
Sample and Query Complexities of

Some Estimation Problems

Sayantan Sen

Supervisor: Dr. Sourav Chakraborty

Advanced Computing and Microelectronics Unit

Indian Statistical Institute

203 B. T. Road, Kolkata-700108

A thesis submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Science at Indian Statistical

Institute

October, 2023

To Ma and Baba

ACKNOWLEDGEMENTS

Every Ph.D. is a very personal and emotional journey, and mine was no different.

First and foremost I would like to thank my advisor Sourav Chakraborty. Sourav intro-

duced me to research and instilled a love for the beautiful area of property testing in me.

Over the last five years, we have had innumerable discussions over various topics: both

in academics as well as outside it. He has always treated me as a colleague from the first

time we started working on. He has been always been available for discussions at almost

any time, even during his busy schedule. Especially, in early 2020, when the first wave

of COVID-19 had struck, and the whole world was under lockdown, he used to check

on me multiple times every week, just to see if everything was okay. I consider myself

extremely fortunate to have Sourav as my supervisor.

Next, I would like to thank Eldar Fischer. I have learned a great lot of things about

research and property testing from him. Two papers in this thesis have been joint works

with him, and his insights into problems continue to amaze me. Special thanks to him for

hosting me at Technion for an academic visit, where we had several fruitful discussions.

I would also like to thank Arijit Bishnu and Arijit Ghosh for their help during my

Ph.D. They were always available for discussions and provided me with advice when I

needed it. I thank Arijit Bishnu for his probability course in my first semester, which has

helped me greatly in my research.

Next, I would thank Gopinath Mishra. I met him when he was a senior Ph.D. student

in the department. Over the last few years, we have worked on many projects, and I

have learned a lot from discussions with him. Thanks to Ansuman Banerjee, Shayak

Chakraborty and Kuldeep S. Meel, Simon Apers, Sander Gribling and Dániel Szabó for

the fruitful collaborations. I would also thank Uddalok Sarkar and Rahul Raychaudhury

for collaborating on two projects with me during my Ph.D. journey.

I now thank all my collaborators: Simon Apers, Ansuman Banerjee, Arijit Bishnu,

Sourav Chakraborty, Shayak Chakraborty, Eldar Fischer, Arijit Ghosh, Sander Gribling,

Kuldeep S. Meel, Rahul Raychaudhury, Uddalok Sarkar and Dániel Szabó. Special

thanks to Sophie Laplante for hosting me for an academic visit at IRIF, Paris, which

iii

eventually resulted in a joint paper with Simon, Sander, and Dániel. Also, thanks to

Siddharth Barman and Anand Louis for a wonderful visit to Indian Institute of Science

(IISc). I also thank Nithin Varma for hosting me at Chennai Mathematical Institute

(CMI) for an academic visit.

I would like to thank Indian Statistical Institute, and my department ACMU in par-

ticular, to provide me with an excellent environment for research. Specially, I thank

my fellow Ph.D. students at ACMU: Manaswi, Gopinath, Chandrima, Avijeet, Soumi,

Sourasena, Uddalok, Kaustabh, Arun, Joy, Santlal, Souvik, Swarnalipa, and Laksh-

mikanta for all the fun and discussions we had over the last five years. Thanks to all

of my other unmentioned friends. Please accept my apologies for not being able to put

all of your names.

I thank Indian Statistical Institute for funding me during my Ph.D. and to Indian

Association for Research in Computing Science (IARCS) for partially sponsoring my

travel to Paris to present our work at ICALP 2022.

Finally, saving the best words for the last, I thank my family: my parents, my broth-

ers, my nephew, and my sister-in-law for their never-ending love, and support, especially

to my nephew Aratrik, who has filled our lives with love. Finally, I thank my parents for

everything. This thesis is dedicated to them.

Sayantan Sen

iv

Abstract

Given data from some experiment, inferring information from the underlying distri-

bution is of prime importance, and has been extensively studied. However, due to the

huge size of the data, traditional methods are often no longer applicable. Thus new tools

and techniques are being developed for inferring useful information from large amounts

of data. This thesis makes progress in this direction.

The primary goal is to design efficient randomized algorithms aka. testers that can

distinguish whether a given unknown object is “close” or “far” from a property of interest

with as few accesses as possible. This is referred to as distribution testing when the

unknown object is a probability distribution, and graph property testing when it is a

graph. The minimum number of samples required to decide a property in distribution

testing is referred to as sample complexity, while in graph property testing, it is referred

to as query complexity.

In this thesis, we study several fundamental problems in distribution and graph prop-

erty testing such as (i) Can one design a tolerant tester for any distribution property with

only black-box access to a non-tolerant tester? (ii) Does there exist distribution prop-

erties with global structure that can be learnt efficiently? (iii) the role of adaptivity in

distribution testing, and tolerant testing for (iv) graph isomorphism and (v) bipartiteness.

The results of the thesis are divided into three parts. In the first part, we study

the connection between the sample complexities of non-tolerant and tolerant testing of

distributions and prove a tight quadratic gap for label-invariant (symmetric) properties,

while providing lower bounds for non-concentrated properties. We also present an al-

gorithm that can learn a concentrated distribution even when its support set is unknown

apriori.

In the second part, we investigate problems (ii) and (iii) in huge object model, where

distributions are defined over n-dimensional Hamming cube and the tester obtains n-

bit strings as samples. Since reading the string in its entirety may not be feasible for

large n, the tester has query access to the sampled strings. We define the notion of

index-invariant properties, properties that are invariant under the permutations of the

v

indices {1, . . . , n} and prove that any index-invariant property whose VC-dimension is

bounded has a tester whose query complexity is independent of n and depends only on

VC-dimension. Moreover, the dependencies of sample and query complexities of our

tester on the VC-dimension are tight. We also study the power of adaptiveness in this

model and prove a tight quadratic separation between query complexities of adaptive

and non-adaptive testers for index-invariant properties, compared to tight exponential

separation for its non-index-invariant counterpart.

In the third part, we study property testing of dense graphs and give positive answers

to problems (iv) and (v). We prove that tolerant graph isomorphism testing is equivalent

to the problem of estimating the Earth Mover Distance of two distributions, constructed

from the graphs. Moreover, our equivalence proof is model-independent. Finally, we

design a tester for tolerant bipartiteness testing whose query and time complexities are

significantly better compared to previous works.

vi

Contents

1 Introduction 1

1.1 Various models of computation . 4

1.1.1 Sampling model . 5

1.1.2 Huge object model . 5

1.1.3 Adjacency matrix model . 5

1.2 Our results in this thesis . 7

1.2.1 Part I: Results in the Sampling Model 8

1.2.2 Part II: Results in the Huge Object Model 10

1.2.3 Part III: Results in the Adjacency Matrix Model 15

2 Preliminaries 19

2.1 Various distance measures of distributions 20

2.2 Formal definitions of various kinds of property testers 22

2.3 Some probability results . 23

I Results in the Sampling Model 27

3 Testing in the Sampling Model 28

3.1 Introduction . 28

3.2 Our results . 29

3.3 Related works . 32

3.4 Preliminaries . 34

vii

3.5 Technical overview of our results . 35

3.5.1 Construction of tolerant testers for label-invariant properties . . 36

3.5.2 Lower bound results for non-concentrated properties 37

3.5.3 Learning Distributions with Unknown Support 38

4 Tolerant & Non-tolerant Testers for Label-Invariant Properties 40

4.1 Introduction . 40

4.2 Non-tolerant vs. tolerant testing of label-invariant properties 41

4.3 Computationally efficient tolerant testers 52

4.3.1 Emptiness checking when P is a linear property 57

5 Testing of Non Concentrated Properties 59

5.1 Introduction . 59

5.2 Testing of non-concentrated label-invariant properties 60

5.2.1 Non-tolerant lower bound for label-invariant properties 60

5.2.2 Tolerant lower bound for label-invariant properties 62

5.3 Sample complexity of non-concentrated properties 64

6 Distribution Learning with Unknown Support 71

6.1 Introduction . 71

6.2 Learning distributions with unknown support 72

II Results in the Huge Object Model 79

7 Testing in the Huge Object Model 80

7.1 Introduction . 80

7.1.1 Our results . 83

7.2 Preliminaries . 89

7.2.1 Distributions and properties with bounded VC-dimension . . . 89

7.2.2 Yao’s lemma for the huge object model 91

7.3 Technical overview of our results . 92

viii

7.3.1 Overview of learning clusterable distributions 93

7.3.2 Overview of learning index-invariant bounded VC-dimension

properties . 94

7.3.3 Overview of lower bound for index-invariant bounded VC-dimension

properties . 94

7.3.4 Overview of adaptive vs. non-adaptive testers for general prop-

erties . 96

7.3.5 Overview of adaptive vs. non-adaptive testers for index invariant

properties . 96

8 Learning Clusterable Distributions 101

8.1 Introduction . 101

8.2 Learning clusterable distributions . 102

8.2.1 Preliminaries to prove the correctness of TEST-AND-LEARN . . 106

8.2.2 Correctness of TEST-AND-LEARN 112

9 Testing VC dimension properties 121

9.1 Introduction . 121

9.2 Testing properties with bounded VC-dimension 122

9.2.1 Learning distributions close to having bounded VC-dimension . 127

9.3 Lower bounds for testing VC-dimension properties 129

10 Role of adaptivity for general properties 139

10.1 Introduction . 139

10.2 Exponential gap between adaptive and non-adaptive testers 140

10.3 Exponential separation between adaptive and non-adaptive testers . . . 142

11 Power of adaptivity for index-invariant properties 149

11.1 Introduction . 149

11.2 Quadratic relation of adaptive and non-adaptive testers 150

11.3 Quadratic separation between adaptive and non-adaptive testers 152

ix

11.3.1 Determining the permutation π 160

11.3.2 The upper bound on adaptive testing for property PGap 164

11.3.3 Near-quadratic lower bound for non-adaptive testing of PGap . . 175

III Results in the Adjacency matrix Model 183

12 Testing in the Adjacency matrix Model 184

12.1 Introduction . 184

12.1.1 Tolerant Graph Isomorphism Testing 184

12.1.2 Tolerant Bipartiteness Testing 188

12.2 Our results . 191

12.3 Preliminaries . 193

12.3.1 Notion of distance between two graphs 194

12.3.2 Some results on Earth Mover Distance (EMD) 195

12.4 Overview of our results . 205

12.4.1 Overview of our tolerant isomorphism testing result 205

12.4.2 Overview of our tolerant bipartiteness testing result 210

13 Tolerant Graph Isomorphism is as hard as tolerant EMD testing 215

13.1 Introduction . 215

13.2 Reduction from Tolerant GI to Tolerant EMD testing 216

13.3 Correctness of our reduction . 221

14 Tolerant EMD testing is as hard as tolerant Graph Isomorphism 229

14.1 Introduction . 229

14.2 Algorithm for tolerant GI testing . 230

14.3 Proof of correctness . 234

14.3.1 Proof of completeness . 234

14.3.2 Proof of soundness . 246

14.4 Proof of upper bound result . 249

x

15 Tolerant Bipartiteness Testing in Dense Graphs 251

15.1 Introduction . 251

15.2 Estimation of bipartite distance with Õ
(

1
ε6

)
queries 252

15.3 Algorithm for Tolerant Bipartite Testing 255

15.4 Correctness of our algorithm . 258

15.4.1 Proof of completeness . 260

15.4.2 Proof of soundness . 271

16 Conclusion 277

xi

List of Figures

1.1 Sampling model for distribution testing 5

1.2 Query model for huge object testing 6

1.3 Adjacency matrix model . 7

12.1 Distribution D corresponding to the multi-set D = {1, 2, 2, 3, 4} 198

12.2 Distribution D after 2 is sampled without replacement 198

13.1 Construction of the graph G ∈ {Gk, Gu} 219

xii

Chapter 1

Introduction

In the computer science community, designing algorithms that run in time linear in the

size of the input has been the gold standard since its inception. Indeed, it is difficult to

imagine designing algorithms for nontrivial problems that perform better, as the algo-

rithm at least needs to read the input to make its decision. However, as larger and larger

data sets are becoming more prevalent day by day, reading the input in its entirety is no

longer feasible. Thus there has been huge interest in designing algorithms that run in

sublinear time and read only a part of the input. Over the past two decades, there has

been extensive research, and several tools and techniques have been developed for this

purpose.

Often these data sets come with some suitable representation. For example, we can

view the data sets as samples from some underlying probability distributions. Examples

include data sets of network traffic records, financial transactions, sensors, etc. In most

of the scenarios, we do not know the underlying probability distribution explicitly, we

just have access to samples from the unknown distribution. To make sense of the data

sets, the primary goal is to understand some properties of the underlying probability dis-

tribution, by seeing as few samples as possible. For example, we might want to estimate

the number of elements in the support of the distribution that have non-zero probability

mass. Many of these questions can be answered successfully using classical techniques

from Statistics. However, it turns out that by applying techniques from Statistics litera-

1

ture, we often need at least a linear number of samples to understand the properties of

the underlying distribution. But the challenge big data proposes is the immense size of

the supports of the distributions. This makes several known techniques impractical for

practical purposes. In order to tackle this challenge, several tools have been developed

over the past few decades.

The field of property testing was started by the work of Rubinfeld and Sudan [RS96],

where the authors studied the problem of testing the correctness of programs. Later Gol-

dreich, Goldwasser, and Ron [GGR98] formally introduced the notion of property test-

ing in their seminal work. In that work, they studied several properties of dense graphs

like bipartitness, colorability, maximum cut, etc., and designed efficient algorithms for

these problems. Later various properties of bounded degree graphs have also been stud-

ied [GR97].

The field of distribution testing was initiated implicitly in the works of Goldreich

and Ron [GR00, GR11], where they tested whether a bounded degree regular graph is

an expander via estimating the ℓ2 norm of an underlying distribution, as well as the

uniformity property. Later Batu et. al [BFR+00] studied the problem of testing whether

two unknown distributions are close as well as the problem of identity and independence

testing of distribution in [BFF+01]. The sample complexity bound for testing uniformity

was later improved by Paninski [Pan08].

The problem of distinguishing whether an unknown distribution D has some prop-

erty P or it is far from all distributions with that property is normally referred to as

non-tolerant testing of P . The minimum number of samples required for deciding any

property P is defined as the Sample Complexity of testing P . Several natural properties

like uniformity [BFR+00, Pan08], monotonicity [BKR04, ADK15], histogram [ILR12]

etc. have been studied over the years, and the design of such testers have used a wide

array of techniques.

Another related problem is the problem of tolerant testing of distributions. Here we

want to distinguish whether D is “close”, or “far” from P . Although it seems that tol-

erant testing is a generalization of the non-tolerant variant, it is interesting to note that

tolerant testing problems are often significantly harder than their non-tolerant counter-

2

parts and require new techniques. For example, the problem of non-tolerant testing of

whether a distribution is uniform or not requires Θ(
√
n) samples [Pan08], but tolerant

testing of uniformity requires Θ(n/ log n) samples, where n is the size of the support of

the distribution [VV10, VV11].

When the unknown huge object is a graph G, the problem of distinguishing if G is

“close” or “far” from a property P is called graph property testing. The field of graph

property testing was first introduced in the seminal work of Goldreich, Goldwasser, and

Ron [GGR98]. Their work introduced the model which is now referred to as dense

graph property testing. In this model, a graph G on n vertices is represented as an n×n

adjacency matrix, where (i, j)-th entry of the matrix is 1 if there is an edge between the

vertices i and j, and 0 otherwise. The tester can perform query to any entry of the adja-

cency matrix. A graphG is said to be ε-close to P if at most εn2 edges are required to be

modified (added or removed) to make the modified graph have the property P . The goal

here is to design testers that perform as few queries to the adjacency matrix as possible

to decide P with high probability. The minimum number of queries required to test a

property P is called the Query Complexity of testing P . In [GGR98], the authors stud-

ied various properties like degree regularity, bipartiteness, maximum cut, k-colorability,

etc. They further studied a more general problem called graph partition problem which

generalizes k-colorability, as well as biclique and maximum cut. Surprisingly, several

properties which can be expressed as graph partition problems in this model have very

efficient testers, often testers have query complexity independent of n, depending only

on the proximity parameter ε.

Over the last two decades, property testing in dense graph model has been exten-

sively studied. The problem of k-colorability was later studied by Alon and Krivele-

vich [AK02] who designed a tester with better complexities. This bound was further im-

proved by Sohler [Soh12]. The problem of estimating the size of the maximum cut was

later improved by Alon, Vega, Kannan, and Karpinski [AdlVKK03]. Another impor-

tant problem is the problem of isomorphism testing. The problem of property testing of

graph isomorphism was first studied by Fischer and Matsliah [FM08] and subsequently,

Babai and Chakraborty [BC10] studied the non-tolerant property testing version of the

3

hypergraph isomorphism problem. Another interesting set of works was initiated by

Alon, Fischer, Krivilevich, and Szegedy [AFKS00] who applied Szemeredi Regularity

Lemma to design efficient testers for various dense graph properties. Since then, there

have been several works that employed the Regularity lemma as well as its several vari-

ants for designing efficient testers [AS05, FN07, AS08, AFNS09].

Apart from the dense graph model, graph property testing has also been investigated

in the bounded degree model initiated by Goldreich and Ron [GR97]. Here the degree

of every vertex of the graph is bounded by a constant d, and the graphs are represented

as adjacency lists, that is, every vertex of the graph G has a list containing its neighbors

in G in an arbitrary order. A graph G is said to be ε-far from a property if we need to

modify (add or delete) at least εdn edges to make the modified graph have the property.

See [GR97, GR99, AK02, BOT02, CS10b, CSS09, GR11, Soh12, CGR+14, CPS15,

KSS18] for related results in this model. Later Parnas and Ron [PR02] defined the

notion of general graph model, which bridges the adjacency matrix and bounded degree

graph models. Here a graph G with m edges is said to be ε-far from another graph H

if we need to modify at least εm edges to make G isomorphic to H . See the works

[PR02, KKR04, Fei04, CRT05, CEF+05, PR07, GR08, NO08, NO08, AKKR08, CS09,

YYI09, MR09, ORRR12, ELRS17, ER18, ERS19, Lev21] for several relevant results

and techniques.

For detailed references of the results and various related techniques, see the books

of Goldreich [Gol17] and Bhattacharyya and Yoshida [BY22], and the surveys of Fis-

cher [Fis04], Ron [Ron08, Ron09], Czumaj and Sohler [CS10a], Rubinfeld [Rub12],

Rubinfeld and Shapira [RS11], Cannone [Can20a, Can22] to name a few.

1.1 Various models of computation

Now we present a brief introduction to the complexity models that have been studied in

this thesis. Let us start with the sampling model.

4

1.1.1 Sampling model

In this model, we assume the unknown distribution D is defined over a finite set Ω and

is represented as an oracle. Often Ω is set as [n] = {1, . . . , n}. The tester can get

independent samples from the oracle corresponding to D. The primary goal is to design

a tester that uses as few samples as possible to decide some property of D.

Figure 1.1: Sampling model for distribution testing

1.1.2 Huge object model

In the standard distribution testing model, samples are drawn independently from the

input distribution. It is implicitly assumed that the size of each sample is small enough

that the tester can read it in its entirety. Thus the primary goal has been to minimize the

number of samples required by the tester to decide some property.

However when the distributions are defined over some large domain, say the n-

dimensional Hamming cube {0, 1}n for a large n, even reading a few samples is in-

feasible. To address this, Goldreich and Ron [GR22] have defined a new model called

the huge object model, where the samples may only be queried in a few places. The

primary objective here is to optimize the sample as well as the query complexities of the

tester.

1.1.3 Adjacency matrix model

This model is used to study various properties of dense graphs. We will assume that the

graphs have n vertices numbered as {1, . . . , n}.

5

Figure 1.2: Query model for huge object testing

Adjacency matrix model is the most studied model in the field of graph property

testing when the graphs that are under test are dense graphs. This model was introduced

in the seminal work of Goldreich, Goldwasser, and Ron [GGR98], where the authors

studied various properties of dense graphs in this model. Here the input graph is stored as

an adjacency matrix, and we can perform queries to the matrix. The goal is to minimize

the number of queries required to decide whether the unknown graph has some particular

property, or is it far from all graphs with this property. Now we formally define the query

procedure.

Let us assume that the graph is G(V,E), where V and E denote the set of vertices

and edges of G respectively. We will assume that |V | = n, and |E| = m, where n and

m are two non-negative integers. The type of query that can be performed here is said

to be edge-existence query (aka. adjacency query), and is defined as follows:

Edge-existence query: For two vertices u, v ∈ V , given {u, v} as input to the oracle,

the oracle returns 1 if there is an edge between the vertices u and v, and 0 otherwise.

There are other types of queries defined for the case when the graph is sparse. How-

ever, in this thesis, we will only study the properties of dense graphs, and will only use

edge-existence query.

6

Figure 1.3: Adjacency matrix model

1.2 Our results in this thesis

In this thesis, we study several fundamental problems in the field of property testing.

Namely:

(i) Given any distribution property P , can one design a tolerant tester for P when one

has black-box access to a non-tolerant tester for P , without knowing any internal

details of the non-tolerant tester?

(ii) Does there exist distribution properties with global structure that can be learned

efficiently?

(iii) How does adaptivity play role in designing testers for distribution properties?

(iv) How to efficiently test whether a dense graph is close or far from being isomorphic

to another graph?

(v) Can we test whether a dense graph is close or far from being bipartite efficiently?

The results in this thesis are divided into three parts. In Part I, we study the relation

of tolerant and non-tolerant testing of probability distributions in the Sampling Model,

where the distribution under test is represented as an oracle, and independent samples

can be obtained from it, and answer (i) affirmatively. In Part II, we study distribution

testing in the huge object model. Here the distributions are defined over n-dimensional

Hamming cube, and the tester can obtain samples from the oracle, as well as perform

7

queries to the strings obtained as samples. Here we study problems (ii) and (iii). Finally,

in Part III, we study property testing of dense graphs, where we give positive answers

to problems (iv) and (v). In the following, we present an overview of the results of this

thesis.

1.2.1 Part I: Results in the Sampling Model

The problem of distinguishing whether an unknown distribution D has some property P
or it is far from all distributions with that property is normally referred to as non-tolerant

testing of P . Several natural properties like uniformity [Pan08], monotonicity [BKR04,

ADK15], histogram [ILR12] etc. have been studied over the years, and the design of

such testers have used a wide array of techniques.

Another related problem is the problem of tolerant testing of distributions. Here

we want to distinguish whether D is “close”, or “far” from a property P . Although

it seems that tolerant testing is a generalization of the non-tolerant variant, it is inter-

esting to note that tolerant testing problems are often significantly harder than their

non-tolerant counterparts and require new techniques. For example, the problem of

non-tolerant testing of whether a distribution is uniform or far from it requires Θ(
√
n)

samples [BFR+00, Pan08], but tolerant testing of uniformity requires Θ(n/ log n) sam-

ples, where n is the size of the support of the distribution [VV10, VV11]. Although

tight bounds for tolerant and non-tolerant testing of several problems are known for a

long time, there is no general technique that can construct a tolerant tester from its non-

tolerant counterpart. Below we give an outline of our results in this part of the thesis.

Chapter 4: Construction of tolerant testers for label-invariant properties For dis-

tribution properties that are label-invariant, that is, properties that remain invariant un-

der the relabeling of the support elements of the distribution such as uniformity or en-

tropy, we design a tolerant tester from its non-tolerant counterpart that requires at most

quadratic number of samples, compared to the non-tolerant tester. This gap is tight since

the property of uniformity is known to have an almost quadratic gap. Surprisingly, our

8

tester requires only the existence of the non-tolerant tester, not its details. Our main

result is stated as follows:

Theorem 1.1 (Informal). Any label-invariant distribution property that can be non-

tolerantly tested using Λ samples, can also be tolerantly tested using Õ(min{Λ2, n})
samples, where n is the size of the support of the distribution 1.

Our tolerant tester corresponding to Theorem 1.1 is not constructive. So, we design

a tolerant tester for linear properties (properties that can be expressed as a feasible so-

lution to a set of linear inequalities), that uses the same number of samples as the tester

corresponding to Theorem 1.1, and runs in polynomial time.

Theorem 1.2 (Informal). Any label-invariant distribution property that can be non-

tolerantly tested using Λ samples and can be expressed as a feasible solution tom linear

inequalities, can also be tolerantly tested using Õ(min{Λ2, n}) samples and in time

polynomial in m and n, where n is the size of the support of the distribution.

Chapter 5: Lower bound results for non-concentrated properties When moving

to general, not necessarily label-invariant properties, the situation is more complicated,

and we show some partial results. We show that if a property requires the distributions

to be non-concentrated, that is, if the probability mass of the distribution is sufficiently

spread out, then it can not be non-tolerantly tested with o(
√
n) samples, where n denotes

the support size. Clearly, this implies at most a quadratic gap, because a distribution can

be learned (and hence tolerantly tested against any property) using O(n) samples.

Theorem 1.3 (Informal). In order to non-tolerantly test any non-concentrated distri-

bution property, Ω(
√
n) samples are required, where n is the size of the support of the

distribution.

Being non-concentrated is a strong requirement on properties, as we also prove a

close to linear lower bound against their tolerant tests.

1Õ(·) hides a poly-logarithmic factor.

9

Theorem 1.4 (Informal). The sample complexity of tolerant testing of any non con-

centrated label-invariant distribution property is Ω(n1−o(1)), where n is the size of the

support of the distribution.

Chapter 6: Learning Distributions with Unknown Support Apart from the case

where the distribution is non-concentrated, we also show if an input distribution is very

concentrated, in the sense that it is mostly supported on a subset of size s of the universe,

then it can be learned using only O(s) samples. The learning procedure adapts to the

input, and works without knowing s in advance.

Theorem 1.5 (Informal). To learn a distribution approximately, O(|S|) samples are

enough, where S ⊆ [n] is an unknown set of minimum cardinality whose mass is close

to 1. Note that |S| is also unknown, and the algorithm adapts to it.

Theorem 1.1 and Theorem 1.2 are formally stated and proved in Chapter 4. Later in

Chapter 5, we present the proofs of Theorem 1.3 and Theorem 1.4. Finally, in Chapter 6,

we discuss the proof of Theorem 1.5.

This part is based on the following paper:

1. Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayantan

Sen. Exploring the Gap Between Tolerant and Non-Tolerant Distribution Testing,

In Proceedings of the 26th International Conference on Randomization and Com-

putation (RANDOM), Volume 245, 27:1-27:23, 2022, doi: 10.4230/LIPIcs.APPR

OX/RANDOM.2022.27. Presented in Highlights of Algorithms (HALG), 2023.

Submitted to the journal IEEE Transactions on Information Theory.

1.2.2 Part II: Results in the Huge Object Model

In the standard distribution testing model, samples are drawn independently from the

input distribution. It is implicitly assumed that the size of each sample is small enough

that the tester can read it in its entirety. Thus the primary goal has been to minimize the

number of samples required by the tester to decide some property.

10

However when the distributions are defined over some large domain, say the n-

dimensional Hamming cube {0, 1}n for a large n, even reading a few samples is in-

feasible. To address this, Goldreich and Ron [GR22] have defined a new model called

the huge object model, where the samples may only be queried in a few places. The

objective here is to optimize the sample as well as the query complexities of the tester.

The authors in [GR22] studied several well-studied properties in the standard sampling

model in this new framework.

In a recent work [CFG+23], we initiate the study of a general class of properties

in this model, named as index-invariant properties. Informally speaking, these are the

properties that are invariant under the permutations of the indices {1, . . . , n}. Many

interesting properties like monotonicity are index-invariant. It is interesting to note that

these properties differ from the more common notion of label-invariant properties that

we have discussed before. Now we present an outline of our results in this part of the

thesis.

Chapter 8: Learning Clusterable Distributions In this chapter, we study clusterable

distributions, that is, distributions whose support set can be partitioned into various parts.

We prove that any distribution that is clusterable, can be learned by performing a number

of queries that is independent of n. Formally, the result is stated as follows:

Theorem 1.6 (Informal). Given sample and query access to an unknown distributionD

over {0, 1}n, there exists a non-adaptive algorithm that makes a number of queries that

is independent of n, and either reports a full description of a distribution over {0, 1}n

or reports FAIL, satisfying both of the following conditions:

(i) If D is clusterable, then with probability at least 2
3
, the algorithm outputs a full

description of a distribution D′ such that D is ε-close to D′
σ for some permutation

σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that D′
σ is ε-

far from D for every permutation σ : [n] → [n], with probability more than 1
3
.

11

However, if the distribution D is not clusterable, the algorithm may output FAIL

with any probability.

Chapter 9: Testing bounded VC-dimension Properties In this chapter, we show that

any index-invariant distribution property whose VC-dimension is bounded, has a tester

whose query complexity is independent of the dimension of the underlying Hamming

cube, and depends only on the VC-dimension. Our result is stated as follows:

Theorem 1.7 (Informal). For any fixed constant d ∈ N, given sample and query access

to an unknown distributionD over {0, 1}n and a proximity parameter ε > 0, there exists

an algorithm that makes poly(1
ε
) queries 2, and either outputs the full description of a

distribution or FAIL satisfying the following conditions:

(i) If the support of D is of VC-dimension at most d, then with probability at least

2/3, the algorithm outputs a full description of a distribution D′ such that D is

ε-close to D′
σ for some permutation σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that D′
σ is ε-

far from D for all permutations σ : [n] → [n], with probability more than 1/3.

However, if the VC-dimension of the support of D is more than d, the algorithm

may output FAIL with any probability.

Note that the above theorem corresponds to the learnability of any distribution when

the VC-dimension of its support is bounded. As a corollary, it implies that any index-

invariant distribution property admitting a global VC-dimension bound is testable with

a constant number of queries, depending only on the proximity parameter ε and the

VC-dimension d. The corollary is stated as follows:

Corollary 1.8 (Informal). Let P be an index-invariant property such that any distri-

bution D ∈ P has VC-dimension at most d, where d is some constant. There exists an

algorithm, that has sample and query access to an unknown distribution D over {0, 1}n,

2The degree of the polynomial in 1/ε depends on the parameter d.

12

takes a proximity parameter ε > 0, and distinguishes whether D ∈ P or D is ε-far from

P with probability at least 2/3, by making only poly(1
ε
) queries.

It turns out that our tester for testing VC-dimension property takes exp(d) samples,

and performs exp(exp(d)) queries for VC-dimension d. We show that this bound is

tight, in the sense that there exists an index-invariant property with VC-dimension d

such that any tester for the property requires an exponential number of samples and a

doubly-exponential number of queries on d.

Theorem 1.9 (Informal). Let d, n ∈ N. There exists an index-invariant property Pvc

with VC-dimension at most d such that any (non-adaptive) tester for Pvc requires 2Ω(d)

samples and 22
d−O(1)

queries.

Chapter 10: Role of adaptivity for general properties: We also study another im-

portant feature of testers: the notions of adaptivity and non-adaptivity. Informally, non-

adaptive testers are testers that perform all the queries to the input together, and depend-

ing upon the answers to its queries, decide of accepting or rejecting the input. This is

in contrast to the notion of adaptive testing, where the tester performs a set of queries,

and based upon the answers, performs the second set of queries, and so on. It is clear

that adaptive testers are at least as powerful as non-adaptive testers, and the goal is to

understand their relative powers.

In the standard model of distribution testing, since the model is inherently non-

adaptive, there is essentially no gap between adaptive and non-adaptive testers. How-

ever, in the context of testing properties of dense graphs, it is well known that the com-

plexity of non-adaptive testers can be at most quadratic compared to the adaptive testers

for any property, which is also tight [GT03, GW21]. For graphs with bounded-degree,

for some properties like bipartiteness, this gap is constant vs. Ω(
√
n), where n denotes

the number of vertices of the graph [GR97].

Thus it is natural to study the relative powers of adaptive and non-adaptive testers

in the huge object model [GR22]. In our work [CFG+23], we show that for general

properties, there is a tight exponential separation between the query complexities of

non-adaptive and adaptive testers. The results are as follows:

13

Theorem 1.10 (Informal). For any non-index-invariant property P , there is at most an

exponential gap between the query complexities of adaptive and non-adaptive testers.

Theorem 1.11 (Informal). There exists a property of distributions over strings that can

be ε-tested adaptively using O(log n) queries for any ε ∈ (0, 1), but Ω(
√
n) queries are

necessary for any non-adaptive algorithm to ε-test it for some ε ∈ (0, 1).

Chapter 11: Power of adaptivity for index-invariant properties In contrast to non-

index-invariant properties, for index-invariant properties defined before, we prove that

there is at most a quadratic gap between the query complexities of adaptive and non-

adaptive testers, as follows:

Theorem 1.12 (Informal). For any index-invariant property P , there can be at most a

quadratic gap between the query complexities of adaptive and non-adaptive testers.

We also prove that the above gap is almost tight, in the sense that there exists an

index-invariant property that can be ε-tested using Õ(n) adaptive queries, while Ω̃(n2)

non-adaptive queries are required to ε-test it.

Theorem 1.13 (Informal). There exists an index-invariant property PGap that can be

ε-tested adaptively using Õ(n) queries for any ε ∈ (0, 1), while there exists an ε ∈ (0, 1)

for which Ω̃(n2) queries are necessary for any non-adaptive ε-tester.

Theorem 1.6 is formally stated and proved in Chapter 8. Later in Chapter 9, we

present the proofs of Theorem 1.7, Corollary 1.8 and Theorem 1.9. In Chapter 10, we

prove Theorem 1.10 and Theorem 1.11. Finally, in Chapter 11, we discuss the proofs of

Theorem 1.12 and Theorem 1.13.

This part is based on the following paper:

1. Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayan-

tan Sen, Testing of Index-Invariant Properties in the Huge Object Model, in Pro-

ceedings of the 36th Conference on Learning Theory (COLT) 2023, Volume 195,

14

pages 3065–3136, url: https://proceedings.mlr.press/v195/chakraborty23a.html.

Featured in Oded Goldreich’s Choices (https://www.wisdom.weizmann.ac.il/õded

/MC/335.html).

1.2.3 Part III: Results in the Adjacency Matrix Model

When the unknown huge object is a graph G, the problem of distinguishing if G is

“close” or “far” from a property P is called graph property testing. When G is a dense

graph, it is stored as an adjacency matrix, and the tester can query any entry of the

adjacency matrix. Similar to distribution testing, the goal here is to design testers that

perform as few queries as possible to decide P with high probability. The minimum

number of queries required to test a property P is called the Query Complexity of

testing P .

The field of graph property testing was first introduced in the seminal work of Gol-

dreich, Goldwasser, and Ron [GGR98]. Since then there has been a flurry of interesting

works. Below we give an outline of our results in this part.

Chapter 13 & Chapter 14: Tolerant Graph Isomorphism Testing: Graph isomor-

phism has been one of the most celebrated problems in computer science. Roughly

speaking, the graph isomorphism problem asks whether two graphs are structure pre-

serving. One central open problem in complexity theory is whether the graph iso-

morphism problem can be solved in polynomial time. Recently in a breakthrough re-

sult, Babai [Bab16] proved that graph isomorphism problem can be decided in quasi-

polynomial time. For a central problem like graph isomorphism, naturally, its (and re-

lated problems) computational complexity for various models of computation (see the

Dagstuhl Report [BDST15]).

For two graphs G and H , their graph isomorphism distance denotes the fraction of

entries that need to be changed in the adjacency matrix of G to make G and H isomor-

phic. The problem of non-tolerant testing of graph isomorphism was first studied by

Fischer and Matsliah [FM08], and they gave tight bounds for several settings.

15

In a recent work [CGMS21], we studied the tolerant graph isomorphism testing

problem. Here the goal is to distinguish whether G and H are “close” or “far” from

being isomorphic, by performing as few queries as possible. We proved that tolerant

graph isomorphism testing is equivalent to the problem of estimating the Earth Mover

Distance of two distributions, constructed from the two graphs.

Theorem 1.14. LetGk andGu denote the known and the unknown graphs on n vertices,

respectively, and QGI(Gu, Gk) denotes the number of adjacency queries to Gu, required

by the best algorithm that takes two constants γ1, γ2 with 0 ≤ γ1 < γ2 ≤ 1 and decides

whether d(Gu, Gk) ≤ γ1n
2 or d(Gu, Gk) ≥ γ2n

2 with probability at least 2/3. Then

QGI(Gu, Gk) = Θ̃
(
QWOREMD(n)

)
where Θ̃(·) hides polynomial factors in 1

γ2−γ1 and log n.

In fact, our equivalence proof is model-independent, in the sense that the equivalence

also holds for other models, like the communication complexity model. We prove the

lower bound of Theorem 1.14 (tolerant GI testing is as hard as tolerant EMD testing) in

Chapter 13 and the upper bound of Theorem 1.14 (tolerant EMD testing is as hard as

tolerant GI testing) in Chapter 14.

Chapter 15: Tolerant Bipartiteness Testing in Dense Graphs The problem of test-

ing whether a graph G is bipartite or not has been one of the fundamental problems in

computer science. Naturally, it has also been studied in the query complexity frame-

work. In the seminal work of Goldreich, Goldwasser, and Ron [GGR98] that started

the field of graph property testing, the authors designed a tester for non-tolerant variant

of this problem. The query complexity of their tester is independent of the number of

vertices of the graph and depends only on the proximity parameter. The tolerant variant

of bipartiteness testing was studied by Alon, Vega, Kannan and Karpinski [AdlVKK03],

where they studied the more general problem of estimating the size of the maximum

cut of the graph. Note that any tester for maximum cut translate to a tester for tolerant

bipartiteness testing.

16

In a recent work [GMRS22], we designed a tester for tolerant bipartiteness testing,

whose sample and query complexities are better compared to [AdlVKK03]. Moreover,

the running time of our tester is significantly improved from prior works.

Theorem 1.15. There exists an algorithm TOL-BIP-DIST(G, ε) that given adjacency

query access to a dense graph G with n vertices and a parameter ε ∈ (0, 1), decides

with probability at least 9
10

, whether dbip(G) ≤ εn2 or dbip(G) ≥ (2 + k)εn2, by sam-

pling O(1
k5ε2

log 1
kε
) vertices in 2O(1

k3ε
log 1

kε
) time, using O(1

k8ε3
log2 1

kε
) queries to the

adjacency matrix of G, where dbip(G) denotes the distance of G from being bipartite.

We will prove Theorem 1.14 in Chapter 13 Chapter 14, where in Chapter 13, we

prove the lower bound part of Theorem 1.14 and then we prove the upper bound part of

Theorem 1.14 in Chapter 14. Finally we prove Theorem 15 in Chapter 15.

This part is based on the following papers:

1. Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra and Sayantan Sen. Inter-

play between Graph Isomorphism and Earth Mover’s Distance in the Query and

Communication Worlds, In Proceedings of the 25th International Conference on

Randomization and Computation (RANDOM), 2021, Volume 207, 34:1-34:23,

doi: 10.4230/LIPIcs.APPROX/RANDOM.2021.34. Presented in Highlights of

Algorithms (HALG), 2022. Submitted to the journal ACM Transactions on Com-

putation Theory (TOCT).

2. Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen, Tolerant

Bipartiteness Testing in Dense Graphs, In Proceedings of the 49th International

Colloquium on Automata, Languages and Programming (ICALP), 2022, Volume

229, 69:1-69:19, doi: 10.4230/LIPIcs.ICALP.2022.69. Presented in Highlights of

Algorithms (HALG), 2023. Submitted to the journal Combinatorics, Probability

and Computing (CPC).

17

Chapter 2

Preliminaries

A probability distribution D over a universe Ω = [n] is a non-negative function D :

Ω → [0, 1] such that
∑

i∈ΩD(i) = 1. For S ⊆ Ω, the mass of S is defined as D(S) =∑
i∈S D(i), where D(i) is the mass of i in D. The support of a probability distribution

D on Ω is denoted by SUPP(D). For any distribution D, by the top t elements of D,

we refer to the first t elements in the support of D when the elements in the support

are sorted according to a non-increasing order of their probability masses in D. When

we write Õ(·), it sometimes suppresses a poly-logarithmic term in n and the inverse

of the proximity parameter(s), as well as the inverse of the difference of two proximity

parameters.

For an integer n, we will denote the set {1, . . . , n} as [n]. Given two vectors X and

Y in {0, 1}n, we will denote by dH(X,Y) the normalized Hamming distance between

X and Y, that is,

dH(X,Y) :=
|{i ∈ [n] : Xi ̸= Yi}|

n
.

Unless stated otherwise, all the distance measures that we will be considering in this

thesis will be the normalized distances. For two vectors X,Y ∈ {0, 1}n, δH(X,Y) =

n · dH(X,Y) will be used to denote the absolute Hamming distance between X and Y

in the few places where we will need to refer to it.

19

2.1 Various distance measures of distributions

We will first define ℓ1 distance between two distributions.

Definition 2.1 (ℓ1 distance and variation distance between two distributions). Let

D1 and D2 be two probability distributions over a set S. The ℓ1 distance between D1

and D2 is defined as

||D1 −D2||1 =
∑
a∈S

|D1(a)−D2(a)|.

The variation distance between D1 and D2 is defined as:

dTV (D1, D2) =
1

2
· ||D1 −D2||1.

Throughout this thesis, the Earth Mover Distance (EMD) is the central metric for

testing “closeness” and “farness” of a distribution from a given property. It is formally

defined below.

Definition 2.2 (Earth Mover Distance (EMD)). Let D1 and D2 be two probability

distributions over {0, 1}n. The EMD between D1 and D2 is denoted by dEM(D1, D2),

and defined as the solution to the following linear program:

Minimize
∑

X,Y∈{0,1}n
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}n
fXY = D1(X), ∀X ∈ {0, 1}n

∑
X∈{0,1}n

fXY = D2(Y), ∀Y ∈ {0, 1}n

0 ≤ fXY ≤ 1, ∀X,Y ∈ {0, 1}n

Intuitively, the variable fXY stands for the amount of probability mass transferred from

X to Y.

Directly from the definitions of dEM(D1, D2) and dH(X,Y), we get the following

20

simple yet useful observation connecting ℓ1 distance and EMD between two distribu-

tions.

Observation 2.3 (Relation between EMD and ℓ1 distance). LetD1 andD2 be two dis-

tributions over the n-dimensional Hamming cube {0, 1}n. Then we have the following

relation between the Earth Mover Distance and ℓ1 distance between D1 and D2:

dEM(D1, D2) ≤
||D1 −D2||1

2
.

Now we formally define the notions of “closeness” and “farness” of two distributions

with respect to the Earth Mover Distance.

Definition 2.4 (Closeness and farness with respect to EMD). Given two proximity

parameters ε1 and ε2 with 0 ≤ ε1 < ε2 ≤ 1, two distributions D1 and D2 over the

n-dimensional Hamming cube {0, 1}n are said to be ε1-close if dEM(D1, D2) ≤ ε1, and

ε2-far if dEM(D1, D2) ≥ ε2.

Now we proceed to define the notion of distribution properties over the Hamming

cube below.

Definition 2.5 (Distribution property over the Hamming cube). Let D denote the

set of all distributions over the n-dimensional Hamming cube {0, 1}n. A distribution

property P is a topologically closed subset of D. 1 A distribution D ∈ P is said to be

in the property or to satisfy the property. Any other distribution is said to be not in the

property or to not satisfy the property.

Now we are now ready to define the notion of distance of a distribution from a

property.

Definition 2.6 (Distance of a distribution from a property). The distance of a dis-

tribution D from a property P is the minimum Earth Mover Distance between D and

any distribution in P . 2 For ε ∈ [0, 1], a distribution D is said to be ε-close to P if the
1We put this restriction to avoid formalism issues. In particular, the investigated distribution properties

that we know of (such as monotonicity and being a k-histogram) are topologically closed.
2The assumption that P is closed indeed makes it a minimum rather than an infimum.

21

distance of D from P is at most ε. Analogously, for ε ∈ [0, 1], a distribution D is said

to be ε-far from P if the distance of D from P is more than ε.

2.2 Formal definitions of various kinds of property testers

First we let us discuss the query procedure.

Definition 2.7 (Query to sampled vectors). Let A be a tester with a set of sampled

vectors V1, . . . ,Vs, drawn independently from an input distribution D over {0, 1}n,

where Vi = (vi,1, . . . , vi,n) for every i ∈ [s]. In order to perform a query, the tester will

provide i and j, and will receive vi,j as the answer to the query.

In the following, we formally describe the notion of a tester.

Definition 2.8 (ε-test). Let ε ∈ (0, 1) be a proximity parameter, and δ ∈ (0, 1). A

probabilistic algorithm A is said to ε-test a property P with probability at least 1 − δ,

if any input in P is accepted by A with probability at least 1 − δ, and any input that is

ε-far from P is rejected by A with probability at least 1− δ. Unless explicitly stated, we

assume that δ = 1/3.

Now we define two different types of testers, adaptive testers and non-adaptive

testers, which will be used throughout the thesis. We begin by describing the adap-

tive testers. Informally, adaptive testers correspond to algorithms that perform queries

depending on the answers to previous queries. Formally:

Definition 2.9 (Adaptive tester). Let P be a property over {0, 1}n. An adaptive tester

for P with query complexity q and sample complexity s is a randomized algorithm A
that ε-tests P by performing the following:

• A first draws some random coins and samples s vectors from the unknown distri-

bution D, denoted by S = {V1, . . . ,Vs}.

• A then queries the j1-th index of Vi1 , for some j1 ∈ [n] and i1 ∈ [s] depending on

the random coins.

22

• Suppose that A has executed k steps and has queried the jℓ-th index of Vjℓ , where

1 ≤ ℓ ≤ k. At the (k + 1)-th step, depending upon the random coins and the

answers to the queries till the k-th step, A will perform a query for the jk+1-th bit

of Vik+1
, where jk+1 ∈ [n] and ik+1 ∈ S.

• After q steps, A reports ACCEPT or REJECT depending on the random coins and

the answers to all q queries.

Now we define the more restricted non-adaptive testers. Informally, non-adaptive

testers decide the set of queries to be performed on the input even before performing the

first query. Formally:

Definition 2.10 (Non-adaptive tester). Let P be a property over {0, 1}n. A non-

adaptive tester for P with query complexity q and sample complexity s is a randomized

algorithm A that ε-tests P by performing the following:

• A tosses some random coins, and depending on the answers constructs a sequence

of subsets of indices J1, . . . , Js ⊂ [n] such that
s∑
i=1

Ji ≤ q.

• A takes s samples V1, . . . ,Vs from the unknown distribution D.

• A queries for the coordinates of Vi that are in Ji, for each i ∈ [s].

• A reports either ACCEPT or REJECT based on the answers from the queries to the

vectors, that is, V1 |J1 ,V2 |J2 , . . . ,Vs |Js , and the random coins.

2.3 Some probability results

Now we state some probability results used in this thesis.

Lemma 2.11 (Multiplicative Chernoff bound [DP09]). Let X1, . . . , Xn be indepen-

dent random variables such that Xi ∈ [0, 1]. For X =
n∑
i=1

Xi and µ = E[X], the

following holds for any 0 ≤ δ ≤ 1.

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
.

23

Lemma 2.12 (Additive Chernoff bound [DP09]). Let X1, . . . , Xn be independent ran-

dom variables such thatXi ∈ [0, 1]. ForX =
n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the following

hold for any δ > 0.

(i) P (X ≥ µh + δ) ≤ exp (−2δ2/n).

(ii) P (X ≤ µl − δ) ≤ exp (−2δ2/n).

Lemma 2.13 (Chernoff-Hoeffding bound [DP09]). Let X1, . . . , Xn be independent

random variables such that Xi ∈ [0, 1]. For X =
n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the

followings hold for any 0 < ε < 1:

(i) P (X ≥ (1 + ε)µh) ≤ exp
(

−ε2µh
3

)
.

(ii) P (X ≤ (1− ε)µl) ≤ exp
(

−ε2µl
3

)
.

Lemma 2.14 (Hoeffding’s Inequality [DP09]). LetX1, . . . , Xn be independent random

variables such that ai ≤ Xi ≤ bi and X =
n∑
i=1

Xi. Then, for all δ > 0,

P (|X − E[X]| ≥ δ) ≤ 2 exp

(
−2δ2/

n∑
i=1

(bi − ai)
2

)
.

Lemma 2.15 (Hoeffding’s Inequality for sampling without replacement [Hoe94]).

Let n and m be two integers such that 1 ≤ n ≤ m, and x1, . . . , xm be real numbers,

with a ≤ xi ≤ b for every i ∈ [m]. Suppose that I is a set that is drawn uniformly from

all subsets of [m] of size n, and let X =
∑
i∈I
xi. Then, for all δ > 0,

P (|X − E[X]| ≥ δ) ≤ 2 exp
(
−2δ2/n · (b− a)2

)
.

Now let us consider the following observation which states that if the normalized Ham-

ming distance between two vectors X and Y are small, the same also holds with high

probability when X and Y are projected on a set of random indices K. A similar result

also holds when the distance is large between the two vectors X and Y.

24

Observation 2.16 (Approximating-string-distances). For U,V ∈ {0, 1}n and assume

that K ⊆ [n] is a set of indices chosen uniformly at random without replacement. Then

the following holds with probability at least 1− e− O(δ2|K|):

|dH(U,V)− dH(U |K ,V |K)| ≤ δ.

Proof. Follows from the fact that sampling without replacement is as good as sampling

with replacement (Lemma 2.15).

Lemma 2.17 (Chernoff bound for bounded dependency [Jan04]). Let X1, . . . , Xn be

random variables such that ai ≤ Xi ≤ bi and X =
n∑
i=1

Xi. Let D be the (directed)

dependency graph, where V (D) = {X1, . . . , Xn} and Xi is completely independent of

all variables Xj for which (Xi, Xj) is not a directed edge. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e
−2δ2/χ∗(D)

n∑
i=1

(bi−ai)2
.

where χ∗(D) denotes the fractional chromatic number of D.

Corollary 2.18 (Corollary of Lemma 2.17). Let X1, . . . , Xn be indicator random vari-

ables such that the dependency graph is a disjoint union of n/k many k size cliques. For

X =
n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for any δ > 0:

(i) P (X ≥ µh + δ) ≤ exp
(

−2δ2

kn

)
,

(ii) P (X ≤ µℓ − δ) ≤ exp
(

−2δ2

kn

)
.

Proof. Follows from the fact that the dependency graph has chromatic number k, and

the fractional chromatic number of a graph is at most the chromatic number of any

graph.

25

Part I

Results in the Sampling Model

27

Chapter 3

Testing in the Sampling Model

3.1 Introduction

Let D be a distribution over a finite set Ω, and P be a property, that is, a set of distri-

butions over Ω. Given access to independent random samples from Ω according to the

distribution D, we are interested in the problem of distinguishing whether the distribu-

tion D is η-close to having the property P , or is ε-far from having the property P , where

η and ε are two fixed proximity parameters such that 0 ≤ η < ε ≤ 2. The distance of

the distribution D from the property P is defined as min
D′∈P

||D −D′||1, where ||D−D′||1
denotes the ℓ1-distance between the distributions D and D′ 1. A distribution D is said

to be η-close to P if the distance of D from P is at most η. Similarly, D is said to be

ε-far from P , if the distance of D from P is at least ε. The goal is to design a tester that

uses as few samples as possible. For η > 0, the problem of distinguishing the two cases

is referred to as the tolerant distribution testing problem of P , and the particular case

where η = 0 is referred to as the non-tolerant distribution testing problem of P . The

sample complexity (tolerant and non-tolerant testing) is the number of samples required

by the best algorithm that can distinguish with high probability (usually with probability

at least 2
3
) whether the distributionD is η-close to having the property P , or is ε-far from

1Strictly speaking it is an infimum, but since all properties we consider are compact sets, it is equal to
the minimum.

28

having the property P .

While results and techniques from distribution testing are already interesting in their

own right, they have also found numerous applications in central problems in Theo-

retical Computer Science, and in particular in property testing, e.g. graph isomor-

phism testing [FM08, Gol19] and function isomorphism testing [ABC+13], learning

theory [BBC+10, DKS17, DK16], and differential privacy [ADKR19, GKK+20, Zha21,

ACF+21]. Thus, understanding the tolerant and non-tolerant sample complexity of dis-

tribution testing is a central problem in theoretical computer science.

There have been extensive studies of non-tolerant and tolerant testing of some spe-

cific distribution properties like uniformity, identity with a fixed distribution, equality

of two distributions and independence of a joint distribution [BFR+00, BFF+01, Pan08,

Val11, VV11, VV17a]. Various other specific distribution properties have also been

studied [BC17, DKS18]. Then, some works investigated general tests for the large class

of all shape-restricted properties of distributions, which contains properties like mono-

tonicity, log-concavity, modality etc. [CDGR18, FLV17]. This work proves general

results about the gap between tolerant and non-tolerant distribution testing that hold for

large classes of properties.

3.2 Our results

We now informally present our results. The formal definitions are presented in Sec-

tion 3.4. We assume that distributions are supported over a set Ω = [n] = {1, 2, . . . , n}.

We first prove a result about label-invariant distribution properties (properties that are

invariant under all permutations of Ω). We show that, for any label-invariant distribu-

tion property, there is at most a quadratic blowup in its tolerant sample complexity as

compared to its non-tolerant counterpart, ignoring poly-logarithmic factors.

Theorem 3.1 (Informal). Any label-invariant distribution property that can be non-

tolerantly tested using Λ samples, can also be tolerantly tested using Õ(min{Λ2, n})

29

samples, where n is the size of the support of the distribution 2.

This result gives a unified way for obtaining tolerant testers from their non-tolerant

counterparts. The above result will be stated and proved formally in Section 4.2. More-

over, in Section 4.3, we give a constructive variant of the tolerant tester of Theorem 3.1,

when the property can be expressed as the feasible solution to a set of linear inequalities.

Theorem 3.2 (Informal). Any label-invariant distribution property that can be non-

tolerantly tested using Λ samples and can be expressed as a feasible solution tom linear

inequalities, can also be tolerantly tested using Õ(min{Λ2, n}) samples and in time

polynomial in m and n, where n is the size of the support of the distribution.

Note that if Λ = Ω(
√
n), Theorem 3.1 is obvious. It is only interesting if Λ =

o(
√
n). Now we present a property for which this connection is useful. Consider a

natural distribution property: given a distribution D and a parameter k, we want to

decide whether the support size of D is at most k or ε-far from having support at most

k. If k = o(
√
n), the query complexity for testing this problem is O(k

log k
) [VV17b].

It is a natural question to investigate the extent to which the above theorem can

be generalized. Though we are not resolving this question completely, as a first step in

the direction of extending the above theorem for properties that are not necessarily label-

invariant, we consider the notion of non-concentrated properties. By the notion of a non-

concentrated distribution, intuitively, we mean that there is no significant portion of the

base set of the distribution that carries only a negligible weight, making the probability

mass of the distribution well distributed among its indices. Specifically, any subset X ⊆
[n], for which |X| is above some threshold (say βn with β ∈ (0, 1

2
)), has probability

mass of at least another threshold (say α with α ∈ (0, 1
2
)). A property is said to be

non-concentrated if only non-concentrated distributions can satisfy the property. We

prove a lower bound on the testing of any non-concentrated property (not necessarily

label-invariant).

2Õ(·) hides a poly-logarithmic factor.

30

Theorem 3.3 (Informal). In order to non-tolerantly test any non-concentrated distri-

bution property, Ω(
√
n) samples are required, where n is the size of the support of the

distribution.

The quadratic gap between tolerant testing and non-tolerant testing for any non-

concentrated property follows from the above theorem, since by a folklore result, only

O(n) samples are required to learn any distribution approximately.

The proof of Theorem 3.3 for label-invariant non-concentrated properties is a gener-

alization of the proof of the Ω(
√
n) lower bound for classical uniformity testing, while

for the whole theorem, that is, for the general (not label-invariant) non-concentrated

properties, a more delicate argument is required. The formal proof is presented in Sec-

tion 5.3.

The next natural question is about the sample complexity of any tolerant tester for

non-concentrated properties. We address this question for properties which are label-

invariant non-concentrated by proving the following theorem in Section 5.2.2. However,

the question is left open for non-label-invariant properties.

Theorem 3.4 (Informal). The sample complexity of tolerant testing of any non con-

centrated label-invariant distribution property is Ω(n1−o(1)), where n is the size of the

support of the distribution.

A natural question related to tolerant testing is:

How many samples are required to learn a distribution?

As pointed out earlier, any distribution can be learnt using O(n) samples. But what

if the distribution happens to be very concentrated? We present an upper bound result

for learning a distribution, in which the sample complexity depends on the minimum

cardinality of any set S ⊆ [n] over which the unknown distribution is concentrated.

Theorem 3.5 (Informal). To learn a distribution approximately, O(|S|) samples are

enough, where S ⊆ [n] is an unknown set of minimum cardinality whose mass is close

to 1. Note that |S| is also unknown, and the algorithm adapts to it.

31

Observe that we cannot learn a distribution supported on the set S using o(|S|) sam-

ples, so the above result is essentially tight.

3.3 Related works

Several forms of distribution testing have been investigated for over a century in sta-

tistical theory [Kin97, CF14], while combinatorial properties of distributions have been

explored over the last two decades in Algorithm Theory, Machine Learning and Informa-

tion Theory [Gol17, Mac03, CT01, BY22]. In Algorithm Theory, the investigation into

testing properties of distributions started with the work of Goldreich and Ron [GR00],

even though it was not directly stated there in these terms. Batu, Fortnow, Rubinfeld,

Smith and White [BFR+00] launched the intensive study of property testing of distri-

butions with the problem of equivalence testing 3. Later, Batu, Fischer, Fortnow, Ku-

mar, Rubinfeld and White [BFF+01] studied the problems of identity and independence

testing of distributions 4. Since then there has been a flurry of interesting works in

this model. For example, Paninski [Pan08] proved tight bounds on uniformity testing,

Valiant and Valiant [VV11] resolved the tolerant sample complexity for a large class

of label-invariant properties that includes uniformity testing, Acharya, Daskalakis and

Kamath [ADK15] proved various optimal testing results under several distance mea-

sures, and Valiant and Valiant [VV17a] studied the sample complexity of instance opti-

mal identity testing. In [BC17], Batu and Cannone studied the problem of generalized

uniformity testing, where the distribution is promised to be supported on an unknown

set S, and proved a tight bound of Θ̃(|S|2/3) samples for non-tolerant uniformity test-

ing. This is in contrast to the non-tolerant uniformity testing of a distribution supported

over [n], whose sample complexity is Θ(
√
n), ignoring the dependence on the proximity

parameter. Daskalakis, Kamath and Wright [DKW18] studied the problem of tolerant

3Given two unknown probability distributions that can be accessed via samples from their respective
oracles, equivalence testing refers to the problem of distinguishing whether they are same or far from each
other.

4Given an unknown distribution accessible via samples, the problem of identity testing refers to the
problem of distinguishing whether it is identical to a known distribution or far from it.

32

testing under various distance measures. Very recently, Canonne, Jain, Kamath and

Li [CJKL22] revisited the problem of determining the sample complexity of tolerant

identity testing, where they proved the optimal dependence on the proximity parame-

ters. Going beyond studying specific properties, Canonne, Diakonikolas, Gouleakis and

Rubinfeld [CDGR18] studied the class of shape-restricted properties of a distribution,

a condition general enough to contain several interesting properties like monotonicity,

log-concavity, t-modality etc. Their result was later improved by Fischer, Lachish and

Vasudev [FLV17]. See the surveys of Cannone [Can20c, Can22] for a more exhaustive

list.

While the most studied works concentrate on non-tolerant testing of distributions, a

natural extension is to test such properties tolerantly. Since the introduction of tolerant

testing in the pioneering work of Parnas, Ron and Rubinfeld [PRR06], that defined this

notion for classical (non-distribution) property testing, there have been several works

in this framework. Note that it is nontrivial in many cases to construct tolerant testers

from their non-tolerant counterparts, as in the case of tolerant junta testing [BCE+19]

for example. In a series of works, it has been proved that tolerant testing of the most

natural distribution properties, like uniformity, requires an almost linear number of sam-

ples [Val11, VV11] 5. Now a natural question arises about how the sampling complexity

of tolerant testing is related to non-tolerant testing of distributions in general. To the best

of our knowledge, there is no known example with more than a quadratic gap.

It would also be interesting to bound the gap for sample-based testing as defined in

the work of Goldreich and Ron [GR16]. This model was investigated further in the work

of Fischer, Lachish and Vasudev [FLV15], where a general upper bound for non-tolerant

sample-based testing of strongly testable properties was provided.

5To be precise, the exact lower bounds for non-tolerant uniformity testing is Ω(
√
n), and for tolerant

uniformity testing it is Ω(n
logn), where n is the support size of the distribution and the proximity parameter

ε is constant.

33

Organization of the part

Section 3.4 contains the definitions used throughout the chapters in this part of the the-

sis. In Chapter 4, we present the overviews of the proofs as well as formally state and

prove Theorem 3.1 and Theorem 3.2. Later in Chapter 5, we prove Theorem 3.3 and

Theorem 3.4. Finally Theorem 3.5 is proved in Chapter 6.

3.4 Preliminaries

Here we present some relevant definitions required in this part of the thesis.

Definition 3.6 (Label-invariant property). Let us consider a property P . For a dis-

tribution D and a permutation σ : Ω → Ω, consider the distribution Dσ defined as

Dσ(σ(i)) = D(i) (equivalently, Dσ(i) = D(σ−1(i))) for each i ∈ Ω. If for every distri-

bution D in P , Dσ is also in P for every permutation σ, then the property P is said to

be label-invariant.

Although there are several other distance measures, in this part, we mainly focus on

the ℓ1 distance. Let us recall the following two definitions which will be crucially used

here.

Definition 3.7 (Distance between two distributions). The distance between two distri-

butions D1 and D2 over Ω is the standard ℓ1 distance between them, which is defined as

||D1 −D2||1 :=
∑
i∈Ω

|D1(i)−D2(i)|. For η ∈ [0, 2], D1 and D2 are said to be η-close to

each other if ||D1 −D2||1 ≤ η. Similarly, for ε ∈ [0, 2], D1 and D2 are said to be ε-far

from each other if ||D1 −D2||1 ≥ ε.

Definition 3.8 (Distance of a distribution from a property). The distance of a distri-

bution D from a property P is the minimum ℓ1-distance between D and any distribution

in P . For η ∈ [0, 2], a distribution D is said to be η-close to P if the distance of D from

P is at most η. Analogously, for ε ∈ [0, 2], a distribution D is said to be ε-far from P if

the distance of D from P is at least ε.

34

Definition 3.9 ((η, ε)-tester). An (η, ε)-tester for a distribution property is a randomized

algorithm that has sample access to the unknown distribution (upon query it can receive

elements of Ω, each drawn according to the unknown distribution, independently of any

previous query or the algorithm’s private coins), and distinguishes whether the distri-

bution is η-close to the property or ε-far from the property, with probability at least 2
3
,

where η and ε are proximity parameters such that 0 ≤ η < ε ≤ 2. The tester is said to

be tolerant when η > 0, and non-tolerant when η = 0.

Now we define the notions of non-concentrated distributions and non-concentrated

properties.

Definition 3.10 (Non-Concentrated distribution). A distribution D over the domain

Ω = [n] is said to be (α, β)-non-concentrated if for any set S ⊆ Ω with size βn,

the probability mass on S is at least α, where α and β are two parameters such that

0 < α ≤ β < 1
2
.

Definition 3.11 (Non-Concentrated property). Let 0 < α ≤ β < 1
2
. A distribution

property P is defined to be (α, β)-non-concentrated, if all distributions in P are (α, β)-

non-concentrated.

Note that the uniform distribution is (α, α)-non-concentrated for every α, and so is

the property of being identical to the uniform distribution. Also, for any 0 < α < 1
2

such that αn is an integer, the uniform distribution is the only (α, α)-non-concentrated

one. Finally, observe that any arbitrary distribution is both (0, β)-non-concentrated and

(α, 1)-non-concentrated, for any α, β ∈ (0, 1).

3.5 Technical overview of our results

In this section, we give an overview of our results as follows:

35

3.5.1 Construction of tolerant testers for label-invariant properties

Here we present an overview of the proofs of Theorem 3.1 and Theorem 3.2. We

first show that for any label-invariant distribution property, the sample complexities of

tolerant and non-tolerant testing are separated by at most a quadratic factor, ignoring

poly-logarithmic terms. More specifically, in Theorem 3.1, we prove that for any label-

invariant distribution property P that has a non-tolerant tester with sample complexity

Λ, there exists a tolerant tester for P that uses Õ(Λ2) samples, ignoring poly-logarithmic

factors. Since we can learn a distribution using O(n) samples, our proof is particularly

useful when Λ = o(
√
n), where n is the size of the support of the distribution that is

being tested.

To prove Theorem 3.1 (restated as Theorem 4.1), we provide an algorithm for toler-

ant testing of P with sample complexity Õ(Λ2), based on the existence of a non-tolerant

tester of P with sample complexity O(Λ). Given the existence of such a non-tolerant

tester with sample complexity O(Λ), one crucial observation that we use here is that

there cannot be two distributions D1 and D2 that are identical on the elements with mass

Ω(1
Λ2) (we call them high elements), where D1 is in the property P while D2 is far from

P . This is formally stated as Lemma 4.4.

Given that the two distributions D1 and D2 are identical on all elements with mass

Ω(1
Λ2), by the birthday paradox, we can say that O(Λ) samples are not enough to obtain

any low elements, that is, elements with mass o(1
Λ2), that appear more than once. Since

the property P is label-invariant, we can apply uniformly random permutations over

the low elements of both D1 and D2, making the samples obtained from both D1 and

D2 appear as two uniformly random sequences. Thus, from the view of any tester that

takes only O(Λ) samples, D1 and D2 will appear the same, which would contradict the

existence of a non-tolerant tester that distinguishes D1 from D2 using O(Λ) samples.

At this point, we would like to point out that the proof of Lemma 4.4 only assumes

the existence of a non-tolerant tester, and is oblivious to its internal details. Later, in

Lemma 4.5, we generalize this idea to show that when D1 and D2 are close with respect

to the high elements, it cannot be the case that D1 is in the property P , while D2 is far

36

from P . Although the proof follows a similar line to that of Lemma 4.4, more careful

analysis is required to prove Lemma 4.5. Note that Lemma 4.5 is the main technical

lemma required to prove Theorem 3.1.

