample(B, r) we denote the sampling algorithm which on input B and r

returns a sample which is within negligible statistical distance from DL,r. (See Theorem 24).

The algorithm for reducing GapSVPζ,γ to LWE given by Peikert [Pei09] is shown in

Algorithm 22. The algorithm solveCVP, in turn, calls the LWE oracle solveLWE. So,

overall solveGapSVPζ,γ solves GapSVPζ,γ by calling the LWE oracle solveLWE. Algorithm

solveGapSVPζ,γ calls solveCVP a total of N times.

It has been noted in Section 7.2 that solveCVP calls solveLWE a total of nI2 times. So,

solveGapSVPζ,γ calls solveLWE a total of N · nI2 times.

We now consider the success probability of solveGapSVPζ,γ. As in Section 7.2, assume

that α = 1/
√
n and t = µ0/2. The probability that a single call to solveCVP is successful is at

least ε, where using (7.2), ε = (1− exp (−m exp(−2πα2)/8)))
nI2

. The N calls to solveCVP

in Algorithm solveGapSVPζ,γ are independent. Let E be the event that all these calls are
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Algorithm 22 Reducing GapSVPζ,γ to LWEq,Ψα , where γ = γ(n) ≥ n/(α
√

log n) and

q = q(n) ≥ ζ(n) · ω(
√

log n/n).

1: function solveGapSVPζ,γ(B, d)
2: Let D be the reverse dual basis of B;
3: d′ = d·

√
n/(4 lnn); r = q

√
2n/(γd);

4: for i← 1 to N do
5: w

$←− d′·Bn; x = w mod B;
6: L ← {};
7: for j ← 1 to nc do
8: L ← L ∪ sample(D, r);
9: end for

10: v← solveCVP(B,L,x)
11: if v 6= x−w then
12: return accept;
13: end if
14: end for
15: return reject;
16: end function

successful and so Pr[E] ≥ εN .

For i = 1, . . . , N , let Si be the event that the event v 6= x−w holds in the i-th iteration.

The events S1, . . . , SN are independent (even when conditioned on E).

First consider the instance (B, r) to be NO instance of GapSVPζ,γ. Let succNO be the

event that algorithm solveGapSVPζ,γ is successful on a NO instance. Then Pr[succNO] =

Pr[S1 ∧ · · · ∧ SN ] ≥ Pr[S1 ∧ · · · ∧ SN |E] Pr[E] = Pr[E] ·
(∏N

i=1 Pr[Si|E]
)

≥ εN ·
(∏N

i=1 Pr[Si|E]
)

. It has been shown in [Pei09] that Pr[Si|E] ≈ 1, i = 1, . . . , N , and

so we may assume that Pr[succNO] is lower bounded by εN .

Next consider the instance (B, r) to be a YES instance of GapSVPζ,γ. Let succYES be

the event that algorithm solveGapSVPζ,γ is successful on a YES instance. So, succYES is the

event S1 ∨ (S1 ∧ S2) ∨ · · · ∨ (S1 ∧ · · · ∧ SN−1 ∧ SN). For i = 1, . . . , N , let δ be the common

value of Pr[Si|E]. It follows that

Pr[succYES] ≥ Pr[succYES|E] Pr[E] = (1− δN) Pr[E] ≥ (1− δN)εN .

It has been shown in [Pei09], that for a YES instance, δ = Pr[Si|E] ≤ 1 − 1/poly(n). The

1 − 1/poly(n) term arises from the asymptotic form of a result which states that for any
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constants c1, d > 0 and any z ∈ Rn with ‖z‖ ≤ d and d′ = d ·
√
n/(c1 log n) the statistical

distance between the uniform distribution on d′ ·Bn and the uniform distribution on z+d′ ·Bn
is at most 1 − 1/poly(n). This result is proved in Lemma 29 and the proof shows that the

term 1 − 1/poly(n) can be taken to be 1 − 3/n2. Using this we have δ ≤ 1 − 3/n2. So,

Pr[succYES] ≥ (1− (1− 3/n2)N)εN .

Between the NO and YES instances, the lower bound on the success probability is less

for YES instances. As a result, the upper bound on the tightness gap for YES instances is

higher and this upper bound is taken to be the upper bound on the overall tightness gap of

the reduction. So, an upper bound on the tightness gap of the GapSVPζ,γ to LWE reduction

is (
N · nI2

)
/
(
(1− (1− 3/n2)N)εN

)
. (7.5)

Following Lemma 29, for N = n2, (1 − (1 − 3/n2)N) ≈ 1 and so the tightness gap in (7.5)

becomes

N · nI2 · ε−N = n3I2
(
1− exp

(
−m exp(−2πα2)/8

)
)
)−n3I2

. (7.6)

We note that the expression in (7.6) is almost the same as the expression in (7.3). It has been

discussed in Chapter 4, that for α ≤ 1/
√
n, ε ≈ 1 and so the tightness gap of GapSVPζ,γ to

LWEq,Ψα becomes

n3I2. (7.7)

The tightness gap of the reduction from GapSVPζ,γ to LWE has been extended to obtain

the tightness gap of the reduction from SIVP to average-case decision LWE in Chapter 4

and is given by the following expression.

n8·(δ1δ2
2)
−3
. (7.8)

Here δ1 and δ2 are non-negative integers such that average-case decision LWE can be solved

for a fraction n−δ1 of all the secrets with advantage at least n−δ2 and elaborate calculations

show that I ≈ (δ1δ2
2)
−1
n. The tightness gap of search LWE to DLWEac with is np(δ1δ2

2)
−1

where p is in the order of n2 for practical cryptosystems. (Refer Section 4.5 of Chapter 4).
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Remark: It is known [Pei09] that for ζ(n) ≥ 2n/2, the problem GapSVPζ,γ is equivalent to

the standard GapSVPγ problem. The reduction from GapSVPζ,γ to LWEq,Ψα given in [Pei09]

holds under the condition q = q(n) ≥ ζ(n) ·ω(
√

log n/n). So, for q(n) ≥ 2n/2 ·ω(
√

log n/n),

there is a classical reduction from GapSVPγ to LWEq,Ψα , where γ = γ(n) ≥ n/(α
√

log n).

7.4 Reducing GapSVPγ to Decision LWE

In this section, we discuss the tightness of the reduction for the classical hardness of LWE.

This reduction takes the result of [Pei09] as the starting point. The remark at the end of

Section 7.3 shows that there is a classical reduction of GapSVPγ to LWEq,Ψα for q(n) ≥
2n/2 · ω(

√
log n/n). So, if the modulus of the LWE problem is exponential in the dimension

of the lattice, then the result from [Pei09] provides a classical reduction of GapSVPγ to LWE.

GapSVPγ problem is considered a standard hard lattice problem to have worst-case hardness.

The work by Brakerski et al. [BLP+13] showed a reduction of GapSVPγ to a decision version

of LWE with a polynomial-sized modulus. The reduction is quite intricate and is built by

composing reductions between several pairs of problems. The goal of the present section is

to perform a concrete security analysis of the reduction provided in [BLP+13].

The LWE problem considered in Section 7.3 is a search problem. For the classical reduc-

tion of GapSVPγ to LWE, the binLWEn,m,q,α problem has been considered. We define the

advantage of a distinguisher for binLWEn,m,q,α in the following manner.

Let D0 be the distribution Aq,s,α and D1 be the uniform distribution over Zn
q × T. For

i = 0, 1, let I m← Di denote the selection of a list I of m independent samples from Di. Let

A be a distinguisher for decLWEn,m,q,α. Let A(I)⇒ 1 denote the event that A produces 1

as output. The advantage of A is the following.

Adv(A) = |Pr[A(I)⇒ 1 : I
m← D0]− Pr[A(I)⇒ 1 : I

m← D1]|. (7.9)

The classical reduction in [BLP+13] reduces GapSVP to binLWE. This reduction is done

in several steps. The first step is Peikert’s reduction of GapSVP to LWE with exponential

size modulus. The goal of the following steps is to reduce the LWE problem with exponential

size modulus to binLWE problem with polynomial-size modulus. A trade-off is an increase

in the dimension. The various steps of the overall reduction are as follows.
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Reducing GapSVPγ to LWEk,m1,q1,α1: This follows from section 7.3. Here α1 ∈ (0, 1),

q1 ≥ 2k/2 · ω(
√

log k/k) and γ ≥ k/(α1

√
log k). For simplicity, in the following, we will

assume q1 = 2k/2.

Proposition 72. Suppose W0 is an algorithm to solve LWEk,m1,q1,α1. Then following the

analysis in Section 7.3, there is an algorithm W to solve GapSVPγ where the number of

times W calls W0 is k3m1
2 (which is obtained from (7.7) by replacing n with k and I with

m1).

