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Chapter 1

Introduction

Abbreviations

rv random variable
rs random sample
id identically distributed
iid independent and identically distributed
d.i.d. dependent and identically distributed
pdf probability density function
cdf cumulative distribution function
edf empirical distribution function
sf survival function
qf quantile function
hr hazard rate
rhr reversed hazard rate
MRL mean residual life
MPL mean past life
WMRL weighted mean residual life
WMPL weighted mean past life
MLE maximum likelihood estimate
MSE mean square error
CRE cumulative residual entropy
CE cumulative entropy
CREx cumulative residual extropy
WCRE weighted cumulative residual entropy
WCE weighted cumulative entropy
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GWSE generalized weighted survival entropy
GWFE generalized weighted failure entropy
GDWSE generalized dynamic weighted survival entropy
GDWFE generalized dynamic weighted failure entropy
IGDWSE increasing generalized dynamic weighted survival entropy
DGDWFE decreasing generalized dynamic weighted failure entropy
WCTRE weighted cumulative Tsallis residual entropy
WCTPE weighted cumulative Tsallis past entropy
DWCTRE dynamic weighted cumulative Tsallis residual entropy
DWCTPE dynamic weighted cumulative Tsallis past entropy
IDWCTRE increasing dynamic weighted cumulative Tsallis residual entropy
DDWCTPE decreasing dynamic weighted cumulative Tsallis past entropy
CRKL cumulative residual Kullback-Leibler information
WCRKL weighted cumulative residual Kullback-Leibler information
CKL cumulative Kullback-Leibler information
WRKL weighted cumulative Kullback-Leibler information
WSEx weighted survival extropy
DWSEx dynamic weighted survival extropy
WESEx weighted extended survival extropy
DWESEx dynamic weighted extended survival extropy
NCEx negative cumulative extropy
WNCEx weighted negative cumulative extropy

Notations
X underlying random variable
f (x) pdf of X
F(x) cdf of X
S(x) sf of X
Fn(x) edf of X
E(X) expectation of X
λF(·) hr function of a rv having cdf F
rF(·) rhr function of a rv having cdf F
mF(·) MRL function of a rv having cdf F
µF(·) MPL function of a rv having cdf F
mw

F(·) WMRL function of a rv having cdf F
µF(·) WMPL function of a rv having cdf F
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H(X) Shannon entropy for continuous case or differential entropy
H(X ; t) residual Shannon entropy
H̄(X ; t) past Shannon entropy
Hw(X) weighted Shannon entropy
Hθ (X) Renyi entropy of X of order θ

Tθ (X) Tsallis entropy of X of order θ

CRE(X) cumulative residual entropy of X
CE(X) cumulative entropy of X
CREw(X) weighted cumulative residual entropy of X
CEw(X) weighted cumulative entropy of X
CRE(X ; t) dynamic cumulative residual entropy of X
CE(X ; t) dynamic cumulative entropy of X
CREw(X ; t) dynamic weighted cumulative residual entropy of X
CEw(X ; t) dynamic weighted cumulative entropy of X
ξ w

θ1,θ2
(X) GWSE of X of order (θ1,θ2)

ξ w
θ1,θ2

(X ; t) GDWSE of X of order (θ1,θ2)
f ξ w

θ1,θ2
(X) GWFE of X of order (θ1,θ2)

f ξ w
θ1,θ2

(X ; t) GDWFE of X of order (θ1,θ2)
ξ̂ w

θ1,θ2
(X) non-parametric estimator of GWSE of X

ˆf ξ
w
θ1,θ2

(X) non-parametric estimator of GWFE of X
ξθ (X) CTRE of X
ξ̄θ (X) CTPE of X
ξ w

θ
(X) WCTRE of X

ξ w
θ
(X ; t) DWCTRE of X

ξ̄ w
θ
(X) WCTPE of X

ξ̄ w
θ
(X ; t) DWCTPE of X

ξ̂ w
θ
(X) empirical WCTRE of X

ˆ̄
ξ w

θ
(X) empirical WCTPE of X

CRKLw(X ,Y ) WCRKL between X and Y
CRKLw(X ,Y ; t) dynamic WCRKL between X and Y
CKLw(X ,Y ) WCKL between X and Y
CKLw(X ,Y ; t) dynamic WCKL between X and Y
J(X) extropy of X
ξ J(X) CREx of X
Jw(X) weighted extropy of X
ξ wJ(X) WCREx of X
s signature vector
JCREx (T : X1:n, · · · ,Xn:n) Jensen-cumulative residual extropy divergence

between T and X1:n, · · · ,Xn:n.
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ξ J1
Fn
(X) edf based non-parametric estimator of CREx

ξ J2
Fn
(X) L- Statistics estimator of CREx

ξ J3
Fn
(X) Kernel based estimator of CREx

ξ Jw(X) WSEx of X
ξ Jw(X ; t) DWSEx of X
C (X) NCEx of X
C w(X) WNCEx of X
ξ Jε(X) WESEx of X
ξ Jε(X ; t) DWESEx of X
ξ Jε(Fn) edf based non-parametric estimator of WESEx
ξ Jε(Fn; t) non-parametric estimator of DWESEx
C w(F̂n) non-parametric estimator of WNCEx
ξ Jw(Ŝn) recursive kernel based estimator of WSEx for d.i.d. observations
H1···r:n Shannon entropy of first r order statistics
H1···m:m:n Shannon entropy of progressive type-II censored order statistics
CRE1···r:n CRE of first r order statistics
CRE1···m:m:n CRE of progressive type-II censored order statistics
CEs···m:n CE of last (n− s+1) order statistics
PCII Progressive type-II
PCOS Progressively type-II censored order statistics
COD Compound optimal design

1.1 Literature review

INFORMATION theory is a branch of applied probability and statistics that studies vari-
ous aspects of information such as processing, transmission, compression etc. Entropy is by
far regarded as the most important concept in information theory which was first introduced
by physicists in the context of equilibrium thermodynamics. Boltzmann provided a formal
definition of entropy that represents the disorder between particles of a microscopic system.
Shannon (1948) proposed entropy measure for a discrete random variable (rv) X that takes
values {x1,x2, · · · ,xn} with probabilities P = {p1, p2, · · · , pn} as

H(P) =−
n

∑
i=1

pi log pi. (1.1)
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For a continuous rv X , entropy is defined as

H(X) =−
∫

A
f (x) log f (x)dx, (1.2)

where log is the natural logarithm, 0 log0 = 0 for computational convenience, f is the prob-
ability density function (pdf) of X and A is the support of X . It is also known as the differen-
tial entropy. Shannon (1948) introduced entropy as a measure of uncertainty associated with
probability distribution of the underlying rv. Higher values of entropy of a rv X means the
probability distribution of X will represent more uncertainty. Also entropy has been widely
regarded as a measure of information conveyed by the underlying distribution. According
to Rényi (1961), “the amount of information which we get when we observe the result of
an experiment (depending on chance) can be taken numerically equal to the amount of un-
certainty concerning the outcome of the experiment before carrying it out.” Jaynes (1968)
stated that, “the probability distribution which maximizes the entropy is numerically iden-
tical with the frequency distribution which can be realized in the greatest number of ways”.
When inference has to be made on the basis of prior knowledge, the maximum entropy dis-
tribution subject to the given constraint will be the best model available, see Jaynes (1982).
This is also supported by the fact that many popular distributions possess maximum en-
tropy property given appropriate constraint. For example, normal distribution has the maxi-
mum entropy among all continuous distributions having the same 2nd raw moment (E(X2)).
Among all non-negative continuous distributions having the same mean, exponential distri-
bution has the maximum entropy. For detailed discussions on maximum entropy inference
see Jaynes (1968, 1982), Burnham and Anderson (2004) and the references therein where
both intuitive and mathematical arguments are provided for the interpretation of entropy as
an information measure. In probability and statistics, distributions with higher entropy are
considered better than the ones having lower entropy. Throughout the course of this thesis
all the random variables are assumed to be non-negative and absolutely continuous and by
increasing (decreasing) we mean non-decreasing (non-increasing) unless otherwise speci-
fied.

Shannon’s work on entropy gave rise to a new branch of applied probability with use-
ful applications in a variety of fields such as economics, thermodynamics, statistical me-
chanics, mathematical biology, signal processing, statistics and reliability. An enormous
amount of research has been carried out over the years by many scholars on generalizations
of Shannon entropy and their applications. Some important ones are due to Rényi (1961),
Varma (1966), Tsallis (1988) and Mathai and Haubold (2007). For two independent rvs X
and Y , the joint entropy H(XY ) = H(X)+H(Y ). This means that entropy is additive in
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nature. Renyi entropy of X is defined as

Hθ (X) =
1

1−θ
log
∫ +∞

0
f θ (x)dx, 0 < θ ̸= 1. (1.3)

It is easy to see that as θ → 1, Hθ (X)→ H(X). Generalization parameter θ makes Renyi
entropy more flexible and it preserves the additive property of H(X). Another important
generalization of H(X) is Tsallis entropy which is given by

Tθ (X) =
1

1−θ

(∫ +∞

0
f θ (x)dx−1

)
, 0 < θ ̸= 1. (1.4)

Tsallis entropy reduces to Shannon entropy when θ → 1. Renyi and Tsallis entropy are
related through

Hθ (X) =
1

1−θ
log(1− (θ −1)Tθ (X)) .

The difference between the two measures is that one additive but the other is non-additive.
It follows from Eq. (1.4) that,

Tθ (X ·Y ) = Tθ (X)+Tθ (Y )+(1−θ)Tθ (X)Tθ (Y ).

The advantages of using Tsallis entropy over Renyi entropy in generalized statistical me-
chanics are explained in detail in Beck (2009). They noted that Tsallis entropy satisfies
concavity and Lesche stability properties that Renyi entropy does not possess. Tsallis en-
tropy is more useful than Shannon entropy in studying information of complex correlated
systems where Tsallis entropy becomes additive but Shannon entropy does not (Tsallis et al.,
2005). Wilk and Włodarczyk (2008) studied situations where information can be computed
only by Tsallis entropy as Shannon entropy fails to do so.

Entropy defined in Eq. (1.1) is always positive but differential entropy (entropy for
continuous cases) may be negative. Differential entropy has some drawbacks such as it
can not be defined for distributions that do not have densities. For discrete rvs X and Y ,
conditional entropy of X given Y is zero if and only if (iff) X is a function of Y . However,
differential conditional entropy of X given Y is zero does not necessarily imply that X is a
function of Y . For practical usage, approximation based on empirical distribution function
(edf) has great significance among researchers due to its simplicity and convergence to the
real value. But for differential entropy, one can not estimate it by edf. Rao et al. (2004)
extended differential entropy by replacing the densities with the survival function (sf) of the
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rv. This measure is called cumulative residual entropy (CRE) and is defined as

CRE(X) =−
∫ +∞

0
S(x) logS(x)dx, (1.5)

where S is the sf of X . The CRE overcomes the above mentioned challenges that dif-
ferential entropy faces and it possesses fundamental properties that Shannon entropy has.
Like Shannon entropy, CRE is always non-negative and it increases by adding independent
components (observations) and decreases by conditioning. Apart from that, CRE also pos-
sesses some useful properties such as it can be defined for both discrete and continuous rvs
and can be easily estimated by the edf. Also CRE(X |Y ) = 0 iff X is a function of Y where
CRE(X |Y ) is the conditional CRE of X given Y . Analogous to CRE, Di Crescenzo and
Longobardi (2009) proposed cumulative entropy (CE) measure as

CE(X) =−
∫ +∞

0
F(x) logF(x)dx, (1.6)

where F is the cumulative distribution function (cdf) of X . While CRE is used to measure
information related to future lifetime of systems, CE is more suitable to measure information
regarding past system lifetime.

