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Abstract

Privacy preserving computation is of utmost importance in a cloud computing environ-

ment where a client often requires to send sensitive data to servers, offering computing

services, for computational purposes over untrusted networks. Sharing the raw or an ab-

stract representation of a labelled or unlabelled dataset on cloud platforms can potentially

expose sensitive information of the data to an adversary, e.g., in the case of an emotion

classification task from text, an adversary-agnostic abstract representation of the text data

may eventually lead an adversary to identify the demographics of the authors, such as their

gender and age, etc. The leakage of sensitive information from the data may take place due

to eavesdropping over the network or malware residing at the server. Privacy preserving

computation workflows aim to prevent such leakage of sensitive information by introducing

a suitable encoding transformation on sample data points. Such an encoding strategy has

dual objectives, the first being that it should be difficult to reconstruct the original data in

the absence of any knowledge of the encoding strategy and its parameters. Secondly, the

computational results obtained using the encoded data should not be substantially different

from those obtained using the same data in its original form. Standard encoding mechanisms,

such as locality sensitive hashing (LSH), caters to the first objective of privacy preserving

computation workflow, the second objective may not always be adequately satisfied. In this

thesis, we focus on the second objective and the computational activity that we focus on

is a supervised classification task in addition to the K-means clustering, which has been

widely used for various data mining jobs. Here, we have addressed the problem of privacy

preserving computation on the above two tasks in three different ways,

Initially, we have proposed a new variant of the K-means algorithm which is capable

of privacy preservation in the sense that it takes binary encoded data as input, and does not

require access to the data in its original form at any stage of the computation. The proposed

strategy is capable of producing the required number of clusters which are sufficiently close

to the respective clusters computed from the original non-encoded data. The results of the

proposed strategy on image or text data are either comparable or outperform the standard

K-means clustering algorithm.

Secondly, we have explored a deep metric learning approach to learn a parameterized

encoding transformation with an objective of maximizing the alignment of the clusters

obtained in the encoded space with the same obtained from the original data. To this end,
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we train a weakly supervised deep network using triplets constructed from the output of a

clustering algorithm on a subset of the non-encoded data. Our proposed method of weakly-

supervised approach yields more effective encoding in comparison to approaches where the

encoding process is agnostic of the clustering objective.

Finally, we propose a universal defense mechanism against malicious attempts of stealing

sensitive information from data shared on cloud platforms. More specifically, our proposed

method employs an informative subspace based multi-objective approach to produce a

sensitive information aware encoding of the data representation. A number of experiments

conducted on both standard text and image datasets demonstrate the ability of our proposed

approach to reduce the effectiveness of the adversarial task without remarkably affecting the

effectiveness of the primary task itself.
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Chapter 1

Introduction

1.1 Background

Latest developments in the area of Machine Learning (ML) have shown great success

across a wide range of application domains such as healthcare [106], banking [85],

agriculture [70], business [78], transportation [149], and many others. Several of its

efficient tools have been widely used to formulate predictive models for various appli-

cations such as image classification [26], text recognition [21], speech recognition [1],

etc. Generally, the performance of the ML model depends on the volume of training

data, large volume helps to capture the inherent characteristics or the distribution of

the data.

Now a days many organizations are independently digitizing and storing the pri-

vate data such as medical records, financial data etc. Often this type of private data

implicitly or explicitly contain sensitive information. For example, consider the prod-

uct review data, which may implicitly or explicitly contain the information corre-

sponding to the age group or gender of the review writer, which are sensitive in na-

ture. Now, the demographic information of the review writer can be predicted using

the linguistic cues in the text itself [118, 113].

The most common practice of publishing a dataset that contains sensitive infor-

mation is to anonymize the dataset. Unfortunately, number of past studies shown

that removing only the type of information which are considered as ‘personal’ is not

sufficient to protect the subject’s identity, an adversary can re-identify and breach pri-
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vacy of the individuals data records using cross-corelation with some other databases

which may be publicly available. For example, the privacy breaches caused by infa-

mous AOL search query data scandal, which de-anonymised the Massachusetts hos-

pital discharge database by cross-corelating it with a public voter database [105]. An-

other well known example is the re-identification of user records from anonymised

training dataset of Netflix Prize competition. In this competition the famous online

DVD-rental and video streaming service company Netflix announced an “one mil-

lion dollar” prize to be awarded for the best collaborative filtering algorithm to pre-

dict the user rating for films. They publicly release an anonymised training dataset of

movie ratings. But within few days the authors of [108] shown that the user’s record in

the training data can be re-identify by matching the movie ratings from the Internet

Movie Database, an open movie rating website. Many other work on re-identification

of subject’s records from anonymised dataset have been published in past literature

which includes identifying participants records in the Personal Genome Project (PGP)

by cross-referencing publicly available databases such as voter registration archive

[139], re-identifying patient records in Washington state health records by looking up

the information in hospitalization news paper stories [138], etc.

On the other hand, the use of the private data to train an ML model may raise

serious privacy concerns due to the presence of sensitive information in the data.

Consequently, development of privacy aware ML (from hereon, we interchangeably

call as privacy-preserving ML) solutions is essential to take care of privacy concerns

of the client data. It should be able to preserve the privacy of the data without com-

promising its effectiveness. The most common approaches of the development of

this type of ML solutions include privacy aware encoding [34, 137, 131], differential

privacy [16, 37], homomorphic encryption [87, 119], etc. In our present research we

have used privacy aware encoding of the data to preserve privacy. The general steps

of our client-server based privacy aware ML solutions are the following,

• Data Encoding. The primary step for privacy preservation in our privacy aware

ML solution is to encode the client data in such a way that minimize the infor-

mation leakage i.e. it makes difficult for any adversary sitting on the server to
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steal the sensitive information from the data, at the same time the performance

of the ML model should not be compromised on the encoded data.

• ML algorithm redesign. The next step of our privacy aware ML solution is

re-designing the ML algorithm in such a way that it yields comparable results

on the encoded space with the original ML algorithm executed on the non-

encoded space.

• Evaluation. The final step is the evaluation of the privacy aware ML solution.

The main purpose of the evaluation is to measure the effectiveness of the ML

model and the privacy preservation effectiveness.

A number of solutions has been proposed in the existing literature for privacy pre-

serving data encoding e.g., Bloom filters mechanism [123, 124], distance preserving

transformation based mechanism [71, 137], multi-objective learning based mecha-

nism [34], adversarial learning based solution [89], etc. In this thesis we have mainly

used distance preserving transformation and multi-objective learning based mecha-

nism to ensure the preservation of data privacy.

Another important requirement for training the ML model using large volume of

training samples is the availability of high-end computational resources. To mitigate

the computational requirements of high-performance CPUs and GPUs a common

practice is to use some publicly available (free or paid) infrastructure as a service

(IaaS) or machine learning as a service (MLaaS) platforms. A client with limited re-

sources can use the MLaaS to train their ML model and provide prediction service

through their applications.

To avail the MLaaS the client needs to upload their data to the MLaaS server in

raw form or an encoded form which may cause information leakage due to eaves-

dropping on the communication channel or malicious activity by a malware sitting

on the server. The objective of our research is to minimize the information leakage

while using the cloud service of MLaaS without compromising the performance of

the prediction task. We mainly focus on privacy aware solutions for clustering and

classification tasks.
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Now, we discuss the main research questions explored in this thesis and conclude

the chapter by providing an outline of the thesis.

1.2 Research Questions

The privacy and security concerns of sharing the data over the cloud environment to

avail the ML models on MLaaS platforms have been discussed in the previous sec-

tion. In this section, we briefly present four research questions (RQ-1, RQ-2, RQ-3

and RQ-4) which will be addressed adequately in this thesis. In fact, all our research

questions that have been studied here concern the problem of employing machine

learning techniques under privacy preservation constraints. Although a number of

de-identification or anonymizing methods have been proposed for privacy preserva-

tion in the existing literature, most of them are based on adding noise or masking the

sensitive information in the data [154, 93]. Encoding of data on an anonymous space

is another popular strategy used for privacy preservation of data [137]. The choice

of the topic of this thesis has been motivated by the hypothesis that the encoding of

data on an anonymous space can minimize the information leakage to enhance the

privacy and security.

Locality sensitive hashing (LSH) is a popular method of binary encoding or Ham-

ming space transformation, and according to Johnson-Lindenstrauss (JL) lemma this

transformation is distance preserving [167]. Since LSH uses randomized basis vectors

to transform the real valued vectors into the Hamming space and without knowing

the basis vectors it is computationally difficult to formulate an inverse transforma-

tion from Hamming space to the original real space [6], consequently, the notion of

privacy preservation comes into account. Thus, in our first research work we employ

LSH based Hamming space transformation to preserve the privacy. But the Ham-

ming space is a lossy transformation, so standard K-means could not perform well

with the incomplete information on the binary space (considering the binary space

as real space). Here, we specially use the projection statistics along the basis vectors

of LSH transformation and redesign the unsupervised learning algorithm, in partic-

ular K-means algorithm, to improve the efficiency of the learning strategy. Thus our
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first research question can be stated as,

• RQ-1: How unsupervised learning algorithm can be re-designed under the con-

straint of privacy preservation to improve the learning effectiveness?

The second research question, studied in this thesis, explores the effect of weak

supervision on the encoding mechanism under privacy preservation constraints. To

address this research question the triplet network has been used for realization of the

effect of weak supervision. Similar to our studies pertaining to RQ-1, here too we

have used LSH based transformation of the input data to ensure the privacy preser-

vation and the effectiveness is measured on clustering task. The difference in the

approaches dealing with RQ-1 and RQ-2 is the nature of the training procedure, i.e.,

first one is unsupervised and later one is semi-supervised. Thus the second research

question can be stated as:

• RQ-2: How the effectiveness of privacy preserving clustering on discrete metric

space can be improved with weak supervision on the encoding transformation?

In our first and second research questions, we address the problem of privacy

preservation in unsupervised and semi-supervised learning scenarios respectively.

Now, the third research question dealt here is directed towards exploring whether

supervised learning can be used to protect the privacy of the sensitive data. To ad-

dress this research question we have proposed an informative subspace based multi-

objective approach to obtain privacy aware encoding of the data. The main objective

of this research is dual in nature, the first objective is to improve the effectiveness of

the classification tasks and the second objective is to encode the data in such a way

that an adversary fails to predict the sensitive information from the encoded data.

Thus we formalized our third research research question as:

• RQ-3: How supervised learning can be used to defend the malicious attempts of

stealing sensitive information from data shared on cloud platforms?

The last research question, studied in this thesis, is about exploring the poten-

tials of applying approximate nearest neighbour (ANN) based indexing and retrieval
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strategies under privacy preservation constraints to trace the susceptible people who

might have been infected by the virus due to their close proximity with people who

were recently tested positive towards the infection during a pandemic situation caused

by the same virus. To answer this research question, we have developed a laboratory

based reproducible environment and conducted experiments on both real and syn-

thetic sample datasets. This last research question dealt in this thesis can be more

formally stated as:

• RQ-4: What is the feasibility of applying approximate nearest neighbour (ANN)

based indexing and retrieval approaches under privacy preservation constraints

to obtain a list of top-k suspected users, who might be infected by an infectious

disease, in real time during pandemic?

1.3 Thesis Contribution

In this thesis, we aim to address the problem of improving the data privacy and secu-

rity while sharing the data over the cloud environment to avail the Machine Learning

model. We now enlist our contributions in this thesis.

• First, we have proposed a novel modified K-means clustering algorithm (pri-

vacy preserving K-means) which respects the privacy of the data. A binary en-

coding i.e. Hamming space transformation of the input data vector has been

used to preserve the data privacy. We mainly devise a novel Gaussian mixture

model based solution to estimate the new centroid vector on the Hamming

space during each iteration. For better estimation of the bit value of each cen-

troid vectors we make available the projection statistics, in form of mean and

standard deviation, of the input vectors along a set of random basis vectors.

• Second, we have designed a novel weakly supervised approach of learning the

encoding of the input data to improve the clustering effectiveness on Hamming

space. Similar to the privacy preserving K-means clustering algorithm (c.f. pre-

vious point), here too we have used the binary encoding (Hamming space trans-
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formation) of the input data to preserve its privacy. In this work, we empiri-

cally demonstrate that an effective reconstruction of the encoded data can be

achieved with the help of the projection (along a set of random basis vectors)

statistics of the real valued input vectors collected at the time of Hamming space

transformation. We also show that this reconstructed data along with a small

seed set of non-encoded data can be used to learn a more effective encoding

which yields a better clustering results compare to the binary encoding.

• Third, we have proposed a novel informative subspace based multi-objective

approach to generate privacy aware encoding of the input data. In this ap-

proach we hypothesize that removing or down-weighting the information nec-

essary to determine the sensitive attribute values potentially improves the de-

fence against the malicious attempts of stealing sensitive information from data.

In contrast to the existing approach [34, 89], where only the multi-objecting

learning has been used, we have applied an informative sub-space selection

corresponding to the primary task and multi-objective learning simultaneously

to produce a more robust encoding which is more resilient to security threats.

• Fourth, we have investigated the feasibility of applying approximate nearest

neighbour algorithms based indexing and retrieval approaches for contact trac-

ing under privacy preservation constraints during epidemics. In this framework

we applied the locality sensitive hash function (LSH) followed by a quantization

of the projected values of the input vector along a set of randomly chosen basis

vectors to preserve the data privacy.

1.4 Thesis Outline

The organization of the thesis is as follows.

• Chapter 2 presents a comprehensive literature survey of the related works and

highlights the difference of our proposed methods with the existing approaches.

In particular, we revisit various existing privacy preserving data encoding strate-
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gies and various computing mechanisms. Popular techniques like differential

privacy, homomorphic encryption, etc. have been reviewed in some details.

• Chapter 3 provides brief descriptions of K-means clustering, Hamming space

transformation, metric learning, multi-objective learning, etc. The Hamming

space transformation has been used in designing solutions of our research ques-

tions RQ-1 and RQ-2 while the multi-objective learning has been used in deal-

ing with the research question RQ-3. Finally, we have discussed the Hierarchi-

cal Navigable Small World (HNSW) as well as KD-tree search algorithms which

have been used in the proposed Privacy Aware Approximate Nearest Neighbor

Search (ANNS) in connection with the research question RQ-4.

• Chapter 4 provides an overview of the datasets used in the experiments of the

subsequent chapters in this thesis. Here, we describe about the synthetic 2D

points dataset (viz. Spiral, ΛV and Flame), MNIST-8M synthetic image dataset,

ODPtweets real text dataset, which are used in the experiments for clustering

task of our research questions RQ-1, while MNIST handwritten numeral im-

age dataset and 20-Newsgroups text dataset used to evaluate the clustering effi-

ciency in the research question RQ-2. Next, we describe the Skin Cancer MNIST

dataset of real images, Morpho-MNIST image dataset (which contains real hand-

written numeral image samples of MNIST dataset, and some additional sam-

ples generated synthetically by applying morphological erosion on the images

of real samples), TrustPilot Dataset containing samples of real texts of US en-

glish product review. These three datasets have been used to evaluate the classi-

fication task of our research questions RQ-3. Finally, we have provided descrip-

tions of the FourSquare - NYC and Tokyo Check-ins dataset and the synthetic

trajectory dataset, which have been used to experiment with the ANN-based in-

dexing and retrieval techniques in connection with the research question RQ-4.

Also, this same chapter introduces the metric used to evaluate the effectiveness

of the experiments performed for the work of this thesis.

• Chapter 5 proposes an approximate K-means clustering algorithm to address
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the research question RQ-1. The proposed algorithm ensures the privacy preser-

vation of the data using a binary encoding or Hamming space transformation.

The clustering memberships of the encoded data are the representatives of the

clusters of the original data. The proposed approximate K-means clustering al-

gorithm uses projection statistics, which are collected during Hamming space

transformation, for obtaining a better approximation of the centroid over the

Hamming space. Details of centroid re-computation steps are provided in the

Section 5.2. The cluster assignment process in the algorithm is performed based

on the Hamming distance between the binary encoded vectors and the recom-

puted centroid.

• Chapter 6 explores a semi-supervised way of generating the privacy aware en-

coding of the data which address our second research question RQ-2. Similar

to research question RQ-1, here too we have used the Hamming space transfor-

mation to preserve data privacy. Also, here we have shown that a set of triplets

generated from the output of the clustering algorithm on small amount of non-

encoded data can be used to generate clustering aware encoding of the data

which yields more improved clustering results on the remaining samples. Fi-

nally, we present the experimental results on three standard image datasets

namely MNIST, Fashion-MNIST, CIFAR-10 and a text dataset viz. 20-Newsgroups

which clearly demonstrates the effectiveness of our proposed method.

• Chapter 7 addresses our third research question RQ-3, where we have used a

supervised method to produce the privacy aware encoding of the data. In this

chapter, we have presented a method to minimize the leakage of sensitive infor-

mation from the data using the multi-objective learning approach. We have also

shown that the use of an informative subspace based approach along with the

multi-objective learning can be more beneficial to obtain privacy aware encod-

ing of the data. Our main hypothesis of this research is that the multi-objective

based defence mechanism can be improved by using a scheme for weighting

the features. It has been explained in detail in Section 7.3. Finally, we have pre-

sented a number of experimental results, conducted on both image (Morpho-
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MNIST, Skin Cancer MNIST) and text (Trustpilot) data, to support the claim.

• Chapter 8 presents the last research question RQ-4, which concerns an inter-

esting application of preparing a list of susceptible people who may have come

in close contact with persons who have been recently tested positive in respect

of the highly infectious virus. We have used the user locations in terms of 4-

dimensional Euclidean vector space (3 dimensions for space and 1 for time)

and have designed the contact tracing as a search problem in the same vector

space. Since the user location data is sensitive in nature, we have applied a

quantization transformation on the data to preserve the privacy. KD-tree, an ap-

proximate nearest neighbour approach has been used, for the retrieval purpose.

Also, the ground-truths for FourSquare Check-ins dataset has been simulated. A

synthetic trajectory dataset of user locations has been generated using random

walk for their use in the evaluation of the effectiveness of similar approximate

approaches.

• Chapter 9 concludes the thesis by summarizing the research achievements and

providing directions for future research. In this chapter, we first revisit each

research question and summarize how each one of them has been addressed

through the experimental findings described in the corresponding chapters. Fi-

nally, we have discussed our ideas for possible enhancement of various meth-

ods presented in various chapters of this thesis.
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Chapter 2

Related Work

In this chapter we present a comprehensive literature survey of related works. We

first revisit various privacy preservation techniques used in data mining. Next, we

review some related studies of data clustering and finally we explore the latest ad-

vancements in the area of adversarial learning and metric learning.

2.1 Privacy Preservation in Data Mining

It has been quite some time that the concerned group has felt the need for privacy

preservation in online processing of data over the internet. The issue is more serious

when data are stored in public servers and shared among different groups of peo-

ple. During the past several years a number of sophisticated techniques have been

proposed in the literature for preservation of data privacy. Some of the most popu-

lar approaches of data privacy preservation are based on homomorphic encryption,

data perturbation, privacy preserving encoding etc. to name a few.

2.1.1 Homomorphic Encryption

Homomorphic data encryption strategies allow its users to perform various com-

puter processing tasks over the data without requiring its security keys. Recent ad-

vances in homomorphic encryption have made it possible to use as-a-service-based

solutions without compromising the confidentiality of sensitive information [116, 98,

145, 142]. Our data privacy preservation approach over cloud computing environ-
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ment is functionally different from that of the homomorphic encryption, where the

objective is to encrypt data in such a way that a certain set of operations (e.g., back-

propagation based gradient updates in supervised learning) conducted on the en-

crypted data is likely to yield approximately similar results in comparison to the re-

sults obtained with the data in its original form [87, 119]. In [87], the authors have

proposed a homomorphic encryption framework that has been claimed to realize pri-

vacy preservation for machine learning training and classification in data ciphertexts

environment. The authors of [119] presented a functional encoding scheme. They

used its implementation to build privacy preserving neural networks, and tested the

same successfully on simple image classification problems. Also, these authors pro-

vided an adversarial training technique to improve the privacy by reducing the infor-

mation leakage. Our workflow, instead, corresponds to the situation when a client

needs to communicate with a server without involving data encryption and decryp-

tion with key exchanges.

2.1.2 Differential Privacy

Among data perturbation techniques, differential privacy (DP) [43] is the most suc-

cessful privacy preservation technique that produces a strong privacy guarantee be-

fore making the data public. The objective of DP is somewhat similar to that of

privacy-preserving encoding. DP protects an individual’s privacy while publishing

information about a database. However, differential privacy does not involve any en-

coding of the raw data as vectors; instead, it obfuscates parts of relational data so

as to mitigate individual data leakage [41]. Various de-identification or anonymiz-

ing technologies have been proposed to protect data privacy, which often involve

adding noise or masking sensitive information in the released dataset [154, 93]. Some

well known DP techniques include adding noise by the Laplacian and the Gaussian

mechanisms [39, 43]. While the Laplacian approach is particularly suitable for sparse

vectors [42], the Gaussian one finds applications in empirical risk minimization algo-

rithms [9]. The concept of additive noise in differential privacy for relational databases

also finds applications in Bayesian risk minimization in general [37], or in Bayesian
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linear regression [16], in particular. Our proposed methods are different from the

concept of DP in the sense that instead of data perturbation we encode the data to

preserve privacy.

2.1.3 Privacy-preserving Data Encoding

Privacy preserved data encoding finds applications in record linkage [71, 72], cluster-

ing [19, 131], text classification [34], regression analysis [69] etc. For text data, privacy-

preserving based encoding is particularly crucial because the inherent characteristics

of natural language (e.g., writing style or word usage patterns) often reveal informa-

tion about the authors, which can be used by adversaries to reveal such sensitive

information. As examples, the authors of [118] used online behavior, stylistic choices

and language models to predict the age group of blog authors, while those of [113]

used Twitter content to predict the occupational class.

It has been shown that a multi-objective approach, where an adversarial classifier

model is trained simultaneously with the primary task classifier, is useful to obtain

a privacy preserving encoding of the data [34]. Other work on data encoding has

applied distance preserving binary encoding of data instances [71, 72, 19].

Multi-objective approach. A number of recent studies has proposed the dual objec-

tive of privacy preservation (minimizing leakage of sensitive information) and model

preservation (maximizing the performance of an algorithm on the encoded data),

e.g., applying a ‘multi-detasking’ model to train an adversarial classifier simultane-

ously with the primary downstream text classifier, where during training, the primary

classifier updates its parameters to confuse the attacker model [34]. The study re-

ported in [92] developed a distributed framework for privacy preserving multi-task

learning protocol by applying encryption mechanisms. The authors of [89] explored

an adversarial learning approach that learns unbiased representations of text with re-

spect to specific sensitive attributes. Somewhat different from the findings of [34], the

authors of [45] showed that despite adversarial training methods being generally ef-

fective in reducing the amount of implicit sensitive information, in some cases, how-

ever, a substantial amount of sensitive information still persists and can be extracted
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from the encoded representations.

Although our proposed privacy preserving classification model falls into the gen-

eral class of multi-objective approaches, such as those of [34] and [127], our proposed

method is more general in the sense that we leverage the candidate subspaces that

are most informative of the primary task. Since parts of these subspaces are less likely

to be comprised of the sensitive information in data, our method seeks to address

some of the concerns pointed out in [45], i.e. removal of sensitive attributes (e.g. de-

mographics) from data instances can still lead to an adversary predicting this missing

information. Our subspace-based approach is explicitly directed towards mitigating

this problem in the sense that the privacy-aware encoding process puts more empha-

sis only on those components of the data that are more useful for the primary task,

while suppressing the residual space that contains most of the information on the

sensitive attributes. Standard approaches of model-agnostic instance-wise informa-

tive feature selection for classification include those of employing linear regression to

learn a simplified decision boundary by sampling points around a data instance [97],

applying a Gumbel distribution to estimate instance-wise feature importance [30]

etc. The authors of [52] reiterate the importance of feature selection for supervised

learning tasks, whereas those of [90] and [171] explore feature selection for the case

of unsupervised learning. In the context of our work, we use the idea of exploring

informative candidate subspaces with a parameterized approach, as first proposed

in [30]. An explicit use of feature importance also provides an interpretable way of

preserving data privacy.

Distance preserving binary encoding approach. A popular technique to privacy pre-

serving data encoding is distance preserving Hamming space transformation due to

its computational and memory efficiency. Among the various binary transformation

e.g. Locality Sensitive Hashing (LSH) [56], Spectral Hashing (SH) [160], Binary Recon-

structive Embeddings (BRE) [80], Shift Invariant Kernel based Hashing (SIKH) [114],

etc., LSH is popularly used technique, where similar samples are mapped into the

same bucket with high probability. In other word, using LSH the original metric (e.g.

Euclidean distance, cosine similarity) is well preserved in the Hamming space with
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increasing code length. The LSH consists of projection along the randomly chosen hy-

perplane and thresholds. The Super-Bit LSH proposed in [68] improves the likelihood

of semantic hashing (similar signatures corresponding to similar points and dissimi-

lar signatures otherwise) by applying orthogonalization of the randomly chosen basis

vectors with the help of Gram-Schmidt algorithm. Since our proposed privacy pre-

serving semi-supervised and unsupervised clustering methods uses the Hamming

space transformation to preserve the privacy, among the other alternatives we em-

ploy the Super-Bit LSH as the transformation function.

2.2 Privacy Preserving Clustering

In recent years, the research of privacy-preserving computing has received consid-

erable attention, such as linear regression [69], K-means [54] etc. The work in [69]

learns a transformation function to simultaneously maximizing the likelihood of pre-

dicting missing values from the data and also minimizing a linear regression loss. Two

major differences of our privacy preserving clustering method with respect to [69] are

that, firstly, we focus on a different objective, namely that of clustering, which in con-

trast to the objective of linear regression in [69], is unsupervised in nature, and sec-

ondly, the transformation function in our case is a binary one instead of a low rank

approximation of [69], thus ensuring much faster execution.