Reducing LWEk,m1,q1,α1 to decLWEk,m1,q1,α2: This follows as a special case of Theo-

rem 25. Here 1/q1 < α1 < 1/ω(
√

log n) and α2 = α1 · ω(log k). To determine the tightness

gap of the reduction, we follow the proof of Theorem 25 in the case where q1 = 2k/2. Let

W1 be an algorithm to solve decLWEk,m1,q1,α2 . The proof of Theorem 25 uses W1 to first

construct an algorithm W ′
1 following the construction used in Lemma 30 which has been

discussed in section 4.4.3. Specifically, Lemma 30 shows how to boost the advantage of

a distinguisher for the distributions Aq1,s,χ and U(Zn
q1
× Zq1). The same method can be

used to boost the advantage of a distinguisher for the distributions Aq1,s,α2 and the uniform

distribution on Zn
q1
× T. This is the situation considered in Theorem 25.

Let ζ1 be the advantage of W1 and c1 and c2 be such that W1 is successful on a fraction

k−c1 of all possible secrets and

ζ1 = k−c2 . (7.10)

Following the method of Lemma 30, it is possible to construct W ′
1 which accepts with prob-

ability exponentially close to one on inputs from Aq1,s,α2 and rejects with probability ex-

ponentially close to one on inputs from the uniform distribution over Zn
q1
× T. From the

Section 4.4.3 we have that the algorithm W ′
1 calls the algorithm W1 a total of kc1+2c2+2

times.

The proof of Theorem 25 usesW ′
1 to construct an algorithmW0 which solves LWEk,m1,q1,α1 .

The secret s = (s1, . . . , sk). The components s1, . . . , sk are determined one by one. Consider

the determination of s1. This is determined iteratively as s1 mod 2, followed by s1 mod 22,

followed by s1 mod 23, up to at most s1 mod 2k/2. Given the value of s1 mod 2i, there are

only two possible values for s1 mod 2i+1. A single call to W ′
1 can be used to determine the

correct value. So, to find s1, at most k/2 calls to W ′
1 are required, and to find the entire

vector s, at most k2/2 calls to W ′
1 are required. Each call to W ′

1 requires kc1+2c2+2 calls to
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W1.

Proposition 73. The number of times W0 calls W1 is

kc1+2c2+4. (7.11)

Reducing decLWEk,m1,q1,α2 to binLWEn,m1,q1,≤
√

10nα2
: This reduction follows from

Theorem 26. Here n ≥ (k + 1) log2 q1 + 2 log2(1/δ), α2 ≥
√

ln(2n(1 + 1/ε1))/π/q1, where

δ > 0 and ε1 ∈ (0, 1/2). Suppose there is an algorithm W2 for binLWEn,m1,q1,≤
√

10nα2
which

has advantage ζ2. Theorem 26 shows an algorithm W1 for decLWEk,m1,q1,α2 with advantage

ζ1 where

ζ1 ≥
ζ2 − δ
3m1

− 41ε1

2
− 2−k−1. (7.12)

Proposition 74. From the proof of Theorem 26, one obtains that W1 calls W2 once.

Remark: We note a peculiarity in (7.12). The number of samples m1 appears in the

denominator of the right-hand side. If ζ2 is fixed, then as m1 increases, the right-hand side

decreases. In other words, for a fixed value of ζ2, as the number of samples increases, the

lower bound on the advantage ζ1 decreases. Intuitively, one may expect that as the number of

samples increases, more information is obtained, so the advantage should be non-decreasing.

This does not seem to hold for ζ1. A possible explanation could be that m1 and ζ2 are

positively correlated in which case, if m1 increases, ζ2 will also increase leaving the lower

bound unchanged. Since the nature of the dependence of ζ2 on m1 is unknown, the issue

cannot be definitively settled.

Reducing binLWEn,m1,q1,≤
√

10nα2
to binLWEn,m1,q2,≤α3: This reduction follows from the

Theorem 27. Here q1 ≥ q2 ≥
√

2 ln(2n(1 + 1/ε2)) · (
√
n/α2) and α2

3 ≥ 10nα2
2 + (4n/(πq2

2))

ln(2n(1 + 1/ε2)) where ε2 ∈ (0, 1/2).

Suppose there is an algorithm W3 for binLWEn,m1,q2,≤α3 having advantage ζ3. Theorem 27

shows an algorithm W2 for binLWEn,m1,q1,≤
√

10nα2
with advantage ζ2 where

ζ2 ≥ ζ3 − 14ε2m1. (7.13)

Proposition 75. W2 calls W3 once.
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Reducing binLWEn,m1,q2,≤α3 to binLWEn,m2,q2,α3: This reduction follows from Lemma 77,

the proof of which is worked out in section 7.5. Suppose there is an algorithm W4 for

binLWEn,m2,q2,α3 having advantage ζ4. Lemma 77 states that the algorithm W3 for

binLWEn,m1,q2,≤α3 has advantage ζ3 where ζ3 ≥ 1/3. Further, it is stated that both m1 and

the number of times W3 calls W4 are poly(m2, 1/ζ4, n, log q2). In Lemma 77, we show that

m1 = km2 and the number of times W3 calls W4 is k(1 + 36m2/ζ4) where

k ≥ max(32 ln 12, 8 ln(432m2/ζ4))/ζ2
4 . For simplicity, we take k = 1/ζ2

4 . We assume that

there are constants d1, d2 > 0, such that m2 = nd1 and ζ4 = n−d2 .

Putting together the various reductions, yields a reduction from GapSVPγ on a lattice

of dimension k to binLWEn,m2,q2,α3 . The number of times C the algorithm W4 (for solving

binLWEn,m2,q2,α3) is called by the algorithm W (for solving GapSVPγ) is obtained from the

above analysis (Proposition 72,73,74,75) to be the following.

C = k3m1
2 · kc1+2c2+4 · 1

ζ2
4

(
1 +

36m2

ζ4

)
≈ k3m1

2 · kc1+2c2+4 · m2

ζ3
4

= k3m1
2 · kc1+2c2+4 · nd1+3d2 . (7.14)

Let the runtime of W4 be T and the runtime of W be T ′. Then T ′/T ≈ C. The advantage

of W4 is ζ4 while the success probability of W is almost 1. The tightness gap of the reduction

is T ′/(T/ζ4) = Cζ4 which is equal to

G = k3m1
2 · kc1+2c2+4 · nd1+2d2 . (7.15)

The relations among the various parameters are as follows.

1. γ ≥ k/(α1

√
log k);

2. q1 = 2k/2;

3. m1 = kc for some constant c ≥ 1;

4. 1/q1 < α1 < 1/ω(
√

log n) and α2 = α1 · ω(log k);

5. The constants c1 and c2 are such that W1 is successful on a fraction k−c1 of all possible

secrets and ζ1 = k−c2 ;

6. n ≥ (k + 1) log2 q1 + 2 log2(1/δ);
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7. α2 ≥
√

ln(2n(1 + 1/ε1))/π/q1, and ζ1 ≥ ζ2−δ
3m1
− 41ε1

2
− 2−k−1, where δ > 0 and ε1 ∈

(0, 1/2);

8. q1 ≥ q2 ≥
√

2 ln(2n(1 + 1/ε2)) · (
√
n/α2), α2

3 ≥ 10nα2
2 + (4n/(πq2

2)) ln(2n(1 + 1/ε2)),

and ζ2 ≥ ζ3 − 14ε2m1, where ε2 ∈ (0, 1/2);

9. ζ3 ≥ 1/3;

10. m1 = m2/ζ
2
4 ;

11. m2 = nd1 and ζ4 = n−d2 for constants d1, d2 > 0.

Note that

ζ1 ≥
ζ2 − δ
3m1

− 41ε1

2
− 2−k−1

≥ ζ3

3m1

− 14ε2

3
− δ

3m1

− 41ε1

2

≥ 1

9m1

− 14ε2

3
− δ

3m1

− 41ε1

2
,

α2
3 ≥ 10nα2

2 +
4n

πq2
2

ln(2n(1 + 1/ε2)) ≥ 10nα2
1ω(log2 k) +

4n

πq2
2

ln(2n(1 + 1/ε2)).

Performing a meaningful concrete security analysis with the exact form of the above relations

is almost impossible. To simplify the analysis, we ignore logarithmic factors. Also, we will

assume that the parameters ε1, ε2 and δ can be chosen in a manner (say, 1/poly(n)) such

that they do not have much effect on the concrete security analysis. Using these and other

reasonable simplifications, we have the following relations.

q1 = 2k/2; n = k2;

α1 = α2 = α3/
√
n = α3/k;

γ = k/α1 = k2/α3;

k−c2 = ζ1 = 1/m1 = k−c,

q2 =
√
n/α2 = n/α3;

kc = m1 = nd1+2d2 .

(7.16)

From (7.16), we have c2 = c = 2d1 + 4d2. As mentioned earlier, following Theorem 4.1

of [BLP+13], algorithm W1 for decLWEk,m1,q1,α2 is constructed from the algorithm W2 for
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binLWEn,m1,q1,≤
√

10nα2
. The reduction shows that W1 is successful for almost all secrets and

so we take c1 = 0. Using c2 = c = 2d1 + 4d2 and c1 = 0 in (7.15), the overall tightness gap

is obtained to be

n3.5+5d1+10d2 . (7.17)

The tightness gap given by (7.17) is to be compared to the tightness gap of Regev’s reduction

given by (7.4). While the numerical values of the tightness gaps for the two reductions can

be compared, it should be kept in mind that the problems being connected by the two

reductions are different. The following theorem encapsulates the analysis of the tightness

gap of the end-to-end reduction.