Once we have Lemma 4.4 and Lemma 4.5, we can describe the algorithm of Theo-

rem 3.1. Broadly speaking, we show that partial learning of the distribution is sufficient

for constructing a tolerant tester for any label-invariant property, as opposed to the more

familiar paradigm of testing by learning [DLM+07, Ser10]. Using Lemma 4.5, we show

that estimating the masses of only the high elements is enough for us, along with the

fact that the property P that we are testing is label-invariant. Roughly, the algorithm has

three steps. In the first step, we identify and measure the high elements of the unknown

distribution D. In the second step, we construct a new distribution D̃ that adheres to

the high mass elements obtained from the first step. Finally, in the third step, we check

whether there exists any distribution D1 in P that is close to D̃. If such a distribution

exists, we accept, and otherwise we reject. In the first step, we need Õ(Λ2) samples to

correctly estimate the masses of the high elements, which dominates the sample com-

plexity of our tolerant tester.

It is important to note that the computational efficiency of the tolerant tester depends

on how fast we can check whether the distribution D̃ (constructed by the algorithm)

is close to a known property P , where we have the complete description of D̃. Later,

in Theorem 3.2 (restated as Theorem 4.14), we show that when the property P can be

expressed as a feasible solution to a set of linear inequalities, there exists an algorithm

that tolerantly tests for P in time polynomial in the support size of the distribution and

the number of linear inequalities required to represent it. The algorithm is similar to

that of Theorem 3.1, whereas its polynomial running time follows by using the Ellipsoid

method.

3.5.2 Lower bound results for non-concentrated properties

Here we give an overview of our proofs of Theorem 3.3 and Theorem 3.4. In Theo-

rem 3.3, we show that in order to non-tolerantly test any non-concentrated property (de-

37

fined in Definition 3.11), Ω(
√
n) samples are required, where n denotes the support size

of the distribution. Before directly proceeding to prove the result, as a warm-up, we first

show an analogous result for label-invariant non-concentrated properties in Theorem 5.3.

To prove the theorem, for any distribution Dyes in the label-invariant non-concentrated

property P that we are testing, we construct a new distribution Dno that is far from P ,

whose support is a subset of the support of Dyes. The two distributions are identical over

their high probability elements, and they only differ in their low probability elements,

where a low probability element is an element with mass O(1
n
). Since Dyes and Dno

differ only on the elements with mass O(1
n
), by the birthday paradox and the fact that

the property is label-invariant, any tester that takes o(
√
n) samples cannot distinguish

between Dyes and Dno, and the result follows. We note that the proof of Theorem 5.3 is

a generalization of the lower bound proof for uniformity testing.

Though the proof of Theorem 3.3 (restated as Theorem 5.8) follows similarly to that

of Theorem 5.3, delicate analysis is required to take care of the fact that the properties are

no longer label-invariant. We also discuss briefly the reason why the technique used to

prove Theorem 5.3 does not work to prove Theorem 3.3, in the beginning of Section 5.3.

As a step further, in Theorem 3.4 (restated as Theorem 5.5), we show Ω(n1−o(1))

samples are necessary to tolerantly test any non-concentrated label-invariant property.

This proof follows from an application of the low frequency blindness theorem of Valiant

[Val11]. The question of tolerant testing of general non-concentrated properties remains

open.

3.5.3 Learning Distributions with Unknown Support

Here we give an overview of the proof of Theorem 3.5. We consider the problem of

learning a distribution D, where D is concentrated over a unknown set S ⊆ Ω. In

Theorem 3.5 (restated as Theorem 6.2), we give an algorithm that achieves this with

O(|S|) samples, even when |S| is also unknown. Note that this problem is reminiscent

of the folklore result of learning a distribution over any set S that takes O(|S|) samples.

38

However, the folklore result holds only for the case where the set S is known 6.

Broadly, the algorithm iterates over possible values of |S|. Starting from s = 1, we

first take s samples from the the unknown distribution D, and construct a new empirical

distribution Ds based upon the samples obtained. Once we have the distribution Ds, we

apply the result of Valiant and Valiant [VV11] to test whether the unknown distribution

D is close to the newly constructed distribution Ds, by using number of samples that is

slightly smaller than s. If Ds is close to D, we report the distribution Ds as the output

and terminate the algorithm. Otherwise, we double the value of s and perform another

iteration of the two steps as mentioned above. Finally, we show that when s ≥ |S|,
where S is the unknown set on which D is concentrated, Ds will be close to D with high

probability, and we will output a distribution satisfying the statement of Theorem 3.5.

To the best of our knowledge, this is the first result of a tester of this kind that adapts to

an unknown support size |S|.

6There are also prior results where only |S| is known, such as in the work of Acharya, Diakonikolas,
Li and Schmidt [ADLS17].

39

Chapter 4

Tolerant & Non-tolerant Testers for

Label-Invariant Properties

4.1 Introduction

In this chapter, we will prove that for any label-invariant property, the sample com-

plexities of tolerant and non-tolerant testing are separated by at most a quadratic factor

(ignoring some poly-logarithmic factors). Formally, the result is stated as follows:

Theorem 4.1 (Theorem 3.1 formalized). Let P be a label-invariant distribution prop-

erty, for which there exists an (0, ε)-tester (non-tolerant tester) with sample complex-

ity Λ(n, ε), where Λ ∈ N and 0 < ε ≤ 2. Then for any γ1, γ2 with γ1 < γ2 and

0 < γ2 + ε < 2, there exists a (γ1, γ2 + ε)-tester (tolerant tester) that has sample com-

plexity O
(

1
(γ2−γ1)3 ·min{Λ2 log2 Λ, n}

)
, where Λ = Λ(n, ϵ), and n is the size of the

support of the distribution.

We will prove this in Section 4.2. Then, in Section 4.3, we prove the following

theorem regarding construction of efficient tolerant tester.

Theorem 4.2 (Theorem 3.2 formalized). Let P be a label-invariant distribution prop-

erty. If there is a (0, ε)-tester (non-tolerant tester) with sample complexity Λ(n, ε), then

40

for any γ1, γ2 with γ1 < γ2 and 0 < γ1 < γ2 + ε < 2, there exists a (γ1, γ2 + ε)-

tester (tolerant tester) that takes s = Õ(Λ2) samples and makes a single emptiness

query to the set CP ∩ ∆(Õ(s),Λ, D̃, β), where D̃ is a known probability distribution

and β = γ1 +
γ2−γ1

3
.

4.2 Non-tolerant vs. tolerant testing of label-invariant

properties

Let us assume that D is the unknown distribution and Λ(n, ϵ) ≥ Ω(1
ε
) 1. First note that if

Λ = Ω(
√
n), then we can construct a distribution D̂ such that ||D − D̂||1 < γ2−γ1+ε

2
, by

using O
(

n
(γ2−γ1+ε)2

)
samples from D. Thereafter we can report D to be γ1-close to the

property if and only if D̂ is γ2+γ1+ε
2

-close to the property. In what follows, we discuss

an algorithm with sample complexity Õ(Λ2) when Λ = o(
√
n). Also, we assume that n

and Λ are larger than some suitable constant. Otherwise, the theorem becomes trivial.

The idea behind the proof is to classify the elements of Ω with respect to their masses

in D into high and low, as formally defined below in Definition 4.3. We argue that since

P is (0, ε)-testable using Λ(n, ε) = O(q) samples, there cannot be two distributions

D1 and D2 that are identical on all elements whose probability mass is at least 1
q2

, for

q = θ(Λ) (the set High1/q2 defined below), where D1 ∈ P but D2 is ε-far from P .

We will formally show this in Lemma 4.4, where we will use the fact that P is label-

invariant. Using Lemma 4.4, we prove Lemma 4.5, that (informally) says that if two

distributions are close with respect to the high mass elements, then it is not possible

that one distribution is close to P while the other one is far from it. In our algorithm,

we intend to approximate the masses of the set High1/q2 , and the term Λ2 in the query

complexity of our algorithm corresponds to that.

Definition 4.3. For a distribution D over Ω and 0 < κ < 1, we define

Highκ(D) = {x ∈ Ω | D(x) ≥ κ}
1This is a reasonable assumption for any non-trivial property.

41

Now we define a quantity q ∈ N where q = Θ(Λ) 2. Assume that c∗ is a suitable

large constant (independent of Λ) such that, if we take Λ samples from a distribution,

then with probability at least 3
4
, we will not get any sample xwhose mass is at most (c

∗

Λ
)2

more than once. We define

q :=
Λ

c∗
. (4.1)

We will complete the proof of Theorem 4.1 by using the following two lemmas

which we will prove later.

Lemma 4.4. Let P be a label-invariant property that is (0, ε)-testable using Λ(n, ε)

samples and consider q as defined in Equation 4.1. Let D1 and D2 be two distributions

such that High1/q2(D1) = High1/q2(D2), and for all x ∈ High1/q2(D1), the probability

of x is the same for both distributions, that is, D1(x) = D2(x). Then it is not possible

that D1 satisfies P while D2 is ε-far from satisfying P .

Lemma 4.5. Let P be a label-invariant property that is (0, ε)-testable using Λ(n, ε)

samples, and consider q as defined in Equation (4.1). Let D and D̃ be two distributions

over Ω, where |Ω| > 4q2, and let H contain the top q2 elements of D. Also, assume that∣∣∣D̃(Ω \H)−D(Ω \H)
∣∣∣ ≤ γ. If

∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ α, (4.2)

then the following hold:

1. If D is β-close to P , there exists a distribution D1 ∈ P such that High1/q2(D1) ⊆
H and

∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ (α + β + γ). (4.3)

2. IfD is (ε+3α+β+2γ)-far from P &D1 is a distribution such that High1/q2(D1) ⊆

2Note that q and Λ are of the same order of magnitude. We have introduced q for writing proofs more
rigorously.

42

H and

∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ (α + β + γ), (4.4)

then the distribution D1 does not satisfy the property P .

Using the above two lemmas, we will prove Theorem 4.1 in Section 4.2. We present

the proofs of Lemma 4.4 and Lemma 4.5 in Section 4.2.

Proof of Theorem 4.1

Let D be the unknown distribution that we need to test, and assume that ζ = γ1, η =

γ2 − γ1, and η′ = η
64

. We now provide a tolerant (γ1, γ2+ε)-tester, that is, a (ζ, ζ+ε+η)-

tester for the property P , as follows:

1. Draw W = O
(
q2

η′
log q

)
samples from the distribution D. Let S ⊆ Ω be the set

of (distinct) samples obtained.

2. Draw additional O
(
W
η′2

logW
)

samples Z to estimate the value of D(x) for all

x ∈ S 3.

3. Construct a set H as the union of S and arbitrary q2 elements from Ω \ (S ∪ Z).

4. Define a distribution D̃ such that, for x ∈ H ,

D̃(x) =
x in the multi-set Z

|Z|
.

And for each x ∈ Ω \H ,

D̃(x) =

1−
∑
x∈H

D̃(x)

|Ω| − |H|
.

3Instead of two sets of random samples (where the first one is to generate the set S and the other one
is the multi-set Z), one can work with only one set of random samples. But in that case, the sample
complexity becomes O(q2 log n), as opposed to O(q2 log q) that we are going to prove.

43

5. If there exists a distribution D1 in P that satisfies both the following conditions:

(A)
∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ |D1(Ω \H)− D̃(Ω \H)| ≤ 26η′ + ζ .

(B) High1/q2(D1) ⊆ H .

then ACCEPT D.

6. If there does not exist any D1 in P that satisfies both Conditions (A) and (B)

above, then REJECT D.

Note that Step 5 as mentioned above is not completely constructive in a compu-

tational sense. In Section 4.3, we give a constructive variant of the tester where the

property P can be expressed as a set of linear inequalities. We also give an example of

a natural property that can be expressed as a set of linear inequalities.

Sample Complexity: The sample complexity of tester is O(q
2

η3
log2 q) = O(Λ

2 log2 Λ
(γ2−γ1)3),

which follows from the above description.

Correctness of the algorithm. The proof of correctness of our algorithm is divided

into a sequence of lemmas.

Lemma 4.6. The set H and the distribution D̃ satisfies the following three properties:

(i) With probability at least 1− 1
q
, Highη′/q2(D) ⊆ S ⊆ H .

(ii) For any x ∈ H , if D(x) ≥ η′

10W
, (1− η′)D(x) ≤ D̃(x) ≤ (1 + η′)D(x) holds with

probability at least 1− 1
q4

.

(iii) For any x ∈ Ω with D(x) ≤ η′

10W
, either x /∈ H , or D̃(x) ≤ (1+ η′) η′

10W
holds with

probability at least 1− 1
q4

.

Proof. Let us prove the three parts one by one:

• (i) Consider any x ∈ Highη′/q2(D), that is, D(x) ≥ η′

q2
. Then the probability that

x /∈ H is at most (1− η′

q2
)|H| ≤ 1

q4
. Applying the union bound over all the elements

in Highη′/q2(D) (at most q
2

η′
= O(q3) 4 elements), the claim follows.

4This follows from the assumption that Λ(n, ϵ) is at least Ω(1/ϵ).

44

• (ii) Since |Z| = O(W
η′2

logW), applying Chernoff bound, we have (1−η′)D(x) ≤
D̃(x) ≤ (1 + η′)D(x) does not hold with probability at most 1

q4
.

• (iii) Since |Z| = O(W
η′2

logW), if x is in H (otherwise, we are already done),

applying Chernoff bound (only on one side), the bound follows.

We now bound the ℓ1-distance between D and D̃ with respect to H .

Lemma 4.7.
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ 5η′(1 + η′) ≤ 10η′ holds with probability at least

1− 3
q
.

Proof. Recall the definition of Highη′/10W (D). Note that

∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ = ∑

x∈Highη′/10W (D)

∣∣∣D(x)− D̃(x)
∣∣∣+ ∑

x∈H\Highη′/10W (D)

∣∣∣D(x)− D̃(x)
∣∣∣

Applying Lemma 4.6 (ii) for each x ∈ Highη′/10W (D), and then using union bound

over all such x ∈ Highη′/10W (D), the first term is bounded by η′ with probability at least

1− 1
q
.

Now the second term, notice that for each x ∈ H \Highη′/10W (D), D(x) ≤ η′

10W
. By

Lemma 4.6 (iii), and using the union bound over all elements inH\Highη′/10W (D) (note

that |H| ≤ 2W = O(q3)), with probability at least 1 − 2
q
, D̃(x) ≤ η′(1 + η′)/10W for

all x ∈ H \Highη′/10W (D). Since |H| ≤ 2W , the second term is bounded by 4η′(1+η′)

with probability at least 1− 2
q
.

Now we prove a lemma that shows that for every distribution D, there is a another

distribution D that is “similar” to D, and for which H contains the top q2 elements of

D.

Lemma 4.8. There exists a distribution D such that H contains the top q2 elements of

D. Moreover, the following hold:

(i) ||D −D||1 ≤ 2η′, with probability at least 1− 2
q
.

45

(ii)
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ 12η′, with probability at least 1− 5

q
.

(iii) |D(Ω \H)− D̃(Ω \H)| ≤ 12η′, with probability at least 1− 5
q
.

Proof. Let T be the set of q2 largest elements of D. If T ⊆ S, H (as S ⊂ H) contains

the largest q2 elements of D. In that case, setting D to be D gives us the above results.

Now, let us consider the case where T ̸⊆ S. By Lemma 4.6 (part (i)), with probability

at least 1− 2
q
, Highη′/q2(D) ⊆ S. Thus for any x ∈ H \ S, D(x) < η′

q2
. Consider the set

U = T \ H . Notice that since |H \ S| = q2 and |T | = q2, |U | ≤ |H \ (T ∪ S)|. Let

U = {y1, . . . , y|U |} ⊂ Ω \H , and let z1. . . . , z|U | be some |U | elements of H \ (T ∪ S).
Note, by definition of T and U , the set {z1. . . . , z|U |} and the set {y1. . . . , y|U |} are

disjoint.

Consider the distribution D defined as follows:

• For elements in {z1. . . . , z|U |}, we define D(zi) = D(yi).

• For elements in {y1. . . . , y|U |}, we define D(yi) = D(zi).

• For all other x, we define D(x) = D(x).

Note that since all the elements in the sets {z1. . . . , z|U |} and {y1. . . . , y|U |} were

from Ω \ S, from Lemma 4.6 (part (i)), with probability at least 1 − 2
q
, D(yi) ≤ η′

q2
and

D(zi) ≤ η′

q2
, for all i ∈ {1, . . . , |U |}. Moreover, as |U | ≤ q2, we have condition (i) as

well. Furthermore, H contains the largest q2 elements of D due to its construction.

Using the triangle inequality (relative to H) along with Lemma 4.7 and the above

expression, we can say that, with probability at least 1− 5
q
, (ii) follows.

Let us now prove (iii). Since D and D̃ are distributions,
∑
x∈H

D(x) +
∑

x∈Ω\H
D(x) =∑

x∈H
D̃(x) +

∑
x∈Ω\H

D̃(x). Thus,

∣∣∣D(Ω \H)− D̃(Ω \H)
∣∣∣ =

∣∣∣∣∣∑
x∈H

D̃(x)−
∑
x∈H

D(x)

∣∣∣∣∣ ≤∑
x∈H

∣∣∣D̃(x)−D(x)
∣∣∣ ≤ 12η′

The last inequality follows from (ii).

46

Now we finally establish the correctness of the algorithm.

Proof of correctness of the algorithm. For completeness, consider the case where D is

ζ-close to P . By Lemma 4.8 (i) and the triangle inequality, we know that there exists

a distribution D that is (ζ + 2η′)-close to P and H contain the largest q2 elements of

D. Since
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ 12η′ and

∣∣∣D(Ω \H)− D̃(Ω \H)
∣∣∣ ≤ 12η′ hold from

Lemma 4.8 (ii) and (iii), following Lemma 4.5 for α = 12η′, β = ζ + 2η′ and γ = 12η′,

we can say that there exists a distribution D1 in P satisfying Equation (4.3) (which is

same as satisfying Condition (A) and Condition (B) in Step 5 of the algorithm). Hence,

our algorithm accepts D in Step 5.

For soundness, consider a distribution D that is (ε+ζ+η)-far from P . Then follow-

ing Lemma 4.8 (i), we know that there exists a distribution D that is (ε+ζ+η−2η′)-far

from P , that is, (ε + 3α + β + 2γ)-far from P , where α = 12η′, β = ζ + 2η′. Here,

we are using that η = 64η′ and γ = 12η′. Also Lemma 4.8 guarantees that H contains

the top q2 elements of D. Following Lemma 4.5, we know that there does not exist any

such distribution D1 in P that satisfies both Condition (A) and Condition (B) of Step 5

of the algorithm. Thus the algorithm will REJECT the distribution D in Step 6.

Note that the total failure probability of the algorithm is bounded by the probability

that Lemma 4.8 does not hold, which is at most 12
q

.

Proof of Lemma 4.4 and Lemma 4.5:

Proof of Lemma 4.4. We will prove this by contradiction. Let us assume that there are

two distributions Dyes and Dno such that

• Dyes ∈ P;

• Dno is ε-far from P;

• High1/q2(Dyes) = High1/q2(Dno) = A;

• For all x ∈ A, Dyes(x) = Dno(x).

47

Now, we argue that any (0, ε)-non-tolerant tester requires more than Λ(n, ε) samples

from the unknown distribution D to distinguish whether D is in the property or ε-far

from it.

LetDY be a distribution obtained fromDyes by permuting the labels of Ω\A using a

uniformly random permutation. Specifically, consider a random permutation π : Ω\A→
Ω \ A. The distribution DY is as follows:

• DY (x) = Dyes(x) for each x ∈ A and

• DY (π(x)) = Dyes(x) for each x ∈ Ω \ A.

Similarly, consider the distribution DN obtained from Dno by permuting the labels

of Ω \ A using a uniformly random permutation. Note that DY is in P , whereas DN is

ε-far from P , which follows from P being label-invariant.

We will now prove that DY and DN provide similar distributions over sample se-

quences. More formally, we will prove that any algorithm that takes at most Λ(n, ε)

samples, cannot distinguish DY from DN with probability at least 2
3
. We argue that

this claim holds even if the algorithm is provided with additional information about the

input: Namely, for all x ∈ A, the algorithm is told the value of DY (x) (which is the

same as DN(x)). When the algorithm is provided with this information, it can ignore all

samples obtained from A.

By the definition of A, for all x ∈ Ω \ A, both DY (x) and DN(x) are at most 1
q2

.

Let SY be a sequence of samples drawn according to DY . If |SY | ≤ Λ(n, ε), then with

probability at least 3
4
, the sequence (Ω \ A) ∩ SY has no element that appears twice. In

other words, the set (Ω\A)∩SY is a set of at most Λ(n, ε) distinct elements from Ω\A.

Since the elements of Ω\A were permuted using a uniformly random permutation, with

probability at least 3
4
, the sequence (Ω \ A) ∩ SY is a uniformly random sequence of

distinct elements from Ω\A. Similarly, if SN is a sequence of samples drawn according

toDN , then with probability at least 3
4
, the sequence (Ω\A)∩SN is a uniformly random

sequence of distinct elements from Ω \ A. Thus, the distributions over the received

sample sequence obtained from DY or DN are of distance 1
4

of each other, which is

strictly less than 1
3
.

48

Hence, if the algorithm obtains at most Λ(n, ε) samples from the unknown distribu-

tionD, it cannot distinguish, with probability at least 2
3
, whether the samples are coming

from DY or DN .

For the proof of Lemma 4.5, we will need the following simple claim.

Claim 4.9. Let σ : [n] → [n] be a permutation and let a1, a2, . . . , an and b1, b2, . . . , bn
be two sets of n positive real numbers. If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn,

then the sum
∑
i∈[n]

∣∣ai − bσ(i)
∣∣ is minimized when σ is the identity permutation.

Proof. First observe that if a, b, c, d are four real numbers with a ≥ b and c ≥ d, then

the following holds:

|a− c|+ |b− d| ≤ |a− d|+ |b− c| . (4.5)

The above can be proved by checking all possible orderings of the numbers a, b, c, d.

Once we have the above observation, we can now proceed to prove the claim. Let

us consider the set of permutations that minimize
∑
i∈[n]

∣∣ai − bσ(i)
∣∣. Let σ be one such

minimizing permutation that also minimizes the size for the following set S:

S = {(i, j) : i < j and σ(i) > σ(j)}

Let i be an index such that σ(i) < σ(i + 1) (such an index i exists unless σ is the

identity permutation). Let σ′ be the permutation obtained from σ by swapping σ(i) and

σ(i+1). Then the sum
∑
i∈[n]

∣∣ai − bσ′(i)

∣∣ does not increase from
∑
i∈[n]

∣∣ai − bσ(i)
∣∣, because

of Equation 4.5. However, the size of the set S with respect to the permutation σ′ strictly

decreases, and we have a contradiction.

Now we present the proof of Lemma 4.5.

Proof of Lemma 4.5. We consider the two cases separately.

49

(1) If D is β-close to P , then there exists a distribution D1 in P such that we have∑
x

∣∣D(x)−D1(x)
∣∣ ≤ β. Since P is label-invariant, any permutation of D1 is also in P .

Without loss of generality, let us assume that the domain Ω is a subset of {1, . . . , n}.

By Claim 4.9, the permutation σ that minimizes
∑
x

∣∣D(x)−D1(σ(x))
∣∣ ≤ β is the

one that orders the i-th largest element of D1 with the i-th largest element of D, that

is, if x is the element with the i-th largest probability mass in D1, then σ(x) has the

i-th largest probability mass in D. Consider the distribution Dσ
1 that is defined by

Dσ
1 (x) = D1(σ(x)). Clearly, H contains the largest q2 elements of Dσ

1 , and hence

also High1/q2(D
σ
1) ⊆ H .

As
∑
x∈Ω

∣∣Dσ
1 (x)−D(x)

∣∣ ≤ β,
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ α and |D(Ω\H)−D̃(Ω\H)| ≤

γ, by the triangle inequality, we obtain

∑
x∈H

∣∣∣Dσ
1 (x)− D̃(x)

∣∣∣+ ∣∣∣Dσ
1 (Ω \H)− D̃(Ω \H)

∣∣∣
≤

∑
x∈H

|Dσ
1 (x)−D(x)|+

∑
x∈H

|D(x)− D̃(x)|

+|Dσ
1 (Ω \H)−D(Ω \H)|+ |D(Ω \H)− D̃(Ω \H)|

≤
∑
x∈H

|Dσ
1 (x)−D(x)|+

∑
x∈H

|D(x)− D̃(x)|

+
∑

x∈Ω\H

|Dσ
1 (x)−D(x)|+ |D(Ω \H)− D̃(Ω \H)|

=
∑
x∈Ω

|Dσ
1 (x)−D(x)|+

∑
x∈H

|D(x)− D̃(x)|+ |D(Ω \H)− D̃(Ω \H)|

≤ α + β + γ

(2) We will prove this case by contradiction. Let D1 ∈ P be a distribution such that

High1/q2(D1) ⊆ H and
∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ α+ β + γ.

Then, as
∑
x∈H

∣∣∣D(x)− D̃(x)
∣∣∣ ≤ α, by the triangle inequality, we have

∑
x∈H

|D1(x)−D(x)|+
∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ 2α + β + γ. (4.6)

50

Consider the distribution D̂ defined as follows:

• For all x ∈ H , D̂(x) = D1(x).

• If D1(H) ≥ D(H), then for all x ∈ Ω \H ,

D̂(x) = D(x) · ϕ,

where ϕ = 1−D1(H)

1−D(H)
. Notice that in this case ϕ ≤ 1.

• If D1(H) ≤ D(H), then pick the set T ⊂ Ω \ H with |T | = 2q2 that minimizes

D(T). Then for all x ∈ T ,

D̂(x) = D(x) +
D(H)−D1(H)

2q2

and for all x ∈ Ω \ (T ∪H), D̂(x) = D(x)

Let us first prove that High1/q2(D̂) ⊆ H . In the case where D1(H) ≥ D(H), for all

x ∈ Ω \ H , D̂(x) ≤ D(x). Since High1/q2(D) ⊆ H , High1/q2(D̂) ⊆ H . Now, in the

case where D1(H) ≤ D(H), the only x ∈ Ω \H for which D̂(x) > D(x) are those in

T . Since |Ω| > 4q2, the lowest 2q2 elements on D must each have mass less than 1
2q2

.

So even if we add 1
2q2

for any element x ∈ T , D̂(x) < 1/q2. Hence in this case also

High1/q2(D̂) ⊆ H since High1/q2(D) ⊆ H and High1/q2(D1) ⊆ H .

Now let us bound the ℓ1 distance between D̂ and D. Observe that

∑
x∈Ω\H

∣∣∣D̂(x)−D(x)
∣∣∣ = ∣∣∣D̂(Ω \H)−D(Ω \H)

∣∣∣ .
This is because, in the case where D̂(H) ≥ D(H), we have D̂(x) = ϕ ·D(x) ≤ D(x)

for all x ∈ Ω \ H . On the other hand, in the case where D̂(H) ≤ D(H) then for all

x ∈ Ω \H , D̂(x) ≥ D(x). Thus,

51

∑
x∈Ω\H

∣∣∣D̂(x)−D(x)
∣∣∣ =

∣∣∣D̂(Ω \H)−D(Ω \H)
∣∣∣

≤
∣∣∣D̂(Ω \H)− D̃(Ω \H)

∣∣∣+ ∣∣∣D(Ω \H)− D̃(Ω \H)
∣∣∣

≤
∣∣∣D̂(Ω \H)− D̃(Ω \H)

∣∣∣+ γ

Also note that, from the construction of D̂, we have for all x ∈ H , D̂(x) = D1(x)

and thus D̂(Ω \H) = D1(Ω \H). Thus,

||D̂ −D||1 =
∑
x∈H

|D̂(x)−D(x)|+
∑

x∈Ω\H

|D̂(x)−D(x)|

≤
∑
x∈H

|D̂(x)−D(x)|+
∣∣∣D̂(Ω \H)− D̃(Ω \H)

∣∣∣+ γ

=

(∑
x∈H

|D1(x)−D(x)|+
∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣)+ γ

(From the construction of D̂)

≤ 2α + β + 2γ (By Equation (4.6))

Moreover, High1/q2(D1) ⊆ H and by the construction of D̂, we have High1/q2(D1) =

High1/q2(D̂) and for all x ∈ High1/q2(D1), D1(x) = D̂(x). Since we assumed that D1

is in P , using Lemma 4.4, D̂ is ε-close to P . And since ||D̂ −D||1 ≤ 2α+ β + 2γ, we

conclude that D is (ε+ 2α + β + 2γ)-close to P , which is a contradiction.

4.3 Computationally efficient tolerant testers

In this section we present a constructive variant of the tolerant tester studied in Sec-

tion 4.2. Here, for any two vectors a, b ∈ RN , we say that a ≤ b if ai ≤ bi holds for

every i ∈ [N]. Now let us recall the definitions of polyhedron and projection map.

Definition 4.10 (Polyhedron). Let A be a M ×N real matrix, b ∈ RM be a real vector

52

and Ax ≤ b be a system of linear inequalities. The solution set {x ∈ RN | Ax ≤ b}
of the system of inequalities is called a polyhedron. The complexity of a polyhedron is

defined as MN .

Definition 4.11 (Projection map). Let n be an integer. For all integers N ≥ n, a

projection map is denoted as πn : RN → Rn and is defined as the projection of the

points in RN on the first n coordinates.

Before directly proceeding to our results, we first define two variants of distribution

properties.

Definition 4.12 (Linear property). Without loss of generality, let us assume that Ω =

[n]. A distribution property P is said to be a linear property if there exists a polyhedron

LP =
{
x ∈ RN | Ax ≤ b

}
, where A is a M × N real matrix and b ∈ RM be a real

vector, and πn (LP) 5 is the set of distributions satisfying the property P , that is, for

every z := (z1, . . . , zn, . . . , zN) ∈ LP , the distribution Dz, defined as

Dz(i) = zi, ∀i ∈ [n]

satisfies the property P , and conversely, for every distribution D that satisfies P , there

exists some z ∈ LP such that D = Dz as defined above. The complexity of P is defined

as M ×N .

Similar to linear properties, we can also define properties that are feasible solutions

to a system of convex constraints.

Definition 4.13 (Convex property). A distribution property P is said to be a convex

property if P is the set of all feasible solutions to a system of convex constraints over

D(i) for i ∈ Ω, where Ω is the sample space of D. In other words, the set P forms a

convex set.
5Note that πn (LP) will also be a polyhedron in Rn, see, e.g., Corollary 2.5 in Chapter 2 from the book

by Bertsimas and Tsitsiklis [BT97]. However, the number of linear inequalities defining the property,
which affects the running time of the tester, can sometimes be greatly reduced by using a projection.

53

Now we show that some well studied label-invariant distribution properties can be

represented as linear or convex properties.

Remark 4.1 (An example of a linear property: Approximate uniformity property).

A distribution D over [n] is said to be uniform if D(i) = 1
n

for all i ∈ [n]. Let the prop-

erty Pu,ε denote the set of all distributions that are ε-close to the uniform distribution,

where ε ∈ (0, 1) is a parameter. Consider the following polyhedron LPu,ε in R2n:

∑
i∈[n]

zn+i ≤ ε

zi ≥ 0 ∀i ∈ [2n]

− zn+i ≤ zi −
1

n
≤ zn+i ∀i ∈ [n]

Now, observe that πn (LPu,ε) will give us the set of distributions that are ε-close to

uniform, i.e., the set Pu,ε (this would serve as the linear transformation mentioned in

Definition 4.12). Also, note that approximate uniformity property has complexity O (n).

Now we present a property that can be expressed as a feasible solution to a system

of convex inequalities, but that cannot be expressed as feasible solution to a system of

linear inequalities.

Remark 4.2 (An example of a convex property: Entropy property). Let D be a

distribution supported on [n]. Given a parameter k ∈ R, let PE,k denote the set of all

distributions with entropy at least k. PE,k can be expressed as a convex inequality as

follows: ∑
i∈[n]

D(i) log
1

D(i)
≥ k.

For a distribution property P , let CP ⊂ Rn denote the geometric representation of

the set of probability distributions over the set [n] that satisfy P by considering each

distribution over [n] as a point in Rn.

54

For all β ∈ [0, 1], k ≤ n and a ∈ Rn, we define the following convex set:

∆(k, q, a, β) :=

{
x ∈ Rd :

k∑
i=1

|xi − ai|+

∣∣∣∣∣∑
j>k

xj −
∑
j>k

aj

∣∣∣∣∣ ≤ β & xi <
1

q2
∀i > k

}

Before proceeding to prove Theorem 3.2, we will first prove a more general result.

We will show that if we have access to an emptiness oracle that takes a specific convex

set (defined in the following statement) as input, and decides whether the convex set

is empty or not, then we can design a tolerant tester for any label-invariant distribution

property that takes Õ(Λ2) samples and performs a single emptiness query to the oracle.

The result is formally stated and proved below.

Theorem 4.14. Let P be a label-invariant distribution property. If there is a (0, ε)-tester

(non-tolerant tester) with sample complexity Λ(n, ε), then for any γ1, γ2 with γ1 < γ2

and 0 < γ1 < γ2+ε < 2, there exists a (γ1, γ2+ε)-tester (tolerant tester) that takes s =

Õ(Λ2) samples and makes a single emptiness query to the set CP ∩ ∆(Õ(s),Λ, D̃, β),

where D̃ is a known probability distribution and β = γ1 +
γ2−γ1

3
.

Proof. Recall that in Step 5 of the tolerant tester presented in Section 4.2, the tester

checks whether there is any distribution D1 ∈ P that satisfies the following two condi-

tions: ∑
x∈H

∣∣∣D1(x)− D̃(x)
∣∣∣+ ∣∣∣D1(Ω \H)− D̃(Ω \H)

∣∣∣ ≤ 26η′ + ζ

and

High1/q2(D1) ⊆ H

where ζ = γ1, η = γ2 − γ1, η = γ2 − γ1 and η′ = η
64

. The set H and the distribution D̃

are defined in the tolerant tester presented in Section 4.2.

Without loss of generality, we can assume that H = {1, . . . , |H|}. Therefore, in

order to perform Step 5 of the tolerant tester, the following equations are needed to be

55

satisfied:

D1 ∈ CP (4.7)

D1 ∈ ∆
(
|H| , q, D̃, 26η′ + ζ

)
(4.8)

We now present the tolerant (γ1, γ2+ ε)-tester in its entirety, that is, a (ζ, ζ + ε+ η)-

tester for the property P , where ζ = γ1, η = γ2 − γ1, and η′ = η
64

.

1. Draw W = O
(
q2

η′
log q

)
samples from the distribution D. Let S ⊆ Ω be the set

of (distinct) samples obtained.

2. Draw additional O
(
W
η′2

logW
)

samples Z to estimate the value of D(x) for all

x ∈ S.

3. Construct a set H as the union of S and q2 arbitrary elements from Ω \ (S ∪ Z).

4. Define a distribution D̃ such that, for x ∈ H ,

D̃(x) =
x in the multi-set Z

|Z|
.

And for each x ∈ Ω \H ,

D̃(x) =

1−
∑
x∈H

D̃(x)

|Ω| − |H|
.

5. If there exists a distribution D1 ∈ CP ∩∆
(
|H| , q, D̃, 26η′ + ζ

)
, then ACCEPT

D.

6. If there does not exist any distribution D1 that passes Step 5, then REJECT D.

Observe that the sample complexity of the tester is O
(
q2

η2
log2 q

)
= Õ(Λ2) in addi-

tion to a single emptiness query to the set P ∈ CP ∩ ∆
(
|H| , q, D̃, 26η′ + ζ

)
in Step

5. The correctness proof of the above tester follows from the correctness argument pre-

sented in Section 4.2.

56

4.3.1 Emptiness checking when P is a linear property

Now we proceed to analyze the time complexity of the (γ1, γ2 + ε)-tester described in

Theorem 4.14 when P is also a linear property. Recall that as P is a linear property, there

exists a polyhedron LP =
{
x ∈ RN | Ax ≤ b

}
, where A is a M ×N real matrix and

b ∈ RM be a real vector, and πn (LP) is the set of distributions satisfying the property

P . (See Definition 4.12)

Now we show that checking emptiness of πn(LP) ∩ ∆
(
|H| , q, D̃, 26η′ + ζ

)
is

equivalent to testing the feasibility of a family of inequalities.

Observation 4.15. Without loss of generality, assume that H = {1, . . . , |H|} and Ω =

{1, . . . , n}. Checking emptiness of πn(LP) ∩ ∆(|H| , q, D̃, 26η′ + ζ) is equivalent to

testing the feasibility of the following set of inequalities:

Az ≤ b (4.9)

|H|∑
i=1

∣∣∣zi − D̃(i)
∣∣∣+
∣∣∣∣∣∣

n∑
i=|H|+1

zi −
n∑

i=|H|+1

D̃(i)

∣∣∣∣∣∣ ≤ 26η′ + ζ (4.10)

zi <
1

q2
∀i ∈ [n] \ {1, . . . , |H|}

(4.11)

Note that the inequality in Equation (4.10) can be expressed as the following set of

linear inequalities using slack variables zN+i for all i ∈ [|H|+ 1]:

|H|∑
i=1

zN+i + zN+|H|+1 ≤ 26η′ + ζ

zN+i ≥ 0 ∀i ∈ [|H|+ 1]

− zN+i ≤ zi − D̃(i) ≤ zN+i ∀i ∈ [|H|]

− zN+|H|+1 ≤
n∑

i=|H|+1

zi −
n∑

i=|H|+1

D̃(i) ≤ zN+|H|+1

Therefore checking the emptiness of πn(LP)∩∆
(
|H| , q, D̃, 26η′ + ζ

)
is equivalent

57

to checking the feasibility of the following set of linear inequalities:

Az ≤ b

|H|∑
i=1

zN+i + zN+|H|+1 ≤ 26η′ + ζ

zN+i ≥ 0 ∀i ∈ [|H|+ 1]

− zN+i ≤ zi − D̃(i) ≤ zN+i ∀i ∈ [|H|]

− zN+|H|+1 ≤
n∑

i=|H|+1

zi −
n∑

i=|H|+1

D̃(i) ≤ zN+|H|+1

zi <
1

q2
∀i ∈ [n] \ {1, . . . , |H|}

The feasibility of the above set of linear inequalities can be solved in a polynomial time

in the complexity of the polyhedron, that is, in a polynomial time in N and M , using the

Ellipsoid Method, where recall thatA is aM×N real matrix (see, e.g., [BT97, GM07]).

Thus, we have an efficient (γ1, γ2 + ε)-tester for P , that runs in time polynomial in

the complexity of the label-invariant linear property P . This concludes the proof of

Theorem 3.2.

58

Chapter 5

Testing of Non Concentrated Properties

5.1 Introduction

In this chapter, we present some lower bound results for testing non-concentrated distri-

bution properties (see Definition 3.11). We prove that Ω(
√
n) samples are required for

non-tolerant testing of any non-concentrated properties. Formally, the result is stated as

follows:

Theorem 5.1 (Theorem 3.3 formalized). Let P be any (α, β)-non-concentrated distri-

bution property for 0 < α < β < 1
2
. For any ε with 0 < ε < α, any (0, ε)-tester for P

requires Ω(
√
n) samples, where n is the size of the support of the distribution.

We will first prove an analogous result for label-invariant non-concentrated distribu-

tion properties in Section 5.2. Then in Section 5.3 we generalize the proof to hold for all

classes of non-concentrated distribution properties.

Later in Section 5.2.2 we prove that almost linear number of samples are required

for tolerant testing of label-invariant non-concentrated distribution properties.

Theorem 5.2 (Theorem 3.4 formalized). Let P be any (α, β)-non-concentrated label-

invariant distribution property, where 0 < α ≤ β < 1
2
. For any constant ε1 and ε2 with

0 < ε1 < ε2 < α, any (ε1, ε2)-tester for P requires Ω(n1−o(1)) samples, where n is the

size of the support of the distribution.

59

5.2 Testing of non-concentrated label-invariant proper-

ties

In this section we first prove a lower bound of Ω(
√
n) on the sample complexity of non-

tolerant testing of any non-concentrated label-invariant property. Then we proceed to

prove a tolerant lower bound of Ω(n1−o(1)) samples for such properties in Section 5.2.2.

5.2.1 Non-tolerant lower bound for label-invariant properties

Here we first prove a lower bound result analogous to Theorem 5.1, where the properties

are non-concentrated and label-invariant. In Section 5.3, we discuss why the proof of

Theorem 5.3 does not directly work for Theorem 5.1, and then prove Theorem 5.1 using

a different argument.

Theorem 5.3 (Analogous result of Theorem 5.1 for non-concentrated label-invari-

ant properties). Let P be any (α, β)-non-concentrated label-invariant distribution prop-

erty, where 0 < α ≤ β < 1
2
. For ε with 0 < ε < α, any (0, ε)-tester for property P

requires Ω(
√
n) samples, where n is the size of the support of the distribution.

Proof. Let us first consider a distribution Dyes that satisfies the property. Since P is an

(α, β)-non-concentrated property, by Definition 3.11,Dyes is an (α, β)-non-concentrated

distribution. From Dyes, we generate a distribution Dno such that the support of Dno is

a subset of that of Dyes, and Dno is ε-far from P . Hence, if we apply a random permu-

tation over the elements of Ω, we show that Dyes and Dno are indistinguishable, unless

we query for Ω(
√
n) samples. Below we formally prove this idea.

We will partition the domain Ω into two parts, depending on the probability mass of

Dyes on the elements of Ω. Given the distribution Dyes, let us first order the elements

of Ω according to their probability masses. In this ordering, let L be the smallest 2βn

elements of Ω. We denote Ω\L byH . Before proceeding further, note that the following

observation gives an upper bound on the probabilities of the elements in L.

Observation 5.4. For all x ∈ L, Dyes(x) ≤ 1−2α
1−2β

1
n

.

60

Proof of Observation 5.4. By contradiction, assume that there exists x ∈ L such that

Dyes(x) >
1−2α
1−2β

1
n

. This implies, for every y ∈ H , that Dyes(y) >
1−2α
1−2β

1
n

. So,

1 =
∑
x∈Ω

Dyes(x) =
∑
x∈L

Dyes(x) +
∑
y∈H

Dyes(y) > Dyes(L) + |H| 1− 2α

1− 2β

1

n
.

As |L| = 2βn andDyes is an (α, β)-non-concentrated distribution, Dyes(L) ≥ 2α. Also,

|H| = (1− 2β)n. Plugging these into the above inequality, we get a contradiction.

Note that Observation 5.4 implies that if S is a multi-set of o
(√

1−2β
1−2α

n
)

samples

from Dyes, then with probability 1 − o(1), no element from L appears in S more than

once. Now using the distributionDyes and the set L, let us define a distributionDno such

that Dno is ε-far from P . Note that Dno is a distribution that comes from a distribution

over a set of distributions, all of which are not (α, β)-non-concentrated. The distribution

Dno is generated using the following random process:

• We partitionL randomly into two equal sets of size βn: {x1, . . . , xβn} and {y1, . . .
yβn}. We randomly pair the elements ofL into βn pairs. Let (x1, y1), . . . , (xβn, yβn)

be a random pairing of the elements in L, which is represented as PL, that is,

PL = {(x1, y1), . . . , (xβn, yβn)}.

• The probability mass of Dno at z is defined as follows:

– If z ̸∈ L, then Dno(z) = Dyes(z).

– For every pair (xi, yi) ∈ PL, Dno(xi) = Dyes(xi) +Dyes(yi), and Dno(yi) =

0.

We start by observing that the distribution Dno constructed above is supported on a

set of at most (1 − β)n elements. So, any distribution Dno constructed using the above

procedure is ε-far from satisfying the property P for any ε < α.

We will now prove that Dyes and Dno both have similar distributions over the se-

quences of samples. More formally, we will prove that any algorithm that takes o(
√
n)

samples, cannot distinguish between Dyes from Dno with probability at least 2
3
.

61

Since any Dno produced using the above procedure has exactly the same probability

mass on the elements in H as Dyes, any tester that distinguishes between Dyes and Dno

must rely on samples obtained from L. Recall that the algorithm is given a uniformly

random permutation of the distribution. Since supp(1)(Dno) ⊂ supp(1)(Dyes) (particu-

larly, supp(1)(Dno)∩L ⊂ supp(1)(Dyes)∩L), it is not possible to distinguish between

Dyes and Dno, unless an element of L appears at least twice. Otherwise, as in the proof

of Lemma 4.4, the elements drawn from L are distributed identically to a uniformly ran-

dom non-repeating sequence. But observe that Dyes(i) = O(1
n
) and Dno(i) = O(1

n
)

when i is in L. Thus any sequence of o(
√
n) samples will provide only a distance of

o(1) between the two distributions, completing the proof.

5.2.2 Tolerant lower bound for label-invariant properties

Theorem 5.5 (Theorem 5.2 restated). Let P be any (α, β)-non-concentrated label-

invariant distribution property, where 0 < α ≤ β < 1
2
. For any constant ε1 and ε2 with

0 < ε1 < ε2 < α, any (ε1, ε2)-tester for P requires Ω(n1−o(1)) samples, where n is the

size of the support of the distribution.

To prove the above theorem, we recall some notions and a theorem from Valiant’s

paper on a lower bound for the sample complexity of tolerant testing of symmetric prop-

erties [Val11]. These definitions refer to invariants of distributions, which are essentially

a generalization of properties.

Definition 5.6. Let Π : Dn → R denote a real-valued function over the set Dn of all

distributions over [n].

1. Π is said to be label-invariant if for any D ∈ Dn the following holds: Π(D) =

Π(Dσ) for any permutation σ : [n] → [n].

2. For any γ, δ with γ ≥ 0 and δ ∈ [0, 2], Π is said to be (γ, δ)-weakly-continuous if

for all distributions p+, p− satisfying ||p+−p−||1 ≤ δ, we have |Π(p+)−Π(p−)| ≤
γ.

62

For a property P of distributions, we define ΠP : Dn → [0, 2] with respect to prop-

erty P as follows:

For D ∈ Dn,ΠP(D) := the distance of D from P .

From the triangle inequality property of ℓ1 distances, ΠP (which refers to the distance

function from the property P) is (γ, γ)-weakly continuous, for any γ ∈ [0, 2].

Theorem 5.7 (Low Frequency Blindness [Val11]). Consider a function Π : Dn → R
that is label-invariant and (γ, δ)-weakly-continuous, where γ ≥ 0 and δ ∈ [0, 2]. Let

there exist two distributions p+ and p− in Dn with n being the size of their supports,

such that Π(p+) > b, Π(p−) < a, and they are identical for any index occurring with

probability at least 1
n

in either distribution, where a, b ∈ R. Then any tester that has

sample access to an unknown distribution D and distinguishes between Π(D) > b − γ

and Π(D) < a+ γ, requires Ω(n1−oδ(1)) samples from D 1.

Note that in Theorem 5.7, we have assumed that p+ and p− are identical for any

index that has probability mass at least 1
n

. We can actually replace this condition to

O(1
n
) by adding O(n) “dummy elements” to the support of p+ and p−. Now we are

ready to prove Theorem 5.5.

Proof of Theorem 5.5. Consider ΠP as defined above. As P is a label-invariant prop-

erty, the function ΠP is also label-invariant. We have already noted that ΠP is (γ, γ)-

weakly continuous as “distance from a property” satisfies the triangle inequality, for any

γ ∈ [0, 2]. Now recall that the distributions Dyes and Dno considered in the proof of

Theorem 5.3. The probability mass of each element in the support of Dyes and Dno is

O(1
n
). Note that Dyes is in P and Dno is ε-far from P , for any ε < α, and both of them

have a support size of Θ(n). Here we take ε > ε2. Now, we apply Theorem 5.7 with

a = 0, some b < ε and γ with γ < min{ε1, ε − ε2}. Observe that this completes the

proof of Theorem 5.5.

1oδ(·) suppresses a term in δ.

63

5.3 Sample complexity of non-concentrated properties

Theorem 5.8 (Theorem 5.1 restated). Let P be any (α, β)-non-concentrated distribu-

tion property for 0 < α < β < 1
2
. For any ε with 0 < ε < α, any (0, ε)-tester for P

requires Ω(
√
n) samples, where n is the size of the support of the distribution.

Why does the proof of Theorem 5.3 work only for label-invariant properties? Note

that the proof of Theorem 5.3 crucially uses the fact that the property P is label-invariant.

Recall that, while constructing Dno from Dyes, for each i ∈ [βn], moving the masses

of both xi and yi in Dyes to xi to produce Dno is possible as the property P is label-

invariant. Due to this feature, we can apply a random permutation over Ω, and still

the permuted distribution will behave identically with respect to P . After applying the

random permutation, the samples coming from Dyes and Dno are indistinguishable as

long as there are no collisions among the elements in L, which is the case when we take

o(
√
n) samples. However, this technique does not work when the property is not label-

invariant, as the value of the distribution with respect to P may not be invariant under

the random permutation over Ω. This requires a new argument; although the proof is

similar in spirit to the proof of Theorem 5.3, there are some crucial differences, and we

present the proof next. In order to prove Theorem 5.8, instead of moving the masses of

both xi and yi in Dyes to xi to produce Dno, we randomly move the sum to either xi or

yi, with probability proportional to the masses of xi and yi.

Proof of Theorem 5.8

The proof of Theorem 5.8 starts off identically to the proof of Theorem 5.3, but there is

a departure in the construction of Dyes and Dno.

Let us first consider Dyes, L and PL as discussed in the proof of Theorem 5.3, only

here we cannot and will not pass Dyes through a random permutation. The difference

starts from the description of the distribution Dno. In fact, Dno will be randomly chosen

according to a distribution over a set of distributions, all of which are not (α, β)-non-

concentrated. The distribution Dno is generated using the following random process:

64

• We partition L arbitrarily into two equal sets of size βn. Let they be {x1, . . . , xβn}
and {y1, . . . , yβn}. We pair the elements of L arbitrarily into βn pairs. Let

(x1, y1), . . . , (xβn, yβn) be an arbitrary pairing of the elements in L. Let PL be

the set of pairs. So PL = {(x1, y1), . . . , (xβn, yβn)}. We refer to xi and yi as the

elements corresponding to each other with respect to PL, and denote π(xi) = yi

and π(yi) = xi.

• The probability mass of Dno at z is defined as follows:

– If z ̸∈ L, then Dno(z) = Dyes(z).

– For every pair (xi, yi) ∈ PL, use independent random coins and

* With probability Dyes(xi)

Dyes(xi)+Dyes(yi)
, set Dno(xi) = Dyes(xi) + Dyes(yi)

and Dno(yi) = 0.

* With the remaining probability, that is, with probability Dyes(yi)

Dyes(xi)+Dyes(yi)
,

set Dno(xi)

= 0 and Dno(yi) = Dyes(xi) +Dyes(yi).

Observe that anyDno constructed by the above procedure is supported over a set of at

most (1− β)n elements. So any distribution Dno constructed using the above procedure

is ε-far from satisfying the property P , for any ε < α. But since anyDno produced using

the above procedure has exactly the same probability mass on elements in H as Dyes,

any tester that distinguishes between Dyes and Dno must rely on samples obtained from

L. However, we can prove that unless we receive two samples from the same pair in L

(which occurs with low probability), the sample sequence cannot distinguish Dyes from

Dno.

Note that there is an upper bound of O(1
n
) on the probability mass of any element

in L. In fact, for any pair (xi, yi) ∈ PL, the total probability mass of the pair is at most

O(1
n
).

Observation 5.9 (Follows from Observation 5.4). For all pairs (xi, yi) ∈ PL, Dno(xi)+

Dno(yi) ≤ 21−2α
1−2β

1
n

. Also note that Dno(xi) + Dno(yi) = Dyes(xi) + Dyes(yi) with

probability 1 over the construction of Dno.

65

From Observation 5.9, observe that if S is a multi-set of o
(√

1−2β
1−2α

n
)

samples from

Dyes, then with probability 1 − o(1), no two elements in S (identical or not) are from

the same pair in PL. The same holds for Dno as well. Given that no two elements in

S are from the same pair in PL, we will now prove that Dyes and Dno have the same

distributions over sample sequences. This implies that, for a sequence of o
(√

1−2β
1−2α

n
)

samples, Dyes and Dno induce distributions over samples sequences that have o(1) vari-

ation distance from each other.

Note that under the condition that at most one element is drawn from any pair

(xi, yi) ∈ PL, the probability that the sample is xi instead of yi is equal to Dyes(xi)

Dyes(xi)+Dyes(yi)
,

irrespective of whether the distribution isDyes orDno. So, we have the following lemma.

Lemma 5.10. Let a1, ..., aq be a sequence of q elements, where no element of L appears

twice, additionally containing no two elements from the same pair in PL (elements of H

can appear freely). Then

Pr
s1,...,sq∼Dyes

[(s1, . . . , sq) = (a1, . . . , aq)] = Pr
s1,...,sq∼Dno

[(s1, . . . , sq) = (a1, . . . , aq)].

Proof. Let us begin by defining an event E as follows:

E := no element of L appears twice, and no two elements from the same pair appear.

Observe that we will be done by proving

Pr
s1,...,sq∼Dyes

[si = ai for each i ∈ [q] | E] = Pr
s1,...,sq∼Dno

[si = ai for each i ∈ [q] | E]. (5.1)

We will prove this by using induction over q. Let us assume that we have generated

samples s1 = a1, . . . , sk = ak from the unknown distribution, where 1 ≤ k < q. Let

Xk = {s1, . . . , sk}∩L be the samples we have seen until now from L, andX ′
k = {π(x) :

x ∈ Xk}. By the induction hypothesis, assume that Equation (5.1) holds for each q with

q ≤ k. We will show that Equation (5.1) holds for q = k + 1.

To do so, let us now define two distributionsDk+1
yes andDk+1

no as follows, and consider

66

a claim (Claim 5.11) about them.

Dk+1
yes (x) = Pr

s1,...,sq∼Dyes
[sk+1 = x | E and si = ai for i ≤ k] .

Similarly,

Dk+1
no (x) = Pr

s1,...,sq∼Dno
[sk+1 = x | E and si = ai for i ≤ k].

Claim 5.11. Dk+1
yes (x) = Dk+1

no (x) for every x ∈ Ω.

Proof. We prove the claim separately when x ∈ Xk ∪X ′
k ⊆ L, x ∈ L \ (Xk ∪X ′

k), and

x /∈ L.

(i) x ∈ Xk ∪X ′
k: Dk+1

yes (x) = Dk+1
no (x) = 0. This follows from the condition that no

element of L appears twice, additionally containing no two elements of the same

pair.

(ii) x ∈ L \ (Xk ∪X ′
k): As Dk+1

yes (x) = Dk+1
no (x) = 0 for every x ∈ Xk ∪X ′

k, we have

the followings for each x ∈ L \ (Xk ∪X ′
k).

Assume that x = xi ∈ L\(Xk∪X ′
k) for some i ∈ [βn] (using the notation defined

for the partition of L into pairs while we have described the random process for

generating Dno). The argument for the case where x = yj for some j ∈ [βn] is

analogous to this.

Under Dyes, a direct calculation gives the probability for obtaining x = xi ∈
L \ (Xk ∪X ′

k) as the (k + 1)-th sample sk+1.

Dk+1
yes (x) = Dyes(x | x /∈ Xk ∪X ′

k)

=
Dyes(x)

1−
∑

y∈Xk∪X′
k
Dyes(y)

=
Dyes(x)

1−
∑
y∈Xk

(Dyes(y) +Dyes(π(y)))
,

67

Let us now consider Dno. Note that xi ∈ L \ (Xk ∪ X ′
k), and neither xi nor yi

is present in the set of first k samples {s1, . . . , sk}. So, the probability of getting

s1, . . . , sk as the sequence of first k samples is completely independent of how

Dno(xi) and Dno(yi) are assigned while generating Dno, that is, whether we chose

Dno(xi) to be Dyes(xi)+Dyes(yi), or chose it to be zero (and made Dno(yi) equal

to Dyes(xi) + Dyes(yi) instead). That is, even when conditioned on the event

that s1, . . . , sk is the sequence of first k samples, the probability that Dno(xi) is

Dyes(xi) + Dyes(yi) is Dyes(xi)

Dyes(xi)+Dyes(yi)
. Note that Dno(xi) is 0 with probability

Dyes(yi)

Dyes(xi)+Dyes(yi)
.

Now we can calculate the probability of obtaining x = xi ∈ L as the (k + 1)-th

sample sk from the corresponding conditional probabilities.

Dk+1
no (x) = Dno (x | x /∈ Xk ∪X ′

k)

=
Dyes(xi) +Dyes(yi)

1−
∑

y∈Xk∪X′
k

Dno(y)
· Dyes(xi)

Dyes(xi) +Dyes(yi)

=
Dyes(x)

1−
∑
y∈Xk

(Dno(y) +Dno(π(y)))
.

From the construction of Dyes and Dno, for each y ∈ L, Dyes(y) +Dyes(π(y)) =

Dno(y) +Dno(π(y)). As Xk ⊆ L,

∑
y∈Xk

(Dyes(y) +Dyes(π(y))) =
∑
y∈Xk

(Dno(y) +Dno(π(y))) .

Hence, we have Dk+1
yes (x) = Dk+1

no (x).

(iii) x /∈ L: Recall that for any x /∈ L,Dyes(x) = Dno(x). Proceeding in similar fashion

to Dk+1
yes (x) in Case (ii), we conclude that Dk+1

yes (x) = Dk+1
no .

68

Now we are ready to prove Equation (5.1) for q = k + 1.

Pr
s1,...,sk+1∼Dyes

[si = ai ∀i ∈ [k + 1] | E]

= Pr
s1,...,sk+1∼Dyes

[si = ai ∀i ∈ [k] | E] · Pr[sk+1 = ak+1 | E & si = ai ∀i ∈ [k]]

= Pr
s1,...,sk∼Dyes

[si = ai ∀i ∈ [k] | E] ·Dk+1
yes (ak+1)

(By the definition of Dk+1
yes)

= Pr
s1,...,sk∼Dno

[si = ai ∀i ∈ [k] | E] ·Dk+1
no (ak+1)

(By the induction hypothesis and Claim 5.11, respectively)

= Pr
s1,...,sk∼Dno

[si = ai ∀i ∈ [k] | E] · Pr[sk+1 = ak+1 | E & si = ai ∀i ∈ [k]]

= Pr
s1,...,sk+1∼Dno

[si = ai ∀i ∈ [k + 1] | E].

Following the construction ofDyes andDno, we know that the two distributions differ

only on the elements of L. Moreover, following Observation 5.9, we know that if we

take o
(√

1−2β
1−2α

n
)

samples, then with probability 1−o(1), neither any element of L will

appear more than once nor two elements of same pair in PL will appear. Under these

two conditions, Lemma 5.10 states that Dyes and Dno will appear to be the same. Thus

we can say that any (0, ϵ)-tester that receives o
(√

1−2β
1−2α

n
)

samples cannot distinguish

between Dyes and Dno, and obtain Theorem 5.8.

69

Chapter 6

Distribution Learning with Unknown

Support

6.1 Introduction

In this chapter, we prove an upper bound related to the tolerant testing of more general

properties. We prove that for concentrated distributions (distributions whose most of the

mass is over a subset S ⊆ [n]), the distribution can be learnt efficiently, even when the

set as well as its size over which the distribution is concentrated are unknown. Formally,

we have the following result:

Theorem 6.1 (Theorem 3.5 formalized). Let D denote the unknown distribution over

Ω = [n], and assume that there exists a set S ⊆ [n] withD(S) ≥ 1− η
2

1, where η ∈ [0, 2)

is known but S and |S| are unknown. Then there exists an algorithm that takes δ ∈ (0, 2]

as input and constructs a distribution D′ satisfying ||D−D′||1 ≤ η+ δ with probability

at least 2
3
. Moreover, the algorithm uses, in expectation, O

(
|S|
δ2

)
samples from D.

1Recall that the variation distance between two distribution is half than that of the ℓ1 distance between
them. So, we take D(S) ≥ 1− η

2 (with η ∈ [0, 2)) instead of D(S) ≥ 1− η (with η ∈ [0, 1)) .

71

6.2 Learning distributions with unknown support

Following a folklore result, when provided with oracle access to an unknown distribu-

tion D, we can always construct a distribution D′, such that the ℓ1 distance between D′

and D (the unknown distribution) is at most ε, by using O(n
ε2
) samples from D 2. In this

section, we provide a procedure that can be used for tolerant testing of properties, and in

particular hints at how general tolerance gap bounds could be proved in the future. Our

algorithm learns an unknown distribution approximately with high probability, adapting

to the input, using as few samples as possible. Specifically, we prove that given a distri-

bution D, if there exists a subset S ⊆ [n] which holds most of the total probability mass

of D, then the distribution D can be learnt using O(|S|) samples, even if the algorithm

is unaware of |S| in advance. Our result is formally stated as follows:

Theorem 6.2 (Theorem 6.1 restated). Let D denote the unknown distribution over

Ω = [n], and assume that there exists a set S ⊆ [n] with D(S) ≥ 1 − η
2

3, where

η ∈ [0, 2) is known but S and |S| are unknown. Then there exists an algorithm that takes

δ ∈ (0, 2] as input and constructs a distribution D′ satisfying ||D −D′||1 ≤ η + δ with

probability at least 2
3
. Moreover, the algorithm uses, in expectation, O

(
|S|
δ2

)
samples

from D.

Note that in the above theorem, the algorithm has no prior knowledge of |S|. Before

directly proving the above, we first show that if |S| is known, then O(|S|) samples are

enough to approximately learn the distribution D. We would like to point out that a

similar question has been studied under the local differential privacy model with com-

munication constraints, by Acharya, Kairouz, Liu and Sun [AKLS21] and by Chen,

Kairouz and Özgür [CKÖ20].

Lemma 6.3 (Theorem 6.2 when |S| is known). Let D be the unknown distribution

over Ω = [n] such that there exists a set S ⊆ [n] with |S| = s, and η ∈ [0, 2) such

that D(S) ≥ 1 − η
2
, where s ∈ [n] and η ∈ (0, 1) are known. Then there exists an

2There is a writeup of this folklore result by Cannone [Can20b].
3Recall that the variation distance between two distribution is half than that of the ℓ1 distance between

them. So, we take D(S) ≥ 1− η
2 (with η ∈ [0, 2)) instead of D(S) ≥ 1− η (with η ∈ [0, 1)) .

72

algorithm that takes δ ∈ (0, 2] as an input and constructs a distribution D′ satisfying

||D − D′||1 ≤ η + δ with probability at least 9
10

. Moreover, the algorithm uses O
(
s
δ2

)
samples from D.

We note that Lemma 6.3 can be obtained from the work of Acharya, Diakonikolas, Li

and Schmidt [ADLS17, Theorem 2]. For completeness, we give a self-contained proof

for this lemma below.

We later adapt the algorithm of Lemma 6.3 to give a proof to the scenario where

|S| is unknown, using a guessing technique. The idea is to guess |S| = s starting from

s = 1, and then to query for O (s) samples from the unknown distribution D. From the

samples obtained, we construct a distribution Ds, and use Lemma 6.4 presented below

to distinguish whether Ds and D are close or far. We argue that, for s ≥ |S|, Ds will be

close to D with probability at least 9
10

. We bound the total probability for the algorithm

reporting a D′ that is too far from D (for example when terminating before s ≥ |S|),
and also bound the probability of the algorithm not terminating in time when s becomes

at least as large as |S|.

Lemma 6.4 ([VV11]). Let Du and Dk denote unknown (input) and known (given in

advance) distributions respectively over Ω = [n], such that the support of Du is a set of

s elements of [n]. Then there exists an algorithm TOL-ALG(Du, Dk, ε1, ε2, κ) that takes

the full description of Dk, two proximity parameters ε1, ε2 with 0 ≤ ε1 < ε2 ≤ 2 and

κ ∈ (0, 1) as inputs, queries O
(

1
(ε2−ε1)2

s
log s

log 1
κ

)
samples from Du, and distinguishes

whether ||Du −Dk||1 ≤ ε1 or ||Du −Dk||1 ≥ ε2 with probability at least 1− κ 4.

Note that Theorem 6.2 talks about learning a distribution with O(|S|) samples, where

there exists an unknown set S with D(S) ≥ 1 − η/2. To prove Theorem 6.2, we use

Lemma 6.4, that crucially uses less than s queries for tolerant identity testing (as opposed

to learning).

The bound following the paper of Valiant and Valiant [VV11] is O
(

1
(ε2−ε1)2

n
logn

)
,

which holds for any general distributions Du and Dk with constant success probabil-

ity. When deploying Lemma 6.4, we “contract” the set Ω \ supp(1)(Dk) to a single
4The multiplicative factor log 1

κ is for amplifying the success probability from 2
3 to 1− κ.

73

element, which allows us to substitute s + 1 for n. Note that this does not change the

distance between Dk and Du. Hence, O
(

1
(ε2−ε1)2

s
log s

)
samples from Du are enough for

constant success probability. Following a recent work of Cannone, Jain, Kamath and

Li [CJKL22], the dependence on the proximity parameters can be slightly improved.

However we are not using that result since the focus of this work is different.

We first prove Lemma 6.3, and then proceed to prove Theorem 6.2.

Proof of Lemma 6.3. Let Z be a multi-set of O
(
s
δ2

)
samples taken from D. The algo-

rithm constructs a distribution D′ : [n] → [0, 1] such that

D′(x) =
times x appears in Z

|Z|
.

Observe that ||D−D′||1 = 2 max
E⊆[n]

|D(E)−D′(E)|. So, we will be done by showing

the following:

With probability at least 9
10

, |D(E)−D′(E)| ≤ η+δ
2

for all E ⊆ [n] (6.1)

Note that there are 2n possibilities for E. So, a direct application of the union

bound would require a failure probability of at most O(1
2n
) for each E not satisfying

|D(E) − D′(E)| ≤ η+δ
2

, that is, O(n
δ2
) samples would be needed. Assuming that D is

concentrated (D(S) ≥ 1 − η
2
), we argue below that it is enough to have a failure prob-

ability of O(1
2s
) for each T not satisfying |D(T) − D′(T)| ≤ δ

4
, but first we show that

this is indeed the probability that we achieve.

Observation 6.5. Consider T ⊆ [n]. |D(T) − D′(T)| ≤ δ
4

holds with probability at

least 1− 1
100·2s .

Proof. Let Xi denote the binary random variable that takes value 1 if and only if the i-th

sample in Z is an element of T , where i ∈ [|Z|]. So, D′(T) = 1
|Z|

|Z|∑
i=1

Xi.

Observe that the expectation of D′(T) is E [D′(T)] = D(T). Applying Chernoff

bound (Lemma 2.12), we get the desired result.

74

By the above observation for every subset of S, applying the union bound over all

possible subsets of S, we have |D(T)−D′(T)| ≤ δ
4

for every T ⊆ S with probability at

least 99
100

. Further applying the observation for T = Ω \ S, we have |D(Ω \ S)−D′(Ω \
S)| ≤ δ

4
with probability at least 1− 1

100·2s .

