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SUMMARY. A numbor of rosults, hithorto unrecorded fn Literaturo on the Couss-Morkod
(G-X1) model, uro discussod.

Explicit ox i for BLU osti of lincar p io functi i matrix of
BLUE's and tost oritoria for toats of linoar hypothosos aro obtained in tho ceso when the obsorvations
have a aingular covariance matrix, Thoso aro obtained by firet reducing & G-M mode] with s singular
covariance matrix to ono with s non-singulat covarianco matrix and with somo roslrictions on tbe
paramotors, and thon applying the knowa thoory in the lattor caso.

8ome romults in Linoar Algobra which aro of gonoral intorcst and which are particularly useful in
discussions on inforonco from lincar models, aro also given.

Finally wome commonts are modo on tho use of hol fc ion in tho icul
computation of BLUE's and tost oritoria.

1. INTRODUCTION

A fairly oxtensive and general treatment of estimation of lincar p rie
functions and tests of linear hypotheses under tho Gauss-Markoff model is contained
in The Linear Statistical Inference and its Applications by Rao (1965). In the present
paper wo deal with somo further results which aro, hitherto, unrecorded in the literature
on Gauss-Markofl theory, and which are of some intercst in teaching the subject.
Tho problem is idered in its wide g lity without any of the restrictions used
in earlier discussions,

Tho following notations are used. Matrices and vectors are denoted by bold
faco letters, such as X, I, R, B, ...
X} denotes the subspace g ted by the col of X

R(X) denotes tho rank of X
X~ denotes a gencralised inverso of X (sco Rao, 1067)

d(&), where & is o linear space denotes tho dimension of &
X)NAR) d tho sul of vectors to J(X) and H(R)

X* denotes & matrix of maximum rank such that X’X* =0, where X is a
givon matrix

Py = X{X’X)-X’ denotes the projection operator which projects vectors
onto /(X) (sco Rao, 1067).

I{Z = LD,L’ be a positive definite matrix of order n, whero LL' = L'L = I,
and D, is ding (A}, Ay, ..., A,), 28 = LD 5L is 0 squaro root of E.
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LY. Statement of the problem. Lot Y bo a vector of observations with E(Y)
= XP and covarianco matrix ¢2Z, whero X and Z aro given matrices, B is a vector
of unknown parameters and ¢? is an unknown scalar. Tho model will be referred to
a8 (¥, XB, 02Z). Tho parameter @ may be subject to a given set of (consistent) linear
restrictions B = E, in which easo tho problem will bo referred to as (¥, X[RP =),
o3E). No assumption is mado on tho ranks of %, X, and R.

Tho problems we consider aro tho estimation of unknown linear parametrio
functions and tests of hypothescs assigning cortain values to given sots of parametrio
functions,

1.2. The reduced problem. Let N bo an orthogonal comploment of Z, i.e.
a matrix of maximum rank such that N'E = 0. Sinco X is at lcast positive semi-
definite, £ = CC’, whero R(Z) = R(C) = number of columns in €. Let F’ bo a left
inverse of C, ie., FFC = 1. F' may be chosen to satisfy the additional condition
P'N =0. Then mako the transformation from ¥ to ¥y, Y, with the propoertics

Y,=FY, EY))=FXp, DY)=o04 . (LY
Y;=NY, E(Y,)=NXB, D(Y,))=0.

The vector ¥y is hastic and the equation A’X@ = Y, is, thercfore, in the nature
of restrictions on . Note that under a linear model, best linear estimates of estimablo
Linear parametric functions remain invariant under nonsingular transformations of
observations. Thus the problem associated with the model (Y, XP[RP = E), ¢'T)
is equivalent to the problem associated with

(Yo, F'XPIRR = E. N'XB = T,], o) e (12)

in which tho singularity of the covariance matrix is removed, but further restrictions
on f are introduced.
It is scen that when Z is non-singular, F can bo choscn as E-173, i, the
reciprocal of & squaro root of Z. Tho problem then reduces to
(Z-U2Y, E-EXQ[RE = E), o). e (L3)
Thus, wo can apply the well-known results of the least square theory in the special

caso, (Y, XB[RB = E), o2I), to deduce tho corresponding expressions for the other
cases (i.e., when instead of I we havo & matrix X which may bo singular or non-singular),

2. SOME ALOEDRAIO LEMMAS

Wo derive somo results in Linear Algebra, which are necded in the discussion
of the problems considered in tho rest of the scction,

Lemma 1:  Let & be the subspace spanned by veclors of the form X where X is
a fized nxm malriz and B varies over the solutions of Hf = 0, where H is another fired
malriz. Further let G be 8 malriz such that A(G') = SUX')\AI). Then

) =X

(i) &&) = RX)—R(G") = RX’; I')—R(II').
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Progf : The results of the lomma aro casy to cstablish. (Result (ii) of the
Jomma is posed as an excrcise in Rao, 1005, p. 172).