In contrast to our client-server setting of K-means computation, the authors in

[54] address the distributed computing case where the K-means computation is se-

curely distributed over computing resources before employing secure key exchange

protocols for computing the centroids and the closest cluster centres. Researchers in

[109] proposed an attribute generalization based algorithm to abstract out specific

instances of values of attributes, e.g. replacing attribute values such as ‘dancers’ and

‘writers’ with the more general value ‘artists’.

Similar to our approach of binary encoding the data with additional information

about the averages and the variances of values projected along basis vectors, the work

in [40] shares additional information of the form f(x) = g(xi), where xi denotes the

ith row of a database and g maps database rows to [0, 1].
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K-means on Hamming Space. Since our proposed privacy preservation based K-

means is based on binary encoding of data, we now review some existing K-means

clustering variations that work with binary data. For example, the work in [74, 131]

represented data vectors as binary codes to perform clustering. While the study in

[74] defined a cluster centroid as the component-wise median of constituent vec-

tors of a cluster, the authors of [126] obtained sparse cluster centers by applying L1-

ball projection on each cluster center during each mini-batch iteration of K-means,

which contributed to reduction in computational cost.

The idea of PQK-means involves representing input real-valued vectors as short

codes by applying product quantization [61] and then clustering them by making use

of hashing on the PQ codes during the cluster assignment step and sparse voting

during updating the centroids [48]. The main limitation of PQ codes is that it has to

rely on fixed subspaces of the data. In contrast, the JL transformation [161, 68] used to

encode the data vectors in our method is able to preserve more information about the

data by taking projections along orthogonal basis vectors. Similar to our method, the

study in [131] uses random basis vectors to encode the input data in binary. However,

during intermediate steps, the algorithm makes use of the original data vectors to

modify the basis vectors, which leads to violating the privacy preservation constraint.

2.3 Deep Clustering

Although the initial works of clustering were based on traditional machine learning

techniques, researchers have also employed deep neural methods for this purpose.

In an earlier study, the authors of [99] presented a neural network based method,

namely the MacLeod algorithm, for document clustering. The MacLeod algorithm,

broadly speaking, first classifies if a document belongs to a cluster, and then if so,

adjusts the network parameters to make the document vector ‘move closer’ to the

cluster centroid. The authors reported that the algorithm yields comparable results

to hierarchic (sequential) clustering algorithms.

Several approaches have been proposed for simultaneously performing cluster-

ing as well as subspace selection. A kernelized K-means algorithm was proposed in
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[166] that involves a supervised subspace selection using linear discriminant analy-

sis (LDA). The LDA method enables a class-aware dimensionality reduction and has

been shown to improve clustering effectiveness. The experimental results on some

benchmark datasets shown that the kernelized K-means yields comparable perfor-

mance with standard clustering algorithms such as K-means.

Likewise, an unsupervised feature selection based on trace ratio formulation is

proposed in [152] to simultaneously execute the subspace selection and clustering.

These methods usually apply a shallow linear embedding function.

Existing research on deep representation learning has also investigated obtaining

an embedding of a data space with an objective of assigning cluster labels [55, 163,

62, 168] with specific applications in community detection on networks using non-

linear embedding functions [25]. While some of these semi-supervised techniques

use statistical measures, such as the KL divergence [55, 163], the others are based on

triplet networks [62, 168].

Our work differs from the aforementioned semi-supervised work on deep metric

learning in two significant ways. First, in contrast to semi-supervised learning, we do

not employ a subset of the data labels, and second, the input on which the metric is

learned represents an encoded space in our workflow of privacy preservation based

clustering.

2.4 Adversarial Learning

An adversarial attack broadly refers to the methods of generating samples (often called

adversarial examples) that are indistinguishable from samples drawn from the true

data distribution with an objective to ‘fool’ a classifier [58]. These attacks typically

use first order gradient information, such as FGSM [58], I-FGSM [81], MI-FGSM [38],

Ada-FGSM [132] etc. Successful demonstrations of black-box adversarial perturba-

tions attacks leading to degrading the effectiveness of classifiers were demonstrated

in [110] and [86]. Defence mechanisms against such adversarial attacks include those

of using regularized FGSM [141], and defensive distillation [111].

Different from adversarial learning, in our supervised classification model, we
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rather employ a multi-objective encoding, the purpose of which is to ensure that it

potentially would be difficult for an adversary to use a pre-trained system (on simi-

lar data) to effectively predict the values of sensitive attributes (e.g., age, gender etc.)

from the encoded data.

2.5 Metric Learning and Triplet Networks

Learning a data-driven similarity metric is an active area of research [170, 53, 122],

and has applications in nearest neighbour classification [159], clustering [62, 168,

164], face recognition [32], person re-identification [60, 168], ad-hoc document re-

trieval [59], image-text retrieval [88], etc.

In [155], the authors proposed a graph convolution based clustering of multi-view

data. More precisely, they first conducted clustering on the vector representations

of the graph convolution network (GCN) latent layers for each view, and then they

imposed an additional constraint seeking to optimize the clustering results iteratively.

An additional constraint in their work assumed a joint representation of each view of

the data in the same semantic space.

While the early metric learning techniques, such as the large margin nearest neigh-

bor (LMNN), involve shallow approaches such as employing an SVM (hinge loss), re-

cent approaches have applied neural learning to rank approaches [23] for the pur-

pose of metric learning [125, 60, 62, 168]. The loss function, typically useful to train

such networks, makes use of triplets, comprised of a pivot point along with a positive

and a negative example. The objective of a triplet network is to learn the parameters

of a distance metric that minimizes the distance of the positive sample from the pivot

while simultaneously maximizing the distance of the negative sample from the pivot.

2.6 Proximity Tracing

Recent advancements in homomorphic encryption has made it possible to perform

computation on encrypted data at the server end without compromising the sensitiv-

ity of data [115]. Under such a privacy-preserving workflow, only the encrypted data
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is shared with the server and all computation is restricted to use only the encoded

data [116, 4, 18, 13, 134]. Among existing work, [116] used homomorphic encryption

on mobile IOT systems to preserve privacy. Other applications of homomorphic en-

cryption based contact tracing include those of [4], which uses Bluetooth signal, and

[13], which uses WiFi identifiers etc.

Government of different countries also took initiative to develop secure contact

tracing application e.g. TraceTogether1, COVIDSafe2, Aarogya Setu3 etc. by Singa-

porean, Australian and Indian governments respectively. Some companies such as

Google and Apple also released APIs4 to support contact tracing and many countries

agreed to using these apps as a part of their policies.

2.7 Approximate Nearest Neighbors Search

Existing studies on nearest neighbors (NN) search attempt to find the closestK points

to a given query point from a dataset. The KD-tree algorithm, proposed in [14], is one

of the most popular exact nearest neighbors (NN) searching algorithm which can be

converted to ANN by applying an upper bound on the number points to be exam-

ined. Although it yields good results in low dimensional spaces, its effectiveness in

terms of computation time and memory usage, tends to decrease for high dimen-

sional spaces [29]. Since exact nearest neighbor (NN) search algorithms (e.g. the

classic KD-tree) being computationally expensive, are rather intractable for large col-

lections of embedded data in high dimensional spaces. This has motivated research

towards towards research on approximate NN retrieval.

ANN search finds applications in content-based image retrieval. With the advent

of deep learning based methods which represent image and text data in a joint em-

bedding space of reals [50], finding nearest neighbors in the data can be useful for

various applications, such as image captioning [73], imagification of documents [2]

etc.

1https://www.tracetogether.gov.sg/
2https://www.covidsafe.gov.au/
3https://www.aarogyasetu.gov.in/
4https://covid19.apple.com/contacttracing
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Generally speaking, existing ANN approaches can broadly be divided into the fol-

lowing categories. Firstly, some approaches are memory-based relying on efficient

data structures to compute only a limited number of exact distances [33]. Variations

of the KD-tree data-structure to support ANN e.g. classic KD-tree [133], Best Bin First

(BBF) search [8], balanced box-decomposition (BBD) tree [12] also fall in this cate-

gory.

The second category of approaches are hash-based which aim to design effective

hash functions to preserve the spatial proximity of points, i.e. map close points to

the identical hash values. Examples include Locality sensitive hashing (LSH) [6], LSH

Forest [11] etc. LSH [6] is the most popular hashing-based ANN search method which

uses a number of different distance preserving (also called semantic) hash functions.

The third category of approaches map data points to compact binary codes to re-

duce in-memory space and achieve fast exhaustive search in Hamming space [57].

Product quantization (PQ) [61] is a specific type of non-binary discrete encoding

method used for either exhaustive search or non-exhaustive search with the help of

inverted indexing.

The fourth category of approaches is based on metric inversion (MI), i.e. those

that rely on pre-computing distances from a set of reference points (different from

the data points). These distances are stored in the postings list corresponding to

each reference term [5]. Among more successful approaches that allow provision

for an inverted index based secondary storage organization (with query driven dy-

namic loading of content in the primary memory) are the graph-based approaches

- NSW and HNSW. Navigable Small World (NSW) [22] is a graph with logarithmic or

poly-logarithmic scaling of greedy graph routing [22]. NSW-based ANN search was

further improved in [100] with a controlled hierarchy based approach, known as the

Hierarchical NSW (HNSW).

2.8 Trajectory Search

Recent advancement in GPS technology has led to everyday recording and storing

large amounts of trajectory data of moving objects. This high volume trajectory data
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can can potentially be leveraged for trip recommendation [129], travel time and path

optimization [157], identifying driver expertise [136] etc.

There also exists a number of recent studies about trajectory search given a par-

ticular query location [143], region of interest [128] or traveler’s preference [130] and

activity [156].

Our use-case is different from the above thread of work in the sense that for a given

trajectory, instead of searching closest k complete trajectory, our task is to retrieve k

users whose spatial-temporal data values (considering both GPS location and time)

are close to that trajectory.

2.9 Conclusions

In this chapter, we have discussed several existing studies related to the research

questions introduced in this thesis and published in recent literature. In the next

chapter, we will discuss some of the necessary preliminary concepts related to the re-

search questions described in previous Chapter while in the succeeding chapters we

will discuss these research questions in more details and propose solutions for them.
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Chapter 3

Preliminaries

This chapter presents briefly a few terminologies which have been used in the works

of the subsequent chapters of this thesis. It start with an overview of Euclidean and

Hamming space, followed by encoding of real-valued vectors from the Euclidean

space to the Hamming space. We then present K-means clustering which is perhaps

the most popular one among similar techniques and discuss about multi-objective

learning, mutual information between two random variables and metric learning,

which are used to address the second and third research questions. Also, it includes

brief introductions of Triplet Networks, feature subspace selection, KD-Tree and Hi-

erarchical navigable small world (HNSW).

3.1 Euclidean and Hamming Spaces

A vector space V is represented by a set of vectors V , with each component belonging

to a specific domain (e.g. real numbers) and a distance metric D, which takes two

vectors as input and outputs a non-negative real number. More formally,

V : (V ,D); D : (x,y) 7→ R, x,y ∈ V . (3.1)

The two vector spaces that are relevant in the context of our problem of privacy pre-

serving clustering are

(i) Rd: a d dimensional real vector space with L2 (Euclidean) distance metric, and
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(ii) Hm: an m dimensional Hamming space of vectors with binary (0/1) compo-

nents withL1 distance metric, commonly known as the Hamming distance (DH).

As notations, let V = {v : v ∈ Rd} be a set of points in a d dimensional real-

valued Cartesian space. In our description of the privacy aware clustering approach,

we make the general assumption that the data instances are real-valued vectors. This

allows provision for addressing both text and images as inputs, both of which can be

converted to dense vectors with the application of standard methods, e.g., text can

be converted to a dense vector with the application of LSTMs [96], or an image can

be converted to a vector by the application of a variational autoencoder [76].

3.2 Binary Encoding of Data Instances

Explicitly sharing the set of real-valued vectors to an MLaaS compromises privacy be-

cause of the potential presence of sensitive information within the data. A standard

approach of sharing the data with a server is thus to first encode the data by trans-

forming points from one space to another. A transformation is usually meaningful if

it is distance preserving, i.e., two nearby points continue to remain in close proximity

post transformation. The research challenge is thus to make the clustering algorithm

on the server side work effectively with this encoded data. Formally speaking, we

transform a d dimensional vector v ∈ Rd in Euclidean space, into a binary vector h in

the Hamming space of dimensionm, (h ∈ {0, 1}m), which we interchangeably denote

as Hm. Let ϕ be the transformation function, i.e.,

ϕ : w ∈ Rd 7→ x ∈ Hm (3.2)

Among various alternatives of the selection of the function ϕ, e.g. with random

projections [161] or with hash-based methods [6], we specifically employ the Super-

Bit locality sensitive hashing (Super-Bit LSH) algorithm [68].

3.2.1 Super-Bit LSH

The Super-Bit LSH algorithm first selects a set of m random basis vectors B and then

orthonormalizes them by applying the Gram-Schmidt algorithm [68]. Next, it in-

24



3.3. K-means Clustering

volves taking the projection along each basis vector bi ∈ B. In other words, for a data

instance vector v ∈ Rd, the ith bit of the encoded vector h = ϕ(v) in the transformed

Hamming space Hm is computed as

hi = sgn(v · bi), i = 1, . . . ,m, (3.3)

where bi represents the ith basis vector and sgn(·) is the sign function that returns 0

for a negative value of the parameter, and 1 otherwise.

3.2.2 Characteristics of LSH-based Binary Encoding

A binary encoding function, in general, is distance preserving. This can be realized

with the help of the Johnson-Lindenstrauss (JL) lemma which shows that LSH-based

transformations (including the Super-Bit algorithm, in particular) is distance preserv-

ing [167].

Another desirable characteristic of an LSH-based binary encoding is that such a

transformation leads to privacy of the data being preserved, where the notion of pri-

vacy preserving computing, which we use in this thesis, relies on the observation in

[6] that without knowing the set of basis vectors, it is computationally difficult to find

an inverse function of the JL transformation transformation ϕ, that we use (Equation

3.2) to encode the vectors before sending them to the server.

At this point, we mention that in contrast to the standard notion of differential pri-

vacy, which applies for relational data comprising a set of attribute-value pairs, in our

work, we consider privacy preservation (specifically during K-means computation) of

real-valued data only. This means that instead of enforcing differential privacy, all we

need to ensure in the context of our problem is that it should be difficult for an adver-

sary to compute the true data vectors from the encoded vectors sent to a server for

K-means computation.

3.3 K-means Clustering

Clustering is one of the classic problems in machine learning and pattern recogni-

tion. The objective of the clustering is to partition the dataset in such a way that the
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similar data points being assigned to the same group i.e. in other words, the algo-

rithm assign a label to each points of the dataset such that it assign the same label for

the similar data points and different labels for the dis-similar points. According to a

recent survey of data mining techniques the K-means algorithm “is by far the most

popular clustering algorithm used in scientific and industrial applications” [15]. The

standard K-means algorithm is the Lloyd’s algorithm [94]. It is a simple and fast al-

gorithm that seeks to minimize the average squared distance between points in the

same cluster. It consists of following steps:

Step 1. Randomly choose K points {c1, c2, . . . , ck} as initial centers.

Step 2. Partitions the input data points into K clusters Ci; i = 1, . . . , K by assigning the

points which are closer to ci than they are to cj for all j ̸= i.

Step 3. For each cluster Ci recompute the center ci as ci = 1
|Ci|

∑
x∈Ci

x.

Step 4. Repeat Steps 2 and 3 until the centers no longer changes.

It is standard practice to choose the initial centers from the input data points and

if there are ties in Step 2 that may be broken arbitrarily.

In general, the K-means algorithm is designed to work well in the real Euclidean

space i.e. the Euclidean distance metric among the centers and points is used to

assign the cluster label of the points and the new centroid produced by the centroid

re-computation step being belongs to the real space. In our research question RQ-2

the working vector space are real Euclidean space and Hamming space but the final

working space is real Euclidean space so we perform the K-means algorithm on real

Euclidean space. But in case of the first research question RQ-1 the working space

is Hamming space, so we need to re-design the K-means algorithm to apply it on

Hamming space. Specially in this case we have used the Hamming distance to assign

the class label and proposed a novel method to recompute the centroid such that the

new centroid remain a points in the Hamming space.
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3.4 Metric Learning and Triplet Loss

Measuring the distance or similarity between data is of utmost importance in ma-

chine learning, pattern recognition and data mining, but it is usually difficult to cre-

ate such good metrics for specific problems. So, metric learning has attracted signifi-

cant attention. The main objective of metric learning is to find a function which maps

points from the data space into a embedding space such that the simple distance,

e.g. the Euclidean distance, in the embedding space approximates the “semantic”

distance in the data space. The most popular loss function which is widely used in

existing metric learning methods is Triplet loss [153, 125, 31], which try to capture

the relative similarity among the data points instead of the absolute similarity. To

address the second research question RQ-2 in this thesis we have proposed to use

weakly supervised metric learning on Hamming space using Triplet loss to produce

real embedding of data vectors, which yields a better clustering results under privacy

preservation constrain.

3.5 Multi-objective Learning

The Multi-objective learning, often known as Multi Task Learning (MTL), is a learning

paradigm where a machine learning model learn multiple related tasks simultane-

ously and it leverage information from one task to better train the other tasks. More

formally, let {Ti}ti=1 be t learning tasks where all or some of them are related. The

goal of Multi-objective learning is to learn all t task simultaneously to improve the

model for each learning task Ti using the information achieved from some or all of

the remaining tasks. The Multi-objective learning can be realized with a neural ar-

chitecture, schematically represented in the Figure 3.1. Concretely speaking, a linear

transformation is employed to transform each data vector to a shared abstract repre-

sentation followed by a set of linear transformation specific to each task.

In many existing literature of computer vision and Natural Language Processing

(NLP) with different machine learning task it is found that Multi-objective Learning

approach outperform their single task counterpart. The authors of [34] have shown
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Figure 3.1: Schematic diagram of Multi-objective learning

that MTL is potentially beneficial to produce a privacy aware representation of text.

It is also found that the performance of the learning task can be improve further

by combining MTL with other learning paradigms including unsupervised learning,

semi-supervised learning, reinforcement learning, multi-view learning, active learn-

ing and graphical models etc. In our present workflow of privacy preserving super-

vised classification we have combined the Multi-objective learning with informative

subspace encoding to improve the defence mechanism against information stealing

attacks.

3.6 Feature Subspace Selection and Mutual

Information

A basic property of important feature of a dataset is that it carries useful information

about all the classes of the dataset. Feature subset selection is an important step
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of many machine learning model. It often helps to reduce computational overhead,

reduce the effect of curse of dimensionality and improves the accuracy of the down-

stream task.

Mutual information is a widely used criteria for feature subset selection [10], where

the selection of feature is performed based on the mutual information between the re-

sponse variable and the selected features which is to be maximizes [112]. The mutual

information I(X, Y ) between two random vectors X and Y is a measure of depen-

dence between them. Informally speaking, it corresponds to how much information

about one random variable can be obtained by observing the other random variable.

It can be measured by the Kullback-Leibler divergence of the product of marginal

distributions of X and Y from the joint distribution of X and Y, more formally,

I(X, Y ) = EX,Y
[
log

PX,Y (X, Y )

PX(X)PY (Y )

]
(3.4)

wherePX,Y andPX , PY are the joint and marginal probability densities ifX, Y are con-

tinuous random variable, or the joint and marginal probability mass functions if they

are discrete and E represents the expectation of a random variable. The expectation

is taken with respect to the joint distribution of X and Y .

3.7 Nearest Neighbour Search Algorithms

Here, we provide brief descriptions of Hierarchical Navigable Small World (HNSW)

and KD-tree search algorithms which are used in the proposed Privacy Aware Ap-

proximate Nearest Neighbor Search (ANNS) strategy presented in Chapter 8.

3.7.1 KD-Tree

KD-tree is a multi-level space partitioning binary search tree data structure, whereK

is the dimensionality of the search space. Each node in the tree consists of K keys

(which comprise the data vector) and two pointers which points to the left sub-tree

and right sub-trees. The general idea in KD-tree is to partition a given collection of

points by hyperplanes perpendicular to the axes. Associated with each node there is

an integer j (0 ≤ j < K) called the discriminator, the role of which is to determine
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the direction (left or right) of a data point with respect to the splitting hyperplane

(the hyperplane perpendicular to the axis of the jth dimension). The root node has

the discriminator value 0. Insertion and searching in a KD-tree take place by recur-

sively traversing the tree and determining the discriminator values at each level by

computing the median of the values corresponding to the j-th dimension.

3.7.2 Heirarchical NSW

In general, proximity graph based methods constructs an index by preserving the

links to closest neighbours for each individual data point. The basic greedy search al-

gorithm on this proximity graph is very expensive due to the curse of dimensionality

and it generally yields relatively poor effectiveness on data with well-separable clus-

ters [100]. To address this limitation, Navigable small world (NSW) graph based al-

gorithm was proposed in [100] for solving the approximate nearest neighbour search

problem.

The NSW graph, say G(V,E), is a network with logarithmic or poly-logarithmic

scalability of the greedy search algorithm [77], where there is a one-one mapping be-

tween the vertex set V of G and the elements of the input dataset X ⊂ Rd, the set of

edges E representing the link among the elements being determined by the follow-

ing construction algorithm. The edge construction algorithm repeatedly connects

a randomly selected node (a data point) with its nearest neighbor. More formally,

(u, v) ∈ E if xu ∈ N(xv) or xv ∈ N(xu), where N(x) represents the neighbourhood of a

point x in X.

An improved version of the NSW algorithm is the Hierarchical NSW (HNSW) al-

gorithm proposed in [101]. The key idea of index construction and search strategy

in HNSW is to extend the graph structure of NSW into a hierarchy of a multi-layered

structure, having the links separated by their characteristic distance scales. The HNSW

graph is constructed by consecutively inserting a node for each data point, where for

each inserted node an integer l = ⌊− ln (U(0, 1))mL⌋ is chosen to determine the maxi-

mum level of the element, where U(0, 1) is the standard uniform distribution and mL

is a normalization factor for level generation.
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The insertion procedure has two phases. In the first phase a greedy algorithm

starts from the top layer to find e closest neighbours of the inserted element (e is a

parameter to control the search quality, its value in the first phase being set to 1). In

the second phase, search continues to the lower layers considering the closest neigh-

bours found in first phase as entry points, and the process is repeated. The HNSW

ANN search procedure is identical to the insertion algorithm for an element with

layer l = 0. The search result constitutes the set of closest neighbors found at the

bottom-most layer of the underlying structure.

3.8 Conclusions

In this chapter, we have presented certain preliminaries which are essetial to address

the research questions introduced in Chapter 1. We have first described Euclidean

and Hamming spaces and it has been followed by a brief description of an encoding

function, namely Super-Bit LSH, which transforms an input vector from Euclidean

space to Hamming space. Next, we have discussed K-means clustering algorithm,

which is the target clustering algorithm of our research questions RQ-1 and RQ-2.

Also, we have presented an overview of multi-objective learning, triplet network, fea-

ture subspace selection and the idea of mutual information between two random

variables, which are the key topics necessary to address the research questions RQ-2

and RQ-3. Finally, we have discussed the KD-Tree and Hierarchical navigable small

world (HNSW) technologies which have been used in the Privacy Aware Approxi-

mate Nearest Neighbor Search algorithm proposed in Chapter 8 to address our last

research question RQ-4. Chapter 4, the next chapter, provides brief discussions of the

datasets as well as various metrics used in various experiments to show performance

of the proposed solutions of the research questions presented in this thesis.
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Chapter 4

Datasets and Evaluation Metrics

This chapter provides a brief description of the datasets used in the experiments con-

ducted for the present research and the metrics used for evaluation of the results of

these experiments. We start with the descriptions of both synthetic and real datasets

used in the clustering task. Then we describe the datasets used in the classification

task and approximate nearest neighbour search. Finally, we present the evaluation

metrics used to evaluate the results of clustering and classification tasks.

4.1 Datasets for Clustering Task

We have conducted experiments for the clustering task on three synthetic two dimen-

sional points datasets containing samples from varying number of clusters. These

datasets include ‘Spiral’ [27] containing three clusters, ‘ΛV’ [66] containing two clus-

ters and ‘Flame’ [51] containing two clusters. In addition to using these synthetic

two dimensional points datasets, we have also tested our clustering approach on

another six datasets of samples taken from the real-world. These are ‘MNIST’ [84],

‘MNIST-8M’ [95], ‘Fashion-MNIST’ [162], ‘CIFAR-10’ [79], ‘ODPtweets’ [7] and ‘20-

Newsgroups’ [82], where samples of first three datasets are gray-scale images, fourth

dataset is a colour image dataset and the last two datasets consist of text samples.

Futher details of these datasets are provided below and Table 4.1 summarizes these

details.
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4.1.1 Synthetic 2D Points Datasets

Since at each step of our proposed privacy preserving approximate K-means cluster-

ing algorithm in the solution of our first research question RQ-1, we require to es-

timate the centroids from incomplete (encoded) information, it is useful to visually

compare the estimated centroids at each iteration of the PPK-means algorithm with

the true centroids obtained with standard K-means (to be discussed in Section 5.5).

For this purpose, we conduct experiments on a number of benchmark datasets in 2

dimensions1 [27, 66, 51]. Figure 4.1 plots the three datasets used in our experiments

of unsupervised clustering algorithm (to be discussed in Chapter 5). The datasets ex-

hibit a range of diversity in the number of visually perceived clusters, the convexity

of these clusters and the connectivity between them, e.g., the dataset ‘Spiral’ (Figure

4.1a) represents 3 disconnected blocks of thin spirals, whereas the dataset in Figure

4.1b comprises two thick ‘V’ like shapes (one of them inverted), (the reason why we

call it ‘ΛV’). The dataset ‘Flame’ (Figure 4.1c) represents two clusters, one of them

being convex (top).

(a) Spiral [46] (b) ΛV [47] (c) Flame [91]
Figure 4.1: Visualization of the ground-truth clusters of the two dimensional datasets used in our
experiments.