Entropy, CRE and CE measures are defined using the pdf, sf and cdf of the rvs under
consideration. They only considered the quantitative (i.e. probabilistic) information but in
many applied fields it is often required to consider qualitative characteristics or the utility of
the random events as well. For example, in a two person game, it is necessary to take into
account the various random strategies (quantitative) of the players involved as well as the
gain or loss (qualitative) corresponding to the chosen strategy. Noticing the importance of
qualitative characteristics of the random events in various applied fields, Belis and Guiasu
(1968) introduced the concept of weighted entropy by assigning non-negative weights to
each event based on their utility. For further details and applications on weighted entropy
measure, see Guiasu (1971, 1986). For the continuous case, weighted differential entropy
can be defined as

Hw(X) =−
∫ +∞

0
x f (x) log f (x)dx, (1.7)

where the factor x is the linear weight function that gives more importance to the larger
values of the rv X . Weighted entropy can be generalized by using different weight functions
depending on the utility of the events. Non-weighted information measures are position
free in the sense that they do not depend on the change of location of the rv. In other words,
they are the same for X and X + µ , where µ is a constant. But Hw(X) is not a position
free measure. It is a shift-dependent measure of information. Misagh et al. (2011) proposed
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weighted CRE and CE measures and studied various properties.
In reliability study, a component or a system is better than the other if it survives more

than the other counterparts. An experimenter has the information about the current age of a
system. Therefore, it is necessary to have knowledge about the residual life of the system.
Usually, hazard rate (hr) and mean residual life (MRL) function are used for this purpose.
The differential entropy is not a suitable measure to analyze residual lifetime. Ebrahimi
(1996) proposed an extension of differential entropy to the residual lifetime of the system
which is called dynamic residual entropy measure. Suppose a rv X has survived upto time t,
then the residual lifetime at t is defined as Xt = [X − t|X > t]. The residual Shannon entropy
of X is the differential entropy of the residual rv Xt and it is defined as

H(X ; t) =−
∫ +∞

0

f (x)
S(t)

log
f (x)
S(t)

dx. (1.8)

Note that f (x)
S(t) is the pdf of Xt , H(X ; t) is a function of time (age) and H(X ;0) = H(X). Like

hr and MRL, it also uniquely determines the underlying distribution. Now suppose at an
inspection time t, a system is not working. Then one needs to study the past lifetime of the
system to determine the reason for failure. So analysis of past lifetime is also an important
topic in reliability. The past lifetime at time t is defined as tX = [t −X |X < t]. The past
Shannon entropy measure was suggested by Di Crescenzo and Longobardi (2002) which is
defined as

H̄(X ; t) =−
∫ +∞

0

f (x)
F(t)

log
f (x)
F(t)

dx, (1.9)

where f (x)
F(t) is the pdf of the past lifetime tX and H̄(X ;0) = H(X). Dynamic entropy mea-

sures are mainly used in reliability for developing various ageing classes and characteri-
zations of life distributions such as exponential, Rayleigh, power and generalized Pareto
distributions. Dynamic versions of cumulative entropies are also studied extensively in the
literature. The dynamic cumulative residual entropy (DCRE) was introduced by Asadi and
Zohrevand (2007) and dynamic cumulative entropy (DCE) was proposed by Di Crescenzo
and Longobardi (2009). Over the years, many generalizations of cumulative entropy and
their dynamic version are considered along with their potential applications in the field of
image processing, actuarial science, statistics and reliability. One may refer to Abbasnejad
et al. (2010), Abbasnejad (2011), Kumar and Taneja (2011), Sunoj and Sankaran (2012),
Psarrakos and Navarro (2013), Kayal (2015), Sati and Gupta (2015), Xiong et al. (2019)
and the references therein. Extensive works on weighted entropy measures are also avail-
able in the literature. See, for example, Mirali et al. (2017), Mirali and Baratpour (2017),
Kayal (2018), Khammar and Jahanshahi (2018) and Tahmasebi (2020).
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Recently, Lad et al. (2015) introduced an alternative measure of information called ex-
tropy. Extropy is the complementary dual of entropy measure and for the discrete case it is
defined as

J(P) =−
n

∑
i=1

(1− pi) log(1− pi), (1.10)

where pi’s are the same as defined earlier. They found that extropy possesses some prop-
erties similar to entropy such as maximum extropy distribution is the uniform distribution
and it is invariant under monotone transformations and permutations of its probability mass
function (pmf). Entropy and extropy of binary distributions are the same and the duality
between them is expressed by the relation

H(P)+ J(P) =
n

∑
i=1

H(pi,1− pi) =
n

∑
i=1

J(pi,1− pi). (1.11)

One major difference between entropy and extropy is that the scale of maximum entropy
(logn) is unbounded but the scale of maximum extropy

(
(n−1) log( n

n−1)
)

is 1 for n →+∞.
Extropy is also defined for continuous rvs by Lad et al. (2015). If pi’s are small, then
J(P)≈ 1− 1

2 ∑
n
i=1 p2

i and based on this result the extropy for continuous rvs is defined as

J(X) =−1
2

∫ +∞

0
f 2(x)dx. (1.12)

Lad et al. (2015) used extropy in combination with entropy to develop a new logarithmic
scoring rule called total logarithmic scoring rule for forecasting alternative distributions.
For more details on extropy, see Lad et al. (2015). Motivated from the work of Rao et al.
(2004), cumulative residual extropy (CREx) measure has been proposed in the literature by
Jahanshahi et al. (2020) as

ξ J(X) =−1
2

∫ +∞

0
S2(x)dx. (1.13)

Recently, Balakrishnan et al. (2022) proposed the shift-depended (weighted) extropy mea-
sure as

Jw(X) =−1
2

∫ +∞

0
x f 2(x)dx. (1.14)

Ever since its introduction, extropy has become very popular among statisticians and exten-
sive research has been performed on extropy, dynamic extropy and their various generalized
measures. Interested readers may refer to Qiu (2017), Qiu and Jia (2018b), Jose and Sathar
(2019), Kamari and Buono (2021), Sathar and Nair R (2021), Nair and Sathar (2020), and
Sathar and Nair (2021a,b).
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1.2 Applications of information measures in reliability and
statistics

Information measures have applications in many fields from theoretical physics (see Dong
(2016), Nishioka (2014), Saridakis et al. (2018)) to portfolio optimizations in actuarial sci-
ence (see Mercurio et al. (2020), Li and Zhang (2021)). Statistics and reliability are no ex-
ceptions and here we will focus our attention towards the applications of different informa-
tion measures in reliability and statistics. First consider the relative entropy also known as
the Kullback-Leibler (KL) divergence measure (Kullback and Leibler, 1951) that is widely
used as a measure of closeness between two densities. The KL information measure be-
tween two rvs X and Y with densities f and g is defined as

K(X ,Y ) =
∫ +∞

0
f (x) log

f (x)
g(x)

dx. (1.15)

It is important to note that K(X ,Y )≥ 0 and equality holds iff f (x) = g(x), ∀x > 0. Entropy
and KL information measures are used quite extensively in statistical inference. Normality
tests and other general purpose goodness-of-fit tests are derived using sample entropy and
KL information measures. Vasicek (1976) first proposed a consistent estimator of entropy
based on sample observations and performed normality tests. Other entropy based normal-
ity tests can be found in Prescott (1976), Esteban et al. (2001), Alizadeh Noughabi (2010)
and Zamanzade and Arghami (2012). Dudewicz and Van Der Meulen (1981) studied en-
tropy based uniformity test and a general purpose goodness-of-fit test statistic is developed
using entropy by Gokhale (1983). Entropy based exponentiality tests are considered by
Ebrahimi et al. (1992), Crzcgorzewski and Wirczorkowski (1999) and Taufer (2002). Like
KL information measures, many closeness measures are introduced based on Renyi, Tsallis
and cumulative entropy measures. Baratpour and Rad (2012) proposed cumulative residual
Kullback-Leibler (CRKL) information measure and construct exponentiality test. Recently,
Mehrali and Asadi (2021) developed a new method of estimation by minimizing CRKL.
The extropy measure defined in Eq. (1.12) also has applications in various testing prob-
lems. Using maximum extropy principle, Qiu and Jia (2018a) developed uniformity tests
based on extropy of order statistics and record values, Noughabi and Jarrahiferiz (2022) and
Xiong et al. (2021) developed test of symmetry. Recently, an exponentiality test based on
extropy of record statistics was studied by Xiong et al. (2022). Jahanshahi et al. (2020)
used CREx as a measure of independence and Hashempour et al. (2022) performed testing
equality between two cdfs using weighted CREx measure.
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In reliability and life-testing, information measures gain quite popularity in recent years
due to their huge potential of applicability in numerous problems in the said field. In life-
testing, the concept of censoring plays an important role. In conducting a life-testing ex-
periment, it is not feasible to continue the experiment until all the items fail because the
experiment may run for a very long time and also the cost of the experiment will increase
significantly. This is the reason various censored experiments are performed. Some com-
monly used censoring are Type-I, Type-II, hybrid censoring and progressive censoring. We
will briefly discuss various censoring experiments later. An important problem a reliability
practitioner often faces is goodness-of-fit tests for various distributions based on censored
data. Extropy, extropy and related information measures are used in reliability to develop
goodness-of-fit tests under various censoring experiments. Using KL and CRKL measures,
Park (2005), Park and Lim (2015) proposed goodness-of-fit tests for exponential distribu-
tion for Type-II censored data. Exponentiality tests for Type-I and hybrid censored data
are suggested by Pakgohar et al. (2020) and Noughabi and Chahkandi (2018), respectively,
using different information measures. For exponentiality tests under progressively Type-II
censored data based on various entropy measures, see Balakrishnan et al. (2007), Park and
Pakyari (2015), Baratpour and Rad (2016) and Noughabi (2017). Recently, entropy and
extropy are used to perform uniformity tests for Progressively Type-II censored samples,
see Hazeb et al. (2021a) and Hazeb et al. (2021b). Based on the dynamic information mea-
sures, many aging classes are proposed in the literature and characterization results for some
life distributions such as uniform, exponential, Rayleigh, Power and generalized Pareto are
obtained.

In reliability engineering, information measures are used for measuring complexity of
systems i.e. how far away a system is, in terms of complexity, than a k-out-of-n system
having the same number of components. Asadi et al. (2016) proposed Jensen-Shannon
information measure for comparing coherent systems. They also studied the complexity
of coherent systems. Similar studies are performed in terms of extropy (Jensen-Extropy)
measure by Qiu et al. (2019). Toomaj et al. (2017) studied CRE of coherent and mixed
systems and they proposed a new ordering to compare two systems when usual stochastic
order comparisons can not be made. Applications of information measures in "used but still
working" systems can be found in Toomaj et al. (2021).

1.3 Preliminary concepts

Here we provide basic definitions of some preliminary concepts that are used in reliability
analysis. We will use them throughout the course of this thesis. Also we mention some
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important inequalities which we use throughout the course of the thesis.