Let E be the event that |D(T) − D′(T)| ≤ δ
4

for every T ⊆ S, and |D(Ω \ S) −
D′(Ω \ S)| ≤ δ

4
. Note that Pr(E) ≥ 9

10
. So, to prove Equation (6.1) and conclude the

proof of Lemma 6.3, we show that |D(E) − D′(E)| ≤ η+δ
2

holds, in the conditional

probability space when E occurs, for any E ⊆ [n].

|D(E)−D′(E)| ≤ |D(E ∩ S)−D′(E ∩ S)|+ |D(E ∩ (Ω \ S))−D′(E ∩ (Ω \ S))|

≤ δ

4
+ max {D(Ω \ S), D′(Ω \ S)}

≤ δ

4
+D(Ω \ S) + δ

4

≤ η + δ

2
.

Proof of Theorem 6.2. The algorithm is as follows:

1. Set s = 1.

2. Query for a multi-set Zs of O
(
s
δ2

)
samples from D.

3. Construct a distribution Ds : [n] → [0, 1] such that

Ds(x) =
times x appears in Zs

|Zs|

4. Call the algorithm TOL-ALG
(
Ds, D, η +

δ
2
, η + δ, 1

100 log2 s

)
(corresponding to

Lemma 6.4) to distinguish whether ||D −Ds||1 ≤ η + δ
2

or ||D −Ds||1 ≥ η + δ.

If we get ||D − Ds||1 ≤ η + δ
2

as the output of TOL-ALG, then we report D′ as

the output and QUIT. Otherwise, we double the value of s. If s ≤ 2n, go back to

75

Step 2. Otherwise, report FAILURE 5.

Let S denote the event that the algorithm quits with the desired output. We first show

that Pr(S) ≥ 2
3
. Then we analyze the expected sample complexity of the algorithm.

Observe that the algorithm quits after an iteration with guess s such that ALG-TOL

reports ||D − Ds||1 ≤ η + δ
2
. So, in that case, the probability that the algorithm exits

with an output not satisfying ||D − Ds||1 ≤ η + δ is at most 1
100 log2 s

. When summing

this up over all possible s (all powers of k, even up to infinity), the probability that the

algorithm does not produce the desired output, given that it quits, is at most
∞∑
k=1

1
100k2

≤
1
10

. So, denoting Q as the event that the algorithm quits without reporting FAILURE,

Pr(S | Q) ≥ 9
10

.

For the lower bound on Pr(Q), consider the case where s ≥ |S|. In this case,

||Ds−D||1 ≤ η+ δ
2

with probability at least 9
10

, and TOL-ALG quits by reporting Ds as

the output with probability at least 1− 1
100 log2 s

. So, for any guess s ≥ |S|, the algorithm

quits and reports the desired output with probability at least 4
5
. So, the probability that

the algorithm quits without reporting failure is at least the probability that the algorithm

quits with a desired output at some iteration with a guess s ≥ |S|, which is at least

1− (1
5
)(logn−log |S|+1). That is, Pr(Q) ≥ 4

5
.

Hence, the success probability of the algorithm can be lower-bounded as

Pr(S) ≥ Pr(Q) · Pr(S | Q) ≥ 9

10
· 4
5
>

2

3
.

Now, we analyze the sample complexity of the algorithm. The algorithm queries

for O(s) samples when it runs the iteration whose guess is s. The algorithm goes to

the iteration with guess s > |S| if all prior iterations which guessed more than |S|
failed, which holds with probability at most O

(
(1
5
)⌊log s/|S|⌋

)
. Hence the expected sample

complexity of the algorithm is at most

∑
k:s=2k<|S|

O(
s

δ2
) +

∑
k:s=2k≥|S|

O

((
1

5

)⌊log(s/|S|)⌋

· s
δ2

)
= O(

|S|
δ2

).

5By Lemma 6.4, this step uses O(s
δ2) samples.

76

To explain the above equality, note that in the LHS of the above equation, each

term of the second sum is bounded by O((1
5
)(k−log |S|) · 2(k−log |S|) · |S|

δ2
). Thus, substi-

tuting k − log(|S|) by r, we see that the second part of the LHS is upper bounded by∑
r≥0

O
(
(2
5
)r · |S|

δ2

)
which is clearly O(|S|

δ2
). Thus we have the above bound.

77

Part II

Results in the Huge Object Model

79

Chapter 7

Testing in the Huge Object Model

7.1 Introduction

The field of distribution testing is currently ubiquitous in property testing, see the books

and surveys of [Gol17, BY22, Fis04, Ron08, Ron09, CS10a, RS11, Can20a, Can22]

for reference. Distribution testing has also found numerous applications in other areas

of research, including topics that have real life applications [CM19, MPC20, CKS20,

PM21].

In the original model of distribution testing, a distribution D defined over some set

Ω can be accessed by obtaining independent samples from D, and the goal is to approx-

imate various interesting properties of D. This model has been studied extensively over

the last two decades, and many interesting results and techniques have emerged.

The majority of distribution testing research centers on the goal of minimizing the

number of samples required to test for various properties of the underlying distribu-

tion. If the domain of the distribution is structured (for example, if the domain is the

n-dimensional Hamming cube {0, 1}n), then designing efficient testers brings its own

challenges. A number of papers have studied the problem of testing properties of distri-

butions defined over the n-dimensional Hamming cube (see [ABR16, CDKS17, BC18,

BGMV20, CCK+21, CJLW21, BCY22]). With the rise of big data (translating to n

being very large), even reading all the bits in the representation of the samples might

80

be very expensive. To address this issue, recently Goldreich and Ron [GR22] studied

distribution testing in a different setting.

In their model, called the huge object model, the distribution D is supported over

the n-dimensional Hamming cube {0, 1}n, and the tester will obtain n-length Boolean

strings as samples. However, as reading the sampled strings in their entirety might be

infeasible when n is large, the authors in [GR22] considered query access to the samples

along with standard sampling access. Note that without loss of generality, the number of

samples will be upper-bounded by the number of queries. Thus, a desirable goal in this

model is to optimize the number of queries for testing a given property, with respect to

the Earth Mover Distance notion that befits this model. [GR22] studied various natural

properties like support size estimation, uniformity, identity, equality, and “grainedness” 1

in this model, providing upper and lower bounds on the sample and query complexities

for these properties.

In this chapter, we study the sample and query complexities of a very natural class

of properties, which we call the index-invariant properties, in the huge object model of

distribution testing.

Index-Invariant Distribution Properties: In general, a distribution property is a col-

lection of distributions over a fixed domain Ω 2. Often the property in question has some

other “symmetry”. For example, a property is called label-invariant if any changes in

the labels of the domain do not affect whether the distribution is in the property or not.

Many of the well studied properties, such as uniformity, entropy estimation, support

size estimation, and grainedness, are label-invariant properties. Label-invariant proper-

ties have been studied extensively in literature [BDKR05, Pan08, GR11, Val11, DKN14,

CDVV14, ADK15, VV17b, BC17, DKS18].

In some cases, the distribution property is not fully label-invariant, but still has a

certain amount of symmetry. For illustration, consider the following examples:

1A distribution D over {0, 1}n is said to be m-grained if the probability mass of any element in its
support is a multiple of 1/m, where m ∈ N.

2We use the phrases “a distribution is in the property” and “a distribution has the property” inter-
changeably to mean the same thing.

81

1. Property MONOTONE: Any distribution D over {0, 1}n satisfies the MONOTONE

property if

X ⪯ Y implies D(X) ≤ D(Y), for any X,Y ∈ {0, 1}n,

where for two vectors X,Y ∈ {0, 1}n, X ⪯ Y if xi ≤ yi holds for every i ∈ [n].

2. Property LOG-SUPER-MODULARITY: Any distribution D over {0, 1}n satisfies

the LOG-SUPER- MODULARITY if

D(U)D(V) ≤ D(U ∧V)D(U ∨V), for any U,V ∈ {0, 1}n,

where the Boolean ∧ and ∨ operations over the vectors are performed coordinate-

wise.

3. Property LOW-AFFINE-DIMENSION: A distribution D over {0, 1}n is said to sat-

isfy the LOW-AFFINE-DIMENSION property, with parameter d ∈ N, if the affine

dimension3 of the support of D is at most d.

Note that for the properties described above, a distribution satisfies the above prop-

erties even after the indices {1, . . . , n} of the vectors in {0, 1}n are permuted by a per-

mutation σ defined over [n]. To capture this structure in the properties, we introduce the

notion of index-invariant properties.

Definition 7.1 (Index-invariant property). Let us assume that D : {0, 1}n → [0, 1] is

a distribution over the n-dimensional Hamming cube {0, 1}n. For any permutation σ :

[n] → [n], let Dσ be the distribution such that D(w1, . . . , wn) = Dσ(wσ(1), . . . , wσ(n))

for all (w1, . . . , wn) ∈ {0, 1}n. A distribution property P is said to be index-invariant

when D is in P if and only if Dσ is in P , for any distribution D and any permutation σ.

Informally speaking, index-invariant properties refer to those properties that are in-

variant under the permutations of the indices {1, . . . , n}. Note that this set of properties
3A set S ⊆ Rn has affine dimension k if the dimension of the smallest affine set in Rn that contains S

is k.

82

differs from the more common notion of label-invariant properties, since the total num-

ber of possible labels, for distributions over all n-length Boolean vectors, is 2n. However,

we are considering only permutations over [n], thus in total only n! permutations instead

of 2n! permutations.

7.1.1 Our results

In this part, as already mentioned, we study the sample and query complexities (in the

huge object model) of index-invariant properties. We primarily focus on two prob-

lems. First, we study the connection between the query complexity for testing an index-

invariant property and the VC-dimension of the non-trivial support of the distributions

in the property. Secondly, we study the relationship between the query complexities

of the adaptive and non-adaptive testers for index-invariant properties, along with their

non-index-invariant counterparts.

One important and technical difference between the huge object model and the stan-

dard distribution property testing model is the use of Earth Mover Distance (EMD) for

the notion of “closeness” and “farness”, instead of the more prevalent ℓ1 or variation

distance. Thus, in the rest of the chapter, by an ε-tester for any property P of distribu-

tions over {0, 1}n, we mean an algorithm that given sample and query access (to the bits

of the sampled vectors) to a distribution distinguishes (with probability at least 2/3) the

case where the distribution D is in the property P from the case where the EMD of D

from any distribution in P is at least ε, where ε > 0 is a proximity parameter.

Testing by learning of bounded VC-dimension properties (constant

query testable properties):

We prove that a large class of distribution properties are all testable with a number of

queries independent of n, using the testing by learning paradigm [DLM+07, GOS+09,

Ser10], where the distributions are supported over the n-dimensional Hamming cube

{0, 1}n. More specifically, we prove that every distribution whose support has a bounded

VC-dimension can be efficiently learnt up to a permutation, leading to efficient testers

83

for index-invariant distribution properties that admit a global VC-dimension bound. Our

main result regarding the learning of distributions in the huge object model is the fol-

lowing theorem.

Theorem 7.2 (Informal). For any fixed constant d ∈ N, given sample and query access

to an unknown distributionD over {0, 1}n and a proximity parameter ε > 0, there exists

an algorithm that makes poly(1
ε
) queries 4, and either outputs the full description of a

distribution or FAIL satisfying the following conditions:

(i) If the support of D is of VC-dimension at most d, then with probability at least 2/3,

the algorithm outputs a full description of a distribution D′ such that D is ε-close

to D′
σ for some permutation σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such thatD′
σ is ε-far from

D for all permutations σ : [n] → [n], with probability more than 1/3. However,

if the VC-dimension of the support of D is more than d, the algorithm may output

FAIL with any probability.

In fact, our result holds for a general class of clusterable properties (stated in Theo-

rem 8.3 and Corollary 9.5) that also covers the VC-dimension case as stated in the above

theorem. The result for learning clusterable distribution is stated as follows:

Theorem 7.3 (Informal). Given sample and query access to an unknown distributionD

over {0, 1}n, there exists a non-adaptive algorithm that makes a number of queries that

is independent of n, and either reports a full description of a distribution over {0, 1}n

or reports FAIL, satisfying both of the following conditions:

(i) If D is clusterable, then with probability at least 2
3
, the algorithm outputs a full

description of a distribution D′ such that D is ε-close to D′
σ for some permutation

σ : [n] → [n].

4The degree of the polynomial in 1
ε depends on the parameter d.

84

(ii) For any D, the algorithm will not output a distribution D′ such thatD′
σ is ε-far from

D for every permutation σ : [n] → [n], with probability more than 1
3
. However,

if the distribution D is not clusterable, the algorithm may output FAIL with any

probability.

Note that Theorem 7.2 corresponds to the learnability of any distribution when the

VC-dimension of its support is bounded. As a corollary, it implies that any index-

invariant distribution property admitting a global VC-dimension bound is testable with

a constant number of queries, depending only on the proximity parameter ε and the

VC-dimension d. The corollary is stated as follows:

Corollary 7.4 (Informal). Let P be an index-invariant property such that any distri-

bution D ∈ P has VC-dimension at most d, where d is some constant. There exists an

algorithm, that has sample and query access to an unknown distribution D over {0, 1}n,

takes a proximity parameter ε > 0, and distinguishes whether D ∈ P or D is ε-far from

P with probability at least 2/3, by making only poly(1
ε
) queries.

It turns out that our tester for testing VC-dimension property takes exp(d) samples,

and performs exp(exp(d)) queries for VC-dimension d. We show that this bound is

tight, in the sense that there exists an index-invariant property with VC-dimension d

such that any tester for the property requires an exponential number of samples and a

doubly-exponential number of queries on d.

Theorem 7.5 (Informal). Let d, n ∈ N. There exists an index-invariant property Pvc

with VC-dimension at most d such that any (non-adaptive) tester for Pvc requires 2Ω(d)

samples and 22
d−O(1)

queries.

Note that from a result in [GR22], it follows that there exists an index-invariant

property P such that any distribution D ∈ P has VC-dimension d and any algorithm

that has sample access to a distribution D over {0, 1}n requires Ω(2d/d) samples 5, but

5Let P be the distribution property of having support size at most 2d. Note that the VC-dimension of
any member of P is at most d. By [GR22], for any small enough ε, an ε-test for this property requires at
least Ω

(
2d/d

)
samples.

85

Theorem 7.5 proves the lower bound on both sample and query complexities for the

same property.

Theorem 7.2 assumes that the properties are index-invariant and have bounded VC-

dimension. A natural question in this regard is whether the bounded VC-dimension and

index-invariance assumptions are necessary for a property to be constantly testable. We

answer this question in the negative. Theorem 7.5 implies that bounded VC-dimension is

necessary for a property to be constantly testable even if the property is index-invariant.

The following proposition rules out the possibility that only the bounded VC-dimension

assumption is good enough for a property to be testable by making a constant number of

queries.

Proposition 7.6 (Necessity of index-invariance (informal)). There exists a non-index-

invariant property P such that any distribution D ∈ P has VC-dimension O(1) and the

following holds. There exists a fixed ε > 0, such that distinguishing whether D ∈ P or

D is ε-far from P requires Ω(n) queries, where the distributions in the property P are

defined over the n-dimensional Hamming cube {0, 1}n.

The above proposition is formally stated and proved at the end of Subsection 10.3.

Now we study the power of adaptive queries in the huge object model. Till now, our

upper bound results are non-adaptive. However, the question how adaptivity helps in

designing efficient testers is interesting in its own right. In the standard model of dis-

tribution testing, since the model is inherently non-adaptive, there is essentially no gap

between adaptive and non-adaptive testers. However, in the related model of conditional

sampling of distributions [CFGM16, CRS15], there is a super-exponential separation

(constant vs. poly(log n)) between complexities of these two types of testers [ACK18].

In the context of graph testing in the dense graph model, it is known that the gap

between the query complexities of adaptive and non-adaptive algorithms is at most

quadratic [GT03], which has recently been proved to be tight [GW21]. However, for

bounded-degree graphs, the gap between the query complexities for some properties is

constant vs. Ω(
√
n), where n denotes the number of vertices of the graph [GR97]. For

testing of functions, there is an exponential separation between the complexity of these

86

two types of testers [RS15].

Thus, a natural question to study in this huge object model is about the gap between

the query complexities of non-adaptive and adaptive algorithms. When considering gen-

eral properties, there can be an exponential gap in the query complexities between non-

adaptive and adaptive testers as stated below.

Theorem 7.7 (Informal). For any non-index-invariant property P , there is at most an

exponential gap between the query complexities of adaptive and non-adaptive testers.

Moreover, we show that this gap is also tight as follows:

Theorem 7.8 (Informal). There exists a non-index-invariant property PPal that can be

ε-tested by performing O(log n) queries adaptively for any ε ∈ (0, 1). However, there

exists an ε ∈ (0, 1) for which Ω(
√
n) non-adaptive queries are necessary to ε-test PPal.

However, for index-invariant properties, this gap can be at most quadratic, as stated

in the following theorem.

Theorem 7.9 (Informal). For any index-invariant property, there is at most a quadratic

gap between the query complexities of adaptive and non-adaptive testers.

We also prove that the above gap is almost tight, in the sense that there exists an

index-invariant property which can be ε-tested using Õ(n) adaptive queries, while Ω̃(n2)

non-adaptive queries are required to ε-test it.

Theorem 7.10 (Informal). There exists an index-invariant property PGap that can be

ε-tested adaptively using Õ(n) queries for any ε ∈ (0, 1), while there exists an ε ∈ (0, 1)

for which Ω̃(n2) queries are necessary for any non-adaptive ε-tester.

Using EMD as the distance metric in conjunction with the notion of

index-invariance:

Recall that here we will use the Earth Mover Distance (EMD) as the distance metric

defining ε-testing, in contrast to the stronger variation distance, the commonly studied

87

distance measure in distribution testing literature. As discussed in [GR22], this is essen-

tial when we restrict ourselves to querying the samples obtained from the distribution.

To illustrate this, consider two (say very sparse) distributions D1 and D2 whose supports

are disjoint, yet admit a bijection such that every string from Supp(D1) is mapped to

a string from Supp(D2) that is very close to it in terms of the Hamming distance. The

variation distance between D1 and D2 would be large, and yet we would not be able to

distinguish the two distributions without querying some samples in their entirety, that is,

without using Θ(n) queries per sample. The EMD metric is the one incorporating the

Hamming distance between strings (which comes to play when we are not performing

many queries to the samples) into the notion of variation distance.

Another question involves what general statements can be said about testers in this

model. If we do not restrict ourselves to properties satisfying any sort of invariance, then

very little can be proved on testers in general, just as is the case with general string prop-

erty testing under the Hamming distance (in fact, string testing can be reduced to testing

in the huge object model 6). On the other hand, if we were to restrict ourselves to label-

invariant properties only, it would appear that we lose much of the rich structure offered

by the ability to define distributions over strings. We believe that index-invariance is

a natural middle-of-the-road restriction for the formulation of general statements about

testing in the huge object model.

Organization of the part

We present the related definitions in this part of the thesis in the preliminaries section

(Section 7.2). We present the results about learning and testing clusterable distributions

in Chapter 8. After that, in Chapter 9, we move on to present algorithms for testing

properties with bounded VC-dimension as well as the lower bound results for bounded

VC-dimension testing.

Then in Chapter 10, we show the tight exponential separation between the query

complexities of adaptive and non-adaptive algorithms for non-index-invariant (general)
6We will use this reduction for proving exponential separation between adaptive and non-adaptive

testers for non-index-invariant properties (see Subsection 10.3).

88

properties. Finally in Chapter 11, we prove that for index-invariant properties, there is an

almost tight quadratic gap between the query complexities of adaptive and non-adaptive

testers, ignoring poly-logarithmic factors.

7.2 Preliminaries

We will use the following observation from [ABEF17] which roughly states that given

a sequence of non-negative real numbers that sum up to an integer n, there is a proce-

dure that by choosing the floor or ceiling of these real numbers, one can obtain another

sequence of integers that sum up to n. This observation will be used in our proof.

Observation 7.11 (Restatement of [ABEF17, Lemma 4.8]). Let T, n ∈ N. Given T

non-negative real numbers α1, . . . , αT such that
T∑
i=1

αi = n, there exists a procedure

of choosing T integers β1, . . . , βT such that βi ∈ {⌊αi⌋, ⌈αi⌉} for every i ∈ [T] and
T∑
i=1

βi = n.

7.2.1 Distributions and properties with bounded VC-dimension

Now we move on to define a class of properties using the notion of the VC-dimension

of the support of a distribution. Before proceeding to define the class of properties, let

us recall the notions of shattering and VC-dimension.

Let V be a collection of vectors from {0, 1}n. For a sequence of indices I =

(i1, . . . , ik), with 1 ≤ ij ≤ n, let V |I denote the set of projections of V onto I , that is,

V |I= {(vi1 , . . . , vik) : (v1, . . . , vn) ∈ V }.

If V |I= {0, 1}k, then it is said that V shatters the index sequence I . The VC-dimension

of V is the size of the largest index sequence I that is shattered by V . VC-dimension was

introduced by Vapnik and Chervonenkis [VC15] in the context of learning theory, and

has found numerous applications in other areas like approximation algorithms, discrete

and computational geometry, discrepancy theory, see [Mat99, PA95, Mat02, Cha00].

89

We now give a natural extension of VC-dimension to distributions.

Definition 7.12 (Distribution with VC-dimension d). Let d, n ∈ N and D be a distri-

bution over {0, 1}n. We say that D has VC-dimension at most d if the support of D has

VC-dimension at most d. A distribution D is said to be β-close to VC-dimension d if

there exists a distribution D0 with VC-dimension d such that dEM(D,D0) ≤ β, where

β ∈ (0, 1).

Analogously, we can also define the notion of a (β, d)-VC-dimension property.

Definition 7.13 ((β, d)-VC-dimension property). Let d, n ∈ N and β ∈ (0, 1). A prop-

erty P over {0, 1}n is said to be a (β, d)-VC-dimension property if for any distribution

D ∈ P , D is β-close to VC-dimension d. When β = 0, we say that the VC-dimension

of P is d. We also say that a (0, d)-VC-dimension property is a bounded VC-dimension

property.

We now give examples of bounded VC-dimension properties.

Property CHAIN: For any distribution D ∈ CHAIN, the support of D can be written

as a sequence X1, . . . ,Xt ∈ {0, 1}n such that any two vectors with non-zero

probability are comparable, that is,

D(Xi) > 0 and D(Xj) > 0 implies either Xi ⪯ Xj or Xj ⪯ Xi,∀ i, j ∈ [t].

Property LOW-AFFINE-DIMENSION: A distribution D over {0, 1}n is said to satisfy

the LOW- AFFINE-DIMENSION property, with parameter d ∈ N, if the affine di-

mension7 of the support of D is at most d.

Observe that the VC-dimension of CHAIN is 1, and the VC-dimension of LOW-AFFINE-

DIMENSION is d. 8 Moreover, note that both CHAIN and LOW-AFFINE-DIMENSION are

examples of index-invariant properties.
7A set S ⊆ Rn has affine dimension k if the dimension of the smallest affine set in Rn that contains S

is k.
8In fact, the property LOW-AFFINE-DIMENSION is a sub-property of “support size is at most 2d”,

which has VC-dimension d.

90

7.2.2 Yao’s lemma for the huge object model

Our lower bound proofs crucially use Yao’s lemma [Yao77]. Informally, it states that

for any two distributions D1 and D2 such that D1 satisfies some property, and D2 is far

from the property, if the variation distance between D1 and D2 with respect to q queries

is small, then D1 and D2 remain indistinguishable with respect to q queries. In order to

formally state the lemma, we need the following definitions.

Definition 7.14 (Restriction). Let D be a distribution over a collection of functions

f : D → {0, 1}, and Q be a subset of the domain D of D. The restriction D |Q of D to

Q is the distribution over functions of the form g : Q → {0, 1}, which is obtained from

choosing a random function f : D → {0, 1} according to the distribution D, and then

setting g = f |Q, where f |Q denotes the restriction of f to Q.

The following is the version of Yao’s Lemma which is used for non-adaptive testers

in the classical setting. The crucial observation that makes this lemma work is the ob-

servation that the deterministic version of a non-adaptive tester in the classical setting is

characterized by a set of possible responses to a fixed query set Q ⊂ D.

Lemma 7.15 (Yao’s lemma for non-adaptive testers, see [Fis04]). Let ε ∈ (0, 1) be a

parameter and q ∈ N be an integer. Suppose there exists a distribution Dyes on inputs

over D that satisfy a given property P , and a distribution Dno on inputs that are ε-far

from satisfying the property. Moreover, assume that for any set of queries Q ⊂ D of

size q, the variation distance between Dyes |Q and Dno |Q is less than 1
3
. Then it is not

possible for a non-adaptive tester performing q (or less) queries to ε-test P .

In this chapter, we will prove lower bounds against non-adaptive distribution testers

in the huge object model. Hence, Dyes and Dno, rather than being distributions over

functions from D to {0, 1}, are distributions over distributions over {0, 1}n (since the

basic input object is a distribution over {0, 1}n).

The deterministic version of a non-adaptive tester in this setting is characterized by a

set of possible responses to a sequence of queries J = (J1, . . . , Js) to the samples. We

call s the length of J , and call q =
∑s

i=1 Ji, the size of J .

91

Given a distribution D over distributions over {0, 1}n, we denote by D |J the distri-

bution over {0, 1}q that results from first picking a distribution D̂ over {0, 1}n according

to D, then taking s independent samples X1, . . . ,Xs according to D̂, and finally con-

structing the sequence X1 |J1 , . . . ,Xs |Js . The huge object model version of Yao’s

lemma for non-adaptive testers is the following one.

Lemma 7.16 (Yao’s lemma for non-adaptive testers in the huge object model). Let

ε ∈ (0, 1) be a parameter and q, s ∈ N be two integers. Suppose there exists a dis-

tribution Dyes over distributions over {0, 1}n that satisfy a given property P , and a

distribution Dno over distributions over {0, 1}n that are ε-far from satisfying the prop-

erty P . Moreover, assume that for any query sequence J of length s and size q, the

variation distance between Dyes |J and Dno |J is less than 1/3. Then it is not possible

for a non-adaptive tester that takes at most s samples and performs at most q queries to

ε-test P .

7.3 Technical overview of our results

In this section, we provide a brief overview of our results. We start by explaining our

upper bounds. In our main upper bound result, we prove a learning result for a general

class of distributions that covers the case of learning distributions with bounded VC-

dimension. We say that a distribution D is (ζ, δ, r)-clusterable if we can partition the

n-dimensional Hamming cube {0, 1}n into r + 1 parts C0, . . . , Cr, such that D(C0) ≤ ζ

and the diameter of Ci is at most δ for every i ∈ [r] (see Definition 8.2). The main upper

bound result (Theorem 8.3), that leads to Theorem 7.2, is the design of an algorithm for

learning a (ζ, δ, r)-clusterable distribution up to permutations. That is, given sample and

query access to a (ζ, δ, r)-clusterable distribution, we want to output a distribution D′

such that the Earth Mover Distance between D and D′
σ is small for some permutation

σ : [n] → [n], by performing number of queries independent of n.

92

7.3.1 Overview of learning clusterable distributions

The algorithm for learning (ζ, δ, r)-clusterable distributions is described in Algorithm 8.1

in Section 8.2 as TEST-AND-LEARN. The algorithm starts by taking t1 = O(r
ζ
log r

ζ
)

samples from the input distribution D. Let us denote them as S = {X1, . . . ,Xt1}. If D

is (ζ, δ, r)-clusterable, consider its clusters C0, . . . , Cr as described above. We say that a

cluster Ci is large if the probability mass of Ci is more than ζ
10r

, that is, D(Ci) ≥ ζ
10r

.

As the size of S is sufficiently large, we know that S intersects every large cluster with

probability at least 99/100 (see Lemma 8.6). In order to estimate the masses of Ci, for

each i ∈ [t1], we take another set of random samples T = {Y1, . . . ,Yt2} from D where

t2 = O(
t21
ζ2
log t1), and assign each of the vectors in T to some vector in S depending

on their Hamming distance. However, since computing the exact distances between the

vectors in S and T requires Ω(n) queries, we use random sampling.

We take a random set of indices R ⊂ [n] of suitable size, and project the vectors

in S and T on R to estimate their pairwise distances up to an additive factor of δ. R

not only preserves the distances between all pairs of vectors between S and T , but also

the distances of a large fraction of the vectors in {0, 1}n from all the vectors in S (see

Lemma 8.7). Based on the estimated distances, we assign each vector of T ∈ T to a

vector in S ∈ S such that the projected distance between them is at most 2δ. If there

exists no such vector in S corresponding to a vector T ∈ T , then the vector T remains

unassigned. Let us denote the fraction of vectors in T that are assigned to Xi as wi, for

every i ∈ [t1]. Let w0 be the fraction of vectors in T that are not assigned to any vector

in S. If D is (ζ, δ, r)-clusterable, then w0 ≤ 3ζ holds with high probability. These wi’s

preserve the weights of some approximate clustering (which may not be the original one

from which we started, but is close to it in some sense), see Lemma 8.8 for the details.

Consider a distributionD∗ supported over S such thatD(Xi) ≥ wi for every i ∈ [t1].

Using a number of technical lemmas, we prove that the EMD between D and D∗ is

small. Note that we still can not report D∗ as the output distribution, since to do so, we

need to know the exact vectors in S , which requires Ω(n) queries. To bypass this barrier,

we use the provision that we are allowed to output any permutation of the distribution.

93

More specifically, we construct vectors S1, . . . ,St1 ∈ {0, 1}n such that dH(Xi, σ(Si))

is small for every i ∈ [t1] and some permutation σ : [n] → [n]. This is possible using

the projections of the vectors in S to the random set of indices R for estimating the

number of indices of each “type” with respect to S (see Lemma 8.12). Finally, we

output the distribution D′ supported over the newly constructed vectors S1, . . . ,St1 such

that D′(Si) = D∗(Xi) for every i ∈ [t1]. The guarantee on the Hamming distance

between Xi and σ(Si) provides a bound on the EMD between D′
σ and D∗, and with the

above mentioned EMD bound between D∗ and D, we are done. To keep the discussion

simple, we will not explain here the idea of the proof of Theorem 7.2(ii), which relies

on a sort of converse to the above method of approximating cluster weights.

7.3.2 Overview of learning index-invariant bounded VC-dimension

properties

Now we discuss how learning (ζ, δ, r)-clusterable distribution implies Theorem 7.2. Let

us define a distribution to be (α, r)-clusterable if it is (0, α, r)-clusterable. The learn-

ing of (ζ, δ, r)-clusterable distribution implies a learning result for any distribution that

is close to being (α, r)-clusterable (see Corollary 9.5) due to a technical lemma (see

Lemma 9.6). If the support of a distribution has bounded VC-dimension, using standard

results in VC theory, we can show that it is also (α, r)-clusterable, where r is a function

of α and d. Thus the learning result of (α, r)-clusterable distributions implies a result

allowing the learning of distributions with bounded VC-dimension.

7.3.3 Overview of lower bound for index-invariant bounded VC-

dimension properties

To prove Theorem 7.5, let us define the property Pvc. Let k = 2d, ℓ = 22
d−10 and

ℓ′ = 22
d−20 . Consider a matrix A of dimension k × ℓ whose column vectors are 1/3-far

from each other. Let V1, . . . ,Vk ∈ {0, 1}n be k vectors that are formed by blowing up

the row vectors of A in {0, 1}ℓ to {0, 1}n by repeating each bit of the vectors n/ℓ times,

94

and DA be the uniform distribution over the support {V1, . . . ,Vk}. Our property Pvc is

the collection of all distribution that can be obtained from DA by permuting the indices.

Let Dyes be the distribution obtained from DA by randomly permuting the indices. Note

that Dyes ∈ Pvc. As the support size of any distribution in Pvc is at most 2d, the VC-

dimension of Pvc is at most d.

To prove the lower bound on the query complexity, let us define the distribution Dno.

Let us take ℓ′ columns of A uniformly at random to form a matrixB of dimension k×ℓ′,
and W1, . . . ,Wk ∈ {0, 1}n be k vectors that are formed by blowing up the row vectors

of B in {0, 1}ℓ′ to {0, 1}n by repeating each bit of the vectors n/ℓ′ times. Let DB be the

uniform distribution over the support {W′
1, . . . ,W

′
k}. Dno is the distribution obtained

from DB by randomly permuting the indices. We show that the Earth Mover Distance

between Dno and any distribution in Pvc is at least 1/8 (see Lemma 9.17). Observe that

Dyes divides the index set [n] into ℓ equivalence classes and Dno divides the index set

into ℓ′ equivalence classes. The query complexity lower bound follows from the fact that,

unless we query 22
d−O(1) indices, we do not hit two indices from the same equivalence

class, irrespective of whether the distribution is Dyes or Dno (see Lemma 9.22).

To prove the lower bound on the sample complexity, let us define another distribu-

tion D′
no. Let us take k′ = 2d−20 rows of A uniformly at random to form a matrix B′ of

dimension k′ × ℓ. Let W′
1, . . . ,W

′
k′ ∈ {0, 1}n be k′ vectors that are formed by blow-

ing up the row vectors of B′ in {0, 1}ℓ to {0, 1}n by repeating each bit of the vectors

n/ℓ times. Let DB′ be the uniform distribution with support {W′
1, . . . ,W

′
k′}. D′

no is

the distribution obtained from DB′ by randomly permuting the indices. We show that

the Earth Mover Distance between D′
no and any distribution in Pvc is at least 1/8 (see

Lemma 9.23). The sample complexity lower bound follows from the fact that, unless we

take 2Ω(d) samples, all the samples are distinct with probability 1− o(1), irrespective of

whether the distribution is Dyes or Dno (see Lemma 9.25).

95

7.3.4 Overview of adaptive vs. non-adaptive testers for general prop-

erties

Now we explore the relationship between adaptive and non-adaptive testers in the huge

object model. It turns out that there is a tight (easy to prove) exponential separation

between the query complexities of adaptive and non-adaptive testers for non-index-

invariant properties. Roughly, the simulation of an adaptive algorithm by a non-adaptive

one follows from unrolling the decision tree of the adaptive algorithm. This is formally

proved in Lemma 10.4. Moreover, we show that this separation is tight. For this pur-

pose, we consider a property of strings PPal, which exhibits an exponential gap between

adaptive and non-adaptive testing in the string testing model. We show how to transform

a string property P to a distribution property 1P such that the query bounds on adaptive

and non-adaptive testing carry over. Thus, the separation result between adaptive and

non-adaptive algorithms for PPal carries over to 1PPal (see Theorem 10.8). This tech-

nique, employed for a maximally hard to test string property, is also used for proving

Proposition 7.6.

7.3.5 Overview of adaptive vs. non-adaptive testers for index invari-

ant properties

In contrast to the non-index-invariant properties, we prove that there can be at most a

quadratic gap between the query complexities of adaptive and non-adaptive algorithms

for testing index-invariant properties. The proof is very close in spirit to the proof of

the quadratic relation between adaptive and non-adaptive testing of graphs in the dense

model [GT03]. Given an adaptive algorithm A with sample complexity s and query

complexity q, the main idea is to first simulate a semi-adaptive algorithm A′ that queries

q indices from each of the s samples and decides accordingly. Note that the sample

complexity of A′ remains s, whereas the query complexity becomes qs. Once we have

the semi-adaptive algorithm A′, we now simulate a non-adaptive algorithm A′′. As

the property we are testing is index-invariant, we can first apply a uniformly random

96

permutation σ over [n], and then run the semi-adaptive algorithm A′ over Dσ instead

of D, where D is the input distribution to be tested. This makes the tester completely

non-adaptive. Its correctness follows from the index-invariance of the property we are

testing.

Quadratic separation between adaptive and non-adaptive testers: Before proceed-

ing to present an overview of our quadratic separation result, let us first recall the sup-

port estimation result of Valiant and Valiant [VV10], which will be crucially used in our

proof. Roughly speaking, the result states that in the standard sampling model, given a

distribution D over [2n], in order to distinguish whether D has support size at most n,

or D is far from all distributions with support size at least n, Θ(n/ log n) samples are

required.

Theorem 7.17 (Support Estimation bound, Corollary 9 of Valiant-Valiant [VV10]).

Given a distribution D over [2n], that can be accessed via independent samples and a

proximity parameter ε ∈ (0, 1/8), in order to distinguish, with probability at least 3
4
,

whether D has support size at most n or D has at least (1 + ε)n elements with non-

negligible weights in its support, Θ(n
logn

) samples from D are necessary and sufficient.

To construct the index-invariant property that provides a quadratic separation be-

tween the query complexities of adaptive and non-adaptive testers, we will use the above

result. Let DSupp
yes and DSupp

no be the pair of hard distributions corresponding to the sup-

port estimation lower bound, from which we define our pair Dyes and Dno of hard dis-

tributions for our property. We will construct a huge object distribution property over a

slightly larger domain [N] with N = O(n log n), where we will encode the elements of

the support of the distributions DSupp
yes and DSupp

no . Additionally, we will include a set of

“ordering” vectors to both Dyes and Dno that encode a permutation σ : [n] → [n]. Our

property will be defined as a permutation of a non-index-invariant property along with

an encoding of the permutation itself.

For the non-index-invariant property, we use an encoding of the elements of {0, 1}n

that can be decoded only if a sample from a family of special small sets is read in

97

its entirety. For constructing hard distributions, we consider (encodings of) 2n special

elements of {0, 1}n, and use over them the hard distributions corresponding to Theo-

rem 7.17.

The encoding vectors of Dyes and Dno are designed in such a fashion, that if we can

know the index ordering (and thus the identity of the above mentioned small sets), the

support size estimation problem becomes relatively easy. However, without knowing the

ordering vectors, estimating the size of the support becomes harder. More specifically,

if we already know the index ordering, then support size estimation can be done using

poly(log n) queries from each sample, over the Õ(n) samples that are sufficient for

solving the support estimation problem.

On the other hand, an important feature of our property ensures that unless some

of the special sets are successfully hit while querying a sampled vector, which is a low

probability event without prior knowledge of the encoded index ordering unless we per-

form Ω̃(n) queries to that vector, then the queries do not provide any useful information

about the sampled vector to the tester. This is achieved by the encoding procedure of the

vectors, which is motivated from [BFLR20]. However, it is not deployed here the same

way as [BFLR20], since the surrounding proofs here are quite different (as well as the

end-goal).

Since an adaptive algorithm can first learn the ordering vectors by performing Õ(n)

queries (as it takes poly(log n) samples to hit all the order encoding vectors), the adaptive

tester requires Õ(n) queries in total. However, for non-adaptive testers, since we have to

perform all queries simultaneously, the tester would have to make Ω̃(n) queries to each

sampled vector to be able to utilize the support estimation procedure (since as explained

above, fewer queries would give no useful information about the sample to the tester).

As a result, Ω̃(n2) non-adaptive queries are required following the lower bound result in

Theorem 7.17.

Another technical challenge is to construct the property in such a fashion that allows

the crafting of “wrong distributions” which remain far from the property, even if we

permute the support vectors. This is due to the fact that just replacing the vectors defining

the index ordering does not require a change of large Earth Mover Distance. Thus we

98

need the distributions to remain far from the property even if we reorder them. We ensure

this by designing the hard distributions such that the support vectors of the distributions

are far from each other. This in turn allows us to prove that the distribution Dno will

remain far from the property, as the size of its support is too large. The arguments

involving only the mutual Hamming distance between the vectors in the support and

the size of the support are invariant with respect to the index ordering, and are thus not

affected by the possibility of “cheaply” changing the index ordering vectors.

99

Chapter 8

Learning Clusterable Distributions

8.1 Introduction

In this chapter, we prove a learning result for clusterable distributions in the huge object

model. The result is stated as follows:

Theorem 8.1 (Restatement of Theorem 1.6). Given sample and query access to an

unknown distribution D over {0, 1}n, there exists a non-adaptive algorithm that makes

a number of queries that is independent of n, and either reports a full description of a

distribution over {0, 1}n or reports FAIL, satisfying both of the following conditions:

(i) If D is clusterable, then with probability at least 2
3
, the algorithm outputs a full

description of a distribution D′ such that D is ε-close to D′
σ for some permutation

σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such thatD′
σ is ε-far from

D for every permutation σ : [n] → [n], with probability more than 1
3
. However,

if the distribution D is not clusterable, the algorithm may output FAIL with any

probability.

101

8.2 Learning clusterable distributions

In this section, we define the notion of a (ζ, δ, r)-clusterable distribution formally (see

Definition 8.2), and prove that such distributions can be learnt (up to permutation) ef-

ficiently in Theorem 8.3. Intuitively, a distribution D defined over {0, 1}n is called

(ζ, δ, r)-clusterable if we can remove a subset of the support vectors of D whose proba-

bility mass is at most ζ , and we can partition the remaining vectors in the support of D

into at most r parts, each with diameter at most δ. Theorem 8.3 states that, given a distri-

butionD over {0, 1}n, we can learn it (up to permutation) if it is (ζ, δ, r)-clusterable, and

otherwise, we either report FAIL or learn the input distribution (up to permutation). Note

that learning the distribution up to permutation is sufficient to provide testing algorithms

for index-invariant properties with bounded VC-dimension, which will be discussed in

Section 9.2.

Definition 8.2 ((ζ, δ, r)-clusterable & (α, r)-clusterable distribution). (i) Let ζ, δ ∈
(0, 1) and r, n ∈ N. A distribution D over {0, 1}n is called (ζ, δ, r)-clusterable if

there exists a partition C0, . . . , Cs of {0, 1}n such that D(C0) ≤ ζ , s ≤ r, and for

every 1 ≤ i ≤ s, dH(U,V) ≤ δ for any U,V ∈ Ci.

(ii) For α ∈ (0, 1) and r ∈ N, a distribution D over {0, 1}n is called (α, r)-clusterable

if it is (0, α, r)-clusterable. For β ∈ (0, 1), a distribution D is called β-close to

being (α, r)-clusterable if there exists an (α, r)-clusterable distribution D0 such

that dEM(D,D0) ≤ β.

Theorem 8.3 (Theorem 8.1 formalized). There exists a non-adaptive algorithm TEST-

AND-LEARN, as described in Algorithm 8.1, that has sample and query access to an

unknown distribution D over {0, 1}n for n ∈ N, takes parameters ζ, δ, r as inputs such

that, ζ, δ ∈ (0, 1) and ε = 17(δ + ζ) < 1 1 and r ∈ N, makes a number of queries that

only depends on ζ, δ and r, and either reports a full description of a distribution over

{0, 1}n or reports FAIL, satisfying both of the following conditions:

1The constant 17 is arbitrary, and can be improved to a smaller constant. We did not try to optimize.

102

(i) IfD (ζ, δ, r)-clusterable, then with probability at least 2
3
, the algorithm outputs a full

description of a distribution D′ over {0, 1}n such that dEM(D,D′
σ) ≤ ε for some

permutation σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that dEM(D,D′
σ) >

ε for every permutation σ : [n] → [n], with probability more than 1
3
. However, if

the distribution D is not (ζ, δ, r)-clusterable, the algorithm may output FAIL with

any probability.

The algorithm for learning (ζ, δ, r)-clusterable distributions is described in Algo-

rithm 8.1 as TEST-AND-LEARN. It calls a subroutine APPROX-CENTERS, as described

in Algorithm 8.2.

Remark 8.1. The sample complexity of TEST-AND-LEARN is polynomial in r, and the

query complexity of TEST-AND-LEARN is exponential in r. Moreover, for the case of

query complexity, the exponential dependency in r is required. In particular, in Sec-

tion 9.3, we construct a distribution with support size r that requires 2Ω(r) queries to test

for the property of being a permutation thereof.

To prove the correctness of TEST-AND-LEARN (which we will do in Section 8.2.1

and Section 8.2.2), we will need the notion of an (η, ξ)-clustered distribution around a

sequence of vectors S (see Definition 8.4), and an associated observation (see Observa-

tion 8.5).

Definition 8.4 ((η, ξ)-clustered distribution around a sequence). Let η, ξ ∈ (0, 1) and

n ∈ N. Also, for X ∈ {0, 1}n, let NGBη(X) denote the set of vectors in {0, 1}n that are

at a distance of at most η from X. Let S = {S1, . . . ,St} be a sequence of t vectors in

{0, 1}n and define NGBη(S) =
⋃
S∈S

NGBη(S). Then:

(i) A distributionD over {0, 1}n is called (η, ξ)-clustered around S with weights w0, . . .

wt−1, wt ∈ [0, 1] satisfying
t∑
i=0

wi = 1 and w0 ≤ ξ, if there exist t pairwise disjoint

sets Ci, such that Ci ⊆ NGBη(Si) and D(Ci) ≥ wi for every i ∈ [t].

103

Algorithm 8.1: TEST-AND-LEARN

Input: Sample and Query access to a distribution D over {0, 1}n, and
parameters ζ, δ, r with ζ, δ ∈ (0, 1) and r ∈ N.

Output: Either reports a full description of a distribution over {0, 1}n or FAIL,
satisfying (i) and (ii) as stated in Theorem 8.3.

(i) Take t1 = O(r
ζ
log r

ζ
) samples S = X1, . . . ,Xt1 from D.

(ii) Take t2 = O(
t21
ζ2
log t1) samples T = Y1, . . . ,Yt2 from D.

(iii) Pick a random subset R ⊂ [n] with |R| = O(4
t1

δ2ζ
log r

δζ
). Query the indices

corresponding to R in each sample of S, to obtain the sequence of vectors
Sx = x1, . . . ,xt1 , where xi = Xi |R for each i ∈ [t1]. Now query the indices
corresponding to R in each sample in T , to obtain the sequence of vectors
Ty = y1, . . . ,yt2 , where yj = Yj |R for every j ∈ [t2].

(iv) For each j ∈ {1, . . . , t2}, if there exists an i ∈ [t1] such that dH(yj,xi) ≤ 2δ,
assign yj to xi, breaking ties by assigning yj to the vector in Sx with the
minimum index.

If for some yj no suitable xi is found, then yj remains unassigned.

(v) If the total number of unassigned vectors in Ty is more than 3ζt2, output FAIL.

(vi) For every i ∈ {1, . . . , t1}, the weight of xi is defined as

wi = w(xi) =
Number of vectors in Ty assigned to xi

t2
.

(vii) Use APPROX-CENTERS (Algorithm 8.2) with R and x1, . . . ,xt1 to obtain
S1, . . . ,St1 ∈ {0, 1}n (as stated in Lemma 8.17).

(viii) Construct and return any distribution D′ over {0, 1}n such that

• For each i = 1, . . . , t1, D′(Si) ≥ w(xi).

•
t1∑
i=1

D′(Si) = 1.

• D′(S) = 0 for every S ∈ {0, 1}n \ {S1, . . . ,St1}.

104

Algorithm 8.2: APPROX-CENTERS

Input: A random subset R ⊆ [n] with |R| = O(4
t1

δ2ζ
log r

δζ
), and a sequence of

vectors x1, . . . ,xt1 ∈ {0, 1}|R| drawn from the distribution D |R.
Output: Sequence of vectors S1, . . . ,St1 such that with probability at least

99/100 over the random choice of R, for every i ∈ [t1],
dH(σ(Xi),Si) ≤ δ/10, where σ : [n] → [n] is a permutation.

(i) For each i ∈ R, construct the vector Ci ∈ {0, 1}t1 such that Ci(j) = xj(i).

(ii) For any J ∈ {0, 1}t1 , determine γJ = |{i∈R|Ci=J}|
|R| .

(iii) Apply Observation 7.11 to obtain an approximation ΓJ∀J ∈ {0, 1}t1 , such that
ΓJ ∈ {⌊γJ · n⌋, ⌈γJ · n⌉} and

∑
J∈{0,1}t1

ΓJ = n.

(v) Construct a matrix A of dimension t1 × n by putting ΓJ many J column vectors,
for each J ∈ {0, 1}t1 .

(vi) Return the row vectors of A as S1, . . . ,St1 .

(ii) A distribution D over {0, 1}n is called (η, ξ)-clustered around S if D is (η, ξ)-

clustered around S with weights w0, . . . , wt ∈ [0, 1], for some w0, . . . , wt such

that
t∑
i=0

wi = 1 and w0 ≤ ξ.

Observation 8.5. Let D be any distribution over {0, 1}n and S be a sequence of vectors

in {0, 1}n such that NGBη(S) ≥ 1− ξ. Then D is (η, ξ)-clustered around S.

Proof. Let us partition NGBη(S) into t parts such that Ci = NGBη(Xi)\
i−1⋃
j=1

NGBη(Xj)

for every i ∈ [t]. For every i ∈ [t], note that Ci ⊆ NGBη(Xi), and let us define

wi = D(Ci). Also, set w0 = 1−
t∑
i=1

wi, and observe that w0 = 1− NGBη(S) ≤ ξ. This

shows thatD is (η, ξ)-clustered around S with weightsw0, . . . , wt, and we are done.

The correctness proof of TEST-AND-LEARN is in Subsection 8.2.2. Leading to it,

in Subsection 8.2.1, we consider some important lemmas and define a set of events.

These lemmas, and the events whose probability they bound from below, provide the

infrastructure for the proof of TEST-AND-LEARN in Subsection 8.2.2.

105

8.2.1 Preliminaries to prove the correctness of TEST-AND-LEARN

The central goal of this section is to define an event GOOD and show that P (GOOD) ≥
2/3. The event GOOD is defined in such a fashion that, if it holds, then the algorithm

TEST-AND-LEARN produces the desired output as stated in Theorem 8.3. Note that

this bounds the error probability of TEST-AND-LEARN. The event GOOD is formally

defined in Definition 8.13. To define the event GOOD, we first consider four lemmas:

Lemma 8.6, Lemma 8.7, Lemma 8.8 and Lemma 8.12.

We will first state a lemma (Lemma 8.6) which says that, with high probability, the

first set of samples S (obtained in Step (i) of TEST-AND-LEARN) intersects all the large

clusters when D is (ζ, δ, r)-clusterable.

Lemma 8.6 (Hitting large clusters). Assume that the input distribution D over {0, 1}n

is (ζ, δ, r)-clusterable with the clusters C1, . . . , Cr. The cluster Ci is said to be large if

D(Ci) ≥ ζ
10r

. With probability at least 99
100

, the sequence of vectors S = {X1, . . .Xt1}
(found in Step (i) of TEST-AND-LEARN) contains at least one vector from every large

cluster.

Proof. Consider any large cluster Ci. As D(Ci) ≥ ζ
10r

, the probability that no vector in

S belongs to Ci is at most (1 − ζ
10r

)|S| ≤ 99
100r

. This follows for a suitable choice of the

hidden coefficient since |S| = t1 = O
(
r
ζ
log r

ζ

)
. Since there are at most r large clusters,

using the union bound, the lemma follows.

Recall that TEST-AND-LEARN obtains a second set of sample vectors T in Step (ii),

takes a random set of indices R ⊂ [n] without replacement in Step (iii), and tries to

assign each vector in T to some vector in S, based on the distance between the vectors

when projected to the indices of R. Intuitively, the step of assigning vectors performs

as desired if R preserves the distances between the vectors in S and T . For technical

reasons, we also need R to preserve most (but not all) distances between S and the

entirety of {0, 1}n. The following lemma says that indeed R achieves this with high

probability.

106

Lemma 8.7 (Distance preservation). Let us consider the input distribution D over

{0, 1}n, and S = {X1, . . . ,Xt1} and R ⊂ [n] drawn in Step (i) and (iii) of TEST-AND-

LEARN. R is said to be distance preserving if the following conditions hold:

(i) |dH(S,T)− dH(S |R,T |R)| ≤ δ for every S ∈ S and T ∈ T .

(ii) Let W ⊆ {0, 1}n be such that, for every W ∈ W , |dH(W,S)− dH(W |R,S |R)| ≤
δ. Then D(W) ≥ 1− ζ

t1
.

The set R chosen in Step (iii) of TEST-AND-LEARN is distance preserving with proba-

bility at least 99/100.

Proof. For (i), consider a particular S ∈ S and T ∈ T . Applying Observation 2.16 with

K = R, U = S and V = T, the probability that |dH(S,T)− dH(S |R,T |R)| ≤ δ is at

least 1 − ζ
200t21t2

. Applying the union bound over all possible choices over (S,T) pairs,

we have Part (i) with probability at least 199/200.

To prove (ii), let us consider an arbitrary vector V ∈ {0, 1}n. Similarly to (i),

we know that |dH(V,S)− dH(V |R,S |R)| ≤ δ holds with probability at least 1 −
ζ

200t21t2
. Applying the union bound, we can say that the same holds over all S ∈ S with

probability at least 1− ζ
200t1

. So, the expected value of D({0, 1}n \W) is at most ζ
200t1

.

By Markov’s inequality, the probability that Part (ii) holds, that is, D({0, 1}n \W) ≤ ζ
t1

is at least 199/200. Putting everything together, we have the result.

By Lemma 8.6, we know that S intersects with all large clusters with high proba-

bility, and we are trying to assign the vectors in T to some vectors in S based on their

projected distances on the indices of R. To learn the input distribution, we want the

second set of sample vectors T to preserve the mass of all the large clusters, and it is

enough for us to approximate it, as well as be able to detect the case where approxi-

mation is impossible and we should output FAIL. The following lemma takes care of

this.

Lemma 8.8 (Weight representation). Let us consider the input distribution D over

{0, 1}n to TEST-AND-LEARN, S = {X1, . . . ,Xt1} in Step (i), T = {Y1, . . . ,Yt2} in

107

Step (ii), and consider fixed t1 pairwise disjoint subsets C = {C1, . . . , Ct1} of {0, 1}n. T
is said to be weight preserving for S and C if

(i) |T ∩ NGBδ(S)|
|T | ≥ D(NGBδ(S))− ζ .

(ii) |T ∩ NGB3δ(S)|
|T | ≤ D(NGB3δ(S)) + ζ .

(iii) for every i ∈ [t1],
|T ∩ Ci|

|T | ≤ D(Ci) + ζ
t1

.

Then with probability at least 99/100, T is weight reserving for S and C.

Proof. To prove (i), let Zj be the indicator random variable such that Zj = 1 if and

only if Yj is in NGBδ(S), where j ∈ [t2]. Observe that |T ∩NGBδ(S)| =
t2∑
j=1

Zj . As

P(Zj = 1) = D(NGBδ(S)), the expected value of |T ∩NGBδ(S)|
|T | is also D(NGBδ(S)).

Applying Hoeffding’s inequality (see Lemma 2.14), we conclude that (i) holds with

probability at least 299/300.

Proving (ii) is similar to (i). Again applying Hoeffding’s inequality (Lemma 2.14),

we can show that (ii) holds with probability at least 299/300.

In order to prove (iii), we proceed in similar fashion as (i), and after applying Ho-

effding’s inequality (Lemma 2.14), we apply the union bound over all j ∈ [t1] to get the

desired result.

Consider the weights w1, . . . , wt1 obtained in Step (vi) of TEST-AND-LEARN. To

argue that these weights are good enough to report the desired distribution D′ (if we

know the vectors in S exactly), we consider the following observation which says that

there exist t1 pairwise disjoint subsets C∗
1 , . . . , C∗

t1
such that wi is the fraction of vectors

in T that are in C∗
i for every i ∈ [t1]. Also, let us define C∗ = {C∗

1 , . . . , C∗
t1
}.

Observation 8.9. Let us consider assigning each vector in {0, 1}n either to some S ∈ S
or not assigning to any vector in S, using the same procedure that has been used to assign

the set of vectors in T in Steps (iii) and (iv) of TEST-AND-LEARN. Let C∗
i ⊆ {0, 1}n be

the set of all vectors that are assigned to Xi, for every i ∈ [t1]. Then, for every i ∈ [t1],

we have wi =
|T ∩ C∗

i |
|T | .

108

Proof. This follows from the definition of C∗
i .

Note that C∗ is formed following the procedure that TEST-AND-LEARN performs to

assign the vectors of T to the vectors in S. So, a vector far away from Xi ∈ S might be

assigned Xi, and wi is considered in this case. This is not a problem as the mass on C∗
i

is close to being bounded by the total mass of the vectors in NGB3δ(Xi). This follows

from the fact that the set R is distance preserving (see Part (ii) of Lemma 8.7) with high

probability. Now let us define C∗∗ = {C∗
i ∩ NBG3δ(Xi) : i ∈ [t1]}. Finally, we will

upper bound wi by D(C∗∗
i) in the following observation. This will be useful for proving

the correctness of TEST-AND-LEARN in Section 8.2.2.

Observation 8.10. Let us assume that R is distance preserving and T is weight repre-

sentative of S and C∗. Then for every i ∈ [t1], wi ≤ D(C∗
i) +

ζ
t1

≤ D(C∗∗
i) + 2ζ

t1
, where

we define C∗∗
i = C∗

i ∩ NBG3δ(Xi).

Proof. As R is distance preserving, consider C∗ = {C∗
1 , . . . , C∗

t1
} as guaranteed by Ob-

servation 8.9. Now, as T is weight representative of S and C∗ and wi =
|T ∩ C∗

i |
|T | for

every i ∈ [t1], by Lemma 8.8 (iii), wi ≤ D(C∗
i) +

ζ
t1

. By the definition of C∗
i and by

Lemma 8.7 (ii), D(C∗
i \ NGB3δ(Xi)) ≤ ζ

t1
, that is, D(C∗

i) ≤ D(C∗∗
i) + ζ

t1
.

Note that the above observation only gives upper bounds on the set of weights

w1, . . . , wt1 . As Lemma 8.8 provides upper as well as lower bounds on the mass around

S, this will not be a problem.

Consider the distribution D∗ supported over S such that D(Xi) ≥ wi for every

i ∈ [t1], which we can view as an approximation of D. Note that we still can not report

D∗ as the output distribution, since in order to do so, we need to perform Ω(n) queries to

know the exact vectors of S. Instead we will report a distributionD′ such thatD′
σ is close

to D∗ for some permutation σ : [n] → [n]. The idea is to construct a new set of vectors

S1, . . . ,St1 in Step (vii) such that the Hamming distance between Xi and σ(Si) is small

for every i ∈ [t1] for some permutation σ : [n] → [n]. Lemma 8.12 implies that this is

possible from the projection of the vectors in S onto the indices of R (the implication

itself will be proved later in Lemma 8.17). Before proceeding to Lemma 8.12, we need

the following definition and observation.

109

Definition 8.11. Given any sequence of vectors S = {X1, . . . ,Xt1} ⊆ {0, 1}n and

j ∈ [n], we define the vector CS
j ∈ {0, 1}t1 as

for every i ∈ [t1], C
S
j (i) = Xi(j)

For any J ∈ {0, 1}t1 , we define

αJ =
|{j ∈ [n] | CS

j = J}|
n

.

Intuitively, let us consider a matrix M of order t1 × n such that the i-th row vector

corresponds to the vector Xi. Then observe that CS
j represents the j-th column vector

of the matrix M and αJ denotes the fraction of column vectors of M that are identical

to J .

Lemma 8.12 (Structure preservation). Let us consider the input distribution D over

{0, 1}n, S = {X1, . . . ,Xt1} and R ⊂ [n] drawn in Step (i) and (iii) of TEST-AND-

LEARN. Also, let us consider the values of ΓJ found in Step (iii) of APPROX-CENTERS

(called from Step (vii) of TEST-AND-LEARN). The set R is said to be structure preserv-

ing for S if
∣∣αJ − ΓJ

n

∣∣ ≤ δ
10·2t1 holds for every J ∈ {0, 1}t1 . Then the set R chosen in

Step (iii) of TEST-AND-LEARN is structure preserving for S with probability at least

99/100.

Proof. Consider any particular J ∈ {0, 1}t1 and γJ determined by Step (ii) of APPROX-

CENTERS. Using Hoeffding’s bound for sampling without replacement (Lemma 2.15),

we obtain, for any η > 0,

Pr
[
|γJ − αJ | ≥

η

20

]
≤ e−2η2|R|/400.

By substituting the value of |R| (for a suitable choice of the hidden coefficient) and

η = δ
2t1

, and using the union bound over all possible J ∈ {0, 1}t1 , we conclude that with

probability at least 99/100, for all J ∈ {0, 1}t1 , |γJ − αJ | ≤ δ
20·2t1 .

Note that APPROX-CENTERS constructs ΓJ ’s from γj’s by applying Observation 7.11.

110

From the way Observation 7.11 generates ΓJ ’s from γj’s, we conclude that for all

J ∈ {0, 1}t1 , |γJ − ΓJ
n
| ≤ 1

n
, completing the proof, assuming that n is larger than

20·2t1
δ

.

Now we are ready to define the event GOOD.

Definition 8.13 (Definition of the event GOOD). Let us define an event GOOD as

E1 ∧ E2 ∧ E3 ∧ E4, where

(i) E1 : If D is (ζ, δ, r)-clusterable with the clusters C1, . . . , Cr, then S = {X1, . . .Xt1}
(found in Step (i) of TEST-AND-LEARN) contains at least one vector from every

large cluster.

(ii) E2 : R (picked in Step (ii) of TEST-AND-LEARN) is distance preserving.

(iii) E3 : R is structure preserving for S.

(iv) E4: T is weight preserving for S and C∗, where C∗ = {C∗
1 , . . . , C

∗
t1
} is as defined in

Observation 8.9.

Note that the event E1 follows from Lemma 8.6, E2 follows from Lemma 8.7, E3
follows from Lemma 8.12, and E4 follows from Lemma 8.8. Thus, from the respective

guarantees of the aforementioned lemmas, we can say that P(E1),P(E2),P(E3),P(E4) ≥
99
100

. To address a subtle point, note that Lemma 8.7 gives a probability lower bound onR

being distance preserving for any choice of T , and hence the lower bound also holds for

T sampled according to the distribution. Similarly, Lemma 8.8 provides a probability

lower bound on T being weight representative for any choice of R (which affects C∗)

regardless of whetherR is distance preserving, and hence the lower bound also holds for

the R chosen at random by the algorithm. So, we have the following lemma.

Lemma 8.14. P (GOOD) ≥ 2
3
.

111

8.2.2 Correctness of TEST-AND-LEARN

In the first three lemmas below (Lemma 8.15, Lemma 8.16 and Lemma 8.17), we prove

the correctness of the internal steps of the algorithm. These lemmas are stated under

the conditional space that the event GOOD defined in Definition 8.13 occurs. Using

these lemmas along with Lemma 8.18, which helps us combine them, allows us to prove

Theorem 8.3.

Lemma 8.15 (Guarantee till Step (v) of TEST-AND-LEARN). Assume that the event

GOOD holds.

(i) If D is (ζ, δ, r)-clusterable, then D is (δ, 2ζ)-clustered around S, and the fraction of

samples in Ty that are not assigned to any vector in Sx will be at most 3ζ . That is,

TEST-AND-LEARN does not output FAIL in Step (v) and proceeds to Step (vi).

(ii) If D is not (3δ, 5ζ)-clustered around S, then the fraction of samples in Ty that are

not assigned to any vector in Sx will be at least 3ζ . That is, TEST-AND-LEARN

outputs FAIL and does not proceed to Step (vi).

Proof. (i) For the first part, as E1 holds (see Lemma 8.6), the set S contains at least one

vector from every large cluster. Now, if we consider the δ-neighborhood of S,

that is, NGBδ(S), we infer that all vectors in large clusters are in NGBδ(S). By

the definition of a large cluster, the mass on the vectors that are not in any large

cluster is at most 2ζ . Hence, we conclude that D(NGBδ(S)) ≥ (1 − 2ζ). Thus,

by Observation 8.5, D is (δ, 2ζ)-clustered around S. For the second part, as the

event E4 holds (see Lemma 8.8(i)), T is weight representative for S . This follows

sinceD is (δ, 2ζ)-clustered, and in particular is (3δ, 5ζ)-clustered around S . Thus,
|T ∩NGBδ(S)|

|T | ≥ D(NGBδ(S))− ζ . Also, as the event E2 holds (see Lemma 8.7),

R is distance preserving between S and T , meaning that if Yi in Cj , then yi is

assigned to xj . Hence,

t1∑
i=1

wi ≥
|T ∩ NGBδ(S)|

|T |
≥ D(NGBδ(S))− ζ ≥ 1− 3ζ.

112

That is, w0 ≤ 3ζ , and the algorithm TEST-AND-LEARN does not report FAIL and

proceeds to Step (vi).

(ii) Since the distribution D is not (3δ, 5ζ)-clustered around S, by Observation 8.5,

D(NGB3δ(S)) < 1 − 5ζ . Moreover, following Lemma 8.8 (ii), the event E4
holds. So, |T ∩NGB3δ(S)|

|T | ≤ D(NGB3δ(S)) + ζ ≤ 1 − 4ζ . Also, as the event E2
holds (see Lemma 8.7), R is distance preserving between S and T . This implies

that
t1∑
i=1

wi ≤
|T ∩ NGB3δ(S)|

|T |
≤ D(NGB3δ(S)) + ζ < 1− 3ζ.

That is, w0 > 3ζ , and the algorithm TEST-AND-LEARN reports FAIL. So, TEST-

AND-LEARN does not proceed to Step (vi).

Lemma 8.16 (Guarantee from Step (vi) of TEST-AND-LEARN). Assume that the event

GOOD holds. Moreover, assume that D is (3δ, 5ζ)-clustered around S and w0 ≤ 3ζ

holds in Step (vi) of TEST-AND-LEARN. Consider the following distribution D′′ over

{0, 1}n, constructed from the weights obtained from Step (vi) of TEST-AND-LEARN,

such that

(i) For each i ∈ [t1], D′′(Xi) = w(xi) = wi.

(ii) D′′(X0) = 1−
t1∑
i=1

w(xi) for some arbitrary X0.

(iii) D′′(X) = 0 for every X ∈ {0, 1}n \ {X0, . . . ,Xt1}.

Then D′′ is (5δ, 5ζ)-clustered around S with weights w0, . . . , wt1 , where w0 = 1 −
t1∑
i=1

wi, and the EMD between D and D′′ satisfies dEM(D,D′′) ≤ 10δ + 12ζ .

We will prove Lemma 8.16 in Subsection 8.2.2. Now we proceed to prove the guar-

antee regarding Step (vii) of TEST-AND-LEARN.

Lemma 8.17 (Guarantee from Step (vii) of TEST-AND-LEARN). Assume that the

event GOOD holds. Then, in Step (vii), the algorithm APPROX-CENTERS (if called

113

as described in Algorithm 8.2) outputs a sequence of vectors {S1, . . . ,St1} in {0, 1}n,

such that there exists a permutation σ : [n] → [n] for which dH(σ(Xi),Si) ≤ δ
10

holds

for every i ∈ [t1].