Theorem 76. If there is an algorithm which solves binLWEn,m2,q2,α3, where q2 = n/α3, for

a fraction n−d1 of the possible secrets and has advantage n−d2, then there is an algorithm

to solve GapSVPk2/α3
on a lattice of dimension k =

√
n with The tightness gap given by

n3.5+5d1+10d2.

Regev [Reg09] had described a cryptosystem where the public key is a collection of n1+ε

LWE samples and the secret key is s ∈ Zn
q . A successful adversary against the scheme can

distinguish between encryptions of 0 and 1 with an advantage of at least n−d for some d > 0.

It was shown in [Reg09] that a successful adversary against the cryptosystem can be used to

obtain an algorithm for the average case decision LWE problem such that the algorithm is

successful for a fraction 1/(4nd) of all secrets with an advantage at least 1/(8nd).

The problem binLWEn,m2,q2,α3 would be used as a basis for proving the security of cryp-

tosystems. We consider α3 = 1/
√
n = 1/k. The security of any such cryptosystem would be

given by a reduction of the type given by Regev for his cryptosystem. Suppose C is such a

cryptosystem and that an adversary is successful in breaking C if it can distinguish between

encryptions of 0 and 1 with an advantage at least 1/nd for some d > 0. Following the reduc-

tion of Regev for his cryptosystem, we assume that a successful adversary for C can be used

to build algorithm W4 for binLWEn,m2,q2,α3 such that W4 is successful on a fraction ≈ n−d

of the secrets with advantage at least n−d. This suggests d2 ≈ d. (A similar approximation

was made in [CKMS16].) We further assume that d1 ≈ d. As a numerical example, consider

n = 210. Aiming at 128-bit security, ζ4 would be 2−128 and so for n = 210, d = 12.8. In

this case, the tightness gap in (7.17) is 21960. In other words, the quantitative effect of the

reduction is the following. If T is the time required to solve binLWEn,m2,q2,α3 on a lattice

of dimension 210, then there is an algorithm to solve GapSVPγ for a lattice of dimension
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k =
√
n = 25 and γ = k3 = 215 which takes time 21910T . So, the tightness gap is 21960.

In comparison, for n = 210 and 128-bit security, the tightness gap in [KSSS22] has been

obtained to be 21646.

Note that the dimension of the lattice for which GapSVP is to be solved is
√
n where n

is the dimension of the lattice for which binLWE is to be solved. Brakerski et al. [BLP+13]

mention this point. Due to the drawback of the quadratic loss in the dimension, they mention

as an open problem the task of obtaining a reduction where such a quadratic loss does not

occur. In their words, this would constitute a “full dequantization” of Regev’s reduction.

The issue of the tightness gap has not been considered in [BLP+13]. For the GapSVP to

binLWE reduction to be meaningfully used to derive parameters for practical cryptosystems,

the tightness gap needs to be taken into consideration. So, for a full dequantization of Regev’s

reduction which can also be used in practice, one needs a tight reduction which does not suffer

the quadratic loss in the dimension.

7.5 Reducing binLWEn,m1,q,≤α to binLWEn,m2,q,α

Suppose there is an algorithmA which has advantage θ in solving binLWEn,m2,q,α. Lemma 2.15

of [BLP+13] states that using A, it is possible to construct an algorithm B which solves

binLWEn,m1,q,≤α with advantage at least 1/3 where both m1 and the runtime of B are

poly(m2, 1/θ, n, log q). In [BLP+13], it was mentioned that the proof is standard and is

based on Lemma 3.7 of [Reg09]. The following brief idea of the proof was provided.

“The idea is to use Chernoff bound to estimate A’s success probability on the

uniform distribution, and then add noise in small increments to our given distri-

bution and estimate A’s behavior on the resulting distributions. If there is a gap

between any of these and the uniform behavior, the input distribution is deemed

non-uniform.”

Below we provide the details of the proof based on the above idea and also work out the

dependence of m1 on m2 and θ.

Lemma 77. Let A be an algorithm which has advantage at least θ in solving binLWEn,m2,q,α.

Using A, it is possible to construct an algorithm B which has advantage 1/3 in solving

binLWEn,m1,q,≤α, where m1 = km2 with k satisfying k ≥ max(32 ln 12, 8 ln(432m2/θ))/θ
2.

Further, B invokes A a total of k(1 + 36m2/θ) times.
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Proof. An input to A is a collection of samples I of size m2. By “I is real” we will mean

that the samples are drawn independently from Aq,s,α, while by “I is random” we will mean

that the samples are drawn independently and uniformly from Zn
q × T. The output of A is

a bit. The advantage of A is

AdvA = |Pr[A(I)⇒ 1 : I is real]− Pr[A(I)⇒ 1 : I is random]|. (7.18)

Let p? = Pr[A(I) = 1 : I is real] and p$ = Pr[A(I) = 1 : I is random]. For the sake of

convenience of the analysis, we will assume that p? > p$, the other case being similar. Since

it is given that AdvA is at least θ, we have

θ ≤ p? − p$. (7.19)

The construction of B using A is shown in Algorithm 23. The input to B is a collection

of samples J of size m1 where m1 = km2. By “J is real” we will mean that the samples are

drawn independently from Aq,s,β for some unknown β ≤ α, while by “J is random” we will

mean that the samples are drawn independently and uniformly from Zn
q × T.

Steps 2 to 4 of Algorithm 23 compute an estimate p̂$ of p$. From the additive form of

the Chernoff-Hoeffding bound 2.6.1, we have

Pr[p$ − θ/4 ≤ p̂$ ≤ p$ + θ/4] ≥ 1− 2 exp(−2k(θ/4)2). (7.20)

Consider the set Z defined in Step 6 and let t = #Z. Note that t = m2
3. The loop from

Step 7 to 18 runs for t steps. For i = 1, . . . , t, let preal
i (resp. prnd

i ) be the value of p computed

at Step 14 in the i-th iteration of the loop when the input J is real (resp. random).

The loop in Steps 9 to 12 adds a certain amount of noise to the samples in J to obtain

J ′. If J is random, then J ′ is also random and the inputs J1, . . . ,Jk on which A is invoked

are also random. By the additive form of the Chernoff-Hoeffding bound, we have

Pr[p$ − θ/4 ≤ prnd
i ≤ p$ + θ/4] ≥ 1− 2 exp(−2k(θ/4)2). (7.21)

For the case when J is real, we follow an argument from the proof of Lemma 3.7 of [Reg09].

In this case, the samples in J are from Aq,s,β, for some unknown β ≤ α. In other words,

each element of J is a pair of the form (a, 〈a, s〉/q + e), where e is drawn from Ψβ. Step 11

converts such a pair to (a, 〈a, s〉/q + e + ε), where ε is drawn from Ψγ. This creates a pair
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(a, 〈a, s〉/q+e′), where e′ = e+ε and so, e′ follows Ψ√
β2+γ

. Consider the smallest γ such that

γ ≥ α2−β2 and so γ ≤ α2−β2 +m−2
3 α2. Suppose this γ is considered in the `-th iteration of

the loop in Steps 7 to 18. Let α′ =
√
β2 + γ so that α ≤ α′ ≤

√
α2 +m−2

3 α2 ≤ (1 +m−2
3 )α.

By Claim 2.2 of [Reg09], the statistical distance between Ψα and Ψα′ is at most 9m−2
3 .

Consequently, the statistical distance between m2 samples from Ψα and Ψα′ is at most

9m2m
−2
3 . So, in the `-th iteration of the loop in Steps 7 to 18, for j = 1, . . . , k, the statistical

distance between Jj and m2 samples from Aq,s,α is at most 9m2m
−2
3 .

Let p̂? be the probability that A outputs 1 when the input consists of m2 samples from

a distribution whose statistical distance from Aq,s,α is at most 9m2m
−2
3 . So, |p̂? − p?| ≤

9m2m
−2
3 /2. In the `-th iteration, for j = 1, . . . , k, the probability that A outputs 1 on input

Jj is p̂?. Let ε1 = θ/4− 9m2m
−2
3 /2. By the additive form of the Chernoff-Hoeffding bound

we have

Pr[p̂? − ε1 ≤ preal
` ≤ p̂? + ε1] ≥ 1− 2 exp(−2kε21). (7.22)

Combining (7.22) with |p̂? − p?| ≤ 9m2m
−2
3 /2, we have

Pr[p? − ε1 − 9m2m
−2
3 /2 ≤ preal

` ≤ p? + ε1 + 9m2m
−2
3 /2] ≥ 1− 2 exp(−2kε21). (7.23)

So,

Pr[p? − θ/4 ≤ preal
` ≤ p? + θ/4] ≥ 1− 2 exp(−2k(θ/4− 9m2m

−2
3 /2)2). (7.24)

We define two sets of events. Suppose the input J to B is random. For i = 1, . . . , t, let Ei

be the event that the |prnd
i − p̂$| > θ/2, i.e., the if-condition at Step 15 is satisfied in the i-th

iteration on random input. Next, suppose that the input J to B is real. For i = 1, . . . , t, let

Fi be the event that the |preal
i − p̂$| > θ/2, i.e., the if-condition at Step 15 is satisfied in the

i-th iteration on real input.