1.3.1 Hazard rate

The conditional probability that an item will fail in (t, t +∆ t), given that the item has sur-
vived upto time t, is given by

P(t < X < t +∆ t|X > t) =
F(t +∆ t)−F(t)

S(t)
.

Then, the hr function can be defined as

λF(t) = lim
∆ t→0+

P(t < X < t +∆ t|X > t)
∆ t

=
f (t)
S(t)

, [for continuous rvs]. (1.16)

It is also called instantaneous failure rate. The hr function uniquely determines the underly-
ing distribution function by the relation

S(t) = exp
(
−
∫ t

0
λF(u)du

)
.

It has many applications in reliability analysis in characterizing distributions, developing ag-
ing classes and many testing problems, see Barlow and Proschan (1975), Nanda and Shaked
(2001) and Noughabi et al. (2013).

1.3.2 Reversed hazard rate

The reversed hazard rate (rhr) function of a rv X is defined as

rF(t) = lim
∆ t→0+

P(t < X < t +∆ t|X > t)
∆ t

=
f (t)
F(t)

, [for continuous rvs]. (1.17)

Like λF(t), rhr function also uniquely determines the distribution through the relationship

F(t) = exp
(
−
∫ +∞

t
rF(u)du

)
.

For detailed discussions and applications of rF(t), one may refer to Gupta and Nanda (2001),
Nanda and Shaked (2001) and Kundu and Ghosh (2017).
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1.3.3 Mean residual and mean past life

Mean residual life function (MRL) of a rv variable X is the expected value of the residual
rv Xt . It can be defined as

mF(t) = E[X − t|X > t] =
∫ +∞

t

S(x)
S(t)

dx. (1.18)

The mean past life function (MPL), also known as mean inactivity time function (MIT), of
X is the expectation of the inactivity time tX . It is given by

µF(t) = E[t −X |X < t] =
∫ t

0

F(x)
F(t)

dx. (1.19)

1.3.4 Weighted mean residual and mean past life

Misagh et al. (2011) first introduced the weighted MRL and MPL functions for obtaining
bounds of weighted CRE and CE measures. These functions are often used along with
dynamic cumulative information measures for characterizations of Rayleigh and power dis-
tributions. The weighted MRL (WMRL) of a rv X is defined as

mw
F(t) =

∫ +∞

t
x

S(x)
S(t)

dx. (1.20)

Note that, m∗
F(0) =

∫+∞

0 xF̄(x)dx = 1
2E(X2). The weighted MPL (WMPL) is given by

µ
w
F (t) =

∫ t

0
x

F(x)
F(t)

dx. (1.21)

Recently, analysis of WMRL and WMPL functions became a problem of interest among re-
searchers. The relationships between WMRL and WMPL with other functions like variance
and some generalized informations measures can be found in Toomaj and Di Crescenzo
(2020) and Di Crescenzo and Toomaj (2022). They also proposed extensions of WMRL
and WMPL measures and provide various applications.

1.3.5 Inequalities

Bernoulli inequality

Bernoulli inequality has many different variants and the one we will use states that, for θ ≥ 1
and 0 ≤ u ≤ 1,

(1−u)θ ≥ 1−uθ .
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Markov inequality

For a non-negative continuous rv X Markov inequality states that

P(X ≥C)≤ E(X)

C
,

where C > 0 is a constant.

Log-sum inequality

Suppose a non-negative continuous rv X has support A and f and g are positive functions
then ∫

A
f (x) log

(
f (x)
g(x)

)
dx ≥

(∫
A

f (x)dx
)

log
∫

A f (x)dx∫
A g(x)dx

.

1.3.6 Stochastic orders

Here we provide definitions of some basic stochastic orderings which will be utilized later.
Consider the following definitions. For details one may refer to Shaked and Shanthikumar
(2007).

Definition 1.3.1. Let X1 and X2 be two rvs with sfs S1 and S2, respectively. Then X1 is

smaller than X2 in stochastic ordering, denoted by
st

X1 ≤ X2, if S1(x)≤ S2(x), for all x.

Definition 1.3.2. X1 is smaller than X2 in hazard rate ordering, denoted by
hr

X1 ≤ X2, if
λF(t)≥ λG(t), ∀t ≥ 0 or equivalently Ḡ(t)

F̄(t) is increasing in t.

Definition 1.3.3. X1 is smaller than X2 in rhr ordering, denoted by
rh

X1 ≤ X2, if rF(t)≤ rG(t),
∀t ≥ 0 or equivalently G(t)

F(t) is increasing in t.

Definition 1.3.4. Let X1 and X2 be absolutely continuous rvs having pdfs f and g and sfs S1

and S2, respectively. Then X1 is said to be smaller than X2 in dispersive order, denoted by

X1
disp
≤ X2, if f (S−1

1 (v))≥ g(S−1
2 (v)), 0 < v < 1.

1.4 Salient features of the thesis

Salient features of the thesis are as follows:

1. We propose various weighted generalized cumulative information measures along
with their dynamic versions and study numerous properties and bounds. Character-
ization results for Rayleigh and power distributions are obtained using the dynamic
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measures. Characterizations for distributions in terms of information of the small-
est and largest order statistics are also developed. New aging classes based on the
dynamic information measures are proposed.

2. We investigate different methods of estimation of the proposed measures as well as
some existing cumulative measures of information. Various non-parametric estima-
tors of the measures are proposed throughout the course of this thesis, their asymptotic
properties are studied and their performances are investigated by simulation.

3. One important feature of the thesis is the variety of applications, of the proposed
and existing information measures, that are considered throughout the course of this
thesis. The majority of the said applications are concerned in the context of statistics
and reliability. Goodness-of-fit tests for exponential and uniform distributions and
testing equality between two cdfs are developed. Some potential applications in the
field of actuarial science and model discrimination are also discussed.

4. Applications in system reliability are investigated using information measures. New
method of analyzing system complexity is proposed and comparisons between two
systems are studied when usual stochastic ordering can not be implemented. Appli-
cations involving redundancy are also considered.

5. Optimal life testing plans for progressive Type-II censored experiments are developed
by maximizing new cumulative entropy based design criteria. Maximum cumulative
residual entropy design subject to cost constraint is studied. Also compound opti-
mal design strategy is implemented where cumulative entropy and cost is optimized
simultaneously.

1.5 The summary of the thesis

The chapter-wise summary of the thesis is presented in the following.

[Chapter 2] Generalized weighted survival and failure entropies and their dynamic
versions

In this Chapter, two new information measures called generalized weighted survival
entropy (GWSE) and generalized weighted failure entropy (GWFE) are proposed. The
dynamic versions of these proposed measures are also introduced. For a rv X , GWSE of
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order (θ1,θ2) is defined as

ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log
∫ +∞

0
xSθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

We define the GWFE measure for a rv X with finite support [0, l], as

f ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log
∫ l

0
xFθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

The advantages of these weighted measures are shown and their properties are studied. The
dynamic GWSE is defined as

ξ
w
θ1,θ2

(X ; t) =
1

θ2 −θ1
log
∫ +∞

t
x

Sθ1+θ2−1(x)
Sθ1+θ2−1(t)

dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

We propose new stochastic ordering based on these measures and also propose new aging
classes using the dynamic information measures. The dynamic GWSE and GWFE measures
uniquely determine the underlying distribution. Characterization results for the Rayleigh
distribution are obtained using ξ w

θ1,θ2
(X ; t) and it is shown that ξ w

θ1,θ2
(X ; t) is constant iff X

follows the Rayleigh distribution. We also study characterization for the power distribution
based on dynamic GWFE measure. More results on characterization using information
of extreme order statistics, some generalized inequalities and stochastic ordering results are
discussed in detail. Non-parametric estimators of GWSE and GWFE measures are proposed
based on edf of the underlying rv. A test of exponentiality is considered using empirical
GWSE as an application.

[Chapter 3] Weighted cumulative Tsallis residual and past entropy measures
In this Chapter, we propose weighted cumulative Tsallis residual entropy (WCTRE) and

its dynamic version and study various properties and bounds. For a rv X , WCTRE is defined
as

ξ
w
θ (X) =

1
θ −1

∫ +∞

0
x
(

S(x)−Sθ (x)
)

dx, 0 < θ ̸= 1.

When θ → 1, WCTRE reduces to weighted cumulative residual entropy (WCRE) proposed
by Misagh et al. (2011) as CREw(X) =−

∫+∞

0 xS(x) logS(x)dx. So WCRE is a special case
of WCTRE measure. It is shown that Dynamic WCTRE uniquely determines the underlying
distribution. Also we propose weighted cumulative Tsallis past entropy (WCTPE) as

ξ̄
w
θ (X) =

1
θ −1

∫ +∞

0
x
(

F(x)−Fθ (x)
)

dx, 0 < θ ̸= 1.
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We propose non-parametric estimators of these measures based on edf and discuss their
asymptotic properties. We obtain empirical WCTPE as

ˆ̄
ξ

w
θ (X) =

1
2(θ −1)

n−1

∑
i=1

(X2
(i+1):n −X2

i:n)

[
i
n
−
(

i
n

)θ
]
.

For rs comes from Rayleigh distribution, it is shown that for every 0 < θ ̸= 1,

ˆ̄
ξ w

θ
(X)−E[ ˆ̄

ξ w
θ
(X)]√

Var[ ˆ̄
ξ w

θ
(X)]

→ N(0,1)

in distribution as n → +∞. This result can be used to test whether data comes from the
Rayleigh distribution.

[Chapter 4] On weighted cumulative residual Kullback-Leibler information with ap-
plication in testing exponentiality

This Chapter considers the study of weighted cumulative Kullback-Leibler type infor-
mation measures. We introduce weighted cumulative residual Kullback-Leibler (WCRKL)
information measure which is based on the WCRE measure. The WCRKL between two rvs
X and Y is defined as

CRKLw(X ,Y ) =
∫ +∞

0
xS1(x) log

S1(x)
S2(x)

dx+
1
2
(E(Y 2)−E(X2)).

It is shown that WCRKL is non-negative and it is zero when X and Y have the same distri-
bution. Next we introduce weighted cumulative past Kullback-Leibler information measure
using the cdfs. Their dynamic versions are also considered and various properties are stud-
ied.

Using WCRKL measure, we construct a goodness-of-fit test for the exponential distri-
bution under complete and Type-I and Type-II censored samples. The performance of the
test is compared with KL based test and cumulative residual KL information based test.
Proposed test performs better than the other two tests when the alternative distribution has
a decreasing hazard rate.

[Chapter 5] Applications of cumulative residual extropy in system reliability and hy-
pothesis testing problems

This Chapter focuses on the applications of CREx measure defined in Eq. 1.13. First we
discuss CREx for coherent and mixed reliability systems. We represent the CREx measure
for mixed systems and compare two systems consisting of the same structure but different
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components. We define a new Jensen type divergence measure called Jensen cumulative
residual extropy divergence (JCREx) and study the complexity of systems using this diver-
gence measure. Consider a system with lifetime T having n iid components X1, X2, · · · ,Xn

and suppose X1:n,X2:n, · · · ,Xn:n are the ordered components lifetime. Then the JCREx di-
vergence between system lifetime T and X1:n,X2:n, · · · ,Xn:n can be defined as

JCREx(T : X1:n, · · · ,Xn:n) = ξ J(T )−
n

∑
i=1

siξ J(Xi:n),

where s = (s1,s2, · · · ,sn) is the signature vector (Samaniego, 2007). Signature vector is
a probability vector whose j-th component represents the probability that the system fails
due to the failure of the j-th component. Note that, JCREx(T : X1:n, · · · ,Xn:n) = 0 for k-
out-of-n systems and higher values of JCREx(T : X1:n, · · · ,Xn:n) implies the system is more
complex than the k-out-of-n systems having same number of components. Also we define
a new discrimination measure which can be used to compare between systems when usual
stochastic orders can not be used (Navarro et al., 2008).