Proof. Here we assume that the event GOOD holds. In particular, we assume that the

event E3 holds.

Let us consider a matrix M of order t1 × n such that the i-th row vector corresponds

to the vector Xi. Then observe that CS
j represents the j-th column vector of matrix M

and αJ denotes the fraction of column vectors of M that are identical to the vector J .

Let us consider the matrix A of order t1×n constructed by our algorithm, by putting

ΓJ many column vectors identical to J , for every J ∈ {0, 1}t1 . Note that {S1, . . . ,St1}
are the row vectors corresponding to A. As we are assuming that the event E3 holds

(see Lemma 8.12), |αJ − ΓJ
n
| ≤ δn

10·2t1 holds for every J ∈ {0, 1}t1 . Observe that we

can permute the columns of the matrix M using a permutation σ : [n] → [n] and create

a matrix Mσ, such that there exists a bad set I ⊂ [n] of size at most δ·n
10

, where after

the removal of the columns corresponding to indices of I from both matrices Mσ and A

become identical. Hence, we infer that dH(σ(Xi),Si) ≤ δ
10

for every i ∈ [t1], where σ

is the permutation corresponding to Mσ. This completes the proof of Lemma 8.17.

Finally, to prove Theorem 8.3, we need to show that the Earth Mover Distance be-

tween two distributions defined over close vectors is bounded when one distribution is

clustered around a sequence of vectors and the other distribution has similar weights

compared to the first distribution.

Lemma 8.18 (EMD between distributions having close cluster centers). Let η, κ, ξ ∈
(0, 1) be three parameters such that η+κ+ξ < 1. Suppose that S = {X1, . . . ,Xt1} and

S ′ = {X′
1, . . . ,X

′
t1
} are two sequences of vectors over {0, 1}n such that dH(Xi,X

′
i) ≤

κ for every i ∈ [t1]. Moreover, let D be an (η, ξ)-clustered distribution around S with

weights w0, . . . , wt1 and D′ be another distribution such that D′(X′
i) ≥ wi for every

i ∈ [t1]. Then dEM(D,D′) ≤ η + ξ + κ.

114

Proof. Recall that the EMD between D and D′ is the solution to the following LP:

Minimize
∑

X,Y∈{0,1}n
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}n
fXY = D(X) ∀X ∈ {0, 1}n,

∑
X∈{0,1}n

fXY = D′(Y) ∀Y ∈ {0, 1}n

and 0 ≤ fXY ≤ 1, ∀X,Y ∈ {0, 1}n.

Here D is (η, ξ)-clustered around S. Let C1, . . . , Ct1 be the pairwise disjoint subsets

of {0, 1}n such that Ci ⊆ NGBη(Xi) and D(Ci) ≥ wi for every i ∈ [t1].

Consider a particular solution {f ∗
XY : X,Y ∈ {0, 1}n} that also satisfies the con-

straint ∑
X∈Ci

fXX′
i
≥ wi for every i ∈ [t1].

The above constraint is feasible as D(Ci) ≥ wi and D′(X′
i) ≥ wi, where i ∈ [t1].

Now,

dEM(D,D′) ≤
∑

X,Y∈{0,1}n
f ∗
XYdH(X,Y)

≤
t1∑
i=1

∑
X∈Ci

f ∗
XX′

i
dH(X,X

′
i) +

∑
X/∈

t1⋃
i=1

Ci,Y∈{0,1}n

f ∗
XYdH(X,Y)

≤
t1∑
i=1

wi · (η + κ) + w0 · 1

≤ η + κ+ ξ.

Proof of Theorem 8.3

To prove Theorem 8.3, we need the following lemma.

115

Lemma 8.19. IfD is (3δ, 5ζ)-clustered around S, and TEST-AND-LEARN executes Step

(vi), then dEM(D,D′
σ) ≤ 17(δ + ζ) for some permutation σ : [n] → [n].

Proof. AsD is (3δ, 5ζ)-clustered around S, by Lemma 8.16, we have thatD′′ is (5δ, 5ζ)-

clustered around S with weights w0, . . . , wt1 and dEM(D,D′′) ≤ 10δ + 12ζ.

Now consider Step (vii) of TEST-AND-LEARN, where we call APPROX-CENTERS

with R and x1, . . . ,xt1 to obtain S1, . . . ,St1 . By Lemma 8.17, dH(σ(Xi),Si) ≤ δ
10

for

every i ∈ [t1] for some permutation σ : [n] → [n]. Consider the sequence of vectors

Xσ
1 . . . ,X

σ
t1

where Xσ
i = σ(Xi) for every i ∈ [t1].

Let us now consider the distribution D′′
σ over {0, 1}n such that D′′

σ(X) = D′′(σ(X))

for every X ∈ {0, 1}n. As D′′ is (5δ, 5ζ)-clustered around S = {X1, . . . ,Xt1} with

weights w0, . . . , wt1 , we know that D′′
σ is (5δ, 5ζ)-clustered around {Xσ

1 , . . . ,X
σ
t1
} with

weights w0, . . . , wt1 . In the output distribution D′, D′(Si) ≥ wi for every i ∈ [t1]. So,

by Lemma 8.18, we have dEM(D′, D′′
σ) ≤ 5δ + δ

10
+ 5ζ . Combining this with the fact

that dEM(D,D′′) ≤ 10δ + 12ζ , we conclude that dEM(D,D′
σ) ≤ 17(δ + ζ).

To prove Theorem 8.3, we first prove that the guarantees of the two parts follow

assuming that the event GOOD holds. We will be done since P (GOOD) ≥ 2/3 (see

Lemma 8.14). The query complexity of the algorithm follows from the parameters in its

description.

Proof of Part (i): Here D is (ζ, δ, r)-clusterable. By Lemma 8.15, D is (δ, 2ζ)-clustered

around S and the fraction of samples in Ty that are not assigned to any vector in Sx
is at most 3ζ . That is, TEST-AND-LEARN does not output FAIL for D in Step (v).

By Lemma 8.19, we conclude that dEM(D,D′
σ) ≤ 17(δ + ζ) for some permutation

σ : [n] → [n]. This completes the proof of Part (i).

Proof of Part (ii): Recall that we are working under the conditional space that the event

GOOD holds. Now consider the following:

• If D is not (3δ, 5ζ)-clustered around S, then by Lemma 8.15, the algorithm TEST-

AND-LEARN reports FAIL.

116

• If D is (3δ, 5ζ)-clustered around S, then the algorithm TEST-AND-LEARN either

reports FAIL in Step (v) or continues to Step (vi). In case we go to Step (vi),

following Lemma 8.19, we again conclude that dEM(D,D′
σ) ≤ ε.

Observe that the above two statements imply Part (ii). This completes the proof of

Theorem 8.3.

Proof of Lemma 8.16

Here we assume that the event GOOD holds. In particular, the events E2 and E4 hold. To

prove Lemma 8.16, we will prove some associated claims and lemmas about the weights

w0, . . . , wt1 obtained in Step (vi) of TEST-AND-LEARN, and the distribution D′′ defined

in Lemma 8.16. Let us start with the following claim.

Claim 8.20. The distribution D
′′

(defined in the statement of Lemma 8.16) is (5δ, 5ζ)-

clustered around S with weights w0, w1 . . . , wt1 , where w0 = 1−
t1∑
i=1

wi.

Proof. This follows from the definition of D′′, and the fact that w0 ≤ 3ζ < 5ζ .

Now we have the following claim.

Claim 8.21. There exists a sequence of weights w′
0, . . . , w

′
t1

such that D is (5δ, 5ζ)-

clustered around S with weights w′
0, . . . , w

′
t1

, and
t1∑
i=1

|wi − w′
i| ≤ 2ζ .

Proof. As events E2 and E4 hold, consider C∗ = {C∗
1 , . . . , C∗

t1
} (as guaranteed by Obser-

vation 8.9) and C∗∗ = {C∗∗
1 , . . . , C∗∗

t1
} such that, for every i ∈ [t1], C∗∗

i = C∗
i ∩NGB3δ(Xi)

and wi ≤ D(C∗∗
i) + 2ζ

t1
(see Observation 8.10).

Let us define w′
i = max{wi − 2ζ

t1
, 0} and w′

0 = 1−
t1∑
i=1

w′
i. So, w′

i ≤ D (C∗∗
i).

Now

w′
0 = 1−

t1∑
i=1

w′
i ≤ 1−

t1∑
i=1

(
wi −

2ζ

t1

)
≤ (w0 + 2ζ) ≤ 3ζ + 2ζ = 5ζ.

Putting everything together, the above C∗∗ satisfies C∗∗
i ⊆ NGB3δ(Xi) ⊆ NGB5δ(Xi)

and has weights w′
0, . . . , w

′
t1

such that w′
0 ≤ 5ζ and w′

i ≤ D(C∗∗
i) for every i ∈

117

[t1]. Hence, D is (5δ, 5ζ)-clustered around S with weights w′
0, . . . , w

′
t1

. Moreover,
t1∑
i=1

|wi − w′
i| ≤ 2ζ holds following the definition of w′

is.

Lemma 8.22 (Comparison-by-weights). Let D1 and D2 be two distributions defined

over {0, 1}n that are (η, ξ)-clustered around a sequence of vectors S = {X1, . . . ,Xt1}
with weights v0, . . . , vt1 and w0, . . . , wt1 , respectively. Then the Earth Mover Distance

between D1 and D2 is dEM(D1, D2) ≤ 2η +
t1∑
i=1

|vi − wi|+ 2ξ.

Proof. Let U be an arbitrary vector from {0, 1}n. Let us define a distribution D′
1 (sup-

ported over S ∪ {U}) from the distribution D1 as follows:

D′
1(Y) =


vi Y = Xi for every i ∈ [t1]

1−
t1∑
i=1

vi Y = U

0 otherwise

Similarly, we define a distribution D′
2 from D2. First we have the following claim,

which follows from the definitions. From the definitions of D′
1 and D′

2, we can say that

(i) dEM(D1, D
′
1) ≤ η + ξ and dEM(D2, D

′
2) ≤ η + ξ (by Lemma 8.18).

(ii) dEM(D′
1, D

′
2) ≤

t1∑
i=1

|vi − wi|.

Using the triangle inequality, we have

dEM(D1, D2) ≤ dEM(D1, D
′
1) + dEM(D′

1, D
′
2) + dEM(D2, D

′
2)

≤ 2η +

t1∑
i=1

|vi − wi|+ 2ξ.

This completes the proof of Lemma 8.22.

Now we proceed to prove Lemma 8.16.

Proof of Lemma 8.16. By the description of D′′ in Lemma 8.16, using Claim 8.20, we

know that D′′ is (5δ, 5ζ)-clustered around S with weights w1, . . . , wt1 . By applying

118

Claim 8.21, we infer that D is (5δ, 5ζ)-clustered around S with weights w′
0, . . . , w

′
t1

such that
t1∑
i=1

|wi − w′
i| ≤ 2ζ . Now, by applying Lemma 8.22 with η = 5δ, ξ = 5ζ , we

obtain that the Earth Mover Distance between D and D′′ is bounded as follows:

dEM(D,D′′) ≤ 10δ + 2ζ + 10ζ ≤ 10δ + 12ζ.

This completes the proof of Lemma 8.16.

119

Chapter 9

Testing VC dimension properties

9.1 Introduction

In this chapter we will prove that distributions over {0, 1}n whose support have bounded

VC-dimension can be learnt (up to permutations) by performing a number of queries

that is independent of the dimension n, and depends only on the proximity parameter

ε and the VC-dimension d (Theorem 7.2). In fact, we will prove a generalization, that

any distribution D that is β-close to bounded VC-dimension can be learnt efficiently up

to permutations (with a proximity parameter depending on β) by performing a set of

queries whose size is independent of n (Theorem 9.3). The result is formally stated as

follows:

Theorem 9.1 (Learning a distribution β-close to bounded VC-dimension, Theo-

rem 1.7 generalized). Let d ∈ N be a constant. There exists a (non-adaptive) algo-

rithm, that given sample and query access to an unknown distribution D over {0, 1}n,

takes α, β ∈ (0, 1) with β < α as input such that ε = 17(3α+β/α) < 1, makes number

of queries that depends only on α, β and d, and either reports a full description of a

distribution, or FAIL, satisfying both of the following conditions:

(i) If D is β-close to VC-dimension d, then with probability at least 2/3, the algorithm

outputs a distribution D′ such that dEM(D,D′
σ) ≤ ε for some permutation σ :

121

[n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that dEM(D,D′
σ) >

ε for every permutation σ : [n] → [n] with probability more than 1
3
. However,

if the distribution D is not β-close to VC-dimension d, the algorithm may output

FAIL with any probability.

As a consequence of the learning result of Theorem 9.1, we also obtain a tester for

properties having a bounded VC-dimension.

Corollary 9.2 (Restatement of Corollary 7.4). Let d ∈ N be a constant, and P be

an index-invariant property with VC-dimension d. There exists an algorithm that has

sample and query access to an unknown distribution D, takes a parameter ε ∈ (0, 1),

and distinguishes whether D ∈ P or D is ε-far from P with probability at least 2/3,

where the total number of queries made by the algorithm is a function of only d and ε.

In Subsection 9.2, we connect the notions of (ζ, δ, r)-clusterablity and being β-close

to (α, r)-clusterablity (Definition 8.2) in Lemma 9.6 and prove Corollary 9.5 regard-

ing learning distributions that are β-close to (α, r)-clusterable. Then, we recall some

standard results from VC theory to connect the notions of bounded VC-dimension and

clusterability, to obtain Corollary 9.14, which is crucially used in Subsection 9.2.1 to

prove Theorem 9.3.

9.2 Testing properties with bounded VC-dimension

Theorem 9.3 (Learning a distribution β-close to bounded VC-dimension, Theo-

rem 9.1 restated). Let d ∈ N be a constant. There exists a (non-adaptive) algorithm,

that given sample and query access to an unknown distribution D over {0, 1}n, takes

α, β ∈ (0, 1) with β < α as input such that ε = 17(3α + β/α) < 1, makes number

of queries that depends only on α, β and d, and either reports a full description of a

distribution, or FAIL, satisfying both of the following conditions:

122

(i) If D is β-close to VC-dimension d, then with probability at least 2/3, the algorithm

outputs a distribution D′ such that dEM(D,D′
σ) ≤ ε for some permutation σ :

[n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that dEM(D,D′
σ) >

ε for every permutation σ : [n] → [n] with probability more than 1
3
. However,

if the distribution D is not β-close to VC-dimension d, the algorithm may output

FAIL with any probability.

Remark 9.1. Note that α above does not appear anywhere outside the expression for ε,

and hence it is tempting to minimize ε by taking α =
√
β/3. However, this is a bad

strategy since the number of queries of the algorithm depends on 1/α. In the common

scenario, we would be given β and ε ≥ 34
√
3β, and solve for α.

Corollary 9.4 (Testing properties with bounded VC-dimension, Corollary 9.2 re-

stated). Let d ∈ N be a constant, and P be an index-invariant property with VC-

dimension d. There exists an algorithm that has sample and query access to an unknown

distribution D, takes a parameter ε ∈ (0, 1), and distinguishes whether D ∈ P or D is

ε-far from P with probability at least 2/3, where the total number of queries made by

the algorithm is a function of only d and ε.

Remark 9.2. Note that the algorithm for testing the index-invariant property with con-

stant VC-dimension d takes exp(d) samples, and performs exp(exp(d)) queries. It turns

out that similarly to the case of TEST-AND-LEARN, the dependencies of the sample

and query complexities on d are tight, in the sense that there exists a property of VC-

dimension d such that testing it requires 2Ω(d) samples, and Ω(22
d−O(1)

) queries. We will

construct such a property and prove its lower bound in Section 9.3.

We will give the proof of Theorem 9.3 in Subsection 9.2.1.

A corollary of Theorem 8.3 to prove Theorem 9.3:

Here we first connect the notions of (ζ, δ, r)-clusterablity and being β-close to (α, r)-

clusterablity (Definition 8.2) in Lemma 9.6. Then using Lemma 9.6 with our algorithm

123

for learning (ζ, δ, r)-clusterable distributions (Theorem 8.3), we prove Corollary 9.5 re-

garding learning distributions that are β-close to (α, r)-clusterable. This corollary will

be used later to prove Theorem 9.3.

Corollary 9.5 (Learning distributions β-close to (α, r)-clusterable). Let n ∈ N.

There exists a (non-adaptive) algorithm, that has sample and query access to an un-

known distribution D over {0, 1}n, takes parameters α, β, r as inputs such that α > β

and ε = 17(3α+β/α) < 1 and r ∈ N, makes a number of queries that only depends on

α, β and r, and either reports a full description of a distribution over {0, 1}n or reports

FAIL, satisfying both of the following conditions:

(i) If D is β-close to (α, r)-clusterable, then with probability at least 2/3, the algorithm

outputs a full description of a distribution D′ over {0, 1}n such that for some

permutation σ : [n] → [n], dEM(D,D′
σ) ≤ ε.

(ii) For any D, the algorithm will not output a distribution D′ such that dEM(D,D′
σ) >

ε for every permutation σ : [n] → [n], with probability more than 1/3. However,

if the distribution D is not β-close to (α, r)-clusterable, the algorithm may output

FAIL with any probability.

To prove the above corollary, we need the following lemma, that connects the two

notions of clusterability: (ζ, δ, r)-clusterablity and being β-close to (α, r)-clusterability

(see Definition 8.2).

Lemma 9.6. Let α, β ∈ (0, 1) be such that α > β, and D be a distribution over {0, 1}n

that is β-close to being (α, r)-clusterable. Then D is (3α, r, β/α)-clusterable.

Proof. Let D0 be the distribution such that D0 is (α, r)-clusterable and dEM(D,D0) ≤
β. Let C1, . . . , Cs be the partition of the support ofD0 that realizes the (α, r)-clusterability

of D0, and let {fXY : X,Y ∈ {0, 1}n} be the flow that realizes dEM(D,D0) ≤ β.

Let C =
s⋃
i=1

Ci, and C>α be the set of vectors in {0, 1}n that have distance of at least

α from all the vectors in C. Now we have the following claim.

Claim 9.7. D(C>α) ≤ β
α

.

124

Proof. By contradiction, let us assume that D(C>α) > β
α

. Then we have the following:

dEM(D,D0) ≥
∑

X∈C>α,Y∈C

fXYdH(X,Y) ≥ α ·D(C>α) > β.

This is a contradiction as we have assumed dEM(D,D0) ≤ β.

Now for every i, let C≤α
i be the vectors that have distance at most α from at least

one vector Ci, where i ∈ [s]. Let C ′
i = C≤α

i \
i−1⋃
j=1

C ′
j for 1 ≤ i ≤ s. Now we have the

following observation.

Observation 9.8. For any 1 ≤ i ≤ s, dH(U,V) ≤ 3α for any U,V ∈ C ′
i.

Proof. Since U,V ∈ C ′
i, let U′ and V′ be the vectors in Ci such that dH(U,U′) ≤ α,

and dH(V,V′) ≤ α. As U′,V′ ∈ Ci, and D0 is (α, r)-clusterable, using the triangle

inequality, we can say that dH(U,V) ≤ dH(U,U
′) + dH(U

′,V′) + dH(V
′,V) ≤

3α.

Consider C ′
0 = C>α, and by Claim 9.7, note that D(C ′

0) ≤ β/α. The existence of

C ′
0, C ′

1, . . . , C ′
s as above implies that D is (3α, r, β/α)-clusterable (see Definition 8.2).

Proof of Corollary 9.5 using Theorem 8.3 & Lemma 9.6. The algorithm here (say ALG)

calls algorithm TEST-AND-LEARN (as described in Algorithm 8.1) with parameters ζ =

β/α and δ = 3α, and reports the output returned by TEST-AND-LEARN as the output of

ALG. Now we prove the correctness of ALG.

Part (i): Here we consider the case where D is β-close to (α, r)-clusterable. Following

Lemma 9.6,D is (ζ, δ, r)-clusterable. By Theorem 8.3 (i), we get a distributionD′

such that dEM(D,D′
σ) ≤ 17(ζ + δ) = 17(3α + β/α) = ε for some permutation

σ : [n] → [n], with probability at least 2/3. This completes the proof of Part (i).

Part (ii): This follows from Theorem 8.3 (ii) along with our choices of δ = 3α and

ζ = β/α.

125

Result from VC theory

Let us now recall some definitions from VC-dimension theory, and use a well known re-

sult of Haussler [Hau95] to obtain Corollary 9.14, which states that if the VC-dimension

of a set of vectors V is bounded, then the vectors of V can be covered by bounded num-

ber of Hamming balls. This corollary will be crucially used to prove Theorem 9.3 in

Subsection 9.2.1.

Let us start by defining the notion of an α-separated set.

Definition 9.9 (α-separated set). Let α ∈ (0, 1) and W ⊂ {0, 1}n be a set of vectors.

W is said to be α-separated if for any two vectors X,Y ∈ W , dH(X,Y) ≥ α.

Now let us define the notion of the α-packing number of a set of vectors.

Definition 9.10 (α-packing number). Let α ∈ (0, 1), and V ⊂ {0, 1}n be a set of

vectors. The α-packing number of V , denoted by M(α, V), is defined as the cardinality

of the largest α-separated subset W of V .

Now we define the notion of an α-cover of a set of vectors.

Definition 9.11 (α-cover). Let α ∈ (0, 1) and V ⊂ {0, 1}n be a set of vectors. A set

of vectors M ⊆ V is an α-cover of V if V ⊆
⋃

p∈M
NGBα(p), where NGBα(p) :=

{q : dH(p,q) ≤ α} denotes the set of vectors that are within Hamming distance α from

the vector p.

Now let us consider the following theorem from [Hau95], which says that if the VC-

dimension of a set of vectors V is d, then the size of the α-packing number of V , that is,

M(α, V), is bounded by a function of d and α.

Theorem 9.12 (Haussler’s packing theorem [Hau95, Theorem 1]). Let α ∈ (0, 1) be

a parameter. If the VC-dimension of a set of vectors V is d, then the α-packing number

126

of V is bounded as follows:

M(α, V) ≤ e(d+ 1)

(
2e

α

)d
The following observation is immediate.

Observation 9.13. Let α ∈ (0, 1) be a parameter and M be a maximal α-packing of a

set of vectors V ⊂ {0, 1}n. Then M is also an α-cover of V .

With this observation, along with Theorem 9.12, we get the following bound on the

size of a cover of a set of vectors in terms of its VC-dimension.

Corollary 9.14 (Existence of a small α-cover). Let d ∈ N. If the VC-dimension of a

set of vectors V is d, then for all α ∈ (0, 1), there exists a set M ⊆ V such that M is an

α-cover of V and |M | ≤ e(d+ 1)
(
2e
α

)d.
9.2.1 Learning distributions close to having bounded VC-dimension

In this subsection, using Corollary 9.5, we prove that any distribution that is β-close to

bounded VC-dimension can be learnt (up to permutation) by performing a number of

queries that depends only on the VC-dimension d and the proximity parameter ε, and is

independent of the dimension of the Hamming cube {0, 1}n (Theorem 9.3). The crucial

ingredient of the proof is Theorem 9.12, through its Corollary 9.14. From Theorem 9.3,

we obtain a tester for testing distribution properties with bounded VC-dimension (Corol-

lary 9.4).

Proof of Theorem 9.3. We call the algorithm ALG corresponding to Corollary 9.5 with

D as the input distribution, the same α and β as here, and r = ⌊e(d+1)
(
2e
α

)d⌋. Note that

the output of ALG is either the full description of a distribution D′ or FAIL. We output

the same output returned by ALG. Now we prove the correctness of this procedure.

(i) Here D is β-close to having VC-dimension d. Let D0 be the distribution such that

D0 has VC-dimension at most d and dEM(D,D0) ≤ β. By Corollary 9.14, we can

127

partition the support of D0 into r parts C1, . . . , Cr such that r ≤ e(d+1)
(
2e
α

)d and

the Hamming distance between any pair of vectors in the same cluster Ci is at most

α. This means thatD0 is (α, r)-clusterable. So, with probability at least 2/3, TEST-

AND-LEARN outputs a distribution D′ such that dEM(D,D′
σ) ≤ 17(3α + β/α)

for some permutation σ : [n] → [n], and we are done with the proof.

(ii) This follows from the guarantee provided by the subroutine TEST-AND-LEARN, see

Corollary 8.3 (ii).

Testing bounded VC-dimension properties

We now present the proof of Corollary 9.4 regarding the testing of properties with

bounded VC-dimension.

Proof of Corollary 9.4. We call the algorithm (say ALG) corresponding to Theorem 9.3

with the input distribution D, α = ε/102, and β = 0. Let D′ be the output of ALG. We

check if there exists a distribution D′′ ∈ P such that dEM(D′, D′′) ≤ ε/2. If yes, we

accept D. Otherwise, we reject D.

Now we argue the correctness. For completeness, let us assume that D ∈ P , hence

D has VC-dimension d. By the guarantee for ALG following Theorem 9.3, with prob-

ability at least 2/3, ALG does not report FAIL, and the output distribution D′ by ALG

satisfies dEM(D,D′
σ) ≤ ε/2 for some permutation σ : [n] → [n]. Since P is an index-

invariant property, D′ and D′
σ have the same distance from the property P . Also, as

D ∈ P , Dσ ∈ P as well. Hence, there exists a distribution D′′ ∈ P (here Dσ in

particular) such that dEM(D′, D′′) ≤ ε/2, and we accept D with probability at least 2/3.

For soundness, consider the case where D is ε-far from P . If ALG reports FAIL, we

are done. Otherwise, by Theorem 9.3, the output distribution D′ is such that for some

permutation σ : [n] → [n], dEM(D,D′
σ) ≤ ε/2. Now we consider any distribution D′′

with dEM(D′, D′′) ≤ ε/2 and argue that D′′ is not in P . By contradiction, let us assume

that D′′ ∈ P . As P is index-invariant, D′′
σ ∈ P . Note that dEM(D′

σ, D
′′
σ) ≤ ε/2 as

128

dEM(D′, D′′) ≤ ε/2. So, D′
σ is ε/2-close to property P . As dEM(D,D′

σ) ≤ ε/2, by

the triangle inequality, D is ε-close to P , a contradiction. This completes the proof of

Corollary 9.4.

9.3 Lower bounds for testing VC-dimension properties

As mentioned in the introduction, our tester for testing a VC-dimension property takes

exp(d) samples, and performs exp(exp(d)) queries for VC-dimension d. Now we show

that there exists an index-invariant property of VC-dimension at most d which requires

such sample and query complexities, proving Theorem 7.5.

Theorem 9.15 (Restatement of Theorem 7.5). Let d, n ∈ N. There exists an index-

invariant property Pvc with VC-dimension at most d such that any (non-adaptive) tester

for Pvc requires 2Ω(d) samples and 22
d−O(1)

queries.

Since the query complexity of non-adaptive testers can be at most quadratic as com-

pared to adaptive ones (Theorem 7.9), arguing only for non-adaptive testers is sufficient

for our purpose. We would like to point out that the property of having support size at

most 2d is a property with VC-dimension bounded by d, for which the authors of [GR22]

proved a lower bound of Ω(2(1−o(1))d) samples [GR22, Observation 2.7]. Although the

sample lower bound of the property Pvc of Theorem 9.15 is weaker in comparison to

that of the support size property, here we prove both sample and query lower bounds

for the same property Pvc. Moreover, Pvc is defined by being a permutation of a single

distribution.

Without loss of generality, in what follows, we assume that d is large enough.

Property Pvc: Let k = 2d and ℓ = 22
d−10 be two integers and assume that ℓ divides n.

Consider a matrix A of dimension k × ℓ such that the Hamming distance between any

pair of column vectors of A is at least 1/3. 1 Let DA be a distribution supported over the

1One way to construct such a matrix is to select 2d−10 vectors from {0, 1}2d uniformly at random, and
let the columns of A be the set of all their linear combinations over the field Z2.

129

vectors V1, . . . ,Vk such that, for every i ∈ [k], the following holds:

• Vi is the n/ℓ times “blow-up” of the i-th row of A, that is, for j ∈ [ℓ] and j′ with

(j − 1) · n
ℓ
< j′ ≤ j · n

ℓ
, (Vi)j′ = aij , where aij denotes the element of the matrix

A present in the i-th row and the j-th column.

• DA(Vi) =
1
k
= 1

2d
.

Now we are ready to define the property Pvc.

Pvc = {D : D = Dσ
A for some permutation σ : [n] → [n]}.

Now we have the following observation.

Observation 9.16. The VC-dimension of Pvc is at most d.

This follows from the fact that the support size of the distribution DA is 2d. We

will prove first the query complexity lower bound, and then prove the (easier) sample

complexity lower bound.

Query complexity lower bound: Let us define the first pair of hard distributions over

distributions over {0, 1}n, that is, Dyes and Dno.

Distribution Dyes: We choose a permutation σ : [n] → [n] uniformly at random, and

pick the distribution Dσ
A over {0, 1}n.

The distribution Dno is constructed from the matrix A that is used to define Dyes as

follows:

Distribution Dno: We first choose ℓ′ = 22
d−20 column vectors uniformly at random

from A and let B be the resulting matrix of dimension k× ℓ′. Let DB be the distribution

supported over the vectors W1, . . . ,Wk such that, for every i ∈ [k], the following holds:

130

• Wi is the n/ℓ′ times blow-up of the i-th row of B, that is, for j ∈ [ℓ′] and j′ with

(j − 1) · n
ℓ′
< j′ ≤ j · n

ℓ′
, (Wi)j′ = bij , where bij denotes the element of matrix B

present in the i-th row and the j-th column.

• Dno(Wi) =
1
k
= 1

2d
.

We choose a permutation σ : [n] → [n] uniformly at random, and pick the distribu-

tion Dσ
B over {0, 1}n.

Lemma 9.17. Dyes is supported over Pvc and Dno is supported over distributions that

are 1/8-far from Pvc.

Proof. Following the definition of Pvc and Dyes, it is clear that Dyes is supported over

Pvc. To prove the claim about Dno, consider the following definition and observation.

Definition 9.18. Let us consider a distributionD over {0, 1}n. A matrixM of dimension

s × n is said to be a corresponding matrix of D if D is the distribution resulting from

picking uniformly at random a row of M . 2 For a permutation π : [s] → [s], Mπ denotes

the matrix obtained by permuting the rows of M according to the permutation π, that is,

the π(i)-th row of Mπ is same as the i-th row of M for every i ∈ [s].

Note that if M is a corresponding matrix of D with s rows and s′ is a multiple of s,

then the matrix M ′ constructed by repeating every row of M s′/s many times is also a

corresponding matrix of D.

Now the following observation connects the Earth Mover Distance between two dis-

tributions with the Hamming distance between their corresponding matrices.

Claim 9.19. Let D1 and D2 be two distributions over {0, 1}n. Also, let L and M be

corresponding matrices of D1 and D2, respectively, both of dimension s × n. Then

the Earth Mover Distance between D1 and D2 is the same as the minimum Hamming

distance between L and M over all row permutations.

2Note that, if M has no duplicate rows, then D is a uniform distribution over its support.

131

Formally, let the Hamming distance between L and M be defined as

dH(L,M) =
|{(i, j) ∈ [s]× [n] : lij ̸= mij}|

s · n

Then

dEM(D1, D2) = min
π:[s]→[s]

dH(L
π,M).

Proof. We first note that any solution fXY for the EMD between D1 and D2 can be

translated to a doubly stochastic matrix S of dimension s× s as follows:

For every i, let Li be the i-th row of L and li be the number of rows of L that are

identical to Li. Similarly, let Mi be the i-th row of M and mi be the number of rows of

M that are identical Mi. To construct the matrix S, we set the value of its entry at i-th

row and j-th column as follows:

sij =
fLiMj

· s
li ·mj

Now we claim that the matrix S defined above is a doubly stochastic matrix.

Observation 9.20. The matrix S defined above is doubly stochastic.

Proof. We will prove that the every row of S sum to 1, and omit the identical proof for

the columns of S. Note that if we sum the i-th row of S, we obtain the following:

s∑
j=1

sij =
s∑
j=1

fLiMj
· s

li ·mj

=
∑

Y∈Supp(D2)

fLiY · s
li

=
D1(Li) · s

li
= 1

This completes the proof of the observation.

Now we will apply the Birkhoff-Newmann theorem [Bir46, VN53], which states that

the doubly stochastic matrix S defined above can be expressed as a weighted average of

permutation matrices. By translating the EMD expression from fXY to S and using an

averaging argument, we can infer that there exists a permutation π (among those in the

representation of S) such that dH(Lπ,M) is equal to dEM(D1, D2). This completes the

proof of the claim.

132

Note that Dno is supported over the set of distributions Dσ
B for any permutation σ

and any matrix B which consists of 22d−20 columns of A. We will be done by showing

that the Earth Mover Distance between D and Dσ
B is at least 1/8, where D ∈ Pvc,

σ : [n] → [n] is any permutation, and B is any matrix with 22
d−20 columns.

Note that both D and Dσ
B admit respective corresponding matrices L and M , respec-

tively, both of dimension 2d × n, where the rows of L are the vectors Vi, and the rows

of M are the respective permutations of the vectors Wi. By Claim 9.19, we note that:

dEM(Dσ
B, D) = min

π:[2d]→[2d]
dH(L

π,M).

The following claim will imply that dEM(Dσ
B, D) ≥ 1/8.

Claim 9.21. For any permutation π : [2d] → [2d], dH(Lπ,M) is at least 1/8.

Proof. Let us partition the index set [n] into ℓ′ equivalence classes C1, . . . , Cℓ′ such that

two indices of [n] belong to the same equivalence class if the corresponding column

vectors in Lπ are identical. Observe that

dH(L
π,M) =

∑
i∈[ℓ′]

∑
j∈Ci

dH(L
π
j ,Mj) · k

k · n
=

∑
i∈[ℓ′]

∑
j∈Ci

dH(L
π
j ,Mj)

n
,

where Lπj and Mj denote the j-th column vectors of Lπ and M , respectively.

Hence we will be done by showing
∑
j∈Ci

dH
(
Lπj ,Mj

)
≥ n

8ℓ′
, for every i ∈ [ℓ′].

Note that |Ci| = n
ℓ′

. Also, all the columns in {Lπj : j ∈ Ci} are identical. Consider a

column vector v ∈ {0, 1}k. Observe that there can be at most n
ℓ

columns in {Mj : j ∈
Ci} that are 1/7-close to v. This follows from the construction of Pvc, which implies

that for every column Mj of M , there are no more than n/ℓ − 1 other columns of Lπ

whose distance from Mj is at most 2/7 < 1/3.

So, in the expression
∑
j∈Ci

dH
(
Lπj ,Mj

)
, there are at least (n

ℓ′
− n

ℓ
) terms that are at

least 1/7. Hence,
∑
j∈Ci

dH
(
Lπj ,Mj

)
≥ ℓ′ · 1

7

(
n
ℓ′
− n

ℓ

)
≥ n

8ℓ′
.

The above two claims conclude the proof of Lemma 9.17.

133

Lemma 9.22 (Query complexity lower bound part of Theorem 9.15). Any (non-

adaptive) tester, that has sample and query access to either Dyes or Dno and performs

22
d−ω(1)

queries, can not distinguish between Dyes and Dno.

Proof. Let A′ and B′ be the matrices of dimension k × n such that the i-th row of A′

corresponds to the vector Vσ
i (for the permutation σ drawn according to Dyes) and the

i-th row of B′ corresponds to the vector Wσ
i (for the permutation σ drawn according to

Dno), where i ∈ [k].

Let us divide the index set [n] into ℓ equivalence classes C1, . . . , Cℓ such that two in-

dices belong to the same equivalence class if the corresponding column vectors in A′ are

identical. Similarly, let us divide the index set [n] into ℓ′ equivalence classes C ′
1, . . . , C

′
ℓ′

such that two indices belong to the same equivalence class if the corresponding column

vectors in B′ are identical.

Let Q ⊆ [n] be the set of all distinct indices queried by the tester to any sample (that

is, the union of the sets J1, . . . , Js as they appear in Definition 2.10). If |Q| = 22
d−ω(1) ,

then the probability that there exist two indices in Q that belong to the same Ci or the

same C ′
i is o(1). Observe that, conditioned on the event that Q does not contain two

indices from the same equivalence class Ci or C ′
i, the distributions over the responses

to the queries of the tester are identical for both Dyes and Dno. The reason is that in

both the cases of Dyes and Dno, the distribution over the responses is identical to the one

derived from picking a uniformly random subset of size |Q| of the columns of the matrix

A, and taking uniformly independent samples of the rows of the resulting matrix.

Now we will prove the sample complexity lower bound for testing Pvc.

Sample complexity lower bound: Let us define the second pair of hard distributions

over distributions over {0, 1}n, D′
yes and D′

no.

Distribution D′
yes: Identically to Dyes above, we choose a permutation σ : [n] → [n]

uniformly at random, and pick the distribution Dσ
A over {0, 1}n.

134

The distributionD′
no is constructed from the matrixA used to defineD′

yes as follows:

Distribution D′
no: We first choose k′ = 2d−20 row vectors uniformly at random from

A and construct a matrix B′ of dimension k′ × ℓ. Let DB′ be the distribution supported

over the vectors W′
1, . . . ,W

′
k′ such that, for every i ∈ [k′], the following hold:

• W′
i is the n/ℓ times blow-up of the i-th row of B′, that is, for j ∈ [ℓ] and j′ with

(j − 1) · n
ℓ
< j′ ≤ j · n

ℓ
, (W′

i)j′ = bij , where bij denotes the element of matrix B′

present in the i-th row and the j-th column.

• Dno(W
′
i) =

1
k′
= 1

2d−20 .

We choose a permutation σ : [n] → [n] uniformly at random, and pick the distribu-

tion Dσ
B′ over {0, 1}n.

Lemma 9.23. D′
yes is supported over Pvc and D′

no is supported over distributions that

are 1/8-far from Pvc.

Proof. Following the definition of Pvc and D′
yes, it is clear that D′

yes is supported over

Pvc. To prove the claim about D′
no, we will apply Claim 9.19.

Note thatD′
no is supported over the set of distributionsDσ

B′ for any permutation σ and

any matrix B′ which consists of 2d−20 rows of A. We will be done by showing the Earth

Mover Distance between D and Dσ
B′ is at least 1/8, where D ∈ Pvc and σ : [n] → [n]

be any permutation, and B′ is any matrix with 2d−20 distinct rows.

Let L and M be corresponding matrices of D and Dσ
B′ , respectively, of dimension

k × n, where k = 2d (where the rows of L are the vectors Vi, and the rows of M are

220-fold repetitions of the respective permutations of the vectors W′
i). By Claim 9.19,

we know that

dEM (Dσ
B′ , D) = min

π:[k]→[k]
dH(L

π,M).

Thus, the following claim will imply that dEM(Dσ
B′ , D) ≥ 1/8.

Claim 9.24. For any permutation π : [2d] → [2d], dH(Lπ,M) is at least 1/8.

135

Proof. Our proof will follow a similar vain to that of Claim 9.21. Let us first partition the

index set [n] into ℓ′ equivalence classes C1, . . . , Cℓ′ such that two indices of [n] belong

to the same equivalence class if the corresponding column vectors in Lπ are identical.

Observe that

dH(L
π,M) =

∑
i∈[ℓ′]

∑
j∈Ci

dH(L
π
j ,Mj) · k

k · n
=

∑
i∈[ℓ′]

∑
j∈Ci

dH(L
π
j ,Mj)

n
,

where Lπj and Mj denote the j-th column vectors of Lπ and M , respectively.

Since B′ has only 2d−20 distinct rows, the number of its equivalence classes is

bounded by ℓ′ = 22
d−20 . Note that unlike the proof of the query lower bound, the sizes of

the equivalence classes here may be different from each other. Also, note that the sizes

of the equivalence classes of L are n/ℓ, as D ∈ Pvc. Thus we have the following:

dH(L
π,M) ≥ 1

7
·
∑ℓ′

i=1max{0, |Ci| − n/ℓ}
n

≥ 1

7
·
(
1− 1

210

)
· n > 1

8
n.

The inequality follows from the facts that ℓ = 22
d−10 and ℓ′ = 22

d−20 , and the columns

of M corresponding to each Ci can be 1/7-close to at most n/ℓ columns of L.

This concludes the proof of Lemma 9.23.

The sample lower bound for testing Pvc now follows from the following lemma.

Lemma 9.25 (Sample complexity lower bound part of Theorem 9.15). Any tester

that takes at most 2o(d) samples from the input distribution can not distinguish between

the distributions D′
yes and D′

no.

Proof. Let S be the set of samples taken by the algorithm. Note that if |S| = 2o(d), then

the probability that S contains two samples of the same Vi or the same W′
i is o(1).

Conditioned on the event that S does not contain two samples from the same vector (Vi

or W′
i), even if the tester queries the samples of S in their entirety, the distributions over

the responses to the queries of the tester are identical for bothD′
yes andD′

no. This follows

from the fact that the distribution over the responses is identical to a distribution obtained

136

by drawing uniformly without repetitions a sequence of row vectors from V1, . . . ,V2d ,

and querying the row vectors completely. This completes the proof.

137

Chapter 10

Role of adaptivity for general

properties

10.1 Introduction

In this chapter, we prove that for non-index-invariant properties, there can be an expo-

nential gap between the query complexities of adaptive and non-adaptive tester. The

result is formally stated as follows:

Theorem 10.1 (Theorem 1.10 formalized). Any property P that is ε-testable by an

adaptive algorithm using s samples and q queries, can be ε-tested by a non-adaptive

algorithm that uses s samples and performs at most 2q − 1 queries, where s and q are

integers.

We prove this theorem in Section 10.2. The proof follows a simulation-type ar-

gument. Later in Section 10.3, we prove the following theorem which states that the

exponential gap mentioned in the above theorem is tight.

Theorem 10.2 (Theorem 1.11 formalized). There exists a property of distributions over

strings 1PPal that can be ε-tested adaptively using O(log n) queries for any ε ∈ (0, 1),

but Ω(
√
n) queries are necessary for any non-adaptive algorithm to ε-test it for some

ε ∈ (0, 1).

139

10.2 Exponential gap between adaptive and non-adaptive

testers

In this section, we prove that there can be at most an exponential gap between the query

complexities of adaptive and non-adaptive algorithms for non-index-invariant properties.

Let A be the adaptive algorithm that ε-tests P using s samples {V1, . . . ,Vs} and

q queries, along with tossing some random coins. Before directly proceeding to the

description of the non-adaptive algorithm, let us first consider the following observation.

Observation 10.3. For any given outcome sequence of the random coin tosses of A,

there are at most 2q − 1 possible internal states of A.

Proof. Consider the k-th step of A, where A queries the jk-th index of Vik for some

ik ∈ [s], jk ∈ [n], and k ∈ [q]. Note that i1 and j1 are functions of only the random

coins, and ik and jk are functions of the random coins, as well as Vi1 |j1 , . . . ,Vik−1
|jk−1

,

where 2 ≤ k ≤ q. Due to the 2k−1 possible values of Vi1 |j1 , . . . ,Vik−1
|jk−1

, there are

2k possible states of the algorithm A at Step k, for each 1 ≤ k ≤ q. Finally, the state of

A depending on the random coins and the values of Vi1 |j1 , . . . ,Viq |jq will decide the

final output. This implies that for any fixed set of outcomes of the random coin tosses

used by A, there can be a total of at most
q−1∑
i=0

2i = 2q − 1 internal states, each making

one query, as well as 2q final (non-query-making) states.

Now we proceed to present the non-adaptive algorithm A′ that simulates A by using

s samples and at most 2q queries.

Theorem 10.4 (Theorem 10.1 restated). Let P be any property that is ε-testable by

an adaptive algorithm using s samples and q queries. Then P can be ε-tested by a

non-adaptive algorithm using s samples and at most 2q − 1 queries, where s and q are

integers.

Proof. Let A be the adaptive algorithm that ε-tests P using s samples {V1, . . . ,Vs} and

q queries. Now we show that a non-adaptive algorithm A′ exists that uses s samples and

140

makes at most 2q−1 queries, such that the output distributions of A and A′ are identical

for any unknown distribution D.

The idea of A′ in a high level is to enumerate all possible internal steps of A, and

list all possible queries Q that might be performed by A. Note that Q depends on the

random coins used by A. We then query all the indices of Q non-adaptively, and finally

simulate A using the full information at hand, with the same random coins that were

used to generate Q. As A has query complexity q, the number of possible internal states

of A is at most 2q − 1, and the query complexity of A′ follows. Now we formalize the

above intuition below.

The algorithm A′ has two phases:

Phase 1:

(i) A′ first takes s samples V1, . . . ,Vs.

(ii) A′ now tosses some random coins (same as A) and determines the set of all pos-

sible indices Ji of Vi that might be queried by A, for every i ∈ [s]. The sets

of indices Ji’s are well defined after we fix the random coins, and follows from

Observation 10.3.

Thus at the end of Phase 1, A′ has determined s sets of indices J1, . . . , Js of the

vectors V1, . . . ,Vs such that
s∑
i=1

|Ji| ≤ 2q − 1. Now A′ proceeds to the second phase of

the algorithm.

Phase 2:

(i) For every i ∈ [s] and j ∈ Ji, query the j-th index of Vi, where Ji denotes the set of

indices of Vi that might be queried at the internal states of A, determined in Phase

1.

(ii) Simulate the algorithm A using the same random coins used in Phase 1, and report

ACCEPT or REJECT according to the output of A.

141

Note that the set of random coins that are used to determine J1, . . . , Js in Step (ii) of

Phase 1 of the algorithm are the same random coins that are used to simulate A in Step

(ii) of Phase 2. Thus the correctness of A′ follows from to the correctness of A along

with Observation 10.3.

10.3 Exponential separation between adaptive and non-

adaptive testers

Now we prove that the gap of Theorem 10.4 is almost tight, in the sense that there exists

a property such that the adaptive and non-adaptive query complexities for testing it are

exponentially separated.

Before proceeding to the proof, let us consider any property P of strings of length

n over the alphabet {0, 1}. Now we describe a related property 1P over distributions as

follows:

Property 1P: For any distribution D ∈ 1P , the size of the support of D is 1, and the

single string in the support of D satisfies P .

Let us first recall the following result from [GR22], which states that Õ(1
ε
) queries

are enough to ε-test whether any distribution has support size 1.

Lemma 10.5 (Restatement of Corollary 2.3.1 of [GR22]). There exists a non-adaptive

algorithm that ε-tests whether an unknown distribution D has support size 1 and uses

Õ(1
ε
) queries, for any ε ∈ (0, 1).

We now prove that the query complexity of ε-testing 1P is at least the query com-

plexity of ε-testing P , and can be at most the query complexity of ε
2
-testing of P , along

with an additional additive factor of Õ(1
ε
) for testing whether the distribution has support

size 1. The result is formally stated as follows:

142

Lemma 10.6. Let qN and qA denote the non-adaptive and adaptive query complexities

for ε-testing P , respectively. Similarly, let QN and QA denote the non-adaptive and

adaptive query complexities of ε-testing 1P , respectively. Then the following hold:

1. qA(ε) ≤ QA(ε) ≤ Õ(1
ε
) +O

(
qA(

ε
2
)
)

1.

2. qN(ε) ≤ QN(ε) ≤ Õ(1
ε
) +O

(
qN(

ε
2
)
)
.

Proof. We prove here (1), and omit the nearly identical proof of (2).

Proof of qA(ε) ≤ QA(ε): Consider an adaptive algorithm A that ε-tests 1P by using

QA(ε) queries. We construct an algorithm A′ that ε-tests P using the same number of

queries. Let V be the unknown string of length n, where we want to test whether V ∈ P
or V is ε-far from P .

Let us define an unknown distributionD′ (over the Hamming cube {0, 1}n) such that

we want to distinguish whether D′ ∈ 1P or D′ is ε-far from 1P . The distribution D′ is

defined as follows:

D′(X) =

 1 X = V

0 otherwise

Observe that V ∈ P if and only if D′ ∈ 1P . Similarly, it is not hard to see that V is

ε-far from P if and only if D′ is ε-far from 1P . We simulate the algorithm A by A′ as

follows: when A takes a sample, A′ does nothing, and when A queries an index i ∈ [n]

of any sample, A′ queries the index i of V. Finally, A′ provides the output received from

the simulation of A.

From the description, it is clear that A′ performs exactlyQA(ε) queries and is indeed

simulated by running A over D′.

Proof of QA(ε) ≤ Õ
(
1
ε

)
+O

(
qA(

ε
2
)
)
: Let us consider an adaptive algorithm A1 that

ε
2
-tests P using O

(
qA(

ε
2
)
)

queries to the unknown string X ∈ {0, 1}n, with success

1We are using O(·) as we are amplifying the success probability of the tester for the property P to
9/10 as compared to the usual success probability of 2/3.

143

probability at least 9
10

. Now we design an adaptive algorithm A′
1 that ε-tests 1P using

Õ
(
1
ε

)
+O

(
qA(

ε
2
)
)

queries.

Algorithm A′
1: Assume that D is the distribution that we want to ε-test for 1P . The

algorithm A′
1 performs the following steps:

(i) Run the tester corresponding to Lemma 10.5 to ε
20

-test whether D has support size

1, with success probability at least 9
10

. If the tester decides that D has support size

1, then go to the next step. Otherwise, REJECT.

(ii) Take one more sample fromD and let it be U ∈ {0, 1}n. Run algorithm A1 to ε
2
-test

P considering X = U as the unknown string. If A1 accepts, ACCEPT. Otherwise

REJECT.

Note that the query complexity for performing Step (i) is Õ(1
ε
), which follows from

Lemma 10.5. Additionally, the number of queries performed in Step (ii) is O
(
qA(

ε
2
)
)
,

which follows from the assertion of the lemma. Thus, the algorithm A′
1 performs Õ(1

ε
)+

O
(
qA(

ε
2
)
)

queries in total.

Now we will argue the correctness of A′
1. For completeness, assume that D ∈ 1P .

Let V ∈ {0, 1}n be the string such that D(V) = 1 and V ∈ P . Note that, by

Lemma 10.5, A′
1 proceeds to Step (ii) with probability at least 9

10
. In Step (ii), A′

sets U = V, and runs algorithm A1 to ε
2
-test P considering X = V as the unknown

string. Since V ∈ P , by the assumption on the algorithm A1, A′
1 accepts with proba-

bility at least 9
10

, given that A′
1 does not report REJECT in Step (i). Thus, by the union

bound, A′
1 accepts D with probability at least 4

5
.

Now consider the case where D is ε-far from 1P . If D is ε
20

-far from having support

size 1, A′
1 reports REJECT in Step (i) with probability at least 9

10
, and we are done. So,

assume that D is ε
20

-close to having support size 1. Then there exists a distribution D′

with support size 1, and the distance between D and D′ is at most ε
20

. Let us assume

that D′ is supported on the string V. By the Markov inequality, this implies that with

probability at least 4
5
, a string U sampled according D will be 9ε

20
-close to V.

144

(i) If V is 19ε
20

-close to P , using the triangle inequality, this implies that D is ε-close to

1P , which is a contradiction.

(ii) Now consider the case where V is 19ε
20

-far from P . Recall that with probability

at least 4
5
, the sample U taken at Step (ii) above is 9ε

20
-close to V. As we are

considering the case where V is 19ε
20

-far from P , using the triangle inequality, U

is ε
2
-far from P with the same probability. In this case, the algorithm will REJECT

in Step (ii), with probability at least 9
10

. Together, this implies that the algorithm

will REJECT the distribution D, with probability at least 7
10

.

In the following, we will construct the property PPal of strings over the alphabet

{0, 1, 2, 3}. It will then be encoded as a property of strings over {0, 1} by using two bits

per letter.

Property PPal: A string S of length n is in PPal if S = XY, where X is a palindrome

over the alphabet {0, 1}, and Y is a palindrome over the alphabet {2, 3}.

There is an exponential gap between the query complexities of adaptive and non-

adaptive algorithms to ε-test PPal. The result is stated as follows:

Lemma 10.7. There exists an adaptive algorithm that ε-tests PPal by making O(log n)

queries for any ε ∈ (0, 1). However, there exists an ε ∈ (0, 1) such that Ω(
√
n) non-

adaptive queries are necessary to ε-test PPal.

Proof. The lower bound proof (using Yao’s lemma), which we omit here, is nearly iden-

tical to the one from [AKNS99] (see Theorem 2 therein).

Let us assume that V is the string that we want to ε-test for PPal. The adaptive

algorithm to ε-test PPal uses binary search, and is described below:

(i) Use binary search for an index of V that has “value 1.5” (which is not present in the

input). This returns an index 0 ≤ i ≤ n, such that (a) Vi ∈ {0, 1} unless i = 0,

and (b) Vi+1 ∈ {2, 3} unless i = n.

145

(ii) Repeat O(1
ε
) times:

(a) Sample an index j ∈ [n] uniformly at random.

(b) If j ≤ i, then query Vj and Vi+1−j . REJECT if they are not both equal to the

same value in {0, 1}.

(c) Otherwise query Vj and Vn+i+1−j . REJECT if they are not both equal to the

same value in {2, 3}.

(iii) If the input has not been rejected till now, ACCEPT.

We first argue the completeness of the algorithm. Assume that V is a string such that

V ∈ PPal, and i is the index returned by Step (i) of the algorithm. As V = XY for

some palindrome X over {0, 1} and palindrome Y over {2, 3}, the index i will be equal

to |X|. This implies that the algorithm will ACCEPT V with probability 1.

Now consider the case where V is ε-far from PPal. We call an index j violating if it

does not satisfy the condition appearing either in Step (ii)(b) or Step (ii)(c) above, where

i is the index returned in Step (i). The number of violating indices is at least εn, because

otherwise we can change the violating indices such that the modified input is a string of

the form XY following the definition of PPal, where |X| = i. Since the loop in Step

(ii) runs for O(1
ε
) times, we conclude that with probability at least 2

3
at least one such

violating index will be found. So, the algorithm will REJECT V with probability at least
2
3
.

Now we are ready to formally state and prove the main result of this section.

Theorem 10.8 (Theorem 10.2 restated). There exists a property of distributions over

strings that can be ε-tested adaptively using O(log n) queries for any ε ∈ (0, 1), but

Ω(
√
n) queries are necessary for any non-adaptive algorithm to ε-test it for some ε ∈

(0, 1).

Proof. Consider property 1PPal . From Lemma 10.7, we know that qA(ε2) = O(log n),

for any fixed ε ∈ (0, 1). Using the upper bound of Lemma 10.6, we conclude that

QA(ε) = O(log n), for any fixed ε ∈ (0, 1), ignoring the additive Õ(1
ε
) term.

146

On the other hand, according to Lemma 10.7, qN(ε) = Ω(
√
n) for some ε ∈ (0, 1).

Thus, following Lemma 10.6, we conclude that QN(ε) = Ω(
√
n) holds for some ε ∈

(0, 1). Together, Theorem 10.8 follows.

Now we present a sketch of a proof of Proposition 7.6, which shows that for a

property to be constantly testable, it is not sufficient that the property has constant VC-

dimension, unless it is index-invariant as well.

Proposition 10.9 (Restatement of Proposition 7.6). There exists a non-index-invariant

property P such that any distribution D ∈ P has VC-dimension O(1) and the following

holds. There exists a fixed ε > 0, such that distinguishing whether D ∈ P or D is ε-far

from P , requires Ω(n) queries, where the distributions in the property P are defined

over the n-dimensional Hamming cube {0, 1}n.

Proof. Note that the VC-dimension of 1P is 0, where 1P is the property corresponding

to P as defined before. String properties which are hard to test, for which there is a fixed

ε > 0 such that ε-testing them requires Ω(n) queries, are known to exist. Examples are

properties studied in the work of Ben-Eliezer, Fischer, Levi and Rothblum [BFLR20],

and in the work of Ben-Sasson, Harsha and Raskhodnikova [BHR05]. Defining 1P for

such a property P provides us the example proving Proposition 10.9.

147

Chapter 11

Power of adaptivity for index-invariant

properties

11.1 Introduction

In this chapter, we prove that, unlike the case of non-index-invariant properties, for

index-invariant properties, the gap between the query complexities of adaptive and non-

adaptive testers can be at most quadratic, as stated in the following theorem.

Theorem 11.1 (Theorem 1.12 formalized). Let P be any index-invariant property that

is ε-testable by an adaptive algorithm using s samples and q queries. Then P can be

ε-tested by a non-adaptive algorithm using s samples and sq ≤ q2 queries, where s and

q are integers.

We will prove this theorem in Section 11.2. Later in Section 11.3, we also prove that

the above gap is almost tight, in the sense that there exists an index-invariant property

which can be ε-tested using Õ(n) adaptive queries, while Ω̃(n2) non-adaptive queries

are required to ε-test it.

Theorem 11.2 (Theorem 1.13 formalized). There exists an index-invariant property

PGap that can be ε-tested adaptively using Õ(n) queries for any ε ∈ (0, 1), while there

exists an ε ∈ (0, 1) for which Ω̃(n2) queries are necessary for any non-adaptive ε-tester.

149

11.2 Quadratic relation of adaptive and non-adaptive

testers

In this section, we prove Theorem 11.1, that is, there can be at most a quadratic gap be-

tween the query complexities of adaptive and non-adaptive algorithms for testing index-

invariant properties.

Theorem 11.3 (Restatement of Theorem 11.1). Let P be any index-invariant property

that is ε-testable by an adaptive algorithm using s samples and q queries. Then P can

be ε-tested by a non-adaptive algorithm using s samples and sq ≤ q2 queries, where s

and q are integers.

Proof. The main idea of the proof is to start with an adaptive algorithm A as stated

above, and then argue for another semi-adaptive algorithm A′ with sample complexity s

but query complexity qs, such that the output distributions of A and A′ are the same for

any unknown distribution D. Finally, we construct a non-adaptive algorithm A′′ such

that (i) the sample and query complexities of A′′ are the same as that of A′, and (ii) the

probability bounds of accepting and rejecting distributions depending on their distances

to P are preserved from A′ to A′′. Now we proceed to formalize this argument.

Let A be the adaptive algorithm that ε-tests P using s samples {V1, . . . ,Vs} and

q queries. Now we show that a two phase algorithm A′ exists that takes s samples

{V1, . . . ,Vs} and proceeds as follows:

Phase 1: In this phase, A′ queries in an adaptive fashion. If A queries the jk-th index

of Vik at its k-th step, for some ik ∈ [s] and jk ∈ [n], then we perform the following

steps:

(i) If A′ has queried the jk-th index of all the samples before this step, then we reuse the

queried value.

(ii) Otherwise, we query the jk-th index from all the samples {V1, . . . ,Vs}.

150

Phase 2: Let Q ⊂ [n] be the set of indices queried by A′ while running the q querying

steps of A. If |Q| < q, we arbitrarily pick t = q − |Q| distinct indices {j′1, . . . , j′t},

disjoint from the set of indices Q. We query the set of indices j′1, . . . , j
′
t from the entire

set of sampled vectors V1, . . . ,Vs.

The output (ACCEPT or REJECT) of A′ is finally set to that of A, and in particular

depends only on the answers to the queries made in the first phase.

Now we have the following observation regarding the query complexity of A′, which

will be used to argue the query complexity of the non-adaptive algorithm later.

Observation 11.4. A′ uses s samples and performs exactly qs queries. Moreover, for

any distribution D, the output distribution of A′ is the same as that of A.

Let us assume that A′ proceeds in q steps by querying indices ℓ1, . . . , ℓq ∈ [n] in

each of the s samples V1, . . . ,Vs (when the unknown distribution is D). Equivalently,

we can think that the algorithm proceeds in q steps, where in Step k (k ∈ [q]), we query

the ℓk-th index of {V1, . . . ,Vs}, such that ℓk depends on ℓ1, . . . , ℓk−1, where 2 ≤ k ≤ q.

Let us now consider an uniformly random permutation σ : [n] → [n] (unknown to

A′). Assume that the unknown distribution is Dσ instead of D. As P is index-invariant,

we can assume that the algorithm A′ runs on Dσ for q steps as follows. In Step k, A′

queries the σ(ℓk)-th index of each of the s samples, for k ∈ [q]. Now we have the

following observation regarding the distribution of the indices queried, which follows

from σ being uniformly random.

Observation 11.5. σ(ℓ1) is uniformly distributed over [n], and σ(ℓk) is uniformly dis-

tributed over [n] \ {σ(ℓ1), . . . , σ(ℓk−1)}, where 2 ≤ k ≤ q. Moreover, this holds even if

we condition on the values ℓ1, . . . , ℓk as well as σ(ℓ1), . . . , σ(ℓk−1).

Now the algorithm A′′ works as follows:

• First take a uniformly random permutation σ : [n] → [n].

• Run A′ over Dσ instead of D.

151

From the above description, it does not immediately follow that A′′ is a non-adaptive

algorithm. But from the description along with Observation 11.5, it follows that A′′ is

the same as the following algorithm:

• First take s samples V1, . . . ,Vs, and also pick a uniformly random non-repeating

sequence of q indices r1, . . . , rq ∈ [n].

• Run A′ such that, for every i ∈ [q], when A′ is about to query ℓi, query ri from all

samples instead. That is, we assume ri to be the value of σ(ℓi).

The sample complexity and query complexity of algorithm A′′ are s and qs, respec-

tively, which follows from Observation 11.4 and Observation 11.5. The correctness of

the algorithm follows from Observation 11.4 and Observation 11.5 along with the fact

that P is index-invariant. This completes the proof of Theorem 11.3.

11.3 Quadratic separation between adaptive and non-

adaptive testers

Preliminaries towards proving a quadratic separation result

In this subsection, we present some preliminary results required to prove that Theo-

rem 7.9 is almost tight, that is, there exists an index-invariant property for which there

is a nearly quadratic gap between the query complexities of adaptive and non-adaptive

testers. The result is formally stated as follows.

Theorem 11.6 (Restatement of Theorem 11.2). There exists an index-invariant prop-

erty PGap that can be ε-tested adaptively using Õ(n) queries for any ε ∈ (0, 1), while

there exists an ε ∈ (0, 1) for which Ω̃(n2) queries are necessary for any non-adaptive

ε-tester.

In what follows throughout this section, we assume that the integer n is of the form

n = 2l for some integer l, and that k = O(l) is another integer. We denote vectors

152

in {0, 1}N by capital bold letters (for example X ∈ {0, 1}N) and vectors in {0, 1}n by

small bold letters (for example x ∈ {0, 1}n). For two vectors X,Y ∈ {0, 1}N , we will

use δH(X,Y) = N · dH(X,Y) to denote the absolute Hamming distance between X

and Y.

To construct the property PGap (as stated in Theorem 11.6), we define two encodings

SE : {0, 1}ℓ → {0, 1}k and GE : [n]m → [n]n 1. The encodings GE and SE follow from

the construction of a Probabilistically Checkable Unveiling of a Shared Secret (PCUSS)

in [BFLR20]. We can also construct such a function GE using the Reed-Solomon code,

where we will assume that n is a prime power and use polynomials of degree m−1 over

the field GL(n) for m = Θ(n) 2.

Function SE: We will use a function SE of the form SE : {0, 1}l × {0, 1} → {0, 1}k,

where l and k are the integers defined above. In fact, SE takes an integer i ∈ [n] in its

Boolean encoding as an l bit Boolean string and a “secret” bit a ∈ {0, 1}, and will output

a Boolean string of length k. SE will have the following properties for some constant

ζ ∈ (0, 1/2).

(i) Let i, i′ ∈ [n] be two integers encoded as binary strings of length l 3, and a, a′ ∈
{0, 1}. If (i, a) ̸= (i′, a′), then δH(SE(i, a), SE(i′, a′)) ≥ ζ · k.

(ii) Let a ∈ {0, 1} be a fixed bit, and suppose that i is an integer chosen uniformly at

random from [n]. Then for any set of indices I ⊂ [k] such that |I| ≤ ζ · k, the

restriction SE(i, a) |I is uniformly distributed over {0, 1}|I|.

Function GE: For our construction, we will use another function GE of the form

GE : [n]m → [n]n, where n,m ∈ N with the following properties for the same constant

ζ ∈ (0, 1/2) as above.

1SE stands for Secret Encoding, and GE stands for General Encoding.
2GL(n) stands for the finite field with n elements.
3Binary strings of length log n can actually encode only integers from {0, . . . , n − 1}, so we use the

encoding of 0 for the value n.

153

(i) Let z, z′ ∈ [n]m be two strings such that z ̸= z′. For any two such strings z and z′,

δH(GE(z),GE(z′)) = |{i : GE(z)i ̸= GE(z′)i}| ≥ ζ · n.

(ii) Consider a string z ∈ [n]m chosen uniformly at random. For any set of indices

I ⊂ [n] such that |I| ≤ ζ · n, GE(z) |I is uniformly distributed over [n]|I|.

From now on, we will use the following notation in this subsection: Let n ∈ N
be such that n = 2l for some integer l, k = O(l) and ζ ∈ (0, 1/2) as above, b =

⌊log(⌈log kn⌉)⌋ + 1, N = 1 + b + kn and α = 1/ log n. Note that in particular

N = O(n log n). For a vector X ∈ {0, 1}N and a permutation π : [N] → [N],

Xπ denotes the vector obtained from X by permuting the indices of X with π, that

is, Xπ = (Xπ(1), . . . ,Xπ(N)).

Let B be the sequence of integers B = {2, . . . , b + 1}, and for every j ∈ [n], let Cj
denote the sequence of integers Cj = {b+2+k(j−1), . . . , b+1+kj}. For a sequence

of integers A and a vector X, we denote by X |A the vector obtained by projecting X

onto the set of indices of A preserving the sequence order. For a sequence A ⊆ [N] and

a permutation π : [N] → [N], we denote by π(A) the sequence obtained after permuting

every element of A with respect to the permutation π, that is, if A = (a1, . . . , al), then

π(A) = (π(a1), . . . , π(al)). In particular, we have Xπ |A= X |π(A). By abuse of

notation and for simplicity, for a set of integers A and a vector X, we denote by X |A
the vector obtained by projecting X onto the set of indices of A, whenever the ordering

in which we consider the indices in A will be clear from the context 4.

In the following, we use string notation. For example, 1k0k denotes the vector in

{0, 1}2k whose first k coordinates are 1 and whose last k coordinates are 0. Now we

formally define the notion of encoding of a vector which will be crucially used to define

PGap.

Definition 11.7 (Encoding of a vector). Let n, k, b ∈ N, N = 1 + b + kn, and x =

(x1, . . . ,xn) ∈ {0, 1}n and Y ∈ {0, 1}N be two vectors. Y is said to be an encoding of

x with respect to the functions SE : {0, 1}l ×{0, 1} → {0, 1}k and GE : [n]m → [n]n if

the following hold:
4A common scenario is when the indexes of A are considered as a monotone increasing sequence.