4.1.2 Real Image Datasets

MNIST :- The MNIST2 [84] dataset consists of 70K images of hand written digits, each

represented as a 28 × 28 two dimensional real valued vector. The number of compo-

nents (or ground-truth clusters) of this dataset is 10, each corresponding to one of the
1The Synthetic 2D datasets are publicly available at http://cs.uef.fi/sipu/datasets/
2The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/
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Figure 4.2: Some sample images from MNIST dataset. First printed numeric column is the
ground-truth label of the samples of each row.

digits, i.e. {0, . . . , 9}. Some sample images of each ground-truth cluster of the MNIST

dataset are presented in the Figure 4.2.

Fashion-MNIST :- The Fashion-MNIST3 (referred to as F-MNIST from hereon)

[162] dataset is a gray scale image dataset of Zalando’s fashion products, which con-

tains 70K images of 10 types of clothing, such as shoes, t-shirts, dresses, and more.

Each image is represented as a 28 × 28 two dimensional real valued vector. Some

sample images from each classes of the F-MNIST dataset is presented in the Figure

4.3.

CIFAR-10 :- The CIFAR-104 [79] dataset consists of 60K colour tiny images of 10

classes such as airplane, automobile, bird, and more. Each image is a 32 × 32 colour

image. Some sample images from each classes of CIFAR-10 dataset are shown in Fig-

ure 4.4.

3The Fashion-MNIST dataset is publicly available at https://github.com/zalandoresearch/
fashion-mnist

4The CIFAR-10 dataset is publicly available at https://www.cs.toronto.edu/~kriz/cifar.
html
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Coat
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Shirt
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Bag

Ankle boot

Figure 4.3: Some sample images from Fashion-MNIST dataset. Samples of each row belongs to
same class and first column represents the 10 different class names of the dataset.

Since our generic privacy preserving framework accepts dense vectors as input

data instances, we converted each image of the MNIST, F-MNIST and CIFAR-10 datasets

into vectors of dimension 128 by the application of a VAE, since VAE-based transfor-

mation has been shown to preserve the spatial properties of images [76]. We have

used these three real image datasets (MNIST, F-MNIST and CIFAR-10) in the experi-

ments of semi-supervised learning framework to show its effectiveness (refer to the

Chapter 6).

4.1.3 Synthetic Image Datasets

MNIST-8M :- The ‘MNIST-8M’ [95] dataset is comprised of 8.1M hand-written digits,

each being a 784 dimensional feature vector (a gray-scale image with 28 × 28 pixels).

The MNIST-8M is an extension of the original MNIST dataset of 70K images by gener-

ating random deformations to the original MNIST images. Consequently, similar to

the MNIST dataset the number of ground-truth clusters of this dataset also be 10.
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Figure 4.4: Some sample images from CIFAR-10 dataset are shown. Each row contains 5
random samples from same class and the names of of respective classes are shown in the left
hand column.

4.1.4 Real Text Datasets

ODPtweets :- Additionally, to evaluate our approaches on text data, we use the ODPtweets

dataset5 consisting of 25M tweets. Each tweet is labeled with the ‘Open Directory

Project’ (ODP) category of the URL of the page which the tweet points to, total num-

ber of categories being 34185. On careful observation of the dataset, we found that

there is a large number of ODP categories (specifically, 33770) with small number of

candidates (specifically, < 10), and that a number of classes (specifically, 12) have

an excessively large number of tweets (specifically, 100K). For our experiments, we

removed these head and tail categories, which resulted in a total of over 2.1M million

tweets distributed among 403 ODP categories. These ODP categories were consid-

ered as the ground-truth cluster of the dataset.

20-Newsgroups (20NG) :- In addition to the ODPtweets dataset, we also conduct

5The ODPtweets dataset is publicly available at http://www.zubiaga.org/datasets/odptweets/
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our experiments on another standard text dataset, namely the 20-Newsgroups (re-

ferred to as 20NG from hereon) dataset, which consists of around 18K newsgroup

posts on 20 different topics. The number of ground-truth clusters for the 20NG dataset

is 20 (reflecting each topic).

In order to obtain feature representations of each tweet and news document, we

trained word embedding employing ‘skipgram’ model of ‘word2vec’6 (with default pa-

rameters) over the tweet collection and news document collection respectively using

200 dimensions to represent each word. A dense vector representation of each tweet

is then obtained by summing the word-embedded vectors of its constituent words.

And, to construct the dense vectors for each news documents, we vectorize each doc-

ument of the collection with tf-idf based bag-of-words representation. Following this,

we select the top-most 20 words as the representative words of each document (i.e.,

words with the highest tf-idf scores). We then set the dense vector representation of

a news document as the sum the constituent word vectors.

To construct the dense vectors for input, we first train the skip-gram model [49]

(with the window size parameter of skipgram set to 10) on the 20NG dataset to obtain

the dense vectors for each word in the vocabulary. As a next step, we vectorize each

document of the collection with tf-idf based bag-of-words representation. Following

this, we select the top-most 20 words as the representative words of each document

(i.e., words with the highest tf-idf scores). We then set the dense vector representation

of a document as the sum the constituent word vectors.

Our approach of obtaining dense representation of the text documents is a rela-

tively simple one instead of more computationally involved approaches such as se-

quence encoding with LSTMs [165], or contextualized vector representations such as

BERT [36]. Since the objective of our experiments is rather to demonstrate the effec-

tiveness of a privacy-aware clustering approach, we keep the input representations

relatively simple. However, our methods could be applied on the dense representa-

tion of text documents obtained by other recent document encoding methods like

BERT, LSTMs etc.

6https://github.com/tmikolov/word2vec
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Table 4.1: Summary of the datasets used in our clustering experiments.

Dataset Type Modality #Samples Classify #Classes

Spiral Synthetic 2D-Points 312 Points 3
ΛV Synthetic 2D-Points 373 Points 2
Flame Synthetic 2D-Points 240 Points 2

MNIST Real Image 70K Digits 10
MNIST-8M Synthetic Image 8.1M Digits 10
Fashion-MNIST Real Gray-Image 70K Fashion-images 10
CIFAR-10 Real Colour-Image 60K Images 10

ODPtweets Real Text 2.1M ODP-category 403
20-Newsgroups (20NG) Real Text 18K News-topics 20

4.2 Datasets for Classification Task

A dataset suitable for the purpose of our experiments of “privacy aware supervised

learning” needs to be annotated with additional attribute values corresponding to

the sensitive information, the prediction of which during the adversarial workflow

branch (see Figure 7.2) could then be set up as information leakage. In our super-

vised learning problem we mainly focused on the classification task (our proposed

privacy aware supervised learning is presented in Chapter 7). To test the effective-

ness of our proposed approach on different modalities of data, we experiment with

both text and image datasets. Details of the datasets used in our supervised classifi-

cation experiments are provided below and Table 4.2 summarizes these details.

4.2.1 Real Image Datasets

Skin Cancer MNIST (HAM10K):- Contrary to using synthetically generated attribute

values for the adversarial task, the ‘Skin Cancer MNIST’ (or HAM10K) dataset [146]

allows us to setup the adversarial tasks with two explicitly annotated attributes. The

primary task in this dataset involves identifying one out of 7 possible skin diseases,

e.g., Bowen’s disease, basal cell carcinoma etc., from images of lesions. The objective

in this case is to encode the data in such a way that it does not reveal the age or

gender of a person without substantially degrading the effectiveness of the primary

task. Some sample images from this ‘Skin Cancer MNIST’ dataset are shown in the

Figure 4.5.
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Figure 4.5: Left to right: Lesion images of a young female, mid-aged male, old female and an
old male.

4.2.2 Synthetic Image Datasets

Morpho-MNIST (M-MNIST):- The primary task of the original MNIST dataset in-

volves detecting the class of a digit (a gray-scale image with 28 × 28 pixels) out of

the 10 possibilities (one of 0 to 9). As a part of latent information that can potentially

be leaked from an encoding of a hand-written image (e.g. a 2d convolution with max-

pooling), we first consider the slant of a hand-written digit, which can be considered

to be correlated with personality traits [28]. To setup the dataset, each slant label, z1

(in our notation), is obtained by applying a threshold on the horizontal shear, α. The

value of the shear, α, in turn is computed as a function of second order moments of

the gray-scale values, xij [24]. Formally,

z1 =


0 α ≤ −0.3 (left)

1 −0.3 < α < 0.3 (neutral)

2 α ≥ 0.3.(right)

(4.1)

In addition to the slant, the second attribute that we address in our privacy aware

supervised learning experiments is whether the image of a hand-written digit is bro-

ken, i.e., a lack of continuity is exhibited in the strokes. The value of this attribute, if

revealed in a real-life situation, could indicate the age of an OCR-ed document to an

adversary.

For our experiments with the broken attribute, we use an existing dataset, namely

the ‘Morpho-MNIST’, where morphological erosion is applied to synthetically gener-

ate broken images [24]. Addition of the synthetically generated broken images, one

for each image in the original MNIST, resulted in doubling the number of images for

this dataset. The information on whether an image is broken is not available to an ad-

versary, nor does the adversary is allowed to compute the slant labels using Equation

40



4.2. Datasets for Classification Task

Table 4.2: Summary of the datasets used in our supervised classification experiments.
#Instances Primary task Adversarial Tasks

Dataset Type Modality Train Validation Test Classify #Classes Attribute Categories

Morpho-MNIST
Synthetic Image 106K 14K 20K Digits 10

Slant {left, neutral, right}
(M-MNIST) Broken {yes, no}

Skin Cancer MNIST
Real Image 7500 1000 1500 Diseases 7

Age {≤ 30, 31-60, > 60}
(HAM10K) Gender {male, female}

TrustPilot
Real Text 20.3K 2700 4K Sentiment 2

Age {≤ 35, > 35}
(US English) Gender {male, female}

4.1. Some sample images from this ‘Morpho-MNIST’ dataset are shown in the Figure

4.6.

Figure 4.6: Left to right: no slant or broken; no slant but broken; slant on the left and broken;
slant on the right and broken.

4.2.3 Real Text Dataset

TrustPilot Dataset:- For the text modality, we use the TrustPilot reviews (the US En-

glish subset). The primary task on this dataset involves identifying sentiment (posi-

tive or negative) of a review [63]. This dataset, comprised of over 27K reviews with

sentiment score ranging between 1 and 5, has annotated values for both age and gen-

der. Since the number of reviews with scores 2 and 3 is substantially small, we bina-

rize the sentiment class labels by thresholding with a value of 3, i.e. scores from 1-3

are mapped to class 0 and the rest to 1. Following the previous experiment setup of

[34] and [89], we binarize the attribute ‘age’ as young (age ≤ 35) and its complement

(representing the category ‘not young’). To construct the dense vector for each review

data, which has been used as the input of our ‘Privacy-aware supervised classification

model’, we have applied the same ‘skip-gram’ model based method described in the

Section. 4.1.4 to obtain the dense vector representation of the tweets.
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Table 4.3: Summary of the dataset used in our Approximate Nearest Neighbour Search experi-
ments. ρ denotes the population density (#users in a grid cell).

Dataset #User #Instances #Step (τ ) Grid (λ× λ) ρ

Traject-10K 10K 1500K 100-200 100×100 149.94
Traject-100K 100K 15M 100-200 1K×1K 14.99
Traject-1M 1M 150M 100-200 1K×1K 149.97
CheckIn-24M 24M 24M 1 107×337 670.85

Figure 4.7: Simulated ghost-users (shown in amber color) corresponding to a real infected user
(shown in red)

4.3 Datasets for Approximate Nearest Neighbour

Search

We performed experimentation of the Approximate Nearest Neighbour Search algo-

rithm in the Chapter 8 on both real and synthetic sample datasets. The FourSquare7

global check-in dataset has been used as the real dataset in our experiment and for

synthetic dataset we have simulated trajectory dataset. Table 4.3 summarizes these

datasets 8.

7https://drive.google.com/file/d/0BwrgZ-IdrTotZ0U0ZER2ejI3VVk/view
8Source code available at https://github.com/chandanbiswas08/infectracer.
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Figure 4.8: Left: Random walk based trajectory data of 50 users. Right: A zoomed-in view for
the trajectory of 3 users. Given the red colored trajectory as a query (infected user) the objective
is to retrieve the other two.

Simulated Ground-truths for FourSquare Check-ins

The real FourSquare check-in data is not directly applicable for our study because the

data contains only a very small number of simultaneous check-ins of two FourSquare

users in the same location (a point-of-interest, e.g. a museum/restaurant). However,

to evaluate contact tracing effectiveness under laboratory-settings, our collection re-

quires to contain data for users that came in close contact with each other (in terms

of both space and time).

As a solution, we undertake a relatively simple simulation model to generate pseudo-

user interactions (likely contacts). First, we filter the original dataset to retain only

one check-in per user. This makes the simulation algorithm easier to manage. Next,

for each user U (having a unique id), we generate a mutually exclusive set of ‘pseudo-

users’ or ‘ghost-users’.

For a user U , as per the generation mechanism, this set of pseudo-users hence

represent the ground-truth or the target set of users that need to be retrieved given

the current user U as a query. Note that since all the original/real user check-ins were

sufficiently apart in space-time coordinates, it is likely that the neighbourhood of a

user comprised of the ghost-user check-ins are also far apart (in which case one can

rely with sufficient confidence on the simulated ground-truth data).

More concretely, for each user U we generate p + n number of ghost-users in a δ

neighbourhood, out of which p belong to an ϵ neighbourhood (ϵ < δ). If U is infected
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person then the target is to retrieve the set of p ghost-users. Figure 4.7 presents a

visualization of the simulated pseudo-users corresponding to a real infected user (red

person in the figure).

As particular values of ϵ and δ, we use 1 and 2. The values of p and n were set to 30

and 60 respectively. The value of n is set to be higher than that of p in order to make

the ANN retrieval task more challenging.

Generation of Synthetic Trajectory Dataset

Since the real dataset is limited by the number of available check-ins, in order to

collate a larger dataset of locations we generate synthetic data with random walk.

Although the real trajectory paths of people are far from being random, the gener-

ated data despite being random serves its purpose in the context of our experiments,

which is to evaluate the effectiveness of ANN on large volumes of location data.

Since a person is free to move any location, it would acceptable to use synthetic

trajectory data, generated by random walk, in our study. Here our task is to identify

the suspected person who came close contact to an infected person, so we need to

simulate trajectory data which contain location of all user at each time step in some

time interval. We use Random walk to generate the synthetic trajectory data in fol-

lowing way.

To generate synthetic data, N simulated agents are initialized each at a randomly

chosen location within a 3 dimensional bounding box (each side of the bounding box

being in the range λ) with uniform probability. If the location of the i-th agent at time-

step t is denoted by (xit, y
i
t, z

i
t), its location x coordinate’s value at the next time step is

given by

xit+1 = xit + U(−1, 1), xit ∈ [0, λ] (4.2)

and so on for the other spatial dimensions, where U(−1, 1) returns −1 or 1 randomly.

The process in Equation 4.2 is repeated for an agent for τi number of steps where

τmin < τi < τmax. For our experiments, we used τmin = 100 and τmax = 200. Each gen-

erated spatial location for the i-th agent (τi number of them in total) is then appended
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with the time dimension, yielding the set of points of the form

Li = ∪τit=0{(xit, yit, zit, t)}. (4.3)

While generating the dataset, at each step, if two agents are found to come suf-

ficiently close to each other, i.e. within an ϵ-neighborhood (ϵ set to 1 similar to the

FourSquare dataset settings), we insert each point into the ground-truth (suscepti-

ble) list of other. We generate different synthetic datasets with three different values

ofN (number of simulated agents), namely 10K, 100K and 1M and named with a com-

mon prefix ‘Traject-’ followed by the value of N . Figure 4.8 shows a sample of the

generated data with 50 users for the purpose of illustration.

4.4 Evaluation Metrics

The objective of privacy preserving clustering and classification evaluation is to mea-

sure the performance of our proposed model under privacy preservation constraint.

In this section we discuss about the evaluation metrics used for the purpose of labo-

ratory evaluation of our proposed clustering and classification methods.

4.4.1 Clustering Evaluation Metrics

To measure the effectiveness of our proposed clustering method, we use standard

clustering evaluation metrics. Each dataset, that we experiment with, comprises the

ground-truth information of class (cluster) labels. As an evaluation metric, we report

Normalized Mutual Information (NMI) [35], which measures how homogeneous the

clusters are. A different type of clustering effectiveness measure is aggregation of

classification results over pairs of data points, yielding higher values if a pair of data

points from the same class (in the ground-truth) are predicted to belong to the same

cluster. We thus also report F-score and adjusted rand index (ARI) [151] aggregated

over these pairwise grouping decisions. Now, we briefly discuss about these metrics.

ARI. The adjusted rand index (ARI) measure appears to be one of the most popular

alternatives for comparing partitions. The mathematical formulation of the ARI is as

follows.
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Let C and C ′ be the ground truth label and clustering label. Then, the unadjusted

rand index (RI) is given by,

RI =
a+ b(
N
2

) (4.4)

where, ‘a’ be the number of pair of elements that are in the same cluster in C and in

the same cluster in C ′ and ‘b’ be the number of pairs of elements that are in different

cluster in C and in different cluster in C ′.

Now, the adjusted rand index (ARI) is defined as,

ARI =
RI − E[RI]

max(RI)− E[RI]
(4.5)

F-score. Let P and Q be respectively the ground truth partition and the predicted

partition obtained from a clustering algorithm on the dataset D. Define PairsD as

the set of all possible pairs of elements of D. Similarly, PairsP , PairsQ are defined as

the set of clustered member pairs i.e.,

PairsP = {(pi, pj) : pi, pj ∈ Pk}

PairsQ = {(qi, qj) : qi, qj ∈ Qk}
(4.6)

where, Pk and Qk are an arbitrary cluster in P and Q respectively.

We have defined a contingency matrix for precision-recall in the Table 4.4. Various

symbols used in this table are defined as follows.

tp = |PairsP ∩ PairsQ|,

fp = |PairsQ \ PairsP |,

fn = |PairsP \ PairsQ| and

tn = |PairsD \ (PairsP ∩ PairsQ)|

(4.7)

Table 4.4: Contingency table for precision-recall.

Pairs in P Pairs not in P

Pairs in Q True positive (tp) False positive (fp)
Pairs not in Q False negative (fn) True negatives (tn)

Now, the F-score is defined as,

F-score =
1

α 1
Precision

+ (1− α) 1
Recall

(4.8)
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where, Precision = tp
(tp+fp)

and Recall = tp
(fp+fn)

.

NMI. Another popular mutual information based measure for evaluating the cluster-

ing performance is normalized mutual information (NMI).

Let C and C ′ be the ground truth label and the label obtained from a clustering

algorithm respectively. Then the mutual information between C and C ′ is given by,

MI(C,C ′) =
∑
ci∈C

∑
c′j∈C′

P (ci, c
′
j)log

P (ci, c
′
j)

P (ci)P (c′j)
(4.9)

where, P (ci), P (c′j) are the probability of an arbitrarily selected sample belongs to

the cluster ci, cj respectively and P (ci, c
′
j) be the probability of a randomly selected

sample belongs to the both clusters ci and cj .

The normalized mutual information (NMI) is defined as,

NMI(C,C ′) =
MI(C,C ′)

mean(H(C), H(C ′)
(4.10)

where, H(C) =
∑

ci∈C P (ci)log(P (ci)) and H(C ′) =
∑

c′j∈C′ P (c′j)log(P (c
′
j)) are the en-

tropies of C and C ′ respectively.

4.4.2 Classification Evaluation Metrics

Accuracy. The effectiveness of a classification model can be measured by ‘accuracy’.

Informally speaking, the accuracy of a classification model is the fraction of predic-

tions for which the model classify correctly. More formally,

Accuracy =
Number of correction predictions

Total number of predictions
(4.11)

McNemar’s test. McNemar’s test is a statistical test [103] used to evaluate the sig-

nificance of differences in performance between two classifiers or models that are

applied to the same dataset. It is specifically designed for paired data, where each

instance is classified by both models, and the results are compared to see if there is a

significant difference in their performance.

The steps for performing the McNemar’s test are following:

Step 1: Create a 2 × 2 contingency table that represents the classification results of the

two models as shown in the Table 4.5.
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Model 2 correct Model 2 incorrect

Model 1 correct a b
Model 1 incorrect c d

Table 4.5: Contingency table for the outcome of two models

where,

a = number of instances that both models correctly classified.

b = number of instances that Model 1 classified correctly but Model 2 did not.

c = number of instances that Model 1 misclassified but Model 2 did not.

d = number of instances that both models misclassified.

Step 2: Calculate the McNemar’s test statistic which is given by:

χ2 =
(b− c)2

(b+ c)
(4.12)

Step 3: Compare the test statistic to the χ2 distribution with a null hypothesis that there

is no significant difference between the two models, we can compare the calcu-

lated χ2 value to the χ2 distribution with 1 degree of freedom (df=1) at a chosen

significance level (e.g., 0.05).

If the calculated χ2 value is greater than the critical value from the χ2 distribu-

tion at the specified significance level, we reject the null hypothesis, suggesting

that there is a significant difference in performance between the two models on

the given dataset. If the null hypothesis is not rejected, it indicates that there is

no significant difference, and the classifiers have similar performance.

4.5 Conclusions

This chapter has presented brief descriptions of various datasets used in the experi-

mentations performed for the present study. It includes synthetically generated datasets

as well as real-life sample datasets. Among the latter ones, there are both image

datasets and text datasets. We have first described real image datasets such as MNIST,
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Fashion-MNIST, CIFAR-10, etc. and real text datasets such as ODPtweets Twitter

dataset, 20-Newsgroups datasets, etc. which have been used in our experiments of

the clustering techniques. Next, we have provided some details of various datasets

used in the experimentations of classification methods and approximate nearest neigh-

bour search technique which include Skin Cancer MNIST (HAM10K), Morpho-MNIST

(M-MNIST), Trustpilot Reviews, etc. Finally, it has presented various metrics used in

our experimentations for evaluation purposes. In the next few successive chapters,

we shall explore the research questions introduced in Chapter 1 of this thesis.
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Chapter 5

Privacy Aware Unsupervised Learning

*

This chapter addresses the first research question RQ-1 introduced in Chapter 1, which

is

“How unsupervised learning algorithm can be re-designed under the constraint of

privacy preservation to improve the learning effectiveness?”.

Unsupervised learning plays an important role in the recent advancement of ma-

chine learning. Among the various unsupervised learning algorithm K-means is the

most popular algorithm due to its simplicity and effectiveness. So, in our first re-

search in this thesis we have worked on the K-means clustering algorithm as an in-

stance of unsupervised learning algorithm. In Chapter 3, we have discussed about

the standard K-means algorithm, where we saw that the standard K-means is de-

signed to work well in the real Euclidean space. But to address the research question

RQ-1 we need to apply the K-means on Hamming space, which requires some addi-

tional consideration of K-means to working properly on Hamming space and hence,

we have proposed a novel centroid re-computation procedure of the K-means algo-

rithm. Thus, in this chapter we proposed a privacy preserving approximate K-means

clustering algorithm and present a number of experimental results conducted on im-

age and text data to show the effectiveness of our proposed algorithm.

The rest of the chapter is organized as follows. We start with a brief introduction

*Some material from [19] has been reused in this chapter.
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5. PRIVACY AWARE UNSUPERVISED LEARNING

of privacy preserving clustering in Section 5.1. After that in Section 5.2 we formally

introduces the concepts that are used to estimate the centroids during K-means iter-

ations under the privacy preservation constraint. Section 5.3 describes our proposed

method that uses mixture of Gaussian based centroid estimation from a set of en-

coded vectors and global statistics on the input data. In Section 5.4 we present the

experiment setup, namely baselines, parameter tuning, and evaluation metrics. This

is followed by the presentation of the results of our experiments on synthetic and real

datasets (images and text) in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.1 Introduction

Modern advances in software engineering have led to deploying software as services

(known as SaaS), which provides an important advantage to organizations to focus

on their core businesses instead of expending resources on computer infrastructure

and maintenance. Consider for example, a ‘big-data’ clustering SaaS, which takes as

input a set of data instances, performs the computations for data clustering on the

server side, and returns as output a partitioning of the data to the client.

However, this ubiquitous use of service oriented computational architecture may

lead to leakage of information from the input data that a client needs to send to a

SaaS component. This information leakage may happen either due to eavesdrop-

ping activities in the network or due to malware executed on the servers with inten-

tions of stealing information from the input data. Even when the data appears to be

seemingly anonymous with suppressed sensitive information, intelligent processing

of the data can reveal sensitive information, such as the infamous AOL search query

data scandal [105] which exposed the personal identity, or the case of revealing the

identities of authors with the help of stylometric features [158].

A solution to preserve data integrity is to encode the data in a way that it becomes

difficult for any information stealing malware to detect the sensitive information

from it. For example, existing literature in differential privacy has proposed a range

of approaches for data protection, ranging from pseudo-anonymization of data [102],

to adding noise to the data for protecting author information [158] (see [104] for a sur-
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vey). Each such data-protection initiated transformation needs to achieve a trade-off

between two objectives:

i) Ensure that attacks on the encoded data have low likelihood of success, and

ii) The quality of the final output does not change remarkably as a result of the

transformation.

In this work, we focus our attention on the latter objective, i.e., ensuring that the

output obtained on processing the non-encoded data is not considerably different

than the one obtained after encoding the input. The problem, that we particularly

focus on, is that of clustering a given set of input vectors. In contrast to assuming a

structured form of the input in terms of a database of attribute value lists, as com-

mon in existing research on differential privacy focusing on the effectiveness of data

protection approaches against deanonymization attacks (see e.g. [65, 150, 102]), we

rather focus on a general form of input (real-valued vectors), similar to [158].

In our present approach, we employ a Hamming space transformation of the real-

valued data, i.e. we apply a function ϕ : w ∈ Rp 7→ h ∈ Hm to transform every

p dimensional real-valued input data vector, v, to a binary vector, h, of m bits. We

apply the Super-Bit LSH algorithm as the Hamming space transformation function ϕ,

which is given by,

hi = sgn(w · bi), i = 1, . . . ,m, (5.1)

where bi represents the ith basis vector among m randomly chosen basis vectors fol-

lowed by normalization and sgn(·) is the sign function that returns 0 for a negative

value of the parameter, and 1otherwise. Detail description about the Hamming space

transformation is presented in the Section 3.2.