We consider the probability of Ei. Let G1 be the event |p̂$ − p$| ≤ θ/4 and Hi be the

event |prnd
i − p$| ≤ θ/4. Note that G1 and Hi are independent. Further, G1 ∧Hi implies Ei

and so using (7.20) and (7.21), we obtain

Pr[Ei] ≥ Pr[G1 ∧Hi] ≥ (1− 2 exp(−2k(θ/4)2))2 ≥ 1− 4 exp(−2k(θ/4)2)

= 1− δ1 (7.25)



136 Classical Reduction from SIVP to LWE

where δ1 = 4 exp(−2k(θ/4)2). Using k ≥ 8 ln(432m2/θ)/θ
2 and m2

3 = 36m2/θ, we have

tδ1 = 4m2
3 exp(−2k(θ/4)2) =

144m2

θ
exp(−2k(θ/4)2) ≤ 1/3. (7.26)

Next, we consider the probability of F`. Let G2 be the event |preal
` − p?| < θ/4. Note that

G1 and G2 are independent events. We have G2 to be the event p? − θ/4 ≤ preal
` ≤ p? + θ/4;

and G1 to be the event p$ − θ/4 ≤ p̂$ ≤ p$ + θ/4 which is equivalent to −p$ + θ/4 ≥ −p̂$ ≥
−p$− θ/4. So, if G1 and G2 both hold, we have p?−p$− θ/2 ≤ preal

` − p̂$. Using p?−p$ ≥ θ,

the last condition shows that θ/2 ≤ preal
` − p̂$ and so F` holds. This shows that G1 ∧ G2

implies F` and using (7.20) and (7.24), we obtain

Pr[F`] ≥ Pr[G1 ∧G2] ≥ (1− 2 exp(−2k(θ/4)2))×
(1− 2 exp(−2k(θ/4− 9m2m

−2
3 /2)2))

≥ 1− 2 exp(−2k(θ/4)2)− 2 exp(−2k(θ/4− 9m2m
−2
3 /2)2)

= 1− δ2 (7.27)

where δ2 = 2 exp(−2k(θ/4)2) + 2 exp(−2k(θ/4− 9m2m
−2
3 /2)2). Using

m3 = 6(m2/θ)
1/2, we have θ/4− 9m2m

−2
3 /2 = θ/8 so, δ2 = 2 exp(−2k(θ/4)2)

+2 exp(−2k(θ/8)2) ≤ 4 exp(−2k(θ/8)2). Using k ≥ 32 ln 12/θ2, we have

δ2 = 2 exp(−2k(θ/4)2) + 2 exp(−2k(θ/4− 9m2m
−2
3 /2)2) ≤ 4 exp(−2k(θ/8)2)

≤ 1/3. (7.28)

We now compute the advantage of B.

AdvB = |Pr[B(J )⇒ 1 : J is real]− Pr[B(J )⇒ 1 : J is random]|
= |Pr[F1 ∨ · · · ∨ Ft]− Pr[E1 ∨ · · · ∨ Et]|
≥ |Pr[F`]− Pr[E1 ∨ · · · ∨ Et]|

≥ |Pr[F`]−
t∑
i=1

Pr[Ei]|

≥ |1− δ2 − tδ1| (from (7.25) and (7.27))

≥ 1

3
(from (7.26) and (7.28)). (7.29)

In Algorithm 23, A is called k times in Step 4 and in each iteration of the loop in Steps 7
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to 18, A is invoked k times in Step 14. The loop in Steps 7 to 18 runs for t = m2
3 iterations

and so the total number of times B invokes A is k(m2
3 + 1) = k(1 + 36m2/θ).

Algorithm 23 Construction of a distinguisher B for binLWEn,m1,q,≤α using a distinguisher
A for binLWEn,m2,q,α. In the algorithm, θ is a known lower bound on the advantage of A.

1: function B(J )
2: let S be a collection of m1 samples drawn independently and uniformly from Zn

p×T;
3: partition S as S = ∪k

i=1Si, such that #Si = m2, i = 1, . . . , k;
4: let p̂$ = (A(S1) + · · ·+A(Sk))/k;
5: m3 ← 6(m2/θ)

1/2;
6: let Z be the set of all integer multiples of m−2

3 α2 in the range (0, α2];
7: for γ in Z do
8: J ′ ← ∅;
9: for (a, e) ∈ J do

10: sample ε from Ψ√γ;
11: J ′ ← J ′ ∪ {(a, e+ ε)};
12: end for
13: partition J ′ as J ′ = ∪ki=1Ji, such that #Ji = m2, i = 1, . . . , k;
14: let p = (A(J1) + · · ·+A(Jk))/k;
15: if |p− p̂$| > θ/2 then
16: return 1;
17: end if
18: end for
19: return 0;
20: end function.

7.6 Conclusion

In this chapter, we performed the concrete security analysis of the tightness gap in the

classical reduction of the shortest vector problem to the LWE problem given by Brakerski et

al. [BLP+13]. In the previous chapters, we already discussed the tightness gap of quantum

reductions on general lattice, ring, or module lattices and pointed out that the tightness

gap is huge in all cases. Our analysis shows that the tightness gap of the classical reduction

by Brakerski et al. [BLP+13] is more than that of Regev’s original quantum reduction. In

the following chapter, we comment on the devastating effects of the reduction of the high

tightness gap and related issues in more detail.
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Chapter 8

Analysis of Concrete Security

8.1 Introduction

In the previous chapters, our main focus has been on conducting concrete security analyses for

various reductions used in lattice-based cryptography. We have examined the tightness gap

of these reductions, ranging from LWE to ring-LWE and module-LWE. The concrete analysis

of these reductions is of paramount importance in the context of lattice-based cryptography.

It provides a clear understanding of the practical security implications of cryptographic

constructions that rely on these hardness assumptions. By assessing the tightness gap, we

gain insights into how well the theoretical security reductions hold in real-world scenarios.

The practical usability of lattice-based cryptographic schemes heavily relies on the tightness

of these reductions. If the tightness gap is too large, it indicates that the theoretical security

guarantees might not directly translate to practical security. In such cases, the cryptographic

applications built upon these assumptions might have significant limitations in terms of

efficiency and security. By performing concrete security analyses and examining the tightness

gap, we can identify potential weaknesses and limitations in lattice-based cryptography.

This information helps researchers and practitioners make informed decisions about the

selection and design of cryptographic schemes, ensuring that they are robust and secure in

practical settings. Moreover, understanding the tightness of reductions aids in the quest for

more efficient and secure lattice-based cryptographic constructions, making progress toward

achieving post-quantum security in the age of quantum computing.

The concept of tightness gap in concrete analysis of reductions allows us to quantita-

tively measure the looseness of a mathematical reduction. In the context of lattice-based

cryptography, there are two main types of reductions: worst-case to average-case reductions

for hard lattice problems and reductions from hard lattice problems to decisional-LWE.

The worst-case to average-case reduction is a self-reduction technique used to establish

the hardness of solving random instances of a lattice problem. This reduction shows that if

we can efficiently solve random instances of a hard lattice problem, then we can efficiently

solve worst-case instances of the same problem.

139
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On the other hand, the reduction from the worst-case lattice problem to decisional-LWE

is a critical step in lattice-based cryptographic constructions. It establishes the security of

LWE-based cryptosystems by showing that the hardness of the worst-case lattice problem

implies the security of the LWE problem on which the cryptographic construction is based.

The breakthrough in lattice-based cryptography was first established by Regev in his

seminal paper [Reg09], where he presented the result in an asymptotic setting. Subsequent

works like [Pei09, BLP+13, LPR13, LS15, PRS17] and others followed the same approach,

considering asymptotic treatments in their results.

However, real-world cryptographic scenarios operate with specific sets of parameters.

Cryptosystems in practice work with practical values, such as a lattice with a dimension of

1024 or ensuring 128-bit security.

The concrete analysis of reductions, focusing on the tightness gap, becomes essential

when evaluating lattice-based cryptographic constructions in practical terms. Understand-

ing the practical implications of these reductions with real-world parameter choices helps

in building efficient and secure post-quantum cryptographic schemes that are suitable for

modern applications and technologies.

In the previous chapters, we have established that the tightness gap of each reduction

is significantly large. Now, let us delve into the devastating effects of this high tightness

gap, both in general and in specific cases. The concept of tightness of reduction is often

overlooked and not given the importance it deserves, even though it is a crucial aspect of

practical security.

The pioneers in the field of practice-based provable security, such as Bellare [Bel97]

and Rogaway [BDJR97], have emphasized the need to analyze security from a practical

viewpoint. While cryptographic protocols may offer theoretical assurances in the framework

of asymptotic settings, it is not sufficient to solely rely on these theoretical guarantees.

After all, cryptographic protocols are designed for real-world practical use, where specific

parameter choices and efficiency play a crucial role.