154

(i) The first index of Y is 0.

(ii) Y |B is the all-1 vector.

(iii) Y |[N]\{1}∪B is of the form SE(GE(z)1,x1) . . . SE(GE(z)n,xn) for some string

z ∈ [n]m. In other words, Y |Cj= SE(GE(z)j,xj) for every j ∈ [n].

For simplicity, we will denote this encoding by FE, that is, FE : [n]m × {0, 1}n →
{0, 1}N is the function 5 such that FE(z,x) = 0(1b)SE(GE(z)1,x1) . . . SE(GE(z)n,xn)

for z ∈ [n]m and x = (x1, . . . ,xn) ∈ {0, 1}n. We also say that X ∈ {0, 1}N is a valid

encoding of some x ∈ {0, 1}n, if there exists some z ∈ [n]m for which X = FE(z,x).

The image of FE will be called the set of all valid encodings.

Now let us infer two properties of the function FE, which will be crucial to our

proofs, as stated in the following two claims. These properties of FE are analogous to

the properties of SE and GE. As FE is formed by combining SE and GE, the proofs of

these observations use their respective properties.

The following observation, particularly Items (i) and (ii), will allow us to prove that

certain distributions are indeed far from the property PGap (to be defined later) in the

EMD metric. Item (iii) will be useful to prove the soundness of our adaptive algorithm

in Subsection 11.3.2, and in particular in Lemma 11.30.

Observation 11.8 (Distance properties of FE). Let FE : [n]m×{0, 1}n → {0, 1}N be

the function from Definition 11.7. Then FE has the following properties:

(i) Let x,x′ ∈ {0, 1}n be any two strings and z, z′ ∈ [n]m be two vectors such that

z ̸= z′. Then δH(FE(z,x),FE(z′,x′)) ≥ ζ2 ·N/2 holds.

(ii) Let z, z′ ∈ [n]m be any two strings, and x,x′ ∈ {0, 1}n be two other strings such

that x ̸= x′. Then δH(FE(z,x),FE(z′,x′)) ≥ ζk · δH(x,x′).

(iii) Let x,x′ ∈ {0, 1}n be two strings and z ∈ [n]m be a vector. Then we have

δH(FE(z,x),FE(z,x
′)) ≤ k · δH(x,x′). Moreover, dH(FE(z,x),FE(z,x′)) ≤

dH(x,x
′) holds.

5FE stands for Final Encoding.

155

Proof. We prove each item separately below.

(i) Following the properties of GE (Property (i)), for two strings z, z′ ∈ [n]m such that

z ̸= z′, we can say that δH(GE(z),GE(z′)) ≥ ζ ·n ≥ ζN/2k. That is, the number

of indices j ∈ [n] such that GE(z)j ̸= GE(z′)j , is at least ζN/2k. For every index

j ∈ [n] such that GE(z)j ̸= GE(z′)j , δH(SE(GE(z)j,xj), SE(GE(z′)j,x
′
j)) ≥

ζ · k holds. This is due to Property (i) of SE. Hence,

δH(FE(z,x),FE(z
′,x′)) ≥

∑
j∈[n]:zj ̸=z′j

δH(SE(GE(z)j,xj), SE(GE(z)j,x
′
j))

≥ ζN/2k · ζk = ζ2 ·N/2.

(ii) Consider two strings x,x′ ∈ {0, 1}n such that x ̸= x′. Using Property (i) of SE,

we know that δH(SE(GE(z)j,xj), SE(GE(z)j,x
′
j)) ≥ ζ · k for every j for which

xj ̸= x′
j . Note that the number of such indices j is δH(x,x′). Summing over

them, we have the result.

(iii) Consider any two strings x,x′ ∈ {0, 1}n. Observe that

δH(FE(z,x),FE(z,x
′)) =

∑
j∈[n]

δH(SE(GE(z)j,xj), SE(GE(z)j,x
′
j)).

Note that δH(SE(GE(z)j,xj), SE(GE(z)j,x
′
j)) is at most k for every j ∈ [n].

Moreover, δH(SE(GE(z)j,xj), SE(GE(z)j,x
′
j)) = 0 for every j ∈ [n] with xj =

x′
j . Since the number of indices j such that xj ̸= x′

j is δH(x,x′), we conclude the

following:

δH(FE(z,x),FE(z,x
′)) ≤ k · δH(x,x′).

Note that this immediately implies dH(FE(z,x),FE(z,x′)) ≤ dH(x,x
′).

The following lemma will provide us a way to construct distributions that cannot be

easily distinguished using non-adaptive queries (following a uniformly random index-

permutation which we will deploy).

156

Lemma 11.9 (Projection property of FE). Consider a fixed vector x ∈ {0, 1}n, and

let z ∈ [n]m be a string chosen uniformly at random. For any set of indices Q ⊆ [N]

such that |Q| ≤ ζ · N/2k and |Q ∩ Cj| ≤ ζ · k for every j ∈ [n], the restriction of

FE(z,x) |Q\[b+1] is uniformly distributed over {0, 1}|Q\[b+1]| 6.

Proof. For the set of indices Q, consider the set J = {j : Q ∩ Cj ̸= ∅}. From the

statement of the lemma, we know that |Q ∩ Cj| ≤ ζ · k for every j ∈ J . Noting that

|J | ≤ |Q| ≤ ζ · n, if we consider the restriction GE(z) |J , following Property (ii) of the

function GE, we know that GE(z) |J is uniformly distributed over [n]|J |.

Now when we call SE(ij,xj) with ij ∈ [n] obtained from GE(z) |J , following the

above argument, we can say that ij has been chosen uniformly at random from [n] (and

independently from the other ij′). Since |Q ∩ Cj| ≤ ζ · k, applying Property (ii) of the

function SE, we know that the corresponding restriction of SE(ij,xj) will be uniformly

distributed over {0, 1}|Q∩Cj |. As FE(z,x) = 0(1b)SE(GE(z)1,x1) . . . SE(GE(z)n,xn),

combining the above arguments, we conclude that FE(z,x) |Q\[b+1] is uniformly dis-

tributed over {0, 1}|Q\[b+1]|.

Now we are ready to formally define the property, first constructing a non-index-

invariant version to be used in the next index-invariant definition.

Property P0
Gap: A distribution D over {0, 1}N is in P0

Gap if and only if D satisfies the

following conditions:

(i) D(U) = α, where U = 10N−1 is the indicator vector for the index 1.

(ii) Consider the set of vectors S = {V1, . . . ,Vb} in {0, 1}N such that for every i ∈ [b],

the i-th vector Vi is of the form 1i+10N−1−i. Note that Vi |B= 1i0b−i for B =

{2, . . . , b+ 1}. We require that D(Vi) = α/b for every i ∈ [b].

(iii) Consider the set of vectors T = {W0, . . . ,W⌈log kn⌉−1} (disjoint from S) in {0, 1}N

such that for every Wi ∈ T , Wi is of the form 0(b(i))(02i12i)kn/2
i+1 , where b(i)

6Recall that the restriction FE(z,x) |[b+1] is always the vector 01b.

157

denotes the length b binary representation of i. 7 Note that for i = b + 2 + j,

with 0 ≤ j ≤ kn − 1, the sequence (W0)i, . . . , (W(⌈log kn⌉−1))i holds the binary

representation of j. Also, note that there is an one-to-one correspondence between

Wi |B and Wi |[N]\{B}∪{1}. We require that D(Wi) = α/|T | for every Wi ∈ T .

(iv) Supp(D) \ ({U} ∪ S ∪ T) consists of valid encodings of at most n vectors from

{0, 1}n with respect to the functions SE : {0, 1}l × {0, 1} → {0, 1}k and GE :

[n]m → [n]n, for the integers l,m, k ∈ N as defined in Definition 11.7. That is,

there exist vectors x1, . . . ,xn ∈ {0, 1}n for which Supp(D) \ ({U} ∪ S ∪ T) ⊆
{FE(z,xi) : z ∈ [n]m, i ∈ [n]}. Note that for D to be a distribution, we must have

D(Supp(D) \ ({U} ∪ S ∪ T)) = 1− 3α.

Property PGap: A distribution D over {0, 1}N is said to be in the property PGap if Dπ

is in P0
Gap for some permutation π : [N] → [N].

Remark 11.1 (Intuition behind the definition of PGap). If a distribution D is in P0
Gap,

then we can easily check (by querying the indexes in B) whether a sample from D

would be equal to FE(z,x) for some z ∈ [n]m and x ∈ {0, 1}n. In that case, individual

bits of x can be decoded by querying the appropriate Cj and then passed to a tester of

distributions over {0, 1}n.

On the other hand, if we take a uniformly random permutation of such a distribution

D, which keeps it in PGap (though no longer in P0
Gap), a non-adaptive algorithm will

need many queries to capture sufficiently many bits from any Cj , and this will enable us

to fully hide the identity of x if fewer queries are performed.

By contrast, an adaptive tester will use relatively few samples that are queried in

their entirety to obtain the (permutations of the) special vectors in Items (i) to (iii) of

the definition of P0
Gap, from which it will be able to fully learn the index-permutation

applied to the distribution, and continue to successfully decode individual bits. A few

7If kn/2i+1 is not an integer, we trim the rightmost copy of 02i12i so that the total length of
“(02i12i)kn/2

i+1

” is exactly kn.

158

further samples queried in their entirety will ensure that there is very little total weight

on vectors that are neither special vectors nor equal to FE(z,x) for some z ∈ [n]m and

x ∈ {0, 1}n.

Known useful results about support estimation: Now we state a lemma which will

be required later to describe the adaptive tester for PGap. Informally, it says that whether

a distribution D over {0, 1}n has support size s or is ε-far from any such distribution,

can be tested by taking Õ(s) samples from D, and performing Õ(s) queries on them.

Lemma 11.10 (Support size estimation, Theorem 1.9 and Corollary 2.3 of [GR22]

restated). There exists an algorithm SUPP-EST(s, ε) that uses Õ(s/ε2) queries to an

unknown distribution D defined over {0, 1}n, and with probability at least 9
10

distin-

guishes whether D has at most s elements in its support or D is ε-far from all such

distributions with support size at most s.

We will also use a lower bound on the support size estimation problem to prove the

lower bound on non-adaptive testers for testing PGap. Informally speaking, given a dis-

tribution D over {1, . . . , 2n}, in order to distinguish in the traditional (non-huge-object)

model whether the size of the support of D is n, or D is far from all such distributions,

Ω(n
logn

) samples are necessary. More formally, we have the following theorem.

Theorem 11.11 (Support Estimation Lower bound, Corollary 9 of [VV10] restated).

There exist two distributions DSupp
yes and DSupp

no over distributions over {1, . . . , 2n}, and

an η ∈ (0, 1/8) such that the following holds:

(i) The probability mass of every element in the support of DSupp
yes as well as DSupp

no is a

multiple of 1/2n.

(ii) DSupp
yes is supported over distributions whose support size is n.

(iii) DSupp
no is supported over distributions whose support size is at least (1 + 2η)n, and

in particular are η-far in variation distance from any distribution defined over

{1, . . . , 2n} whose support size is (1 + 2η)n.

159

(iv) If a sequence of o(n
logn

) samples from a distribution are drawn according to either

DSupp
yes or DSupp

no , the resulting distributions over the sample sequences are 1/4-

close to each other.

We present an adaptive algorithm to test PGap in Subsection 11.3.2 and we prove

the lower bound for non-adaptive testers in Subsection 11.3.3. In Subsection 11.3.1, we

describe a subroutine to determine the unknown permutation that will be used in our

adaptive algorithm in Subsection 11.3.2.

11.3.1 Determining the permutation π

Here we design an algorithm that, given a distribution D ∈ PGap, can learn with high

probability the permutation π for which Dπ ∈ P 0
Gap.

The crux of the algorithm is that if D ∈ PGap, then there exist U′ = Uπ ∈ {0, 1}n,

S ′ = Sπ = {V′
i = (Vi)π : i ∈ [b]} and T ′ = Tπ = {W′

j = (Wj)π : j ∈ {0} ∪
[⌈log kn⌉]−1} in the support of D such that D(U′) = α, D(V′

i) = α/b for every i ∈ [b]

and D(W′
j) = α/⌈log kn⌉. Note that U, S and T are as defined in the property P0

Gap.

The main observation is that, if we are given the set of special vectors {U′}∪S ′∪T ′,

then we can determine the permutation π. Our algorithm can find U′,S ′ and T ′ with high

probability, if they exist, by taking O(log2N/α) = O(log2 n/α) samples and reading

them in their entirety. This is due to the fact that the probability mass of every vector in

the set of special vectors is at least Ω(α/ log n).

The algorithm is described in the following subroutine FIND-PERMUTATION (see

Algorithm 11.1) 8.

Let us start by analyzing the query complexity of FIND-PERMUTATION.

Lemma 11.12 (Query complexity of FIND-PERMUTATION). The query complexity of

the above defined FIND-PERMUTATION is Õ(N).

8This algorithm is not adaptive in itself, but its output is used adaptively in the testing algorithm
described later.

160

Algorithm 11.1: FIND-PERMUTATION

Input: Sample and Query access to a distribution D over {0, 1}N .
Output: Either a permutation π : [N] → [N], or FAIL.

(i) First take a multi-set X of O(log2N/α) samples from D, and query all the entries
of the sampled vectors of X to know the vectors of X completely.

(ii) Find the set of distinct vectors in X that have exactly one 1. If no such vector exists
or there is more than one such vector, FAIL. Otherwise, denote by U′ the vector
that has exactly one 1, and denote the corresponding index by i∗. Set π(i∗) = 1,
and proceed to the next step.

(iii) Find the set of distinct vectors S ′ ⊆ X \ {U′} such that every vector in S ′ has 1 at
the index i∗ and has at least another 1 among other indices. If no such vector
exists, or |S ′| ≠ b, FAIL. Otherwise, if the vectors of S ′ form a chain V′

1, . . . ,V
′
b,

where V′
j has exactly j + 1 many 1, then set π(ij) = j + 1, where ij is the index

where V′
j has 1, but V′

j−1 has 0 there, for every j ∈ [b] (denoting V′
0 = U′ for

the purpose here). Also, set B′ = (i1, . . . , ib). If S ′ does not form a chain
V′

1, . . . ,V
′
b as mentioned above, FAIL.

(iv) Let T ′ ⊆ X be the set of distinct vectors such that every vector in T ′ has 0 at the
index i∗, and does not have 1 in all indices of B′. If no such vector exists, FAIL.
For every j, denote by W′

j the vector in T ′ for which W′
j |B′= b(j), where b(j)

denotes the binary representation of j. For every j ∈ {0} ∪ [⌈log kn⌉ − 1], if
either there are no vectors W′

j ∈ T ′ or there is more than one distinct vector with
W′

j |B′= b(j), FAIL. Also, if there is any vector in W′
j ∈ T ′ such that

W′
j |B′= b(j) for log kn ≤ j < 2b − 1, FAIL.

(v) For any i ∈ [N] \ ({i∗} ∪B′), let li be the integer with binary representation
(W′

0)i, . . . , (W
′
⌈log kn⌉−1)i. Set π(i) = b+ 2+ li for every i ∈ [N] \ ({i∗} ∪B′).

If π is not a permutation of [N], FAIL.

(vi) Take another multi-set X ′ of O(log2N/α) samples from D, and query all the
entries of the sampled vectors of X ′ to know the vectors of X ′ completely. Let Y
be a set of vectors in X ′ such that Y = {Z ∈ X ′ : Z |{i∗}∪B′ ̸= 01b}. If
|Y| / |X ′| > 4α, FAIL. Otherwise, output π.

161

Proof. Note that FIND-PERMUTATION takes a multi-set X of O(log2N/α) samples

from D in Step (i), and queries them completely. So, FIND-PERMUTATION performs

O(N log2N/α) queries in Step (i). FIND-PERMUTATION does not perform any new

queries in Step (ii), Step (iii), Step (iv) and Step (v). Finally, FIND-PERMUTATION

takes another multi-set X ′ of O(log2N/α) samples from D and queries them com-

pletely, similar to Step (i). Recalling that α = 1/ log n, the query complexity of FIND-

PERMUTATION is Õ(N) = Õ(n) in total.

Now we proceed to prove the correctness of FIND-PERMUTATION.

Lemma 11.13 (Guarantee whenD ∈ PGap). IfD is a distribution defined over {0, 1}N

such that D ∈ PGap, then with probability at least 9/10, FIND-PERMUTATION reports

the permutation π such that Dπ ∈ P0
Gap.

We prove the above lemma by a series of intermediate lemmas. In the following

lemmas, we consider U, S and T as per the definition of P0
Gap. Also, consider the

permutation π such that Dπ ∈ PGap.

Lemma 11.14 (Correctly finding π−1(1)). With probability at least 1 − 1/N3, X will

contain the vector U′ for which U′
π = U, and i∗ = π−1(1) will be identified correctly.

Moreover, FIND-PERMUTATION proceeds to Step (iii).

Proof. By the definition of P0
Gap, the vector U′ is the only vector in the support of D

containing a single 1. Since D(U′) = D(Uπ−1(1)) = α, and we are taking |X | samples

from D, the probability that U′ will not appear in X is at most (1− α)|X| ≤ 1
N3 . Thus,

with probability at least 1− 1
N3 , U′ ∈ X and FIND-PERMUTATION in Step (ii) proceeds

to the next step.

Lemma 11.15 (Correctly findingB′ = π−1(B)). With probability at least 1−1/N3, the

algorithm FIND-PERMUTATION will correctly identify V′
1, . . . ,V

′
b for which V′

i,π =

Vi, and B′ = π−1(2), . . . , π−1(b+ 1) will be identified correctly as well. Moreover,

FIND-PERMUTATION proceeds to Step (iv).

162

Proof. Let V′
1, . . . ,V

′
b denote the vectors for which V′

i,π = Vi for every i. Note that

these are the only vectors outside U′ in the support of D that have 1 at the index i∗.

As D(V′
i) = α

b
, the probability that V′

i does not appear in X is at most (1 − α
b
)|X|.

Since |X | = O(log2N/α) and b = O(log log kn), the probability that V′
i ∈ X is at

least 1 − 1
N4 . Using the union bound over all the vectors of S ′, with probability at least

1 − 1/N3, we know that all of these vectors are in X , in which case they are identified

correctly, so B′ is identified correctly as well, and FIND-PERMUTATION in Step (iii)

proceeds to the next step.

Lemma 11.16 (Identifying π−1(b+2), . . . , π−1(N)). Let W′
1, . . . ,W

′
⌈log kn⌉−1 denote

the vectors for which W′
j,π = Wj for every j. With probability at least 1 − 1/N3,

all these vectors appear in X , in which case they are identified correctly, and so are

π−1(b+ 2), . . . , π−1(N). Moreover, FIND-PERMUTATION proceeds to Step (vi).

The proof of the above lemma is similar to the proof of Lemma 11.15 and is omitted.

Note that from Lemma 11.14, Lemma 11.15 and Lemma 11.16, we know that with prob-

ability at least 1−o(1), the algorithm FIND-PERMUTATION has correctly determined the

permutation π and proceeded to Step (vi). We will finish up the proof of Lemma 11.13

using the following lemma.

Lemma 11.17. The probability that FIND-PERMUTATION outputs FAIL in Step (vi) (in-

stead of outputting π) is at most 1/N3.

Proof. As D ∈ PGap, from the description of the property, we know that D({U′}∪S ′∪
T ′) = 3α. As |X ′| = O(log2N/α), using the Chernoff bound (Lemma 2.11), we have

the result.

Combining the above lemmas, we conclude that with probability at least 9/10, the

algorithm FIND-PERMUTATION outputs a correct permutation π, completing the proof

of Lemma 11.13.

To conclude this section, we show that with high probability, we will not output π

for which too much weight is placed outside the “encoded part” of the distribution.

163

Lemma 11.18. For any distribution D (regardless of whether D is in PGap or not),

the probability that FIND-PERMUTATION outputs a permutation π for which D({X :

X |{i∗}∪B′= 01b}) ≤ 1− 5α is at most 1/10.

Proof. Recall the set of vectors Y as defined in Step (vi) of FIND-PERMUTATION: Y =

{Z ∈ X ′ : Z |i∗∪B′ ̸= 01b}, where X ′ is the multi-set of (new) samples obtained in Step

(vi) of FIND-PERMUTATION. Consider a distribution D such that D({X : X{i∗}∪B′ =

01b}) ≤ 1 − 5α. This implies that E [|Y| / |X ′|] ≥ 5α. As |X ′| = O(log2N/α),

using the Chernoff bound (Lemma 2.11), we obtain that with probability at least 9/10,

the algorithm FIND-PERMUTATION outputs FAIL in Step (vi), and does not output any

permutation π. This completes the proof.

11.3.2 The upper bound on adaptive testing for property PGap

In this subsection, we design the adaptive tester for the property PGap. Given a distri-

bution D over {0, 1}N , with high probability, ALG-ADAPTIVE outputs ACCEPT when

D ∈ PGap, and outputs REJECT when D is far from PGap. The formal adaptive algo-

rithm is presented in ALG-ADAPTIVE (see Algorithm 11.2). Note that it has only two

adaptive steps.

In the first adaptive step, our tester ALG-ADAPTIVE starts by calling the algorithm

FIND-PERMUTATION (as described in Subsection 11.3.1) whose query complexity is

Õ(n). IfD ∈ PGap, with high probability, FIND-PERMUTATION returns the permutation

π such that Dπ ∈ P0
Gap. Once π is known, when we obtain a sample X from D, we can

consider it as Xπ from Dπ. Also, from the structure of the vectors in the support of

the distributions in P 0
Gap, we can decide whether Xπ is a special vector, that is, Xπ ∈

{U} ∪ S ∪ T or Xπ is an encoding vector, that is, Xπ = FE(z,x) for some z ∈ [n]m

and x ∈ {0, 1}n. Observe that, in the later case, we can decode any bit of x (say xj) by

finding Xπ projected into Cj , which can be done by performing O(log n) queries.

As the second adaptive step, our algorithm asks for a sequence Y of O(n/ε) samples

from D, that is, from Dπ. Let Y ′ ⊆ Y be the sequence of encoding vectors in Y . We

now call SUPP-EST(Y ′, ε/3) (from Lemma 11.10), and depending on its output, ALG-

164

ADAPTIVE either reports ACCEPT or REJECT. Note that we can execute every query by

SUPP-EST(Y ′, ε/3), by performing O(log n) queries to the corresponding sample in Y ′

as discussed above.

When D ∈ PGap (that is, Dπ ∈ P0
Gap for the permutation π), the set of encod-

ing vectors in Dπ is the encoding of at most n vectors in {0, 1}n. So, in that case,

ALG-ADAPTIVE reports ACCEPT with high probability. Now consider the case where

D is ε-far from PGap. If ALG-ADAPTIVE has not rejected D before calling SUPP-

EST(Y ′, ε/3), we will show that the distribution over {0, 1}n induced by the vectors

decoded from the encoding vectors in Dπ is ε/3-far from having support size n. Then,

ALG-ADAPTIVE will still reject D with high probability.

Let us first discuss the query complexity of ALG-ADAPTIVE.

Lemma 11.19 (Query complexity of ALG-ADAPTIVE). The query complexity of the

adaptive tester ALG-ADAPTIVE for testing the property PGap is Õ(N) = Õ(n).

Proof. Note that ALG-ADAPTIVE calls the algorithm FIND-PERMUTATION in Step (i).

Following the query complexity lemma of FIND-PERMUTATION (Lemma 11.12), we

know that FIND-PERMUTATION performs Õ(N) queries.

For every sample taken in Step (ii), the sampled vectors of the multi-set X are queried

completely. Since we take O(1/ε) samples, this step requires O(N/ε) = Õ(n/ε)

queries in total.

Then in Step (iii), ALG-ADAPTIVE takes a multi-set Y of O(n/ε) samples, and

queries for the indices in {i∗}∪B′ to get the vectors in Y ′, which takes O(n log log kn/ε)

queries. Finally, in Step (iv), ALG-ADAPTIVE calls the algorithm SUPP-EST, which

performs Õ(n) queries (following Lemma 11.10), each of them simulated by O(log n)

queries to some Yi |C′
j
. Thus, in total, ALG-ADAPTIVE performs Õ(N) = Õ(n)

queries.

Now we prove the correctness of ALG-ADAPTIVE. We will start with the complete-

ness proof.

Lemma 11.20 (Completeness of ALG-ADAPTIVE). Let D be a distribution defined

165

Algorithm 11.2: ALG-ADAPTIVE

Input: Sample and Query access to a distribution D over {0, 1}N , and a
parameter ε ∈ (0, 1).

Output: Either ACCEPT or REJECT.

(i) Call FIND-PERMUTATION. If FIND-PERMUTATION returns FAIL, REJECT.
Otherwise, let π be the permutation returned by FIND-PERMUTATION. Denote
for convenience i∗ = π−1(1), B′ = π−1(B), and C ′

j = π−1(Cj) for every j ∈ [n].

(ii) Take a multi-set X of O(1/ε) samples from D, and query all the entries of the
sampled vectors of X to know the vectors of X completely. If there is any vector
X for which X |{i∗}∪B′= 01b (according to the permutation π obtained from Step
(i)) for which Xπ is not in the image of FE (i.e. it is not a valid encoding of any
vector in {0, 1}n), REJECT. Otherwise, proceed to the next step.

(iii) Take a sequence of samples Y such that |Y| = O(n/ε) from D and construct the
sequence of vectors Y ′ such that Y ′ = {Y ∈ Y : Y |{i∗}∪B′= 01b} by querying
the indices corresponding to {i∗} ∪B′.

(iv) Call SUPP-EST(Y ′, ε/3) (from Lemma 11.10), where a query to an index j is
simulated by querying the indices of C ′

j and decoding the obtained vector with
respect to to SE (that is, checking whether the restriction of the queried vector to
C ′
j is equal to SE(i, 0) for some i, or equal to SE(i, 1) for some i). REJECT if any

of the following conditions hold:

(a) |Y ′| / |Y| ≤ 1/2 (due to the absence of sufficiently many samples in Y ′ to
apply SUPP-EST).

(b) SUPP-EST(Y ′, ε/3) queries an index j from some Yi corresponding to an
invalid encoding of Yi |C′

j
(that is, when Yi |C′

j
is not in the image of SE).

(c) SUPP-EST(Y ′, ε/3) outputs REJECT.

Otherwise, ACCEPT.

166

over {0, 1}N . If D ∈ PGap, then the algorithm ALG-ADAPTIVE will output ACCEPT

with probability at least 2/3.

Proof. Consider a distribution D ∈ PGap. From the completeness lemma of FIND-

PERMUTATION (Lemma 11.13), we infer that FIND-PERMUTATION returns the correct

permutation π in Step (i), with probability at least 9/10. Then, by the definition of PGap,

the algorithm ALG-ADAPTIVE can never encounter any samples with invalid encodings

in Step (ii) which could cause it to REJECT. Thus, with probability at least 9/10, the

algorithm proceeds, with the correct permutation π, to Step (iii) and Step (iv).

As D ∈ PGap, D({U′} ∪ S ′ ∪ T ′) = 3α. Since |Y| = O(n/ε), using the Chernoff

bound (Lemma 2.12 (ii)), we can say that, with probability at least 9/10, |Y ′| / |Y| ≥
1/2. Moreover, as the vectors in Y ′ are valid encodings with respect to the function FE

of at most n vectors from [2n], following the support estimation upper bound lemma

(Lemma 11.10), we obtain that SUPP-EST outputs ACCEPT with probability at least

9/10. Combining these, we conclude that ALG-ADAPTIVE outputs ACCEPT with prob-

ability at least 2/3.

Now we prove that whenD is ε-far from PGap, ALG-ADAPTIVE will output REJECT

with probability at least 2/3.

Lemma 11.21 (Soundness of ALG-ADAPTIVE). Let ε ∈ (0, 1) be a proximity parame-

ter. Assume that D is a distribution defined over {0, 1}N such that D is ε-far from PGap.

Then ALG-ADAPTIVE outputs REJECT with probability at least 2/3.

From the description of ALG-ADAPTIVE (Algorithm 11.2), if the tester reports RE-

JECT before executing all the steps of SUPP-EST(Y ′, ε/3) in Step (iv), then we are done.

So, let us assume that ALG-ADAPTIVE executes all the steps of SUPP-EST(Y ′, ε/3).

Let Y ′ be the set of samples from a distribution D# over {0, 1}n as it is presented to

SUPP-EST(Y ′, ε/3). Note that D# is unknown and we are accessing D# indirectly via

decoding samples from D over {0, 1}N . From the correctness SUPP-EST(Y ′, ε/3), we

will be done with the proof of Lemma 11.21 by proving the following lemma.

167

Lemma 11.22 (Property of the decoded distribution). D# is ε/3-far from having

support size at most n.

We prove the above lemma using a series of claims. Let D be a distribution which

is ε-far from PGap, and V denote the set {X ∈ Supp(D) : X |{i∗}∪B′= 01b}, and let us

define U = Supp(D) \ V . Let us start with the following observation.

Observation 11.23. D(U) ≤ 5α, unless the algorithm ALG-ADAPTIVE has rejected

with probability at least 1− 1/N3 in Step (i).

Proof. Since ALG-ADAPTIVE in Step (i) invokes the algorithm FIND-PERMUTATION,

this follows immediately from Lemma 11.18.

Let π be the permutation returned by FIND-PERMUTATION. Now assume Vinv ⊆ V
denotes the following set of vectors:

Vinv = {X ∈ V : Xπ ̸= FE(z,x) for all z ∈ [n]m,x ∈ {0, 1}n}

For every vector V ∈ Vinv, let Γ′
V = {j ∈ [n] : V |C′

j
is not in the image of SE}

denotes the set of indices in [n] of chunks of all the “locally invalid” encodings in the

vector V 9. Now we have the following observation.

Observation 11.24. D(Vinv) ≤ ε/10.

The above observation holds as otherwise, ALG-ADAPTIVE would have rejected in

Step (ii) with probability at least 2/3.

Let us define a distribution D1 over {0, 1}N using the following procedure:

(i) Set D1(X) = D(X) for every X ∈ U .

(ii) Recall that Γ′
V = {j ∈ [n] : V |C′

j
is not in the image of SE} for every vector

V ∈ Vinv. For every vector V ∈ Vinv, we perform the following steps:

9Note that it may be the case that Γ′
V = ∅, for example when for every j ∈ [n], we have V |C′

j
=

SE(ij ,xj), for some i1, . . . , in and x1, . . . ,xn for which i1, . . . , in are not in the image of GE.

168

(a) For every j /∈ Γ′
V, decode the vector V |C′

j
using SE to obtain xj ∈ {0, 1}.

(b) For every j ∈ Γ′
V, choose an arbitrary value xj from {0, 1}.

(c) Using x = (x1, . . . ,xn) obtained from (a) and (b), construct a new vector V′

for which V′
π = FE(z,x) for an arbitrary z ∈ [n]m, where π is the permuta-

tion obtained from FIND-PERMUTATION in Step (i) of ALG-ADAPTIVE.

(iii) For every vector V ∈ V \ Vinv, set V′ = V.

(iv) Finally define D1(W) =
∑

V:V′=WD(V) for every W ∈ V .

Let V ′ be the set of vectors in {0, 1}N that are in the support of D1 but not in U ,

that is, V ′ = {X : X ∈ Supp(D1) \ U}. From the construction of D1, the following

observation follows.

Observation 11.25. D1(U) = D(U) ≤ 5α and D1(V ′) = D(V) = 1−D(U) ≥ 1−5α.

Now we prove that the distributions D and D1 are not far in Earth Mover Distance.

Lemma 11.26. The Earth Mover Distance between D and D1 is at most ε/10.

Proof. Recall that the EMD between D and D1 is the solution to the following LP:

Minimize
∑

X,Y∈{0,1}N
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}N
fXY = D(X) ∀X ∈ {0, 1}N

and
∑

X∈{0,1}N
fXY = D1(Y) ∀Y ∈ {0, 1}N .

Consider the flow f ∗ such that f ∗
XX = D(X) for every X ∈ U ∪ (V \ Vinv), f ∗

VV′ =

D1(V) for every V ∈ Vinv, and f ∗
XY = 0 for all other vectors. Then we have the

169

following:

dEM(D,D1) ≤
∑

X,Y∈{0,1}N
f ∗
XYdH(X,Y)

≤
∑

X∈{0,1}N\Vinv
f ∗
XXdH(X,X) +

∑
V∈Vinv

f ∗
VV′dH(V,V

′)

≤ 0 +
∑

V∈Vinv
D(V)dH(V,V

′).

To bound the second term of the last expression, note that

∑
V∈Vinv

D(V)dH(V,V
′) ≤ D(Vinv) ≤ ε/10.

This follows from Observation 11.24. Thus, we conclude that dEM(D,D1) ≤ ε/10,

completing the proof of the lemma.

Now we have the following observation regarding the rejection probabilities of ALG-

ADAPTIVE for the distributions D and D1. This will imply that, as we are executing all

steps of SUPP-EST(Y ′, ε/3), the steps of our algorithm are oblivious to both D and D1.

That is, we can assume that the input to the algorithm ALG-ADAPTIVE is the distribution

D1 instead of D.

Observation 11.27. The probability that the tester ALG-ADAPTIVE outputs REJECT

in Step (iv) where the input distribution is D is at least as large as the probability that

ALG-ADAPTIVE outputs REJECT in Step (iv) when the input distribution is D1.

Proof. Note that in the distribution D, there can be some vectors in Supp(D) that are

not valid encodings with respect to the function FE. Thus during its execution, the tester

ALG-ADAPTIVE can REJECT D by Condition (ii) and Condition (iv) (b). However, by

the construction of D1 from D, we have replaced the invalid encoding vectors with valid

encoding vectors. Thus, the only difference it makes here is that ALG-ADAPTIVE may

eventually accept a sample from D1 when encountering such a place where a sample

from D would have been immediately rejected by Condition (ii) or Condition (iv) (b).

170

Other than this difference, the distributions D and D1 are identical. So, the probabil-

ity that ALG-ADAPTIVE will REJECT D is at least as large as the probability that it

REJECTS D1.

Now let us return to the proof of Lemma 11.22. Recall that V ′ = {X : X ∈
Supp(D1)\U}. Let us define the distributionD# over {0, 1}n referred in Lemma 11.22.

For x ∈ {0, 1}n, we have the following:

D#(x) = Ddec
1 (x) =

1

D1(V ′)

∑
Yπ=FE(z,x)

for some z∈[n]m

D1(Y) =
1

D1(V ′)

∑
z∈[n]m

D1(FE(z,x)π−1).

(11.1)

For the sake of contradiction, assume that D# = Ddec
1 is ε/3-close to having support

size at most n. Let D2 be a distribution over {0, 1}n having support size at most n such

that the Earth Mover Distance between D2 and Ddec
1 is at most ε/3.

Given the distribution D2 over {0, 1}n, and the flow f ′
xy from D2 to Ddec

1 realizing

the EMD of at most ε/3 between them, let us consider the distributionDenc
2 over {0, 1}N

as follows:

(i) For any X ∈ V ′, for which Xπ = FE(z,x) for some z ∈ [n]m, set:

Denc
2 (X) =

∑
y∈{0,1}n

f ′
xy

D1(FE(z,y)π−1)

Ddec1 (y)
.

(ii) For every X ∈ U , set Denc
2 (X) = D1(X).

The following observation follows from Observation 11.25 and the construction of

Denc
2 .

Observation 11.28. Denc
2 (U) = D1(U) ≤ 5α and Denc

2 (V ′) = D1(V ′) = 1−D1(U) ≥
1− 5α.

The following two lemmas bound the distance of Denc
2 from PGap and from D1,

where Ddec
1 is ε/3-close to having support size at most n. We will prove these two

lemmas later.

171

Lemma 11.29. Denc
2 is 6α-close to PGap.

Lemma 11.30. The Earth Mover Distance between Denc
2 and D1 is at most ε/3.

Assuming Lemma 11.29 and Lemma 11.30 hold, we proceed to prove Lemma 11.22.

Proof of Lemma 11.22. From Lemma 11.26, we know that dEM(D,D1) ≤ ε/10. So,

the above two lemmas imply that D is (ε/3 + ε/10 + 6α) = 2ε/3-close to PGap, which

contradicts the fact that D is ε-far from PGap. This completes the proof of the lemma.

Now we will prove Lemma 11.29 and Lemma 11.30.

Proof of Lemma11.29. We define another distribution D3 over {0, 1}N from Denc
2 such

that D3 is in PGap and dEM(Denc
2 , D3) ≤ 6α as follows:

(i) D3(U
′) = α.

(ii) D3(X) = α
b

for every X ∈ S ′, D3(X) = α
⌈log kn⌉ for every X ∈ T ′.

(iii) D3(X) = (1− 3α) · D
enc
2 (X)

Denc2 (V ′)
for every X ∈ V ′.

Recall that D2 is a distribution over {0, 1}n that has support size at most n. This

implies that the set of vectors in SUPP(Denc
2) \ U is the encoding of at most n vectors in

{0, 1}n. So, from the definition of PGap and D3, it is clear that D3 ∈ PGap.

Now we show that the Earth Mover Distance between the distributions D3 and Denc
2

is not large.

Claim 11.31. The Earth Mover Distance between Denc
2 and D3 is at most 6α.

Proof. We will bound the Earth Mover Distance between Denc
2 and D3 in terms of the

variation distance between them as follows:

dEM(Denc
2 , D3) ≤

1

2
·
∑

X∈{0,1}N
|Denc

2 (X)−D3(X)|

=
1

2
·
∑
X∈V ′

|Denc
2 (X)−D3(X)|+ 1

2
·

∑
X∈{0,1}N\V ′

|Denc
2 (X)−D3(X)|

(11.2)

172

Let us bound the first term as follows:

∑
X∈V ′

|Denc
2 (X)−D3(X)| =

∑
X∈V ′

|(1− 3α)
Denc

2 (X)

Denc
2 (V ′)

−Denc
2 (X)|

=
∑
X∈V ′

Denc
2 (X)

Denc
2 (V ′)

|(1− 3α)−Denc
2 (V ′)|

=
∑
X∈V ′

Denc
2 (X)

Denc
2 (V ′)

|3α− (1−Denc
2 (V ′))|

≤
∑
X∈V ′

3α
Denc

2 (X)

Denc
2 (V ′)

≤ 3α.

(∵ Denc
2 (V ′) ≥ 1− 5α, Observation 11.28)

From Observation 11.25, Denc
2 (U) ≤ 5α. From the definition of D3, D3(U) = 3α,

we have ∑
X∈{0,1}N\V ′

|Denc
2 (X)−D3(X)| ≤ 8α.

Following Equation 11.2, we conclude that dEM(Denc
2 , D3) ≤ 6α, which completes the

proof.

Since D3 ∈ PGap, and dEM(Denc
2 , D3) ≤ 6α, we conclude that Denc

2 is 6α-close to

PGap.

Proof of Lemma 11.30. Recall that the EMD between Denc
2 and D1 is the solution to the

following LP:

Minimize
∑

X,Y∈{0,1}N
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}N
fXY = Denc

2 (X) ∀X ∈ {0, 1}N and

∑
X∈{0,1}N

fXY = D1(Y) ∀Y ∈ {0, 1}N .

Let f ′
xy be the flow realizing the EMD between D2 and Ddec

1 . Using f ′, we now

construct a new flow f ⋆ between Denc
2 and D1 as follows:

173

(i) For vectors X,Y ∈ U ,

(a) If X ̸= Y, then set f ⋆XY = 0.

(b) If X = Y, then set f ⋆XY = Denc
2 (X) = D1(Y).

(ii) For two vectors X,Y ∈ V , we take the vectors x,y ∈ {0, 1}n such that X,Y ∈
{0, 1}N are their valid encodings (by construction, if X and Y are in the support

of D2 and Denc
1 respectively, such vectors x,y exist), and vectors z1, z2 such that

Xπ = FE(z1,x) and Yπ = FE(z2,y). Now we set the flow as follows:

(a) If z1 ̸= z2, then set f ⋆XY = 0.

(b) If z1 = z2, then set f ⋆XY = f ′
xy ·

D1(Y)

Ddec1 (y)
.

(iii) If one of X and Y is in U and the other one is in V , then f ⋆XY = 0.

We first argue that the flow f ∗
XY constructed as above is indeed a valid flow, that is,

we have:
∑

Y∈{0,1}N
f ⋆XY = Denc

2 (X) and
∑

X∈{0,1}N
f ⋆XY = D1(Y).

To prove
∑

Y∈{0,1}N
fXY = Denc

2 (X), first observe that it holds when X ∈ U from

(i) and (iii) in the description of f ⋆XY. Now consider the case where X ∈ V . Assume

Xπ = FE (z,x), where z ∈ [n]m and x ∈ {0, 1}n. So, from (ii) in the description of

f ⋆XY, we have

∑
Y∈{0,1}N

f ⋆XY =
∑

y∈{0,1}n
f ⋆XFE(z,y)π−1

=
∑

y∈{0,1}n
f ′
xy

D1(FE(z,y)π−1)

Ddec
1 (y)

= Denc
2 (X).

For
∑

X∈{0,1}N
f ⋆XY = D1(Y), consider Y ∈ V for which Yπ = FE(z,y) for some

z ∈ [n]m. Then we have the following:

∑
X∈{0,1}N

f ⋆XY =
∑

x∈{0,1}n
f ′
xy

D1(FE(z,y)π−1)

Ddec
1 (y)

= Ddec
1 (y)

D1(FE(z,y)π−1)

Ddec
1 (y)

= D1(Y).

In the above, we have used the fact that f ′
xy is a valid flow from D2 to Ddec

1 .

174

Now we bound the sum
∑

X,Y∈{0,1}N
f ⋆XYdH(X,Y) below.

∑
X,Y∈{0,1}N

f ⋆XYdH(X,Y)

=
∑

X,Y∈V

f ⋆XYdH(X,Y) (From (i) and (iii) in the description of f ⋆)

=
∑

x,y∈{0,1}n

∑
z∈[n]m

f ⋆FE(z,x)π−1FE(z,y)π−1
· dH(FE(z,x)π−1 ,FE(z,y)π−1)

(From (ii) in the description of f ⋆)

≤
∑

x,y∈{0,1}n

∑
z∈[n]m

f ⋆FE(z,x)π−1FE(z,y)π−1
· dH(x,y) (Observation 11.8 (iii))

=
∑

x,y∈{0,1}n

∑
z∈[n]m

f ′
xy

D1(FE(z,y)π−1)

Ddec
1 (y)

· dH(x,y) (From (ii) in the description of f ⋆)

=
∑

x,y∈{0,1}n

f ′
xydH(x,y) ·

∑
z∈[n]m

D1(FE(z,y)π−1)

Ddec
1 (y)


= D1(V ′)

∑
x,y∈{0,1}n

f ′
xydH(x,y) (By Equation (11.1))

≤
∑

x,y∈{0,1}n
f ′
xydH(x,y) ≤

ε

3
.

The last inequality follows from the fact that f ′ realizes the assumed EMD between

D1 and Ddec
2 .

11.3.3 Near-quadratic lower bound for non-adaptive testing of PGap

Lemma 11.32 (Lower bound on non-adaptive testers). Given sample and query ac-

cess to an unknown distribution D, in order to distinguish whether D satisfies PGap or

is ε-far from satisfying it, any non-adaptive tester must perform Ω̃(n2) queries to the

samples obtained from D, for some ε ∈ (0, 1).

To prove the above lemma, we will construct two hard distributions over distribu-

tions, Dyes which is supported over PGap, and Dno which is supported over distributions

175

far from PGap, where to distinguish them, any non-adaptive tester must perform Ω̃(n2)

queries. Recall from Theorem 11.11 that DSupp
yes and DSupp

no are two distributions defined

over distributions over {1, . . . , 2n}, where DSupp
yes provides distributions whose support

sizes are n, andDSupp
no provides distributions that are η-far from distributions whose sup-

port size is (1+2η)n, for some constant η ∈ (0, 1/8). We will use these two distributions

to construct the hard distributions Dyes and Dno for the property PGap.

The hard distributions Dyes and Dno: We describe the distributions Dyes and Dno

over distributions over {0, 1}N such that Dyes is supported over PGap and Dno is sup-

ported over distributions that are ζ2 · η/5-far from PGap. In what follows, we describe

a distribution D (D = Dyes or D = Dno) with DSupp as parameter, where DSupp is a

distribution defined over distributions over [2n]. In particular, DSupp is either DSupp
yes or

DSupp
no , where D = Dyes when DSupp = DSupp

yes , or D = Dno when DSupp = DSupp
no . To

generate D, we first construct a distribution over distributions D0 as follows. We denote

by D̂ the distribution over {0, 1}N that we draw according to D0.

(i) Set D̂(U) = α, where U = 10N−1 is the indicator vector for the index 1.

(ii) Take a set of vectors S = {V1, . . . ,Vb} in {0, 1}N such that for every i ∈ [b], the

i-th vector Vi is of the form 1i+10N−1−i. Set D̂(Vi) = α/b for every i ∈ [b].

(iii) Take another set of vectors T = {W0, . . . ,W⌈log kn⌉−1} (disjoint from S) in {0, 1}N

such that for every Wi ∈ T , Wi is of the form 0(b(i))(02i12i)kn/2
i+1 , where b(i)

denotes the length b binary representation of i. 10 Set D̂(Wi) = α/|T | for every

Wi ∈ T .

(iv) Take a set of vectors Y ⊆ {0, 1}n such that |Y| = 2n, and for any two vectors

yi,yj ∈ Y , i ̸= j, δH(yi,yj) ≥ n/3. Also, draw a distribution D̃ over [2n]

according to DSupp.

10If kn/2i+1 is not an integer, we trim the rightmost copy of 02i12i so that the total length of
“(02i12i)kn/2

i+1

” is exactly kn.

176

(v) Define D̂(FE(z,yi)) = (1 − 3α)D̃(i)/nm for every i ∈ [2n] and z ∈ [n]m, where

FE : [n]m × {0, 1}n → {0, 1}N is the encoding function from Definition 11.7.

(vi) For all other remaining vectors that are not assigned probability mass in the above

description, set their probabilities to 0.

We define D as the process of drawing a distribution D̂ according to D0, and per-

muting it using a uniformly random permutation π : [N] → [N].

Remark 11.2 (Intuition behind the above hard distributions). Unlike our adaptive

algorithm to test PGap (Algorithm 11.2 in Subsection 11.3.2), we can not determine the

permutation π first, and then perform queries depending on the permutation π. When

the permutation π is not known, even if we obtain a sample X and know that it is equal

to FE(z,x)π−1 for some x ∈ {0, 1}n and z ∈ [n]m, we can not even decode a single bit

of x, unless we query too many of the indices of X. This follows from the properties

of our encodings functions SE and GE, used to construct FE (see Lemma 11.9), which

“hides” x inside X. Intuitively, this says that we have to query a quasilinear number of

the coordinates of the sample. Since the support estimation problem admits a sample

complexity lower bound of Ω(n/ log n), the non-adaptive query complexity of Ω̃(n2)

follows for non-adaptive algorithms. We will formalize this intuition below.

We will start with the following simple observation.

Observation 11.33. The distribution Dyes is supported over PGap.

Proof. From the construction of Dyes, which is constructed by encoding the elements of

the support of the distribution Dyes drawn from DSupp
yes , it is clear that Dyes ∈ PGap.

Now we show that the distribution Dno is supported over distributions that are far

from the property PGap.

Lemma 11.34 (Farness lemma). Dno is supported over distributions that are ζ2 · η/5-

far from PGap.

177

Before directly proceeding to the proof, let us first prove an additional lemma which

will be used in the proof of Lemma 11.34.

Lemma 11.35. For any two distinct vectors X1 and X2 where X1,π, X2,π ∈ Supp(D̂) \
({U} ∪ S ∪ T) for D̂ ∈ Supp(Dno), and π is the permutation for which D̂π ∈ D0

no, we

have δH(X1,X2) ≥ ζ2 ·N/2.

Proof. We will use the properties of the function FE as mentioned in Observation 11.8.

Recall that for a string z ∈ [n]m, and a vector x = (x1, . . . ,xn) ∈ {0, 1}n, we have

FE(z,x) = 0(1b)SE(GE(z)1,x1) . . . SE(GE(z)n,xn). Now we have the following two

cases:

(a) Suppose that for some vectors x ∈ {0, 1}n, and z1, z2 ∈ [n]m such that z1 ̸= z2, we

have X1,π = FE(z1,x) and X2,π = FE(z2,x). Then following Property (i) of FE

in Observation 11.8, we know that δH(X1,X2) ≥ ζ2 ·N/2 (noting that permuting

the two vectors by the permutation π preserves their pairwise distance).

(b) Suppose that for some vectors z ∈ [n]m, and x1,x2 ∈ {0, 1}n such that x1 ̸= x2,

we have X1,π = FE(z,x1) and X2,π = FE(z,x2). Then following Property (ii)

of FE in Observation 11.8, we know that δH(X1,X2) ≥ ζ · δH(x1,x2). From the

choice of the vectors y1, . . . ,y2n, we know that δH(x1,x2) ≥ n/3. Thus, we can

say that in this case δH(X1,X2) ≥ ζ · nk/3 > ζ2 ·N/2 (recalling that ζ < 1/2).

Combining the above, we conclude that δH(X1,X2) ≥ ζ2 ·N/2, for any two distinct

vectors X1,X2 as above.

Proof of Lemma 11.34. Suppose that D̂ ∈ Supp(Dno), and π is the permutation for

which D̂π ∈ Supp(D0
no). We will bound dEM(D̂,PGap). Let us denote the distribution

DY ∈ PGap that is closest to D̂, where πY is the permutation for which DY,πY ∈ P0
Gap.

Let us first define a new distribution D̃Y over {0, 1}N as follows:

D̃Y (X) =

{
1

(1−3α)
DY (X) XπY /∈ ({U} ∪ S ∪ T)

0 otherwise

178

Similarly, we also define another distribution D̃ from D̂, using π instead of πY . Now we

have the following claim that bounds the distance between D̃Y and D̃.

Claim 11.36. dEM(D̃, D̃Y) ≥ ζ2 · η/4.

Proof. Following the definition of the property PGap, we know that Supp(D̃Y) consists

of possible encodings of n distinct vectors from {0, 1}n, and there are at most nm valid

encodings of every such vector (as per the number of possible vectors z ∈ [n]m that are

given as input to GE). This implies that the size of the support of the distribution D̃Y is

at most nm+1.

Since any distribution in the support of DSupp
no has support size at least (1 + 2η)n,

following a similar argument as above, we infer that the size of the support of D̃ is at

least (1 + 2η)nm+1. Moreover, by Lemma 11.35, we know that any pair of vectors there

has distance at least ζ2/2 (in relative distance). Also, as any vector in the support of any

distribution in the support of DSupp
no has probability mass that is multiple of 1/2n, we

infer that every vector in the support of D̃ has probability mass at least n−m−1/2 (as per

Item (v) in the definition of D0).

Summing up, we obtain that there are at least 2η · nm+1 vectors in Supp(D̃) that are

ζ2/4-far (in relative distance) from any vector in Supp(D̃Y), all of whose weights are at

least n−m−1/2 11. Thus, the Earth Mover Distance of D̃ from D̃Y is at least ζ2 · η/4.

Recall that we need to bound the distance between D̂ andDY . From Claim 11.36, we

know that dEM(D̃, D̃Y) ≥ ζ2 · η/4, where the distributions D̃ and D̃Y are defined over

the encoding vectors. From the definition of D̃ and D̃Y from D̂ and DY , we conclude

that dEM(DY , D̂) = (1− 3α)dEM(D̃, D̃Y) ≥ ζ2 · η/5.

Now we prove that the distributions Dyes and Dno remain indistinguishable to any

non-adaptive tester, unless it performs Ω̃(n2) queries. We start with some definitions

that will be required for the proof. Recall that N = O(n log n).

11By the triangle inequality, if we consider a Hamming ball of radius ζ2/4 around every vector in
Supp(D̃Y), there can be at most one vector from Supp(D̃) inside the ball.

179

Definition 11.37 (Large and small query set). A set of indices I ⊆ [N] is said to be a

large if |I| > n/ log10 n. Otherwise, I is said to be a small.

Now we show that for a uniformly random permutation σ, and any Cj as defined in

the property PGap, with high probability the size of the set of indices |I ∩ σ(Cj)| will be

small, unless I is a large query set.

Observation 11.38. Let σ : [N] → [N] be a uniformly random permutation, and Cj
correspond to a “bit encoding set” of size k (as per the definition of PGap) for an arbitrary

j ∈ [n]. For a fixed small query set I ⊆ [N], the probability that |I ∩ σ(Cj)| is at least

ζ · k is at most 1/n10.

Proof. Let us define a collection of binary random variables ⟨Xi : i ∈ I⟩ such that the

following holds:

Xi =

{
1 i ∈ σ(Cj)

0 otherwise

Then as σ is a uniformly random permutation, P(Xi = 1) =
|σ(Cj)|
N

= O(1
n
) for

any i ∈ [n]. Now let us define another random variable X =
∑n

i=1Xi. Noting that

X = |I ∩ σ(Cj)|, we obtain E[X] = O(1/ log10 n). By applying Hoeffding’s bound for

sampling without replacement (Lemma 2.15), we can say that P(X ≥ ζ · k) ≤ 1/n10.

This completes the proof.

Now let us define an event EI,j as follows:

EI,j := The query set I satisfies |I ∩ σ(Cj)| ≤ ζ · k.

Now we are ready to prove that unless Ω̃(n2) queries are performed, no non-adaptive

tester can distinguish Dyes from Dno.

Lemma 11.39 (Indistinguishibility lemma). With probability at least 2/3, in order to

distinguish Dyes from Dno, Ω̃(n2) queries are necessary for any non-adaptive tester.

Proof. From our result on the adaptive ε-tester for PGap, we know that Õ(n) queries are

sufficient for adaptively testing PGap. Without loss of generality, let us assume that the

180

non-adaptive tester takes at most n2 samples from the unknown distribution D (since we

can assume that at least one query is performed in every sample). As per the definition of

a non-adaptive tester, assume that the samples taken are X1, . . . ,Xs, and their respective

query sets are I1, . . . , Is for some integer s.

Consider an event E as follows:

E := For every ℓ ∈ [s] for which Iℓ is small and every j ∈ [n], the event EIℓ,j occurs.

Since the non-adaptive tester takes at most n2 samples, there can be at most n2

samples for which a small set was queried, that is, s ≤ n2. Moreover, there are n possible

sets Cj present in a sample. Using the union bound, along with Observation 11.38, we

can say that the event E holds with probability at least 1− 1/n7. Given that the event E
holds, we will now show that the induced distributions of Dyes and Dno on small query

sets are identical and independent of the samples with large query sets.

Claim 11.40. Assume that the event E holds. Then a non-adaptive tester that uses at

most o(n/ log n) large query sets, can not distinguish Dyes from Dno with probability

more than 1/4.

Proof. Since the distributions produced byDyes andDno are identical over the respective

permutations of ({U} ∪ S ∪ T), it is sufficient to prove indistinguishability over the

restrictions to the valid encodings of y1, . . . ,y2n (as they appear in the definition of D0).

Furthermore, we argue that this claim holds even if for every large query set, the tester

is provided with the entire vector that was sampled.

Given that the event E holds, regardless of whether the distribution was produced by

Dyes or Dno, the restriction of the samples to the small queried sets are completely uni-

formly distributed, even when conditioned on the samples with large query sets (which

are taken independently of them). Thus we may assume that all samples with small

query sets are ignored by the tester, since the answers to these queries can be simulated

without taking any samples at all.

Finally, we appeal to the construction of the hard distributions Dyes and Dno from

181

DSupp
yes and DSupp

no . By Theorem 11.11, the distance between these two distributions over

the sample sequence is at most 1/4, unless there were more than o(n/ log n) samples

with large sets. This completes the proof of the claim.

Combining Claim 11.40 with the above bound on the probability of the event E , we

conclude that Ω̃(n2) queries are necessary for any non-adaptive tester to distinguishDyes

from Dno with probability at least 2/3, that is, with a probability difference of at least

1/3. This concludes the proof of the lemma.

182

Part III

Results in the Adjacency matrix Model

183

Chapter 12

Testing in the Adjacency matrix Model

12.1 Introduction

In this part of the thesis, we study property testing of some graph properties in the dense

graph model. Let the unknown graph be G(V,E), with V and E being the set of vertices

and edges of G respectively. Recall that in this model, G is represented as an adjacency

matrix M , and the tester can perform edge-existence query to any entry of M . A graph

G is said to be ε-far from some property P if one needs to modify at least εn2 entries

of M . This model was introduced in the seminal work of Goldreich, Goldwasser and

Ron [GGR98]. Since then there have been several works in this model.

Here we will study two interesting problems in the dense graph model: (i) the prob-

lem of tolerant testing of graph isomorphism, and (ii) the problem of tolerant bipartite-

ness testing. Below we give introductions to both these problems. Later in Section 12.2,

we will state our results, and we will formally prove these results in Chapter 13, Chap-

ter 14 and Chapter 15.

12.1.1 Tolerant Graph Isomorphism Testing

Graph isomorphism (GI) has been one of the most celebrated problems in computer

science. Roughly speaking, the graph isomorphism problem asks whether two graphs

184

are structure-preserving. Namely, given two graphs Gu and Gk, graph isomorphism

of Gu and Gk is a bijection ψ : V (Gu) → V (Gk) such that for all pair of vertices

u, v ∈ V (Gu), the edges {u, v} ∈ E(Gu) if and only if {ψ(u), ψ(v)} ∈ E(Gk)
1. One

central open problem in complexity theory is whether the graph isomorphism problem

can be solved in polynomial time. Recently in a breakthrough result, Babai [Bab16]

proved that the graph isomorphism problem could be decided in quasi-polynomial time.

For a central problem like the graph isomorphism, naturally, one would like to under-

stand its (and related problems) computational complexity for various models of com-

putation. While most of the focus has been on the standard time complexity in the RAM

model for various classes of graphs (and hyper-graphs), other complexity measures like

space complexity, parameterized complexity, and query complexity have also been stud-

ied over the past few decades (see the Dagstuhl Report [BDST15] and PhD thesis of

Sun [Sun16]).

A natural extension of the GI problem is to estimate the “graph isomorphism dis-

tance” between two graphs. In other words, given two graphs Gu and Gk, what fraction

of edges are necessary to add or delete to make the graphs isomorphic.

Definition 12.1. Let Gu = (Vu, Eu) and Gk = (Vk, Ek) be two graphs with |Vu| =

|Vk| = n. Given a bijection ϕ : Vu → Vk, the distance between the graphs Gu and Gk

with respect to the bijection ϕ is

dϕ(Gu, Gk) := |{(u, v) : Exactly one among (u, v) ∈ Eu or (ϕ(u), ϕ(v)) ∈ Ek holds}| .

The GRAPH ISOMORPHISM DISTANCE (or GI-distance in short) between graphs Gu

and Gk is defined as min
ϕ:Vu→Vk

dϕ(Gu, Gk)/n
2, and is denoted by δGI(Gu, Gk) (we will

use d(Gu, Gk) to mean n2δGI(Gu, Gk)).

The problem of computing GI-distance between two graphs is known to be #P -hard

[Lin94]. The next natural question is:

What is the complexity for approximating (either by a constant additive or
1In a graph G, V (G) and E(G) denote the sets of vertices and edges in G, respectively.

185

multiplicative factor) the graph isomorphism distance between two graphs?

In [Lin94], it was also proven that the problem of computing GI-distance between two

graphs is APX-hard. So, approximating δGI(Gu, Gk) up to a constant multiplicative

factor is NP-hard. In this chapter, we study this problem of approximating (up to a

constant additive factor) the GI-distance between two graphs in the query model (see

Section 12.1.1).

Query Complexity of Graph Isomorphism

Formally speaking, the main problem is: given two graphs Gu and Gk and an approxi-

mation parameter ζ ∈ (0, 1), the goal is to output an estimate α such that

δGI(Gu, Gk)− ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

In the query model, the problem is equivalent (up to a constant factor) to the tolerant

property testing of graph isomorphism in the dense graph model (introduced in the work

of Parnas, Ron and Rubinfeld [PRR06]). For 0 ≤ γ < 1, two graphs Gu and Gk, with n

vertices, are called γ-close or γ-far to isomorphic2 if d(Gu, Gk) ≤ γn2 or d(Gu, Gk) ≥
γn2, respectively. In (γ1, γ2)-tolerant GI testing, we are given two graphs Gu and Gk,

and two parameters 0 ≤ γ1 < γ2 ≤ 1, with the guarantee that either the graphs are

γ1-close or γ2-far. One of the graphs (usually denoted as Gu) is accessed by querying

the entries of its adjacency matrix. In contrast, the other graph (usually denoted as

Gk
3) is known to the query algorithm, and no cost for accessing the entries of the

adjacency matrix of Gk is incurred. The query complexity is the number of queries (to

the adjacency matrix of Gu) that are required for testing, (with correctness probability at

least 2/3 4), whether Gu and Gk are γ1-close or γ2-far. The query algorithm is assumed

to have unbounded computational power.

2As a shorthand, rather than saying γ-close or γ-far to isomorphic, we will just say γ-close or γ-far
respectively.

3Gu and Gk denote the unknown and known graphs, respectively.
4The correctness probability can be made any 1− δ by incurring a multiplicative factor of O(log 1

δ) in
the query complexity.

186

The non-tolerant property testing version of the graph isomorphism problem (that

is, when γ1 = 0) was first studied by Fischer and Matsliah [FM08] and subsequently,

Babai and Chakraborty [BC10] studied the non-tolerant property testing version of the

hypergraph isomorphism problem. Recently, the non-tolerant testing of GI has been

considered in various other models (like Goldreich [Gol19] studied the problem for the

bounded degree graph model of property testing and Levi and Medina [LM20] consid-

ered the problem in the distributed setting). However, the tolerant version of the problem

remains elusive and it is surprising that the tolerant version of a fundamental problem

like graph isomorphism (in query model) is not addressed in the literature, though the

non-tolerant version of GI testing problem has been resolved more than a decade ago

in [FM08] (when one graph is unknown). On a different note, there are also studies of

non-tolerant version of graph isomorphism testing in the literature when both the graphs

are unknown [FM08, OS18]. We will not discuss much about that case as the main focus

of this work is different.

Before proceeding further, we want to note that there is a simple algorithm with

query complexity Õ(n) for tolerant testing of graph isomorphism (when one of the

graphs is known in advance). Basically, one goes over all possible n! bijections ϕ :

Vu → Vk and estimates the distance between Gu and Gk with respect to the permutation.

The samples may be reused5, and hence we have the following observation.

Observation 12.2. Given a known graphGk and an unknown graphGu and any approx-

imation parameter ζ ∈ (0, 1), there is a query algorithm that makes Õ (n) queries and

outputs a number α such that, with probability at least 2
3
, the following holds:

δGI(Gu, Gk)− ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

But obtaining a lower bound matching (at least up to a polylog factor) the upper

bound of Observation 12.2 is not at all obvious. The main contribution here is to show

an equivalence between tolerant testing of graph isomorphism and tolerant EMD testing

between multi-sets (in the query setting).

5If the samples are Θ(log(n!)), then the error probability can be bounded using the union bound.

187

Like many other property testing problems, the core difficulty in the testing of GI

is understanding certain properties of distributions. In the case of the non-tolerant

version of GI, it has been shown in [FM08] that the core problem is testing the vari-

ation distance between two distributions. Their upper bound result can be restated

as: if there is a property testing algorithm, with query complexity q(n) for testing

equivalence between two distributions, on support size n 6, then GI can be tested us-

ing Õ(q(n)) queries, where the tilde hides a polylogarithmic factor of n (number of

vertices). And since the query complexity for testing identity of distributions (from

[BFF+01], [Pan08], [ADK15], [VV17a]) is known to be O(
√
n/ε2), the query complex-

ity for non-tolerant GI-testing is Õ(
√
n).

In the lower bound proof of [FM08], there is no direct reduction of the graph isomor-

phism problem to the variation distance problem. But it is important to note that lower

bound proofs for both of these problems use the tightness of the birthday paradox. So, in

some sense, one can say that the heart of the non-tolerant testing of GI is in testing vari-

ation distance between two distributions. In our work, the main contribution is to show a

unified connection between graph isomorphism testing and Earth Mover distance testing

which holds across computational models, like query as well as communication models.

12.1.2 Tolerant Bipartiteness Testing

In the work of Goldreich, Goldwasser and Ron [GGR98], the authors studied various

interesting and important problems in dense graphs and testing bipartiteness was one of

them. Given a dense graph G as an input, the problem is to decide if G is bipartite, or

we need to modify at least εn2 entries of the adjacency matrix of G to make it bipartite,

using as few queries to the adjacency matrix of G as possible, where ε ∈ (0, 1) is a

proximity parameter.

Due to the fundamental nature of the problem, bipartite testing has been extensively

studied over the past two decades [GGR98]. Though there are several works on non-

6Testing identity between two distributions means to test if the unknown distribution (from where the
samples are drawn) is identical to the known distribution or if the variation distance between them more
than ϵ.

188

tolerant testing of various graph properties across all models in graph property test-

ing [GGR98, GR99, CMOS19], there are very few works related to their tolerant coun-

terparts (See Goldreich [Gol17], Bhattacharyya and Yoshida [BY22] for an extensive

list of various results).

In [GGR98], the authors studied the problem of estimating the size of the maximum

cut of a dense graph, and later studied the more general graph partition problem. The

authors of [GGR98] presented an algorithm of estimating the size of the maximum cut

that uses poly(1/ε) queries. Note that the maxcut estimation algorithm of [GGR98]

provides an algorithm of tolerant bipartiteness testing, with the same number of queries.

However, in this work, we improve their result by designing a more efficient algorithm.

Now we formally define the notion of bipartite distance and state our main result.

Then we discuss our result vis-a-vis the related works.

Definition 12.3 (Bipartite distance). A bipartition of (the vertices of) a graph G is a

function f : V (G) → {L,R} 7. The bipartite distance of G with respect to the biparti-

tion f is denoted and defined as

dbip(G, f) :=

 ∑
v∈V :f(v)=L

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈V :f(v)=R

∣∣N(v) ∩ f−1(R)
∣∣ .

Here N(v) denotes the neighborhood of v in G. Informally, dbip(G, f) measures

the distance of the graph G from being bipartite, with respect to the bipartition f . The

bipartite distance ofG is defined as the minimum bipartite distance ofG over all possible

bipartitions f of G, that is,

dbip(G) := min
f
dbip(G, f).