The main advantage of the binary transformation, in particular, is that it enables

much faster transmission of the data over the network and processing of the data on

the server side. This is because it requires only m/8 bytes to store a binary vector

of m bits, whereas storing a p dimensional real vector requires at least p × 4 bytes of

memory.

53
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Next, after encoding the data, we focus on the problem of K-means clustering

on this encoded data. Since it is known that a general class of binary transforma-

tion functions of real-valued data is a lossy transformation [161, 6], it is important to

modify the K-means clustering algorithm with an objective to make it work well with

incomplete information. Indeed, this forms the core of our research in this chapter,

where we propose a modified K-means algorithm which works under an imposed pri-

vacy preservation constraint that it can access only the encoded input. This is in con-

trast to existing research on fast approximate K-means approaches (see e.g. [131, 75])

which make use of the encoded data vectors in addition to the original ones during

different stages of K-means execution.

Our main contribution of this research work in the present chapter is a modified

K-means algorithm that respects the privacy preservation constraint, which we call

PPK-means (privacy preserving K-means) 2 . The constraint makes it imperative to

devise an effective method to estimate the centroid vectors during K-means itera-

tions with the incomplete information from the binary encoded input data vectors.

Informally speaking, the closer the estimated centroid vectors will be to the true cen-

troids (computed with the complete information from the non-encoded data vectors

without the privacy preservation constraint), potentially better will be the output of

the clustering algorithm. To this end, we propose a Gaussian mixture model based

solution to estimate the bit values of the centroid vectors during the intermediate

computational steps. For more reliable estimation of the centroid vectors, we make

available for the purpose of computation additional information in the form of aggre-

gated statistics of projected values of the data vectors along a set of randomly chosen

basis vectors.

We evaluate our proposed method on a set of both synthetic and real datasets. In

comparison to standard K-means, our proposed method, PPK-means, shows signif-

icant improvements in terms of latency, without markedly decreasing the clustering

effectiveness. Further, our proposed method outperforms the standard K-Means al-

gorithm for clustering a large collection of short documents (tweets).

2A prototype of the implementation of PPK-means is available for research purposes at https://github.
com/gdebasis/superbit-kmeans.
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5.2. Computation of Cluster Centroids

5.2 Computation of Cluster Centroids

5.2.1 Vector Sum for Centroid Computation

The K centroid vectors during an iteration of K-means algorithm in the Euclidean

space of data vectors is given by

ck =
1

|W k|
∑

w∈Wk

w, k = 1, . . . , K (5.2)

where W k denotes the set of vectors in the kth partition. Note that the true computa-

tion of the centroid vectors involves making use of the true data points w’s.

Under privacy preservation constraints, the true data vectors w’s are not avail-

able. A way to compute the centroid vectors under privacy preservation constraints

is thus to compute centroids in the Hamming space. Formally speaking, the Ham-

ming space represents a modulo 2 finite field (commonly denoted as GF (2)), where

the (closure ensuring) sum operation is defined as

x⊕ y = z, where zi = (xi + yi) mod 2 ∈ {0, 1}. (5.3)

With this definition of the sum operator, the centroid vector in the Hamming

space can be computed as

hk =
⊕
x∈Xk

x, (5.4)

where the ith component of the vector hk, denoted by hki ∈ {0, 1}, is given as

hki = (
∑
x∈Xk

xi) mod 2, (5.5)

where Xk denotes the set of vectors in the kth partition of the Hamming space of

encoded data vectors.

This way of computing the centroids of real-valued vectors, transformed (encoded)

in the Hamming space is not optimal because of the apparent inconsistencies in the

properties of the transformation function (Equation 5.1) and the modulo 2 addition.

To illustrate with an example, consider adding the ith components of two binary vec-

tors both of which are 1, i.e. in other words, the corresponding true data vectors in
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the Euclidean space yield positive projection values over the ith basis. The projec-

tion of the sum vector (in the true data space Rp) over the ith basis must then also be

positive, and indeed the ith component of the binary vector (in the JL transformed

Hamming space) for the sum must also be encoded as ‘1’ (as per Equation 3.3). More

formally, due to the distributional property of the vector addition operation in Eu-

clidean space,

(w + v).bi = w.bi + v.bi

> 0 if w.bi > 0 ∧ v.bi > 0.
(5.6)

However, since the value of (1 + 1) mod 2 is 0, the vector sum of the encoded rep-

resentations of w and v in the Hamming space produces an output of 0 in the ith

component.

5.2.2 Estimation of Optimal Centroids

Given that modulo 2 addition in the Hamming space is problematic, there needs to

be an alternate aggregation function to compute the centroid vector in the Hamming

space. Moreover, due to the privacy preservation settings, it is not feasible to compute

the centroid in the Euclidean space and then transform it to a point in the Hamming

space. Therefore, under privacy preservation settings, the only way to compute the

Hamming space centroid vectors would be to estimate these values probabilstically

with incomplete information rather than computing them deterministically.

Considering the transformation function ϕ, this aggregate function equates to a

sum of the signs of the projected values.

hki = 1 if
∑

w∈Wk

sgn(w.bi) ≥ 0

= 0 otherwise

(5.7)

where sgn(w.bi) returns 1 if w.bi ≥ 0 and 0 otherwise.

Although the vectors w’s in Equation 5.7 are not known due to privacy constraints,

the projected values themselves or the signs of these values may be considered to be

made available to the server for the purpose of computation without posing a ma-

jor security threat. Privacy in this case is preserved from the well-known property
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of locality preserving property of JL lemma that devising an inverse function of ϕ is

computationally intractable [6, 161].

The intuition behind estimating the value at ith signature bit of sum vector is that

the sum of a large number of positive projected values with a relatively smaller num-

ber of negative values is likely to yield a positive result due to the outweighing effect.

In addition to the frequency of the positive projections, their average magnitude

values and the skewness of these values can also affect the likelihood of the sum being

positive. To model these factors formally, we make use of the Gaussian mixture model

(GMM) to estimate the likelihood of the ith bit of the sum vector to be 1.

5.3 Centroid Estimation by Gaussian

5.3.1 Global Distribution of the Projections

Let the set of projected values along the ith basis vector be

Bi =
⋃

w∈W

w.bi. (5.8)

We split the set Bi in two parts according to whether the projection values are pos-

itive or negative and assume that the values in each set are generated by a normal

distribution, i.e.,

Bi = Pi ∪Ni, such that

Pi = {w.bi|w.bi ≥ 0}, w.bi ∼ N (µ+
i , σ

+
i )

Ni = {w.bi|w.bi < 0}, w.bi ∼ N (µ−
i , σ

−
i ),

(5.9)

where µ+
i (µ−

i ) and σ+
i (σ−

i ) denote the mean and variance of the positive (negative)

projections along the ith basis vector respectively and N (µ, σ) denotes the Normal

distribution with mean µ and variance σ. The parameters of the normal distributions

corresponding to each basis vector are computed from the observed projection val-

ues, e.g. µ+
i and σ+

i are computed from the Pi values.
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5.3.2 Distribution of the Sum

During each iteration, a privacy preserving K-means algorithm needs to assign the

ith component (bit) of the Hamming vector corresponding to the centroid (vector

sum) of the kth partition, hki , to the value of 1 or 0. This binary classification problem

thus involves estimating the value of the sum of a set of projection variables (some

positive and some negative). We assume that the positive and negative projections

(encoded as 1’s and 0’s respectively) are drawn from two separate distributions. We

are interested in the underlying distribution of the sum of these variables. In order to

estimate the sum, we present the well known theorem (Theorem 1) that the sum of

two normally distributed random variables is also normal.

Theorem 1. If Y1 ∼ N (µ1, σ
2
1) and Y2 ∼ N (µ2, σ

2
2) then the sum of these random variables

Y = Y1 + Y2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

It is easy to prove Theorem 1 using the characteristic function of Normal distribu-

tions; for a proof the reader is referred to [44].

In the context of our problem, we assume that the sum of the projected values

along ith basis vector corresponding to an arbitrary partition is drawn from the sums

of the Pi and the Ni values. This value, say x, according to Theorem 1, then follows

the distribution

x ∼ N
(
µ+
i + µ−

i , (σ
+
i )

2 + (σ−
i )

2
)
. (5.10)

A value sampled from the distribution of Equation 5.10 is our best guess for the sum

of an arbitrary number of reals representing the ith component of the centroid in Hm

belonging to a partition.

5.3.3 Centroid Estimation with Priors from Partitions and

Single-component Gaussian

Next, we need to classify the sampled value x into one of the classes (i.e. 1 or 0) for

a current partition of the encoded vectors. We leverage the following two sources

of information from the observed encoded vectors in each partition to estimate the
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likelihood of the ith bit of the sum vector in each partition to be 1 (the likelihood of

the bit to be set to 0 represents the complementary event).

1. Hypothesis 1: If the number of positive projections in a partition contributing to

the sum (i.e. the number of vectors with the ith bit observed to be 1) is consider-

ably higher than the number of negative projections, then there is a considerable

likelihood of the corresponding bit of the sum vector to be 1.

2. Hypothesis 2: If the average of positive projections (over entire dataset) along the

ith basis vector is considerably higher than the average over the negative ones, then

there is a strong likelihood of the ith bit of the sum of vectors in any partition to be

1.

Using the terminology that Bk
i refers to the set of observed signs of projected val-

ues (encoded bit representations), i.e.,

Bk
i =

⋃
w∈Wk

sgn(w.bi) = P k
i ∪Nk

i

P k
i ={sgn(w.bi)| sgn(w.bi) ≥ 0},w ∈ Wk

Nk
i ={sgn(w.bi)| sgn(w.bi) < 0},w ∈ Wk,

(5.11)

we estimate the prior probability of the positive class (probability of the ith bit being

set to 1) in the kth partition as

Pr(hki = 1|Bk
i ) =

|P k
i |
|Bk

i |
. (5.12)

A problem with this maximum likelihood priors is that it does not take into account

the relative magnitudes of the average values of the positive and negative projections.

To this end, we need to address two events in the sampling process - the first of se-

lecting a component (either positive or negative) by observing the respective counts

in the partition, and the second, of sampling a value from that component. Stating

this formally, the probability of the ith centroid bit being set to 1 (the positive class) is

given by

Pr(hki = 1|Bk
i ) =

|P k
i |
|Bk

i |
N
(
x|µ+

i , σ
+
i

)
, (5.13)

where the variable x represents a sample drawn from Equation 5.10.
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5.3.4 Centroid Estimation with Multi-component Gaussian

In Section 5.3.3 we described centroid estimation using Gaussian mixture model (GMM)

with two components corresponding to the positive and negative projection values.

In this section, we generalize the idea further by defining multiple components for

positive and negative projections.

Motivation

GMM with multiple components may model substantial differences between the pro-

jection values of the same sign. With a binary GMM, the only parameter that can

handle these differences is the variance parameter σ+
i (or σ−

i for the negative pro-

jections). However, a multiple number of components, where each component gen-

erates projected values of the same sign (either positive or negative) within specific

ranges, gives an estimate about the magnitude of the values, as opposed to estimat-

ing only their differences from the average (for the binary case). This estimate about

the magnitude may potentially result in improving the estimate for the sign of hki ,

where the absolute value of a sum of a small number of projections could be higher

than those of a much larger number of projections of the opposite sign.

Formal Description

To enable a more fine-grained approach to count the priors and the posteriors, we

assume that the set of projected values follow a multi-component Gaussian mixture

model, where values within a specific range are assumed to be generated from one

particular component of the Gaussian mixture. In our approach, we divide the posi-

tive and the negative projected values into a number of (M a parameter) equal length

intervals. More specifically, we store the global statistics of the projected values along

each dimension i as

Bi = (∪Mj=1P
j
i ) ∪ (∪Mj=1N

j
i ), such that

Pj
i = {w.bi|jδ+i ≤ w.bi < (j + 1)δ+i }, w.bi ∼ N (µj+i , σj+i )

N j
i = {w.bi|jδ−i ≤ w.bi < (j + 1)δ−i }, w.bi ∼ N (µj−i , σj−i ),

(5.14)
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where each Pj
i (N j

i ) represents a Gaussian generating positive (negative) projection

values of the points within the jth interval (j = 1, . . . ,M), µj+i (µj−i ) and σj+i (σj−i ),

respectively, refer to the mean and the variance of the positive (negative) projected

values within the jth interval, and δ+i (δ−i ) represents the length of each positive (neg-

ative) intervals in ith dimension, computed as

δ+i =
(w.bi)max − (w.bi)min

M
, ∀w.bi ≥ 0. (5.15)

Similar to the binary case of Equation 5.10, to obtain the distribution of the sum, we

sample a likely value of the projection of the sum vector from the distribution

x ∼ N
( M∑
j=1

(
µj+i + µj−i

)
,
M∑
j=1

(
(σj+i )2 + (σj−i )2

))
. (5.16)

During clustering, let z denote the latent variable indicating the component from

which the sum of the projection along the ith dimension (denoted by x in Equation

5.16) is most likely to be sampled from. Using uniform priors, the maximum likeli-

hood value of this latent variable is then estimated as ζ+ when x ≥ 0 and ζ− otherwise.

Mathematically,

ζ+ =
M

arg max
j=1

N
(
x|µj

+

i , σ
j+

i

)
, if x ≥ 0,

ζ− =
M

arg max
j=1

N
(
x|µj

−

i , σ
j−

i

)
, if x < 0,

(5.17)

That is, we useN (µj
+

i , σ
j+

i )’s as the posteriors when x ≥ 0 andN (µj
−

i , σ
j−

i )’s otherwise.

Next, after estimating the values of z = ζ+ (or ζ−), we compute the likelihood of hki by

using the local priors (similar to Equation 5.13) with the help of Equation 5.18.

Pr(hki = 1|Bk
i , z) =

|P k
i |
|Bk|
N
(
x|µζ

+

i , σ
ζ+

i

)
, if x ≥ 0

Pr(hki = 0|Bk
i , z) =

|Nk
i |

|Bk|
N
(
x|µζ

−

i , σζ
−

i

)
, if x < 0

(5.18)

where, P k
i and Bk

i are defined as per Equation 5.11.

The multi-component case of Equation 5.18 is a generalization of the binary com-

ponent case (Equation 5.13), the generalization ensuring that the posteriors are esti-

mated over a small (and hence more reliable) range of values. It is to be noted that

multiple components only apply to the posteriors and not to the local priors of each

cluster which are still binary as per the definition of Equation 5.11.
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Algorithm 1: Client: Hamming space Transformation
Input: X = {x}: A collection of vectors, x ∈ Rp

Input: m: Hamming code length
Input: M : # GMM components, 0 for PPK-means with priors-only
Output: µj+

i (µj−
i ): Means of positive (negative) projections w.r.t. the ith basis vector (i = 1, . . . ,m)

along the jth positive (negative) GMM component (j = 1, . . . ,M )
Output: σj+

i (σj−
i ): Variances of positive (negative) projections w.r.t. the ith basis vector (i = 1, . . . ,m)

along the jth positive (negative) component (j = 1, . . . ,M )
Output: X ′ = {h : h ∈ Hm}: A transformed set of Hamming vectors
begin

Select basis vectors B = {b1, . . . ,bm} as in Super-Bit LSH algorithm [68]
// Send global statistics to clustering SaaS only if posteriors are

to be used
if M > 0 then

δ+i ←
(

max
x∈X:bT

i ·x≥0
bT
i · x − min

x∈X:bT
i ·x≥0

bT
i · x

)
/M

δ−i ←
(

max
x∈X:bT

i ·x<0
bT
i · x − min

x∈X:bT
i ·x<0

bT
i · x

)
/M

(µj+
i , σj+

i )← (E,Var)
x∈X:jδ+i ≤bT

i ·x<(j+1)δ+i

bT
i · x

(µj−
i , σj−

i )← (E,Var)
x∈X:jδ−i ≤bT

i ·x<(j+1)δ−i

bT
i · x

for each x ∈ X do
for i = 1, . . . ,m do

hi ← sgn(bT
i · x)

X ′ ← X ′ ∪ h

Detailed working steps of client-side data encoding (including computing the global

projection statistics) and server side centroid estimation (mainly involving how to

use projection values for better estimation) are presented in Algorithms 1 and 2 .

5.4 Experimental Setup

We conduct experiments to show the effectiveness of our proposed algorithm, namely

PPK-means. The objective of our experiments is to investigate:

a) Whether PPK-means with encoded data yields results that are comparable (not

remarkably different clustering results) with the standard K-means, which has

access to the true data;

b) The best settings of PPK-means, in terms of mainly how many components to

use in the GMM and the effects of priors and posteriors; and

c) The run-time efficiency of PPK-means with respect to standard K-means.
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Algorithm 2: PPK-means on Clustering SaaS
Input: X: A transformed set of binary vectors (Hm) received from a client as the output of Algorithm 1
Input: K: #desired clusters
Input: M : #GMM components, 0 for PPK-means with priors-only
Input: µj+

i (µj−
i ) and σj+

i (σj−
i ): Means and variances of positive (negative) projections w.r.t jth GMM

component (j = 1, . . . ,M ) along ith basis (i = 1, . . . ,m)
Input: T : maximum number of iterations
Output: A K-partition of X such that

⋃K
k=1X

k = X
begin

Randomly initialize K cluster centres h1, . . . ,hK ∈ X
for t = 1, . . . , T do

// Assign every x to its nearest centroid

foreach x ∈ X −
⋃K

k=1{hk} do
k′ ← arg mink(dH(x,hk)) Xk′ ← Xk′ ∪ x

for k = 1, . . . ,K do
// Recompute cluster center
for i = 1, . . . ,m do

PosCount← 0

foreach x ∈ Xk do
if xi = 1 then

PosCount← PosCount+ 1

NegCount← |Xk| − PosCount
if M = 0 then

if rand(0, 1) ≤ PosCount
|Xk| then hk

i = 1

else hk
i = 0

else
α← N

(∑M
j=1(µ

j+
i + µj−

i ),
∑M

j=1((σ
j+
i )2 + (σj−

i )2)
)

if α > 0 then
ζ+ ← arg maxMj=1N (x|µj+

i , σj+

i )

S+ ← PosCount
|Xk| N (x|µζ+

i , σζ+

i )

if rand(0, 1) ≤ S+ then hk
i = 1

else hk
i = 0

else
ζ− ← arg maxMj=1N (x|µj−

i , σj−

i )

S− ← NegCount
|Xk| N (x|µζ−

i , σζ−

i )

if rand(0, 1) ≤ S− then hk
i = 0

else hk
i = 1

5.4.1 Datasets

For visual observation we conduct our privacy preserving clustering experiments on

the three synthetic 2D points datasets, namely ‘Spiral’, ‘ΛV’ and ‘Flame’. Along with

these three datasets we conduct the experiments of our proposed methods and other

baseline methods on two large scale image and text datasets, namely ‘MNIST-8M’

(gray-scale image) and ‘ODPtweets’ (text) datasets. The detail description of these

synthetic 2D points datasets along with the image and text datasets are presented in
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the Section 4.1.

5.4.2 Baselines

To test the effectiveness of estimating centroids with incomplete information (pri-

vacy preservation settings), we employ a number of baseline K-means clustering meth-

ods. Additionally, we also compare our results with the standard K-means, which

works with the true data without the privacy preservation constraint. It is to be noted

that since the standard K-means is not privacy preserving, instead of treating it as a

baseline, it is rather treated as an apex-line to get an idea about the best results that

could be obtained under ideal settings on a particular dataset.

LSH-based partitioning

Locality sensitive hashing (LSH) is a general class of data compression methods which

seek to assign identical hash codes (called signatures) to vectors that are similar to

each other. A commonly used LSH algorithm, called the MinHash, involves inter-

section of random permutations of the components in data [120]. The algorithm

proposed in [6] extended MinHash based LSH to real-valued vectors in high dimen-

sions by taking projections with respect to randomly chosen basis vectors. As our

first baseline, we use the method proposed in [6] to partition the data into K classes.

More specifically, for a given value of K, we compute the LSH signature of each data

point ranging from 1 toK and then group together the data points by their binary en-

coded signature values. This ensures that similar points are clustered together (since

they are expected to have similar signatures). In this algorithm, the K-means compu-

tation only needs to access the binary encoded signature values, as a result of which

it is privacy preserving. We name this baseline approach ‘LSH-partition’.

K-means over Hamming Space

To show the usefulness of centroid estimation, we employ the standard K-means ap-

proach that takes as inputs the encoded data, x = ϕ(w), where ϕ : Rp 7→ Hm is the

Super-Bit LSH encoding function [68] (see Section 3.2). Different to our approach,
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we perform standard K-means clustering over the continuous space Rm (instead of

considering only the discrete subspace Hm), as a result of which the vector sum op-

eration becomes a closed operation in Rm. Since this baseline does not use a modi-

fied vector sum operation for computing the centroids (as PPK-means does with the

GMM-based estimation), any errors in the encoding function are likely to propagate

and potentially cause considerable differences in results with respect to applying K-

means on the original data. Note that we call this baseline ‘HK-means’ (K-means

algorithm on a Hamming space).

K-means convergent on Hamming Space

Similar to HK-means, in this baseline we execute K-means on the encoded set of bi-

nary vectors (signatures) in m dimensions. However, instead of treating the embed-

ded space as the extended space of m dimensional real vectors, Rm, we restrict the

embedded space to the discrete space Hm. Consequently, the standard notion of the

vector sum operation involving component-wise addition is no longer a closed oper-

ation in Hm, which requires redefining this operation to be able to execute K-means.

Specifically, using the property that Rm is point-wise convergent, we compute the kth

cluster centroid as

hki = sgn
( 1

|Xk|
∑
x∈Xk

xi −
1

2

)
, x ∈ Hm. (5.19)

It can be easily verified that the centroid computation of Equation 5.19 is a closed

operation, i.e. hk ∈ Hm. Informally speaking, we first compute centroid vectors hk’s

over the extended space Rm, and then to maintain the closure property, we map a

centroidhk to its nearest point in the Hamming space (a similar approach was used in

[107] to modify the skip-gram [49] objective function for obtaining binary embedding

of graph nodes).

Since this baseline computes centroids using the Euclidean space and then ‘trun-

cates’ these centroids to the nearest point in the Hamming space, we call this baseline

‘E2HK-means’ (Euclidean to Hamming convergent K-means).
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5.4.3 Parameters and Evaluation Metrics

A parameter to PPK-means is the dimensionality of the Hamming space in which the

p dimensional data needs to be transformed. Another parameter is the number of

components, M , for the GMMs used to estimate the projected values of each sign

(positive and negative) in PPK-means. A value of M = 1 corresponds to using a Nor-

mal distribution each for the positive and negative projections. We also investigate

the use of posteriors in combination with the priors (Equation 5.13) vs. the use of

priors only (Equation 5.12).

To measure the effectiveness of our proposed method, we use standard clustering

metrics. Each dataset, that we experiment with, comprises the ground-truth informa-

tion of class (cluster) labels. As an evaluation metric, we report Normalized Mutual

Information (NMI) (see Section 4.4.1 for description of NMI), which measures how

homogeneous the clusters are. A different type of clustering effectiveness measure is

aggregation of classification results over pairs of data points, yielding higher values

if a pair of data points from the same class (in the ground-truth) are predicted to be-

long to the same cluster. We thus also report F-score and adjusted rand index (ARI)

(see Section 4.4.1 for description of F-score and ARI) aggregated over these pairwise

grouping decisions. Additionally, we also measure the efficiency of the clustering

methods in terms of computational latency. For a fair comparison of runtimes, all

experiments were conducted on a 64-Bit Linux workstation with Intel Xeon ‘E5-1620

3.60GHz’ CPU and 48 GB RAM.

5.5 Results

5.5.1 Visual Comparison with K-means

To visually investigate the effectiveness of the centroid estimation process of PPK-

means, we first report results of PPK-means on the three synthetic 2D points datasets

described in Section 4.1.1, and then compare these with the ideal scenario of stan-

dard K-means executed on the original (non-encoded) data. It is to be mentioned

that we do not report results with the other baselines (outlined in Section 5.4.2) be-
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(a) Spiral: m = 4 (b) Spiral: m = 8 (c) Spiral: m = 16 (d) Spiral: m = 32 (e) Spiral:K-means

(f) ΛV: m = 4 (g) ΛV: m = 8 (h) ΛV: m = 16 (i) ΛV: m = 32 (j) ΛV:K-means

(k) Flame: m = 4 (l) Flame: m = 8 (m) Flame: m = 16 (n) Flame: m = 32 (o) Flame:K-means

Figure 5.1: Comparison of clusters obtained after 5 iterations of the PPK-means algorithm
corresponding to different number of Hamming space encoding dimensions (m): Plots shown in
1st, 2nd and 3rd rows correspond to Spiral, ΛV and Flame datasets respectively. The results of
standard K-means algorithm on non-encoded data are shown in the rightmost plot (Figure 5.1e,
5.1j and 5.1o) of the respective rows. Plots shown from left to right barring the rightmost
ones correspond to the different values of Hamming space encoding dimension, m = 2n with
n = 2, 3, 4, 5 respectively. The value of parameter K for both PPK-means and K-means were
set to the number of true clusters (as per the ground-truth). The PPK-means version used for
obtaining the plots only involved the priors only (Section 5.3.3).

cause our experiments with the MNIST-8M and ODPtweet dataset already revealed

that these baselines resulted in worse clustering effectiveness (see Table 5.1). Fur-

ther, we also report clustering results for PPK-means with priors-only configuration,

because after visual inspection, we noticed that these results were indistinguishable

from the ones that used the posteriors.