So far, we have proposed estimators of the information measures using edf of the rv
under consideration. In this Chapter we propose edf based estimator for CREx and estimator
based on L-Statistics and compare their performance with kernel based smooth estimator of
CREx measure. The L-Statistics estimator is defined as

ξ J2
Fn
(X) =−1

n

n−1

∑
i=1

(
1− i

n

)
Xi:n,

which is asymptotically normally distributed and has better performance than the other two
estimators. Using this estimator, we develop a consistent test of equality between two distri-
bution functions. The asymptotic distribution of the test statistic follows normal distribution
under the null hypothesis.

[Chapter 6] On some weighted generalized extropy measures with applications
In this Chapter, we propose a generalized weighted cumulative measure of information

called weighted extended survival extropy (WESEx) measure. Instead of x, we use a non-
negative continuous function of x as the weight function. For a rv X , WESEx is defined as

ξ Jε(X) =−1
2

∫ +∞

0
ε(x)S2(x)dx,

where ε(x) is a non-negative continuous function of x. We also propose the dynamic WESEx
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measure as
ξ Jε(X ; t) =− 1

2S2(t)

∫ +∞

t
ε(x)S2(x)dx.

Depending on the choice of ε(x), one can obtain a variety of extropy measures from ξ Jε(X).
Various interesting properties of these measures are studied. We consider estimations of
these measures for iid samples and also when observations are identically distributed but not
independent. For the dependent setup, a recursive kernel based estimator is used. Asymp-
totic properties of these estimators are studied in detail and various examples are provided
for illustrative purposes. Applications in model discrimination and quantitative risk analysis
are considered. We also propose weighted negative cumulative extropy measure and study
its properties. For a non-negative continuous rv X it is defined as

C w(X) =
1
2

∫ +∞

0
x
[
1−F2(x)

]
dx.

Using non-parametric estimator of C w(X), a uniformity test is developed.

[Chapter 7] Application of cumulative entropy measures in life testing
This Chapter discusses the applications of cumulative entropy measures in the context

of life-testing. We consider designing optimal progressive Type-II (PCII) censored exper-
iments by optimizing CRE (CE) based criterion. Abo-Eleneen et al. (2018) defined joint
CRE of progressively type-II censored ordered statistics (PCOS) as

CRE1···m:m:n =−
∫ +∞

0

1
h(x)

logS(x)
m

∑
i=1

fXi:m:n(x)dx,

where fXi:m:n is the pdf of X1:m:n and h(x) is the hr of X . This can be treated as a measure
of information of the PCII censored experiment and it is natural to design experiment by
maximizing information. But CRE1···m:m:n is not scale invariant so we obtain optimal design
by maximizing a scale invariant criterion

φA(R) =
CRE1···m:m:n

E[X1:m:n]
.

Maximizing information of a PCII censored experiment will increase the duration of the
experiment and thus the cost of running that experiment will also increase. So we study
a constraint design problem in which we maximize φA(R) subject to a bound on the cost
associated with the experiment. Finally, we study optimal design problems by simultane-
ously maximizing φA(R) and minimizing the cost of the experiment. For this purpose, we
implement a simultaneous optimal design strategy for life-testing called compound opti-
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mal design (Bhattacharya, 2020). Similar design problems are considered using CE based
criterion as well.

[Chapter 8] Conclusions and future work
This chapter indicates areas of future research. We discuss applications in reliability

acceptance sampling plan (RASP). Using the information measures studied in this thesis,
a RASP can be developed for both classical and bayesian frameworks. Some remarks are
made in this regard.

We propose weighted extended survival extropy measure by taking a continuous func-
tion of x as the weight function. We introduce various weighted generalized entropy mea-
sures and their extended version can be defined similarly. We discuss some problems re-
garding weighted extended entropy measures.

Some problems regarding double truncated (interval) information measures are dis-
cussed. New methods of estimation of the proposed measures are also discussed.
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Chapter 2

Generalized Weighted Survival and
Failure Entropies and their Dynamic
Versions

GENERALIZATION of cumulative entropy measures became a problem of interest among
researchers in the last two decades. Ever since the introduction of CRE and CE measures,
many generalizations of them are proposed in the literature. The dynamic versions of CRE
and CE are introduced in the literature by Asadi and Zohrevand (2007) and Di Crescenzo
and Longobardi (2009), respectively. Zografos and Nadarajah (2005) introduced survival
entropy of order θ1 as ξθ1(X) = 1

1−θ1
log
∫+∞

0 Sθ1(x)dx, θ1(̸= 1)> 0 and Abbasnejad (2011)
proposed its dynamic version. For a rv X having bounded support [0, l], Abbasnejad (2011)
introduced the failure entropy of order θ1 as f ξθ1(X) = 1

1−θ1
log
∫ l

0 Fθ1(x)dx and also ob-
tained its dynamic version. Further generalizations of survival and failure entropy and their
dynamic measures are considered by Kayal (2015). Generalized survival entropy (GSE) of
order (θ1,θ2) is defined as

ξθ1,θ2(X) =
1

θ2 −θ1
log
∫ +∞

0
Sθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2, (2.1)

where the integral in Eq. (2.1) is extended to the support of the rv. Note that, the survival
entropy of order θ1 (ξθ1(X)) is the cumulative residual Renyi entropy which defined by
replacing the pdf in Renyi entropy, defined in Eq. (1.3), with the sf of the underlying rv.
Whereas the GSE of order (θ1,θ2) is the cumulative residual Varma entropy.

Varma entropy is a generalization of Renyi entropy and a two parameter generalization
of the Shannon entropy. For a non-negative continuous rv, Varma entropy of order θ1 and
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type θ2 is defined as

Hθ1,θ2(X) =
1

θ2 −θ1
log
∫ +∞

0
f θ1−θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

Note that, when θ2 = 1, it reduces to Renyi entropy and when θ2 = 1 and θ1 → 1, Hθ1,θ2(X)

tends to Shannon entropy. A more popular and useful version of Varma entropy is

H̄θ1,θ2(X) =
1

θ2 −θ1
log
∫ +∞

0
f θ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

This measure is also called generalized entropy of order (θ1,θ2). Varma’s work opened a
new area regarding two parameters generalized entropy measures and various works in this
area followed ever since, see Sharma and Taneja (1975), Mittal (1975), Kapur (1967) and
Kattumannil et al. (2022). Varma entropy is an important complexity measure in physics
where two parameters are useful for determining uncertainties for chaotic systems because
of the increased flexibility of entropy measure due to various choices of the two generaliz-
ing parameters. Also two-parameter generalized entropy measures are more sensitive to the
shape of the underlying distribution and have a large range which is often useful in many
applied problems (Pharwaha and Singh, 2009). Ullah (1996) observed that optimization of
Shannon entropy often required complicated moment conditions to determine the distribu-
tion. They pointed out that in many situations, it is useful to have a complicated information
measure but simpler and fewer moment conditions. For detailed discussions on the use-
fulness on two parameter entropy measures, see Kundu and Singh (2020). Over the years,
these measures became popular because of their diverse applications and their cumulative
versions are explored recently by Kayal (2015).

For a bounded rv with support [0, l], Kayal (2015) defined generalized failure entropy
(GFE) as

f ξθ1,θ2(X) =
1

θ2 −θ1
log
∫ l

0
Fθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2. (2.2)

In this chapter, we propose weighted GSE and GFE measures along with their dynamic
versions and study various properties and bounds. We introduce new aging classes based
on the dynamic measures and obtain various characterization results. Also we propose non-
parametric estimators for the newly defined weighted information measures and a test of
exponentiality is considered as an application.

The organization of this chapter is as follows. We define weighted versions of GSE and
its dynamic measure and study their properties in Section 2.1. Weighted GFE is introduced
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along with its dynamic form in Section 2.2. Two new aging classes based on the proposed
dynamic weighted information measures are considered in Section 2.3. Characterization
results based on the proposed dynamic information measures are studied in Section 2.4.
Some general class of bounds of the proposed information measures are provided in Section
2.5. Non-parametric estimators are considered and a goodness-of-fit test for exponential
distribution is proposed in Section 2.6. Finally, an overall discussion is made in Section 2.7.

2.1 Generalized weighted survival entropy of order (θ1,θ2)

and its dynamic version

Here we introduce generalized weighted survival entropy (GWSE) and its dynamic ver-
sion, and obtain various properties.

Definition 2.1.1. For a non-negative continuous rv X, GWSE of order (θ1,θ2) is defined as

ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log
∫ +∞

0
xSθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2. (2.3)

Usefulness of this weighted measure over the non-weighted version can be explained by the
following example.

Example 2.1.1. Suppose X has uniform distribution, denoted by U(a,b), with pdf

f (x) =
1

b−a
, a < x < b

and Y has U(a+h,b+h) distribution with pdf

g(x) =
1

b−a
, a+h < x < b+h, h > 0.

Then from Eq. (2.1), we have

ξθ1,θ2(X) = ξθ1,θ2(Y ) =
1

θ2 −θ1
log

b−a
θ1 +θ2

.

From Eq. (2.3) we get,

ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log
[
(b−a)(a(θ1 +θ2)+b)
(θ1 +θ2)(θ1 +θ2 +1)

]
,

ξ
w
θ1,θ2

(Y ) =
1

θ2 −θ1
log
[
(b−a)(a(θ1 +θ2)+b+h(θ1 +θ2 +1))

(θ1 +θ2)(θ1 +θ2 +1)

]
.
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It is easy to see that ξ w
θ1,θ2

(X) < ξ w
θ1,θ2

(Y ). So it is observed that ξθ1,θ2(X) = ξθ1,θ2(Y ), but
GWSE of X is smaller than GWSE of Y . This is due to the fact that GSE measure is position
free i.e. shift independent measure. The GSE for a rv X and X + h, where h is a constant,
are the same. However, GWSE measures for X and X +h are different. So the information
contained in X and Y are the same in terms of GSE measure but they are different in terms of
GWSE measure. This is one scenario where use of GWSE will be beneficial instead of GSE
measure since GWSE is a shift-dependent measure of information. The shift-dependency
property of ξ w

θ1,θ2
(X) is expressed in the following lemma.

Lemma 2.1.1. Consider the linear transformation Z = cX +d, where c > 0 and d ≥ 0, then

exp[(θ2 −θ1)ξ
w
θ1,θ2

(Z)] = c2 exp[(θ2 −θ1)ξ
w
θ1,θ2

(X)]+ cd exp[(θ2 −θ1)ξθ1,θ2(X)] (2.4)

Proof. The results follows using ScX+d(x) = SX(
x−d

c ), x ∈ R.

Let SXη
and S denote the sfs of the rvs Xη and X , respectively. Then Xη and X satisfy

proportional hazard rate model if SXη
(x) = [S(x)]η , η > 0, see Cox (1972). The following

lemma compares the GWSE of X , Xη and ηX .