Now we are ready to formally state our result.

Theorem 12.4 (Main result). Given query access to the adjacency matrix of a dense

graph G with n vertices and a proximity parameter ε ∈ (0, 1), there exists an algorithm

7L and R denote left and right respectively.

189

that, with probability at least 9
10

, decides whether dbip(G) ≤ εn2 or dbip(G) ≥ (2 +

Ω(1))εn2, by sampling O
(

1
ε3
log 1

ε

)
vertices in 2O(

1
ε
log 1

ε) time, and makes O
(

1
ε3
log2 1

ε

)
queries.

Our result in the context of literature

Non-tolerant bipartite testing refers to the problem where we are given query access to

the adjacency matrix of an unknown graph G and a proximity parameter ε ∈ (0, 1),

and the objective is to decide whether dbip(G) = 0 or dbip(G) ≥ εn2. The problem

of non-tolerant bipartite testing in the dense graph model was first studied in the semi-

nal work of Goldreich, Goldwasser and Ron [GGR98], and they showed that it admits

an algorithm with query complexity Õ (1/ε3). Later, Alon and Krivelevich [AK02]

improved the query complexity of the problem to Õ (1/ε2). They further studied the

problem of testing c-colorability of dense graph. Note that bipartite testing is a spe-

cial case of testing c-colorability, when c = 2. They proved that c-colorability can

be tested by performing Õ (1/ε4) queries, for c ≥ 3. This bound was later improved

to Õ (1/ε2) by Sohler [Soh12]. On the other hand, for non-tolerant bipartite testing,

Bogdanov and Trevisan [BT04] proved that Ω(1/ε2) and Ω(1/ε3/2) adjacency queries

are required by any non-adaptive and adaptive testers, respectively. Later, Gonen and

Ron [GR07] further explored the power of adaptive queries for bipartiteness testing.

Bogdanov and Li [BL10] showed that bipartiteness can be tested with one-sided error in

O(1/εc) queries, for some constant c < 2, assuming a conjecture 8.

Though the non-tolerant variant of bipartite testing is well understood, the query

complexity of tolerant version (even for restricted cases such as in Theorem 15.1) is not

completely settled. Goldreich, Goldwasser and Ron [GGR98] proved that MAXCUT 9

can be estimated with an additive error of εn2 by performing Õ(1/ε7) queries and in

time 2Õ(1/ε3). As stated before, this implies that the bipartite distance of a (dense) graph

G can be estimated upto an additive error of εn2, by performing Õ(1/ε7) queries and

8The conjecture is stated as follows: if the graph G is ε-far from being bipartite, then the induced
subgraph of Õ(1ε) vertices of G would be Ω̃(ε)-far from being bipartite.

9MAXCUT of a graph G denotes the size of the largest cut in G.

190

in time 2Õ(1/ε3). Later Alon, Vega, Kannan and Karpinski [AdlVKK03] designed an

improved algorithm for estimating the size of MAXCUT that performs Õ (1/ε6) queries.

Note that this implies an algorithm of estimating the bipartite distance, with similar

queries (see Section 15.2 for details, and in particular, see Corollary 15.4). Even for

the tolerant version that we consider in Theorem 15.1, their algorithm does not give any

bound better than Õ (1/ε6). In this work, we improve the bound for tolerant bipartite

testing (for the restricted case as stated in Theorem 15.1) substantially from the work of

Alon et al. [AdlVKK03] by designing an algorithm that performs only Õ (1/ε3) queries,

and in 2Õ(1/ε) time.

Apart from the dense graph model, this problem has also been studied in other mod-

els of property testing. Goldreich and Ron [GR99] studied the problem of bipartiteness

testing for bounded degree graphs, where they gave an algorithm of Õ(
√
n) queries,

where n denotes the number of vertices of the graph. They also proved a similar lower

bound of bipariteness testing of Ω(
√
n) queries [GR97] in the bounded degree model.

Later, Kaufman, Krivelevich and Ron [KKR04] studied the problem in the general graph

model and gave an algorithm with query complexity Õ(min(
√
n, n2/m)), where m de-

notes the number of edges of the graph. Few years back, Czumaj, Monemizadeh, Onak

and Sohler [CMOS19] studied the problem for planar graphs (more generally, for any

minor-free graph), where they employed random walk based techniques, and proved that

constant number of queries are enough for the same. Apart from bipartite testing, there

have been extensive works related to property testing in the dense graph model and its

connection to the regularity lemma [AFNS09, AFKS00, FN07].

12.2 Our results

In this section, we present our results of this part of the thesis. Here we will be consid-

ering all the distance measures in absolute distance instead of normalized distances. We

will start with our result on tolerant graph isomorphism testing.

191

Tolerant Isomorphism Testing

One of our main technical result of this part of the thesis is that we prove estimating GI-

distance is as hard as tolerant EMD testing over multi-sets with the access of samples

without replacement over the unknown multi-set Su, ignoring polynomial factors of

log n.

Theorem 12.5. LetGk andGu denote the known and the unknown graphs on n vertices,

respectively, and QGI(Gu, Gk) denotes the number of adjacency queries to Gu, required

by the best algorithm that takes two constants γ1, γ2 with 0 ≤ γ1 < γ2 ≤ 1 and decides

whether d(Gu, Gk) ≤ γ1n
2 or d(Gu, Gk) ≥ γ2n

2 with probability at least 2
3
. Then

QGI(Gu, Gk) = Θ̃
(
QWOREMD(n)

)
where Θ̃(·) hides polynomial factors in 1

γ2−γ1 and log n.

This gives us a geometric approach for solving the graph isomorphism testing prob-

lem. Thus improving the bound of QWOREMD(n) would directly provide us a better

bound on QGI(Gu, Gk).

On the other hand, extending the lower bound of QWREMD(n) to QWOREMD(n)

would give us a better lower bound on QGI(Gu, Gk). However, the difference between

sampling with and without replacement is much more subtle. Freedman [Fre77] has

shown the difference when we sample elements with replacement from a set and that

without replacement from the same set. However, when the number of samples is

o(
√
n), the distribution of answers to the queries when samples are drawn with replace-

ment is very close (in ℓ1 distance) to the distribution of answers to the queries when

samples are drawn without replacement. Thus, following the simulation of samples

with replacement using samples without replacement (stated formally in Proposition

12.15) along with Theorem 12.5, we can get an alternative proof of the following lower

bound proved by Fischer and Matsliah [FM08].

Corollary 12.6 (Fischer and Matsliah [FM08]). There exists a constant ζ ∈ (0, 1) such

that any query algorithm that decides, with probability at least 2/3, if a known graph

192

Gk and an unknown graph Gu is isomorphic or γ-far from isomorphic, with γ ≤ ζ , must

make Ω(
√
n) queries.

Our proof of Theorem 12.5 has two parts: for the lower bound, we reduce tolerant

testing of EMD of multi-sets over the Hamming cube using samples without to tolerant

graph isomorphism testing. For the upper bound, we reduce from tolerant graph isomor-

phism to tolerant testing of EMD of multi-sets over the Hamming cube using samples

without replacement.

Now we will state our result on tolerant bipartiteness testing below.

Tolerant Bipartiteness Testing:

Theorem 12.7. There exists an algorithm TOL-BIP-DIST(G, ε) that given adjacency

query access to a dense graph G with n vertices and a parameter ε ∈ (0, 1), decides

with probability at least 9
10

, whether dbip(G) ≤ εn2 or dbip(G) ≥ (2 + k)εn2, by sam-

pling O(1
k5ε2

log 1
kε
) vertices in 2O(1

k3ε
log 1

kε
) time, using O(1

k8ε3
log2 1

kε
) queries to the

adjacency matrix of G.

Organization of the part

We prove Theorem 12.5 in two parts. We prove the lower bound part (tolerant graph

isomorphism is as hard as tolerant EMD testing) and upper bound part (tolerant EMD

testing is as hard as tolerant graph isomorphism) of Theorem 12.5 in Chapter 13 and

Chapter 14 respectively. We will prove Theorem 12.7 in Chapter 15.

12.3 Preliminaries

All graphs considered here are undirected, unweighted and have no self-loops or parallel

edges. For a graph G(V,E), V (G) and E(G) will denote the vertex set and the edge

set of G, respectively. Since we are considering undirected graphs, we write an edge

(u, v) ∈ E(G) as {u, v}. NG(v) denotes the neighborhood of v in G, and we will write

193

it as N(v) when the graph G is clear from the context. Finally, a = (1± ε)b represents

(1− ε)b ≤ a ≤ (1 + ε)b.

12.3.1 Notion of distance between two graphs

First let us define the notion of DECIDER of a vertex and then the notion of distance be-

tween two graphs, using decider of vertices, that is conceptually same as that of GRAPH

ISOMORPHISM DISTANCE defined in Definition 12.1.

Definition 12.8. (DECIDER of a vertex) Given two graphs Gk and Gu and a bijection

ϕ : V (Gu) → V (Gk), DECIDER of a vertex x ∈ V (Gu) with respect to ϕ is defined as

the set of vertices of Gu that create the edge difference in x and ϕ(x)’s neighbourhood

in Gu and Gk, respectively. Formally,

DECIDERϕ(x) := {y ∈ V (Gu) : one of the edges {x, y} & {ϕ(x), ϕ(y)} is not present}

Definition 12.9. (DISTANCE between two graphs) Let Gu and Gk be two graphs and

ϕ : V (Gu) → V (Gk) be a bijection from the vertex set of Gu to that of Gk. The distance

between Gu and Gk under ϕ is defined as the sum of the sizes of the deciders of all the

vertices in Gu, that is,

dϕ(Gu, Gk) :=
∑

x∈V (Gu)

|DECIDERϕ(x)| .

The distance between two graphs Gu and Gk is the minimum distance under all possible

bijections ϕ from V (Gu) to V (Gk), that is, d(Gu, Gk) := min
ϕ
dϕ(Gu, Gk).

Remark 12.1. Recall the definition of δGI(Gu, Gk), GRAPH ISOMORPHISM DISTANCE

between Gu and Gk (Definition 12.1). Observe that d(Gu, Gk) = 2
(
n
2

)
δGI(Gu, Gk).

Though, d(Gu, Gk) and δGI(Gu, Gk) represent the same thing, conceptually, we will do

our calculations by using d(Gu, Gk) for simplicity of presentation.

Next we define the concept of closeness between two graphs.

194

Definition 12.10. (CLOSE and FAR) For γ ∈ [0, 1), two graphs Gu and Gk with n

vertices are γ-close to isomorphic if d(Gu, Gk) ≤ γn2. Otherwise, we say Gu and Gk

are γ-far from being isomorphic. 10

Property Testing of Distribution Properties

Understanding different properties of probability distributions have been an active area

of research in property testing (For reference, see [Can20c]). The authors studied these

problems assuming random sample access from the unknown distributions. Considering

the relation between the distributions and their corresponding representative multi-sets,

we can say that all these results hold for multi-sets along with access over sampling with

replacement.

Although it seems that the change of query model from sample with replacement

to sample without replacement does not make much difference, following the work of

Freedman [Fre77], we know that the variation distance between probability distributions

when accessed via samples with and without replacement, becomes arbitrary close to

1/2 when the number of samples is Ω(
√
n). Because of this reason, many techniques

developed for sampling with replacement for various problems no longer work anymore.

Most importantly, proving any lower bound better than Ω(
√
n) is often nontrivial.

12.3.2 Some results on Earth Mover Distance (EMD)

In this subsection, we study some properties of Earth Mover distance (EMD) over prob-

ability distributions and multi-sets, which are crucial in the context of both our lower

and upper bound. Let H = {0, 1}n be a Hamming cube of dimension n, and p, q be

two probability distributions on H . Recall that the Earth Mover Distance between p and

q is denoted by dEM(p, q) and defined as the optimum solution to the following linear

10By abuse of notation, we will say Gu and Gk are γ-far when d(Gu, Gk) ≥ γn2.

195

program:

Minimize
∑
i,j∈H

fijdH(i, j)

Subject to
∑
j∈H

fij = p(i), ∀ i ∈ H

∑
i∈H

fij = q(j), ∀ j ∈ H

0 ≤ fij ≤ 1, ∀ i, j ∈ H

Earth Mover Distance (EMD) is a fundamental metric over the space of distributions

supported on a fixed metric space. Estimating EMD between two distributions, up to

a multiplicative factor, has been extensively studied in mathematics and computer sci-

ence. It is closely related to the embedding of the EMD metric into a ℓ1 metric. Even

the problem of estimation of EMD between distributions up to an additive factor has

been well studied, for reference see [DBNNR11], [SP18]. The hardness of estimating

EMD between distributions depends heavily on the structure of the domain on which the

distributions are supported. In [DBNNR11], the authors have proved a lower bound of

Ω((∆/ε)d) on the query complexity for estimating (up to an additive error of ε) EMD

between two distributions supported on the real cube [0,∆]d. At the same time, it is

not hard to see that if the support has certain structures, estimating EMD may be easy.

In this chapter, we focus on the estimation of EMD between two distribution when the

metric space is the Hamming cube.

A standard way to think of sampling from any probability distribution is to con-

sider it as a multi-set of elements with appropriate multiplicities, and samples are drawn

with replacement from that multi-set. While estimating EMD between two multi-sets,

although the most natural way to access the unknown multi-set is sampling with replace-

ment, we introduce the problem of tolerant EMD testing over multi-sets with the access

of samples without replacement as follows:

Definition 12.11 (EMD between two multi-sets). Let S1, S2 be two multi-sets on a Ham-

ming cube H = {0, 1}d of dimension d with |S1| = |S2|. The EMD between S1 and

196

S2 is denoted by dEM(S1, S2) and defined as dEM(S1, S2) = min
ϕ:S1→S2

∑
x∈S1

dH(x, ϕ(x))

where ϕ is a bijection from S1 to S2.

Note that an unknown distribution p is accessed by taking samples from p. However,

a multi-set is accessed as follows:

Definition 12.12 (Query accesses to multi-sets). A multi-set S of n elements is accessed

in one of the following ways:

Sample Access with replacement: Each element of S is reported uniformly at random

independent of all previous queries.

Sample Access without replacement: Let us assume we make Q queries to S, where

Q ≤ n. The answer to the first query, say s1, is an element from S chosen uni-

formly at random. For any 2 ≤ i ≤ Q, the answer of the i-th query is an element

chosen uniformly at random from S \{s1, . . . , si−1}. Here sj, 1 ≤ j ≤ Q, denotes

the answer to the j-th query.

Example of Sampling with & without replacement: Consider the following exam-

ple. Let S = {1, 2, 2, 3, 4} be a multi-set, and it corresponds to a distribution P . Thus

P (1) = 0.2, P (2) = 0.4, P (3) = 0.2 and P (4) = 0.2. Suppose we have obtained a

sample from P , and the obtained sample is 2. Now we want to take another sample from

P . Consider the following two scenarios:

Sampling with replacement: The probability of obtaining 2 as the second sample

remains same as before, that is, with probability 0.4, 2 appears as the new sample.

Sampling without replacement: Here the underlying multi-set no longer remains the

same. After getting 2 as the first sample, the multi-set as well as the distribution have

been changed. The new multi-set is S ′ = {1, 2, 3, 4}. Thus the probability that 2 appears

in the second sample is 0.25.

197

Figure 12.1: Distribution D corresponding to the multi-set D = {1, 2, 2, 3, 4}

Figure 12.2: Distribution D after 2 is sampled without replacement

198

Although sampling with replacement is more natural query model, we need sam-

pling without replacement for our lower bound proof. We now note that we can simulate

samples with replacement when we have samples without replacement.

Proposition 12.13 (Simulating samples with replacement from samples without re-

placement). Given Q samples without replacement from an unknown multi-set Su with

n elements, we can simulate Q samples with replacement from Su where Q ≤ n.

Proof. Consider the following procedure to obtain Q samples with replacement (say

x1, . . . , xQ) when we have Q samples without replacement (s1, . . . , sQ) from the un-

known multi-set Su with Q ≤ n.

We first set x1 = s1. For each i with 2 ≤ i ≤ Q, we set xi as follows: with probabil-

ity 1− i−1
n

, we select one of the element from {s1, . . . , si−1} uniformly at random as xi;

with probability i−1
n

, we set xi = si. From the description of procedure to generate xi’s,

we have P (xi = si) = 1/n.

Thus we can simulateQ samples with replacement fromQ samples without replace-

ment from the unknown multi-set Su.

The following observation connects the EMD between two probability distributions

with that of between two multi-sets.

Observation 12.14. Let p, q be twoK-grained probability distributions 11 on a n dimen-

sional Hamming cube H = {0, 1}n. Then p and q induces two multi-sets S1 and S2 on

H , respectively, as follows. S1 (S2) is the multi-set containing x ∈ H with multiplicity

p(x)K (q(x)K) for each x ∈ H . Moreover, dEM(p, q) = dEM (S1,S2)
K

.

Proof. Recall the definitions of EMD between two distributions and two multi-sets given

in Definition 2.2 and 12.11, respectively. We will be done with the proof by showing

dEM(S1, S2) ≤ K · dEM(p, q) and K · dEM(p, q) ≤ dEM(S1, S2), separately.

For dEM(S1, S2) ≤ K · dEM(p, q), let {f ∗
ij : i, j ∈ H} be the set of variables that

realizes dEM(p, q), that is, dEM(p, q) =
∑
i,j∈H

f ∗
ijdH(i, j). Consider a bijection ϕ from S1

11The probability of each element in the sample space is an integer multiple of 1
K .

199

to S2 where ϕ(i) = j for gij many i’s. Hence, by Definition 12.11,

dEM(S1, S2) ≤
∑
x∈S1

dH(x, ϕ(x)) =
∑
i,j∈H

K · f ∗
ijdH(i, j) = K · dEM(p, q).

Now we show K · dEM(p, q) ≤ dEM(S1, S2). Let ϕ∗ be a bijection from S1 to S2

that realizes dEM(S1, S2), that is, dEM(S1, S2) =
∑
x∈S1

dH(x, ϕ
∗(x)). For any x, y ∈ H ,

let fxy be the number of elements, of the form (x, y) in S1 × S2 such that x is mapped

to y under ϕ, divided by K2. Observe that fxy ≥ 0. Also, fxy > 0 if and only if

(x, y) ∈ S1 × S2. More over, {fij : i, j ∈ H} satisfies
∑
i∈H

fij = p(j) ∀j ∈ H and∑
j∈H

fij = q(i) ∀i ∈ H . Hence, by Definition 2.2,

K · dEM(p, q) ≤ K
∑
x,y∈H

fxydH(x, y) =
∑

(x,y)∈S1×S2

K · fxydH(x, y)

=
∑
x∈S1

dH(x, ϕ
∗(x)) = dEM(S1, S2).

Remark 12.2. Note that sample access from a probability distribution is exactly same

as uniform sampling from a multi-set with replacement.

Proposition 12.15. Let D be the set of all multi-sets of size n over a universe [m]; let Sk
and Su in D denote the known and unknown multi-sets over [n]; and PROP : D ×D →
{0, 1} be a boolean function. Then the following holds:

If there exists an algorithm that determines PROP byQ samples without replacement

from Su with probability at least 2/3, then there exists an algorithm that determines

PROP by min{Q,
√

min{n,m}} samples with replacement from Su with probability at

least 2/3− o(1).

This follows from the fact that when Q = o(
√
n) and DWR (DWoR) be the probabil-

ity distribution over all the subsets having Q elements from [n] with (without) replace-

ment, the ℓ1 distance between DWR and DWoR is o(1).

200

Definition 12.16 (EMD over multi-sets while sampling with and without replace-

ment). Let Sk and Su denote the known and the unknown multi-sets, respectively, over

n-dimensional Hamming cube H = {0, 1}n such that |Su| = |Sk| = n. Consider the

two distributions pu and pk over the Hamming cube H that are naturally defined by the

sets Su and Sk where for all x ∈ H probability of x in pu (and pk) is the number of

occurrences of x in Su (and Sk) divided by n. We then define the EMD between the

multi-sets Su and Sk as

dEM(Su, Sk) ≜ n · dEM(pu, pk).

The problem of estimating the EMD over multi-sets while sampling with (or with-

out) replacement means designing an algorithm, that given any two constants β1, β2
such that 0 ≤ β1 < β2 ≤ 1, and access to the unknown set Su by sampling with (or

without) replacement decides whether dEM(Sk, Su) ≤ β1n
2 or dEM(Sk, Su) ≥ β2n

2

with probability at least 2/3.

Note that estimating the EMD over multi-sets while sampling with replacement is

exactly same as estimating EMD between the distributions pu and pk with samples drawn

according to pu.

Let QWREMD(n, d, β1, β2) (and QWOREMD(n, d, β1, β2)) denote the number of

samples with (and without) replacement required to decide the above from the unknown

multi-set Su. For ease of presentation, we write QWOREMD(n, d) (QWREMD(n, d))

instead of QWOREMD(n, d) (QWREMD(n, β1, β2)) when the proximity parameters

are clear from the context.

Proposition 12.17 (Query complexity of EMD increases with number of points as well

as dimension). Let n, n1, n2, d, d1, d2 ∈ N be such that d1 ≤ d2 and n1 ≤ n2. Then

(i) QWREMD(n1, d) ≤ QWREMD(n2, d);

(ii) QWOREMD(n1, d) ≤ QWOREMD(n2, d);

(iii) QWREMD(n, d1) ≤ QWREMD(n, d2); and

201

(iv) QWOREMD(n, d1) ≤ QWOREMD(n, d2).

Remark 12.3. For d = n (as considered in Definition 12.16), QWOREMD(n, d) (and

QWREMD(n, d)) are denoted as QWOREMD(n) (and QWREMD(n)).

Now let us state the lower bound of QWREMD(n).

Theorem 12.18. QWREMD(n) = Ω(n
logn

).

Thus following Proposition 12.15, we have

Theorem 12.19. QWOREMD(n) = Ω(
√
n).

Note that an upper bound of QWOREMD(n) = Õ(n) is trivial. In the rest of the sec-

tion, we focus on proving Theorem 12.18 that states the lower bound on QWREMD(n).

We also provide an upper bound for QWREMD(n) at Lemma 12.24 that shows that

Õ(n) samples with replacement from Su to estimate QWREMD(n). Note that by Re-

mark 12.2, it is enough to show the following lemma that states the lower bound for

tolerant EMD testing between two distributions.

Lemma 12.20. Let S be a subset of a Hamming cube H = {0, 1}n such that the min-

imum distance between any pair of points in S is at least n/2. Also, let p and q be

two known and unknown distributions, respectively, supported over a subset of S. Then

there exists a constant εEMD such that the following holds. Given two constants β1, β2
with 0 < β1 < β2 < εEMD(c), Ω (n/ log n) samples from the distribution q are nec-

essary in order to decide whether dEM(p, q) ≤ β1n or dEM(p, q) ≥ β2n. Moreover,

εEMD =
1−εℓ1

4
, where εℓ1 is the constant that is mentioned in Theorem 12.22.

To prove the above lower bound, let us first consider the following lower bound for

tolerant ℓ1 testing between two probability distributions.

Theorem 12.21 (Valiant and Valiant [VV11]). Let p and q be two known and unknown

probability distributions respectively over [n]. There is an absolute constant ε such that

in order to decide whether ∥p− q∥1 ≤ ε or ∥p− q∥1 ≥ 1− ε, Ω(n/ log n) samples, from

the distribution q, are necessary. 12

12Note that this is rephrasing of the result proved in [VV11]. For reference, see Chapter 5 of the survey
by Canonne [Can20c].

202

Now, we restate the above result for our purpose.

Theorem 12.22. Let p and q be two known and unknown probability distributions, hav-

ing support size n, over a Hamming cube H = {0, 1}n. There is an absolute con-

stant εℓ1 such that in order to decide whether ∥p − q∥1 ≤ α1 or ∥p − q∥1 ≥ α2 with

0 < α1 < α2 ≤ 1− εℓ1 , Ω(n/ log n) samples, from the distribution q, are necessary.

As noted earlier, we will prove Theorem 12.18 by using Lemma 12.22. However,

Theorem 12.18 is regarding EMD between two distributions whereas Lemma 12.22 is

regarding ℓ1-distance. The following observation (from [DBNNR11]) gives a connection

between EMD between two distributions with the ℓ1 distance between them, which will

be required in lower bound proof.

Proposition 12.23 ([DBNNR11]). Let (M,D) be a finite metric space and p and q be

two probability distributions on M . Minimum distance between any two points of M is

∆min and diameter of M is ∆max. Then the following condition holds:

∥p− q∥1∆min

2
≤ dEM(p, q) ≤ ∥p− q∥1∆max

2
.

Note that the above proposition gives interesting result when ∆max

∆min
is bounded by a

constant. Note that S ⊂ {0, 1}n satisfies ∆max

∆min
≤ 2.

Proof of Lemma 12.20. In S ⊂ H = {0, 1}n, the pairwise Hamming distance between

any two elements in S is at least n
2
, to have ∆max

∆min
≤ 2 in our context. It is well known that

|S| = Ω(n). We prove that if there exists an algorithm A that decides dEM(p, q) ≤ β1n

or dEM(p, q) ≥ β2n by using t samples from q, then there exists an algorithm P that

decides whether ∥p − q∥1 ≤ α1 or ∥p − q∥1 ≥ α2 by using t samples from q, where

α1 = 2β1 and α2 = 4β2. Note that we have 0 < β1 < β2 <
1−εℓ1

4
. So, 0 < α1 < α2 <

1− εℓ1 , which satisfies the requirement of Theorem 12.22.

Algorithm P:

(1) First run algorithm A.

203

(2) If the output of algorithm A is dEM(p, q) ≤ β1n, algorithm P returns ∥p−q∥1 ≤ α1.

(3) If the output of algorithm A is dEM(p, q) ≥ β2n, algorithm P returns ∥p−q∥1 ≥ α2.

To complete the proof, we only need to show that P gives desired output with prob-

ability at least 2/3. The result then follows from Theorem 12.22.

Let us first consider the case ∥p− q∥1 ≤ α1. Then by Observation 12.23, we can say

that dEM(p, q) ≤ α1n
2

= β1n. Therefore algorithm A will output that dEM(p, q) ≤ β1n.

This implies that the algorithm P will output ∥p− q∥1 ≤ α1.

Now, let us consider the case ∥p − q∥1 ≥ α2. Using the fact that any pair elements

in S ⊂ H is at least n
2

along with Observation 12.23, we get dEM(p, q) ≥ α2n
4

= β2n.

This implies P will output ∥p− q∥1 ≥ α2.

Till now, we were discussing the proof of Lemma 12.20 that states QWREMD(n) =

Ω(n
logn

). The lower bound is almost tight, up to a polynomial factor of log n. The upper

bound is stated in the following observation.

Observation 12.24. QWREMD(n) = Õ(n), where Õ(·) hides a polynomial factor in
1

β2−β1 and log n.

Instead of proving the above observation, we prove the following lemma that states

the upper bound of tolerant EMD testing between two distributions when we know one

distribution and have sample access to the unknown distribution. By Remark 12.2, we

will be done with the proof of Observation 12.24.

Lemma 12.25. Let H = {0, 1}n be a n-dimensional Hamming cube, and let p and q de-

note two known and unknown n-grained distribution over H . There exists an algorithm

that takes two parameters β1, β2 with 0 ≤ β1 < β2 ≤ 1 and a δ ∈ (0, 1) as input and

decides whether dEM(p, q) ≤ β1n or dEM(p, q) ≥ β2n with probability at least 1 − δ.

Moreover, the algorithm ALG-EMD queries for Õ(n) samples from q, where Õ(·) hides

a polynomial factor in 1
β2−β1 and log n.

Proof. Let ε be a constant less than (β2 − β1). We construct a probability distribution q′

such that the ℓ1 distance between q and q′ will be at most ε, that is,
∑
i∈[L]

|q(i)− q′(i)| ≤ ε.

204

Note that such a q′ can be constructed with probability at least 1 − δ by querying for

Õ (n) samples of q which follows from [DL12]. Then, we find dEM(p, q′). Observe that

|dEM(p, q)− dEM(p, q′)| ≤ εn
2

. This is because

|dEM(p, q)− dEM(p, q′)| ≤ |dEM(p, q′) + dEM(q′, q)− dEM(p, q′)|

≤ dEM(q, q′)

≤ εd

2
(By Proposition 12.23)

As dEM(p, q) ≤ β1n or dEM(p, q) ≥ β2n, by the above observation, we will get

either dEM(p, q′) ≤
(
β1 +

ε
2

)
n or dEM(p, q′) ≥

(
β1 +

ε
2

)
n, respectively. By our choice

of ε < β2 − β1, we can decide dEM(p, q) ≤ β1n or dEM(p, q) ≥ β2n from the value of

dEM(p, q′).

To the best of our knowledge, the sample complexity measure when the distributions

are accessed by sampling a multi-set without replacement has never been studied before

(for testing/estimating distances between distributions/multi-sets). However, it is inter-

esting to note that, sampling without replacement model has been considered before in

a different context by Raskhodnikova, Ron, Shpilka and Smith [RRSS09] for proving a

lower bound of distinct elements problem. Also, recently Goldreich [Gol19] considered

a similar sampling without replacement model while studying the non-tolerant graph

isomorphism in the bounded degree model. Note that the main contribution of our work

is the introduction of the complexity measure QWOREMD(n) and its connection to

graph isomorphism testing in query model.

12.4 Overview of our results

12.4.1 Overview of our tolerant isomorphism testing result

In this subsection, we give an overview of our result on tolerant isomorphism testing

(Theorem 12.5). We will start with the overview of our lower bound as follows:

205

Tolerant GI testing is as hard as tolerant EMD testing

In this section, we give an overview of the lower bound part of Theorem 12.5, namely

tolerant GI testing is as hard as tolerant EMD testing. In this reduction, we crucially

use the fact that the multi-sets are composed of elements from the Hamming cube. The

reduction is based upon an involved gadget construction. In fact, we prove the lower

bound for a slightly more powerful query model rather than the standard adjacency ma-

trix query model. The most interesting part of our lower bound proof is that thanks to

our reduction, we get to observe the importance of the model of accessing the multi-set

without replacement in the context of EMD testing.

Now, we discuss the overview of our reduction. Let Sk and Su denote the known and

the unknown multi-sets, over a Hamming cube {0, 1}d (of dimension d) with d = Θ(n),

having n elements each. To start with, let us assume that we know both Sk and Su. We

will construct two graphs Gk and Gu on d+ n vertices as follows:

• The vertex set of Gk (and Gu) are partitioned into two sets Ak and Bk (and Au and

Bu) with |Ak| = |Au| = n and |Bk| = |Bu| = d.

• The graph induced by Ak is a clique, and similarly the graph induced by Au is a

clique.

• The graphs induced by Bk and Bu are copies of a special graph with certain nice

properties which enable our reduction to work. The existence of such a graph is

proved (in Lemma 13.3) using a probabilistic argument.

• Finally, for the cross edges between Ak and Bk (and Au and Bu), we have: there

is an edge between the i-th vertex of Ak (or Au) and the j-th vertex of Bk (or Bu)

if and only if the j-th coordinate of the i-th element of Sk (or Su) is 1.

• Finally, a random permutation π is applied to the vertices of Gu.

The permutation π is not known to the GI-tester. Note that we can construct Gk

explicitly as Sk is known. However, that is not the same with Gu as Su is unknown. But

since we know the permutation π, any query to the adjacency matrix of the graph Gu

206

can be answered by a single query to one bit of Su. But unfortunately we don’t have

query access to Su, and only have sample access to Su. To deal with this problem, it is

easier to consider a slightly more powerful query. Say, the GI-tester wants to query the

(i, j)-th bit of the graph Gu. Of course, if both i and j are in Au or both are in Bu, we

can answer without even sampling from Su. But if i is in Au and j is in Bu, then what

we intend to do is to give the whole neighborhood of i in Bu as the answer to the query.

This would be like neighbourhood query in a bipartite graph. But the question remains:

how do we intend to answer the query by sampling. The key observation here is that

since the GI-tester does not know the permutation π that was applied to the vertices in

Gu, to its eye, all the vertices that have not been touched so far look same. So, every

time it queries for (i, j), where i ∈ Au and j ∈ Bu, either of the two cases can happen:

• Either, previously a query of the form (i, j1) was asked where j1 is also in Bu, but

in that case, it must have already got the answer of (i, j) as we must have given

all the neighbors of i in Bu. So in that case, we can give back the same answer

without sampling.

• Or, previously i did not participate in any query of the form (i, j1) where j1 is in

Bu. In this case, to the GI-tester’s eye, i is just a new vertex from Au. We can

then sample without replacement from Su and whatever sample of the multi-set

we have, we can assume that it is the element i and answer accordingly. Note that

this is the exact place where sampling without replacement is crucial.

To complete our proof, we need to prove how the GI-distance between Gk and Gu is

connected to the EMD between Sk and Su. Consider the set Φ of all SPECIAL bijections

from V (Gk) to V (Gu) that maps Ak into Au and Bk into Bu such that the i-th vertex

of Bk is mapped to the i-th vertex of Bu. Observe that dΦ(Gk, Gu) = 2 · dEM(Sk, Su),

where dΦ(Gk, Gu) = min
ϕ∈Φ

dϕ(Gk, Gu) (See Lemma 13.5 for a formal proof). The factor

2 is because of the way we define dϕ(Gk, Gu) (See Definition 12.1). This implies that

tolerant isomorphism testing between Gk and Gu is at least as hard as tolerant EMD

testing between Sk and Su if we restrict the bijection from V (Gk) to V (Gu) to be a SPE-

CIAL bijection. The reduction works for all possible bijections, because of the careful

207

choice of the subgraph ofGk (andGu) induced byBk (andBu), thus ensuring d(Gk, Gu)

is close to dΦ(Gk, Gu) (See Lemma 13.6 for a formal proof).

One might compare our proof technique to the lower bound proof of (non-tolerant)

testing of GI from [FM08]. In [FM08], Ω (
√
n) lower bound was proved directly (us-

ing Yao’s lemma) by constructing two distributions of YES instances and NO instances

- the construction of the YES and NO instances were inspired from the tightness of

the birthday paradox, which was also the core idea behind the lower bound proof of

the equivalence testing of two probability distributions. But, there was no direct reduc-

tion from GI testing to equivalence testing of two probability distributions. But in our

lower bound proof, we establish a direct reduction to estimating EMD of multi-sets on

the Hamming cube with access to samples without replacement. This can be of much

importance, mainly while considering other models of computation, like in the commu-

nication model. From our reduction, we can obtain an alternative proof of Ω(
√
n) lower

bound for the (non-tolerant) GI testing via the Ω(
√
n) lower bound of the equivalence

testing of distributions, as pointed out in Corollary 12.6.

Tolerant EMD testing is as hard as tolerant GI testing

In this section, we give an overview of the upper bound part of Theorem 12.5, namely

tolerant EMD testing is as hard as tolerant GI testing. Given a known graph Gk and

query access to an unknown graph Gu (both on n vertices), we present an algorithm

for tolerant testing of graph isomorphism between Gk and Gu by using a tolerant EMD

tester (for distributions over H) as a blackbox. Note that this will prove the upper bound

part of Theorem 12.5.

Algorithm for tolerant GI using tolerant EMD as a black box. Our testing algo-

rithm is inspired by the algorithm of Fischer and Matsliah [FM08] for non-tolerant GI

testing. But our algorithm significantly differs from that of Fischer-Matsliah in some

crucial points. As we explain the high level picture of our algorithm, we will point out

some of the crucial differences.

208

We split our algorithm into three phases. In Phase 1, we first choose a O
(

1
γ2−γ1

)
size collection of random subset of vertices, i.e, coresets Cu from the unknown graph

Gu where each Cu ∈ Cu is of size O(log n). Thereafter we find all embeddings of Cu
inside the known graph Gk. Let the embeddings be η1, η2, . . . , ηJ where Ci

k = ηi(Cu).

Now each Cu (as well as each Ci
k) defines a label distribution of the vertices of Gu (as

well as Gk). Let us denote the set of labels as XCu (and YCik). Now we test if the EMD

between XCu and YCik is close or far for each i ∈ [J] (See Claim 14.2). We keep only

those (Cu, ηi) for Phase 2 such that dEM(XCu , YCik) ≤
(
γ1 +

γ2−γ1
2000

)
n |Cu|.

Although Phase 1 of our algorithm is similar to the algorithm of [FM08], there is a

striking difference. Since the authors of [FM08] were testing the non-tolerant version

of graph isomorphism, they were testing the identity of the label distributions of XCu

and YCik . However, since we are solving the tolerant version of the problem, we need to

allow some error among the label distributions. We need to pass only those placements

of Cu that under good bijections do not produce much error and testing of tolerant EMD

fits exactly for this purpose. It is worth noting that Fischer-Matsliah uses an equivalence

tester in their algorithm to identify the placements that do not produce “any” error. But,

the proof of correctness of the algorithm would not go through even if we use the tolerant

testing of the equivalence of distributions. The use of EMD in this phase is crucial for

the proof of correctness of our algorithm to hold.

In Phase 2, we choose O
(

log2 n
(γ2−γ1)3

)
many vertices from the unknown graph Gu ran-

domly and call it W . We further find the labels of all the vertices of W under Cu-

labelling by querying the corresponding entries of Gu for each Cu that has passed Phase

1. Then we try to match the vertices of W to the set of all possible labels {l1, l2, . . . , lt}
of the vertices of Gk under Ci

k-labelling where Ci
k = ηi(Cu), for those ηi that have

passed Phase 1. Ideally, we would like to find a mapping ψ : W → {l1, l2, . . . , lt} such

that the total distance between the labels of the matched vertices is not too large. If no

such ψ is possible, we reject the current embedding and try some other embedding that

has passed Phase 1.

In Phase 3, we construct a random partial bijection ϕ̂ : W → V (Gk) that maps

the vertices of W to the vertices of Gk while preserving the labels according to ψ. We

209

achieve this by mapping each w ∈ W to one vertex of Gk randomly that has same label

as determined by ψ. Finally, we randomly pair the vertices of W and find the fraction

of edge mismatches between the paired up vertices of W and ϕ̂(W). If this fraction is

at most 5γ1 + 3
5
(γ2 − γ1), we accept and say that Gu and Gk are γ1-close. If there is no

such embedding of any Cu ∈ Cu that achieves this, we report that Gu and Gk are γ2-far.

The proofs of completeness and soundness follow kind of similar route as Fischer-

Matsliah’s proof but the arguments are way more complicated. Many things that were

trivial or obvious in the non-tolerant setting become major hurdles in the tolerant setting,

and we overcome them with significantly difficult technical arguments, presented in

Chapter 14.

12.4.2 Overview of our tolerant bipartiteness testing result

In this section, we present an overview of our algorithm. The detailed description of the

algorithm is presented in Section 15.3, while its analysis is presented in Section 15.4.

We will prove the following theorem, which is our main technical result.

Theorem 12.26. There exists an algorithm TOL-BIP-DIST(G, ε) that given adjacency

query access to a dense graph G with n vertices and a proximity parameter ε ∈ (0, 1),

decides with probability at least 9
10

, whether dbip(G) ≤ εn2 or dbip(G) ≥ (2+ k)εn2, by

sampling O
(

1
k5ε2

log 1
kε

)
vertices in 2O(

1
k3ε

log 1
kε) time, using O

(
1

k8ε3
log2 1

kε

)
queries to

the adjacency matrix ofG, where dbip(G) denotes the distance ofG from being bipartite.

Note that Theorem 12.26 implies Theorem 15.1, assuming k = Ω(1).

Overview of TOL-BIP-DIST(G, ε)

Assume C1, C2, C3 are three suitably chosen large absolute constants. At the beginning

of our algorithm, we generate t subsets of vertices X1, . . . , Xt, each with
⌈
C2

k3ε
log 1

kε

⌉
vertices chosen randomly, where t =

⌈
log C1

kε

⌉
. Let C = X1 ∪ . . . ∪Xt. Apart from the

Xi’s, we also randomly select a set of pairs of vertices Z, with |Z| =
⌈
C3

k5ε2
log 1

kε

⌉
. We

find the neighbors of each vertex of Z in C. Then for each vertex pair in Z, we check

210

whether it is an edge in the graph or not. Roughly speaking, the set of edges between

C and V (Z) 13 will help us generate partial bipartitions, restricted to Xi ∪ V (Z)’s, for

each i ∈ [t], and the edges among the pairs of vertices of Z will help us in estimating

the bipartite distance of some specific kind of bipartitions of G. Here we would like to

note that no further query will be performed by the algorithm. The set of edges with

one vertex in C and the other in V (Z), and the set of edges among the vertex pairs in

Z, when treated in a specific manner, will give us the desired result. Observe that the

number of adjacency queries performed by our algorithm is O(1
k8ε3

log2 1
kε
).

For each i ∈ [t], we do the following. We consider all possible bipartitions Fi of

Xi. For each bipartition fij (of Xi) in Fi, we extend fij to a bipartition of Xi ∪ V (Z),

say f ′
ij , such that both fij and f ′

ij are identical with respect to Xi. Moreover, we assign

f ′
ij(z) (to either L or R), for each z ∈ V (Z) \ Xi, based on the neighbors of z in

Xi. To design a rule of assigning f ′
ij(z), for each z ∈ V (Z) \ Xi for our purpose,

we define the notions of heavy and balanced vertices, with respect to a bipartition (see

Definition 15.8 and Definition 15.9). Heavy and balanced vertices are defined in such

a manner that when the bipartite distance of G is at most εn2 (that is, G is ε-close), we

can infer the following interesting connections. Let f be a bipartition of V (G) such that

dbip(G, f) ≤ εn2. We will prove that the total number of edges, with no endpoints in

Xi and whose at least one end point is a balanced vertex with respect to f , is bounded

(see Claim 15.19). Moreover, if we generate a bipartition f ′ such that f and f ′ differ

for large number of heavy vertices, then the bipartite distance with respect to f ′ cannot

be bounded. To guarantee the correctness of our algorithm, we will prove that a heavy

vertex v with respect to f , can be detected and f(v) can be determined, with probability

at least 1 − o(kε). Note that the testing of being a heavy vertex will be performed only

for the vertices in V (Z). We will see shortly how this will help us to guarantee the

completeness of our algorithm.

Finally, our algorithm computes ζij , that is, the fraction of vertex pairs in Z that are

monochromatic 14 edges with respect to f ′
ij . If we find at least one i and j such that

13Recall that V (Z) denotes the set of vertices present in at least one pair in Z.
14An edge is said to be monochromatic with respect to f ′

ij if both its endpoints have the same f ′
ij values.

211

ζij ≤
(
2 + k

20

)
ε, the algorithm decides that dbip(G) ≤ εn2. Otherwise, it will report that

dbip(G) ≥ (2 + k)εn2.

Overview of completeness: Let us assume that the bipartite distance of G is at most

εn2, and let f be a bipartition of V (G) that is optimal. Let us now focus on a particular

i ∈ [t], that is, an Xi. Since we are considering all possible bipartitions Fi of Xi, there

exists a fij ∈ Fi, such that fij and f are identical with respect to Xi. To complete our

argument, we introduce (in Definition 15.10) the notion of SPECIAL bipartition SPLfi :

V (G) → {L,R}, with respect to f by fij such that f(v), fij(v) and SPLfi (v) are identical

for each v ∈ Xi, and at least 1 − o(kε) fraction of heavy vertices, with respect to f ,

are mapped identically both by f and SPLfi . We shall prove that the bipartite distance

of G with respect to SPLfi is at most
(
2 + k

50

)
εn2 (see Lemma 15.13). Now let us

think of generating a bipartition f ′′
ij of V (G) such that, for each v ∈ V (G) \ Xi, if we

determine f ′′
ij(v) by the same rule used by our algorithm to determine fij(z), for each

z ∈ V (Z) \ Xi. Note that our algorithm does not find f ′′
ij explicitly, it is used only for

the analysis. The number of heavy vertices, with respect to the bipartition f , that have

different mappings by f and f ′′
ij , is at most o(kεn) with constant probability. So, with a

constant probability, f ′′
ij is a SPECIAL bipartition with respect to f by fij . Note that, if we

take |Z| = O
(

1
k5ε2

log 1
kε

)
random vertex pairs and determine the fraction χfij of pairs

that form monochromatic edges with respect to the SPECIAL bipartition f ′′
ij , we can show

that χfij ≤
(
2 + k

20

)
ε, with probability at least 1 − 2−Ω(1

k3ε
log 1

kε) ≥ 9
10

. However, we

are not finding either f ′′
ij or χfij explicitly. We just find ζij , that is, the fraction of vertex

pairs in Z that are monochromatic edges with respect to f ′
ij . But the above argument

still holds, since Z is chosen randomly and there exists a f ′′
ij , such that f ′′

ij(z) = f ′
ij(z),

for each z ∈ V (Z), and the probability distribution of ζij is identical to that of χfij .

Overview of soundness: Let us now consider the case when the bipartite distance of

G is at least (2 + k)εn2, and f be any bipartition of V (G). To prove the soundness of

our algorithm, we introduce the notion of DERIVED bipartition DERfi : V (G) → {L,R}
with respect to f by fij (see Definition 15.11), such that f(v), fij(v) and DERfi (v) are

212

identical for each v ∈ Xi. Observe that the bipartite distance of G with respect to

any DERIVED bipartition is at least (2 + k)εn2 as well. Similar to the discussion of the

completeness, if we generate a bipartition f ′′
ij of V (G), f ′′

ij will be a DERIVED bipartition,

with respect to f by fij . If we take |Z| = O
(

1
k5ε2

log 1
kε

)
random pairs of vertices and

determine the fraction χfij of pairs that form monochromatic edges with respect to the

DERIVED bipartition f ′′
ij , we can prove that χfij ≤

(
2 + k

20

)
ε holds, with probability at

most 2−Ω(1
k3ε

log 1
kε). We want to re-emphasize that we are not determining f ′′

ij , as well

as χfij explicitly. The argument follows due to the facts that Z is chosen randomly and

there exists an f ′′
ij such that f ′

ij(z) = f
′′
ij(z), for each z ∈ V (Z), and the probability

distribution of ζij is identical to that of χfij . Using the union bound, we can say that the

algorithm rejects with probability at least 9
10

.

213

Chapter 13

Tolerant Graph Isomorphism is as

hard as tolerant EMD testing

13.1 Introduction

In this chapter, we prove that it is necessary to perform Ω
(
QWOREMD(n)

)
queries to

the adjacency matrix of Gu to solve (γ1, γ2)-tolerant GI testing of Gk and Gu. Namely,

we prove the following result:

Theorem 13.1 (Restatement of the lower bound part of Theorem 12.5). Let Gk be the

known and Gu be the unknown graph on n vertices, where n ∈ N is sufficiently large.

There exists a constant εISO ∈ (0, 1) such that for any given constants γ1, γ2 with

0 < γ1 < γ2 < εISO, any algorithm that decides whether the graphs are γ1-close

or γ2-far, requires QWOREMD(n) adjacency queries to the unknown graph Gu where

QWOREMD is as defined in Definition 12.16.

In Section 12.4.1, we have discussed an overview of of our idea to prove the above

theorem. To prove Theorem 13.1, we show a reduction from tolerant GI testing to toler-

ant EMD testing over multi-sets when we have samples without replacement from the

unknown multi-set.

215

Lemma 13.2. Suppose there is a constant ε0 ∈
(
0, 1

2

)
such that for all constants γ1, γ2

with 0 < γ1 < γ2 < ε0 and any constant T ∈ N, the following holds: There exists a

(γ1, γ2)-tolerant tester for GI that, given a known graph Gk and an unknown graph Gu

with |V (Gu)| = |V (Gk)| = (T + 1)n, can distinguish whether d(Gu, Gk) ≤ γ1Tn
2 or

d(Gu, Gk) ≥ γ2Tn
2 by performing Q adjacency queries to Gu.

Then, for any constants β1 and β2 with 0 < β1 < β2 <
ε0
2

, the following holds

where κ = β2−β1
8

and Tκ = ⌈ 30
κ(2−κ)⌉. There is a tolerant tester for EMD such that,

given a known and an unknown multi-set Sk and Su respectively, of the Hamming cube

{0, 1}Tκn with |Sk| = |Su| = n, can distinguish whether dEM(Sk, Su) ≤ β1Tκn
2 or

dEM(Sk, Su) ≥ β2Tκn
2 with Q samples without replacement from Su.

Remark 13.1. Observe that Lemma 13.2 talks about tolerant EMD testing between

multi-sets with n elements over a Hamming cube of dimension Tκn. But Theorem 13.1

states the lower bound of QWOREMD(n), that is, of tolerant EMD testing of multi-sets

with n elements over a Hamming cube of dimension n. However, the query complexity

of EMD testing increases with dimension of the Hamming cube (See Proposition 12.17).

So, we will be done with the proof of Theorem 13.1 by proving Lemma 13.2.

13.2 Reduction from Tolerant GI to Tolerant EMD test-

ing

Here we will present the proof of Lemma 13.2. To define the necessary reduction for

the proof of Lemma 13.2, we need to show the existence of a graph Gp satisfying some

unique properties.

Lemma 13.3. Let κ ∈ (0, 1) and s ≥ 3 be given constants. Then for Cκ,s = ⌈ 6s
κ(2−κ)⌉

and sufficiently large n ∈ N 1, there exists a graph Gp with Cκ,sn vertices such that the

following conditions hold.

(i) The degree of each vertex in Gp is at least ((1− κ)Cκ,s + 1)n− 1.

1The lower bound of n is a constant that depends on κ and s.

216

(ii) The cardinality of symmetric difference between the sets of neighbors of any two

(distinct) vertices in Gp is at least sn− 2.

Proof. To prove the claim, we use probabilistic method to show the existence of a graph

G′
p, with V (G′

p) = Cκ,sn, that can have (possible) self loops and satisfy the followings.

(i) The degree of each vertex in G′
p is at least ((1− κ)Cκ,s + 1)n.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two

(distinct) vertices in G′
p is at least sn.

Let us construct a random graph having the vertex set V (G′
p) such that each pair

{u, v}, with u, v ∈ V (G′
p) , is an edge with probability 1− κ

2
independent of other pairs.

Now we compute the probability that the degree of a vertex v ∈ G(V ′
p), that is

degG′
p
(v), is at most ((1− κ)Cκ,s + 1)n. For each v′ ∈ V (G′

p), let Xv′ be the indi-

cator random variable that takes value 1 if and only if {v, v′} ∈ E(G′
p). Note that

degG′
p
(v) =

∑
v′∈V (G′

p)

Xv′ . Also, P(Xv′ = 1) = 1− κ
2
. So, the expected value of degG′

p
(v)

is
(
1− κ

2

)
Cκ,sn. By using the Chernoff bound (Lemma 2.11), we have

P
(

degG′
p
(v) ≤ ((1− κ)Cκ,s + 1)n

)
= P

(
degG′

p
(v) ≤ (1− ε)

(
1− κ

2

)
Cκ,sn

) (
where ε =

κCκ,s − 2

(2− κ)Cκ,s
< 1

)
≤ e−

ε2(2−κ)Cκ,sn
6

Let E1 be the event that there exists a vertex v ∈ V (G′
p) such that the degree of v in G′

p

is at most ((1− κ)Cκ,s + 1)n. Using union bound, we can say that

P(E1) ≤
∣∣V (G′

p)
∣∣ e− ε2(2−κ)Cκ,sn

6 ≤ Cκ,sn · e−
ε2(2−κ)Cκ,sn

6 .

Let E2 be the event that there exists two (distinct) vertices u, v with
∣∣NG′

p
(u)∆NG′

p
(v)
∣∣ <

sn, where NG′
p
(u) denotes the set of neighbors of u in G′

p. Our goal is to show that G′
p

exists which satisfies the required conditions. Observe that, G′
p satisfies the required

217

conditions if and only if P(Ec1 ∩ Ec2) > 0. The rest of the work in this proof is to show

P(Ec1 ∩ Ec2) > 0.

To bound P(E2), consider two distinct vertices u and v. For w ∈ V (G′
p), let Yw be

the indicator random variable that takes value 1 if and only if w ∈ NG′
p
(u)∆NG′

p
(v).

Note that
∣∣NG′

p
(u)∆NG′

p
(v)
∣∣ = ∑

w∈V (G′
p)

Yw and P(Yw = 1) = 2 · κ
2

(
1− κ

2

)
. So, the

expected value of
∣∣NG′

p
(u)∆NG′

p
(v)
∣∣, that is,

E
[∣∣NG′

p
(u)∆NG′

p
(v)
∣∣] = 2 · κ

2

(
1− κ

2

)
Cκ,sn.

As Cκ,s = ⌈ 6s
κ(2−κ)⌉, E

[∣∣NG′
p
(u) ∆ NG′

p
(v)
∣∣] ≥ 3sn. Now applying the Chernoff bound

(Lemma 2.11), we have

P
(∣∣NG′

p
(u) ∆ NG′

p
(v)
∣∣ < sn

)
≤ e−

4sn
9

Now, by using union bound, we can say that P(E2) ≤
∣∣V (G′

p)
∣∣2 e− 4sn

9 = C2
κ,sn

2e−
4sn
9 .

Finally using union bound one more time and the fact that n is sufficiently large, we

have

P(E1 ∪ E2) ≤ Cκ,sn · e−
ε2(2−κ)Cκ,sn

6 + C2
κ,sn

2e−
4sn
9 < 1.

Hence, P(Ec1 ∩ Ec2) > 0.

Let ALG(γ1, γ2, T) be the algorithm that takes γ1 and γ2 with 0 < γ1 < γ2 <

ε0 as input and decides whether d(Gk, Gu) ≤ γ1Tn
2 or d(Gk, Gu) ≥ γ2Tn

2, where

|V (Gk)| = |V (Gu)| = (T + 1)n. Now we show that for any two constants β1 and

β2 with 0 < β1 < β2 <
ε0
2

, κ = β2−β1
8

and Tκ = ⌈ 6s
κ(2−κ)⌉, there exists an algorithm

A(β1, β2, κ, Tκ) that can test whether two multi-sets Sk and Su over the Tκn-dimensional

Hamming cube have EMD less than Tκβ1n
2 or more than Tκβ2n

2 with Q queries to

the multi-set Su. To be specific, algorithm A(β1, β2, κ, Tκ) for EMD testing will use

algorithm ALG(γ1, γ2, T) for (γ1, γ2)-tolerant GI such that γ1 = 2β1, γ2 = 2β2 − 2κ

and T = Tκ. Note that, as 0 < β1 < β2 <
ε0
2

and κ = β2−β1
8

, 0 < γ1 < γ2 < ε0 holds.

The details of the reduction, that is, algorithm A is described below.

218

Description of the reduction

Input: A known multi-set Sk = {k1, . . . , kn} over HTκn = {0, 1}Tκn and query access

to an unknown multi-set Su = {u1, . . . , un} over HTκn.

Goal: To decide whether dEM(Sk, Su) ≤ Tκβ1n
2 or dEM(Sk, Su) ≥ Tκβ2n

2.

Construction of Gk and Gu from Sk and Su: Let us first construct the graph Gk from

Sk. Gk has (Tκ + 1)n vertices partitioned into two parts Ak = {a1, . . . , an} and

Bk = {b1, . . . , bTκn}. Now the edges of Gk are described as follows:

• Gk[Ak] is a clique with n vertices.

• Gk[Bk] is a copy of Gp(Vp, Ep) on Tκn vertices stated in Lemma 13.3 with

parameters s = 5, κ = β2−β1
8

and Tκ = Cκ,5.

• For the cross edges between the vertices in Ak and Bk, we add the edge

(ai, bj) to E(Gk) if and only if the j-th coordinate of ki is 1 for all i ∈ [n]

and j ∈ [Tκn].

1

2

3

5

4

1
2

3

4

56

7

8

9
10

AG BG

Figure 13.1: Construction of the graph G ∈ {Gk, Gu}

Note that the graph Gk constructed above is unique for a given multi-set Sk. The

graphGu with the vertex setsAu = {a′1, . . . , a′n} andBu = {b′1, . . . , b′Tκn} is constructed

from the multi-set Su in a similar fashion, but at the end, the vertices of Au are permuted

using a random permutation. So,

• Gu[Au] is a clique with n vertices.

219

• Gu[Bu] is a copy of the graphGp(Vp, Ep) on Tκn vertices as stated in Lemma 13.3,

with parameters s = 5, κ = β2−β1
8

and Tκ = Cκ,5.

• Let us first pick a random permutation π on [n]. For the cross edges between the

vertices in Au and Bu, we add the edge (a′π(i), bj) to E(Gu) if and only if the j-th

coordinate of ui is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that our final objective is to prove a lower bound on the query complexity for

tolerant testing of GI, that is, when we have an adjacency query access to Gu. We will

instead show that the lower bound holds even if we have the following query access,

named as Au-neighborhood-query: the tester can choose a vertex a′i ∈ Au and in one go

obtain the information about the entire neighborhood of a′i in Bu.

Observe that the only part of Gu that is not known to the tester is the cross edges

between Au and Bu. So, in this case, the Au-neighborhood query is way more stronger

than the standard queries toGu, and a lower bound for theAu-neighborhood query would

imply a lower bound on adjacency query.

Simulating Queries to Gu using samples drawn from Su without replacement:

Following above discussion, we only need to show how to simulate Au-neighborhood

queries using samples drawn from Su without replacement. So, we can assume that the

queries are of the form: what are the neighbors of a′i in Bu? And since in each query the

entire neighborhood of a′i is obtained, the tester would pick different a′i for every query.

Note that in Gu, by construction, the vertices of Au were permuted using a random

permutation. So, from the point of view of the tester, the a′i are just randomly drawn from

Au minus the set of a′i already queried. In other word, the a′i are just randomly drawn

from Au without replacement. Now because of the way the edges between Au and Bu

are constructed, the neighborhood of a random a′i drawn from Au without replacement

is same as obtaining random samples from Su without replacement.

It is also important to note that because of the randomness, the queries made by the

tester are actually non-adaptive.

220

Description of algorithm A for testing dEM(Sk, Su)

Run ALG on Gk and Gu with parameters γ1 = 2β1 and γ2 = 2β2 − 2κ. If ALG reports

d(Gk, Gu) ≤ Tκγ1n
2, output that dEM(Sk, Su) ≤ Tκβ1n

2. Similarly, if ALG reports

that d(Gk, Gu) ≥ Tκγ2n
2, then output dEM(Sk, Su) ≥ Tκβ2n

2.

13.3 Correctness of our reduction

To prove the correctness of the above reduction, let us first consider the following defi-

nition of SPECIAL bijection and its connection with dEM(Sk, Su).

Definition 13.4 (Special bijections). A bijection ϕ from V (Gk) to V (Gu) is said to be

SPECIAL if ϕ(Ak) = Au, ϕ(Bk) = Bu and ϕ(bi) = b′i for all bi ∈ Bk. The set of

all special bijections from V (Gk) to V (Gu) will be denoted by Φ, and dΦ(Gk, Gu) :=

min
ϕ∈Φ

dϕ(Gk, Gu).

Lemma 13.5. Let Sk, Su be the known and unknown multi-sets, respectively. Then

dΦ(Gk, Gu) = 2 · dEM(Sk, Su).

Proof. We will first prove that dΦ(Gk, Gu) ≤ 2 · dEM(Sk, Su).

Recall that Sk = {k1, . . . , kn} and Su = {u1, . . . , un} be the known and unknown

multi-sets over the Hamming cube HTκn = {0, 1}Tκn. Also, note that Gu and Gk are

the unknown and known graphs with vertex bipartitions Au, Bu and Ak, Bk respec-

tively as discussed earlier. Let ψ : Sk → Su be an optimal bijection that realizes

dEM(Sk, Su). Now, we will construct another bijection ψ′ ∈ Φ such that dψ′(Gk, Gu) =

2 · dEM(Sk, Su).

We construct the bijection ψ′ ∈ Φ from V (Gk) to V (Gu) as follows: for each i, j ∈
[n], ψ′(ai) = a′j if and only if ψ(ki) = uj; for each ℓ ∈ [Tκn], ψ

′(bℓ) = b′ℓ. From the

construction of ψ′ and by the definition of dψ′(Gk, Gu) (See Definition 12.1), it is clear

that dψ′(Gk, Gu) = 2 · dEM(Sk, Su). Since dΦ(Gk, Gu) = min
ϕ∈Φ

dϕ(Gk, Gu), we can say

dΦ(Gk, Gu) ≤ dψ′(Gk, Gu) = 2 · dEM(Sk, Su).

Now we will prove the other way around, that is, we will show that dEM(Sk, Su) ≤
dΦ(Gk,Gu)

2
holds as well. Let ψ ∈ Φ be a bijection from V (Gk) → V (Gu) that realizes

221

dΦ(Gk, Gu). By definition of Φ, we can assume that ψ(bi) = b′i for each i ∈ [Tκn]. Now,

let us consider a bijection ψ′ from the multi-set Sk to Su defined as follows: ψ′(ki) = uj

if and only if ψ(ai) = a′j for all i, j ∈ [n]. Observe that
∑
i∈[n]

dH(ki, ψ
′(ki)) =

dψ(Gk,Gu)

2
.

Thus, dEM(Sk, Su) ≤
∑
i∈[n]

dH(ki, ψ
′(ki)) =

dψ(Gk,Gu)

2
= dΦ(Gk,Gu)

2
.

Putting everything together, we have dΦ(Gk, Gu) = 2 · dEM(Sk, Su).

Using the following lemma, we will show how dΦ(Gk, Gu) is related to d(Gu, Gk),

where Φ is the set of all SPECIAL bijections.

Lemma 13.6. Let Φ be the set of all SPECIAL bijections from V (Gk) to V (Gu) and let

dΦ(Gk, Gu) = min
ϕ∈Φ

dϕ(Gk, Gu). Then we have dΦ(Gk, Gu) − 2κTκn
2 ≤ d(Gk, Gu) ≤

dΦ(Gk, Gu)
2.

Proof. Note that d(Gk, Gu) ≤ dΦ(Gk, Gu) follows from their definitions.

For the proof of the other side of the inequality, let us consider a bijection ψ :

V (Gk) → V (Gu) that realizes d(Gk, Gu), that is, d(Gk, Gu) = dψ(Gk, Gu). If ψ is

a bijection such that ψ ∈ Φ, then dΦ(Gk, Gu) − 2κTκn
2 ≤ d(Gk, Gu) holds. So, let us

assume that ψ /∈ Φ. Then we will show that there exists a bijection ϕ ∈ Φ such that

dϕ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn
2, which will imply dΦ(Gk, Gu) ≤ dψ(Gk, Gu) +

2κTκn
2, that is, dΦ(Gk, Gu)− 2κTκn

2 ≤ d(Gk, Gu).

We will now present the construction of ϕ ∈ Φ from ψ. Let us first partition the

vertices of Bk, with respect to ψ, into three parts: Bk = BBI ⊔ BBN ⊔ BA; for each

bi ∈ BBI , ψ(bi) = b′i; for each bi ∈ BBN , ψ(bi) ∈ Bu but ψ(bi) ̸= b′i; for each bi ∈ BA,

ψ(bi) ∈ Au. Also, we partition the vertices of Ak into two parts: Ak = AA ⊔ AB; for

each ai ∈ AA, ψ(ai) ∈ Au; for each ai ∈ AB, ψ(ai) ∈ Bu. Let |BA| = |AB| = x

and |BBN | = y, where 0 ≤ x ≤ n and 0 ≤ x + y ≤ Tκn. Now, we will construct the

bijection ϕ ∈ Φ (from ψ) by performing the following three steps in that order. Note

that the construction of ϕ is not a part of our reduction. This is used for analysis purpose

only.

2Note that this relation does not hold in general. However this is true for the graphs Gk and Gu

constructed in the reduction.

222

Step (i) ϕ(u) = ψ(u) for all vertices u ∈ BBI ∪ AA.

Step (ii) For each ai ∈ AB, ϕ(ai) ∈ Au \ ψ(AA). Also, for each bi ∈ BA, ϕ(bi) = b′i ∈
Bu \ ψ(BBI).

Step (iii) For each bi ∈ BBN , ϕ(bi) = b′i.

Observe that ϕ(Ak) = Au, ϕ(Bk) = Bu and ϕ(bi) = b′i for all bi ∈ Bk, that is, ϕ is a

SPECIAL bijection. It remains to show that

dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn
2. (13.1)

Recall that the graphs Gk[Bk] and Gu[Bu] are the same copies of Gp(Vp, Ep), where

|Vp| = Tκn. Observe that

• From Lemma 13.3, the graphsGk[Bk] andGu[Bu] satisfy the following property3:

cardinality of symmetric difference between the sets of neighbors of any two dis-

tinct vertices is at least 5n− 2.

• Since Gk[Ak] and Gu[Au] are cliques, the degree of each vertex in graphs Gk[Ak]

and Gu[Au] is exactly n− 1.

To prove dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn
2, it will be sufficient to show that

dϕ(Gu, Gk) ≤ dψ(Gu, Gk)+4x(|Ak|+1)+2xy+x(x−1)+2y |Ak|−y(5n−2). (13.2)

From Equation 13.2, we will be done with the proof of Inequality 13.1 as

dϕ(Gu, Gk) ≤ dψ(Gu, Gk) + 4x |Ak|+ 4x+ 2xy + x(x− 1) + 2y |Ak| − y(5n− 2)

= dψ(Gk, Gu) + 4xn+ 4x+ 2xy + n(n− 1) + 2ny − y(5n− 2)

≤ dψ(Gk, Gu) + 4n2 + 4n+ 2ny + n2 + 2ny − y(5n− 2)

≤ dψ(Gk, Gu) + 8n2

≤ dψ(Gk, Gu) + 2κTκn
2.

3Note that we are using Lemma 13.3 with parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.

223

The last but one inequality follows from the fact that 0 ≤ x ≤ n and the last inequality

follows from the fact that Tκ = ⌈ 30
κ(2−κ)⌉.

Now we present the proof of Inequality 13.2.

Proof of Inequality (13.2). Here we prove that

dϕ(Gu, Gk) ≤ dψ(Gu, Gk)+4x(|Ak|+1)+2xy+x(x−1)+2y |Ay|−y(5n−2). (13.3)

Instead of directly proving the above inequality, we will prove it in four steps for

better exposition. In Step 1, we prove the inequality for x = 1, y = 0. Then we

generalize it for x ≤ n, y = 0, followed by x = 0, y ≤ Tκn. Finally, combining Steps 1,

2 and 3, we prove the inequality for any 0 ≤ x ≤ n, and 0 ≤ y ≤ Tκn.