Concrete security is a paradigm that addresses this concern, as it looks at security in

concrete terms rather than asymptotic settings. In practical terms, it assesses the real-world

security guarantees of cryptographic schemes, taking into account actual parameter choices

and computational efficiency.

When the tightness gap of a reduction is high, it implies that the reduction does not pro-

vide meaningful security guarantees in practical scenarios. This has significant consequences
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for the security of cryptographic constructions based on these reductions. It can lead to

inefficiency in terms of key sizes, computational overhead, and other resources required for

secure communications.

Therefore, understanding the tightness gap and its effects on the security of lattice-based

cryptographic schemes is crucial for building practical, efficient, and secure post-quantum

cryptographic systems that can withstand real-world threats. It highlights the importance of

considering concrete security in the design and analysis of cryptographic protocols to ensure

their effectiveness in real-world applications.

8.2 Practice Oriented Provable Security

Goldwasser and Micali [GM84] introduced the idea of provable security (Though, many

researchers credit Shannon [Sha49] as he introduced the ideas of perfect secrecy and how

to prove it much earlier). Though it was first meant for public key cryptography, later it

is applied to different branches of cryptography. The provable security of a cryptographic

scheme simply means that the security of that scheme can be proven. Here proof is a

mathematical proof. A cryptographic system is provably secure if the security requirements

can be formally stated in an adversarial model, where the adversary has a specific power

of computation. This proof is generally called a “reduction”. For example, the security of

the well-known Diffie-Hellman [DH76] protocol for cryptographic key exchange is based on

the hardness of computational Diffie-Hellman(CDH) assumption, and the security of RSA

crypto-system [RSA78, BV98] is based on the RSA assumption. But it must be added that

the reduction or the proof is a theoretical certificate of the security of the protocols. From

the perspective of the adversary to break the hard problem is to break the cryptographic

protocol. The hardness of the problem is guaranteed for a specific set of parameters of

the problem. An instance of a cryptographic protocol is linked with an instance of the

hard problem. An instance of the hard problem may not be hard at all. In this case, the

cryptographic protocol can easily be broken by the adversary. For example, an RSA protocol

with a small public exponent can be easily broken [FKM+06]. So it is of utmost importance

to choose the parameters of the cryptographic protocol such that the adversary will have a

hard instance of the underlying hard problem.

Another major part of practice-oriented provable security is the analysis of the tightness

gap of reductions. The tightness gap analysis has been the main focus of this thesis. This

notion of provable security tries to capture the quantitative nature of the security of any
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protocol.

Let us recall the definition of the tightness gap of a reduction. A reduction is an algorithm

A to reduce one problem P to another problem Q and there is an oracle to O to solve the

problem Q. Let A given access to the oracle O solve a problem P in time T with success

probability PS. Further, suppose O takes time T ′ and has success probability P ′S to solve the

problem Q. Thus the reduction algorithm A reduces problem P to problem Q. Then the

tightness gap of the reduction is (T · P ′S)/(T ′ · PS). The reduction is said to be tight if the

tightness gap is 1 (or small) and is said to be loose if the tightness gap is ‘large’. Implicitly,

we need tight reductions.

A tight security reduction is evidence of confidence in the security of a protocol. If we

eliminate the attacks outside the security model (such as side-channel attacks, duplicate-

signature key selection attacks, etc.), it is guaranteed that the task of the adversary to break

the protocol is at least as hard as solving a certain well-studied mathematical problem.

In this thesis, we rigorously analyzed the major reductions related to lattice-based cryp-

tography. This analysis gave us different views to look at the reductions. Firstly, the

tightness gap is huge in all the reductions whether the reduction is based on a general lattice

or structured lattices like ring lattice or module lattice. Secondly, a thorough calculation

shows that the concrete value of the approximation parameter (γ) of the hard lattice problem

(SIVP) used in the reductions is unlikely to be NP hard [GG00]. It was simply hidden in

the asymptotic descriptions. In the same way, it is found that the reduction puts a stricter

bound on the value of the LWE modulus parameter q, which has not been captured by any

previous result or the cryptographic schemes. We elaborate on these points in the subsequent

sections. We also discuss the disadvantage of using structured lattices over general ones and

also the effect of the quantum part of the reduction from the point of tightness gap.

8.2.1 Tightness Gap of different lattice-based reductions

The structure of the reductions that are discussed in this thesis is nested sequences of inter-

mediate reductions. This gives rise to two difficulties from a practice-oriented perspective.

In the first place, the tightness gaps multiply from one reduction to the next. If algorithm

A calls on algorithm B m times, and B calls on C n times, then there are mn calls on C from

A.

Here we study the numerical values of tightness gaps for each of the theorems regarding

tightness gaps in previous chapters and try to find the practical implications of it. In all cases,



Practice Oriented Provable Security 143

the dimension of the lattices is set to be 1024 as this value is recommended in most of the

lattice-based cryptosystems [DKRV19, ABD+09, ABD+19, LLJ+19, AAB+19, BBF+19a].

We tabulate the values of tightness gaps for the different parameters of decisional LWE on

which the cryptosystem is based. Next, we try to figure out the meaning of having a large

value of tightness gap concerning concrete security.

In Chapter 4, we evaluated tightness gap of the reduction from GIVPφ(n)
γ to DLWEac. As

per our previous notation, P is GIVPφ(n)
γ and Q is DLWEac. Algorithm A is the reduction

from P to Q. The tightness gap of this reduction came out to be around n11·(δ1δ2
2)
−4

which

we get from the equation (4.13). This simply means that if we have a (δ1, δ2) distinguisher

that solves DLWEac, then we can devise a quantum algorithm to solve the approximate

version of GIVP i.e., GIVPφ(n)
γ where L is an n dimensional lattice over Rn, α ∈ (0, 1),

ε < 1/10, φ(n) =
√

2n·ηε(L)/α and γ = 2
√
n. As stated earlier, let us consider n = 210 and

suppose δ1 = 2−β1 , δ2 = 2−β2 . Here β1 and β2 are the positive integers such that δ1 and δ2

are non-negligible functions of n. The tightness gap becomes approximately n11·(δ1δ2
2)
−4

=

2110+4β1+8β2d. We tabulate the values of the tightness gap for different practical values of β1

and β2 in Table 8.1

β1 β2 Tightness Gap
32 32 2494

32 64 2750

64 32 2622

64 64 2878

64 128 21390

128 64 21134

128 128 21646

Table 8.1: Tightness Gap for Theorem 42.

Similarly in Chapter 5, we evaluated the tightness gap of the reduction from M -SIVPγ

to module-DLWEq,r0 and the value of the tightness gap is around (n20qd21)(δ1δ
5
2)
−2
l2. If we

recall the Theorem 51, we get that if we have a (δ1, δ2) distinguisher that solves module-

DLWEq,r0 , we can solve M -SIVPγ through a quantum algorithm, where the lattice problem

is considered over module lattices, and the decision LWE problem is considered for modules.

Here the module under consideration is M that has rank d and dimension n, such that the

module lattice will have dimension n·d and n·d is also the dimension for DLWE problem.

Here q is the modulus for the DLWE problem and l is the number of samples that the
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module-DLWE requires. Let us take n·d = 210, δ1 = 2−β1 , δ2 = 2−β2 , l = n·d as l is generally

of O(n·d) and q = (n·d)2 as q is a prime number which ranges from (n·d)2 to 2(n·d)2. The

tightness gap becomes approximately (n24d25)(22β1210β2) = 2240+2β1+10β2d . We tabulate the

values of tightness-gap for different values of β1, β2 such that δ1, δ2 becomes non-negligible

and different values of d in Table 8.2.

β1 β2 d Tightness Gap
32 32 2 2625

32 64 2 2945

64 32 2 2689

64 64 2 21009

64 128 2 21649

128 64 2 21137

128 128 2 21777

Table 8.2: Tightness Gap with rank 2 module for Theorem 51.

β1 β2 d Tightness Gap
32 32 2 2626

32 64 2 2946

64 32 2 2690

64 64 2 21010

64 128 2 21650

128 64 2 21138

128 128 2 21778

Table 8.3: Tightness Gap with rank 4 module for Theorem 51.

Next, in Chapter 6, we investigated the tightness gap of the reduction from K-SIVPγ

to ring-DLWEq,r0 . The evaluated tightness gap is approximately 1086·nc+67·l38·(δ1δ
5
2)
−26

.

According to Theorem 70, if we have a (δ1, δ2) distinguisher that solves ring-DLWEq,r0 ,

then we can solve K-SIVPγ through a quantum algorithm, where the lattice problem is

considered over ideal lattices, and the decision LWE problem is considered for rings. Here

the ring under consideration is the ring of algebraic integer of number field K that has

dimension n. The ideal lattice is also n dimensional. Here l is the number of samples that

the ring-DLWE requires. Let us take n = 210, δ1 = 2−β1 , δ2 = 2−β2 , l = n as l is of O(n)

and c = 1 as this is the minimum value for c. The tightness gap becomes approximately
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1086·21060·(226β12130β2) ≈ 21345+26β1+130β2 . We tabulate the values of the tightness gap in

Table 8.4 for different values of β1 and β2 such that δ1, δ2 becomes non-negligible.