Lemma 2.1.2. The following results hold:

(a) ξ
w
θ1,θ2

(Xη) =

(
ηθ2 −ηθ1 −η +1

θ2 −θ1

)
ξ

w
ηθ1,ηθ2−η+1(X);

(b) ξ
w
θ1,θ2

(Xη)≤ ξ
w
θ1,θ2

(X)≤ ξ
w
θ1,θ2

(ηX), i f η > 1;

(c) ξ
w
θ1,θ2

(Xη)≥ ξ
w
θ1,θ2

(X)≥ ξ
w
θ1,θ2

(ηX), i f 0 < η < 1.

Proof. Proof is straight forward hence omitted.

We provide GWSE for exponential and Pareto I distributions in Table 2.1 to support Lemma
2.1.2. The exponential distribution has the cdf

F(x) = 1− e−λx; x > 0,λ > 0,

and Pareto I distribution has the cdf

F(x) = 1−
(

b
x

)a

; x ≥ b > 0, a > 0.

It is important to note that for Pareto I distribution when aγ , aηγ and ηγ are less than 2,
GWSE won’t be finite.



2.1 Generalized weighted survival entropy of order (θ1,θ2) and its dynamic version 26

Table 2.1: GWSE for exponential and Pareto I distributions where γ = θ1 +θ2 −1.

Distribution (θ2 −θ1)ξ
w
θ1,θ2

(X) (θ2 −θ1)ξ
w
θ1,θ2

(Xη) (θ2 −θ1)ξ
w
θ1,θ2

(ηX)

Exponential −2log(λγ) −2log(ληγ) 2logη −2log(λγ)

Pareto I log b2

aγ−2 ; aγ > 2 log b2

aηγ−2 ; aηγ > 2 log b2η2

ηγ−2 ; aγ > 2

Now we define the dynamic version of GWSE to study the uncertainty in the residual
life Xt = [X − t|X ≥ t] of a unit. It is the GWSE of the residual life Xt .

Definition 2.1.2. Generalized dynamic weighted survival entropy (GDWSE) of order (θ1,θ2)

of a continuous rv X is defined as

ξ
w
θ1,θ2

(X ; t) =
1

θ2 −θ1
log
∫ +∞

t
x

Sθ1+θ2−1(x)
Sθ1+θ2−1(t)

dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2. (2.5)

Note that, ξ w
θ1,θ2

(X ;0) = ξ w
θ1,θ2

(X). In the following theorem we provide bounds for GWSE
and GDWSE measures in terms of WMRL of the rv.

Theorem 2.1.1. For a rv X with WMRL mw
F(t), the following inequalities hold for θ1+θ2−

1 ≥ (≤)1:

(i) ξ
w
θ1,θ2

(X)≤ (≥)
1

θ2 −θ1
logmw

F(0);

(ii) ξ
w
θ1,θ2

(X ; t)≤ (≥)
1

θ2 −θ1
logmw

F(t).

Proof. (i) For θ1 + θ2 − 1 ≥ (≤)1 we have xSθ1+θ2−1(x) ≤ (≥)xS(x). Taking integral on
both sides and then taking logarithm, and dividing by (θ2 −θ1) we get the result.

(ii) Since S(x)
S(t) < 1 for x > t, we have

(
S(x)
S(t)

)θ1+θ2−1
≤ (≥)S(x)

S(t) for θ1 +θ2 −1 ≥ (≤)1. The
result follows by taking integrals.

Table 2.2: GDWSE and WMRL for exponential and Pareto I distributions where γ = θ1 +
θ2 −1. For Pareto I distribution we assume t > b.

Distribution ξ w
θ1,θ2

(X) mw
F(0) ξ w

θ1,θ2
(X ; t) mw

F(t)

Exponential 2
θ2−θ1

log( 1
λγ
) 1

λ 2
1

θ2−θ1
log
(

1+tλγ

λ 2γ2

)
1+tλ

λ 2

Pareto I 1
θ2−θ1

log b2

aγ−2 ; aγ > 2 ab2

2(a−2) ; a > 2 log t2

aγ−2 ; aγ > 2 t2

a−2 ; a > 2
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We provide GWSE and its dynamic version along with WMRL for exponential and Pareto
I distributions in Table 2.2 for illustration and verification of Theorem 2.1.1.
Next, the effect of linear transformation on GDWSE measure is considered. This result will
be useful for stochastic comparison purposes later. Consider the following lemma.

Lemma 2.1.3. Suppose Z = cX +d, where c > 0 and d ≥ 0, then

exp[(θ2 −θ1)ξ
w
θ1,θ2

(Z; t)] = c2 exp
[
(θ2 −θ1)ξ

w
θ1,θ2

(
X ;

t −d
c

)]
+ cd exp

[
(θ2 −θ1)ξθ1,θ2

(
X ;

t −d
c

)]
.

Proof. The proof is similar to Lemma 2.1.1.

Remark 2.1.1. If d = 0, then from Lemma 2.1.3 we have

ξ
w
θ1,θ2

(Z; t) =
2logc
θ2 −θ1

+ξ
w
θ1,θ2

(
X ;

t
c

)
. (2.6)

Now we define two new stochastic orderings in terms of GWSE and GDWSE measures and
study their relationships with some popular stochastic orderings.

Definition 2.1.3. X1 is smaller than X2 in GWSE ordering, denoted by X1
GWSE
≤ X2, if

ξ
w
θ1,θ2

(X1)≤ ξ
w
θ1,θ2

(X2).

Definition 2.1.4. X1 is smaller than X2 in GDWSE ordering, denoted by X1
GDWSE
≤ X2, if

ξ
w
θ1,θ2

(X1; t)≤ ξ
w
θ1,θ2

(X2; t), ∀ t ≥ 0.

In the following theorem, we provide the relationship of GWSE and GDWSE ordering with
stochastic and hr orderings.

Theorem 2.1.2. Let X1 and X2 be two non-negative continuous rvs with sfs S1 and S2,
respectively. Then,

(i)
st

X1 ≤ X2 ⇒ X1
GWSE
≤ X2,

(ii)
hr

X1 ≤ X2 ⇒ X1
GDWSE
≤ X2.

Proof. Proof of (i) follows from the fact that,
st

X1 ≤ X2, if S1(x)≤ S2(x), for all x > 0.
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Proof of (ii) follows using the fact that, if
hr

X1 ≤ X2 then S2(t)
S1(t)

is increasing in t. This implies
S1(x)
S1(t)

≤ S2(x)
S2(t)

∀x ≥ t. Hence the proof.

2.2 Generalized weighted failure and dynamic failure en-
tropies of order (θ1,θ2)

In this section, we define the weighted failure entropy measures for rvs having bounded
support. Failure entropy measures are used to obtain information associated to the past
lifetime of the rv. Consider the following definition.

Definition 2.2.1. For a rv with finite support [0, l], generalized weighted failure entropy
(GWFE) of order (θ1,θ2) is defined as

f ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log
∫ l

0
xFθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2. (2.7)

Example 2.2.1. Suppose X and Y have U(0,a) and U(h,a+h) distributions with pdfs

f (x) =
1
a
, 0 < x < a

and
g(y) =

1
a
, h < y < a+h, h > 0,

respectively. From Eq. (2.2), we have

f ξθ1,θ2(X) = f ξθ1,θ2(Y ) =
1

θ2 −θ1
log

a
θ1 +θ2

.

Now from (2.7), we get

f ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log
[

a2

θ1 +θ2 +1

]
and

f ξ
w
θ1,θ2

(Y ) =
1

θ2 −θ1
log
[

a(a(θ1 +θ2)+h(θ1 +θ2 +1))
(θ1 +θ2)(θ1 +θ2 +1)

]
.

So it is observed that, although f ξθ1,θ2(X) = f ξθ1,θ2(Y ) but f ξ w
θ1,θ2

(X) ̸= f ξ w
θ1,θ2

(Y ).

In the subsequent lemmas, we study the shift-dependency properties of GWFE measure and
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various relations related to proportional reversed hazard model (PRHM).

Lemma 2.2.1. Suppose X has finite support [0, l] and Z = cX +d, where c > 0 and d ≥ 0,
then

exp[(θ2 −θ1) f ξ
w
θ1,θ2

(Z)] = c2 exp[(θ2 −θ1) f ξ
w
θ1,θ2

(X)]+ cd exp[(θ2 −θ1) f ξθ1,θ2(X)].

(2.8)

Let FXη
and F denote the cdfs of the rvs Xη and X having finite support, then PRHM (see,

Gupta et al. (1998)) is described by the relation FXη
(x) = [F(x)]η , where η > 0. The fol-

lowing Lemma compares the GWFE of X , Xη and ηX . Proofs are omitted.

Lemma 2.2.2. The following relations hold:

(a) f ξ
w
θ1,θ2

(Xη) =

(
ηθ2 −ηθ1 −η +1

θ2 −θ1

)
f ξ

w
ηθ1,ηθ2−η+1(X);

(b) f ξ
w
θ1,θ2

(Xη)≤ f ξ
w
θ1,θ2

(X)≤ f ξ
w
θ1,θ2

(ηX), i f η > 1;

(c) f ξ
w
θ1,θ2

(Xη)≥ f ξ
w
θ1,θ2

(X)≥ f ξ
w
θ1,θ2

(ηX), i f 0 < η < 1.

We illustrate Lemma 2.2.2 in Table 2.3 for U(0,a) distribution and power distribution with
cdf

FP(x) = xα ; 0 < x < 1, α > 0.

Table 2.3: GWFE for uniform and Power distributions where γ = θ1 +θ2 −1.

Distribution (θ2 −θ1) f ξ w
θ1,θ2

(X) (θ2 −θ1) f ξ w
θ1,θ2

(Xη) (θ2 −θ1) f ξ w
θ1,θ2

(ηX)

Uniform log a2

2+γ
log a2

2+γη
log a2η2

2+γ

Power log 1
2+γα

log 1
2+γηα

log η2

2+γα

Now we define the dynamic version of GWFE measure. Generalized dynamic weighted
failure entropy (GDWFE) of order (θ1,θ2) of a rv X is the GWFE of the past life tX =

[t −X |X < t].

Definition 2.2.2. The GDWFE of a rv X having finite support [0, l] is defined as

f ξ
w
θ1,θ2

(X ; t) =
1

θ2 −θ1
log
∫ t

0
x

Fθ1+θ2−1(x)
Fθ1+θ2−1(t)

dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2. (2.9)

Remark 2.2.1. Let X be a rv with bounded support A and l = sup A <+∞. Then,
f ξ w

θ1,θ2
(X ; l) = ξ w

θ1,θ2
(X). Note that, GDWFE is defined even when the support is un-

bounded.
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Next lemma considers the effect of linear transformation on the GDWFE measure.

Lemma 2.2.3. Suppose X has finite support [0, l] and Z = cX +d, where c > 0 and d ≥ 0,
then

exp[(θ2 −θ1) f ξ
w
θ1,θ2

(Y ; t)] = c2 exp
[
(θ2 −θ1) f ξ

w
θ1,θ2

(
X ;

t −d
c

)]
+ cd exp

[
(θ2 −θ1) f ξθ1,θ2

(
X ;

t −d
c

)]
.

Remark 2.2.2. If d = 0, then from Lemma 2.2.3 we have

f ξ
w
θ1,θ2

(Y ; t) =
2logc
θ2 −θ1

+ f ξ
w
θ1,θ2

(
X ;

t
c

)
. (2.10)

Now we provide some bounds and stochastic ordering results related to these failure entropy
measures. Proofs are similar to that of Theorem 2.1.1, hence omitted.