Figure 5.1 shows the partitions obtained during intermediate steps of executing

PPK-means. An interesting observation is that for PPK-means to work well, the di-

mension of the Hamming space needs to be sufficiently larger than p (the dimension

of the original data points). As an extreme case, it can be seen that most points are

clustered into a single group with the configuration m = 4 on all the datasets. The

results improve with m = 8 and higher. For the ‘Spiral’ dataset, m = 8 is not able

to find out the 3 natural clusters (it finds only 2). It can also be seen that the results

with m = 16 and m = 32 are comparable with those of K-means. This is an important
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Table 5.1: Comparison of PPK-means algorithm against baseline clustering approaches on
MNIST-8M (K = 10) and ODPtweets (K = 403) datasets. The value of K (# desired clusters)
was set equal to # reference clusters. # iterations for each method was set to 10.
Method Centroid ϕ : Rp 7→ Hm Privacy MNIST-8M ODPtweets

Name Estimation (m =) preserve F-score ARI NMI Time (s) F-score ARI NMI Time (s)

LSH-partition [6] None 1024 True 0.1871 0.0460 0.0817 6664 0.0236 0.0037 0.0936 512
HK-means

∑
Rm (centroids ∈ Rm) 1024 True 0.2967 0.2143 0.3012 18782 0.1311 0.1261 0.3790 7492

E2HK-means lim(
∑

Rm) 7→ Hm 1024 True 0.3015 0.2196 0.3307 10669 0.1205 0.1161 0.3833 1580
PPK-means GMM priors only 1024 True 0.2773 0.1918 0.2850 6013 0.0797 0.0659 0.3740 625
PPK-means (M = 1) Single-component GMM 1024 True 0.2812 0.1981 0.2851 13196 0.1200 0.1125 0.3758 1820
PPK-means (M = 10) Multi-component GMM 1024 True 0.3314 0.2542 0.3582 15807 0.1423 0.1351 0.3815 1860

K-means
∑

Rp N/A False 0.3573 0.2852 0.3951 190138 0.1078 0.1015 0.3610 2057
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Figure 5.2: Plots of the values (with respect to two datasets MNIST-8M and ODPtweets) of three
metrics F-Score, ARI and NMI of PPK-means with priors-only (Blue), PPK-means with multi-
component GMM (M = 10) (Red) against the Hamming space dimension m (64 ≤ m ≤ 1024)
in multiples of CPU word size 16.

observation which shows that PPK-means, even without the complete knowledge of

data, can yield comparable results with those of K-means. This shows that the PPK-

means can potentially work well as a privacy preserving K-means algorithm.

Table 5.1 shows the results of comparing the performance of two different set-

tings of PPK-means (with and without posteriors) with the three baseline algorithms

(as presented in Section 5.4.2) on the MNIST-8M dataset. Firstly, we observe that

the LSH-based partition yields poor results in terms of F-score, ARI, and NMI, which

shows that it tends to group dissimilar feature instances into the same group, i.e., it

classifies most of the digits into a small number of clusters thus resulting in largely
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non-homogeneous clusters. Multi-component based PPK-means outperforms the

other baselines (including the single component K-means), indicating the usefulness

of the posteriors and a multiple number of Gaussians to better estimate the cen-

troids of each cluster. In fact, the performance of the proposed multi component

PPK-means is seen to be comparable with the standard K-means for the MNIST-8M

dataset.

It is worth noting that the execution times of all variants of the proposed method

are considerably smaller than that of the standard K-means algorithm. An important

implication is that the proposed method (specifically, PPK-means with multi com-

ponent) achieves comparable performance as standard K-means with remarkably

smaller execution time.

Similar trends are also observed for the text dataset. In particular, from Table 5.1,

it can be seen that the clustering results of the proposed GMM based methods that

make use of the posterior information are impressively better than the baselines (and

also standard K-means). While the performance of the proposed methods are com-

parable to that of HK-means and E2HK-means for some metrics, the optimal perfor-

mance is observed for the multi-component GMM based PPK-means on both F-score

and ARI.

The fact that the effectiveness of PPK-means without using the posteriors and the

multiple components is lower (in comparison to the case where we use this informa-

tion) indicates that

1. Only using the priors in PPK-means may not be able to capture the situation when

a small number of positive projected values can dominate the overall sum involv-

ing a larger number of negative values or vice-versa.

2. Using a single Normal distribution to model the projected values of a particular

sign may not be expressive enough to capture the variations in the projected val-

ues themselves.

The above limitations of the priors-only based and the single component GMM based

PPK-means are addressed by a) using the posterior information (in the form of global
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statistics of the averages and the variances of the projected values), and b) by em-

ploying a multiple number of intervals to generalize the M = 1 case. With M = 10

(the best we achieved by varying M within a range of 2 to 10), the PPK-means algo-

rithm is able to better estimate the centroid vectors by using a more fine-grained

approach leveraging the additional information about the different ranges of the pro-

jected values. Consequently, the estimated centroid vectors are more similar to their

true counterparts (i.e. the ones obtained with K-means on non-encoded data and

then transformed to the Hamming space).

With respect to run-times, it can be observed that making use of posteriors and

multiple components can lead to increase in run-times as opposed to the single com-

ponent priors-only case. This increase in time can be attributed to the computation

and transportation (from a client to the cluster SaaS) of more information, namely

the mean and the variances of the projected values. Increasing the number of GMM

components (M) also leads to increasing the run-time since the computation then

involves estimating the likelihood of the sign of each component of a centroid vector

from a multiple number (M) of components.

Another interesting observation about the run-times is that all the baseline ap-

proaches and PPK-means execute much faster than the standard K-means without

the privacy constraint. This is because the encoded data is stored as integers of 8

bytes (a word size) in the main memory which is much smaller than storing real-

valued vectors (e.g. storing 1024 dimensional Hamming vectors requires 1024/64=16

words of memory, whereas storing a 784 dimensional real-valued vector consumes

784 words of memory). Moreover, encoding vectors as integers also leads to much

faster inner product based similarity computation between them in comparison to

the computationally expensive floating point operations of real-valued vectors, e.g.,

to compute the similarity between two 1024 dimensional Hamming vectors, one sim-

ply needs to execute the POPCOUNT machine instruction 16 times (16=1024/64).
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(a) MNIST-8M (b) ODPtweets
Figure 5.3: Plots of computation time of PPK-means with priors-only (Blue) and PPK-means
with multi-component GMM (M = 10) (Red) versus the Hamming space dimension m (64 ≤
m ≤ 1024) with respect to two different datasets MNIST-8M and ODPtweets.

5.5.2 Parameter Sensitivity Analysis

We now investigate the effects of varying the encoding dimension (m) and the num-

ber of components for GMM estimation (M) in PPK-means. Figure 5.2 shows the rel-

ative differences between PPK-means (priors only) and PPK-means with GMM poste-

riors (M = 10) for different values ofmwithin 64 to 1024, each value ofm being a mul-

tiple of 16 (CPU word size). From the figure, it can be seen that the downstream clus-

tering effectiveness is proportional to the value of m implying that low dimensional

Hamming representations tend to lose information about the original data vectors. It

is interesting to see that even with noisy representation of the encoded vectors, GMM

posterior-based PPK-means shows substantial differences in results as compared to

its prior-only counterpart (see the relatively large differences of F-score, ARI and NMI

values). This suggests that the posterior based PPK-means is more robust under par-

simonious settings of memory and CPU usage. Figure 5.3 shows that the execution

time increases drastically with larger values of m (which was one of the reasons why

the value of m was restricted up to 1024 in our experiments).

As the MNIST-8M dataset contains images of the 10 digits (0 to 9), the number

of desired clusters (K) is 10. However in many practical scenarios, the ideal number

of clusters is not known apriori. To test the robustness of proposed methods with-

out the information about the true number of clusters, we evaluate the clustering

effectiveness of the competing methods by varying the value of K. From Figure 5.4,

we observe that PPK-means (multi-component GMM) outperforms both standard
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Figure 5.4: Comparative performance of PPK-means with priors-only (Blue), PPK-means with
multi-component GMM (M = 10) (Red) and K-means (Green) versus the number of desired
clusters (K) with respect to three metrics F-Score, ARI and NMI on samples of ODPtweets
dataset.

(a) MNIST-8M (b) ODPtweets
Figure 5.5: Comparative performance of PPK-means with multi-component GMM for different
values of M with respect to three metrics F-Score, ARI and NMI on the MNIST-8M and
ODPtweets datasets.

K-means and the version of PPK-means that uses priors only. In Figure 5.5, we inves-

tigate the effect of varying the number of GMM components in PPK-means. It can be

seen that increasing M tends to increase clustering effectiveness.

Figure 5.6 plots an intrinsic clustering evaluation metric, namely the residual sum

of squares (RSS), which is measured by first aggregating the distances of the con-

stituent points of a cluster from its centroid and then averaging these values over all

clusters in the dataset. The smaller the RSS value, the better is the clustering output.

Figure 5.6 shows that the multi-component (M = 10) GMM setting of PPK-means

leads to sharper drops in normalized RSS values across iterations than its priors-only

counterpart. The priors only mode of PPK-means can sometimes also lead to increas-

ing the RSS value across iterations (see the increase from iteration 6 to 7), which can

happen due to the uncertainties involved in centroid estimation. However, the fact

that the RSS values steadily decrease for the posterior mode of PPK-means, shows
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(a) MNIST-8M (b) ODPtweets
Figure 5.6: Variations in RSS values for PPK-means with priors-only and PPK-means (M = 10).

that the centroid estimations in this case are more robust.

5.6 Conclusions

We investigated the problem of K-means clustering under a privacy preservation con-

straint. This constraint requires the input data to be sent in an encoded format to

a server offering clustering as a ‘software as a service’ (SaaS), such that the data is

protected from any information leaking threats (e.g. deanonymization and author-

ship attribution). We propose a modified K-means algorithm, called PPK-means, that

leverages additional pieces of information, e.g. global statistics on the projected val-

ues of the original data vectors along random basis vectors used for the purpose of en-

coding. Experimentation on image and textual data demonstrates that the proposed

approach, by leveraging information in addition to the encoded data itself, is better

able to estimate the centroids during K-means iterations eventually leading to better

clustering effectiveness in comparison to a range of baseline approaches for privacy

preserving clustering. Further, the proposed PPK-means method (multi-component

variant) is less computationally expensive than the standard K-means method. It was

observed that on text data, the proposed method outperforms the standard K-means.
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Chapter 6

Privacy Aware Semi-Supervised

Learning *

In the previous chapter, we have explored unsupervised learning under the constraints

of privacy preservation. In this chapter we will explore the privacy preserving semi-

supervised learning to address our second research question RQ-2 introduced in the

Chapter 1:

“How the effectiveness of privacy preserving clustering on discrete metric space can

be improved with weak supervision on the encoding transformation?”

Chapter 6 is organized as follows. In Section 6.1, we introduce our contribution

in the area of weakly supervised learning. Next, in Section 6.2, we present a novel

weakly supervised deep metric learning framework towards privacy preserving clus-

tering. Section 6.3 describes the experimental setup of the proposed approach. The

results of our empirical evaluation studies have been presented in Section 6.4. Finally,

Section 6.5 concludes this chapter.

6.1 Introduction

In the present era of ‘big-data’ driven learning, Machine Learning as a Service (MLaaS)

[169, 144] is a potential solution to meet the ever increasing computational require-

ments for training models requiring massive quantities of data. To avail MLaaS, a

*Some material from [20] has been reused in this chapter.
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client first needs to upload the data, on which the computation is to be performed, to

a server. While this workflow is suitable for a perfectly trusted server, in practice, how-

ever, no server is entirely trustable, because of the potential presence of malwares.

This in turn may cause a breach in data privacy as the information in the original

data may be used in undesirable ways [3, 144].

Generally speaking, existing research have demonstrated that an application of

distance preserving, or locality sensitive encoding of the data often leads to improve-

ments in unsupervised privacy-preserved downstream tasks, such as clustering [19,

54, 148], entity resolution [137, 72], etc. In particular, using a binary transformation

as a particular choice for the encoding function has not only been shown to protect

the integrity of the data [68], but has also been shown to provide computational and

storage benefits [19]. Moreover, it has been shown that supplementing the encoded

data with information on the global characteristics of the data distribution [19] pro-

duces effective clusters on the encoded space without compromising the privacy.

However, clustering on an encoded space of data instances obtained by standard

encoding mechanism e.g. locality sensitive hashing can potentially be noisy [19]. We

argue that clustering a small seed set of data on the client side and sharing the cluster

membership information (not the original data instances themselves) with the server

may potentially guide the clustering process on the server side. More concretely, in

our proposed privacy preserving clustering workflow, we learn a distance metric func-

tion by leveraging the cluster membership information (hence, weak supervision) of

the seed set of data to achieve effective encoding.

In contrast to the existing approaches of privacy preserving clustering, the works

solely on a discrete metric space of encoded vectors, we propose a deep metric learn-

ing technique that uses the encoded space Hm, Hamming space of dimension m, to

train a transformation function with an objective to automatically learn the cluster

affinity with respect to the original space Rd, Euclidean space of dimension d.

Research objective. The objective of our present research in this chapter is to inves-

tigate ways of developing encoding functions that (in addition to maintaining data

privacy) also ensures satisfactory clustering effectiveness on the encoded data.
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Figure 6.1: A schematic workflow of our proposed method. A detailed explanation of this figure
is presented in Section 6.2.

Our Contributions. In summary, the overall contributions of the present work in this

chapter are as follows.

• We show that a data-driven weakly supervised approach of learning the encoding

function performs well for the clustering task in comparison to unsupervised ap-

proaches of encoding the data.

• We also show that the quantity of data required for this weak supervision is small,

which makes it practically possible to execute clustering on a small subset of data at

the client side itself. Sending this metadata information of cluster labels on a small

seed set of data enables the server side to learn a parameterized distance function on

the encoded data space, eventually leading to more effective clusters.

• We empirically demonstrate that an effective reconstruction can be achieved, in

practice, if additional statistical information in the form of means and standard devi-

ations of the projected values along each basis vector of the encoding transformation

matrix is shared with the server. Sharing such global statistics about the data does

not compromise the privacy. We have made available the source code for our experi-

ments for reproducibility and further research purposes2.
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6.2 Proposed Approach

In this section, we describe the details of our proposed weakly supervised deep met-

ric learning based framework that allows provision for effective clustering under pri-

vacy preservation constraints. A schematic workflow of our proposed method is pre-

sented in the Figure 6.1, which is to be interpreted as follows.

The circle along the bottom-left part of Figure 6.1 shows the data instances (V =

{v : v ∈ Rd}) that are to be clustered. The data encoded by the client (Section 6.2.1) is

shown as the circle on the top-left part of the figure. The client now sends the entire

data (shown as the top-left circle) along with the projected value statistics (Section

6.2.2) computed for each basis vector (shown as the cylinder) to the MLaaS (shown

by the two red colored arrows).

Additionally, the client also sends the results of the clustering in the form of (in-

dex, cluster-id) pairs on a small seed set of points, Vτ , to the MLaaS, which is used to

train the triplet network (Section 6.2.4). To cluster the encoded data instances (⊂ Hm)

on the server side, they are first approximately reconstructed as real-valued vectors

Rm (Section 6.2.3) and then the trained triplet network is used to apply the trans-

formation ψ : Rm 7→ Rp (Section 6.2.4), after which K-means is employed on these

transformed vectors (Section 6.2.5).

6.2.1 Binary Transformation of Data Instances

In Chapter 5 we have shown that the binary transformation or Hamming space trans-

formation of the real-valued vectors into an anonymous space leads to privacy of

the data being preserved. Following that observation, in the present work also, we

employ the Super-Bit LSH algorithm as the Hamming space transformation function

ϕ : w ∈ Rp 7→ h ∈ Hm, which is given by,

hi = sgn(w · bi), i = 1, . . . ,m, (6.1)

where bi represents the ith basis vector among m randomly chosen basis vectors or-

thonormalizes by applying the Gram-Schmidt algorithm and sgn(·) is the sign func-
2https://github.com/chandanbiswas08/pp-clustering
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tion that returns 0 for a negative value of the parameter, and 1 otherwise. Let the

encoded set, obtained by applying the encoding function on each element of V , be

Vϕ, i.e.,

Vϕ = {h : h = ϕ(x), ∀x ∈ V }. (6.2)

Detail description about the Super-Bit LSH based binary transformation is given in

the Section 3.2.

6.2.2 Clustering a Seed-set at the Client Side

To effectively reproduce the clustering behaviour of Rd on Hm, as a first step, we se-

lect a small subset Vτ ⊂ V from the entire set of data instances. We eventually use

this subset to guide the clustering process on the server side (more details in Section

6.2.4). The size of the subset is parameterized by τ ∈ [0, 1] such that |Vτ |/|V | = τ .

As the process for selecting Vτ is random, it is not possible to ensure the class dis-

tribution membership is consistent with that of the overall data. However, since the

sampling is uniform it is also expected that the proportion of the class memberships

is close to their proportion in the overall data. This could lead to some data instances

of a specific class being more frequently occurring than others, which may affect the

effectiveness of the triplet network.

However, it is not correct in this experiment setup to bias the sampling process so

as to ensure a consistent class membership reflective of the one in the overall data.

This is because that would mean that we make use of the class labels, which is some-

thing that we cannot assume to exist for clustering. The class labels are only to be

used for the purpose of evaluation.

Now regarding the size of this subset for training the triplet network, keeping in

mind that the objective of employing an MLaaS in the first place was to minimize

the computational overhead of the client, the proportion τ is set to at most 0.1 (10%)

for practical purposes. Despite the additional computational overhead, clustering a

small subset of the data on the client side would allow provision for a more effective

clustering on the rest of the data, as our experiments will demonstrate.
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In our proposed workflow, the client employs K-means on Vτ to obtain a set of

cluster ids or labels, i.e., ∀x ∈ Vτ , we obtain its cluster label, say c(x) ∈ {1, . . . , K}.

We then share this set of cluster labels Cτ = {c(x) : x ∈ Vτ} with the MLaaS along

with the set of encoded data points Vϕ (Equation 6.2). Figure 6.1 shows that in our

implementation of the workflow, the client sends each cluster label along with an in-

dex (pointer) of the member of the set Vτ to which the label applies. It is important

to note that sharing only the cluster labels does not lead to a breach of privacy at the

server end because the shared data contains suggestive information about the rela-

tive proximity of the encoded data points only, and no information about the value of

the data instances themselves.

6.2.3 Data Reconstruction

Before discussing the triplet network for learning a parameterized distance metric on

the set of encoded data points, Vϕ (Equation 6.2), we first describe how the aggregated

statistics of the projected values along each of the m basis vectors can be used at the

server’s side to better train the triplet network (to be discussed in Section 6.2.4).

Similar to the PPK-means algorithm described in Chapter 5 (published in article

[19]), along with the set of binary encoded vectors, we also send the means and the

standard deviations of the projected values along each of the basis vectors. The set of

means and the standard deviation values are represented as m dimensional vectors,

denoted respectively as Φµ ∈ Rm and Φσ ∈ Rm, where

Φµ
i =

1

|V |
∑
v∈V

v · bi, Φσ
i =

√
1

|V |
∑
v∈V

(v · bi −Φµ
i)2. (6.3)

The PPK-means approach of Chapter 5 have used the global projection statistics,

i.e., the vectors Φµ and Φσ to better estimate the centroid vectors while executing

K-means on the binary encoded vectors. Instead of estimating the bits of a centroid

vector, we use this additional information for an approximate reconstruction of the

binary encoded data as real-valued vectors of the same dimension. In other words,

we aim to reconstruct the projected values themselves from the signs of these values.

The projected value along the ith basis of data instance can be estimated by sampling
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Figure 6.2: Architecture of the triplet network used in our privacy-preserved clustering workflow.

a value from the distributionN (Φµ
i ,Φ

σ
i ) (sent by the client to the MLaaS as per Equa-

tion 6.3), on the basis of the assumption that these values are Normally distributed.

Additionally, to accommodate the priors of cluster affinities, we first apply K-means

on the set of encoded vectors to obtain a cluster label, say c(h), for each h ∈ Vϕ. For

this step, the underlying space on which K-means operates is Rm(⊃ Hm ⊃ Vϕ) thus

allowing a more accurate representation of the centroid vectors with non-binary com-

ponents.

We then scale each sampled component xai of the vector xa with the prior likeli-

hood of this cluster label ∀i = 1, . . . ,m. Formally speaking,

xai =
|{g ∈ Vϕ : c(g) = c(h) ∧ gi = 1}|
|{g ∈ Vϕ : c(g) = c(h)}|

αi, αi ∼ N (Φµ
i ,Φ

σ
i ). (6.4)

In Equation 6.4, h ∈ Hm denotes the binary vector that is to be reconstructed to an

m-dimensional real-valued vector xa, αi represents the posterior and is a random

variable drawn from the global statistics of the projection values of the original data

instances shared with the MLaaS (Equation 6.3).

Note that the data instance, xa, reconstructed from h ∈ Hm is a vector embedded

in Rm. Subsequently, we train the metric learning network using the set of points

xa ∈ Rm serving as anchor points for each triplet.
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6.2.4 Metric Learning with Weak Supervision

We now discuss how we make use of the small seed set of cluster labels at the server

side to better estimate the topology of the space. Recall from Section 6.2.2 that the

clustering of the original data instances were conducted at the client side, and the

only information revealed to the MLaaS about a data instance was it’s cluster label.

The idea here is to use these cluster labels as representative examples to learn trans-

forming the encoded points in a way such that the distance between the points be-

longing to the same cluster are reduced and the those between different clusters are

increased.

The standard way of achieving this is via a neural network with shared parameters

[32], and employing a triplet loss to train the network. More concretely, each data

instance to train such a network is a triplets of the form (xa,x+,x−), where xa is a

pivot (anchor) point, x+ is a point that belongs to the same class (in our case, cluster),

and x− is a point from a different class [125], all these being reconstructed from the

encoded data points Vϕ (Equation 6.4).

After training a triplet network with triples of the form (xa,x+,x−), during the test-

ing phase only a part of the network corresponding to one input instance is used to

obtain a vector of dimension p, the dimension of the last layer of the network. Mathe-

matically speaking, given a test point (a vector of dimensionm in our case) the trained

network outputs a vector of dimension p, or in other words, we eventually learn a

function ψ : Rm 7→ Rp, ψ denoting the trained triplet network parameters. The loss

function

J(ψ) = min
∑

(xa,x+,x−)

[|ψ(xa)− ψ(x+)| − |ψ(xa)− ψ(x−)|+M ]+ (6.5)

is used to learn the parameterized distance function ψ aiming to minimize the dis-

tances between the points (in Vτ ) observed to be in the same cluster and maximiz-

ing the distance between those observed to be in different clusters. In Equation 6.5,

xa ∈ Rm is an approximate reconstruction of a data point from an encoded vector

(Equation 6.4), x+ and x− are the positive and negative examples for the anchor,M is

the hinge-loss margin, and [·]+ is an abbreviation for the hinge loss function, max(0, ·).
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As the input data points to the network, we use the approximately reconstructed

data points xa ∈ Rm (Equation 6.4) instead of the encoded data points, h ∈ Hm, them-

selves. Moreover, in contrast to the standard approach of using true class labels to

train triplet networks, (i.e. employing strong supervision) as in [125, 62, 60], we ap-

ply labels obtained in an unsupervised manner (in our case, by the application of

clustering).

Figure 6.2 shows the triplet network that we employed. The cluster label informa-

tion of the encoded points were used to form the triplets (each column of the left

part of the figure), containing as examples a point from the same cluster and another

from a different one (cluster label shown with a specific shape and a color, e.g. a

green circle etc.). The architecture of the shared part of the network consists of two

layers of 1D convolution operators (the kernel and the filter sizes employed in our

experiments are shown in Figure 6.2).

The configuration of the network (number of layers, kernel sizes etc.) were ad-

justed with a grid search. We report the best configuration in Figure 6.2. The decision

to apply one dimensional convolution (instead of higher dimensional convolution)

as a standard feature extractor stems from the fact that the data instances themselves

are 1st order tensors (i.e., vectors), which in turn ensures that the same network can

work for both text and images (a standard approach to convert a 2D image to a 1D

vector is via a variational autoencoder (VAE) [76]).

6.2.5 Clustering at the Server Side

During the testing phase, the output, V̂ψ = {w ∈ Rp : w = ψ(x),x ∈ V̂ }, from the

penultimate layer of the network (discussed in Section 6.2.4) is used as the represen-

tation of an encoded data point. The advantage of this step is that the server side

computation proceeds in a continuous metric space, Rp, instead of a discrete metric

space Hm. It can be argued that this way of representing the data points in Rp better

preserves the topology (relative neighborhoods) of the original data spaceRd than the

binary encoded space Hm. As the final step of our method, we execute the K-means

clustering algorithm on the embedded vectors V̂ψ to yield the final clustering output.
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6.3 Experimental Setup

We conduct a number of privacy-aware clustering experiments on various publicly

available datasets to show the benefits of the proposed approach of employing a weak

supervision based metric learning approach.

6.3.1 Datasets

We have conducted clustering experiments on four standard datasets of three differ-

ent modalities, namely the MNIST [84], Fashion-MNIST [162], CIFAR-10 [79] and 20-

Newsgroup (20NG) [82] datasets, first two datasets are gray image datasets, third one

is color image dataset and the final one is a text dataset. For clustering evaluation,

we consider the class labels of the respective datasets as the ground-truth. While

the number of ground-truth clusters for all the three datasets MNIST, F-MNIST and

CIFAR-10 is 10 and for the 20NG dataset this number is 20 (reflecting each topic). The

detail description of the datasets are presented in the Section 4.1.

6.3.2 Model Training

Our proposed privacy-aware clustering workflow specifically the 1D CNN architec-

ture based distance learning model was implemented in Keras. The model was trained

with stochastic gradient descent. The value of the margin, M , of the triplet loss in

Equation 6.5 was set to 0.2 as prescribed in [125].

6.3.3 Baselines

To compare the effectiveness of our proposed method, which we call ψ-K-means, we

compare it with a number of different clustering approaches that work on binary en-

coded data. We also include the standard K-means executed on the real-valued Eu-

clidean space as a reference for comparisons. Privacy is not preserved in this case,

so instead of calling it as baseline we call it as Apex-line from which we can get idea

about the best result which can be achieved with a ideal settings. particularly, the

following privacy preserving clustering techniques are used as baselines:
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1. LSH-partition: Locality Sensitive Hashing (LSH) is a popular data compression

method where an identical hash code (called signature) is assigned to similar

data vectors. A common LSH algorithm is MinHash that is expected to yield

identical signatures for similar data instances using a permutation-based hash-

ing scheme, as introduced in [64]. In the context of our experiments, we out-

put a signature ranging from 1 to K for each vector, where K is the number of

clusters. We then use the hash signatures for grouping together vectors with

identical signature values. Since similar vectors are expected to produce same

signatures, it is expected that similar points would cluster together.