β1 β2 Tightness Gap
32 32 26337

32 64 210497

64 32 27169

64 64 211329

64 128 219649

128 64 212993

128 128 221313

Table 8.4: Tightness Gap for Theorem 70.

Next, in Chapter 7, tightness gap of the reduction from GapSVPγ to DLWEac is evaluated.

The evaluated tightness gap is seen to be n3.5·(δ1
−5δ2

−10). As per Theorem 76, we see that

if we have a (δ1, δ2) distinguisher that solves DLWEac, then we can construct a quantum

algorithm to solve an approximate version of GapSVP. Like before, we take n = 210, δ1 =

2−β1 , δ2 = 2−β2 . The tightness gap becomes approximately 235·(25β1210β2) = 2(35+5β1+10β2).

We tabulate the values of tightness-gap for different values of β1 and β2 in Table 8.5

β1 β2 Tightness Gap
32 32 2515

32 64 2835

64 32 2675

64 64 2995

64 128 21635

128 64 21315

128 128 21955

Table 8.5: Tightness Gap for Theorem 76.

From the tables 8.1,8.2,8.4,8.5, it is evident that the tightness gap is huge for all the

reductions that we have discussed till now. Let G be the tightness gap of a reduction

algorithm from problem P to problem Q. Here, we analyze how the high tightness gap

implies the security of a reduction. In our analysis, P is different versions of SIVPγ problem

according to the theorems and Q is different variations of DLWE that we have considered in

the theorems. Again, Q is the problem that the cryptographic construction is based on.
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Suppose, we have an oracle O to solve the problem Q in time T1. If the tightness gap

of the reduction is G, then the time taken to solve P through the reduction is G·T1. We

assume that the fastest known algorithm ever devised to solve P for the parameters that we

consider, is T2. So, the relation G·T1 ≥ T2 or T1 ≥ T2/G is implicit if we assume that the

algorithm to solve P through reduction will not out-perform the known fastest algorithm

for P . Exploiting the relation T1 ≥ T2/G, we can choose parameters so that T1 ≥ 2128,

satisfies. Problem P is a well-studied hard lattice problem hence for our chosen parameters

T2 is exponential. So this makes T2/G ≥ 2128 when G is reasonably small or the reduction

is fairly tight. This implies that T1 ≥ 2128. This mathematical relation puts constraints

over the lower bound on the time of the algorithm that tries to solve Q or equivalently the

problem on which the cryptographic construction is based. Thus it translates the hardness

of the problem P to the problem Q in a concrete sense. Here, our implicit assumption is

that G is reasonably small.

Now, we see what happens when we have reductions where the tightness gap or G is

huge. We take n = 210 as before and calculate the lower bound of T1 based on the known

best algorithm for problem P or the SIVPγ problem. Here T2 is the time taken to solve

SIVPγ. We have discussed reductions on lattices where lattices are Euclidean lattices, ideal

lattices, and module lattices. The hardness of SIVPγ is different on different lattices. Rank

1 module lattice with n dimensional number field K is an n dimensional ideal lattice and

rank n module lattice with 1-dimensional number field K is an n dimensional Euclidean

lattice. So, module lattices carry both the characteristics of Euclidean and ideal lattices. In

all the practical applications over module lattices rank of the module is taken as integers very

close to 1. Hence these lattices are closer to ideal lattices than Euclidean lattices. Thus, for

the analysis, we can focus on ideal lattices and Euclidean lattices only. So we omit module

lattice for the time being as it is taken care of by ideal lattice approximately.

It is conjectured that SIVPγ is at least as hard as SVPγ for Euclidean lattices. But for

ideal lattices, SIVPγ and SVPγ are equivalent with respect to hardness. SVPγ on Euclidean

lattice is presumably harder than SVPγ on ideal lattices. If T2 is the time to solve SIVPγ on

Euclidean lattice, T2 is greater than the time to solve SVPγ on Euclidean lattice. So, T2 is

greater than the time to solve SVPγ on an ideal lattice. This implies that T2 is greater than

the time to solve SIVPγ on an ideal lattice. So to make the analysis concrete we assume

that the lower bound T2 is the minimum time to solve SVPγ or the best-known algorithm

available for SVPγ on Euclidean lattices.

The fastest classical algorithm for SVPγ, as shown by Becker et al. [BDGL16], has a
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running time of approximately 20.292n+o(n), while the most efficient quantum SVPγ algorithm,

developed by Laarhoven, Mosca, and Pol [LMvdP15], has a heuristic running time of around

20.268n+o(n). For the purpose of our analysis, we consider o(n) = 50, assuming it has a

negligible impact on the exponent term. In the context of practical cryptosystems, where

n = 1024, we can calculate the running times for both classical and quantum algorithms. For

the classical algorithm, T2 (time to solve SVPγ) is greater than 2349, and for the quantum

algorithm, T2 is greater than 2324. Considering the smallest gap(G) value obtained, which is

2494, we can determine the corresponding values of T1 (time to break the DLWE problem).

For the classical algorithm, T1 is greater than 2−145, and for the quantum algorithm, T1 is

greater than 2−170. This implies that the lower bounds for breaking the DLWE problem

using these algorithms are approximately 2−145 for the classical algorithm and 2−170 for the

quantum algorithm.

It should be kept in mind that the above calculation is based on the minimum values

obtained for G. The practical values are always greater than the minimum value by a big

margin. In those cases, the lower bound on T1 will have a much bigger negative exponent.

This analysis reflects that the theoretical guarantee of the security of the cryptosystem based

on the hardness of the hard lattice problem does not provide any meaningful assurance.

An alternative concrete security analysis by F. Gates [Gat18] tells us that a reasonable

lower bound on T1 can be achieved by increasing the value of n. F. Gates’ work was performed

on Euclidean lattices. If we try to incorporate this theory into practice, we would get a

humongous value for G. An example of this claim is the following. If n ≈ 217.5, then we

have q > 285, γ = 2k > 294, n/k < 1970, G ≈ 21715, leading to a lower bound for T1 of

approximately 2255.

However, there are many difficulties with choosing n so large. The practical needs are for

restricted values of n. This huge value of n for a high lower bound of T1 would make most

applications useless. The main reason behind moving applications from Euclidean lattices

to ideal lattices was efficiency. At this huge value of n, the question of efficiency using ideal

lattices becomes irrelevant. One of the most interesting parts of the main reduction is that

it is quantum. We already mentioned that the quantum part of the reduction requires at

least 3n2 logical qubits. This is true for all the reductions we have discussed till now. Now,

when we increase n to 217.5, the required logical qubits become approximately 236 which is

roughly 20 million times as many as Shor’s [Sho99] algorithm needs to factor a 2048-bit RSA

modulus. So, the recommendations of F. Gates [Gat18] are fairly impractical from the point

of view of this analysis.
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8.2.2 The effect of γ

In all the reductions γ is the parameter for the approximate SIVP problem. The approximate

SIVP is considered one of the hard lattice problems. The value of γ plays a major role in

finding out the hardness of SIVP. According to Goldreich and Goldwasser [GG00], it is

unlikely that the Shortest Independent Vectors Problem (SIVPγ) is NP-hard when γ is

greater than the lattice dimension n.

It is concluded by [GG00] that approximating the SVP within a factor of
√
n is known

to be in the complexity class NP ∩ coAM. However, it also implies that it is unlikely for

these problems to be NP-hard when approximated to within a factor of
√
n. In the context

of Euclidean lattices, it is known that the SIVP√nγ can be reduced in polynomial time

to the SVPγ [MG02]. However, for ideal lattices, the hardness of SIVP and SVP becomes

equivalent. Therefore, in the reductions, it becomes crucial to concretely determine the value

of γ in order to gain confidence in the hard lattice problems to be in the NP-hard class. The

choice of γ directly influences the security and complexity guarantees of the cryptographic

schemes, making it essential to carefully consider this parameter in practical applications.

Module Lattice: To have confidence in the security of a module-DLWE-based cryp-

tosystem, we want to be sure that unless (δ1, δ2) is negligible, there is no efficient (δ1, δ2)-

distinguisher for module-DLWEq,r, where q (the modulus) and r (the distribution width) are

parameters of our cryptosystem. We want the M -SIVPγ problem that reduces to module-

DLWEq,r with this choice of δ1, δ2 to be hard. According to Theorem 51, the approximation

factor γ in the SIVP is Õ of the following expression:

√
N

α
=

√
N

r

(
NN3`

ln(NN3`)

)1/4

(8.1)

In the case of a module lattice with dimension N , r is to be bounded above by O(
√

logN/N),

or else the distribution will be statistically indistinguishable from the uniform and no dis-

tinguisher will be possible.

Using (5.7) and the bound O(
√

logN/N) on r and ignoring log factors and constants,

from (8.1) we have

γ > N(NN3`)
1/4 > N(N`N2δ−2

2 )1/4 = N7/4`1/4δ
−1/2
2 > N7/4δ

−1/2
2 . (8.2)
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Here we take N3 = (δ2/N)−2 from Equation 5.7.