Theorem 2.2.1. Let X be a non-negative continuous rv having finite support [0, l] with
WMPL µw

F (t), GWFE f ξ w
θ1,θ2

(X) and GDWFE f ξ w
θ1,θ2

(X ; t). Then for θ1 +θ2 − 1 ≥ (≤)1
we have,

(i) f ξ w
θ1,θ2

(X)≤ (≥) 1
θ2−θ1

log[µw
F (l)];

(ii) f ξ w
θ1,θ2

(X ; t)≤ (≥) 1
θ2−θ1

log[µw
F (t)].

Definition 2.2.3. Let X1 and X2 be two rvs having finite support [0, l]. Then, X1 is smaller

than X2 in GWFE ordering, denoted by X1
GWFE
≤ X2, if

f ξ
w
θ1,θ2

(X1)≤ f ξ
w
θ1,θ2

(X2).

Definition 2.2.4. Let X1 and X2 be two rvs having finite support [0, l]. Then, X1 is smaller

than X2 in GDWFE ordering, denoted by X1
GDWFE
≤ X2, if

f ξ
w
θ1,θ2

(X1; t)≤ f ξ
w
θ1,θ2

(X2; t), ∀ 0 < t < l.

Theorem 2.2.2. Let X1 and X2 be two rvs having finite support [0, l] with cdfs F and G and
rhr functions rF(t) and rG(t), respectively. Then,

(i)
st

X1 ≤ X2⇒ X1
GWFE
≤ X2.

(ii)
rh

X1 ≤ X2⇒ X1
GDWFE
≤ X2.
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Proof. Proof of (i) follows from the definition of GWFE measure. Proof of (ii) follows

using the fact that if
rh

X ≤ Y then F(x)
F(t) ≥

G(x)
G(t) .

2.3 Aging classes

In this section we define two new aging classes based on the dynamic weighted informa-
tion measures and study various properties.

Definition 2.3.1. A non-negative continuous rv X is said to be increasing (decreasing) gen-
eralized dynamic weighted survival entropy (IGDWSE (DGDWSE)), if ξ w

θ1,θ2
(X ; t) is in-

creasing (decreasing) in t (≥ 0).

Theorem 2.3.1. A non-negative continuous rv X is IGDWSE (DGDWSE) iff

λF(t)≥ (≤)
t

θ1 +θ2 −1
exp[−(θ2 −θ1)ξ

w
θ1,θ2

(X ; t)], ∀ t ≥ 0,

where λF(t) =
f (t)
S(t) , is the hr function of X.

Proof. We have

(θ2 −θ1)ξ
w
θ1,θ2

(X ; t) = log
[∫ +∞

t
xSθ1+θ2−1(x)dx

]
− (θ1 +θ2 −1) logS(t). (2.11)

Differentiating (2.11) wrt t we get,

(θ2 −θ1)
d
dt

ξ
w
θ1,θ2

(X ; t) = (θ1 +θ2 −1)λF(t)− t
S(θ1+θ2−1)(t)∫+∞

t xS(θ1+θ2−1)(x)dx
.

Using Eq. (2.5) we get,

(θ2 −θ1)
d
dt

ξ
w
θ1,θ2

(X ; t) = (θ1 +θ2 −1)λF(t)− t exp[−(θ2 −θ1)ξ
w
θ1,θ2

(X ; t)]. (2.12)

The result follows from Eq. (2.12).

In the following theorem, we show that GDWSE measure uniquely determines the underly-
ing distribution.

Theorem 2.3.2. Let X be a rv with finite ξ w
θ1,θ2

(X ; t). Then, ξ w
θ1,θ2

(X ; t) uniquely determines
the sf of X.
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Proof. From Eq. (2.12) we have

λF(t) =
1

θ1 +θ2 −1

(
(θ2 −θ1)

d
dt

ξ
w
θ1,θ2

(X ; t)+ t exp[−(θ2 −θ1)ξ
w
θ1,θ2

(X ; t)]
)
. (2.13)

Now, let X1 and X2 be two rvs with sfs S1(t) and S2(t), GDWSEs ξ w
θ1,θ2

(X1; t) and ξ w
θ1,θ2

(X2; t)
and hr functions λF1(t) and λF2(t), respectively.
Suppose ∀ t ≥ 0,

ξ
w
θ1,θ2

(X1; t) = ξ
w
θ1,θ2

(X2; t),

then from Eq. (2.13) we get λF1(t) = λF2(t). Since hr function uniquely determines the sf
of the underlying distribution, we conclude that,

S1(t) = S2(t), ∀t ≥ 0.

Next theorem shows the preservation of dynamic weighted survival entropy order under
scale transformation.

Theorem 2.3.3. Let X1 and X2 be two rvs and
GDWSE

X1 ≤ (≥)X2. Let Z1 = a1X1 and Z2 = a2X2,

where a1,a2 > 0. Then
GDWSE

Z1 ≤ (≥)Z2, if ξ w
θ1,θ2

(X1; t) is decreasing in t > 0 and a1 ≤ (≥)a2.

Proof. Suppose a1 ≤ a2. Since ξ w
θ1,θ2

(X1; t) is decresasing in t, we have,

ξ
w
θ1,θ2

(
X1;

t
a1

)
≤ ξ

w
θ1,θ2

(
X1;

t
a2

)
.

Again, ξ w
θ1,θ2

(
X1; t

a2

)
≤ ξ w

θ1,θ2

(
X2; t

a2

)
since X1

GDWSE
≤ X2. Combining these two inequali-

ties and using Eq. (2.6), we have

ξ
w
θ1,θ2

(Z1; t) =
2loga1

θ2 −θ1
+ξ

w
θ1,θ2

(
X1;

t
a1

)
≤ 2loga2

θ2 −θ1
+ξ

w
θ1,θ2

(
X2;

t
a2

)
= ξ

w
θ1,θ2

(Z2; t).

Hence the result. Similarly, when a1 ≥ a2 and X1
GDWSE
≥ X2, it can be easily shown that

Z1
GDWSE
≥ Z2.

Definition 2.3.2. A non-negative rv X having finite support [0, l] is said to be increas-
ing (decreasing) generalized dynamic weighted failure entropy (IGDWFE (DGDWFE)), if
f ξ w

θ1,θ2
(X ; t) is increasing (decreasing) in t (≥ 0).
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Theorem 2.3.4. A non-negative continuous rv X having finite support [0, l] is IGDWFE
(DGDWFE) iff

rF(t)≤ (≥)
t

θ1 +θ2 −1
exp[−(θ2 −θ1) f ξ

w
θ1,θ2

(X ; t)], ∀t ≥ 0,

where rF(t) =
f (t)
F(t) is the rhr function.

Proof. Differentiating Eq. (2.9) we get

(θ2 −θ1)
d
dt

f ξ
w
θ1,θ2

(X ; t) = t exp[−(θ2 −θ1) f ξ
w
θ1,θ2

(X ; t)]− (θ1 +θ2 −1)rF(t). (2.14)

The result follows from Eq. (2.14).

The GDWFE measure also uniquely determines the underlying distribution.

Theorem 2.3.5. Let X be rv with f ξ w
θ1,θ2

(X ; t) < +∞; ∀t ≥ 0, θ2 − 1 < θ1 < θ2, θ2 ≥ 1.
Then for each θ1 and θ2, f ξ w

θ1,θ2
(X ; t) uniquely determines the cdf of X.

Proof. Proceeding along the same line as Theorem 2.3.2, it can be easily shown that for two
rvs X1 and X2,

f ξ
w
θ1,θ2

(X1; t) = f ξ
w
θ1,θ2

(X2; t)⇒ rF1(t) = rF2(t) ∀t > 0,

where rF1(t) and rF2(t) are the rhr functions of X1 and X2, respectively.

Theorem 2.3.6. Let X1 and X2 be two rvs having finite support [0, l] and
GDWFE

X1 ≤ (≥)X2. Let

Z1 = a1X1 and Z2 = a2X2, where a1,a2 > 0. Then
GDWFE

Z1 ≤ (≥)Z2, if f ξ w
θ1,θ2

(X1; t) is decreasing
in t > 0 and a1 ≤ (≥)a2.

Proof. Proof follows from that of Theorem 2.3.3.

2.4 Characterization results

In this section we study some important characterization results using the proposed mea-
sures. First we provide characterization results for Rayleigh distribution in terms of GDWSE
and WMRL function.

Theorem 2.4.1. The rv X has constant GDWSE iff it has a Rayleigh distribution with sf
S(x) = e−λx2

; x ≥ 0, λ > 0.



2.4 Characterization results 34

Proof. If S(x) = e−λx2
then ξ w

θ1,θ2
(X ; t) = 1

θ2−θ1
log 1

2λ (θ1+θ2−1) which is a constant. Next
assume that

ξ
w
θ1,θ2

(X ; t) = c.

Then,

d
dt

ξ
w
θ1,θ2

(X ; t) = 0

⇒ (θ1 +θ2 −1)λF(t) = t exp[−(θ2 −θ1)ξ
w
θ1,θ2

(X ; t)].

This implies λF(t) = e(θ1−θ2)c

θ1+θ2−1t, which is the hazard function of a Rayleigh distribution with

sf S(t) = e−λ t2
; t ≥ 0, where λ = e(θ1−θ2)c

2(θ1+θ2−1) > 0 as θ1 +θ2 > 1.

So it is observed that Rayleigh distribution provides a bridge between IGDWSE and DGDWSE
classes of distributions.

Theorem 2.4.2. For a rv X, the relation (θ2−θ1)ξ
w
θ1,θ2

(X ; t) = logmw
F(t)− log(θ1+θ2−1)

holds iff X has a Rayleigh distribution.

Proof. If X has Rayleigh distribution then it follows that

(θ2 −θ1)ξ
w
θ1,θ2

(X ; t) = logmw
F(t)− log(θ1 +θ2 −1).

Now suppose the relation (θ2−θ1)ξ
w
θ1,θ2

(X ; t) = logmw
F(t)− log(θ1+θ2−1) holds. Differ-

entiating wrt t we get

(θ2 −θ1)
d
dt

ξ
w
θ1,θ2

(X ; t) =
d
dt mw

F(t)
mw

F(t)
.

Using Eq. (2.12) we have

(θ1 +θ2 −1)λF(t)− t exp[−(θ2 −θ1)ξ
w
θ1,θ2

(X ; t)] =
d
dt mw

F(t)
mw

F(t)
.

Now substituting d
dt mw

F(t) = λF(t)mw
F(t)− t and after simplification, we get

λF(t)mw
F(t) = t ⇒ d

dt
mw

F(t) = 0.

Which means mw
F(t) = c, where c is a constant and thus we obtain λF(t) = t

c , which is the

hr function of a Rayleigh distribution with sf S(t) = e−
t2
2c .

Now we study characterization of power distribution in terms of GDWFE and WMPL
function.
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Theorem 2.4.3. Let X be a rv having support (0,b), then X has a power distribution with
cdf F(x) =

( x
b

)c
, 0 < x < b, c > 0 iff

(θ2 −θ1) f ξ
w
θ1,θ2

(X ; t) = logk+ log µ
w
F (t),

where µw
F (t) is the WMPL function of X, k(> 0) is a constant and θ1 +θ2 ̸= 2.