2. ϕ-K-means: This baseline applies standard K-means algorithm on the binary

encoded points, which are assumed to be embedded within the Euclidean space

itself (Hm ⊂ Rm). Thus, the centroid vectors computed during the K-means iter-

ations are vectors with real-valued components, instead of being binary. Note

that this baseline has no way of adapting to the errors in the topology across the

local neighborhood of points introduced during the encoding process.

3. E2H-K-means: This baseline, in contrast to ϕ-K-means, solely operates in the

discrete Hamming space. The real-valued cluster centroids vectors computed

during the K-means iterations are then truncated to the nearest point in the

Hamming subspace (Hm ⊂ Rm) before assigning the cluster memberships to

the points. It is likely that the distances in the discrete space are likely to exhibit

a large number of ties, as a result of which the cluster membership assignments

during K-means are also likely to be erroneous.

4. PPK-means: For this baseline, we apply the method described in Chapter 5 as

well as the article [19]), which involves sharing of additional information in the

form of global statistics of the projected values along each basis vector of the

encoded space. This baseline method, although privacy-preserving, is unsuper-

vised and has no means of adjusting the relative distances between the encoded

points.
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6.3.4 Ablations of ψ-K-means

We also experiment with the following ablations of our proposed method.

1. H-ψ-K-means: This ablation of ψ-K-means does not involve the data recon-

struction step, i.e., it trains the triplet network on the m-dimensional binary

vectors. The purpose of this ablation is to demonstrate the potential benefit of

the data reconstruction step.

2. ψ-K-means-NP: This ablation of ψ-K-means, during the reconstruction step,

does not scale each vector by the cluster membership priors in Equation 6.4,

as a result of which the reconstruction of the vectors from binary to real-valued

ones are carried out in a manner oblivious to the cluster memberships them-

selves. The suffix ‘NP’ in ψ-K-means-NP abbreviates ‘no prior’.

6.3.5 Parameters and Evaluation Metrics

The parameter common to all the privacy-preserving clustering methods (i.e., the

ones which operate on the binary encoded space) is the dimensionm of the encoding

space Hm, or in other words, the number of basis vectors, into which the original d-

dimensional real valued vectors are transformed at the client side. A parameter in

the PPK-means baseline method is the number of components of a Gaussian mixture

model which we set to 10 as prescribed in Chapter 5.

The parameters specific to ψ-K-means, H-ψ-K-meansand ψ-K-means-NP are fol-

lowing:

1. The dimension, p, of the embedding space Rp in which the binary vectors are

eventually transformed, or in other words, the dimension of the last layer of the

network in the Figure 6.2.

2. The proportion of data, τ , used as training data to generate the set of triplets for

train the transformation function ψ.

We conducted a grid-search for the optimal values of m and p within the sets

{32, 64, 128, 256} and {64, 128, 256, 512} respectively. Since the proportion of the seed
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set used to train the triplet network needs to be a small number (as the majority of

the computation workload needs to be carried out at the server side), we conducted a

grid search for optimal values of τ in {0.01, 0.02, 0.05, 0.1, 0.15} (i.e. up to a maximum

of 15% data was clustered at the client side).

For each method, we set the number of desired clusters of K-means (K’s value) to

the number of class labels in the corresponding dataset, i.e., 10 for MNIST, F-MNIST,

CIFAR-10 datasets and 20 for 20NG dataset in all our experiments. We also conduct

the experiments with varying number of desire clustersK within the sets {5, 10, 15, 20}

for the datasets MNIST, F-MNIST, CIFAR-10 and {10, 20, 30, 40} for 20NG dataset to

observe the effect of different number of desire clusters.

For measuring clustering effectiveness, we employ the standard pairwise accuracy

based measures, namely F-score and Adjusted Rand Index (ARI) [151] (detail descrip-

tion of F-score and ARI is given in 4.4.1), whereas for measuring the homogeneity of

the clusters we again employ a standard metric, namely the Normalized Mutual Infor-

mation (NMI) [35](see 4.4.1 for description of NMI). Since our proposed workflow is

a weakly supervised method, to enable fair comparisons with the other unsupervised

baselines, we partition the set of instances, V , as Vτ ∪ (V − Vτ ) for the unsupervised

methods as well, after which we report the clustering effectiveness on the set V − Vτ

only. The partitions for each method were chosen randomly with an identical seed

value.

6.4 Results

In this section we present the results of our experiments. First, we compare the clus-

tering effectiveness of our proposed method with other baselines. Then we analyze

the efficiency (execution-time comparisons) of the clustering methods employed in

our experiments. Finally, we conduct additional experiments investigating parame-

ter sensitivity of the clustering methods.
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Table 6.1: Results of comparative studies of ψ-K-means algorithm against baselines and ablation
studies of the proposed strategy on MNIST (K = 10), F-MNIST (K = 10), CIFAR-10 (K = 10)
and 20NG (K = 20) datasets. In each case, the best results among the privacy preserving
approaches (excluding the standard K-means) have been bold-faced. Cells of this table that are
not applicable to a method (such as the parameters m, p, τ for K-means) have been filled using
gray color.

Dataset Method Type Method Name
Parameters

m p τ F-score ARI NMI

MNIST

Apex-line K-means 0.4295 0.3608 0.5181

Baselines

LSH-partition 256 0.2373 0.0961 0.2354
ϕ-K-means 128 0.3901 0.3209 0.4473
E2H-K-means 256 0.3646 0.2912 0.4336
PPK-means 256 0.4040 0.3361 0.4567

Ablations
H-ψ-K-means 256 256 0.10 0.4174 0.3521 0.4533
ψ-K-means-NP 256 512 0.10 0.3987 0.3309 0.4529

Proposed ψ-K-means 256 512 0.10 0.4370 0.3711 0.4607

F-MNIST

Apex-line K-means 0.3805 0.3076 0.4706

Baselines

LSH-partition 256 0.2177 0.0633 0.1985
ϕ-K-means 256 0.4259 0.3584 0.5001
E2H-K-means 256 0.3820 0.3084 0.4818
PPK-means 256 0.4297 0.3627 0.5129

Ablations
H-ψ-K-means 256 512 0.10 0.4348 0.3705 0.5077
ψ-K-means-NP 256 512 0.10 0.4173 0.3479 0.5046

Proposed ψ-K-means 256 512 0.02 0.4397 0.3730 0.5160

CIFAR-10

Apex-line K-means 0.1562 0.0607 0.1094

Baselines

LSH-partition 256 0.1295 0.0035 0.0164
ϕ-K-means 256 0.1362 0.0358 0.0761
E2H-K-means 256 0.1311 0.0341 0.0622
PPK-means 256 0.1465 0.0362 0.0752

Ablations
H-ψ-K-means 256 512 0.10 0.1289 0.0316 0.0600
ψ-K-means-NP 256 512 0.10 0.1481 0.0340 0.0720

Proposed ψ-K-means 256 512 0.02 0.1513 0.0365 0.0769

20NG

Apex-line K-means 0.3240 0.2840 0.5014

Baselines

LSH-partition 256 0.0968 0.0019 0.0679
ϕ-K-means 256 0.3599 0.3232 0.5149
E2H-K-means 256 0.3411 0.3048 0.4559
PPK-means 256 0.3810 0.3458 0.5065

Ablations
H-ψ-K-means 256 512 0.10 0.3364 0.2999 0.4702
ψ-K-means-NP 256 512 0.10 0.3700 0.3352 0.5120

Proposed ψ-K-means 256 512 0.02 0.3958 0.3630 0.5194
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Table 6.2: Comparisons of time requirements for execution of ψ-K-means algorithm versus
baselines and ablation studies of the proposed strategy on MNIST (K = 10), F-MNIST (K = 10),
CIFAR-10 (K = 10) and 20-NG (K = 20) datasets. Cells of this table that are not applicable
to a method (such as the ϕ transformation time for K-means) have been filled using gray color.
6th column of this table shows the time (in sec) required for each training epoch. “Data recon”
represents the data reconstruction time for ψ-K-means-NP and ψ-K-means algorithms.

Execution time (Sec)

Dataset
Method

Type
Method
Name

ϕ
Data
recon

ψ
training

ψ Clustering Total

MNIST

Apex-line K-means 3.88 3.88

Baselines

LSH-partition 3.74 1.15 4.89
ϕ-K-means 3.71 3.49 7.20
E2H-K-means 3.69 15.02 18.71
PPK-means 3.73 5.95 9.68

Ablations
H-ψ-K-means 3.72 0.27 2.09 17.61 23.69
ψ-K-means-NP 3.74 69.91 0.30 2.06 20.26 96.27

Proposed ψ-K-means 3.71 74.15 0.30 2.00 15.33 95.49

F-MNIST

Apex-line K-means 3.95 3.95

Baselines

LSH-partition 3.75 4.61 8.36
ϕ-K-means 3.55 5.42 8.97
E2H-K-means 3.52 14.51 18.03
PPK-means 3.65 13.35 17.00

Ablations
H-ψ-K-means 3.65 0.33 2.66 19.77 26.41
ψ-K-means-NP 3.55 113.64 0.24 2.06 17.38 136.87

Proposed ψ-K-means 3.15 112.48 0.24 2.06 15.58 133.51

CIFAR-10

Apex-line K-means 5.12 5.12

Baselines

LSH-partition 3.28 4.01 7.29
ϕ-K-means 3.27 4.95 8.22
E2H-K-means 3.27 13.06 16.33
PPK-means 3.27 9.55 12.82

Ablations
H-ψ-K-means 3.28 0.35 1.91 22.29 27.83
ψ-K-means-NP 3.27 124.57 0.48 2.11 21.52 151.95

Proposed ψ-K-means 3.27 125.80 0.49 1.86 20.66 152.08

20NG

Apex-line K-means 3.48 3.48

Baselines

LSH-partition 2.68 2.96 5.64
ϕ-K-means 2.51 3.50 6.01
E2H-K-means 2.63 15.77 18.40
PPK-means 2.66 3.60 6.26

Ablations
H-ψ-K-means 2.52 1.56 3.32 10.66 18.06
ψ-K-means-NP 2.61 34.51 1.36 3.30 8.20 49.98

Proposed ψ-K-means 2.56 35.23 1.44 3.29 6.89 49.41
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6.4.1 Comparison of the Clustering Methods

Table 6.1 presents the clustering results for the different methods investigated on the

MNIST, F-MNIST, CIFAR-10 and 20NG datasets. The standard K-means algorithm

without the privacy preservation constraint operates on the true (unencoded) data

instances, as a result of which it yields effective results. Among the privacy-aware

baselines, it turns out that for both image and text data PPK-means outperforms the

other baselines.

The ‘no prior’ ablation method, i.e., ψ-K-means-NP, leads to clustering effective-

ness close to ϕ-K-means, which shows that a simple reconstruction via sampling

without using the prior likelihoods of cluster memberships does not lead to accu-

rately reconstructing the data, as a result of which the benefits of employing the

triplet network is not realized. The other ablation, H-ψ-K-means, which trains the

triplet network on the encoded binary vectors, also does not perform the best mainly

because of the discrete nature of the input (the zeroes in the input does not allow

back-propagation via all paths of the network [135]).

The unsupervised clustering task on CIFAR-10 dataset turns out to be the most

difficult task among the four datasets. This is likely because the dataset is comprised

of color images of considerable complexity (involving multiple objects).

From Table 6.1 we can observe that standard K-means yields effective results on

MNIST, F-MNIST and 20NG datasets, whereas for the CIFAR-10 dataset standard K-

means yields a relatively poor result compared to other three. However, the impor-

tant point to note is that the effectiveness of our proposed method, ψ-K-means, is

still comparable with that of the standard K-means, and it still outperforms the other

baselines even on the CIFAR-10 dataset.

The fact that our proposed approach,ψ-K-means, produces the best results demon-

strates that, firstly, a (weakly) supervised approach that guides the clustering process

is beneficial for encoded data, and that secondly, for the distance metric learning to

work well, it is important to train the distance metric on real-valued inputs, which

in the absence of the real data itself has to be reconstructed. It turns out that using

the cluster membership priors (Equation 6.4) leads to an reasonably accurate recon-
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struction of the real-valued data instances, which eventually leads to better training

the triplet network and hence an effective clustering of the encoded data.

In Table 6.2, we report a comparison of the execution time of our proposed method

with respect to the other baselines. From the table, we observe that the execution

time of our proposed method is the highest among the other methods investigated.

However, we would like to mention that this is the trade-off which is to be accepted

for obtaining better effectiveness. From a practical standpoint, the run-times of our

proposed method are not markedly worse in comparison to the baselines and the

ablations.

We provide some further analysis on the trade-off between effectiveness and effi-

ciency by tuning the parameters m and p in the next section.

6.4.2 Parameter Sensitivity Analysis

Figures 6.3 and 6.4 shows the sensitivity with respect to the dimension of the Ham-

ming encoding space (m), and that with respect to the dimension of embedding

space p, for the best performing clustering approaches. Moreover, Figure 6.5 analyzes

the execution time of our proposed method for different values of m and p.

It can be observed, as expected, that increasing the dimension, m, of the Ham-

ming space mostly improves the performance of both ϕ-K-means and ψ-K-means,

because a higher dimension encapsulates more information about the topology of

the original space.

Next, we investigate the effect of the parameter p (the output dimension of the

triplet network) for our method and its ablation variants. Similar to the observation

in Figure 6.3, Figure 6.4 also shows that increasing the dimension, p, of the metric

learning transformation leads to better results.

Figure 6.5 shows that using higher dimensionality form and p increases the execu-

tion time of our proposed method. We also observe in Figure 6.5 that the execution

time of our proposed method increases at a higher rate with an increase in the pa-

rameter m than with respect to p.

Due to the increased computational complexity and memory requirements, it is
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Figure 6.3: Comparative performance of ϕ-K-means, PPK-means, H-ψ-K-means, ψ-K-means-
NP and ψ-K-means clustering methods versus the Hamming space encoding dimension (m)
corresponding to all the four datasets MNIST, F-MNIST, CIFAR-10 and 20NG. In each case, the
comparison had been made by setting p = 512 (the optimal value) and the seed data proportion
(τ ) = 0.10.

however not practical to use substantially large values of m and p. Consequently, for

achieving a trade-off between the execution time and the clustering effectiveness, we

set the maximum values of m and p to 256 and 512, respectively, in our experiments.

Moreover, we ensure that the value of m is not too large to reduce the data transmis-

sion overhead over the network.

The sensitivity of τ (the fraction of data used as training set) in ψ-K-means is pre-

sented in the Figure 6.6. We observe that even with parsimonious settings of using

a small seed set, i.e., 1% of the data, we achieve results that are comparable to when

10% of data is used as the seed. Another interesting observation is that, increasing
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Figure 6.4: Comparative performance of H-ψ-K-means, ψ-K-means-NP and ψ-K-means clus-
tering methods versus the dimension of the target embedding space (p) of the triplet network
corresponding to all the four datasets MNIST, F-MNIST, CIFAR-10 and 20NG. In each case,
m, the Hamming space encoding dimension is set to the optimal value 512 and τ , the seed data
proportion value to 0.10.

the value of τ the F-score value improves but we do not observe much improvement

with the value of τ greater than 0.1. It is also to be noted that a higher value of τ leads

to a larger volume of the seed set which increases the computational overhead in the

client side. Therefore, the value of the fraction τ should preferably be close to 0.

Finally, Figure 6.7 shows the sensitivity of K (the number of desired clusters) on

the clustering effectiveness. We can observe that our proposed method, ψ-K-means,

yields the best results when the number of desired clusters, K, is set to the number

of ground-truth classes for both the datasets MNIST and 20-NG. It is also seen that

ψ-K-means consistently outperforms the baselines and the ablation methods for all

values of K that we experimented with on both the datasets.
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Figure 6.5: Plot of execution time of ψ-K-means clustering method versus the Hamming space
dimension (m) as well as the embedding space dimension (p) varying both between 128 to 1024
in multiples of 2, for the four different datasets MNIST, F-MNIST, CIFAR-10 and 20NG. The
value of p is set to 512 while m is varied and the value of m is fixed at 256 while p is varied.
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Figure 6.6: Sensitivity of the value of τ , the fractional volume of the dataset used to train the
triplet network towards clustering by ψ-K-means approach. Here, the values of the encoding
dimension (m) and the target embedding space dimension (p) was set to the values 256 and 512
respectively for all the four datasets MNIST, F-MNIST, CIFAR-10 and 20NG.

The reason for this improvement over the baselines is that in ψ-K-means cluster-

ing operates on the representation of data points in Rp, which, as we have already

argued, caries better topology of the original data space Rd than the binary encoded

space Hm, on which the baselines ϕ-K-means and PPK-means operate. In addition,

the reason why ψ-K-means outperforms the ablation methods is that the triplet net-

work trained with reconstructed data using the prior likelihoods of cluster member-

ships potentially leads to better capturing the topology of the original data space in

comparison to H-ψ-K-meansand ψ-K-means-NP.
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Figure 6.7: Sensitivity of the methods investigated with respect to the number of clusters. For
our method, the reported results use the optimal value of m and p, i.e., 256 and 512 respectively
for all the four datasets MNIST, F-MNIST, CIFAR-10 and 20NG. The value of τ , the proportion
of seed data, was set to 0.10.

6.5 Conclusions

Privacy preservation has become an essential need in the present era of machine

learning as a service (MLaaS). This chapter has particularly focused on the task of

clustering massively voluminous data, for which a client may essentially need to use

the computational resources of an external server. In similar scenarios, encoding of

input data is crucial to ensure preservation of data privacy. Here, it has been hypothe-

sized that effective controlling of the clustering process on encoded data should lead

to useful clustering of the original data. Specifically, here we have proposed a metric

learning based approach which consists of the reconstruction of a real-valued func-

tion approximating the data instances through the leveraging of additional statistics
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of the projected values along each basis vector used in the encoding process, and

the training of a triplet network based on these reconstructed data instances using

a small seed set of cluster membership associations. Here, it may be noted that the

seed set has been clustered at the client’s end while the membership information

has been shared with the external server. The experiments presented in this Chap-

ter have demonstrated that the proposed workflow is capable of producing improved

clustering of the encoded data instances. Moreover, the ablation study performed by

us has shown that an approximate reconstruction of real-valued data instances leads

to better training of the triplet network, and subsequently the same leads to better

effectiveness of the clustering process.

In the next chapter, we shall present a novel approach of privacy preserving super-

vised classification which successfuly implements defence against adversarial threats

and the same will be preceded by a formal description of the general framework of

privacy aware encoding.
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Chapter 7

Privacy Aware Supervised Learning *

In Chapters 5 and 6, we have presented respectively an unsupervised and a semi-

supervised learning algorithm capable of providing good performance under the pri-

vacy preservation constraints. In both cases, the privacy preservation has been achieved

using a Hamming space transformation, in particular we have used Super-Bit Local-

ity Sensitive Hashing as the transformation function. In this chapter, we shall focus

on the supervised learning framework, in particular the supervised classification task,

under the constraint of data privacy preservation to address our third research ques-

tion RQ-3, which is

“How supervised learning can be used to defend the malicious attempts of stealing

sensitive information from data shared on cloud platforms?”

The rest of the chapter is organized as follows. In Section 7.1, we start with a brief

introduction of privacy preserving supervised classification and our related contri-

bution. In Section 7.2, we formally describe a general framework of privacy aware

encoding, followed by our proposed model for defence against adversarial threats in

Section 7.3. In Section 7.4, we present the experimental setup. Finally, Section 7.6

concludes this chapter.

*Some material from [18] has been reused in this chapter.
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7.1 Introduction

The era of data-driven learning is continuously witnessing increased computational

requirements for training multi-layered complex neural networks for supervised ma-

chine learning (ML) through a layered approach of abstraction from the raw data, e.g.,

the work on contextual word vectors pre-trained on large collections of documents

to capture the inherent language model in text [36], or that of training deep image

networks to capture higher levels of visual features from images [140].

One standard solution to mitigate the intensive computational requirements of

training data-driven models is to follow the standard ‘software as a service’ paradigm,

in which the computations to train an ML model are provided as a service (MLaaS) by

a powerful computing device (server), virtually accessible through a distributed com-

puting environment (cloud) [117]. An MLaaS-based solution requires a user (client

program) to upload an encoded form of the data, usually corresponding to an ab-

stract representation of it, e.g. pre-trained vectors such as BERT [36] for text, or

Inception-Net for images [140]), to the server. Although such an MLaaS based work-

flow allows provision for distributed data sharing and also reduces the computational

overhead of the client workstations, a risk with an MLaaS architecture is that it can

potentially lead to breaches in data security and privacy [89].

To illustrate the point on potential threats on data privacy, consider an adversar-

ial model which is able to eavesdrop on the communication channel between a client

and the server offering computation on encoded forms of data. Imagine a situation

where an adversarial model is pre-trained on past data, which in terms of its domain

and characteristics, is similar to the one that is transmitted to the server over a com-

munication channel. In such a situation, this pre-trained adversarial model could

use this submitted data as an input to predict a number of sensitive attribute values

from this data [34].

As a concrete example of an adversarial attack on data privacy, consider that the

encoded data sent from a client workstation to a computation server over a communi-

cation channel corresponds to that of movie reviews, and the primary task for which

the computational resources of the server is sought, refers to the task of classifying a
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Figure 7.1: Schematic diagram depicting the proposed proposed defence mechanism against
leakage of sensitive information; it works by identifying a candidate subspace, Xs, of the input
space, on which the set of primary task labels, Y , is likely to exhibit some strong functional
dependence. The remaining subspace, X − Xs, is used to estimate the possible functional
dependence with the sensitive information, ϕ̂, an inversion on which is then used to defend
against an adversarial model, ϕ.

review into positive or negative, i.e. the primary task involves learning a mapping of

the form θ : x 7→ y, x ∈ Rd, y ∈ {0, 1}, where x represents an encoding of the data,

e.g. a sequence encoding of the words comprising the review [83]. Imagine that each

review contains additional identity information attributes, z, corresponding to sensi-

tive information about the author, e.g. the age, gender etc. Despite not being a part

of the encoding, the adversary can potentially feed the encoded data as input into

an adversarial network, that has already been trained on pairs of movie reviews en-

coding and the attribute values (e.g. gender), (x′, z), to learn an association between

the two of the form ϕ : x′ 7→ z, x′ ∈ Rd, z ∈ {0, 1}. The parameters of the trained

network, ϕ, may then accurately predict the demographics of the current encoded

data x, i.e., the closer x is to x′ the higher is the associated risk of leaking the attribute

value information [158].

A standard approach to prevent an attacker stealing the sensitive information

from data is to make the encoding process itself aware of the intentions of an ad-

versary, which usually involves first formulating the adversarial model, ϕ : x 7→ z as
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a secondary task, and then applying a multi-objective based encoding transforma-

tion of the data, where the first objective corresponds to the primary task and the

subsequent ones correspond to one or more secondary tasks, each such secondary

task representing an adversarial objective [34]. The learning objective, in this case,

seeks to minimize the potential degradation of the primary task effectiveness due to

the noise which is required to be incorporated within the data as a defence against

adversarial attacks.

Our Contributions. We now enlist our contributions in this chapter. First, contrary

to a standard approach of data-driven encoding that uses uniform weights for the

abstract features, we hypothesize that the defence mechanism of a multi-objective

based approach can potentially be improved by a weighted distribution over fea-

tures. Specifically, this involves leveraging information from candidate subspaces,

xs ∈ Rk, (k < d) of the input data that are strongly correlated with the primary cat-

egory labels in the form θp : xs 7→ y. The residual subspace is thus likely to be func-

tionally associated to the latent attribute values of the data, or in other words, to the

secondary (adversarial) task categories ϕ̂ : xs
′ 7→ z,xs

′ ∈ Rd−k, which in turn ap-

proximately models the function ϕ : x 7→ z. We argue that this way of modeling the

adversarial information yields a more robust encoding mechanism that is likely to be

more resilient to security threats and our experiments confirm this hypothesis.

Second, in contrast to most existing approaches which conduct experiments mostly

on text data with annotated metadata information (such as the demographic attributes,

e.g., age and gender annotated as a part of the TrustPilot dataset [34]), we report em-

pirical results on both images and text. For images, we test our method both on

implicit and explicit demographic attributes. As implicit attributes, we use stylistic

attributes, such as the slant or ligatures in handwriting, that could potentially reveal

the age of a person. As explicit attributes, we test if the metadata information of age

and gender associated with a set of lesion images can potentially be revealed to infor-

mation stealing attacks.

102



7.2. A General Framework for Privacy-Aware Encoding

7.2 A General Framework for Privacy-Aware Encoding

In this section, we formally describe a general framework for defence against adver-

sarial threats using a multi-task learning based workflow. We present a general ap-

proach to the problem in the sense that the overall framework allows provision to

incorporate more than one adversarial task, each corresponding to a particular at-

tribute of the data.

7.2.1 Privacy-Agnostic Encoding

Using the notations introduced Section 7.1, the predictive model for the primary task,

generally speaking, can be learned with a set of linear transformation functions (real-

ized with a multi-layer perceptron) of the form

P (y = i|w; θ, θp) = σ(θp · x)i =
exp(θpi · θ ·w)∑c
j=1 exp(θpj · θ ·w)

,x = θ ·w, x ∈ Rs,w ∈ Rd, y ∈ Zc,

(7.1)

where w ∈ Rd denotes a d-dimensional vector representation (encoding) of the in-

put data, y ∈ Zc denotes a class label (one of c possible values) corresponding to the

classification task, θ ∈ Rs×d denotes a matrix of parameters (a latent layer of a neural

network), and θp ∈ Rc×s denotes a matrix of parameters specifically corresponding

to the classification task (θpi ∈ Rs is the parameter vector for the i-th class). As a

simplification, we do not explicitly include the bias parameter as a part of the soft-

max equations. Since the encoding process of Equation 7.1 does not explicitly take

account an adversarial threat against a subset of data attributes, the encoding x ∈ Rs

is privacy-agnostic.