Ideal Lattice: The same argument holds for reductions in Chapter 6 for ring LWE. Here

the dimension of the lattice is n instead of N in theorem 70. The value of γ is greater than

n7/4δ
−1/2
2 following (Equation 8.2).

Here the approximation factor of SIVP for module and ideal lattices is outside the range

where the SIVP problem is considered to be hard. The hardness of the SIVP problem is

supposed to provide evidence for the security of cryptographic systems but the SIVP problem

that is chosen is not the desired one to be precise.

For example, choosing n = 210 and δ2 = 2−β2 , we find that γ > 2(35+β2)/2. Now for γ = 2k

the fastest classical algorithm known that solves SVPγ (and hence also solves K-SVPγ and

its equivalent K-SIVPγ) has running time 2θ̃(n/k) where θ̃ suppresses a log factor [Pei16]. The

requirement is that 2n/k should be large. From γ = 2k > 2(35+β2)/2, we have k > (35 +β2)/2.

Suppose we are considering 128-bit security. If we are extra cautious, then we will choose

β2 = 128; if we are less cautious, then we may choose β2 = 50; and if we are not particularly

risk-averse we might choose β2 = 25. The corresponding lower bounds on γ and upper bounds

on 2n/k are shown in Table 8.6. None of these values inspire confidence in the hardness of

M -SIVPγ and K-SIVPγ. In particular, the approximation factors γ are very large, and the

running times 2n/k are too small.

8.2.3 The value of LWE modulus q

The value of LWE modulus q used in both [LPR13] and [LS15] has some strict lower bound. A

condition for the reductions is that qα > 2ω(
√

lnn) for ideal lattice and qα > 2
√
dω(
√

lnN)

for module lattice. Using (5.4), for module lattice we obtain

q >
2
√
dω(
√

lnN)

α
=

2
√
dω(
√

lnn)

r

(
NN3`

ln(NN3`)

)1/4

. (8.3)

Again ignoring constants and log-terms and using r < O(
√

logN/N), we have

q > N5/4`1/4δ
−1/2
2 > N5/4δ

−1/2
2 . (8.4)
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δ2 2−128 2−50 2−25

γ = 2k 281.5 242.5 230

2n/k 212 224 234

q 276 237 234

Table 8.6: For n = 210 the lower bounds on γ and upper bounds on 2n/k along with lower
bounds on q.

Similarly, we obtain the following for the ideal lattice (d = 1, rank of the module)

q > n5/4`1/4δ
−1/2
2 > n5/4δ

−1/2
2 . (8.5)

With our values n = 210, δ2 = 2−β2 we find that q > 2(25+β2)/2. The lower bounds for q

corresponding to β2 = 128, 50 and 25 are shown in Table 8.6. The cryptosystem would be

quite inefficient with these values of the modulus.

The NIST-PQC proposals SABER and KYBER are based on module lattices. In Chap-

ter 5, we considered the reduction for module lattices. The parameters of Kyber are chosen

based on the parameters of the ideal lattices of the same dimension as that of module lat-

tices. We make the same assumptions for SABER. There are several variants of SABER and

Kyber, and the highest security variant for both sets the dimension n = 1024. Irrespective

of the dimension, q for SABER and Kyber are 213 and 3329 respectively. These values are

much lower than the values of q in Table 8.6.

8.2.4 Problem with structured Lattices

Lattice-based cryptography got its importance due to the fact of its worst case to average

case equivalence property [Ajt96] other than being quantum-safe. That means that lattice

problems like SVP, SIVP or CVP, etc. on any randomly chosen lattice are at least as hard

as on the worst-case lattice instances. This result of Ajtai and Dwork [AD97], confirms the

above-stated fact with the first public key encryption system which enjoyed the hardness of

the worst case of CVP. We already discussed the point from the tightness gap of concrete

security perspective and found that the reductions lack desired tightness.

Now, we focus on the domain of lattices used to construct lattice-based applications. The

main reason is that the practical applications chose a different algebraic variant of lattices

rather than choosing Euclidean lattices. Here different algebraic variants are ideal lattice and
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module lattice. Though ideal lattices are restricted versions of module lattices and module

lattices are the generalized version of ideal lattices. The rationality behind this choice is

efficiency. We get an advantage using ideal and module lattices in the size of the public key.

The size of the public key is O(n) times larger in the case of Euclidean lattices than that of

ideal and module lattices. Again a single multiplication in ideal lattices is done through n

multiplications in Euclidean lattices. But we need to remind that ideal lattices are a subclass

of all lattices. In [LPR13] we work with ideal lattices over the cyclotomic number field. So,

the argument for worst-to-average case equivalence comes under scrutiny when lattices are

chosen from a special class, such as the class of ideal lattices or module lattices. We need to

have the guarantee or the assurance of the worst to average case equivalence over the domain

of lattices that are used in the applications in the name of achieving better efficiency. Thus

the “worst to average case equivalence” is one the critical point in the evolution and

endorsement of lattice-based cryptography and it should not be ignored against any other

justification to work in a special subclass of lattices.

It is evident that ideal lattices and module lattices have much more structure than Eu-

clidean lattices. These added features have been used extensively for the proof of security

reductions for the ideal lattice as well as module lattices. We can have different embeddings

of a number field but in the case of ideal lattices, canonical embedding is used. The fact

that we can have isomorphisms between different embeddings of the number field is used as

one of the key features in security reductions. In the cyclotomic number field and the case

of non-cyclotomic Galois fields as well, these isomorphisms become automorphisms. The

intricate security reductions in [LPR13] and [LS15] use these facts which are not present or

needed in [Reg09]. The gain was efficiency.

Greater structure and symmetry can be a probable concern for weakness. The hardness

of SVP is the basis of security for lattice-based cryptographic schemes. SVP is hard in Eu-

clidean lattices but SVP is presumably not as hard as in Euclidean lattices as in the restricted

settings in ideal lattices of a cyclotomic number field. In cyclotomic ideal lattices, SIVPγ

is trivially equivalent to SVPγ as pointed out in [LPR13]. The hardness relation between

SVP and SIVP is much weaker in Euclidean lattices. SIVP√nγ reduces in polynomial time

to SVPγ, where n is the dimension of the lattice [MG02]. This suggests that for Euclidean

lattices SIVP and SIVPγ are strictly harder than SVP and SVPγ but they are equivalent

when restricted to cyclotomic ideal lattices. To quote from [KSSS22].

“...even if SVP and approximate SVP for cyclotomic ideal lattices were to be as hard as for

general lattices, SIVP and approximate SIVP for cyclotomic ideal lattices could be easier.”
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8.2.5 The Quantum Part

All the lattice based reductions starting from [Reg09] are quantum except [Pei09] and [BLP+13].

The need and the working of the quantum part are the same in all the reductions. The quan-

tum part of the reduction in [LPR13] and [LS15] is largely taken from [Reg09]. The quantum

part is needed only in one step in the proof of the main theorem.

In [Reg09]) the quantum algorithm has a state that is a linear combination of roughly

23n2
terms, each involving two entangled registers. The algorithm needs to “erase” the

first of these entangled registers, which means “uncomputing” a closest vector in each sum-

mand. This is done by converting an algorithm for the closest vector problem (denoted CVP

in [Reg09] and BDD in [LPR13]) into a quantum circuit and then reversing the circuit.

The quantum algorithm is based on Lemma 3.14 of [Reg09], which shows that n logR

logical qubits are required for lattice L, where R is an integer which is at least 23nλn(L).

Since λn(L) is generally polynomial in n, it follows that the number of logical qubits required

is about 3n2. For n = 210 about 3 million logical qubits will be required. In comparison,

factoring a 2048-bit RSA modulus requires roughly 4000 to 5000 logical qubits [Sho99].

The reason to doubt the feasibility of the quantum part of the security reduction in [Reg09],

[LPR13],[LS15] and [PRS17] is, even for n = 1024 the circuit size is many thousands of times

the circuit size for Shor’s algorithm to factor a 2048-bit RSA modulus. Since the number

of qubits grows quadratically with n, the circuit size becomes much greater if one chooses n

large enough to compensate for the tightness gap in the reduction. It questions the feasibility

of the quantum part for its practical importance.

8.3 Conclusion

In this chapter, we have discussed various aspects of concrete security analysis, which are

instrumental in our investigation. One of the key concepts we explored is the tightness gap,

which serves to quantify the level of security provided by reductions in asymptotic settings.