Step 1 (x = 1, y = 0): So, let us assume that ai ∈ Ak, a′j ∈ Au, bs ∈ Bk and b′s ∈ Bu

be such that the following holds: ψ(ai) = b′s and ψ(bs) = a′j , ψ(z) ∈ Au for each

z ∈ Ak \ {ai}, and ϕ(bt) = b′t ∈ Bu for each bt ∈ Bk \ {bs}. By the description of

Steps (i), (ii) and (iii) of generating ϕ from ψ, as discussed in Lemma 13.6, we have the

following observation.

Observation 13.7. For x = 1 and y = 0, we have ψ(ai) = b′s and ψ(bs) = a′j; ϕ(ai) =

a′j and ϕ(bs) = b′s; For any z ∈ (Ak ∪Bk) \ {ai, bs}, ϕ(z) = ψ(z).

We can think of ϕ is generated by performing a swap operation, that means, the

mappings of ai and bs are swapped while generating ϕ from ψ. Now we show (for the

special case of x = 1 and y = 0) that:

dϕ(Gk, Gu) ≤ dψ(Gk, Gu) + 4(|Ak|+ 1). (13.4)

By Observation 13.7, ϕ(x) = ψ(x) for all vertices x ∈ (Ak ∪Bk)\{ai, bs}. So, any pair

of vertices in (Ak ∪Bk) \ {ai, bs} has no effect on dϕ(Gu, Gk)− dψ(Gu, Gk). Following

224

Definition 12.1 and Definition 12.9, we can say that

dϕ(Gu, Gk)− dψ(Gu, Gk) ≤ 2
(
|DECIDERϕ(ai)| − |DECIDERψ(ai)|

+ |DECIDERϕ(bs)| − |DECIDERψ(bs)|
)

Note that the first term above can be written as DECIDERϕ(ai) = (DECIDERϕ(ai) ∩
(Ak ∪ {bs})) ∪ (DECIDERϕ(ai) ∩ (Bk \ {bs})). Breaking other terms in the above ex-

pression similarly, we have

dϕ(Gu, Gk)− dψ(Gu, Gk)

≤ 2
[
2
(
|Ak|+ 1

)
+ |DECIDERϕ(ai) ∩ (Bk \ {bs})| − |DECIDERψ(ai) ∩ (Bk \ {bs})|

+ |DECIDERϕ(bs) ∩ (Bk \ {bs})| − |DECIDERψ(bs) ∩ (Bk \ {bs})|
]

= 4 |Ak|+ 4 + 2Z,where

Z = |DECIDERϕ(ai) ∩ (Bk \ {bs})| − |DECIDERψ(ai) ∩ (Bk \ {bs})|

+ |DECIDERϕ(bs) ∩ (Bk \ {bs})| − |DECIDERψ(bs) ∩ (Bk \ {bs})|

By showing Z ≤ 0, we will be done with the proof of Inequality (13.4). Observe

that we can say |DECIDERϕ(ai) ∩ (Bk \ {bs})| =
∣∣ϕ (NBk\{bs}(ai)

)
∆NBu\{b′s}(ϕ(ai))

∣∣.
Also, writing the other terms in the expression of Z in the similar fashion, we get

Z ≤
∣∣ϕ(NBk\{bs}(ai))∆

(
NBu\{b′s}(ϕ(ai))

)∣∣− ∣∣ψ (NBk\{bs}(ai)
)
∆
(
NBu\{b′s}(ψ(ai))

)∣∣
+
∣∣ϕ (NBk\{bs}(bs)

)
∆
(
NBu\{b′s}(ϕ(bs))

)∣∣− ∣∣ψ (NBk\{bs}(bs)
)
∆
(
NBu\{b′s}(ψ(bs))

)∣∣
Once again, from Observation 13.7,

ϕ(NBk\{bs}(ai)) = ψ(NBk\{bs}(ai)) (Say I1)

NBu\{b′s}(ϕ(ai)) = NBu\{b′s}(ψ(bs)) (Say I2)

ϕ(NBk\{bs}(bs)) = ϕ
(
NBk\{bs}(bs)

)
(Say I3)

NBu\{b′s}(ψ(ai)) = NBu\{b′s}(ϕ(bs)) (Say I4)

225

From our above derivation, |I3∆I4| = |DECIDERϕ(bs) ∩ (Bk \ {bs})|. Since y = 0, we

have

|DECIDERϕ(bs) ∩ (Bk \ {bs})| = 0.

So, to prove Z ≤ 0, it is enough to show Z ≤ 2 |I3∆T4|. Note that

Z ≤ |I1∆I2| − |I1∆I4|+ |I3∆I4| − |I3∆I2| .

By using triangle inequality, Z can be upper bounded as follows:

Z ≤ |I2∆I4|) + |I3∆I4| − |I3∆I2| ≤ |I3∆I4|+ |I3∆I4| = 2 |I3∆I4| = 0.

Step 2 (x ≤ n, y = 0): Let us consider AB ⊆ Ak and BA ⊆ Bk such that ψ(ai) ∈ Bu

for each ai ∈ AB, ψ(bs) ∈ Au for each bs ∈ BA, ψ(ai) ∈ Au for each ai ∈ Ak \ AB,

and ψ(bs) ∈ Bu for each bs ∈ Bk \ BA. Now let us consider swapping (described

below) the mapping of ai ∈ AB and bs ∈ BA such that ψ(ai) = bs. Let a′j ∈ Au be

such that ψ(bs) = a′j . Let us construct ϕx−1 : V (Gk) → V (Gk) from ϕx = ψ such

that the followings hold: ϕx−1(ai) = a′j , ϕ1(bs) = b′s, and ϕx−1(z) = ψ(z) for each

z ∈ (Ak ∪ Bk) \ {ai, bs}. Proceeding in the similar fashion as in the case when x = 1

and y = 0, we get

dϕx−1(Gu, Gk)− dψ(Gu, Gk) ≤ 4 |Ak|+ 4 + 2 |I3∆I4| ,

where |I3∆I4| = |DECIDERϕ(bs) ∩ (Bk \ {bs})| ≤ x− 1. So,

dϕx−1(Gu, Gk) ≤ dψ(Gu, Gk) + 4 |Ak|+ 4 + 2(x− 1).

We can proceed in the similar fashion by performing swapping operation of the ver-

tices in AB and Yk one by one, and construct ϕx = ψ, ϕx−1, ϕx−2, . . . , ϕ0 = ϕ. Observe

that dϕi−1
(Gu, Gk) ≤ dϕi(Gu, Gk)+4 |Ak|+4+2(i−1). Also, note that ϕ is a SPECIAL

226

bijection, and moreover

dϕ(Gu, Gk) ≤ 4x |Ak|+ 4x+ x(x− 1).

Step 3 (x = 0, y ≤ Tκn): Let us consider BBN ⊆ Bk such that |BBN | = y. Note that

for each bs ∈ BBN , ψ(bs) ̸= b′s. Consider bs ∈ BBN such that ψ(bs) = b′i, and let bj be

such that ψ(bj) = b′s. Let us construct ϕy−1 : V (Gu) → V (Gk) from ϕy = ψ as follows:

ϕy−1(bs) = b′s, ϕy−1(bj) = b′i, and ϕy−1(z) = ψ(z) for each z ∈ (Ak ∪ Bk) \ {bs, bj}.

Thus,

dϕy−1(Gu, Gk) ≤ dϕy(Gu, Gk) + 2 |Ak| − (5n− 2)

The term 2 |Ak| corresponds to the fact that any vertex of BBN has at most |Ak|
neighbors in Ak. The second term comes due to the properties of the probabilistic con-

struction of Bk and Bu following Lemma 13.3.

Step 4 (x ≤ n, y ≤ Tκn): Let us assume ψ(ai) = b′s. Now there are two possibilities:

(1) ψ(bs) = a′j .

(2) ψ(bs) = b′t.

For (1), following the discussion of x ≤ n, y = 0, we can say that

dϕx−1,y ≤ dψ(Gu, Gk) + 4(|Ak|+ 1) + 2(x+ y − 1).

For (2), we follow the discussion of x = 0, y ≤ Tκn, and the following holds:

dϕx,y−1(Gu, Gk) ≤ dψ(Gu, Gk) + 2 |Ak| − (5n− 2).

Putting everything together, we have

dϕ(Gu, Gk) ≤ dψ(Gu, Gk) + 4x(|Ak|+ 1) + 2xy + x(x− 1) + 2y |Ay| − y(5n− 2).

227

The following lemma completes the proof of Lemma 13.2.

Lemma 13.8. The described algorithm A for EMD, that uses Algorithm ALG on Gk

and Gu with parameters γ1 and γ2 as a subroutine, determines whether dEM(Sk, Su) ≤
β1Tκn

2 or dEM(Sk, Su) ≥ β2Tκn
2 with probability at least 2/3, where γ1 = 2β1, γ2 =

2β2 − 2κ.

Proof. By the assumption of the existence of algorithm ALG that decides whether

d(Gk, Gu) ≤ Tκγ1n
2 or d(Gk, Gu) ≥ Tκγ2n

2, we will be done with the proof by show-

ing the followings.

(i) If dEM(Sk, Su) ≤ Tκβ1n
2, then d(Gk, Gu) ≤ Tκγ1n

2,

(ii) If dEM(Sk, Su) ≥ Tκβ2n
2, then d(Gk, Gu) ≥ Tκγ2n

2.

We will first prove (i). From Lemma 13.5, we have dΦ(Gk, Gu) = 2 · dEM(Sk, Su),

where Φ is the set of all SPECIAL bijections from V (Gk) to V (Gu). So, dEM(Sk, Su) ≤
Tκβ1n

2 implies dΦ(Gk, Gu) ≤ 2Tκβ1n
2 = Tκγ1n

2. Now, following the definition of

SPECIAL bijections (Definition 13.4) and Lemma 13.6, we can say that d(Gk, Gu) ≤
dΦ(Gk, Gu) ≤ Tκγ1n

2.

Now, for the proof of (ii), considering the fact that dΦ(Gk, Gu) = 2 · dEM(Sk, Su) as

above, we can say that dEM(Sk, Su) ≥ Tκβ2n
2 implies dΦ(Gk, Gu) ≥ 2Tκβ2n

2. From

Lemma 13.6, it follows that dΦ(Gk, Gu) − 2κTκn
2 ≤ d(Gk, Gu). Thus, d(Gk, Gu) ≥

Tκ(2β2 − 2κ)n2 = Tκγ2n
2.

228

Chapter 14

Tolerant EMD testing is as hard as

tolerant Graph Isomorphism

14.1 Introduction

In this chapter, we prove the following theorem, that discusses about algorithm for tol-

erant graph isomorphism testing with a blackbox access to tolerant EMD testing over

multi-sets.

Theorem 14.1. (Restatement of the upper bound part of Theorem 12.5) Let Gk and Gu

be the known and unknown graphs, respectively. There exists an algorithm that takes pa-

rameters γ1 and γ2 as input such that 0 ≤ γ1 < γ2 ≤ 1, performs Õ
(
QWOREMD(n)

)
queries to the adjacency matrix of Gu for appropriate β1 and β2 depending on γ1 and

γ2, and decides whether d(Gu, Gk) ≤ γ1n
2 or d(Gu, Gk) ≥ γ2n

2, with probability at

least 2/3. Here Õ(·) hides a polynomial factor in 1
β2−β1 and log n.

Remark 14.1. The theorem stated above works for any γ1, γ2 such that 0 ≤ γ1 < γ2 ≤
1. However, for simplicity of representation, we have assumed γ2 ≥ 11γ1.

Remark 14.2. Note that Theorem 14.1 can also be stated in terms of QWREMD(n) as

QWOREMD(n)≤ QWREMD(n) as we can simulate samples with replacement when

we have query access to samples without replacement (See Proposition 12.13).

229

Our algorithm for tolerant GI testing, as stated in Theorem 14.1, uses a special kind

of tolerant EMD tester over multi-sets: we know t multi-sets, one multi-set is unknown

and two parameters ε1 and ε2 are given; the objective is to test tolerant EMD of each

known multi-set with the unknown one. The following theorem gives us the special

EMD tester.

Theorem 14.2. Let H = {0, 1}n be a n-dimensional Hamming cube. Let {Sik : i ∈
[t]} ∪ {Su} denote the multi-sets with n elements from H where {Sik : i ∈ [t]} denote

the set of t known multi-sets and Su denotes the unknown multi-set. There exists an

algorithm ALG-EMD that takes two proximity parameters ε1, ε2 with 0 ≤ ε1 < ε2 ≤ 1

and a δ ∈ (0, 1) as input and decides whether dEM(Su, S
i
k) ≤ ε1n

2 or dEM(Su, S
i
k) ≥

ε2n
2, with probability at least 1 − δ, for each i ∈ [t]. Moreover, ALG-EMD uses

QWOREMD(n) · O
(
log t

δ

)
samples without replacement from Su.

The above theorem follows from the definition of QWOREMD(n) (See Defini-

tion 12.16) along with union bound and standard argument for amplifying the success

probability.

Remark 14.3. The algorithm of Theorem 14.1, to be discussed in Section 14.2, formu-

lates a tolerant EMD instance of multi-sets having n elements in H = {0, 1}d, where

d = O (log n/(γ2 − γ1)). But ALG-EMD is an algorithm for tolerant EMD testing

between two multi-sets having n elements in {0, 1}n. This is not a problem as the query

complexity of EMD is an increasing function in dimension (See Proposition 12.17 in

Section 12.3.2). Moreover, the algorithm in Section 14.2 calls ALG-EMD with param-

eters ε1 = (γ1 +
γ2−γ1
2000

), ε2 = γ2/5, t = 2O(log2 n/(γ2−γ1)) and δ is a suitable constant

depending upon γ1 and γ2, where γ1 and γ2 are parameters as stated in Theorem 14.1.

So, each call to ALG-EMD, in our context, makes Õ
(
QWOREMD(n)

)
queries.

14.2 Algorithm for tolerant GI testing

For our algorithm, we need the following definitions of label and embedding.

230

Definition 14.3. (Label of a vertex) Given a graph G and C ⊂ V (G) = {c1, . . . c|C|},

the C-labelling of V (G) is a function LC : V (G) → {0, 1}|C| such that the i-th entry of

LC(v) is 1 if and only if v is a neighbor of ci ∈ C. Also, LC(v) is referred as the label

of v under C-labelling of V (G).

Definition 14.4. (Embedding of a Vertex Set into another Vertex Set) Let Gu and Gk be

two graphs. Consider A ⊆ V (Gu) and B ⊆ V (Gk) such that |A| ≤ |B|. An injective

mapping η from A to B is referred as an embedding of A into B.

Now we present our query algorithm TolerantGI(Gu, Gk, γ1, γ2) that comprises

three phases. The technical overview of the algorithm is has been already presented in

Section 12.4.1.

Formal Description of TolerantGI(Gu, Gk, γ1, γ2):

The three phases of our algorithm are as follows:

Phase 1: The first phase of our algorithm consists of the following three steps.

Step 1 First we sample a collection Cu of O (log n) sized random subsets of V (Gu) with

|Cu| = O(1
γ2−γ1). We perform Step 2 and Step 3 for each Cu ∈ Cu.

Step 2 We determine all possible embeddings, that is, η1, . . . , ηJ , of Cu into V (Gk),

where J =
(

n
O(logn)

)
≤ 2O(log2 n). For each i ∈ [J], let Ci

k be the set of images

of Cu under the i-th embedding of Cu into V (Gk), that is, Ci
k = ηi(Cu). For

all i ∈ [J], we construct the multi-set YCik that contains Ci
k-labellings of all the

vertices of Gk.

Step 3 Now for each vertex v ∈ V (Gu), there is a Cu-labelling of v. Let XCu be the

multi-set of Cu-labellings of all the vertices in V (Gu). However, XCu is unknown

to the algorithm. We call ALG-EMD (as stated in Theorem 14.2) by setting

parameters as described in Remark 14.3 to decide whether dEM(XCu , YCik) ≤

231

(γ1 +
γ2−γ1
2000

)n |Cu| or dEM(XCu , YCik) ≥ γ2n |Cu| /5, for each i ∈ [J]. Let us pair

Cu’s and their accepted embeddings into Gk and call the set Γ, that is,

Γ =

{
(Cu, ηi) | ALG-EMD decides dEM(XCu , YCik) ≤ (γ1 +

γ2 − γ1
2000

)n |Cu|
}
.

Note that, at the end of the Phase 1, we have Γ with |Γ| ≤ |Cu| · 2O(log2 n) =

O
(
2(log

2 n)
)
. By the description of Step 3 above, Phase 1 of our algorithm calls ALG-

EMD O(|Cu|) times, once for each Cu ∈ Cu. So, setting δ = 1
9|Γ| in Theorem 14.2, we

obtain the following observation about Γ that will be used to prove the soundness of our

algorithm.

Observation 14.5. Consider Γ, the set of accepted embeddings that have passed Phase

1 paired with corresponding Cu, as defined above. Then

P
(
∀ (Cu, ηi) ∈ Γ, dEM(XCu , YCik) ≤ γ2n |Cu| /5

)
≥ 8

9
.

Phase 2: In the second phase, the algorithm performs the following two steps.

Step 1 We sample a subset W of O(log2 n/(γ2 − γ1)
3) vertices randomly from Gu.

Step 2 For each (Cu, ηi) ∈ Γ that has passed Phase 1, we perform the following steps:

(i) We find the Ci
k = ηi(Cu)-labelling of the vertices of Gk. Let l1, . . . , lt be the

labels of the vertices where t = 2|Cik| and Vj ⊆ V (Gk) be the set of vertices

with label lj .

(ii) We define a matrix M of size |W | × 2|Cik| where each row represents the

label of a vertex w ∈ W and each column represents one of the possible

Ci
k-labelling of V (Gk)

1. The (i, j)-th entry of M is defined as: Mij =

dH(LCu(wi), lj).
1Let Cu =

{
x1, . . . , xO(logn/(γ2−γ1))

}
. Note that for each wi ∈ W , LCu

(wi) ∈
{0, 1}O(logn/(γ2−γ1)) such that the j-th coordinate is 1 if and only if wi is a neighbour of xj , where

i ∈
[
O(log2 n/(γ2 − γ1)

3
)
]

and j ∈ [O (log n/(γ2 − γ1))]. Similarly, lj ∈ {0, 1}O(logn/(γ2−γ1)) such

that the i-th coordinate of lj is 1 if and only if η(xi) is a neighbour of v ∈ Vj , where j ∈
[
2|C

i
k|
]
.

232

(iii) We choose a function ψ : W → {l1, . . . lt} randomly satisfying the following

two conditions:

∑
w∈W

dH(LCu(w), ψ(w)) ≤
2γ2
5

|Cu| |W | & |{w : ψ(w) = lj}| ≤ |Vj| ∀j ∈ [t].

(14.1)

Let ΓW be the set of tuples such that

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ and ψ satisfies Equation (14.1)} .

Like Observation 14.5, the following observation about the set ΓW will be used to

prove the soundness of our algorithm.

Observation 14.6. |ΓW | ≤ |Γ| ≤ 2O(log2 n). Moreover, any (Cu, ηi, ψ) that has passed

this phase satisfies Equation (14.1).

Phase 3: The third phase of our algorithm comprises the following four steps.

Step 1 We randomly pair up the vertices of W . Let {(a1, b1), . . . , (ap, bp)} be the pairs

of the vertices, where p = O(log2 n/(γ2 − γ1)
3). We now determine which (ai, bi)

pairs form edges in Gu by querying the corresponding entries of the adjacency

matrix of Gu.

Step 2 For each (Cu, ηi, ψ) ∈ ΓW that has passed Phase 2, we perform Step 3 and Step

4 as follows:

Step 3 We choose an embedding ϕ̂ : W → V (Gk) randomly, satisfying ϕ̂(w) ∈ Vj if

and only if ψ(w) = lj and modulo permutation of the vertices in Vj for all j ∈ [t].

In other words, we map eachw ∈ W to a vertex inGk randomly having ψ(w) = lj

as its Ci
k-labelling in Gk.

Step 4 We compute ζ(Cu, ηi, ψ, ϕ̂) =
∣∣{(ai, bi) : 1(ai,bi) = 1}

∣∣ /p, where 1(ai,bi) = 1 if

exactly one among (ai, bi) ∈ E(Gu) and (ϕ̂(ai), ϕ̂(bi)) ∈ E(Gk) holds.

233

If ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +
3
5
(γ2 − γ1), then HALT and REPORT that Gu and Gk

are γ1-close.

While executing Step 3 and Step 4 for each tuple in ΓW , if we did not HALT, then

we HALT now and REPORT that Gu and Gk are γ2-far.

Observation 14.7. (i) The number of times our algorithm executes Step 2, Step 3

and Step 4 is at most |ΓW | ≤ 2O(log2 n).

(ii) If there exists a (Cu, ηi, ψ) such that ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +
3
5
(γ2 − γ1), then our

algorithm reports that Gu and Gk are γ1-close. Otherwise, Gu and Gk are reported

to be γ2-far.

14.3 Proof of correctness

To prove the correctness of our algorithm, we need to show the following three proper-

ties:

Completeness Property If Gu and Gk are γ1-close to isomorphic, then our algorithm

reports the same with probability at least 2/3.

Soundness Property If Gu and Gk are γ2-far from isomorphic, then the algorithm re-

ports the same with probability at least 2/3.

Query Complexity The query complexity of our algorithm is Õ(n).

14.3.1 Proof of completeness

In order to prove the completeness property as described above, we will first prove some

claims. Finally, combining the claims, we would conclude the completeness property of

our algorithm.

We will first prove that there exists a Cu ∈ Cu considered in Step 1 of Phase 1 of the

algorithm and a corresponding embedding ηi : Cu → V (Gk) in Step 2 of Phase 1 such

234

that dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu| holds with probability at least 20/21, where

Ci
k = ηi(Cu).

Claim 14.8. Let ϕ : V (Gu) → V (Gk) be a bijection such that dϕ(Gu, Gk) ≤ γ1n
2.

Then there exists a Cu ∈ Cu and an embedding ηi : Cu → V (Gk) such that the following

hold with probability at least 20/21.

• ∀v ∈ Cu, we have ηi(v) = ϕ(v), and

• dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu|

Note that Ci
k = ηi(Cu) and YCik is set of Ci

k-labelling of V (Gk).2

Proof. Consider a particular Cu ∈ Cu and an embedding ηi : Cu → V (Gk) such that

ηi(v) = ϕ(v) for all v ∈ Cu. Note that this embedding ηi is considered in Step 2 of

Phase 1 of the algorithm. Now we will show that dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu|
holds with probability at least a constant, to be specified later, that depends upon γ1 and

γ2, where Ci
k = ηi(Cu).

We know that dϕ(Gu, Gk) ≤ γ1n
2 and by Definition 12.9, we have

∑
x∈V (Gu)

|DECIDERϕ(x)| ≤ γ1n
2.

Thus,

E

 ∑
x∈V (Gu)

|DECIDERϕ(x) ∩ Cu|

 ≤ γ1n |Cu| . (14.2)

From Definition 12.9, we can say that

dEM(XCu , YCik) = min
f :V (Gu)→V (Gk)

∑
x∈V (Gu)

|DECIDERf (x) ∩ Cu|

≤
∑

x∈V (Gu)

|DECIDERϕ(x) ∩ Cu|

2Ci
k and YCi

k
are defined in Step 2 of Phase 1.

235

Therefore,

E
[
dEM(XCu , YCik)

]
≤ E

 ∑
x∈V (Gu)

|DECIDERϕ(x) ∩ Cu|


≤ γ1n |Cu| (From Equation (14.2))

Using Markov inequality, we can say that

P
(
dEM(XCu , YCik) ≤ (γ1 +

γ2 − γ1
2000

)n |Cu|
)

≥ 1− γ1

γ1 +
γ2−γ1
2000

.

Note that |Cu| = O(1
γ2−γ1) and we have been arguing for a particular Cu ∈ Cu. So,

taking |Cu| suitably, we get a Cu and an embedding ηi : Cu → V (Gk) satisfying the

properties mentioned in the statement of this claim with probability at least 20/21.

The above claim discusses about the existence of a Cu ∈ Cu and its embeddings

satisfying above mentioned desired properties. Now we discuss how our algorithm de-

termines all Cu ∈ Cu that satisfy the properties. Note that Step 3 of Phase 1 of our

algorithm calls ALG-EMD. Following the correctness of ALG-EMD (Theorem 14.2),

we determine all embeddings ηi : Cu → V (Gk) such that dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu| holds with probability at least 20/21. The discussion in this paragraph is

formalized in the following claim.

Claim 14.9. Let Cu ∈ Cu and η1, . . . , ηJ be the all possible embeddings of Cu into

V (Gk). Then Step 3 of Phase 1 can determine the set Γ = {(Cu, ηi) | dEM(XCu , YCik)

≤ (γ1 +
γ2−γ1
2000

)n |Cu|} with probability at least 20/21. Note that Ci
k = ηi(Cu), XCu is

the set of Cu-labelling of V (Gu) and YCik is set of Ci
k-labelling of V (Gk).

As we are considering the case that Gu and Gk are γ1-close to being isomorphic,

from Claim 14.8, we can assume that there is an appropriate (Cu, ηi) ∈ Γ such that

dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu|. Now we will prove that there exists a function

ψ : W → {l1, . . . , lt} as considered in Step 2 (iii) in Phase 2 of our algorithm such that

Equation (14.1) holds with probability at least 20/21.

236

Claim 14.10. Let ϕ : V (Gu) → V (Gk) be a bijection such that dϕ(Gu, Gk) ≤ γ1n
2 and

(Cu, ηi) ∈ Γ where Cu ∈ Cu and ηi : Cu → V (Gk) be an embedding such that

(a) ∀v ∈ Cu we have ηi(v) = ϕ(v), and

(b) dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu| where Ci
k = ηi(Cu).

Also, let {ℓ1, . . . , ℓt} be the all possible Ci
k-labellings of V (Gk), where t =

[
2|Cik|

]
.

Then there exists a mapping ψ : W → {l1, . . . , lt} such that the following hold with

probability at least 20/21.

(i)
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5
|Cu| |W |, and

(ii) ∀ j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj|.

Proof. From the conditions given in the statement of the claim, we can say that there

exists f : V (Gu) → V (Gk) such that f(v) = ηi(v) = ϕ(v) for all v ∈ Cu and∑
x∈V (Gu)

|DECIDERf (x) ∩ Cu| ≤ (γ1 +
γ2−γ1
2000

)n |Cu|

Since |DECIDERf (x) ∩ Cu| = dH(LCu(x),LCik(f(x))), we have

∑
x∈V (Gu)

dH(LCu(x),LCik(f(x))) ≤ (γ1 +
γ2 − γ1
2000

)n |Cu|

Since we are taking the vertices in W uniformly at random from Gu, we can say that

E

[∑
w∈W

dH(LCu(w),LCik(f(w)))

]
≤ (γ1 +

γ2 − γ1
2000

) |Cu| |W |

Using Hoeffding’s inequality, we have

P

(∑
w∈W

dH(LCu(w),LCik(f(w))) ≤
2γ2
5

|Cu| |W |

)
≥ 1− e−O(|W |)

Now, we define ψ : W → {ℓ1, . . . , ℓt} such that ψ(w) = LCik(f(w)). In other words,

the Ci
k-labelling of f(w) is same as the labelling of ψ(w) for each w ∈ W . Thus, the ψ

237

defined here satisfies the Condition (i) of this claim, that is,

∑
w∈W

dH(LCu(w), ψ(w)) ≤
2γ2
5

|Cu| |W | .

Observe that∣∣∣{w ∈ W : LCik(f(w)) = lj}
∣∣∣ ≤ ∣∣∣{v ∈ V (Gk) : LCik(v) = lj}

∣∣∣ ≤ |Vj| .

So, by the definition of ψ, |{w ∈ W : ψ(w) = lj}| ≤ |Vj|. Hence ψ considered above

also satisfies Condition (ii) of the claim.

Now consider the situation when the algorithm is at Step 1 of Phase 3. If Gu and

Gk are γ1-close, that is, there exists a bijection ϕ from V (Gu) to V (Gk) such that

dϕ(Gu, Gk) ≤ γ1n
2, then there exists Cu ∈ Cu, ηi : Cu → V (Gk), and ψ satisfying

the conditions given in Claims 14.8 and 14.10. However, we do not know ϕ. If we

construct, though inefficiently, a bijection ϕ′ that is same as ϕ with respect to the same

Cu ∈ Cu, ηi : Cu → V (Gk) and ψ (conditions given in Claims 14.8 and 14.10), then the

following claim says that the difference between dϕ′(Gu, Gk) and dϕ(Gu, Gk) is not too

large.

Claim 14.11. Let ϕ : V (Gu) → V (Gk) be a bijection such that dϕ(Gu, Gk) ≤ γ1n
2,

and (Cu, ηi) ∈ Γ where Cu ∈ Cu and ηi : Cu → V (Gk) be an embedding such that

• ∀ v ∈ Cu we have ηi(v) = ϕ(v), and

• dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu| where Ci
k = ηi(Cu).

Let {ℓ1, . . . , ℓt} be the all possible Ci
k-labellings of the vertices ofGk where t =

[
2|Cik|

]
,

andW be the set of vertices ofGu sampled at random in Step 1 of Phase 2 and ψ : W →
{ℓ1, . . . , ℓt} be the mapping considered in Step 2 (iii) in Phase 2 such that

•
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5
|Cu| |W |, and

• ∀j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj|.

238

Then, with probability at least 18/21, there exists a bijection ϕ′ : V (Gu) → V (Gk),

with ϕ′(x) = ϕ(x) = ηi(x) for each x ∈ Cu and ϕ′(w) = ϕ̂(w) for each w ∈ W such

that

dϕ′(Gu, Gk) ≤ dϕ(Gu, Gk) + (4γ1 +
γ2 − γ1

2
)n2.

Proof. We will prove the claim by contradiction. Suppose that

dϕ′(Gu, Gk) > dϕ(Gu, Gk) + (4γ1 +
γ2 − γ1

2
)n2 (14.3)

By using Definition 12.9, we write the above equation as

∑
x∈V (Gu)

|DECIDERϕ′(x)| >
∑

x∈V (Gu)

|DECIDERϕ(x)|+ (4γ1 +
γ2 − γ1

2
)n2

So,

∑
x∈V (Gu)

|DECIDERϕ′(x)∆DECIDERϕ(x)| > (4γ1 +
γ2 − γ1

2
)n2

Let us denote DECIDERϕ′(x)∆DECIDERϕ(x) = Symmϕϕ′(x). Dividing the sum in the

left hand side with respect to the values of |DECIDERϕ′(x)∆DECIDERϕ(x)|’s, that is,∣∣Symmϕϕ′(x)
∣∣’s, we get

∑
x∈V (Gu)

|Symm
ϕϕ′ (x)|≥ (γ2−γ1)n

1000

∣∣Symmϕϕ′(x)
∣∣ +

∑
x∈V (Gu)

|Symm
ϕϕ′ (x)|< (γ2−γ1)n

1000

∣∣Symmϕϕ′(x)
∣∣

> (4γ1 +
γ2 − γ1

2
)n2

Note that the second sum of the left hand side is at most γ2−γ1
1000

n2. Therefore,

∑
x∈V (Gu):

|Symm
ϕϕ′ (x)|≥ (γ2−γ1)n

1000

∣∣Symmϕϕ′(x)
∣∣ > (4γ1 +

γ2 − γ1
2

)n2 − γ2 − γ1
1000

n2 (14.4)

Before proceeding further, consider the following observation, which follows from

239

standard Chernoff bound type argument.

Observation 14.12. If
∣∣Symmϕϕ′(x)

∣∣ ≥ (γ2−γ1)n
1000

, then

P
(∣∣Symmϕϕ′(x) ∩ Cu

∣∣ ≥ (1− 1

50
)
∣∣Symmϕϕ′(x)

∣∣ |Cu|
n

)
≤ e−O(|Cu|).

This implies that the following holds with probability at least 1− ne−O(|Cu|):

∑
x∈V (Gu):

|Symm
ϕϕ′ (x)|≥

(γ2−γ1)n
1000

∣∣Symmϕϕ′(x) ∩ Cu
∣∣ ≥

(
1− 1

50

)
|Cu|
n

∑
x∈V (Gu):

|Symm
ϕϕ′ (x)|≥

(γ2−γ1)n
1000

∣∣Symmϕϕ′(x)
∣∣

=
49

50

(
4γ1 +

499(γ2 − γ1)

1000

)
n |Cu|

The last line follows from Equation (14.4). Hence, with probability at least 1−ne−O(|Cu|),

the following event holds.

∑
x∈V (Gu)

∣∣Symmϕϕ′(x) ∩ Cu
∣∣ ≥ 49

50

(
4γ1 +

499(γ2 − γ1)

1000

)
n |Cu| . (14.5)

Assuming Equation (14.5) holds and using the fact that W ⊂ V (Gu) is taken uniformly

at random, we can say that

E

[∑
w∈W

∣∣Symmϕϕ′(x) ∩ Cu
∣∣] > 49

50
(4γ1 +

499(γ2 − γ1)

1000
) |Cu| |W | .

Using the Hoeffding’s inequality (Lemma 2.14), we get

P

(∑
w∈W

∣∣Symmϕϕ′(w) ∩ Cu)
∣∣ ≤ (3γ1 +

11(γ2 − γ1)

24
) |Cu| |W |

)
≤ e

−O(
|Cu|2|W |2

|W ||Cu|2
)

= e−O(|W |)

As the above equation holds in the conditional space that Equation (14.5) holds, we

240

have:

P

(∑
w∈W

∣∣Symmϕϕ′ ∩ Cu)
∣∣ > (3γ1 +

11(γ2 − γ1)

24
) |Cu| |W |

)
≥ 1− n

eO(|Cu|)
− 1

eO(|W |)

(14.6)

Note that Equation (14.3) implies Equation (14.6). However, till now, we have not

used any information given in the statement of Claim 14.11, except that Cu and W are

taken uniformly at random. By using the fact that the sum of label differences of the

vertices of W under Cu-labelling and that of ψ is bounded, we will deduce that

P

(∑
w∈W

∣∣Symmϕϕ′(w) ∩ Cu
∣∣ ≤ (2γ1 +

9(γ2 − γ1)

20
) |Cu| |W |

)
≥ 1− n

eO(|Cu|)
− 1

eO(|W |)

(14.7)

As Equation (14.3) implies Equation (14.6), and Equations (14.6) and (14.7) together

implies that Equation (14.3) does not hold with probability at least 1 − 4ne−O(|Cu|) −
e−O(|W |). Hence, we are done with the proof of Claim 14.11 except that we need to show

Equation (14.7).

By the definition of the bijection ϕ, we have
∑

x∈V (Gu)

|DECIDERϕ(x)| ≤ γ1n
2. This

implies ∑
x∈V (Gu)

|DECIDERϕ(x)|≥ (γ2−γ1)n
1000

|DECIDERϕ(x)| ≤ γ1n
2 (14.8)

To proceed further, we need the following observation, which is a direct application

of Chernoff-Hoeffding bound.

Observation 14.13. (i) If |DECIDERϕ(x)| ≥ (γ2−γ1)n
1000

, then

P
(
|DECIDERϕ(x) ∩ Cu| ≥ (1 +

1

50
) |(DECIDERϕ(x)|

|Cu|
n

)
≤ e−O(|Cu|).

(ii) If |DECIDERϕ(x)| < (γ2−γ1)n
1000

, then

P
(
|DECIDERϕ(x) ∩ Cu| ≥

γ2 − γ1
750

|Cu|
)

≤ e−O(|Cu|).

241

Note that the above observation implies that the following holds with probability at

least 1− ne−O(|Cu|).

∑
x∈V (Gu)

|DECIDERϕ(x) ∩ Cu|

=
∑

x∈V (Gu):

|DECIDERϕ(x)|≥
(γ2−γ1)n

1000

|DECIDERϕ(x) ∩ Cu|+
∑

x∈V (Gu):

|DECIDERϕ(x)|<
(γ2−γ1)n

1000

|DECIDERϕ(x) ∩ Cu|

≤
(
1 +

1

50

) ∑
x∈V (Gu):

|DECIDERϕ(x)|≥
(γ2−γ1)n

1000

|DECIDERϕ(x)|
|Cu|
n

+
(γ2 − γ1)n |Cu|

750

≤ 51

50
γ1n |Cu|+

(γ2 − γ1)n |Cu|
750

Note that the last inequality follows from Equation (14.8). Summarizing the above cal-

culation, we get that the following event occurs with probability at least 1− ne−O(|Cu|).

∑
x∈V (Gu)

|DECIDERϕ(x) ∩ Cu| ≤
51

50
γ1n |Cu|+

(γ2 − γ1)n |Cu|
750

. (14.9)

Let us assume Equation (14.9) holds. Since we are taking the vertices of W uniformly

at random from V (Gu), we have

E

[∑
w∈W

|DECIDERϕ(w) ∩ Cu|

]
= E

[∑
w∈W

dH(LCu(w),LCik(ϕ(w))

]

≤ 51

50
γ1 |Cu| |W |+ (γ2 − γ1) |Cu| |W |

750
.

Similarly from Step 2 (iii) of Phase 2, we have

∑
w∈W

|DECIDERϕ′(w) ∩ Cu| =
∑
w∈W

dH(LCu(w),LCik(ϕ
′(w)))

≤ 2γ2
5

|Cu| |W |

242

Recall that Symmϕϕ′(x) = DECIDERϕ′(x)∆DECIDERϕ(x). Therefore,

E

[∑
w∈W

∣∣Symmϕϕ′(x) ∩ Cu
∣∣] ≤ E

[∑
w∈W

|DECIDERϕ′(w) ∩ Cu|

]
+

∑
w∈W

|DECIDERϕ(w) ∩ Cu|

≤ (
764

750
γ1 +

301(γ2 − γ1)

750
) |Cu| |W |

Using Hoeffding’s inequality (see Lemma 2.14), we can say that

P

(∑
w∈W

∣∣Symmϕϕ′(w) ∩ Cu
∣∣ > (2γ1 +

9(γ2 − γ1)

20
) |Cu| |W |

)
≤ e

−O(
|Cu|2|W |2

|W ||Cu|2
)

= e−O(|W |).

Note that the above equation holds on the conditional space that Equation (14.9)

holds. Hence,

P

(∑
w∈W

∣∣Symmϕϕ′(w) ∩ Cu
∣∣ ≤ (2γ1 +

9(γ2 − γ1)

20
) |Cu| |W |

)
≥ 1− n

eO(|Cu|)
− 1

eO(|W |)

If we had constructed a bijection ϕ′ as stated in the above claim, we could easily

test by sampling suitable many random edges from Gu and checking the corresponding

edges in Gk. It is important to note that, it is not possible to construct ϕ′ efficiently.

However, without constructing the bijection ϕ′, if we can test for presence of some

randomly chosen edges in Gu and their corresponding edges in Gk, we are done. In

order to achieve this, we choose W randomly in Step 1 of Phase 2 and pair up the

vertices of W in Step 1 of Phase 3. Using Step 2 (iii) of Phase 2 and Step 3 of Phase

3, we check if ϕ̂(w) = ϕ′(w) for each w ∈ W . Note that ϕ̂ : W → V (Gk) is the map

constructed in Step 3 of Phase 3 and ϕ′ : V (Gu) → V (Gk) is the bijection as stated

in Claim 14.11. Then we check the edge mismatches between the paired up vertices of

243

W in Gu and their corresponding mapped vertices in Gk in Step 4 of Phase 3, which

is possible as we have constructed the mappings of the vertices in W in Step 2 (iii) of

Phase 2.

The following claim proves that if Gu and Gk are γ1-close, then ζ(Cu, ηi, ψ, ϕ̂) ≤
5γ1 +

3
5
(γ2 − γ1), as considered in Step 4 of Phase 3 holds with probability at least

20/21.

Claim 14.14. Let ϕ : V (Gu) → V (Gk) be a bijection such that dϕ(Gu, Gk) ≤ γ1n
2,

and (Cu, ηi) ∈ Γ where Cu ∈ Cu, and ηi : Cu → V (Gk) be an embedding of Cu such

that

• ∀ v ∈ Cu we have ηi(v) = ϕ(v), and

• dEM(XCu , YCik) ≤ (γ1 +
γ2−γ1
2000

)n |Cu| where Ci
k = ηi(Cu).

Let {ℓ1, . . . , ℓt} be the all possible Ci
k-labellings of Gk where t =

[
2|Cik|

]
, W be the set

of vertices of Gu sampled at random in Step 1 of Phase 2, and ψ : W → {ℓ1, . . . , ℓt}
be the mapping considered in Step 2 (iii) of Phase 2 such that

•
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5
|Cu| |W |, and

• ∀j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj|.

If we take an embedding ϕ̂ : W → V (Gk) such that ϕ̂(w) ∈ Vj if and only if ψ(w) = ℓj ,

then

ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +
3

5
(γ2 − γ1)

holds with probability at least 20/21, where ζ(Cu, ηi, ψ, ϕ̂) is as defined in Step 3 of

Phase 3.

Proof. Recall that W is a subset of V (Gu) taken uniformly at random in Step 1 of

Phase 2 and we paired up the vertices of W randomly in Step 1 of Phase 3 respectively.

Also, we are checking the edge mismatches of the paired up vertices of W and their

corresponding mapped vertices in Gk according to the mapping ϕ̂ : W → V (Gk) in

Step 4 of Phase 3 to compute ζ(Cu, ηi, ψ, ϕ̂). Considering the conditions given in the

244

statement of this claim and Claim 14.11, one can think that we are checking the presence

of |W |
2

randomly chosen edges in Gu and the corresponding edges in Gk according to

some bijection ϕ′ : V (Gu) → V (Gk), where ϕ′ is a bijection with dϕ′(Gu, Gk) ≤
(5γ1 +

γ2−γ1
2

)n2.

So, E
[
ζ(Cu, ηi, ψ, ϕ̂)

]
≤ (5γ1 + γ2−γ1

2
). Now, applying Hoeffding’s inequality

(Lemma 2.14) and taking |W | = C ′ log2 n
(γ2−γ1)3 for suitably large constant C ′, we have

P
(
ζ(Cu, ηi, ψ, ϕ̂) > 5γ1 +

3

5
(γ2 − γ1)

)
= P

(
ζ(Cu, ηi, ψ, ϕ̂) |W | >

(
5γ1 +

3

5
(γ2 − γ1)

)
|W |

)
≤ e−O(|W |) ≤ 1

21

Now we are ready to prove the completeness property using Claims 14.8, 14.10,

14.11, 14.14 and Theorem 14.2.

Lemma 14.15 (Completeness Lemma). If Gu and Gk are γ1-close to isomorphic, then

our algorithm reports the same with probability at least 2/3.

Proof. Observe that from Claim 14.8, we know that, with probability at least 20/21,

there exists a Cu ∈ Cu and an embedding ηi : Cu → V (Gk) such that dEM(XCu , YCik) ≤(
γ1 +

γ2−γ1
2000

)
n |Cu| where Ci

k = ηi(Cu). Similarly, from Theorem 14.2, we can say

that, with probability at least 20/21, the algorithm ALG-EMD returns all embeddings

ηi such that dEM(XCu , YCik) ≤
(
γ1 +

γ2−γ1
2000

)
n |Cu|. Now from Claim 14.10, we know

that, with probability at least 20/21, conditions of Equation (14.1) hold. Again, from

Claim 14.11, we can say that constructing partial bijection at Step 3 of Phase 3 does

not change isomorphism distance by more than (4γ1+
γ2−γ1

2
)n2 with probability at least

18/21. Finally, from Claim 14.14, we can say that the algorithm will correctly detect

the distance at Step 4 of Phase 3 by testing ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +
3
5
(γ2 − γ1) with

probability at least 20/21. Thus, using union bound, we can say that when Gk and Gu

are γ1-close to being isomorphic, TolerantGI(Gu, Gk, γ1, γ2) reports the same with

probability at least 2/3.

245

14.3.2 Proof of soundness

Similarly for the soundness property of our algorithm, let us consider the case when Gu

and Gk are γ2-far from being isomorphic. Then we will show that the algorithm will

output the correct answer with probability at least 2/3.

Recall the definition of the set ΓW with which we started Phase 3 of our algorithm.

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ such that Equation 14.1 holds}.

By Observation 14.5, we have

Pr
(
∀ (Cu, ηi, ψ) ∈ ΓW , dEM(XCu , YCik) ≤

γ2
5
|Cu|n

)
≥ 8

9
. (14.10)

From now on, we work on the conditional space where dEM(XCu , YCik) ≤
γ2
5
|Cu|n for

all (Cu, ηi, ψ) holds. By Observation 14.7 (i), we know that |ΓW | ≤ 2O(log2 n/(γ2−γ1)).

So, the following claim about any (Cu, ηi, ψ) ∈ ΓW along with union bound over all the

elements in ΓW , we will be done with the proof of soundness property.

Claim 14.16. Let (Cu, ηi, ψ) ∈ ΓW and ϕ̂ be the embedding of W into Gk constructed

while executing Step 3 of Phase 3 for (Cu, ηi, ψ). Also, let dEM(XCu , YCik) ≤
γ2
5
|Cu|n,

where Ci
k = ηi(Cu). Then the following holds with probability at most 2

9|ΓW | :

ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +
3

5
(γ2 − γ1).

Proof. Let Φ(Cu, Ci
k) be the class of all bijections such that the following hold for each

ϕ ∈ Φ(Cu, Ck).

• ϕ(x) = ηi(x) for each x ∈ Cu, and

•
∑

v∈V (Gu)

|DECIDERϕ(v) ∩ Cu| ≤ γ2
5
n |Cu|.

Consider the following observation, about the bijections in Φ, that we will prove

later.

246

Observation 14.17. Let ϕ be a bijection in Φ. Then with probability at least 1− 1
9|ΓW | ,∑

w∈W
|DECIDERϕ(w) ∩ Cu| ≤ 2γ2

5
|Cu| |W | holds.

Our algorithm constructs ψ : W → {ℓ1, . . . , ℓt} in Step 2 of Phase 2 satisfying

•
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5
|Cu| |W |, and

• ∀j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj|.

Note that
∑
w∈W

dH(LCu(w), ψ(w)) =
∑
w∈W

|DECIDERϕ(w) ∩ Cu|, where ϕ is some

bijection in Φ. After getting ψ, we construct a partial bijection ϕ̂ : W → V (Gk) that

satisfies the above two conditions. So, one can think of W is taken uniformly at random

from the set of all W ’s satisfying
∑
w∈W

|DECIDERϕ(w) ∩ Cu| ≤ 2γ2
5
|Cu| |W |. Now, from

Observation 14.17, we have the following observation.

Observation 14.18. ϕ̂ is a random restriction of a random bijection ϕ ∈ Φ(Cu, Ck) by

the set W with probability at least 1− 1
9|ΓW | .

Proof. Let us consider a ϕ such that ϕ|W = ϕ̂. Let W = {ϕ̂X = ϕ|X : X ⊂
V (Gu) and |X| = |W |}, and W ′ ⊆ W is defined as:

W ′ =

{
ϕ̂X ∈ W :

∑
w∈X

|DECIDERϕ(w) ∩ Cu| ≤
2γ2
5

|Cu| |W |

}

Observe that ϕ̂ = ϕ̂W ∈ W . By Observation 14.17, we know that if we take a set

X ⊂ V (Gu) (i.e, a ϕ̂X uniformly at random from W), then the probability that ϕ̂X ∈ W ′,

is at least 1− 1
9|ΓW | . So, |W ′| ≥

(
1− 1

9|ΓW |

)
|W |.

Observe that the partial bijection ϕ̂, constructed by our algorithm, is same as that of

ϕ̂W , and ϕ̂ is in W ′. Now, using the fact that |W ′| ≥
(
1− 1

9|ΓW |

)
|W |, the observation

follows.

Recall that W is a subset of V (Gu) taken uniformly at random in Step 1 of Phase 2

and we paired up the vertices ofW randomly in Step 1 of Phase 3 respectively. Also, we

are checking the edge mismatches of the paired up vertices ofW and their corresponding

247

mapped vertices in Gk according to the mapping ϕ̂ : W → V (Gk) in Step 4 of Phase

3 to compute ζ(Cu, ηi, ψ, ϕ̂). Considering the discussion here, one can think of that, we

are checking the presence of |W |
2

randomly chosen edges in Gu and the corresponding

edges in Gk according to some bijection ϕ ∈ Φ.

Note that dϕ(Gu, Gk) ≥ γ2n
2. Thus, E

[
ζ(Cu, ηi, ψ, ϕ̂)

]
≥ γ2|W |. Now we can

deduce the following. 3

P
(
ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +

3

5
(γ2 − γ1)

)
= P

(
ζ(Cu, ηi, ψ, ϕ̂) |W | ≤ (5γ1 +

3

5
(γ2 − γ1)) |W |

)
≤ e−O(|W |) ≤ 1

9 |ΓW |

Note that we were deriving above bound on P
(
ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +

3
5
(γ2 − γ1)

)
assuming that ϕ̂ is a random restriction of a random ϕ ∈ Φ. Hence, combining Observa-

tion 14.18 with the above bound on P
(
ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +

3
5
(γ2 − γ1)

)
(when ϕ̂ is

a random restriction of a random ϕ ∈ Φ), we get

P
(
ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +

3

5
(γ2 − γ1)

)
≤ 2

9 |ΓW |
.

Proof of Observation 14.17. Since W is taken uniformly at random,

E

[∑
w∈W

|DECIDERϕ(w) ∩ Cu|

]
≤ γ2

5
|Cu| |W |

Using Hoeffding’s inequality, we get

P

(∑
w∈W

|DECIDERϕ(w) ∩ Cu| ≥
2γ2
5

|Cu| |W |

)
≤ e−O(|W |) ≤ 1

9 |ΓW |
.

3Here we are assuming γ2 ≥ 11γ1.

248

Now we are ready to prove the soundness property of our algorithm.

Lemma 14.19 (Soundness Lemma). If Gu and Gk are γ2-far from isomorphic, then the

algorithm reports the same with probability at least 2/3.

Proof. From Observation 14.7 (i), it follows that |ΓW | is at most 2
C1

log2 n
γ2−γ1 . In the

Claim 14.16, we are proving that ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +
3
5
(γ2 − γ1) holds with proba-

bility at most 2
9|ΓW | for any particular (Cu, ηi, ψ) ∈ ΓW with dEM(XCu , YCik) ≤

γ2
5
|Cu|n.

So, using the union bound, the probability that there exists a (Cu, ηi, ψ) ∈ ΓW with

dEM(XCu , YCik) ≤
γ2
5
|Cu|n such that ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 +

3
5
(γ2 − γ1), is at most 2

9
.

Now From Equation 14.10,

Pr
(
∀ (Cu, ηi, ψ, ϕ̂) ∈ ΓW , dEM(XCu , YCik) ≤

γ2
5
|Cu|n

)
≥ 8

9

Putting everything together, the probability that the algorithm reports thatGu andGk are

γ2-far, is at least 2/3.

Till now we have proved the completeness and soundness property of our algorithm

TolerantGI. We will prove the query complexity property in the next section when we

prove the final theorem.

14.4 Proof of upper bound result

Proof of Theorem 14.1. From the Completeness Lemma (Lemma 14.15) and Soundness

Lemma (Lemma 14.19), we can say that our algorithm TolerantGI correctly decides

whether d(Gu, Gk) ≤ γ1n
2 or d(Gu, Gk) ≥ γ2n

2 with probability at least 2/3.

Now, we calculate the query complexity of our algorithm. Note that Step 1 and Step

2 of Phase 1, Step 1 and Step 3 of Phase 2, Step 1, Step 2 and Step 3 of Phase 3, of

the algorithm TolerantGI, do not require any query to the adjacency matrix of Gu. Let

COSTCu denote the query complexity corresponding to a particular Cu ∈ Cu. So, the

249

total query complexity of the algorithm TolerantGI is
∑

Cu∈Cu
COSTCu . Observe that

COSTCu = Query Complexity of algorithm ALG-EMD + COSTCu,W

where COSTCu,W denotes the query complexity of Step 1 of Phase 2 corresponding to

W and Cu ∈ Cu.

Note that ALG-EMD is the algorithm corresponding to Theorem 14.2. In Step 3

of Phase 1 of our algorithm, for each Cu ∈ Cu, we call ALG-EMD with parameters

d = O (log n), t = 2O(log
2 n), ε1 =

(
γ1 +

γ2−γ1
2000

)
, ε2 = γ2

5
and δ = Θ(1). So, the query

complexity of each call, to ALG-EMD from our algorithm, is Õ
(
min{n, 2d}

)
= Õ(n).

Further note that, from the description Step 1 of Phase 2, COSTCu,W = O
(
log2 n

)
.

Since |Cu| = O
(

1
γ2−γ1

)
, the total query complexity of our algorithm is Õ(n).

250

Chapter 15

Tolerant Bipartiteness Testing in Dense

Graphs

15.1 Introduction

In this chapter, we present our result on tolerant bipartiteness testing. We will prove the

following theorem.

Theorem 15.1 (Restatement of Theorem 12.4). Given query access to the adjacency

matrix of a dense graph G with n vertices and a proximity parameter ε ∈ (0, 1), there

exists an algorithm that, with probability at least 9
10

, decides whether dbip(G) ≤ εn2

or dbip(G) ≥ (2 + Ω(1))εn2, by sampling O
(

1
ε3
log 1

ε

)
vertices in 2O(

1
ε
log 1

ε) time, and

makes O
(

1
ε3
log2 1

ε

)
queries.

before proceeding to the proof, let us first recall the notion of bipartite distance

which will be used in our proofs in this chapter.

Definition 15.2 (Bipartite distance, Restatement of Definition 12.3). A bipartition of

(the vertices of) a graph G is a function f : V (G) → {L,R} 1. The bipartite distance of

1L and R denote left and right respectively.

251

G with respect to the bipartition f is denoted and defined as

dbip(G, f) :=

 ∑
v∈V :f(v)=L

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈V :f(v)=R

∣∣N(v) ∩ f−1(R)
∣∣ .

The bipartite distance of G is defined as the minimum bipartite distance of G over all

possible bipartitions f of G, that is,

dbip(G) := min
f
dbip(G, f).

For a set of pairs of vertices Z, we will denote the set of vertices present in at least

one pair inZ by V (Z). For a function f : V (G) → {L,R}, f−1(L) (f−1(R)) represents

the set of vertices that are mapped to L (R) by f .
(
V (G)
2

)
denotes the set of unordered

pairs of the vertices of G

In Section 15.2, we present an algorithm of estimating the bipartite distance of a

dense graph by applying the result of Alon et al. [AdlVKK03] of estimating the size of

MAXCUT of a dense graph (with larger query complexity compared to our final algo-

rithm). In Section 15.3, we formally describe our algorithm, followed by its correctness

analysis in Section 15.4.

15.2 Estimation of bipartite distance with Õ
(
1
ε6

)
queries

Formally, we state the following theorem.

Theorem 15.3. Given an unknown graph G on n vertices and any proximity parameter

ε ∈ (0, 1), there is an algorithm that performs Õ(1
ε6
) adjacency queries, and outputs a

number d̂bip(G) such that, with probability at least 9
10

, the following holds:

dbip(G)− εn2 ≤ d̂bip(G) ≤ dbip(G) + εn2,

where dbip(G) denotes the bipartite distance of G.

252

We have the following two corollaries of the above theorem.

Corollary 15.4. There exists an algorithm that given adjacency query access to a graph

G with n vertices and a proximity parameter ε ∈ (0, 1) such that, with probability at

least 9
10

, decides whether dbip(G) ≤ εn2 or dbip(G) ≥ (2 + Ω(1))εn2 using Õ
(

1
ε6

)
queries to the adjacency matrix of G.

Corollary 15.5. There exists an algorithm that given adjacency query access to a graph

G with n vertices and a proximity parameter ε ∈ (0, 1) such that, with probability at

least 9
10

, decides whether dbip(G) ≤ εn2 or dbip(G) ≥ (1+k)εn2 using Õ
(

1
k6ε6

)
queries

to the adjacency matrix of G.

To prove Theorem 15.3, we first discuss the connection between MAXCUT and bi-

partite distance of a graph G. Then we use the result for MAXCUT estimation by Alon,

Vega, Kannan and Karpinski [AdlVKK03] to obtain Theorem 15.3.

Connection between MAXCUT and dbip(G): For a graph G = (V,E) on the vertex

set V and edge set E, let S be a subset of V . We define

CUT(S) := | {{u, v} ∈ E | |{u, v} ∩ S| = 1} |

Maximum Cut (henceforth termed as MAXCUT), denoted by M(G), is a partition of the

vertex set V of G into two parts such that the number of edges crossing the partition is

maximized, that is,

M(G) := max
S⊆V

CUT(S).

The following equation connects MAXCUT and the bipartite distance of a graph G:

dbip(G) = |E(G)| −M(G). (15.1)

So, dbip(G) can be estimated by estimating |E(G)| and M(G).

Result on edge estimation: Observe that estimating |E(G)| with εn2 additive error

is equivalent to parameter estimation problem in probability theory, see Mitzenmacher

253

and Upfal [MU17, Section 4.2.3].

Proposition 15.6 (Folklore). Given any graph G on n vertices and a proximity param-

eter ε ∈ (0, 1), the size of the edge set E(G) can be estimated within an additive εn2

error, with probability at least 9
10

, using O(1
ε2
) adjacency queries to G.

MAXCUT estimation by using Õ
(
1
ε6

)
queries:

Let G = (V,E) be an n vertex graph. Both Alon et.al [AdlVKK03] and Mathieu

and Schudy [MS08] showed that if S is a t-sized random subset of V , where t =

O
(

1
ε4
log 1

ε

)
, then, with probability at least 9

10
, we have the following:∣∣∣∣M(G |S)

t2
− M(G)

n2

∣∣∣∣ ≤ ε

2

where G |S denotes the induced graph of G on the vertex set S. So, the above inequality

tells us that if we can get an εt2/2 additive error to M(G |S), then we can get an εn2

additive estimate for M(G). Observation 15.7 implies that using O
(
t
ε2

)
= O

(
1
ε6
log 1

ε

)
adjacency queries to G |S , we can get an εt2

2
additive estimate to M(G |S). There-

fore, the query complexity of MAXCUT algorithms of Alon, Vega, Kannan and Karpin-

ski [AdlVKK03] and Mathieu and Schudy [MS08] is at most O
(

1
ε6
log 1

ε

)
.

Now we state and prove the following observation.

Observation 15.7 (Folklore). For a graph G with n vertices and a proximity parameter

ε ∈ (0, 1), with probability at least 9
10

, Θ
(
n
ε2

)
adjacency queries to G are sufficient to

get an εn2 additive approximation to MAXCUT M(G).

Proof. We sample t pairs of vertices {a1, b1}, . . . , {at, bt} uniformly at random and

independent of each other, where t = Θ(n
ε2
). Thereafter, we perform t adjacency queries

to those sampled pairs of vertices. Now fix a subset S ⊂ V (G) and let us denote (S, S)

to be the set of edges between S and S.

Let us now define a set of random variables, one for each sampled pair of vertices as

follows:

254

Xi =

 1, if {ai, bi} ∈ (S, S)

0, Otherwise

We will output max
S⊂V (G)

M̂S as our estimate of M(G), where M̂S =
(n2)
t

t∑
i=1

Xi.

Let us denote X =
t∑
i=1

Xi. Note that

E [Xi] = P (Xi = 1) =

∣∣(S, S)∣∣(
n
2

) ,

and hence

E
[
M̂S

]
=

(
n
2

)
t
E

[
t∑
i=1

Xi

]
=
∣∣(S, S)∣∣ .

Using Hoeffding’s Inequality (See Lemma 2.14), we can say that

P
(∣∣∣∣∣(S, S)∣∣− M̂S

∣∣∣ ≥ εn2

10

)
≤ P

(
|X − E[X]| ≥ εt

10

)
≤ 2e−Θ(ε

2t2

t
) ≤ 2e−Θ(n).

Using union bound over all S ⊂ V (G), we can show that with probability at least

3/4, for each S ⊂ V (G), M̂S approximates
∣∣(S, S)∣∣ with εn2 additive error. Therefore

max
S⊂V (G)

M̂S estimates M(G) with additive error εn2, with probability at least 9/10.

15.3 Algorithm for Tolerant Bipartite Testing

In this section, we formalize the ideas discussed in Section 12.4.2, and prove Theo-

rem 12.26.

Formal description of algorithm TOL-BIP-DIST(G, ε)

Step-1 Let C1, C2, C3 be three suitably chosen large constants and t := ⌈log C1

kε
⌉.

(i) We start by generating t subset of vertices X1, . . . , Xt ⊂ V (G), each with

255

⌈ C2

k3ε
log 1

kε
⌉ vertices, sampled randomly without replacement 2.

(ii) We sample ⌈ C3

k5ε2
log 1

kε
⌉ random pairs of vertices, with replacement, and de-

note those sampled pairs of vertices as Z. Note that X1, . . . , Xt, Z are gen-

erated independent of each other.

(iii) We find all the edges with one endpoint in C = X1∪X2∪ . . . Xt and the other

endpoint in one of the vertices of V (Z) 3, by performing O
(

1
k8ε3

log2 1
kε

)
adjacency queries.

Step-2 (i) Let {a1, b1}, . . . {aλ, bλ} be the pairs of vertices ofZ, where λ = ⌈ C3

k5ε2
log 1

kε
⌉.

Now we find the pairs of Z that are edges in G, by performing adjacency

queries to all the pairs of vertices of Z (after this step, the algorithm does not

make any query further).

(ii) For each i ∈ [t], we do the following:

(a) Let Fi denote the set of all possible bipartitions of Xi, that is,

Fi =
{
fij : Xi → {L,R} : j ∈

[
2|Xi|−2

]}
.

(b) For each bipartition fij (of Xi) in Fi, we extend fij to f ′
ij : Xi ∪ Z →

{L,R} to be a bipartition of Xi ∪ Z, such that the mapping of each

2Since we are assuming n is sufficiently large with respect to 1
ε , sampling with and without replace-

ment are the same.
3Recall that V (Z) denotes the set of vertices present in at least one pair in Z.

256

vertex of Xi are identical in fij and f ′
ij , and is defined as follows:

f ′
ij(z) =



fij(z), z ∈ Xi

L, z /∈ Xi and

∣∣N(z) ∩ f−1
ij (R)

∣∣ > ∣∣N(z) ∩ f−1
ij (L)

∣∣+ kε|Xi|
225000

R, z /∈ Xi and

∣∣N(z) ∩ f−1
ij (L)

∣∣ > ∣∣N(z) ∩ f−1
ij (R)

∣∣+ kε|Xi|
225000

L or R

arbitrarily, otherwise
Note that this step can be performed from the adjacency information

between the vertices of C and Z, which have already been computed

before.

(c) We now find the fraction of the vertex pairs of Z that are edges and have

the same label with respect to f ′
ij , that is,

ζij = 2 ·
∣∣{{aℓ, bℓ} : ℓ ∈ [λ], {aℓ, bℓ} ∈ E(G) and f ′

ij(aℓ) = f ′
ij(bℓ)

}∣∣
λ

4.

(d) If ζij ≤
(
2 + k

20

)
ε, we ACCEPT G as ε-close to being bipartite, and

QUIT the algorithm.

(iii) If we arrive at this step, then ζij >
(
2 + k

20

)
ε, for each i ∈ [t] and fij ∈ Fi in

Step-(ii). We REJECT and declare thatG is (2+k)ε-far from being bipartite.

We split the analysis of algorithm TOL-BIP-DIST(G, ε) into five parts:

Completeness: If G is ε-close to being bipartite, then TOL-BIP-DIST(G, ε) reports the

same, with probability at least 9
10

.

42 is multiplied, as in the definition of dbip(G, f), each edge {u, v} ∈ E(G) with f(u) = f(v) is
counted twice.

257

Soundness: If G is (2+k)ε-far from being bipartite, then TOL-BIP-DIST(G, ε) reports

the same, with probability at least 9
10

.

Sample Complexity: The sample complexity of TOL-BIP-DIST(G, ε) is O(1
k5ε2

log 1
kε
).

Query Complexity: The query complexity of TOL-BIP-DIST(G, ε) is O(1
k8ε3

log2 1
kε
).

Time Complexity: The time complexity of TOL-BIP-DIST(G, ε) is 2O(1
k3ε

log 1
kε

).

Above three quantities follows from the description of TOL-BIP-DIST(G, ε). In

Step-1(i) of TOL-BIP-DIST(G, ε), we sample vertices of G to generate t = ⌈log C1

kε
⌉

subsets, each with ⌈ C2

k3ε
log 1

kε
⌉ vertices. Then in Step-1(ii) and Step-1(iii), we randomly

choose ⌈ C3

k5ε2
log 1

kε
⌉ pairs of vertices and perform adjacency queries for each vertex in

any pair of Z to every Xi. Thus the sample complexity of TOL-BIP-DIST(G, ε) is

O(1
k5ε2

log 1
kε
) and query complexity is O(1

k8ε3
log2 1

kε
). The time complexity of the

algorithm is 2O(1
k3ε

log 1
kε

), which follows from Step-2(ii), that dominates the running

time.

15.4 Correctness of our algorithm

In this section, we present the correctness proof of our algorithm TOL-BIP-DIST(G, ε).

Before proceeding to the proof, we introduce some definitions for classifying the ver-

tices of the graph, with respect to any particular bipartition, into two categories: (i)

heavy vertices, and (ii) balanced vertices. These definitions will be mostly used in the

proof of completeness. Informally speaking, a vertex v is said to be heavy with respect

to a bipartition f , if it has substantially large number of neighbors in one side of the

bipartition (either L or R), as compared to the other side.

Definition 15.8 (Heavy vertex). A vertex v ∈ V is said to be L-heavy with respect to a

bipartition f , if it satisfies two conditions:

(i) |N(v) ∩ f−1(L)| ≥ |N(v) ∩ f−1(R)|+ kεn
150

;

258

(ii) If |N(v) ∩ f−1(R)| ≥
(
1 + k

200

)−1 kεn
150

, then

|N(v) ∩ f−1(L)| ≥
(
1 + k

200

)
|N(v) ∩ f−1(R)|;

We define R-heavy vertices analogously. The union of the set of L-heavy and R-

heavy vertices, with respect to a bipartition f , is defined to be the set of heavy vertices

(with respect to f), and is denoted by Hf .