Lemma 2: Let A and I} be lwo malrices with the same number of rows and C
be a malriz such that UC) = AA) (Y H(B). Then C has the representation C = AF
where F = W4, W = A'B%, and R(C) = R(A)+R(B)—R(A: B).

Proof : The result follows from thoso of Lemma 1.

Note 1: There is a lot of flexibility in the choico of B* and W. For examplo
It = (I—BB-), W* = (I—WI¥-) where I3~ and 1V~ are any g-inverses of B and IV
respectively, If symmetry is desired, Bt = I=P,, W =1-Py,.

Nole 2: Tt is of special interest to obtain a representation of J/{A) () /(D).
The matrix C in such a case has the form

C = A(A'D).

Lemma 3: Let P be an operalor which projecls veclors onlo a subspace of a
veclor space in which the inner product of two veclors « and P is defined by a'Ap, where
A is a pd. malriz. Then il is necessary and sufficient that (a) P i& idempolent, and
(b) AP is symmetrical.

If P projects vectors onto M(X), then

(i) P = X(X'AX)~X’A, which is unique for any choice of (X'AX),

() R(P)= R(X), and

(isi) P belongs to the aubalgebra generated by XX'A.

Proof : (i) and (i) are well-known when A = I (seo, Rao, 1965, p. 23) and the
samo method of proof goes through for & general A. (iii) for the special case A =1
wasg proved by Mann (1060, p. 2). To prove (iii) for a general A let us obscrve that
R(X'AX) = R(X'AX)". Hence using Theorem 5.4 of Mitra (1068b), X'AX has a g-
inverso which can be expressed ns a polynomial of finite degreo in X'ANX, The result
(iif) follows by multiplying this polynomial by X from the loft and by X’A from the
right.

Lomma 4: Let Py project vectors onlo H(X) and Pypy onto H(XB). Then
@) PypPy=DPyp, and
(i) AXU—Pyp)} = SLBY) ) AHX)

Proof: Result (i) is obvious and result (i) follows from Lomma 2.

Lemma 5: Let G and X be malrices such that SG')C  J(X’) and D =
G(X'X)~G'. Then G'D-G i3 indcpendent of the choice of g-inverse of D.
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Proof :  Sinco D=G(X"X)-G’'=G(X'X)"X'X(X'X)-G’, R(D)=R(X(X'X)~G')
= R(G) = R(G’). Then using Corollary 1a.3 of Mitra (1068a), (X'X)~G’D3 and
D G(X'X)~ are g-inverses of G and G’ respectively whero Dy and D3 aro any two
alternative choices of D=, Ilence

G'DiGIX'X)-G'D;G = G'DiG = G'D;G

which proves the desired resuit.

Lemma 6: Let S(G') = ASX")WAI) s0 that G = Al for some A. Then

min (V—XB)(Y—XP) = min (F—Xp)(Y—XB).
"p=g Gp=aE

Proof : A solution B, of IIp =E is also o solution of GB = AE. Writing
¥Y—Xp, = U, tho problem rcduces to showing

min (U—XPY(U—XB) = min (U~XB)(U—XB).
=0 Gp=0

Sinco the minimum in each case is the square of the length of the projection of U on an
appropriate subspaco, it is enough to show that tho subspaces gencrated by XB when
B is subject to JIf = 0 or GP = 0 aro the samo, Since tho latter apace trivially in-
cludes the other, the lemma, s proved if the dimensions ave the same, which is true by
Lemma 1.

The following Lemma 7 provides & number of alternative closed expressions
for the differenco between least sum of squares with and without constraints on para-
meters. These are useful in the theory and applications of least squares. Some
alternative expressions for the ined least sum of squarcs are well-knowmn
(Rao, 1965, p. 185).

Lemma 7: Lel beany solution of X'XP = X'Y, and (°, X*) be any solution of

XXp+H'A = XY
np=x
and G is such that A(G') = AX YN AQI'). Then
min (Y—XB)(Y—XB)— min (¥—Xp)'(Y —XpB)
nig=% #

i) =(p—pYX'X(B—p")
(i) = —(B—p)Ir2* = —(TIp—EY2°
(i) = (GB—AE)[GIX'X)-C'|{GB— ).
Proof :  Tho result (i) ia obvious. (i) follows from (i) and the definition of A"
To prove (iii), consider operatora P, and P, which project vectors onto +#(X)
and (X(G')") respectivoly. Thon
X(B—B*) = P(Y—XP*) = (P,~DP,)(Y~Xp*)
= (I—P,)(P,—Py)(V--Xp*) = (I-P,)X(B—-8")
= DG(p—p*) for some D
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using (ii) of Lemma 4. Tho result is proved if it is shown that
D'D = (GX'X)G'),
for which observe that
G(X'X)-G'D'DG(X'X)"G’ = GX'X)-X'(I-P)X(X'X))G’ = G(X'X)-G’
sinco GY'X)X'Py = GIX'X)"X'X(G')*E = G(G'}'E = 0,
noting that Py is of the form X{G')'E.