By measuring the tightness gap, we gain a more concrete understanding of the security guar-

antees offered by cryptographic constructions. Upon closer examination of the reductions,

we observed that certain parameters, such as the LWE modulus and the approximation fac-
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tor of SIVP, did not instill much confidence in their practicality. This further emphasizes the

significance of concrete security analysis as a vital tool to bridge the gap between theoretical

proofs and real-world practicality. By conducting concrete security analysis, we can assess

cryptographic protocols based on specific parameter choices and efficiency considerations,

ensuring that they provide meaningful security guarantees in practical scenarios. It allows

us to validate the robustness of these protocols against potential real-world threats and re-

source constraints, such as key sizes and computational overhead. In conclusion, concrete

security analysis is an essential aspect of cryptographic research, as it brings clarity and re-

alism to the theoretical security guarantees provided by cryptographic constructions. It aids

in designing efficient and secure post-quantum cryptographic systems that can be effectively

deployed in real-world applications.
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Chapter 9

Conclusion

Lattice-based cryptography has long been regarded as a promising contender for quantum-

safe cryptography due to its strong theoretical security foundation, particularly the asymp-

totic evidence based on the worst-to-average case equivalence of hard lattice problems. This

theoretical achievement cannot be overlooked, and it has driven significant progress in the

field. However, the practical aspects of security and communication efficiency are equally

crucial for real-world applications. Merely relying on asymptotic guarantees may not be

sufficient to ensure the security and efficiency of cryptographic protocols when deployed in

practical scenarios. Therefore, it becomes essential to delve beyond the theoretical perspec-

tive and thoroughly assess the practicality of these cryptographic systems before making

them available for general use. This thesis follows the same line of thinking throughout its

research journey. Its primary purpose is to re-evaluate the merits of lattice-based cryptogra-

phy from a practical standpoint. By conducting concrete security analyses and investigating

the tightness gap of reductions, the thesis aims to shed light on the real-world security and

efficiency of lattice-based cryptographic constructions. The intention is to provide valuable

insights into the practical feasibility of these cryptographic systems and offer guidelines for

their effective and secure deployment in practical applications. In essence, the thesis seeks

to strike a balance between the theoretical excellence of lattice-based cryptography and its

practical applicability, ultimately contributing to the development of robust and efficient

post-quantum cryptographic solutions.

Provable security is undeniably a crucial aspect that enhances the trustworthiness and

reliability of cryptographic schemes. It offers a rigorous mathematical foundation, providing

a certificate of hardness to cryptographic constructions, particularly in an asymptotic set-

ting. This mathematical assurance is instrumental in establishing the security guarantees of

cryptographic systems. Lattice-based cryptography, being one of the prominent candidates

for post-quantum cryptography, is also built on provable security principles. Its security is

grounded in the presumed hardness of certain lattice problems, which are believed to with-

stand attacks even from quantum adversaries. However, the analysis presented in this thesis

reveals some limitations in the asymptotic hardness guarantee provided by the reductions

in lattice-based cryptography. The tightness gap of these reductions suggests that the theo-
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retical security assurances might not fully translate into practical guarantees. The practical

feasibility and real-world security of lattice-based cryptographic constructions are affected

by these gaps.

9.1 Summary

The thesis contributes to this understanding through five comprehensive chapters, each fo-

cusing on aspects of concrete security analysis and the tightness gap in different variants of

lattice-based cryptography, which we summarize in the following.

• In Chapter 4, we discussed the quantum reductions for lattice-based cryptosystems.

Lattice-based cryptographic schemes were shown as hard as worst-case hard lattice

problems, namely GIVP. We analyzed each sub-reduction minutely and found the

tightness gap of the end-to-end reduction. The tightness gap is shown as a function of

the lattice dimension and the parameters of the average case LWE distinguisher. The

tightness gap is not within practical range by any means.

• In Chapter 5, we focused on the quantum reduction for module and ideal lattice-based

cryptographic schemes. Ideal lattices are a sub-class of lattices where cryptographic

operations can be done more efficiently than a general or Euclidean lattice. Ideal

lattices are chosen over Euclidean lattices for practical purposes for the computational

efficiency aspect of it. Though it introduces some structural weakness to it which is not

present in Euclidean lattices. Module lattices are an optimized version of the two types

of lattices, viz, Euclidean and ideal lattices. Cryptographic designers tried to take the

good out of both types of lattices and put them into one. Our analysis shows that the

tightness gap is still an issue for module lattice-based cryptography. We calculated the

tightness gap and tried to optimize the reductions whenever possible. But optimization

could not change the overall analysis much.

• In Chapter 6, the point of discussion was ideal lattice-based reductions but here ideal

lattices are more general than in the previous chapter. In the previous chapter module

and ideal lattices are from the cyclotomic number field. These lattices are very skewed

sub domain of lattices which restrict the scope for cryptographic designers. This re-

duction has more degrees of freedom as this reduction applies to any LWE modulus.

But the asymptotic reduction still lacks the tightness.
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• One major drawback of the lattice-based reductions is that they are all quantum. They

all share one quantum step. The classical lattice reduction could solve the problem

but that was not satisfactory from a practical perspective. We analyzed the classical

reduction in Chapter 7. Our analysis gave new insights into this reduction in various

ways. We could show that the tightness gap of the reduction is too big to use in

practice.

• In Chapter 8, we discussed different aspects of concrete security analysis. We discussed

what a high tightness gap implies in practice. We calculated the tightness gap for all the

reductions that we discussed and explained the adverse effect of it. A concrete analysis

shows that the approximation factor of SIVP in the case of ideal and module lattices

lies beyond the permissible range for SIVP to be considered a hard problem. Also,

the value of the modulus of the LWE problem is analyzed for the context of practical

security. We also presented the problems of using structured lattices like ideal and

module lattices in place of Euclidean lattices. The relationship between security and

efficiency has been a challenging one. The optimization between both of them has been

pointed out. The cost of the quantum step in the reduction is very high. The impact

of the quantum step in the context of practical usability of the lattice-based reduction

is a matter of concern, which has been described in the concluding chapter.

9.2 Future Directions

In the future, further research and work can be focused on improving the concrete security

of lattice-based cryptography. Some potential areas for future work in this domain include:

• Tightness Gap Reductions: Investigate and develop new reductions that minimize the

tightness gap in lattice-based cryptographic constructions. Finding tighter reductions

would provide stronger guarantees of real-world security for these schemes.

• Parameter Selection: Analyze the impact of different parameter choices on the con-

crete security of lattice-based cryptosystems. Identifying optimal parameter sets that

balance security and efficiency is crucial for practical implementations.

• New Mathematical Techniques: Explore novel mathematical techniques and tools that

can enhance the concrete security analysis of lattice-based schemes. Developing in-

novative approaches to quantify the security guarantees could lead to more accurate
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assessments.

• Post-Quantum Security: As quantum computers become more powerful, the security

of lattice-based cryptography may be further challenged. Investigate the resilience

of lattice-based schemes against quantum attacks and explore potential quantum-safe

variants.

• Efficiency Improvements: Work on optimizing the efficiency of lattice-based cryptosys-

tems without compromising security. Finding faster algorithms and reducing key sizes

can make these schemes more practical for various applications.

• Cryptanalysis: Conduct cryptanalysis on lattice-based schemes to identify potential

weaknesses and vulnerabilities. Understanding the security limitations of these schemes

can guide the development of more robust cryptographic protocols.

By addressing these future research directions, the field of lattice-based concrete security

can make significant progress in ensuring the practical viability and security of lattice-based

cryptographic constructions in real-world applications. In conclusion, while lattice-based

cryptography has a strong foundation in provable security, the concrete security analysis

presented in this thesis raises important considerations for its practical implementation. By

addressing these issues, the thesis strives to make lattice-based cryptography more reliable

and suitable for real-world applications in the era of quantum computing.
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TALS - kyber: A cca-secure module-lattice-based KEM. In 2018 IEEE European

Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom,

April 24-26, 2018, pages 353–367. IEEE, 2018.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra sys-

tem. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Com-

putational algebra and number theory (London, 1993).

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
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Muller, and Frédéric Valette. Power attack on small RSA public exponent.

In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Em-

bedded Systems - CHES 2006, 8th International Workshop, Yokohama, Japan,

October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in Computer

Science, pages 339–353. Springer, 2006.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions


168 BIBLIOGRAPHY

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In G. R. Blakley and David Chaum, editors, Advances in

Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, Au-

gust 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer Science,

pages 10–18. Springer, 1984.

[Gat18] F. Gates. Reduction-respecting parameters for lattice-based cryptosystems.

https://macsphere.mcmaster.ca/bitstream/11375/24466/2/gates_fletcher_

m_finalsubmission2018october_msc.pdf, 2018.

[Gau66] Carl Friedrich Gauss. Disquisitiones arithmeticae, volume 157. Yale University

Press, 1966.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard

lattices and new cryptographic constructions. In Cynthia Dwork, editor, Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,

British Columbia, Canada, May 17-20, 2008, pages 197–206. ACM, 2008.

[GMK+22] Archisman Ghosh, Jose Maria Bermudo Mera, Angshuman Karmakar, Debayan

Das, Santosh Ghosh, Ingrid Verbauwhede, and Shreyas Sen. A 334uw 0.158mm2

saber learning with rounding based post-quantum crypto accelerator. In IEEE

Custom Integrated Circuits Conference, CICC 2022, Newport Beach, CA, USA,

April 24-27, 2022, pages 1–2. IEEE, 2022.

[GRS08] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. How to encrypt

with the LPN problem. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
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[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for

module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with ratio-

nal coefficients. Mathematische Annalen, 261(4):515–534, Dec 1982.

[LLM06] Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance

decoding for general lattices. In Josep Dı́az, Klaus Jansen, José D. P. Rolim,
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