Proof. Suppose the relation

(θ2 −θ1) f ξ
w
θ1,θ2

(X ; t) = logk+ log µ
w
F (t)

holds. Now differentiating this wrt t and then using (2.14) we get

t exp[−(θ2 −θ1) f ξ
w
θ1,θ2

(X ; t)]− (θ1 +θ2 −1)rF(t) =
d
dt µw

F (t)
µw

F (t)
.

Substituting the value of (θ2−θ1) f ξ w
θ1,θ2

(X ; t) and d
dt µw

F (t) = t−rF(t)µw
F (t) and after some

calculations, we obtain

rF(t)µw
F (t) =

1− k
k(θ1 +θ2 −2)

t. (2.15)

This implies
d
dt

µ
w
F (t) =

k(θ1 +θ2 −1)−1
k(θ1 +θ2 −2)

t.

Integrating wrt t and taking µw
F (0) = 0 we get,

µ
w
F (t) =

k(θ1 +θ2 −1)−1
k(θ1 +θ2 −2)

t2

2
.

From Eq. (2.15) we obtain

rF(t) =
2(1− k)

k(θ1 +θ2 −1)−1
1
t
=

c
t
,

where c = 2(1−k)
k(θ1+θ2−1)−1 > 0. Now to determine the appropriate ranges of k, first suppose

that θ1 + θ2 − 1 > 1. Then, for c > 0 we have 1 > k > 1
θ1+θ2−1 . Again if θ1 + θ2 − 1 < 1

then we have 1 < k < 1
θ1+θ2−1 for c > 0. So we see that rF(t) is the rhr function of the power

distribution with cdf F(x) =
( x

b

)c
, 0 < x < b, c > 0.

Conversely, if X has power distribution with cdf F(x) =
( x

b

)c
, 0 < x < b, c > 0 then

(θ2 −θ1) f ξ
w
θ1,θ2

(X ; t) = c(θ1 +θ2 −1) log t − log(c(θ1 +θ2 −1)+2).



2.4 Characterization results 36

By taking c = 2
θ1+θ2−1 and k = c+2

4 , we get the result.

Remark 2.4.1. Note that for θ1 +θ2 = 2, the above relation in Theorem 2.4.3 becomes an
identity. Since θ1 +θ2 = 2 ⇒ θ1 +θ2 −1 = 1 and from Eq. (2.9) we get,

(θ2 −θ1) f ξ
w
θ1,θ2

(X ; t) = log µ
w
F (t).

Next we provide two important rseults regarding the characterization of identically dis-
tributed rvs using GWSE (GWFE) of smallest (largest) order statistic. Consider the follow-
ing definitions of GWSE (GWFE) of the smallest (largest) order statistic.

Let X1,X2, · · · ,Xn be a rs of size n from F . Denote the corresponding order statistics as
X1:n,X2:n, · · · ,Xn:n, where Xi:n (1 ≤ i ≤ n) is the i-th order statistic. The sf of X1:n is given
by S1:n(x) = Sn(x) and GWSE of X1:n is obtained as

ξ
w
θ1,θ2

(X1:n) =
1

θ2 −θ1
log
∫ +∞

0
xSn(θ1+θ2−1)(x)dx

=
1

θ2 −θ1
log
∫ 1

0

vn(θ1+θ2−1)F−1(1− v)
f (F−1(1− v))

dv. (2.16)

Suppose X has finite support [0, l] then the GDWFE of Xn:n is obtained as

f ξ
w
θ1,θ2

(Xn:n; t) =
1

θ2 −θ1
log
∫ l

0
xFn(θ1+θ2−1)(x)dx

=
1

θ2 −θ1
log
∫ 1

0

vn(θ1+θ2−1)F−1(v)
f (F−1(v))

dv, (2.17)

where Fn:n(x) = Fn(x) is the cdf of Xn:n.
The following lemma of will be useful to prove the next theorems (Psarrakos and Toomaj,
2017) .

Lemma 2.4.1. If φ is a continuous function on [0,1], such that
∫ 1

0 xnφ(x)dx = 0, for n ≥ 0,
then φ(x) = 0, ∀x ∈ [0,1].

Theorem 2.4.4. Let X and Y be two non-negative continuous rvs having common support
[0,+∞) with cdfs F and G, respectively. Then F(x) = G(x) ∀x > 0, iff

ξ
w
θ1,θ2

(X1:n) = ξ
w
θ1,θ2

(Y1:n),∀n ≥ 1.

Proof. If ξ w
θ1,θ2

(X1:n) = ξ w
θ1,θ2

(Y1:n), then from Eq. (2.16) we have

∫ 1

0
vn(θ1+θ2−1)

[
F−1(1− v)

f (F−1(1− v))
− G−1(1− v)

g(G−1(1− v))

]
dv = 0.
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Then from Lemma 2.4.1 we get
F−1(1− v)

f (F−1(1− v))
=

G−1(1− v)
g(G−1(1− v))

for all v ∈ (0,1). This re-

duces to F−1(w) d
dwF−1(w)=G−1(w) d

dwG−1(w), where w= 1−v and d
dwF−1(w) = 1

f (F−1(w)) .

So we have F−1(w) = G−1(w),0 ≤ w ≤ 1. If F(x) = G(x) holds then it is obvious that
ξ w

θ1,θ2
(X1:n) = ξ w

θ1,θ2
(Y1:n). Hence the proof.

Theorem 2.4.5. Let X and Y be two non-negative continuous rvs having common finite
support (0, l) with cdfs F and G, respectively. Then F(x) = G(x) iff f ξ w

θ1,θ2
(Xn:n; t) =

f ξ w
θ1,θ2

(Yn:n; t), ∀n ≥ 1.

Proof. Suppose f ξ w
θ1,θ2

(Xn:n; t) = f ξ w
θ1,θ2

(Yn:n; t) holds. Now from Eq. (2.17) we have,

∫ 1

0
vn(θ1+θ2−1)

[
F−1(v)

f (F−1(v))
− G−1(v)

g(G−1(v))

]
dv = 0.

Then from Lemma 2.4.1 we get F−1(v)
f (F−1(v)) =

G−1(v)
g(G−1(v)) for all v ∈ (0,1). The rest of the proof

is similar to the proof of Theorem 2.4.4.

Remark 2.4.2. Proof of Theorem 2.4.4 is immediate from Theorem 2.3.2 since the distribu-
tions of X1:n and Y1:n are 1− (1−F)n and 1− (1−G)n, respectively. Similarly, the proof of
Theorem 2.4.5 can be obtained from Theorem 2.3.5.

2.5 Some inequalities and bounds

In this section we provide some upper and lower bounds for the proposed measures.

Theorem 2.5.1. Let X be a non-negative continuous rv with pdf f , cdf F and sf S. The
following inequalities hold:

(i) (θ2 −θ1)ξ
w
θ1,θ2

(X)+(θ1 +θ2 −1)≥ H(X)+E(logX);

(ii) (θ2 −θ1) f ξ
w
θ1,θ2

(X)+(θ1 +θ2 −1)≥ H(X)+E(logX).

Inequality (ii) is related to rvs having bounded support.

Proof. Using log-sum inequality, we have∫ +∞

0
f (x) log

f (x)
xSθ1+θ2−1(x)

dx ≥
(∫ +∞

0
f (x)dx

)
log

∫+∞

0 f (x)dx∫+∞

0 xSθ1+θ2−1(x)dx

= − log
∫ +∞

0
xSθ1+θ2−1(x)dx

= −(θ2 −θ1)ξ
w
θ1,θ2

(X). (2.18)
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Now the L.H.S. of Eq. (2.18) equals∫ +∞

0
(log f (x)) f (x)dx−

∫ +∞

0
(logx) f (x)dx− (θ1 +θ2 −1)

∫ +∞

0
logS(x) f (x)dx,

which reduces to −H(X)−E(logX)+ (θ1 + θ2 − 1). The result follows from Eq. (2.18).
The proof of part (ii) is similar to that of part (i).

In the next theorem we provide a lower bound for GDWSE and GDWFE measures in terms
of the residual and past entropy.

Theorem 2.5.2. For a non-negative continuous rv X, the following inequalities hold:

(i) (θ2 −θ1)ξ
w
θ1,θ2

(X ; t)+(θ1 +θ2 −1)≥ H(X ; t)+
∫ +∞

t

f (x)
S(t)

log(x) dx;

(ii) (θ2 −θ1) f ξ
w
θ1,θ2

(X ; t)+(θ1 +θ2 −1)≥ H̄(X ; t)+
∫ t

0

f (x)
F(t)

log(x) dx.

Proof. (i). From log-sum inequality, we get∫ +∞

t
f (x) log

f (x)

x
(

S(x)
S(t)

)θ1+θ2−1 dx ≥ log
∫+∞

t f (x)dx∫+∞

t x
(

S(x)
S(t)

)θ1+θ2−1
dx

∫+∞

t f (x)dx

= S(t)[logS(t)− (θ2 −θ1)ξ
w
θ1,θ2

(X ; t)]. (2.19)

After some simplifications, Eq. (2.19) reduces to∫ +∞

t
f (x) log

f (x)

x
(

S(x)
S(t)

)θ1+θ2−1 dx ≥
∫ +∞

t
(log f (x)) f (x)dx−

∫ +∞

t
(logx) f (x)dx

+(θ1 +θ2 −1)S(t).

Using the definition of H(X ; t) and after some simplifications, the results follows from Eq.
(2.19). Proof of part (ii) follows similarly.

Now we provide an upper bound for GDWSE and GDWFE measures for rvs having bounded
support.

Theorem 2.5.3. For a non-negative continuous rv X having support [0,b], the following
inequality holds:

ξ
w
θ1,θ2

(X ; t)≤

∫ b
t x
(

S(x)
S(t)

)(θ1+θ2−1)
log
[

x
(

S(x)
S(t)

)(θ1+θ2−1)
]

dx

(θ2 −θ1)
∫ b

t x
(

S(x)
S(t)

)(θ1+θ2−1)
dx

+
log(b− t)
θ2 −θ1

, t < b.
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Proof. Using log-sum inequality, we have∫ b

t
x
(

S(x)
S(t)

)(θ1+θ2−1)

log

[
x
(

S(x)
S(t)

)(θ1+θ2−1)
]

dx

≥ log

∫ b
t x
(

S(x)
S(t)

)(θ1+θ2−1)
dx

b− t

∫ b

t
x
(

S(x)
S(t)

)(θ1+θ2−1)

dx

= [(θ2 −θ1)ξ
w
θ1,θ2

(X ; t)− log(b− t)]
∫ b

t
x
(

S(x)
S(t)

)(θ1+θ2−1)

dx. (2.20)

The proof follows from Eq. (2.20).

Proposition 2.5.1. Let X be a non-negative continuous rv. Then,

f ξ
w
θ1,θ2

(X ; t)≤

∫ t
0 x
(

F(x)
F(t)

)(θ1+θ2−1)
log
[

x
(

F(x)
F(t)

)(θ1+θ2−1)
]

dx

(θ2 −θ1)
∫ t

0 x
(

F(x)
F(t)

)(θ1+θ2−1)
dx

+
log(t)

θ2 −θ1
.

Proof. Proof is similar to that of Theorem 2.5.1.

In the following section, we provide non-parametric estimators for GWSE and GWFE mea-
sures and develope a goodness-of-fit test for exponential distribution using the estimator of
GWSE measure.