The choice of the g-inverses in (ii) is immaterial in view of the result of
Lomma 5.

3. LeAST SQUARES TUEORY WHEN TUE COVARIANCE MATRIX 1S SINGULAR

It is shown in Section 1 that tho problem (Y, X, 0*Z) can be reduced to the
problem

(¥, = F'Y, FXB(N'XB = Y, = N'Y), o'l - (31)

80 that we can apply the simple least square theory with restrictions on parameters,
which is well-known (Rao, 1965, pp. 189, 199). It may bo recalled thatin(3.1) N = Z*
and F” is a left inverso of C (i.e., F’C=I) where Z=CC’ with J{(C) equal to the number
of columns of C. e shall use the model (3.1) for an application of the known theory
of inferenco on‘unknown parameters, but express the final results in terms of ¥, X and
Z, and g-inverses of matrices depending on them. Tho theory of G-M model with a
singular covarianco matrix has been recently considered by Khatri (1068) in a somowhat
different way.

Estimability : A parametric function p'p is eaid to bo estimable if there exists
8 lincar function L'Y of ¥ such that E(L'Y) = p’B, i.e., thero exists a vector L such
that L'X = p’. Wo shall ider problems of infa involving estimable functions
only.

A characterization of linear functions of ¥ which havo a constant expectation
(i.0., independent of unknown p ters) is given by Rao (1868).

3.1, Normal equations and BLUE's. Tho normal equations in tho cnse
(3.1) are those obtained by minimising

(¥,— F'XBY(¥,—F'Xp) = (Y—X@)F F(Y—Xp) e (32)

subject to the condition ¥; = N’XP. We obscrve that ZF'FE =X, ie., FF is a
g-inverse of X, Indecd in (3.2), wo can chooso instead of F'F any g-inverso Z- of Z.
Tho restriction ¥, = A"XB may be written, if desired, as Yy = R whero ¥y =
(I—ZE-)Y and R = (I—ZZ-)X. Thus in terms of original oxpressions ¥, X, T, the

normal ions aro obtained by minimising
(Y—XP)Z~(Y—XP) . (3.3)
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subject to the restriction ¥y = RP, whero Z- is any g-inverso of Z, The minimising

oquations are
XX r g X°Z-Y
( > ( ) - ( ) - B
R 0 A Y,

where A is a vector of Lagrangian multipliers, If

D, Dy
( ) e (35)
D, D

is & g-inverso of tho matrix of normal equations, then a solution for @ is
p* = D(X'Z-Y)+D,Y, e (3.6)

and the BLUE of an estimablo p tric function p’f is p'B°. The variance of the
estimator is o*p'D,p.

Special cases :  If AAXYC AZ), then N'E = 0==) N’X = 0 and tho restric-
tions on P become vacuous. Tho normal equations in such a case are simply obtained
by minimising

(Y—XpyZ-(Y—-XB). . (37)
The normal equation is
XE-Xp=XZTVY e (3.8)

which has a solution of tho form
B = (XT-X)XZT-Y . (3.9)
for any choices of the g-inverses in (3.0). If p'B is an estimablo parametrio function,
it is estimated by p'ﬁ and its variance is
o’ (X'Z-X)p o (3.10)
as in the case of a8 non-singular Z.

If AX) C AN), then the only estimable tric functions are linear
combinations of N'Xp, which are, therefore, estimablo with zero variance.

3.2, Estimation of o®. We uso the model (3.1) and estimato ¢? in tho uvsual
way by considering
R} = min (Y,~-FXp)(Y,—F'XpB)
¥,=Rg
= min (Y—Xp)ZT(Y—XB). - (311)
Y,=np
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An unbiased estimate of o is RY/f where £ is the degrees of freedom of It} given by the
expression (soo Rao, 1965, p. 100)

FX
! =RE)— I:zz ( ) —R(.\”.\'):l
A'X.

= R(E)—R(X)+R(N'X)
= R(Z : X)—R(X) e (3.12)
ginco R(N'X) = R(Z : X)—R(Z) and R(Z) is equal to the number of variables in ¥,.

If X has o multivariate normal distribution, by applying the first fundamental
theorom of least squares (Rao, 1065, p. 153), R}/o? has & x*-distribution on f degrees
of frecdom.