7.2.2 Privacy-Aware Encoding

An encoding space different from Equation 7.1 that explicitly addresses a set of sen-

sitive attributes has been shown to be effective in defence against adversarial mod-

els [34]. However, the work in [34] addresses the defence mechanism for a single

attribute only. Instead, we present a more general setup involving more than one

attribute.
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In the context of our work, the attributes manifest themselves as an implicit part

of the data, or otherwise, it is straight-forward to remove the attributes before en-

coding the data [45]. In particular, we assume that the encoding of an input data

instance, w, is a function of both the raw data itself, (say w) and its latent character-

istics (sensitive attributes). We represent a pair comprising an input data instance

and a set of M sensitive attributes (assuming categorical values) associated with it as

(w, {z1, . . . , zM}), where zm ∈ Zsm , i.e. there are a total of sj number of possible values

for the jth attribute.

A multi-objective transformation then uses the pairs, (w, {z1, . . . , zM}), to encode

the privacy-agnostic representation w ∈ Rd as learnable parameters, x ∈ Rs, with the

combined objective

P (y = i, z1, . . . , zM |w; θ, θp, ϕ
1, . . . , ϕM) = (1−

M∑
m=1

γm)σ(θp ·x)i−
M∑
m=1

γmσ(ϕ
m ·x)zm , (7.2)

where x = θ ·w, x ∈ Rs, and w ∈ Rd, and similar to Equation 7.1, σ(.)i is an abbrevia-

tion for the softmax function with respect to the i-th class. The multi-objective loss of

Equation 7.2 can be realized with a feed-forward network comprising a shared layer

(parameter matrix θ ∈ Rs×d) and the task specific layers. Separate layers, one for each

adversarial task (ϕm ∈ Rsm×s), in addition to the primary task itself (θp ∈ Rc×s), are

all connected to the shared layer. Note that the parameters corresponding to w’s in

Equation 7.2 are obtained from pre-trained representations and hence are not learn-

able.

To illustrate Equation 7.2 with an example, consider a text classification problem,

where each document is associated with the demographic attributes - age (z1) and

gender (z2) of author. In such a situation, the value of M in Equation 7.2 would be

2. Continuing with the example, if age is discretized into 3 categories, e.g., ‘young’,

‘middle-aged’ and ‘senior’ then s1 = 3.

In a generalized setting, the multi-objective loss function of Equation 7.2 models a

relative trade-off between the effectiveness of the primary task and the desired lack of

effectiveness of the adversarial ones (notice the negative factor in the linear combina-

tion corresponding to the adversarial tasks). A low value of each linear combination

parameter, γm ∈ [0, 1] : (
∑

m γm < 1), associates a small importance to the necessity
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of defending against an information stealing attack against the m-th attribute. No-

tice that setting γm = 0 degenerates Equation 7.2 to the privacy-agnostic encoding of

Equation 7.1.

7.3 An Information Theoretic Perspective

In this section, we describe how to extend the general multi-task based privacy pre-

serving approach from an information theoretic perspective. As per the motivation

behind the schematic depiction of Figure 7.1, we now formally describe how to lever-

age information from the importance of features (components of the encoded vector

representation of a data instance) to help the process of learning a better encoding

for privacy preservation.

7.3.1 Subspace Encoding

A limitation of Equation 7.2 is that the parameters of the shared layer and the primary-

task specific layer (i.e. θ and θp respectively) are trained with respect to the entire

feature space of the encoded vector w, whereas it is more likely to be the case that a

part of this feature space correlates strongly with the primary task. The key idea in

our proposed method is to substitute the encoding w of Equation 7.2 with a subset

of features that are most likely to be informative for the primary task. This has a two-

fold advantage.

First, a subspace of the most informative features for the primary task is likely

to lead to a down-weighting of the residual subspace potentially constituting infor-

mation responsible for determining the values of the sensitive attributes of the data.

In other words, this is likely to degrade the effectiveness of the secondary tasks thus

providing a potentially improved defence mechanism.

Second, since the subspace-based encoding approach puts more emphasis on

parts of the data that are potentially responsible for determining the primary task

output, it is also likely to lead to improving the effectiveness of the primary task itself.
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7.3.2 Parameterized Subspace Selection with Gumbel Distribution

The authors of [30] computed the importance of features by measuring the mutual

information between the primary task labels and an arbitrary feature subspace ws ∈

Rk, (k < d). The total number of possible subspaces,
(
d
k

)
, is exponential for relatively

large values of k. Hence finding an optimal subspace representing the largest amount

of information for data driven models is a challenging problem. A solution, proposed

in [30, 67], is to use a parameterized version of a subspace (specifically obtained with

a Gumbel distribution) that allows a gradient descent based optimization of its pa-

rameters. The objective is seek an optimum state of maximum informativeness of

the subspace with respect to a set of labels. Before describing how this is applied in

the context of our problem, we present a brief overview of the Gumbel based learning

of subspaces, mostly following the exposition of [30].

A Gumbel distribution, G(0, 1), is a distribution of random variables of the form

Gi = − log(− log ui), ui ∼ U(0, 1), U being the uniform distribution. The Gumbel soft-

max probability distribution uses a concrete distribution, which is a continuous dif-

ferentiable approximation of a categorical random variable. The Gumbel softmax is

a modification of the softmax function involving random variables sampled from the

Gumbel distribution, one each for each component of the softmax. In the context of

our problem, we use the Gumbel softmax distribution to estimate the importance of

each component of the encoding vector, w ∈ Rd. Formally speaking,

C = {Ci : Ci =
exp((logwi +Gi)/ρ)∑d
j=1 exp((logwj +Gj)/ρ)

, i = 1, . . . , d}, (7.3)

where ρ is a temperature parameter, higher values of which makes the distribution

close to uniform (for our experiments, we set ρ = 0.1 as per [30]). To select k features

from a set of available d features, one needs to independently sample k times from

the Gumbel softmax distribution resulting in a total of k random vectors {c1, . . . , ck},

where the jth vector cj is sampled from Gumbel softmax, i.e., cj ∼ C. Let Λk ∈ Rd×k

be the matrix constituted from the k random vectors, cj , thus sampled. A row-wise

maximum of the matrix, Λk then yields an approximation of a k-hot random vector

λk ∈ Rd. The highest k elements of λk (corresponding to the most important features)

106



7.4. Experimental Setup

are retained while the rest (d − k) are set to 0. Thus λk is a vector with k non-zero

elements (soft k-hot) determining the choice of a k-dimensional subspace.

7.3.3 Feature Subspace with Multi-Objective

In the context of our problem (see Equation 7.2), data is represented as vectors in

d dimensions, i.e. w ∈ Rd, out of which we intend to select a subspace ws ∈ Rk

comprised of the most informative features. After selecting a random vector with k

non-zero elements, λk, we now model its interaction with the primary classification

task as

P (y = i, z1, . . . , zM |w; θ, θp, ϕ
1, . . . , ϕM) = (1−

M∑
m=1

γm)σ(θp ·x)i−
M∑
m=1

γmσ(ϕ
m ·x)zm , (7.4)

where x = θ · (w ⊙ λk), x ∈ Rs and w ∈ Rd. Equation 7.4 is a more constrained form

of Equation 7.2. This is because instead of considering an arbitrary s-dimensional

transformation from w (privacy-agnostic encoding) to x (privacy-aware encoding) of

Equation 7.2, we specifically select an informative subspace, denoted by, say ws =

w ⊙ λk. This is obtained by an element-wise multiplication of the input encoding

with a soft k-hot vector obtained from the Gumbel softmax distribution.

As a next step, the informative subpace is used to learn the privacy-aware encoded

representation. In our experiments, instead of specifying the value of k directly, we

control it with a fraction, τ ∈ [0, 1] of the input data dimension, i.e., k = ⌊τd⌋.

7.4 Experimental Setup

7.4.1 Experiment Workflow

A laboratory based setup2 is devoid of the presence of a true adversary (e.g. as shown

in the schematic of Figure 7.1). In such a situation, the adversary would have access

to a pre-trained model which is trained to predict the sensitive attributes from input

data instances. An adversarial model is likely to be more harmful if it has been trained

2A prototype of the implementation is available at https://github.com/chandanbiswas08/
l2x-mt
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Figure 7.2: Schematics of the common setup for the evaluation workflow. Both the privacy-
aware encoding and the adversarial model (one for each attribute) is trained on the training set
of the data. During evaluation phase, the privacy-preserved encoded vectors for the test set are
fed into the adversarial model to predict values of the attributes. The prediction error of this
pseudo-adversarial setup indicates the effectiveness of privacy preservation.

on data instances that resemble the ones (i.e. similar in terms of encoded vector

representations) to the ones that are sent over from the client to the MLaaS. To mimic

this situation as closely as possible in a laboratory setup, we set up our experiments

as shown in Figure 7.2.

For each labeled dataset, each data instance is annotated with additional attribute

value pairs. With this we train a logistic regression model on the training set of the

data to simulate an adversarial attack of predicting these additional attribute values

from the data (a separate adversarial model is trained for each attribute type, shown

as a single model in Figure 7.2 to avoid clutter).

In general, corresponding to M different attribute types (see Equations 7.2 and

7.4), we evaluate the effectiveness of the adversarial task as an inverse effectiveness

measure for a particular defence method used in our experiments. The experiment

workflow ensures that the encoding process of a defence mechanism is oblivious of

the category values (e.g., values of age and gender) of the test-split.

7.4.2 Dataset

To test the effectiveness of our proposed subspace based privacy preservation ap-

proach on different modalities of data, we experiment with both text and image datasets,

namely Skin Cancer MNIST (HAM10K) [146], Morpho-MNIST (M-MNIST) [24] and
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TrustPilot [63], where first two datasets are colour image and gray scale image dataset

respectively and the last dataset consists of text samples. The detail of these datasets

are described in the Section 4.2.

7.4.3 Baselines

As baselines, we compare the following approaches. First, we apply a privacy agnos-

tic logistic regression based approach (see Equation 7.1), which we denote as LR. Our

next baseline, denoted as MT, is the multi-tasking based approach from existing liter-

ature [34], which we presented in this chapter as Equation 7.2. To explore if subspace

based information usage, which forms a part of our proposed method, is indeed effec-

tive, we conduct experiments with two ablation baselines. The first of these baselines

(applicable for text) involves the following. After computing the term feature weights

with a simple term importance statistics (specifically tf-idf), for each sentence we re-

tain only a fraction, τ ∈ [0, 1], of the terms with the highest weights. The rationale

of this baseline, denoted as LR-TFIDF, is to see if removing a subset of features, not

correlated to the primary task alone, can prevent information leakage of secondary

attributes.

The second ablation baseline is a degenerate case of Equation 7.4, where we set

γm = 0 for each adversarial task. This means that the k-dimensional encoding of the

data, being agnostic of the adversarial tasks, only takes into account the informative

subspace of the primary task. Unlike LR-TFIDF, this baseline method, denoted as L2X

in our experiments, is applied to both text and images.

7.4.4 Evaluation Metrics and Parameters

As an evaluation metric, we employ a combination of the primary task accuracy (higher

the better) and the inverse accuracy of the secondary tasks (lower the better) (The

mathematical expression for accuracy is given in Equation 4.11). A high value of the

combined metric reflects a better defence against information leakage without a sub-

stantial drop in primary task effectiveness. For combination, we specifically use the

harmonic mean between the inverse of the aggregated accuracy values of the sec-

109



7. PRIVACY AWARE SUPERVISED LEARNING

ondary tasks (AS) and the accuracy of the primary task (AP ), i.e.,

FSi
=

2AP (1− ASi
)

(1− ASi
) + AP

, (7.5)

and

FS =
2AP (1− AS)
(1− AS) + AP

, (7.6)

where AS is the harmonic mean over the accuracy of each adversarial task, ASi
.

The hyper-parameters tuned for each method were:

a) τ , which controls the number of features retained (for the LR-TFIDF baseline,

this refers to the fraction of the terms retained with the highest tf-idf scores),

b) (γ1, γ2), which controls the relative importance of the two adversarial tasks (Equa-

tion 7.4).

In particular, the range of these hyper-parameters in our experiments were: [0.2, 0.8]

for τ , and [0.1, 0.4] for γ1 and γ2, in steps of 0.2 and 0.1 respectively.

7.5 Results

7.5.1 Summarization of the Results

Table 7.1 summarizes the results of our experimentation of various privacy preserv-

ing supervised learning methods on different datasets. These results have been ob-

tained after tuning hyper-parameter values of individual learning algorithms on the

validation split of respective datasets.

It may be observed that although LR, being a privacy agnostic approach, provides

high accuracies for the primary classification task, it also yields high accuracy for the

adversarial tasks indicating a substantial leakage of information by the LR method.

Multi-tasking based encoding (MT) strategy helps to improve the results, particularly

for text samples, as it was also noted earlier in [34].

Subspace encoding alone (L2X) is also able to decrease the accuracy for the adver-

sarial tasks (i.e. improve privacy preservation), which also means that a combination
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of MT and L2X should also improve results. This is precisely what is demonstrated by

the results of our method (L2X-MT), which yields the best results for each dataset.

Here, we have used the McNemar hypothesis test [103] to determine whether the

proportion of samples correctly classified in one scenario (say, using the LR method)

is similar to the same of another scenario (say, using the proposed LR-MT method).

Thus, our null hypothesis (H0) is the classification performances in both the scenar-

ios are identical. In order to realize the McNemar test, available results of our re-

lated experimentations have been arranged as in the following 2×2 contingency ta-

ble, with the cell frequencies (A,B,C,D) equaling the respective numbers of pairs

of the counts of individual samples undergoing classifications in the two individual

scenarios.

One Scenario
Correct Wrong

Another Correct A B
Scenario Wrong C D

Cell values B and C had been used to compute the McNemar test statistic (Chi-

Square) as follows:

χ2 =
(B − C)2

B + C

The above follows Chi-Square distribution with 1 d.f. and the testing has been con-

ducted at 5% level of significance. Now, the p-value is the probability of observing

this χ2 value, assuming that the null hypothesis is true, and the two-sided p-value

can be computed by:

p = 2
n∑

i=B

(
n

i

)
0.5i(1− 0.5)n−i (7.7)

where, n = B + C. Further details of this hypothesis testing have been provided in

Section 4.4.2.

Table 7.2 presents the details of the results of the above hypothesis testing for com-

paring the proposed method (L2X-MT) with the baseline methods. Here, it may be

observed that the p-value for comparison of L2X-MT method with the baseline LR

method corresponding to the primary task is larger than the value 0.05 on each of

the three datasets used in our study. Thus, the underlying null hypothesis can not be
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Table 7.1: Summary of the results of experimentation of various baseline privacy preservation
approaches along with our proposed method (L2X-MT) on different datasets. Cells of this table
that are not applicable to a method (such as the parameters τ , γ1 and γ2 for method LR) have
been filled using gray color.

Hyper-parameters Accuracy Combined Measures

Dataset Method τ γ1 γ2 AP AS1 AS2 FS1 FS2 FS

TrustPilot

LR 0.8674 0.7292 0.7168 0.4127 0.4270 0.4200
LR-TFIDF 0.2 0.8194 0.7113 0.6928 0.4270 0.4469 0.4371
MT 0.4 0.4 0.8694 0.6849 0.6920 0.4626 0.4549 0.4587
L2X 0.2 0.8726 0.6804 0.6546 0.4678 0.4949 0.4818
L2X-MT 0.6 0.1 0.1 0.8711 0.6564 0.6465 0.4928 0.5029 0.4979

M-MNIST

LR 0.9840 0.8956 0.6992 0.1888 0.4608 0.3525
MT 0.2 0.2 0.9851 0.8647 0.6735 0.2379 0.4904 0.3896
L2X 0.4 0.9593 0.5435 0.5764 0.6186 0.5877 0.6038
L2X-MT 0.4 0.4 0.1 0.9596 0.5291 0.5420 0.6318 0.6201 0.6260

HAM10K

LR 0.6995 0.5757 0.6256 0.5282 0.4877 0.5093
MT 0.3 0.2 0.7072 0.5749 0.6249 0.5310 0.4902 0.5119
L2X 0.2 0.6861 0.5384 0.6045 0.5519 0.5018 0.5290
L2X-MT 0.6 0.4 0.4 0.6861 0.5376 0.6017 0.5525 0.5040 0.5303

rejected and we can say that our proposed method yields high effectiveness as pri-

vacy agnostic approach LR on the primary task. One can also observe that although

there is no difference between the respective performances of L2X-MT and L2x (p-

value is greater than 0.05) methods with respect to the primary task on all the three

datasets, but there are differences in performance of L2X-MT with LR-TFIDF and MT

with respect to the primary task (p-value is less than 0.05) on TrustPilot and M-MNIST

datasets respectively. On the other-hand, on each of the datasets, the p-values with

respect to both the 1st and 2nd adversarial tasks of L2X-MT method against all the

baseline methods under consideration is less than 0.05, i.e., in each of these cases,

we can reject the respective null hypothesis that the performance of L2X-MT method

does not differ with the baseline methods.

7.5.2 Parameter Sensitivity Analysis

We also investigate the effects of varying τ (subspace selection), and the relative im-

portance of the adversarial task (γm) parameters (Equations 7.2 and 7.4) on the over-

all effectiveness of privacy-preservation learning of the corresponding primary tasks.

Figure 7.3 shows that L2X-MT outperforms the baselines consistently for a range of
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Table 7.2: Results of McNemar’s test for comparing the baseline methods with our proposed
method (L2X-MT).

Primary task 1st Adversarial task 2nd Adversarial task

Dataset
Comparison

(L2X-MT vs.) χ2 p-value χ2 p-value χ2 p-value

TrustPilot

LR 0.6282 0.4280 7.9555 0.0048 4.9055 0.0268
LR-TFIDF 5.5379 0.0186 6.6418 0.0100 4.4995 0.0339
MT 0.3822 0.5364 4.8564 0.0275 5.5317 0.0187
L2X 0.4193 0.5172 6.0513 0.0139 5.3376 0.0209

M-MNIST
LR 1.1830 0.2768 4.2851 0.0384 3.9934 0.0457
MT 3.9754 0.0462 4.4692 0.0345 5.2274 0.0222
L2X 2.7513 0.0972 6.1010 0.0135 4.4171 0.0356

HAM10K
LR 3.4994 0.0614 8.7898 0.0030 6.0839 0.0136
MT 2.8698 0.0903 5.9377 0.0148 4.2473 0.0393
L2X 2.8832 0.0895 7.6080 0.0058 8.0745 0.0045
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Figure 7.3: Sensitivity ((in terms of Fs)) of the privacy-aware learning approaches with respect
to relative subspace dimensionality τ ; Different databases used for the plots from left to right are
TrustPilot M-MNIST and HAM10K respectively.

different subspace dimensions. Figure 7.4 shows the relative comparisons between

the two multi-tasking approaches - MT and L2X-MT. It can be seen that for a range of

different relative importance of the two adversarial tasks (e.g. age/gender detection

for Trustpilot and HAM10K, and slant/broken detection for M-MNIST), leveraging

information from informative subspaces helps improve the overall balance between

primary task effectiveness and prevention of information leakage.

In summary, our experimental results presented in the Table 7.1 and Table 7.2

revealed the following two key observations.

1. Learning on data encoded by our method yields comparable results with that

obtained on data in its original form, i.e. our proposed encoding does not lead to

a remarkable decrease in the effectiveness of a classification model.
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Figure 7.4: Sensitivity of MT, L2X-MT with variations in relative importance of two adversarial
tasks.

2. Data encoded by our method considerably reduces the effectiveness of an adver-

sarial classification model which seeks to predict sensitive attributes from the

data. It is also shown that the use of the informative subspace helps to improve

the defence mechanism, i.e., it further reduces the effectiveness of the adversar-

ial classification model.

7.6 Conclusions

We proposed a generic method of privacy-preserving supervised learning, which is

potentially beneficial for distributing an encoding of the input data over a cloud en-

vironment with the end-goal of eventually learning a predictive model (primary task)

on the data. Our generic methodology combines the advantages of two main hy-

potheses - that of

a) using a multi-task objective that in addition to learning the primary task also

learns the complementary (inverse) characteristics of an adversarial model as a

defence mechanism against information stealing attacks; and
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b) using a residual subspace of the data to further improve the defence mecha-

nism.

Our experiments on image and text data demonstrated that our proposed method,

which jointly learns a multi-objective encoding over informative subspaces (with re-

spect to the primary task), outperforms a separate application of each.
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Chapter 8

Privacy Aware Approximate Nearest

Neighbour Search *

In the preceding three chapters, research questions RQ-1, RQ-2 and RQ-3 respectively

focused on unsupervised, weakly supervised and supervised learning paradigms un-

der the constraint of privacy preservation were discussed in details. In this chapter,

we shall address the last research question RQ-4, which is

“What is the feasibility of applying approximate nearest neighbour (ANN) based

indexing and retrieval approaches under privacy preservation constraints to obtain a

list of top-k suspected users, who might be infected by an infectious disease, in real time

during pandemic?”

During the Covid-19 pandemic scenario of recent past, it had been a pressing

need for the administration to trace the susceptible people at the earliest who might

had been infected by the virus due to their close proximity with people who were al-

ready tested positive towards the infection. This early contact tracing is important to

control the otherwise unabated rate of increase in the number of infections within

a locality. In this work, we investigate how effectively and efficiently can such a list

of susceptible people be found given a list of infected persons and their locations.

By using the locations of the given list of infected persons as queries, we investigate

the feasibility of applying approximate nearest neighbour (ANN) based indexing and

retrieval approaches to obtain a list of top-k suspected users in real-time. Since lever-

*Some material from [17] has been reused in this chapter.
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Figure 8.1: A simple visualization of a 2D space-time world.

aging information from true user location data can lead to privacy concerns, we also

investigate the effectiveness of the ANN methods on privacy-aware encoding of the

input data. Experiments conducted on real and synthetic datasets demonstrate that

the top-k susceptible users retrieved with existing ANN approaches (KD-tree and

HNSW) yield satisfactory recall values and achieves up to 21000× speed-gain com-

pared to exhaustive search, thus indicating that ANN approaches can potentially be

applied, in practice, to facilitate real-time contact tracing even under the presence of

imposed privacy constraints.

8.1 Introduction

The currently ongoing Covid-19 pandemic has spread at a rapidly accelerating rate

since its inception. Standard epidemiological analysis models, e.g., the SIR model

[147], have stressed on the importance of finding the susceptible cases to flatten the

growth rate of the spread of infection as early as possible. In this modern era of ubiq-

uitous digital connectivity through mobile devices, a possible source of information

for contact tracing is the log of location traces in the form of GPS coordinates.

Since procuring such data for the purpose of contact tracing and using it in a re-
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stricted way (possibly by government organizations) is difficult and time-consuming

due to the very sensitive nature of the data, a strong case needs to be made that how

could such data be useful for controlling the spread of a pandemic. The aim of this

article is to demonstrate a proof-of-the-concept that with the availability of massive

amounts of trajectory data, it is feasible to develop a scalable system that is both effec-

tive (in terms of identifying people susceptible to an infectious disease) and efficient

(in terms of the time taken to identify the susceptible cases). We believe that this

proof-of-the-concept will encourage sharing (with restricted use) of such sensitive

data in order to help mitigate epidemic situations.

In this work, we formalize contact tracing as a search problem in an Euclidean

vector space. More concretely, each state of all persons is represented as a point in

a 4 dimensional vector space consists of 3 dimensions for space (3 Cartesian coordi-

nates corresponding to the spherical coordinates for latitude and longitude on the

Earth’s surface) and 1 for time. A given set of persons (those diagnosed as positive

with the disease) then constitutes the query points in this vector space. People who

were close to these infected persons, in terms of both space and time (i.e. they were

in approximately the same place at nearly the same time), also carry the risk of being

infected with the disease. The objective is to obtain a list of such susceptible people

in real-time. Figure 8.1 schematically depicts the idea.

The number of points represented in this vector space can rapidly grow in situa-

tions where either the geographic area represented is too large or too dense to start

with, or the location traces need to be represented over a large duration of time (e.g.

over several months). An exhaustive search for finding susceptible infection cases

in this space is likely not to be feasible in terms of computation time. However, this

formulation makes provision to investigate the use of approximate nearest neighbor

(ANN) approaches, such as KD-trees [133], and evaluate the effectiveness of such ap-

proximate approaches mainly in terms of relative recall with respect to the exhaustive

search (i.e. how many such truly susceptible cases can the approximate algorithm

find out). Ideally speaking, we could consider an ANN algorithm to be working well

in this situation of contact tracing if it achieves a fair trade-off between the computa-
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tion time and the recall relative to the exhaustive search (minimizing the former and

maximizing the latter).

Our Contributions.

The novelty of our work lies in investigating, under a laboratory based reproducible

environment, the feasibility of ANN algorithms for contact tracing during epidemics.

In particular, we conduct extensive experiments on a relatively large database (24M)

of real GPS locations, and an even larger collection (150M) of synthetic data compris-

ing random walks of simulated agents. The workflow of our experiments involves

indexing a large collection of trajectory records, followed by simulating a number of

records from this index as infected (representing the real-life situation of new cases

of reported infection). Given the location trace of each infected person, we then find

out a candidate list of persons and evaluate the retrieval effectiveness. Additionally,

since sharing true location data of real users across different organizations can po-

tentially cause privacy concerns, we also investigate the feasibility of encoding the

true locations with a distance-preserving linear transformation, e.g. [68]. While such

encoding has been shown to preserve privacy of data [19], we investigate the effec-

tiveness of the ANN retrieval algorithms on such an encoding.

The findings of our experiments indicate that ANN based approaches do yield sat-

isfactory recall even on encoded data. In terms of run-time, the ANN based approach

achieves up to 21000× speed-up compare to exhaustive search. We emphasize that

the scope of this work is not to explore a novel ANN method but rather to study the

feasibility of applying ANN methods for contact tracing in an epidemic situation.