Similarly, a vertex v is said to be balanced if the number of neighbors of v are similar

in both L and R, with respect to a bipartition f . We define it formally as follows:

Definition 15.9 (Balanced vertex). A vertex v ∈ V is said to be balanced with respect

to a bipartition f , if v /∈ Hf , that is, it satisfies at least one of the following conditions:

(i) Type 1: ||N(v) ∩ f−1(R)| − |N(v) ∩ f−1(L)|| < kεn
150

;

(ii) Type 2: Either

∣∣N(v) ∩ f−1(L)
∣∣ ≤ ∣∣N(v) ∩ f−1(R)

∣∣ < (1 + k

200

) ∣∣N(v) ∩ f−1(L)
∣∣ ,

or,

∣∣N(v) ∩ f−1(R)
∣∣ ≤ ∣∣N(v) ∩ f−1(L)

∣∣ < (1 + k

200

) ∣∣N(v) ∩ f−1(R)
∣∣ .

The set of balanced vertices of Type 1 with respect to f is denoted as B1
f , and the set

of balanced vertices of Type 2 with respect to f is denoted as B2
f . The union of B1

f and

B2
f is denoted by Bf . Note that B1

f and B2
f may not be disjoint.

In order to prove the completeness (in Section 15.4.1), we also use a notion of SPE-

CIAL bipartition to be defined below. The definition of SPECIAL bipartition is based on

an optimal bipartition f of V (G), and notions of heavy and balanced vertices. We would

also like to note that, later in Lemma 15.13, we show that when dbip(G) ≤ εn2, the bi-

partite distance of G with respect to any SPECIAL bipartition is bounded by (2+ k
50
)εn2.

259

Definition 15.10 (SPECIAL bipartition). Let dbip(G) ≤ εn2, and f : V (G) → {L,R} be

an optimal bipartition of V (G), that is, dbip(G, f) ≤ εn2, and there does not exist any

bipartition g such that dbip(G, g) < dbip(G, f). For an Xi selected in Step-1(i) of the

algorithm, let fij ∈ Fi be the bipartition of Xi such that f |Xi= fij . Then bipartition

SPLfi : V (G) → {L,R} is said to be a SPECIAL bipartition with respect to f by fij
such that

• SPLfi |Xi= f |Xi= fij;

• There exists a subset H′
f ⊂ Hf such that

∣∣H′
f

∣∣ ≥ (1 − o(kε)) |Hf |, and for each

v ∈ H′
f , SPLfi (v) is defined as follows:

SPLfi (v) =

 R, v /∈ Xi and v is L− heavy

L, v /∈ Xi and v is R− heavy

• For each v /∈ (H′
f ∪Xi), SPLfi (v) is set to L or R arbitrarily.

In our proof of the soundness theorem (in Section 15.4.2), we apply the notion of

DERIVED bipartition. Unlike the definition of SPECIAL bipartition, the definition of

DERIVED bipartition is more general, in the sense that it is not defined based on either

any optimal bipartition, or on heavy or balanced vertices.

Definition 15.11 (DERIVED bipartition). Let f : V (G) → {L,R} be a bipartition of

V (G). For an Xi selected in Step-1(i) of the algorithm, let fij ∈ Fi be the bipartition of

Xi such that f |Xi= fij . A bipartition DERfi : V (G) → {L,R} is said to be DERIVED

bipartition with respect to f by fij , if DERfi |Xi= f |Xi= fij .

15.4.1 Proof of completeness

In this section, we prove the following theorem:

Theorem 15.12. LetG be ε-close to being bipartite. Then TOL-BIP-DIST(G, ε) reports

the same, with probability at least 9/10.

260

The proof of Theorem 15.12 will crucially use the following lemma, which says

that the bipartite distance of G with respect to any SPECIAL bipartition is bounded by(
2 + k

50

)
εn2.

Lemma 15.13 (SPECIAL bipartition lemma). Let f be a bipartition such that dbip(G, f) ≤
εn2 and there does not exist any bipartition g such that dbip(G, g) < dbip(G, f). For any

SPECIAL bipartition SPLfi with respect to f , dbip(G, SPLfi) ≤
(
2 + k

50

)
εn2.

We will prove the above lemma later. For now, we want to establish (in Lemma 15.15)

that there exists an i ∈ [t] and a fij ∈ Fi which can be thought of as a random restric-

tion of some SPECIAL bipartition with respect to f by fij . In other words, Lemma 15.15

basically states that if G is ε-close to being bipartite, then the extension according to the

rule in Step-2(ii)(b) of the mapping obtained by restricting an optimal bipartition to a

random Xi is likely to correspond to a SPECIAL bipartition, and therefore, the number

of monochromatic edges (with respect to a SPECIAL bipartition) in the randomly picked

Z is likely to be low with respect to that bipartition. Thus, ζij must be low for some i

and j with high probability.

To prove Lemma 15.15, we need the following lemma (Lemma 15.14) about heavy

vertices. In Lemma 15.14, we prove that a heavy vertex with respect to a bipartition f

will have significantly more neighbors in the part of Xi, that corresponds to the heavy

side of that vertex (with respect to f). Basically, if a vertex v is L-heavy with respect to

f , it has more neighbors in the subset of Xi on the L-side as compared to the subset of

Xi on the R-side of f . Formally, we have the following:

Lemma 15.14 (Heavy vertex lemma). Let f be a bipartition of G. Consider a vertex

v ∈ V . Then we have the following:

(i) For each L-heavy vertex v, |N(v) ∩ f−1(L) ∩Xi|−|N(v) ∩ f−1(R) ∩Xi| ≥ k2ε|Xi|
225000

holds with probability at least 1− o(kε).

(ii) For eachR-heavy vertex v, |N(v) ∩ f−1(L) ∩Xi|−|N(v) ∩ f−1(R) ∩Xi| ≥ k2ε|Xi|
225000

holds with probability at least 1− o(kε).

261

We would like to note that Lemma 15.14 holds for any bipartition. However, we will

use it only for completeness with resepct to an optimal bipartition f .

Lemma 15.15. If dbip(G) ≤ εn2, then there exists an i ∈ [t] and fij ∈ Fi such that

ζij ≤
(
2 + k

20

)
ε holds, with probability at least 1− o(kε).

Proof. Let f be an optimal bipartition such that dbip(G, f) ≤ εn2. First consider a SPE-

CIAL bipartition SPLfi , and consider a set of random vertex pairs Y such that |Y | = |Z|.
Now consider the fraction of monochromatic edges of Y , with respect to the bipartition

SPLfi , that is,

χfij = 2 ·

∣∣∣{{a, b} ∈ Y : {a, b} ∈ E(G) and SPLfi (a) = SPLfi (b)
}∣∣∣

|Y |
.

Observation 15.16. With probability at least 9
10

, χfij ≤
(
2 + k

20

)
ε holds.

Proof. By Lemma 15.13, we know that if dbip(G) ≤ εn2, dbip(G, SPLfi) ≤
(
2 + k

50

)
εn2.

So, E[χfij] ≤
(
2 + k

50

)
ε. Using Chernoff bound (see Lemma 2.13), we can say that

P
(
χfij ≥

(
2 + k

20

)
ε
)
≤ 1

2
Ω(1

k3ε
log 1

kε)
≤ 1

10
.

Now, we claim that bounding χfij is equivalent to bounding ζij .

Claim 15.17. For any i ∈ [t], there exists a bipartition fij ∈ Fi such that the probability

distribution of ζij is identical to that of χfij , for some SPECIAL bipartition f with respect

to fij , with probability at least 1
2
.

As t = O(log 1
kε
), the above claim implies that there exists an i ∈ [t] and fij ∈ Fi

such that the probability distribution of ζij is identical to that of χfij , with probability at

least 1− o(kε).

Now we prove Claim 15.17. Recall the procedure of determining ζij as described in

Step 2 of algorithm TOL-BIP-DIST(G, ε) presented in Section 15.3.

262

Fact 1: For any vertex v ∈ Hf∩Z, SPLfi (v) = f ′
ij(v), with probability at least 1−o(kε),

where Hf denotes the set of heavy vertices of Xi with respect to the bipartition f .

This follows according to Claim 15.14, along with the definition of f ′
ij(z).

Fact 2: Consider a bipartition fij ∈ Fi of Xi, and its extension f ′
ij to Xi ∪ Z, as con-

sidered in the algorithm. Assume a bipartition f ′′
ij of V (G), constructed by ex-

tending f ′
ij according to the rule of Step-2(ii)(b) of the algorithm. From Heavy

vertex lemma (Lemma 15.14), we know that the expected number of vertices in

Hf such that f ′′
ij(v) ̸= f(v), is at most o(kε) |Hf |. Using Markov inequality, we

can say that, with probability at least 1
2
, the number of vertices in Hf such that

f
′′
ij(v) ̸= f(v), is at most o(kε) |Hf |. Thus, with probability at least 1

2
, there exists

a set of vertices H′
f such that f ′′

ij(v) = f(v) holds for at least (1 − o(kε))
∣∣H′

f

∣∣
vertices. Note that the bipartition f ′′

ij is a SPECIAL bipartition f with respect to fij .

From Fact 1 and Fact 2, we can deduce that, there exists a SPECIAL bipartition SPLfi

such that SPLfi (v) = f ′
ij(v) for each z ∈ Z. Since we choose Z uniformly at random,

Lemma 15.15 follows.

According to the description of algorithm TOL-BIP-DIST(G, ε), the algorithm re-

ports that dbip(G) ≤ εn2, if there exists a ζij such that ζij ≤
(
2 + k

20

)
ε, for some i ∈ [t]

and j ∈ [2|Xi|−2]. Hence, by Lemma 15.15, we are done with the proof of the complete-

ness theorem (Theorem 15.12).

Now we focus on proving SPECIAL bipartition lemma (Lemma 15.13) and Heavy

vertex lemma (Lemma 15.14), starting with the proof of SPECIAL bipartition lemma.

Proof of SPECIAL bipartition lemma (Lemma 15.13)

The idea of the proof relies on decomposing the bipartite distance with respect to a

SPECIAL bipartition into a sum of three terms and then carefully bounding the cost of

each of those parts individually.

Let us first recall the definition of bipartite distance of G with respect to a special

263

bipartition SPLfi .

dbip(G, SPLfi) =
∣∣∣{(u, v) ∈ E(G) : SPLfi (u) = SPLfi (v)

}∣∣∣ . (15.2)

By abuse of notation, here we are denoting E(G) as the set of ordered edges.

We will upper bound dbip(G, SPLfi) as the sum of three terms defined below. Here

Hf and Bf denote the set of heavy vertices and balanced vertices (with respect to f),

as defined in Definition 15.8 and Definition 15.9, respectively. Also, H′
f ⊆ Hf denotes

the set of vertices of Hf that are mapped according to f , as defined in the definition of

SPECIAL bipartition in Definition 15.10. The three terms that are used to upper bound

dbip(G, SPLfi) are as follows:

(a) DH′
f∪Xi,H

′
f∪Xi = |{(u, v) ∈ E(G) : u ∈ H′

f ∪Xi &

v ∈ H′
f ∪Xi, SPLfi (u) = SPLfi (v)}|.

(b) DHf\(H′
f∪Xi),V (G) = |{(u, v) ∈ E(G) : u ∈ Hf \ (H′

f ∪Xi) &

v ∈ V (G), SPLfi (u) = SPLfi (v)}|.

(c) DBf\Xi,V (G) = |{(u, v) ∈ E(G) : u ∈ Bf \Xi &

v ∈ V (G), SPLfi (u) = SPLfi (v)}|.

Now from Equation 15.2 along with the above definitions, we can upper bound

dbip(G, SPLfi) as follows:

dbip(G, SPLfi) ≤ DH′
f∪Xi,H

′
f∪Xi +DHf\(H′

f∪Xi),V (G) +DBf\Xi,V (G). (15.3)

We now upper bound dbip(G, SPLfi) by bounding each term on the right hand side of

the above expression separately, via the two following claims which we will prove later.

Claim 15.18. (i) DH′
f∪Xi,H

′
f∪Xi ≤ dbip(G, f)− Π, where

264

Π :=

 ∑
v∈Bf\Xi:f(v)=L

|N(v) ∩ f−1(L)|+
∑

v∈Bf\Xi:f(v)=R

|N(v) ∩ f−1(R)|

 ;

(ii) DHf\(H′
f∪Xi),V (G) ≤ o(kε)n2;

Claim 15.19. DBf\Xi,V (G) ≤ 2
(
1 + k

400

)
Π+ kεn2

150
.

Assuming Claim 15.18 and Claim 15.19 hold, along with Equation 15.3, we now

upper bound dbip(G, SPLfi) as follows:

dbip(G, SPLfi) ≤ dbip(G, f)− Π+ o(kε)n2 + 2

(
1 +

k

400

)
Π+

kεn2

150

≤ dbip(G, f) + Π +
k

200
Π +

kεn2

100
.

Note that Π ≤ dbip(G, f) and dbip(G, f) ≤ εn2. Hence, we can say the following:

dbip(G, SPLfi) ≤
(
2 +

k

50

)
εn2.

So, we are done with the proof of the SPECIAL bipartition lemma. We now proceed with

the proofs of Claim 15.18 and Claim 15.19.

Proof of Claim 15.18. (i) We use the following observation in our proof. The observa-

tion follows due to the fact that the bipartition f considered is an optimal bipartition.

Observation 15.20. Let v be a L-heavy vertex v with respect to f . Then f(v) = R.

Similarly, for every R-heavy vertex v with respect to f , f(v) = L.

Following the definition of SPECIAL bipartition, we know that there exists a set of

vertices H′
f ⊂ Hf such that

∣∣H′
f

∣∣ ≥ (1−o(kε)) |Hf |, and for each v ∈ H′
f , the following

holds:

SPLfi (v) =

 R, v /∈ Xi and v is L− heavy

L, v /∈ Xi and v is R− heavy

265

By Observation 15.20, we know that for every v ∈ H′
f , SPLfi (v) = f(v). Moreover, for

each v ∈ Xi, SPLfi (v) = f(v), following the definition of SPECIAL bipartition SPLfi .

Thus for every v ∈ H′
f ∪Xi, SPLfi (v) = f(v). Hence,

DH′
f∪Xi,H

′
f∪Xi

=
∣∣∣{(u, v) ∈ E(G) : u ∈ H′

f ∪Xi and v ∈ H′
f ∪Xi, SPLfi (u) = SPLfi (v)

}∣∣∣
=
∣∣{(u, v) ∈ E(G) : u ∈ H′

f ∪Xi, and v ∈ H′
f ∪Xi, f(u) = f(v)

}∣∣
(∵ for every v ∈ H′

f ∪Xi, SPLfi (v) = f(v))

= dbip(G, f)−

 ∑
v∈V \(H′

f∪Xi):
f(v)=L

|N(v) ∩ f−1(L)|+
∑

v∈V \(H′
f∪Xi):

f(v)=R

|N(v) ∩ f−1(R)|


≤ dbip(G, f)−

 ∑
v∈Bf\Xi:f(v)=L

|N(v) ∩ f−1(L)|+
∑

v∈Bf\Xi:f(v)=R

|N(v) ∩ f−1(R)|


= dbip(G, f)− Π.

(ii) By the definition of H′
f , we know that

∣∣Hf \ (H′
f ∪Xi)

∣∣ is upper bounded by

o(kε) |Hf |. Following the definition of DHf\(H′
f∪Xi),V (G), we can say the following:

DHf\(H′
f∪Xi),V (G) = |{(u, v) ∈ E(G) : u ∈ Hf \ (H′

f ∪Xi) &

v ∈ V (G), SPLfi (u) = SPLfi (v)}|

≤
∣∣Hf \ (H′

f ∪Xi)
∣∣× |V (G)| = o(kε) |Hf | × n ≤ o(kε)n2.

The last inequality follows as |Hf | is at most n.

Proof of Claim 15.19. Observe that

DBf\Xi,V (G) =
∣∣∣{(u, v) ∈ E(G) : u ∈ Bf \Xi & v ∈ V (G), SPLfi (u) = SPLfi (v)

}∣∣∣
≤ |{(u, v) ∈ E(G) : u ∈ Bf \Xi & v ∈ V (G)}| =

∑
v∈Bf\Xi

|N(v)|

266

As Bf = B1
f ∪ B2

f , we have

DBf\Xi,V (G) ≤
∑

v∈B1
f\Xi

|N(v)|+
∑

v∈B2
f\Xi

|N(v)| . (15.4)

We will boundDBf\Xi,V (G) by bounding
∑

v∈B1
f\Xi

|N(v)| and
∑

v∈B2
f\Xi

|N(v)| sep-

arately, which we prove in the following claim:

Claim 15.21. Let us consider T1 and T2 as follows:

T1 = 2

 ∑
v∈f−1(L)∩(B1

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+

kεn2

150

T2 =

(
2 +

k

200

) ∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B2
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

Then

(i) For balanced vertices of Type 1, we have
∑

v∈B1
f\Xi

|N(v)| ≤ T1.

(ii) For balanced vertices of Type 2, we have
∑

v∈B2
f\Xi

|N(v)| ≤ T2.

The proof of the above claim is presented in Section 15.4.2. Using Claim 15.21 and

Equation (15.4), we have the following:

DBf\Xi,V (G) =
∑

v∈B1
f\Xi

|N(v)|+
∑

v∈B2
f\Xi

|N(v)|

≤ T1 + T2

≤ 2

(
1 +

k

400

)
Π+

kεn2

150
(From the definitions of T1, T2 and Π)

267

Proof of Heavy vertex lemma (Lemma 15.14)

Before proceeding to prove the Heavy vertex lemma, we will first prove two intermediate

claims that will be crucially used in the proof of the lemma. The first claim states that

when we consider a bipartition f ofG, if a vertex v ∈ G has a large number of neighbors

on one side of the partition defined by f , the proportion of its neighbors in Xi on the

same side of f will be approximately preserved, where Xi is a set of vertices picked at

random in Step-1(i) of the algorithm TOL-BIP-DIST(G, ε). The result is formally stated

as follows:

Claim 15.22. Let f be a bipartition of G. Consider a vertex v ∈ V .

(i) Suppose |N(v) ∩ f−1(L)| ≥ kεn
150

. Then, with probability at least 1− o(kε), we have

∣∣N(v) ∩ f−1(L) ∩Xi

∣∣ = (1± k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|
n
.

(ii) Suppose |N(v) ∩ f−1(R)| ≥ kεn
150

. Then, with probability at least 1−o(kε), we have

|N(v) ∩ f−1(R) ∩Xi| =
(
1± k

500

)
|N(v) ∩ f−1(R)| |Xi|

n
.

The next claim is in similar spirit as that of Claim 15.22. Instead of considering

vertices with large number of neighbors, it considers the case when a vertex has small

number of neighbors on one side of a bipartition f .

Claim 15.23. Let f be a bipartition of G. Consider a vertex v ∈ V .

(i) Suppose |N(v) ∩ f−1(L)| ≤
(
1 + k

200

)−1 kεn
150

. Then, with probability at least 1 −
o(kε), we have

∣∣N(v) ∩ f−1(L) ∩Xi

∣∣ ≤ (1 + k

300

)−1
kε |Xi|
150

(ii) Suppose |N(v) ∩ f−1(R)| ≤
(
1 + k

200

)−1 kεn
150

. Then, with probability at least 1 −

268

o(kε), we have

∣∣N(v) ∩ f−1(R) ∩Xi

∣∣ ≤ (1 + k

300

)−1
kε |Xi|
150

Claim 15.22 and Claim 15.23 can be proved by using large deviation inequalities

(stated in Section 2.3), and the proofs are presented in Appendix 15.4.2.

Assuming Claim 15.22 and Claim 15.23 hold, we now prove the Heavy vertex lemma

(Lemma 15.14).

Proof of Lemma 15.14. We will only prove (i) here, which concerns the L-heavy ver-

tices. (ii) can be proved in similar fashion. We first characterize L-heavy vertices into

two categories:

(a) Both |N(v) ∩ f−1(L)| and |N(v) ∩ f−1(R)| are large, that is, |N(v) ∩ f−1(L)| ≥
kεn
150

and |N(v) ∩ f−1(R)| ≥
(
1 + k

200

)−1 kεn
150

. Moreover, |N(v) ∩ f−1(L)| ≥(
1 + k

200

)
|N(v) ∩ f−1(R)|.

(b) |N(v) ∩ f−1(L)| is large and |N(v) ∩ f−1(R)| is small, that is, |N(v) ∩ f−1(L)| ≥
kεn
150

and |N(v) ∩ f−1(R)| ≤
(
1 + k

200

)−1 kεn
150

.

Case (a): Here |N(v) ∩ f−1(L)| ≥
(
1 + k

200

)
kεn
150

, and |N(v) ∩ f−1(R)| ≥ kεn
150

. From

Claim 15.22, the following hold, with probability at least 1− o(kε):

∣∣N(v) ∩ f−1(L) ∩Xi

∣∣ = (1± k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|
n

and ∣∣N(v) ∩ f−1(R) ∩Xi

∣∣ = (1± k

500

) ∣∣N(v) ∩ f−1(R)
∣∣ |Xi|
n
.

269

So, with probability at least 1− o(kε), we have the following:

∣∣N(v) ∩ f−1(L) ∩Xi

∣∣− ∣∣N(v) ∩ f−1(R) ∩Xi

∣∣
≥
(
1− k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|
n

−
(
1 +

k

500

) ∣∣N(v) ∩ f−1(R)
∣∣ |Xi|
n

≥

(
1− k

500
−

1 + k
500

1 + k
200

)
|N(v) ∩ f−1(L)| |Xi|

n(
∵
∣∣N(v) ∩ f−1(L)

∣∣ ≥ (1 + k

200

) ∣∣N(v) ∩ f−1(R)
∣∣)

≥ k

1500
× kε |Xi|

150

≥ k2ε |Xi|
225000

(∵ k ≤ 100)

Case (b): Here |N(v) ∩ f−1(L)| ≥ kεn
150

and |N(v) ∩ f−1(R)| ≤
(
1 + k

200

)−1 kεn
150

. From

Claim 15.22 and Claim 15.23, the following hold, with probability at least 1 −
o(kε):

∣∣N(v) ∩ f−1(L) ∩Xi

∣∣ = (1± k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|
n

and |N(v) ∩ f−1(R) ∩Xi| ≤
(
1 + k

300

)−1 kε|Xi|
150

. Thus, with probability at least

1− o(kε), we have the following:

∣∣N(v) ∩ f−1(L) ∩Xi

∣∣− ∣∣N(v) ∩ f−1(R) ∩Xi

∣∣
≥ (1− k

500
)
∣∣N(v) ∩ f−1(L)

∣∣ |Xi|
n

− 1

1 + k
300

kε |Xi|
150

= (1− k

500
)
kε |Xi|
150

− 1

1 + k
300

kε |Xi|
150

≥ 1

1500

(
2k − k2

100

)
kε |Xi|
150

≥ k2ε |Xi|
225000

(∵ k ≤ 100)

This completes the proof of part (i) of Lemma 15.14.

270

15.4.2 Proof of soundness

In this section, we prove the following theorem:

Theorem 15.24. Let us assume that G is (2 + k)ε-far from being bipartite. Then

TOL-BIP-DIST(G, ε) reports the same, with probability at least 9/10.

Assume f is a bipartition of V (G). Now let us consider a DERIVED bipartition DERfi

with respect to f by fij , and choose a set of random vertex pairs Y such that |Y | = |Z|.
Let χfij denote the fraction of vertex pairs of Y that are monochromatic with respect to

the bipartition DERfi , that is,

χfij = 2 ·

∣∣∣{{a, b} ∈ Y : {a, b} ∈ E(G) and DERfi (a) = DERfi (b)
}∣∣∣

|Y |
.

Observation 15.25. χfij ≤
(
2 + k

20

)
ε holds with probability at most 1

10N
, where N =

2O(
1
k3ε

log 1
kε).

Proof. Since G is (2 + k)ε-far from being bipartite, the same holds for the bipartition

DERfi as well, that is, dbip(G,DERfi) ≥ (2 + k)εn2. So, E[χfij] ≥ (2 + k) ε. Using

Chernoff bound (see Lemma 2.13), we can say that, P
(
χfij ≤

(
2 + k

20

)
ε
)
≤ 1

10N
. Since

|Z| = O
(

1
k5ε2

log 1
kε

)
, the result follows.

We will be done with the proof by proving the following claim, that says that bound-

ing χfij is equivalent to bounding ζij .

Claim 15.26. For any i ∈ [t], and any fij ∈ Fi, the probability distribution of ζij is

identical to that of χfij for some DERIVED bipartition with respect to f by fij .

Proof. Consider a bipartition fij ∈ Fi of Xi, and the bipartition f ′
ij of Xi ∪ Z, con-

structed by extending fij , as described in the algorithm. For the sake of the argument,

let us construct a new bipartition f ′′
ij of V (G) by extending the bipartition f ′

ij , following

the same rule of Step-2 (ii) (b) of the algorithm. Observe that f ′′
ij(v) = fij(v), for each

v ∈ Xi. Thus f ′′
ij is a DERIVED bipartition with respect to some f by fij . Hence, the

271

claim follows according to the way we generate ζij , along with the fact that Z is chosen

uniformly at random by the algorithm in Step-1 (ii).

Let us now define a pair (Xi, fij), with i ∈ [t] and fij ∈ Fi as a configuration. Now

we make the following observation which follows directly from the description of the

algorithm.

Observation 15.27. Total number of possible configurations is N = 2O(
1
k3ε

log 1
kε).

Note that Claim 15.26 holds for a particular fij ∈ Fi. Recall that in Step-2(iii),

our algorithm TOL-BIP-DIST(G, ε) reports that G is (2 + k)ε-far if ζij >
(
2 + k

20

)
ε,

for all i ∈ [t] and fij ∈ Fi. So, using the union bound, along with Observation 15.25,

Claim 15.26 and Observation 15.27, we are done with the proof of Theorem 15.24.

Remaining proofs from this section

Here we include proofs of four claims that were not formally proven before in this sec-

tion.

Claim 15.28 (Restatement of Claim 15.21 (i)). Let

T1 = 2

 ∑
v∈f−1(L)∩(B1

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+

kεn2

150
.

Then for balanced vertices of Type 1,
∑

v∈B1
f\Xi

|N(v)| ≤ T1.

Proof. Let us consider an optimal bipartition f . Then, for any vertex v ∈ f−1(L)∩(B1
f \

Xi), we can show the following:

−kεn
150

≤
∣∣N(v) ∩ f−1(L)

∣∣− ∣∣N(v) ∩ f−1(R)
∣∣ ≤ 0

272

Thus

−kεn
∣∣f−1(L) ∩ (B1

f \Xi)
∣∣

150
≤

∑
v∈f−1(L)∩(B1

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

−
∑

v∈f−1(L)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

≤ 0

Similarly, we can also show that

−kεn
∣∣f−1(R) ∩ (B1

f \Xi)
∣∣

150
≤

∑
v∈f−1(R)∩(B1

f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

−
∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

≤ 0.

Since f−1(L)∪f−1(R) = V (G), and f−1(L)∩f−1(R) = ∅, we have the following four

inequalities:

−kεn
∣∣B1

f \Xi

∣∣
150

≤
∑

v∈f−1(L)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

−
∑

v∈f−1(L)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

So,

∑
v∈f−1(L)∩(B1

f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

≤
∑

v∈f−1(L)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

+
kεn

∣∣B1
f \Xi

∣∣
150

273

Therefore

∑
v∈f−1(L)∩(B1

f\Xi)

|N(v)|+
∑

v∈f−1(R)∩(B1
f\Xi)

|N(v)|

≤ 2

 ∑
v∈f−1(L)∩(B1

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B1
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+

kεn2

150

So we conclude that
∑

v∈B1
f\Xi

|N(v)| ≤ T1.

Claim 15.29 (Restatement of Claim 15.21(ii)). Let

T2 =

(
2 +

k

200

) ∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B2
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣ .

Then, for balanced vertices of Type 2,
∑

v∈B2
f\Xi

|N(v)| ≤ T2.

Proof. Recall the definition of balanced vertices of Type 2 from Definition 15.9. Sum-

ming over all the vertices of f−1(L) ∩ (B2
f \Xi), we have

∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣ ≤

∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

≤
(
1 +

k

200

) ∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

Similarly, we can also say that

∑
v∈f−1(R)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣ ≤

∑
v∈f−1(R)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

≤
(
1 +

k

200

) ∑
v∈f−1(R)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣ .

274

Summing the above two inequalities, we get the following three inequalities:

∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣+ ∑

v∈f−1(R)∩(B2
f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣

≤
(
1 +

k

200

) ∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B2
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣

So,

∑
v∈f−1(L)∩(B2

f\Xi)

|N(v)|+
∑

v∈f−1(R)∩(B2
f\Xi)

|N(v)|

≤
(
2 +

k

200

) ∑
v∈f−1(L)∩(B2

f\Xi)

∣∣N(v) ∩ f−1(L)
∣∣+ ∑

v∈f−1(R)∩(B2
f\Xi)

∣∣N(v) ∩ f−1(R)
∣∣ .

Thus, we have
∑

v∈(B2
f\Xi)

|N(v)| ≤ T2.

Claim 15.30 (Restatement of Claim 15.22). Let f be a bipartition of G. Consider a

vertex v ∈ V .

(i) Suppose |N(v) ∩ f−1(L)| ≥ kεn
150

. Then with probability at least 1 − o(kε), we have

|N(v) ∩ f−1(L) ∩Xi| =
(
1± k

500

)
|N(v) ∩ f−1(L)| |Xi|

n
holds.

(ii) Suppose |N(v) ∩ f−1(R)| ≥ kεn
150

. Then with probability at least 1− o(kε), we have

|N(v) ∩ f−1(R) ∩Xi| =
(
1± k

500

)
|N(v) ∩ f−1(R)| |Xi|

n
.

Proof. We prove only part (i) of the claim. Part (ii) can be proven analogously.

From the condition stated in (i), we know that

∣∣N(v) ∩ f−1(L)
∣∣ ≥ kεn

150
.

Since Xi is chosen randomly, we can say that

E
[∣∣N(v) ∩ f−1(L) ∩Xi

∣∣] ≥ kε |Xi|
150

.

275

Using Chernoff bound (see Lemma 2.13), we have

P
(∣∣N(v) ∩ f−1(L) ∩Xi

∣∣ ̸= (1± k

500

) ∣∣N(v) ∩ f−1(L)
∣∣ |Xi|
n

)
≤ 2e−Ω(k3ε|Xi|)

= o(kε)

The last inequality follows from the fact that |Xi| = O(1
k3ε

log 1
kε
).

Claim 15.31 (Restatement of Claim 15.23). Let f be a bipartition of G. Consider a

vertex v ∈ V .

(i) Suppose |N(v) ∩ f−1(L)| ≤
(
1 + k

200

)−1 kεn
150

. Then, with probability at least 1 −
o(kε), we have |N(v) ∩ f−1(L) ∩Xi| ≤

(
1 + k

300

)−1 kε|Xi|
150

.

(ii) Suppose |N(v) ∩ f−1(R)| ≤
(
1 + k

200

)−1 kεn
150

. Then, with probability at least 1 −
o(kε), we have |N(v) ∩ f−1(R) ∩Xi| ≤

(
1 + k

300

)−1 kε|Xi|
150

.

Proof. We will only prove part (i) here. Part (ii) can be proven in similar manner.

From the condition stated in (i), we know that

∣∣N(v) ∩ f−1(R)
∣∣ ≤ (1 + k

200

)−1
(1 + k)εn

150
.

Since Xi is chosen at random, we can say that

E
[∣∣N(v) ∩ f−1(R) ∩Xi

∣∣] ≤ (1 + k

200

)−1
(1 + k)ε |Xi|

150
.

Using Chernoff bound (see Lemma 2.13), we have

P

(∣∣N(v) ∩ f−1(L) ∩Xi

∣∣ ≥ (1 + k

300

)−1
(1 + k)ε |Xi|

150

)
≤ e−Ω(k2ε|Xi|) ≤ o(kε).

The last inequality follows due to the fact that |Xi| = O(1
k3ε

log 1
kε
).

276

Chapter 16

Conclusion

In this thesis, we considered sample and query complexities of various properties of

distributions and graphs. There are several open problems that have come out of these

works. We discuss them below:

In Part I (Chapter 4, Chapter 5, and Chapter 6), we studied the relation between the

sample complexities of non-tolerant and tolerant testing of label-invariant distribution

properties. We proved that this gap is at most quadratic, which is almost tight. We

also proved lower bound results of non-tolerant and tolerant testing of non-concentrated

properties, where the probability mass of the distributions in the property are sufficiently

spread. We further designed an algorithm of learning a concentrated distribution, even

for the case when the support of the distribution is unknown apriori. It is interesting to

note that our proof technique does not immediately generalize for non-label-invariant

properties. So, a natural open question is:

Can one show a relation between the non-tolerant and tolerant sample complexities of

non-label-invariant properties?

In Part II (Chapter 8, Chapter 9, Chapter 10, and Chapter 11), we studied several

properties in the huge object model introduced by Goldreich and Ron [GR22]. In this

model, distributions are defined over n-dimensional Hamming cube {0, 1}n, and the

samples obtained from the oracle representing the distribution are n-bit strings. We have

277

sampling access to the distribution, along with query access to the sampled strings, and

the goal is to optimize the sample and query complexities of the testers. We defined the

notion of a new class of properties, namely index-invariant properties, which are prop-

erties that are invariant under the permutation of the indices of the strings. In particular,

in Chapter 8, we studied the problem of learning distributions that can be clustered, and

designed an efficient algorithm for learning such distributions in the huge object model.

Then in Chapter 9, we proved that every index-invariant property whose VC-dimension

is bounded has a tester with a number of queries independent of n, and depends only on

the VC-dimension and the proximity parameter. Moreover, the dependencies of the sam-

ple and query complexities on the VC-dimension are also tight. Later, in Chapter 10 and

Chapter 11, we explored the power of adaptive testers compared to their non-adaptive

counterparts in this model. We showed that for index-invariant properties, there is a

tight quadratic gap. However, for general non-index-invariant properties, there is a tight

exponential gap between the query complexities of adaptive and non-adaptive testers.

Since this is a very new model, it would be very interesting to explore how the query

complexities of testing various properties depend on different measures other than the

VC-dimension.

In Part III of this thesis (Chapter 13, Chapter 14, and Chapter 15), we studied the

query complexities of some graph property testing problems in the adjacency matrix

model. In this model, the graphs are stored as adjacency matrix, and the tester can ask

queries of the form if there is an edge between two vertices, say u and v. The oracle

storing the adjacency matrix corresponding to the graph will return 1 if there is an edge

between u and v, and 0 otherwise.

In particular, in Chapter 13 and Chapter 14, we studied the problem of tolerant testing

of graph isomorphism (GI) between a known graph Gk and an unknown graph Gu, each

with n vertices. We proved that the query complexity of tolerant graph isomorphism test-

ing between Gk and Gu is the same as tolerant testing of Earth Mover Distance (EMD)

between a known multi-set Sk and an unknown multi-set Su when we have samples with-

out replacement from Su, ignoring polylogarithmic factors. Here the multi-sets Sk and

Su are constructed suitably from the graphs Gk and Gu, respectively. We also showed

278

when we are sampling with replacement from Su, Ω(n/ log n) samples are required for

tolerant testing of EMD. However, when we are sampling without replacement from Su,

the only known lower bound is Ω(
√
n). So, a natural open question is:

What is the tight sample complexity of tolerant EMD testing when we have samples

without replacement from the unknown multi-set Su?

Fischer and Matsliah [FM08] studied graph isomorphism testing for both the cases

(i) when one graph is known and the other graph is unknown and (ii) when both the

graphs are unknown. They resolved the query complexity of (i), whereas Onak and

Sun [OS18] resolved (ii). With this work, we initiate the study of tolerant graph iso-

morphism problem in the query and communication world. So, another natural open

question to look for is:

What is the query complexity of tolerant graph isomorphism

when both the graphs are unknown?

Finally, in Chapter 15, we studied the query complexity of tolerant bipartiteness

testing of dense graphs. Here, given query access to the adjacency matrix of an unknown

dense graph G, the goal is to distinguish whether dbip(G) ≤ εn2 or dbip(G) ≥ cεn2 for

any c > 1, where dbip(G) denotes the bipartite distance of G. For c ≥ 2 + Ω(1),

we designed an algorithm that solves this problem by sampling O
(

1
ε3
log 1

ε

)
vertices

in 2O(
1
ε
log 1

ε) time, and performs O
(

1
ε3
log2 1

ε

)
queries. For the case of distinguishing

dbip(G) ≤ εn2 from dbip(G) ≥ (1 + k)εn2 for some k > 0, there is an algorithm that

performs Õ
(

1
k6ε6

)
queries, which can be derived from the work of Alon, Vega, Kannan

and Karpinski [AdlVKK03] (see Corollary 15.5 in Section 15.2). So, a natural open

question is:

Is there an algorithm for distinguishing dbip(G) ≤ εn2 from dbip(G) ≥ (1 + k)εn2 with

query complexity o
(

1
k6ε6

)
?

279

Bibliography

[ABC+13] Noga Alon, Eric Blais, Sourav Chakraborty, David Garcı́a-Soriano, and

Arie Matsliah. Nearly tight bounds for testing function isomorphism.

SIAM Journal on Computing (SICOMP), 2013. 29

[ABEF17] Noga Alon, Omri Ben-Eliezer, and Eldar Fischer. Testing hereditary prop-

erties of ordered graphs and matrices. In Foundations of Computer Sci-

ence (FOCS), 2017. 89

[ABR16] Maryam Aliakbarpour, Eric Blais, and Ronitt Rubinfeld. Learning and

testing junta distributions. In Conference on Learning Theory (COLT),

2016. 80

[ACF+21] Jayadev Acharya, Clément L. Canonne, Cody Freitag, Ziteng Sun, and

Himanshu Tyagi. Inference under information constraints III: local pri-

vacy constraints. IEEE J. Sel. Areas Inf. Theory, 2021. 29

[ACK18] Jayadev Acharya, Clément L Canonne, and Gautam Kamath. A chasm

between identity and equivalence testing with conditional queries. Theory

of Computing (TOC), 2018. 86

[ADK15] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Opti-

mal testing for properties of distributions. In Neural Information Process-

ing Systems (NIPS), 2015. 2, 8, 32, 81, 188

[ADKR19] Maryam Aliakbarpour, Ilias Diakonikolas, Daniel Kane, and Ronitt Ru-

281

binfeld. Private testing of distributions via sample permutations. In Neu-

ral Information Processing Systems (NeurIPS), 2019. 29

[ADLS17] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt.

Sample-optimal density estimation in nearly-linear time. In Symposium

on Discrete Algorithms (SODA), 2017. 39, 73

[AdlVKK03] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek

Karpinski. Random Sampling and Approximation of MAX-CSPs. Jour-

nal of Computer and System Sciences (JCSS), 2003. 3, 16, 17, 191, 252,

253, 254, 279

[AFKS00] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Ef-

ficient testing of large graphs. Combinatorica, 2000. 4, 191

[AFNS09] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combi-

natorial characterization of the testable graph properties: it’s all about

regularity. SIAM Journal on Computing (SICOMP), 2009. 4, 191

[AK02] Noga Alon and Michael Krivelevich. Testing k-colorability. SIAM Jour-

nal on Discrete Mathematics (SIDMA), 2002. 3, 4, 190

[AKKR08] Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing

triangle-freeness in general graphs. SIAM Journal on Discrete Mathemat-

ics (SIDMA), 2008. 4

[AKLS21] Jayadev Acharya, Peter Kairouz, Yuhan Liu, and Ziteng Sun. Estimat-

ing sparse discrete distributions under privacy and communication con-

straints. In Algorithmic Learning Theory (ALT), 2021. 72

[AKNS99] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Reg-

ular languages are testable with a constant number of queries. In Founda-

tions of Computer Science (FOCS), 1999. 145

282

[AS05] Noga Alon and Asaf Shapira. Every monotone graph property is testable.

In Symposium on Theory of Computing (STOC), 2005. 4

[AS08] Noga Alon and Asaf Shapira. A characterization of the (natural) graph

properties testable with one-sided error. SIAM Journal on Computing

(SICOMP), 2008. 4

[Bab16] László Babai. Graph Isomorphism in Quasipolynomial Time. In Sympo-

sium on Theory of Computing (STOC), 2016. 15, 185

[BBC+10] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando

Pereira, and Jennifer Wortman Vaughan. A theory of learning from dif-

ferent domains. Mach. Learn., 2010. 29

[BC10] Laszlo Babai and Sourav Chakraborty. Property Testing of Equivalence

under a Permutation Group Action. ACM Transactions on Computation

Theory (TOCT), 2010. 3, 187

[BC17] Tugkan Batu and Clément L Canonne. Generalized uniformity testing. In

Foundations of Computer Science (FOCS), 2017. 29, 32, 81

[BC18] Rishiraj Bhattacharyya and Sourav Chakraborty. Property testing of joint

distributions using conditional samples. ACM Transactions on Computa-

tion Theory (TOCT), 2018. 80

[BCE+19] Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron.

Tolerant junta testing and the connection to submodular optimization

and function isomorphism. ACM Transactions on Computation Theory

(TOCT), 2019. 33

[BCY22] Arnab Bhattacharyya, Clément L. Canonne, and Joy Qiping Yang. Inde-

pendence testing for bounded degree bayesian network. In Neural Infor-

mation Processing Systems (NeurIPS), 2022. 80

283

[BDKR05] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The

complexity of approximating the entropy. SIAM Journal on Computing

(SICOMP), 2005. 81

[BDST15] László Babai, Anuj Dawar, Pascal Schweitzer, and Jacobo Torán. The

Graph Isomorphism Problem (Dagstuhl Seminar 15511). Dagstuhl Re-

ports, 2015. 15, 185

[BFF+01] Tugkan Batu, Lance Fortnow, Eldar Fischer, Ravi Kumar, Ronitt Rubin-

feld, and Patrick White. Testing random variables for independence and

identity. In Foundations of Computer Science (FOCS), 2001. 2, 29, 32,

188

[BFLR20] Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Ron D. Rothblum. Hard

properties with (very) short pcpps and their applications. In Innovations

in Theoretical Computer Science (ITCS), 2020. 98, 147, 153

[BFR+00] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and

Patrick White. Testing that distributions are close. In Foundations of

Computer Science (FOCS), 2000. 2, 8, 29, 32

[BGMV20] Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, and N. V.

Vinodchandran. Efficient distance approximation for structured high-

dimensional distributions via learning. In Neural Information Processing

Systems (NeurIPS), 2020. 80

[BHR05] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3cnf

properties are hard to test. SIAM Journal on Computing (SICOMP), 2005.

147

[Bir46] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac.

Tacuman, Rev. Ser. A, 1946. 132

284

[BKR04] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms

for testing monotone and unimodal distributions. In Symposium on The-

ory of Computing (STOC), 2004. 2, 8

[BL10] Andrej Bogdanov and Fan Li. A better tester for bipartiteness? arXiv

preprint arXiv:1011.0531, 2010. 190

[BOT02] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for

testing 3-colorability in bounded-degree graphs. In Symposium on Foun-

dations of Computer Science (FOCS), 2002. 4

[BT97] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimiza-

tion, volume 6. Athena Scientific Belmont, MA, 1997. 53, 58

[BT04] Andrej Bogdanov and Luca Trevisan. Lower bounds for testing bipar-

titeness in dense graphs. In Conference on Computational Complexity

(CCC), 2004. 190

[BY22] Arnab Bhattacharyya and Yuichi Yoshida. Property Testing - Problems

and Techniques. Springer, 2022. 4, 32, 80, 189

[Can20a] Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big.

But is it Blue? Theory of Computing, (9), 2020. 4, 80

[Can20b] Clément L Canonne. A short note on learning discrete distributions.

https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master/

learning.pdf, 2020. 72

[Can20c] Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big.

But is it Blue? Theory of Computing Library, 2020. 33, 195, 202

[Can22] Clément L. Canonne. Topics and techniques in distribution testing: A

biased but representative sample. Foundations and Trends® in Commu-

nications and Information Theory, 2022. 4, 33, 80

285

[CCK+21] Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, and Erik

Waingarten. Random restrictions of high dimensional distributions and

uniformity testing with subcube conditioning. In Symposium on Discrete

Algorithms (SODA), 2021. 80

[CDGR18] Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, and Ronitt

Rubinfeld. Testing shape restrictions of discrete distributions. Theory of

Computing Systems (TOCS), 2018. 29, 33

[CDKS17] Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alistair

Stewart. Testing bayesian networks. In Conference on Learning Theory

(COLT), 2017. 80

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Op-

timal algorithms for testing closeness of discrete distributions. In Sympo-

sium on Discrete Algorithms (SODA), 2014. 81

[CEF+05] Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan New-

man, Ronitt Rubinfeld, and Christian Sohler. Approximating the weight

of the euclidean minimum spanning tree in sublinear time. SIAM Journal

on Computing (SICOMP), 2005. 4

[CF14] Gregory W Corder and Dale I Foreman. Nonparametric statistics: A step-

by-step approach. John Wiley & Sons, 2014. 32

[CFG+23] Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and

Sayantan Sen. Testing of index-invariant properties in the huge object

model. In Conference on Learning Theory (COLT), 2023. 11, 13

[CFGM16] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Mat-

sliah. On the power of conditional samples in distribution testing. SIAM

Journal on Computing (SICOMP), 2016. 86

286

[CGMS21] Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen.

Interplay between graph isomorphism and earth mover’s distance in the

query and communication worlds. In Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques (APPROX-

/RANDOM), 2021. 16

[CGR+14] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira,

and Christian Sohler. Finding cycles and trees in sublinear time. Random

Structures & Algorithms (RSA), 2014. 4

[Cha00] B. Chazelle. The Discrepancy Method: Randomness and Complexity.

Cambridge University Press, Cambridge, New York, 2000. 89

[CJKL22] Clément L. Canonne, Ayush Jain, Gautam Kamath, and Jerry Li. The

price of tolerance in distribution testing. In Conference on Learning The-

ory (COLT), 2022. 33, 74

[CJLW21] Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. Learning and

testing junta distributions with sub cube conditioning. In Conference on

Learning Theory (COLT), 2021. 80

[CKÖ20] Wei-Ning Chen, Peter Kairouz, and Ayfer Özgür. Breaking the

communication-privacy-accuracy trilemma. In Neural Information Pro-

cessing Systems (NeurIPS), 2020. 72

[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The dis-

crete gaussian for differential privacy. In Neural Information Processing

Systems (NeurIPS), 2020. 80

[CM19] Sourav Chakraborty and Kuldeep S. Meel. On testing of uniform sam-

plers. In Association for the Advancement of Artificial Intelligence

(AAAI), 2019. 80

287

[CMOS19] Artur Czumaj, Morteza Monemizadeh, Krzysztof Onak, and Christian

Sohler. Planar graphs: Random walks and bipartiteness testing. Random

Structures & Algorithms (RSA), 2019. 189, 191

[CPS15] Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure

of graphs. In Symposium on Theory of Computing (STOC), 2015. 4

[CRS15] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing proba-

bility distributions using conditional samples. SIAM Journal on Comput-

ing (SICOMP), 2015. 86

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating

the minimum spanning tree weight in sublinear time. SIAM Journal on

computing (SICOMP), 2005. 4

[CS09] Artur Czumaj and Christian Sohler. Estimating the weight of metric min-

imum spanning trees in sublinear time. SIAM Journal on Computing

(SICOMP), 2009. 4

[CS10a] Artur Czumaj and Christian Sohler. Sublinear-time algorithms. In Prop-

erty Testing - Current Research and Surveys. 2010. 4, 80

[CS10b] Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree

graphs. Combinatorics, Probability and Computing (CPC), 2010. 4

[CSS09] Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary

properties of nonexpanding bounded-degree graphs. SIAM Journal on

Computing (SICOMP), 2009. 4

[CT01] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

Wiley, 2001. 32

[DBNNR11] Khanh Do Ba, Huy L Nguyen, Huy N Nguyen, and Ronitt Rubinfeld.

Sublinear time algorithms for earth mover’s distance. Theory of Comput-

ing Systems (TOCS), 2011. 196, 203

288

[DK16] Ilias Diakonikolas and Daniel M. Kane. A new approach for testing

properties of discrete distributions. In Foundations of Computer Science

(FOCS), 2016. 29

[DKN14] Ilias Diakonikolas, Daniel M Kane, and Vladimir Nikishkin. Testing iden-

tity of structured distributions. In Symposium on Discrete Algorithms

(SODA), 2014. 81

[DKS17] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Statistical query

lower bounds for robust estimation of high-dimensional gaussians and

gaussian mixtures. In Foundations of Computer Science (FOCS), 2017.

29

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Sharp bounds

for generalized uniformity testing. In Neural Information Processing Sys-

tems (NeurIPS), 2018. 29, 81

[DKW18] Constantinos Daskalakis, Gautam Kamath, and John Wright. Which dis-

tribution distances are sublinearly testable? In Symposium on Discrete

Algorithms (SODA), 2018. 32

[DL12] Luc Devroye and Gábor Lugosi. Combinatorial Methods in Density Esti-

mation. Springer Science & Business Media, 2012. 205

[DLM+07] Ilias Diakonikolas, Homin K Lee, Kevin Matulef, Krzysztof Onak, Ronitt

Rubinfeld, Rocco A Servedio, and Andrew Wan. Testing for concise

representations. In Foundations of Computer Science (FOCS), 2007. 37,

83

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of Mea-

sure for the Analysis of Randomized Algorithms. Cambridge University

Press, 2009. 23, 24

289

[ELRS17] Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately

counting triangles in sublinear time. SIAM Journal on Computing

(SICOMP), 2017. 4

[ER18] Talya Eden and Will Rosenbaum. On sampling edges almost uniformly.

In 1st Symposium on Simplicity in Algorithms (SOSA 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 4

[ERS19] Talya Eden, Dana Ron, and C Seshadhri. Sublinear time estimation of

degree distribution moments: The arboricity connection. SIAM Journal

on Discrete Mathematics (SIDMA), 2019. 4

[Fei04] Uriel Feige. On sums of independent random variables with unbounded

variance, and estimating the average degree in a graph. In Symposium on

Theory of computing (STOC), 2004. 4

[Fis04] Eldar Fischer. The art of uninformed decisions. Current Trends in The-

oretical Computer Science: The Challenge of the New Century, 2004. 4,

80, 91

[FLV15] Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complex-

ity for sample-based testing and multi-testing scalability. In Foundations

of Computer Science (FOCS), 2015. 33

[FLV17] Eldar Fischer, Oded Lachish, and Yadu Vasudev. Improving and extend-

ing the testing of distributions for shape-restricted properties. In Sym-

posium on Theoretical Aspects of Computer Science (STACS), 2017. 29,

33

[FM08] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. SIAM Jour-

nal on Computing (SICOMP), 2008. 3, 15, 29, 187, 188, 192, 208, 209,

279

290

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph prop-

erties. SIAM Journal on Computing (SICOMP), 2007. 4, 191

[Fre77] David Freedman. A Remark on the Difference between Sampling with

and without Replacement. Journal of the American Statistical Associa-

tion, 1977. 192, 195

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and

its Connection to Learning and Approximation. Journal of the ACM

(JACM), 1998. 2, 3, 6, 15, 16, 184, 188, 189, 190

[GKK+20] Sivakanth Gopi, Gautam Kamath, Janardhan Kulkarni, Aleksandar

Nikolov, Zhiwei Steven Wu, and Huanyu Zhang. Locally private hypoth-

esis selection. In Conference on Learning Theory (COLT), 2020. 29

[GM07] Bernd Gärtner and Jirı́ Matousek. Understanding and using linear pro-

gramming. Springer, 2007. 58

[GMRS22] Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen.

Tolerant bipartiteness testing in dense graphs. In International Collo-

quium on Automata, Languages and Programming (ICALP), 2022. 17

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University

Press, 2017. 4, 32, 80, 189

[Gol19] Oded Goldreich. Testing isomorphism in the bounded-degree graph

model. Electron. Colloquium Comput. Complex., 2019. 29, 187, 205

[GOS+09] Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka,

and Karl Wimmer. Testing fourier dimensionality and sparsity. In Interna-

tional Colloquium on Automata, Languages and Programming (ICALP),

2009. 83

291

[GR97] Oded Goldreich and Dana Ron. Property testing in bounded degree

graphs. In Symposium on Theory of Computing (STOC), 1997. 2, 4,

13, 86, 191

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for

bounded degree graphs. Combinatorica, 1999. 4, 189, 191

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree

graphs. Electronic Colloquium of Computational Complexity (ECCC),

2000. 2, 32

[GR07] Mira Gonen and Dana Ron. On the benefits of adaptivity in property

testing of dense graphs. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques (APPROX/RANDOM).

2007. 190

[GR08] Oded Goldreich and Dana Ron. Approximating average parameters of

graphs. Random Structures & Algorithms (RSA), 2008. 4

[GR11] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree

graphs. In Studies in Complexity and Cryptography. Miscellanea on the

Interplay between Randomness and Computation. Springer, 2011. 2, 4,

81

[GR16] Oded Goldreich and Dana Ron. On sample-based testers. ACM Transac-

tions on Computation Theory (TOCT), 2016. 33

[GR22] Oded Goldreich and Dana Ron. Testing distributions of huge objects. In

Innovations in Theoretical Computer Science (ITCS), 2022. 5, 11, 13, 81,

85, 88, 129, 142, 159, 277

[GT03] Oded Goldreich and Luca Trevisan. Three theorems regarding testing

graph properties. Random Structures & Algorithms, 2003. 13, 86, 96

292

[GW21] Oded Goldreich and Avi Wigderson. Non-adaptive vs adaptive queries

in the dense graph testing model. In Foundations of Computer Science

(FOCS), 2021. 13, 86

[Hau95] David Haussler. Sphere packing numbers for subsets of the boolean n-

cube with bounded vapnik-chervonenkis dimension. Journal of Combi-

natorial Theory, Series A, 1995. 126

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. In The collected works of Wassily Hoeffding. Springer, 1994.

24

[ILR12] Piotr Indyk, Reut Levi, and Ronitt Rubinfeld. Approximating and testing

k-histogram distributions in sub-linear time. In Symposium on Principles

of Database Systems (PODS), 2012. 2, 8

[Jan04] Svante Janson. Large Deviations for Sums of Partly Dependent Random

Variables. Random Structures & Algorithms (RSA), 2004. 25

[Kin97] Terry King. A guide to chi-squared testing. Taylor & Francis, 1997. 32

[KKR04] Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for

testing bipartiteness in general graphs. SIAM Journal on Computing

(SICOMP), 2004. 4, 191

[KSS18] Akash Kumar, C Seshadhri, and Andrew Stolman. Finding forbidden mi-

nors in sublinear time: A n1/2+o(1)-query one-sided tester for minor closed

properties on bounded degree graphs. In Symposium on Foundations of

Computer Science (FOCS), 2018. 4

[Lev21] Reut Levi. Testing triangle freeness in the general model in graphs

with arboricity o(
√
n). In 48th International Colloquium on Automata,

Languages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2021. 4

293

[Lin94] Chih-Long Lin. Hardness of Approximating Graph Transformation

Problem. In International Symposium on Algorithms and Computation

(ISAAC), 1994. 185, 186

[LM20] Reut Levi and Moti Medina. Distributed testing of graph isomorphism

in the CONGEST model. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques (APPROX/RANDOM),

2020. 187

[Mac03] David J. C. MacKay. Information theory, inference, and learning algo-

rithms. Cambridge University Press, 2003. 32

[Mat99] J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Algorithms

and Combinatorics. Springer, Berlin, New York, 1999. 89

[Mat02] Jirı́ Matousek. Lectures on Discrete Geometry, volume 212 of Graduate

texts in mathematics. Springer, 2002. 89

[MPC20] Kuldeep S. Meel, Yash Pote, and Sourav Chakraborty. On testing of sam-

plers. In Neural Information Processing Systems (NeurIPS), 2020. 80

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties

in bounded-degree and general sparse graphs. ACM Transactions on Al-

gorithms (TALG), 2009. 4

[MS08] Claire Mathieu and Warren Schudy. Yet Another Algorithm for Dense

Max Cut: Go Greedy. In Symposium on Discrete Algorithms (SODA),

2008. 254

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-

domization and Probabilistic Techniques in Algorithms and Data Analy-

sis. Cambridge University Press, 2017. 254

294

[NO08] Huy N Nguyen and Krzysztof Onak. Constant-time approximation algo-

rithms via local improvements. In Symposium on Foundations of Com-

puter Science (FOCS), 2008. 4

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-

optimal sublinear-time algorithm for approximating the minimum vertex

cover size. In Symposium on Discrete Algorithms (SODA), 2012. 4

[OS18] Krzysztof Onak and Xiaorui Sun. The Query Complexity of Graph Iso-

morphism: Bypassing Distribution Testing Lower Bounds. In Symposium

on Theory of Computing (STOC), 2018. 187, 279

[PA95] J. Pach and P. K. Agarwal. Combinatorial Geometry. John Wiley & Sons,

New York, NY, 1995. 89

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very

sparsely sampled discrete data. IEEE Transactions on Information The-

ory, 2008. 2, 3, 8, 29, 32, 81, 188

[PM21] Yash Pote and Kuldeep S. Meel. Testing probabilistic circuits. In Neural

Information Processing Systems (NeurIPS), 2021. 80

[PR02] Michal Parnas and Dana Ron. Testing the diameter of graphs. Random

Structures & Algorithms (RSA), 2002. 4

[PR07] Michal Parnas and Dana Ron. Approximating the minimum vertex cover

in sublinear time and a connection to distributed algorithms. Theoretical

Computer Science (TCS), 2007. 4

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing

and distance approximation. Journal of Computer and System Sciences

(JCSS), 2006. 33, 186

[Ron08] Dana Ron. Property testing: A learning theory perspective. Found. Trends

Mach. Learn., 2008. 4, 80

295

[Ron09] Dana Ron. Algorithmic and analysis techniques in property testing.

Found. Trends Theor. Comput. Sci., 2009. 4, 80

[RRSS09] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong

lower bounds for approximating distribution support size and the distinct

elements problem. SIAM Journal on Computing (SICOMP), 2009. 205

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust Characterizations of Polyno-

mials with Applications to Program Testing. SIAM Journal on Computing

(SICOMP), 1996. 2

[RS11] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM

Journal on Discrete Mathematics (SIDMA), 2011. 4, 80

[RS15] Dana Ron and Rocco A Servedio. Exponentially improved algorithms

and lower bounds for testing signed majorities. Algorithmica, 2015. 87

[Rub12] Ronitt Rubinfeld. Taming big probability distributions. XRDS: Cross-

roads, The ACM Magazine for Students, 2012. 4

[Ser10] Rocco A Servedio. Testing by implicit learning: a brief survey. Property

Testing, 2010. 37, 83

[Soh12] Christian Sohler. Almost Optimal Canonical Property Testers for Satisfi-

ability. In Foundations of Computer Science (FOCS), 2012. 3, 4, 190

[SP18] Shashank Singh and Barnabás Póczos. Minimax distribution estimation

in wasserstein distance. arXiv preprint arXiv:1802.08855, 2018. 196

[Sun16] Xiaorui Sun. On the Isomorphism Testing of Graphs. PhD thesis,

Columbia University, 2016. 185

[Val11] Paul Valiant. Testing Symmetric Properties of Distributions. SIAM Jour-

nal on Computing (SICOMP), 2011. 29, 33, 38, 62, 63, 81

296

[VC15] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence

of relative frequencies of events to their probabilities. In Measures of

complexity. Springer, 2015. 89

[VN53] John Von Neumann. A certain zero-sum two-person game equivalent to

the optimal assignment problem. Contributions to the Theory of Games,

1953. 132

[VV10] Gregory Valiant and Paul Valiant. A clt and tight lower bounds for esti-

mating entropy. In Electron. Colloquium Comput. Complex., 2010. 3, 8,

97, 159

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. In

Foundations of Computer Science (FOCS), 2011. 3, 8, 29, 32, 33, 39, 73,

202

[VV17a] Gregory Valiant and Paul Valiant. An automatic inequality prover and in-

stance optimal identity testing. SIAM Journal on Computing (SICOMP),

2017. 29, 32, 188

[VV17b] Gregory Valiant and Paul Valiant. Estimating the unseen: Improved es-

timators for entropy and other properties. Journal of the ACM (JACM),

2017. 30, 81

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified

measure of complexity. In Foundations of Computer Science (FOCS),

1977. 91

[YYI09] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-

time approximation algorithm for maximum matchings. In Symposium

on Theory of computing (STOC), 2009. 4

[Zha21] Huanyu Zhang. Statistical inference in the differential privacy model.

CoRR, abs/2108.05000, 2021. 29

297

List of Publications (Based on content of the thesis)

1. Interplay between Graph Isomorphism and Earth Mover’s Distance in the

Query and Communication Worlds

Joint work with Sourav Chakraborty, Arijit Ghosh & Gopinath Mishra.

In the proceedings of the 25th International Conference on Randomization and

Computation (RANDOM), 2021, Volume 207, 34:1-34:23, doi: 10.4230/LIPIcs.APPR

OX/RANDOM.2021.34. Presented in Highlights of Algorithms (HALG), 2022.

Submitted to the journal ACM Transactions on Computation Theory (TOCT).

2. Tolerant Bipartiteness Testing in Dense Graphs

Joint work with Arijit Ghosh, Gopinath Mishra & Rahul Raychaudhury.

In the proceedings of the 49th International Colloquium on Automata, Languages

and Programming (ICALP), 2022, Volume 229, 69:1-69:19, doi: 10.4230/LIPIcs.ICAL

P.2022.69. Presented in Highlights of Algorithms (HALG), 2023.

Submitted to the journal Combinatorics, Probability and Computing (CPC).

3. Exploring the Gap between Tolerant and Non-tolerant Distribution Testing

Joint work with Sourav Chakraborty, Eldar Fischer, Arijit Ghosh & Gopinath

Mishra.

In the proceedings of the 26th International Conference on Randomization and

Computation (RANDOM), Volume 245, 27:1-27:23, 2022, doi: 10.4230/LIPIcs.APPR

OX/RANDOM.2022.27. Presented in Highlights of Algorithms (HALG), 2023.

Submitted to the journal IEEE Transactions on Information Theory.

4. Testing of Index-Invariant Properties in the Huge Object Model

Joint work with Sourav Chakraborty, Eldar Fischer, Arijit Ghosh & Gopinath

Mishra.

In the proceedings of the 36th Conference on Learning Theory (COLT) 2023, Vol-

ume 195, pages 3065–3136, url: https://proceedings.mlr.press/v195/

chakraborty23a.html.

Featured in Oded Goldreich’s Choices (https://www.wisdom.weizmann.ac.il/õded

/MC/335.html).

List of publications by the author (other than thesis)

1. Testing of Horn Samplers

Joint work with Ansuman Banerjee, Shayak Chakraborty, Sourav Chakraborty,

Kuldeep S. Meel & Uddalok Sarkar.

In the proceedings of the 26th International Conference on Artificial Intelligence

and Statistics (AISTATS), 2023.

2. A (simple) classical algorithm for estimating Betti numbers

Joint work with Simon Apers, Sander Gribling & Dániel Szabó.

Quantum Computing Theory in Practice (QCTiP), 2023.

Submitted to the journal Quantum.

3. Sampling Triangles Almost Uniformly Over Data Streams

Joint work with Arijit Bishnu, Arijit Ghosh & Gopinath Mishra.

Submitted to the conference Symposium on Simplicity in Algorithms (SOSA),

2024.

	Introduction
	Various models of computation
	Sampling model
	Huge object model
	Adjacency matrix model

	Our results in this thesis
	part:dist: Results in the Sampling Model
	part:hugeobj: Results in the Huge Object Model
	part:graphtest: Results in the Adjacency Matrix Model

	Preliminaries
	Various distance measures of distributions
	Formal definitions of various kinds of property testers
	Some probability results

	I Results in the Sampling Model
	Testing in the Sampling Model
	Introduction
	Our results
	Related works
	Preliminaries
	Technical overview of our results
	Construction of tolerant testers for label-invariant properties
	Lower bound results for non-concentrated properties
	Learning Distributions with Unknown Support

	Tolerant & Non-tolerant Testers for Label-Invariant Properties
	Introduction
	Non-tolerant vs. tolerant testing of label-invariant properties
	Computationally efficient tolerant testers
	Emptiness checking when is a linear property

	Testing of Non Concentrated Properties
	Introduction
	Testing of non-concentrated label-invariant properties
	Non-tolerant lower bound for label-invariant properties
	Tolerant lower bound for label-invariant properties

	Sample complexity of non-concentrated properties

	Distribution Learning with Unknown Support
	Introduction
	Learning distributions with unknown support

	II Results in the Huge Object Model
	Testing in the Huge Object Model
	Introduction
	Our results

	Preliminaries
	Distributions and properties with bounded VC-dimension
	Yao's lemma for the huge object model

	Technical overview of our results
	Overview of learning clusterable distributions
	Overview of learning index-invariant bounded VC-dimension properties
	Overview of lower bound for index-invariant bounded VC-dimension properties
	Overview of adaptive vs. non-adaptive testers for general properties
	Overview of adaptive vs. non-adaptive testers for index invariant properties

	Learning Clusterable Distributions
	Introduction
	Learning clusterable distributions
	Preliminaries to prove the correctness of Test-and-Learn
	Correctness of Test-and-Learn

	Testing VC dimension properties
	Introduction
	Testing properties with bounded VC-dimension
	Learning distributions close to having bounded VC-dimension

	Lower bounds for testing VC-dimension properties

	Role of adaptivity for general properties
	Introduction
	Exponential gap between adaptive and non-adaptive testers
	Exponential separation between adaptive and non-adaptive testers

	Power of adaptivity for index-invariant properties
	Introduction
	Quadratic relation of adaptive and non-adaptive testers
	Quadratic separation between adaptive and non-adaptive testers
	Determining the permutation
	The upper bound on adaptive testing for property
	Near-quadratic lower bound for non-adaptive testing of

	III Results in the Adjacency matrix Model
	Testing in the Adjacency matrix Model
	Introduction
	Tolerant Graph Isomorphism Testing
	Tolerant Bipartiteness Testing

	Our results
	Preliminaries
	Notion of distance between two graphs
	Some results on Earth Mover Distance (EMD)

	Overview of our results
	Overview of our tolerant isomorphism testing result
	Overview of our tolerant bipartiteness testing result

	Tolerant Graph Isomorphism is as hard as tolerant EMD testing
	Introduction
	Reduction from Tolerant GI to Tolerant EMD testing
	Correctness of our reduction

	Tolerant EMD testing is as hard as tolerant Graph Isomorphism
	Introduction
	Algorithm for tolerant GI testing
	Proof of correctness
	Proof of completeness
	Proof of soundness

	Proof of upper bound result

	Tolerant Bipartiteness Testing in Dense Graphs
	Introduction
	Estimation of bipartite distance with queries
	Algorithm for Tolerant Bipartite Testing
	Correctness of our algorithm
	Proof of completeness
	Proof of soundness

	Conclusion