3.3. An allernalive approach to BLUE estimation. We chooso L such that
L’EL is a minimum subject to L'X = p’. Consider the matrix

T X
( ) e (313)
X 0

D, D,
( ! ') . e (3.14)
D, D,

Then the optimum choice of L is D,p. The BLUE of p'f is p'D,Y with variance
P'(D:ED,)pat. The estimate of ¢? is RE/f where

and a g-inverse

R} = Y'(I-XD;E-(I-XDy)Y e (3.15)
and f = R(Z : X)—R(X).

3.4, Tesls of linear hypotheses. Lot 1B =d be a sot of linear hypotheses
consistent with the linear restrictions RP =Y,. Then

R = min (Y—XB)SY—Xp) . (3.18)
Yo=Rp,d=1p
and the d.f. for Rt is
F'X
N'X
h=RZ)-R| N'X |-R ( )
n
n
( X ) 2 (N’X )
= RE)—R +
® n H
X R
.—..R(:)-R( ) +R ( ) e (307)
u u
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For tests of sigrificance (It}—R3)/o® has o x* distribution by an application of the
second fundamental theorem of least equares (Rao, 1965, p. 155), central when the
hypothesis is true, on (A—f) d.f. It is interesting to write

N'X X
h—f= R( ) =R(N'X)~ [R ( ) —n(.\)] . e (3.08)
n n

4. LEAST SQUARES SOLUTION BY NOUSENOLDER TRANSFORMATIONS
Golub (1965), Businger and Golub (1965), and Bjérck and Golub (1968) consi-
dered a reduction of obscrvational equations by Houscholder transformation (seo
Rao, 1965, p. 20) for obtaining numerical values of residual (least) sum squares and
estimates of unknown parameters. In the problem (Y, X'B,0?I), where X'X is of
full rank, the method consiats in reducing tho matrix (X : ¥) to the form

T :
( Qf.) e (&1
0:q

by Householder transformation on matrix X, where T is a nonsingular upper triangular
matrix, and Q,, @, are column vectors, Then the least square estimator of {3 is

B=T19, e {42)

and tho residual sum of squares is
Ri=0: 0, e (43)

which are simple to calculate, Wo suggest a slight variation of the reduction process
which is uscful when the rank of X’X is not full, making T singular. Let X bonxm
matrix with rank r < m, n.

Consider the first column of X, If it has a non-zero element, then apply
Houscholder transformation to have a non-zero value in the first position and sweep
out the rest of the clements in the column, If all the elements of the first column
aro zeros, move to tho next nearest column which has at least one non-zero value, say
the i-th, and apply Houscholder transformation to have a non-zero value in the first
position (and not in the i-th position) and sweep out the rest of the elements in the
i-th column, Now omit tho first row and repeat the process stated on the reduced
matrix, and 80 on till all the columns of X are covered. Then by a rearrangement of
columns (i.e., by renaming tho parameters) if necessary the reduced matrix is of the
form

(4.4)

whero T is o nonsingular upper triangular (rXr) matrix, Q, is rXx1 vector and @,
is (n—r)x1 vector. A solution to normal equations is

Bre o BY = TQ, froy =0, .y fn =10 e (45)
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and the residual sum of squares is

R} =0: 00 . (4.0)
The catimable p trio functions aro lincar functions of (T : U).
In actual practice, whero approximati have to bo mado in numerical

computations, it may be diflicult to decido whether a particular valuo at any stago of
reduction is a real doviation from zero or is due to rounding off errors.  Some investi-
gotions mado in this connection will bo published elsowhere.

Now we mako a brief comment on the caso of constraints on parameters consi-
dered by Bjorck and Golub (1068). Let I = & represent the constraints, Then we

consider the matrix
()
- e (49
¥ (4.1

4
Bjorck and Golub suggest a aweep-out of the colurans of the matrix (‘) by House-

holder transformation, But it scema to be moro advantageous to proceed in a alightly
different way. Chooso a non-zero clement in the first row of 1, say in the i-th column,
and sweep out the other elements in the i-th column of the matrix (4.7). Omitting the
first row and the swept-out column the same procedure is applied on the remaining
matrix by choosing a non-zero element in tho first row of the reduced If matrix, If
a row consists of all zeros at any stage, tho next row is considered. Such a process
of sweep out is continued till no row with a non-zero element is left in any reduced If
matrix. For further opcrations which start with tho first row of a reduced X matrix,

apply Houscholder transf ti The Iting matrix will bo of the type, after
8 rearrang of col if y, and after omitting zero rows in the reduced
form of If,

Ul UI US Ql
o T, T, 0 e (48)
o o0 o @

where U, and T, are upper triangular and non-singular matrices. Let the order of

(Ul U.) 49
0 T, e (4

be Axh. Then a solution to normal tions is

y = (Ux U-)"(Qo) (10)
Gt =" ) {, -

Pri=0 s fn=0

and the residual pum of squares is
Ri = 010y e (411)
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Tho cstimablo parametric functions are lincar combinations of

U, U, U,
( ) e {412)
o T, T,
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