8.2 ANN Workflow

8.2.1 Representation of Location Data

The geo-locations of users (which in real life can be obtained from GPS locations

of smart phones) are, in our work, represented by ‘3’-dimensional points (2 space

dimensions corresponding to the location on the Earth’s surface latitude, longitude

formatted as (lat, long) and a time dimension measured in system epochs). The path
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Figure 8.2: (a) Decomposing Rp into a set of l∞ balls, (b) Maximum error in distance approxi-
mation.

traced in this 3 dimensional space-time corresponds to the activity phase of a single

user. Figure 8.1 shows a schematic visualization of a 2D space-time world. Each per-

son is shown as a path (curve) in this space-time, i.e. locus of changing positions (x

coordinate) with respect to time. Figure 8.1 shows two intersections of these curves.

One of these is an intersection of a healthy person with an infected one (leaving the

healthy person at a high risk of infection). The objective of the ANN based search is to

automatically find all such possible intersections given a large collection of each indi-

vidual’s location traces (curves in the space-time) and a given list of infected people

(query curves like red one shown in the figure).

For indexing, we transform the 2-dimensional spherical coordinates of the geo-

spatial data formatted as (lat, long) into the 3-dimensional Cartesian co-ordinate sys-

tem (x, y, z) using the following standard formula.

x = R · cos( π
180
× lat) · cos( π

180
× long)

y = R · cos( π
180
× lat) · sin( π

180
× long)

z = R · sin( π
180
× lat)

(8.1)

In Equation 8.1,R is the radius of Earth (with an approximate value of 6, 371 km). The

time dimension is appended to the 3 spatial dimensions to yield a 4-dimensional

space-time data (x, y, z, t).
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8.2.2 Encoding the Locations for Privacy Preservation

For contact tracing purposes, the location traces of each user over a range of time (4-

dimensional space-time data) needs to be assimilated in a database. This is likely to

raise privacy concerns as mandated by various privacy regulation practices, e.g. the

GDPR [3]. A possible approach to prevent any possible misuse of the user’s true lo-

cation data is to apply a linear transformation of the data using random projections

[6]. For privacy preservation, as a part of the general workflow, we first apply a dis-

tance preserving transformation function ϕ comprised of projections along random

basis vectors followed by application of a quantization function, fδ, on the projected

values.

Distance-preserving transformation

Let ϕ denote the transformation function which maps points from Rd to its corre-

sponding images in Rp, i.e., ϕ : w ∈ Rd 7→ x ∈ Rp. The most common function for

such transformation is the locality sensitive hash function (LSH) [6], which involves

randomly choosing a set of p basis vectors B, where p is a parameter. Each point is

then transformed by computing projections of the point along these p basis vectors

yielding the p components of the transformed point in Rp. More concretely, the ith

component of the transformed vector in Rp is given by

xi = w · bi, (8.2)

where w ∈ Rd is a (raw) data vector (e.g. the true user trajectories), and bi ∈ B is

the ith basis vector (detail description about the LSH transformation is given in the

Section 3.2).

A random basis ensures that computing the inverse function is non-tractable [6].

However, as per the Johnson-Lindenstrauss (JL) lemma [161], it is known that this

random projection based transformation of Equation 8.2 is in fact distance preserv-

ing [167]. The robustness of this distance preserving transformation is further im-

proved in [68] by applying orthogonalization on the randomly chosen basis vectors
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using Gram-Schmidt method. In this work, we specifically use the orthogonal basis

vector based approach of [68] as a definition of the transformation function ϕ.

Quantizing the projections

The purpose of quantization of the projected values is two fold. First, quantizing the

projected values adds a further layer of obfuscation on the projected values. Second,

it helps to reduce the storage space (4 or 8 bytes of floating point vs. a single byte

which allows for up to 256 possible quantized values) and hence allows faster loading

of parts of the index into the main memory thereby speeding up the retrieval process.

The key idea in quantization is to transform the real-valued Cartesian space, Rp,

into a set of non-overlapping axis-parallel grids. More formally, each grid represents

an l∞ ball of some positive radius δ ∈ R, taking the shape of a hyper-cube of length δ.

This transformation is visualized for the particular case of 2 dimensions for 4 points,

x1, . . . ,x4 in Figure 8.2a, where each l∞ ball manifests itself as a square cell.

If X =
⋃N
i=1{xi} denotes a set of N points in Rp, to place the grid over X, we first

calculate the length of each grid, denoted by δ. The value of δ is a function of a) the

number of equi-spaced intervalsM , in which we would want to split each basis vector

(axis), and b) the minimum and the maximum coordinates along the axes, denoted

by α and β respectively. Thus,

δ =
β − α
M

, α =
N

min
i=1

p

min
j=1

xij, β =
N

max
i=1

p
max
j=1

xij (8.3)

The l∞ balls are hence centred at points c ∈ Rp, where

c = {α + (r +
1

2
)δ}p, r = 0, . . . ,M − 1 (8.4)

We then define a transformation function, fδ(x), which represents a point x by the

coordinates of its discrete grid locations along each dimension. More formally,

fδ(xi) =

⌈
xi − α
δ

⌉
, ∀i = 1, . . . , p. (8.5)

The distance between two quantized points is given by

Dδ(fδ(x), fδ(y)) =
( p∑
i=1

(⌈xi − α
δ

⌉
−
⌈
yi − α
δ

⌉)2) 1
2

(8.6)
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Figure 8.2b demonstrates the approximation effect of the quantization in two dimen-

sions. Maximum quantization error occurs when two points, x+
ϵ and x−

ϵ , in the ϵ-

neighbourhood of x are transformed to two different points fδ(x+
ϵ ) and fδ(x

−
ϵ ) re-

spectively. The separation distance between these two transformed points in two

dimensions is
√
2δ, whereas for the general case of p dimensions, this distance is

√
pδ.

Hence, the maximum factor by which distances are magnified, in the general case of

p dimensions, is given by

D(fδ(x+
ϵ ), fδ(x

−
ϵ ))

D(x+
ϵ ,x

−
ϵ )

=
2
√
pδ

2ϵ
=

√
pδ

ϵ
(8.7)

As expected, this distortion can be reduced with small values of δ, which is a param-

eter of the quantization process. In other words, the closer a point is to the corner

point between two grids, i.e. lower the value of ϵ, the higher is the quantization error.

8.2.3 Retrieval of Susceptible Cases

The quantized ϕ trasformed data, {fδ(ϕ(w) : w ∈ Rd}, is then either stored in the

memory (for the KD-tree approach) or saved into an index (for the HNSW approach).

The next step is to retrieve the susceptible cases. We simulate the case that a fraction

of the population (whose data exists in the index already) has been infected.

The ‘retrieval’ procedure formulates and executes a query for each of these in-

fected people and reports a list ofK (K is a parameter) most susceptible persons that

came in close contact (in terms of space and time) with an infected person.

We perform the retrieval procedure using HNSW or KD-tree searching algorithm

(discussed in the Section 3.7). The HNSW and KD-tree algorithm conducted on distance-

preserving ϕ-transformed (abbreviate as ‘DPT’) data are named as ‘DPT-HNSW’ and

‘DPT-KD-tree’ while the algorithms executed on privacy-preserved (abbreviate as ‘PP’)

encoding of data, {fδ(ϕ(w)}, are named as ‘PP-HNSW’ and ‘PP-KD-tree’.
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8.3 Experimental Setup

8.3.1 Dataset

To study the effectiveness of our Approximate Nearest Neighbour Search system we

perform a number of experiments with both real and synthetic datasets. As a real

dataset, we use the FourSquare2 global check-in dataset. To conduct experiments on

a yet larger collection, we simulate synthetic trajectories, with a different number of

users (simulated agents) and number of time steps (range of time). The detail de-

scription about these real and synthetic datasets are presented in the Section 4.3.

8.3.2 Parameters and Evaluation Metrics

The two main parameters for privacy preserving data encoding are p, the dimension

of the set of basis vectors B for the transformation ϕ and M , the number of quantiza-

tion grids which is inversely proportional to the quantization interval δ (c.f. Equation

8.3 and 8.4). For our experiments, we set the values of p as 2, 4, 8, and 16. M is chosen

independently for each dataset depending on the population density ρ. For Traject-

10K and Traject-100K datasets we set M to 16, 32, 64 and 128, whereas for Traject-1M

data we set it to 128, 256, 512 and 1024. Likewise for the FourSquare dataset (CheckIn-

24M), we set its value to 1K, 10K, 100K and 1M .

For synthetic trajectory datasets, we conduct ANN retrieval for each space-time

coordinate of an infected (query) user. This means that a final list of susceptible can-

didates is obtained by aggregating (set union) of these individual lists. The number

of retrieved candidates, say r (#retrieve/timestep), at each distinct time coordinate

value is varied from 10 to 100 in steps of 10.

Since the task of finding susceptible candidates is a recall-oriented task (false neg-

atives are less desirable), we evaluate the effectiveness of susceptible retrieval with

recall, which measures the proportion of the true nearest neighbors (true susceptible

candidates) that are eventually retrieved.

2https://drive.google.com/file/d/0BwrgZ-IdrTotZ0U0ZER2ejI3VVk/view

125

https://drive.google.com/file/d/0BwrgZ-IdrTotZ0U0ZER2ejI3VVk/view


8. PRIVACY AWARE APPROXIMATE NEAREST NEIGHBOUR SEARCH

Table 8.1: Summary of the results of experimentation of Approximate Nearest Neighbour
retrievals on synthetic and real datasets. Here, #retrievals per time step (r) for each infected user
is set to 100, p is the dimension of ϕ-encoding space Rp, M is the number of quantization grids
for the transformation function fδ(x) and the retrieval time t is measured in milliseconds (ms).

Exhaustive HNSW DPT-HNSW PP-HNSW KD-tree DPT-KD-tree PP-KD-tree

Dataset t (ms) Recall t (ms) Recall p t (ms) Recall p M t (ms) Recall t (ms) Recall p t (ms) Recall p M t (ms) Recall

Traject-10K 5294.95 1.00 1.91 0.9796 16 1.82 0.9706 16 128 1.10 0.9275 269.74 0.9823 16 750.46 0.9798 16 128 716.44 0.9821
Traject-100K 24813.08 1.00 3.83 0.9601 16 3.25 0.9410 16 128 2.19 0.8435 270.07 0.9653 16 656.78 0.9637 16 128 1068.63 0.9545
Traject-1M 524813.08 1.00 28.25 0.4610 16 19.19 0.4418 16 1024 24.40 0.4384 1242.05 0.7952 16 1874.97 0.7974 16 1024 1623.07 0.7830

CheckIn-24M 10408.12 1.00 0.01 0.9983 16 0.02 0.7660 16 1M 0.02 0.7428 1.91 1.0000 16 6.34 0.7888 16 1M 6.60 0.7893

Table 8.2: Results of McNemar’s hypothesis testing for comparing the Approximate Nearest
Neighbour based retrieval approaches using both synthetic and real datasets.

Traject-10K Traject-100K Traject-1M CheckIn-24M

Comparison χ2 p-value χ2 p-value χ2 p-value χ2 p-value

HNSW vs. KD-tree 0.4058 0.5241 3.2948 0.0695 5.5577 0.0184 1.7037 0.1918
HNSW vs. DPT-HNSW 0.6630 0.4155 0.0064 0.9361 0.3327 0.5641 5.6759 0.0172
HNSW vs. PP-HNSW 6.0508 0.0139 4.3689 0.0366 0.3826 0.5362 9.6437 0.0019
DPT-HNSW vs. PP-HNSW 4.7855 0.0287 7.0335 0.0080 0.1463 0.7021 3.0915 0.0787
KD-tree vs. DPT-KD-tree 1.2816 0.2576 0.1592 0.6899 1.6409 0.2002 4.6922 0.0303
KD-tree vs. PP-KD-tree 0.8396 0.3595 2.0682 0.1504 0.0045 0.9464 6.5312 0.0106
DPT-KD-tree vs. PP-KD-tree 0.0412 0.8391 0.6359 0.4252 1.2404 0.2654 0.3731 0.5413
DPT-HNSW vs. DPT-KD-tree 2.0825 0.1490 0.4789 0.4889 6.1421 0.0132 6.2528 0.0124
PP-HNSW vs. PP-KD-tree 5.8931 0.0152 4.3830 0.0363 5.4294 0.0198 4.3830 0.0363

8.4 Results

8.4.1 Summary of the Results

Table 8.1 present the results of the different ANN search workflows. The key observa-

tions from the table are following.

First, we observe that both the approaches HNSW and KD-tree yield satisfactory

recall values which demonstrates the feasibility of applying an ANN-based workflow

in pandemic situations to achieve a trade-off between recall and computation time.

The time, t (ms), reported in milli-seconds refers to the time taken to retrieve a list for

a single query.

The retrieval times of both KD-tree and HNSW are substantially lower than an

exhaustive search through the database (for the Traject-1M dataset, the exhaustive

search takes 21000×more time on an average). Although KD-tree, DPT-KD-tree and

PP-KD-tree yield better recall values than HNSW, DPT-HNSW and PP-HNSW respec-

tively, the retrieval times required by KD-tree based ANN approaches (e.g. KD-tree,

DPT-KD-tree and PP-KD-tree) are higher than the same of HNSW based ANN ap-
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proaches (e.g. HNSW, DPT-HNSW and PP-HNSW).

As in the preceding Chapter, here also we have conducted the McNemar’s test (χ2

test) (refer to Section 4.4.2 for details) to compare the retrieval accuracies of differ-

ent ANN-based approaches. The null hypothesis has been formulated as the per-

formance of two retrieval methods (which are under consideration) are same. The

significance threshold has been set at 0.05, i.e., if the observed p-value is found to be

less than the chosen significance level, the null hypothesis gets rejected. Table 8.2

presents the caparative results based on McNemar’s test on different synthetic and

real datasets. Here, it may be observed that the p-values of the McNemar’s test for

HNSW vs. KD-tree are greater than 0.05 on all the datasets under consideration bar-

ring only the Traject-1M dataset. Such an observation is somewhat true for all other

comparisons included in the same Table. Thus, it may be concluded that there is

no significant difference in the performance of relevant privacy preserving computa-

tional approaches.

8.4.2 Parameter Sensitivity Analysis

Figure 8.3 presents the sensitivity of two parameters for privacy preserving data en-

coding namely p, dimension of set of basis vectors B andM , number of quantization

grids on PP-HNSW and PP-KD-tree. From the figure, we observe that increasing the

number of quantization grids increases recall values. However, we also note that it is

not required to increase the value ofM in some arbitrary way because the results tend

to saturate out with the use ofM = 128 for Traject-10K and Traject-100K datasets and

the value M = 1024 for Traject-1M dataset. Since the density of Check-in dataset is

higher than those of the synthetic ones (see Table 4.3), the number of grids required

to achieve satisfactory recall values is also higher for this dataset and Figure 8.3 shows

that about 1M grids required in both PP-HNSW and PP-KD-tree to obtain satisfactory

recall values.

In Figure 8.4, we observe that by increasing the value of r, we can obtain better

recall value. However, this leads to an increase in the retrieval time and we have also

found that r = 100 gives near optimal results in all datasets within satisfactory re-
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Figure 8.3: Sensitivity of ANN retrieval effectiveness with variations in the projection dimension
(p) and the number of quantization grids (M ).

trieval time.
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Figure 8.4: Sensitivity of ANN retrieval effectiveness with respect to the number of retrieved
users (r) at each timestep.

8.5 Conclusions

In this chapter, we investigated the feasibility of applying standard approximate near-

est neighbor (ANN) search approaches for the task of contact tracing in pandemic

situations. More concretely, given an indexed collection of space-time coordinates

of individuals and a list of infected persons, our task is to retrieve a list of candidate

persons that might be susceptible to the infection since they came in close proximity

(approximately same place and time) with the people already infected. Since location

data for contact tracing could lead to privacy issues, we also propose an encoding and

quantization based obfuscation of the data.

We conduct a set of laboratory-based experiments on data with known ground-

truths. We found that the recall values that could be achieved with ANN-based ap-

proaches are satisfactory. Although the recall levels do decrease with an increase in
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the number of data points, our experiments show that for large datasets ANN based

retrieval can achieve speed-gains of up to 21000×, thus achieving a relative trade-off

between run-time and accuracy. These savings in run-time could be pivotal for early

identification of susceptible cases and carry out necessary measures (e.g. quarantine

the susceptible persons) for the health-care safety of a community. The proposed

workflow also ensures that it is not required to share true user locations for contact

tracing purposes. Instead, such a methodology for contact tracing in pandemic situ-

ations works fairly well with distance-preserving transformation of the data.
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Chapter 9

Conclusions and Future Work

In this thesis, we have presented reports of our study towards preservation of data

privacy in performing two popular machine learning (ML) tasks such as clustering

and classification over cloud platforms. Though, preservation of privacy is not any

significant issue to be studied separately for performing these ML tasks at home, of-

fice or similar environments, the situation is different when the computing platform

is based on the cloud. In cloud environment, data is required to be sent in encoded

form to ensure prevention of any sensitive information leakage. It may so happen

that although some ML algorithms produce better results on certain source data but

the same fail to produce similar results when the data gets encoded before feeding

them as input to the ML tasks. In such cases, users need to search for privacy pre-

serving ML algorithms that are capable of providing acceptable results on the en-

coded data compared to the similar results obtained on the corresponding source

data. Thus, a trade-off between the performance of the ML model and the chances of

sensitive information leakage of the data is required to be adopted. In this last chap-

ter of the present thesis, we conclude our studies by providing an overall analysis of

the findings related to the four research questions formulated by us in the beginning.

Finally, we discuss about an outline of possible future work.
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9.1 Research Questions Revisited

In this section, we revisit the four research questions introduced by us in Chapter 1

of this thesis and present a summary of the solution proposed by us for each of them

in the previous chapters.

9.1.1 Privacy Aware Unsupervised Learning

The motivation behind developing the privacy preserving unsupervised learning al-

gorithm, in particular privacy preserving approximate K-means clustering algorithm

was some important characteristics of the Hamming space, such as:

• We need much smaller memory for storing the Hamming space transformed

vector compare to the real valued representation of that vector.

• The inner product based similarity measure of two binary vectors in the Ham-

ming space is very less expensive than the similarity measure using floating

point operation in Euclidean space.

• The Hamming space representation preserves the privacy of the data in the

sense that it is computationally very difficult to obtain the real valued inverse

representation of the transformed binary vectors.

The first research question, RQ-1, introduced in Chapter 1 is following:

RQ-1: How unsupervised learning algorithm can be re-designed under the con-

straint of privacy preservation to improve the learning effectiveness?

The objective of our first research question RQ-1 was to propose a clustering al-

gorithm on Hamming space which approximates the K-means clustering on the Eu-

clidean space and it preserves the data privacy. In-particular we have used the Ham-

ming space transformation for privacy preservation of the data and proposed a novel

approach for centroid re-computation of K-means algorithm on the Hamming space.

In the proposed algorithm we have used the projection statistics along the basis vec-

tors (used in LSH) collected at the time of Hamming space transformation.
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The first research question RQ-1 is thus addressed by proposing a novel privacy

preserving approximate K-means clustering algorithm. From the proposed solution

of RQ-1 we can conclude that the unsupervised learning can be performed under

privacy preservation constraint by executing it on the Hamming space and the stan-

dard K-means clustering algorithm can be re-design to better perform under privacy

preservation constraint.

9.1.2 Privacy Aware Semi-Supervised Learning

Successful exploration of the first research question RQ-1 on unsupervised learning

motivated us to study semi-supervised learning algorithm under privacy preserva-

tion constraints to achieve a better result that the unsupervised learning. Thus, the

second research question, RQ-2, on privacy preserving semi-supervised learning, in-

troduced in Chapter 1, is given by:

RQ-2: How the effectiveness of privacy preserving clustering on discrete metric

space can be improved with weak supervision on the encoding transformation?

We call the proposed algorithm of the solution of RQ-2 as a semi-supervised clus-

tering algorithm in the sense that, we are using a fraction of original data to learn a

dense encoding of the privacy preserving binary encoding of the dataset. It is to be

noted that we are not using the ground truth label of the dataset in any step of the

algorithm.

The main objective of our proposed solution of the second research question RQ-

2 was to generate a dense embedding of the binary encoding of input data such that

the clustering algorithm on the dense representation of the data yields better results

than that of on binary representation of the data. Thus, we proposed an encoding-

based workflow of data clustering that preserves data privacy and it is suitable for

deployment in a distributed computing environment, where most of the computa-

tion is conducted at the server side on encoded data. In our proposed solution a

weakly supervised approach is used to learn a parameterized similarity function with
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the application of triplet networks on a small seed set of data to guide the clustering

process at the server side.

9.1.3 Privacy Aware Supervised Learning

The third research question which we have explored in this thesis is about exploring

the usefulness of supervised learning against information stealing attacks.

RQ-3: How supervised learning can be used to defend the malicious attempts of

stealing sensitive information from data shared on cloud platforms?

To explore the solution of this research question, in Chapter 7 we propose an in-

formative subspace based multi-objective framework.

The primary feature of our proposed framework are as follows:

• Encode data so that the encoded representation provides resilience against in-

formation stealing attacks.

• Useful for sharing data in a software-as-a-service (SaaS) environment where the

computations (e.g. parameter updates) is conducted at the server side.

• A general multi-objective based solution that is able to leverage from the most

informative feature subspace to achieve an effective encoding.

Thus the primary goal of our multi-objective based approach is to generate a pri-

vacy aware encoding of the data which minimize the chances of sensitive information

leakage.

We evaluated our proposed model and other baseline methods on two image

datasets, namely Morpho-MNIST, Skin Cancer MNIST and one text dataset, namely

Trustpilot (US English) to show the effectiveness of our proposed solution and found

that our proposed solution outperforms compared to other baselines.

9.1.4 Privacy Aware Approximate Nearest Neighbour Search

After the exploration of unsupervised, semi-supervised and supervised learning un-

der privacy preservation constraints we have explored the usefulness of applying ap-
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proximate nearest neighbour under privacy preservation constraints. Thus our last

research question investigated in this thesis is following:

RQ-4: What is the feasibility of applying approximate nearest neighbour (ANN)

based indexing and retrieval approaches under privacy preservation constraints

to obtain a list of top-k suspected users, who might be infected by an infectious

disease, in real time during pandemic?

We have proposed the solution of this research question RQ-4 in the Chapter 8.

The main highlights of our proposed solution of the research question RQ-4 are fol-

lowing:

• Encoded the data so that the encoded representation provides resilience against

information stealing attacks.

• Useful for sharing data in a software-as-a-service (SaaS) environment where the

computations (e.g. parameter updates) is conducted at the server side.

• Investigated the feasibility of applying approximate nearest neighbour (ANN)

based indexing and retrieval approaches to obtain a list of top-k suspected users

with infectious disease in real-time.

• Experiments conducted on standard retrieval task using real and synthetic datasets

demonstrate the efficacy of the ANN method in simulated epidemics to identify

susceptible infected persons.

9.2 Future Work

While this thesis has explored various privacy aware machine learning techniques, in

particular we focus on improvement of a supervised classification model in addition

to the K-means clustering algorithm under privacy preservation constraints, there re-

main a number of scope for future work, which we believe deserves more exploration.

Chapter 5: For privacy aware unsupervised learning we have focused on the most

popular clustering algorithm K-means and it is observed that some additional statis-
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tical information can improve the effectiveness of K-means clustering under privacy

preservation constraints.

In future, we would like to address privacy preservation constraints for other clus-

tering methods, e.g. DBSCAN, and also formalize the notions of differential privacy

under such a setup.

Chapter 6: Similar to the unsupervised learning, for privacy aware semi-supervised

learning also we have focused on the improvement of the K-means clustering algo-

rithm in a discrete metric space and found that deep metric learning with weak su-

pervision on a small seed set of data leading effective encoding of the data, yields

better K-means clustering.

In future, we would like to explore ways of obtaining effective results on other

privacy-aware machine learning tasks, e.g., reinforcement learning etc.

Chapter 7: For privacy aware supervised learning we have proposed an informa-

tive subspace based multi-objective approach to produce a privacy aware encoding

of the input data where the sensitive attributes are explicitly annotated for training

data and found that this encoding minimizes the privacy leakage without compro-

mising too much on the effectiveness of the primary task.

In future studies, we would like to explore the possibility of obtaining a privacy-

preservation encoding scheme of the input data in those cases where the sensitive

attributes are latent rather than being manifested as explicitly annotated identifiable

attributes (i.e., to address the situation when the attribute value annotations are not

available in the training set). Unsupervised analysis of the input space coupled with

a semi-supervised encoding approach can potentially be useful to tackle such a situ-

ation.

Chapter 8: It has dealt with the problem of locating the persons who had recently

come in close contact of a person diagnosed positive of the infectious virus during a

pandemic scenario using their geo-location trace. As this geo-location trace is a sen-

sitive information of the persons involved, so we have proposed a privacy preserving

strategy to perform this retrieval task. This strategy requires the data to be sent in an

encoded form to the server offering computational service for the retrieval task. The
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proposed privacy preserving retrieval strategy has used LSH based transformation

function followed by a quantization transformation to produce the encoded data for

retrieval of required information based on HNSW and KD-tree. approaches

In future studies, we plan to explore differential privacy preservation strategies for

the same contact tracing problem of the pandemic scenario.

9.3 Closing Remarks

It will not be an exaggeration of the fact if we claim that the study performed in this

thesis has set a new direction of research in the area of privacy preserving machine

learning through the exploitation of Hamming space transformation as well as the

information on the importance of various components of the encoded vector repre-

sentation. We hope that the results of the experimentation performed by us will en-

courage other researchers working in the area of privacy-preserving machine learn-

ing to continue further studies in the same direction and explore prospective new

applications. A few possible applications of privacy-preserving machine learning are

discussed below.

1. Privacy-preserving machine learning can be used in traffic analysis as well as

route optimization without compromising the drivers’ privacy.

2. In applications of NLP, text data from the users is processed to extract its insights

or sentiment analysis. The goal of privacy-preserving machine learning is main-

tenance of the confidentiality of user identity or his/her private information in

the course of processing similar data.

3. In smart grid systems, privacy-preserving machine learning can be used to an-

alyze the power consumption patterns without revealing the sensitive informa-

tion of the consumers.

4. Image and video data often contain sensitive information of the users. Privacy

preserving machine learning can be used to process the images and videos with-

out compromising individual user’s identity and other sensitive information.
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