2.6 Estimation and application

Let X1,X2, · · · ,Xn be a random sample of size n drawn from a distribution with cdf F and
X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be the corresponding order statistics. Let Fn be the edf of X which
is defined as

Fn(x) =


0, if x < X1:n,

i
n , if Xi:n ≤ x < X(i+1):n, i = 1,2, · · · ,n−1

1, if x ≥ Xn:n.

The non-parametric estimator of GWSE measure is defined as

ξ̂
w
θ1,θ2

(X) =
1

θ2 −θ1
log
∫ +∞

0
x Sθ1+θ2−1

n (x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2. (2.21)
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Substituting Sn(x) = 1− i
n , i = 1,2, · · · ,n−1 in Eq. (2.21), we get

ξ̂
w
θ1,θ2

(X) =
1

θ2 −θ1
log

[
n−1

∑
i=0

∫ X(i+1):n

Xi:n

x
(

1− i
n

)θ1+θ2−1

(x)dx

]

=
1

θ2 −θ1
log

[
n−1

∑
i=0

X2
(i+1):n −X2

i:n

2

(
1− i

n

)θ1+θ2−1
]

=
1

θ2 −θ1
log

[
n−1

∑
i=0

Ui+1

(
1− i

n

)θ1+θ2−1
]
, (2.22)

where Ui+1 =
X2
(i+1):n −X2

i:n

2
and X0:n = 0.

Similarly, we can define the estimator for GWFE measure for a rv X with bounded support
A and sup A = l. Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be the corresponding order statistics and
X(n+1):n = l. Then the empirical GWFE can be obtained as

ˆf ξ
w
θ1,θ2

(X) =
1

θ2 −θ1
log

[
n

∑
i=1

Ui+1

(
i
n

)θ1+θ2−1
]
. (2.23)

Using the estimator of GWSE measure, we develop a test for exponentiality. Let X1, X2,· · · ,
Xn be iid rvs from a non-negative absolutely continuous cdf F . Suppose

F0(x,λ ) = 1− e−λx, x > 0, λ > 0,

denotes the cdf of an exponential distribution with parameter λ . We want to test the hypoth-
esis

H0 : F(x) = F0(x,λ ) vs. H1 : F(x) ̸= F0(x,λ ).

Now consider the absolute difference between ξ w
θ1,θ2

(X) and ξ̂ w
θ1,θ2

(X) as

D =
∣∣∣ξ w

θ1,θ2
(X)− ξ̂

w
θ1,θ2

(X)
∣∣∣ .

If X ∼ F0(x,λ ) then ξ w
θ1,θ2

(X) = 2
θ1−θ2

log(λ (θ1 +θ2 −1)) and D reduces to

D =

∣∣∣∣ξ̂ w
θ1,θ2

(X)− 2
θ1 −θ2

log(λ (θ1 +θ2 −1))
∣∣∣∣ .
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We estimate λ by its maximum likelihood estimate (mle) λ̂ = 1/X̄ and obtain the test statis-
tic as

D =

∣∣∣∣ξ̂ w
θ1,θ2

(X)+
2

θ2 −θ1
log((θ1 +θ2 −1)/X̄)

∣∣∣∣
=

∣∣∣∣ 1
θ2−θ1

log
[
(θ1+θ2−1)2

2 ∑
n−1
i=0

((
X(i+1):n

X̄

)2
−
(

Xi:n
X̄

)2
)(

1− i
n

)θ1+θ2−1
]∣∣∣∣.

Since Xi:n
X̄ is scale invariant ∀ i = 1(1)n, hence D is scale invariant. It measures the distance

between the parametric and the non-parametric estimate of GWSE measure. Large values
of D indicate that the sample is from the exponential distribution. Note that the statistic
D is scale invariant. Now consider the monotone transformation T = exp(−D), we have
0 < T < 1. Under the null hypothesis, D

p→ 0 and hence T
p→ 1. So we reject H0 at the

significance level α if T < Tα,n, where Tα,n is the lower α-quantile of the edf of T .
The sampling distribution of T under H0 is intractable. Critical points of the distribution of
T are obtained by simulations. To obtain the critical points Tα,n by simulations we generate
10000 samples of size n from a standard exponential distribution for n = 4(1)30, 30(5)50
and 50(10)100. For each n the lower α-quantile of the edf of T is used to determine Tα,n.
The critical points vary for different choices of (θ1,θ2). The critical points of 90%, 95%
and 99% are presented in Table 2.4 for θ1 = 0.26 and θ2 = 1.25.

Table 2.4: Critical values of T.

n T0.01,n T0.05,n T0.10,n n T0.01,n T0.05,n T0.10,n

4 0.15452 0.18056 0.19797 22 0.30519 0.34955 0.38022
5 0.17084 0.19897 0.22030 23 0.30818 0.35743 0.39111
6 0.18293 0.21504 0.23581 24 0.31159 0.36074 0.39332
7 0.19529 0.23172 0.25352 25 0.32099 0.36921 0.40241
8 0.20218 0.24136 0.26678 26 0.32446 0.37260 0.40443
9 0.21664 0.25408 0.28284 27 0.33040 0.37802 0.41150
10 0.22490 0.26454 0.29226 28 0.33125 0.38068 0.41445
11 0.23571 0.27731 0.30546 29 0.33722 0.38670 0.41889
12 0.24354 0.28555 0.31272 30 0.33753 0.38741 0.42157
13 0.24885 0.29078 0.32062 35 0.35176 0.40709 0.44064
14 0.25726 0.30001 0.33029 40 0.37078 0.42298 0.45628
15 0.26489 0.31010 0.34048 45 0.38136 0.43473 0.47075
16 0.27563 0.31945 0.34892 50 0.39466 0.44945 0.48360
17 0.27848 0.32157 0.35377 60 0.41155 0.47032 0.50530
18 0.28509 0.33113 0.36187 70 0.43122 0.48464 0.52112
19 0.29347 0.33772 0.36784 80 0.45398 0.50520 0.54058
20 0.29454 0.34134 0.37401 90 0.46436 0.51746 0.55323
21 0.29890 0.34726 0.38058 100 0.47475 0.52805 0.56257
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2.6.1 Power Comparison

The power of the proposed test is compared with two other exponentiality tests based on
entropy. Ebrahimi et al. (1992) proposed a goodness-of-fit test for exponential distribution
based on the Kullback-Leibler divergence measure and Baratpour and Rad (2012) proposed
an exponentiality test based on cumulative residual entropy.
We compare the performance of T with the test statistic proposed by Baratpour and Rad
(2012)

T ∗ =
∑

n−1
i=1

n−i
n log

(n−i
n

)
(X(i+1):n −Xi:n)+

∑
n
i=1 X2

i
2∑

n
i=1 Xi

∑
n
i=1 X2

i
2∑

n
i=1 Xi

and with the test statistic provided by Ebrahimi et al. (1992)

KLmn = exp(Hmn − log X̄ −1),

where Hmn =
1
n ∑

n
i=1 log[ n

2m(X(i+m):n−X(i−m):n)] is the Vasicek’s entropy estimate. The win-
dow size m is a positive integer less that n

2 , Xi:n = X1:n if i < 1 and Xi:n = Xn:n if i > n. We
reject the null hypothesis for large values of T ∗ and for small values of KLmn.

Power of the tests are computed based on 10000 samples of size n = 10(5)25 for sig-
nificance levels α = 0.01 and 0.05. For power computation, we consider two alternative
distributions

• Weibull (p,1) with pdf fW (x) = pxp−1e−xp
; x, p > 0.

• Gamma (q,1) with pdf fGA(x) = e−xxq−1

Γ (q) ; x,q > 0.

The power for Weibull and gamma alternatives are reported in Tables 2.5 and 2.6, respec-
tively. It is observed that the power of the test T is similar to that of T ∗ but lower than that
of KLmn for small sample size n = 10. However, for moderate to large sample sizes the
proposed test T behaves similar to KLmn and T ∗.

2.6.2 Data analysis

Consider the data set given in Grubbs (1971) that provides the mileages for 19 military
personnel carriers that failed in service. The mileages are:
162, 200, 271, 320, 393, 508, 539, 629, 706, 778, 884, 1003, 1101, 1182, 1463, 1603, 1984,
2355, 2880.
The observed value of T is 0.41271. For n = 19 and α = 0.01, from Table 2.4 we obtain the
critical point as T0.01,19 = 0.29347. So we can not reject the null hypothesis that the failure
time follows exponential distribution.
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Table 2.5: Power comparison for the tests T , T ∗ and KLmn when the alternative is Weibull
distribution.

n p α KLmn T ∗ T

10 2 0.01 0.4267 0.3441 0.3237
0.05 0.7170 0.6504 0.6627

3 0.01 0.9013 0.8554 0.8404
0.05 0.9858 0.9775 0.9758

4 0.01 0.9947 0.9911 0.9880
0.05 1 0.9997 0.9997

15 2 0.01 0.6526 0.5480 0.5577
0.05 0.8628 0.8334 0.8308

3 0.01 0.9914 0.9816 0.9805
0.05 0.9995 0.9989 0.9990

4 0.01 1 1 1
0.05 1 1 1

20 2 0.01 0.7355 0.7080 0.7299
0.05 0.9390 0.9173 0.9276

3 0.01 0.9986 0.9986 0.9990
0.05 1 1 1

4 0.01 1 1 1
0.05 1 1 1

25 2 0.01 0.8930 0.8287 0.8530
0.05 1 0.9650 0.9642

3 0.01 1 1 1
0.05 1 1 1

4 0.01 1 1 1
0.05 1 1 1

2.7 Discussions

In this chapter, we proposed two new weighted information measures and obtained var-
ious properties. We also introduced their dynamic version and showed that dynamic infor-
mation measures uniquely determine the underlying distribution. We defined new stochastic
orderings based on the proposed measure. It is shown that dynamic weighted survival and
failure entropy order is preserved under scale transformation under some specific condi-
tions. An important use of these measures is characterization of distributions. We obtained
characterization of Rayleigh and power distributions and identically distributed rvs using the
proposed measures. Also we suggested non-parametric estimators based on the edf func-
tion and developed a goodness-of-fit test for exponential distribution. The proposed test
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Table 2.6: Power comparison for the tests T , T ∗ and KLmn when the alternative is gamma
distribution.

n q α KLmn T ∗ T

10 5 0.01 0.7418 0.5652 0.5334
0.05 0.9393 0.8306 0.8160

6 0.01 0.8500 0.6876 0.6567
0.05 0.9749 0.9155 0.8962

7 0.01 0.9180 0.7856 0.7430
0.05 0.9898 0.9578 0.9369

15 5 0.01 0.9344 0.7858 0.7636
0.05 1 0.9458 0.9316

6 0.01 0.9786 0.8987 0.8687
0.05 1 0.9823 0.9725

7 0.01 0.9933 0.9498 0.9221
0.05 1 0.9950 0.9861

20 5 0.01 1 0.9006 0.8752
0.05 1 0.9818 0.9669

6 0.01 1 0.9677 0.9433
0.05 1 0.9970 0.9898

7 0.01 1 0.9908 0.9773
0.05 1 0.9993 0.9953

25 5 0.01 1 1 0.9403
0.05 1 1 0.9873

6 0.01 1 1 0.9793
0.05 1 1 0.9966

7 0.01 1 1 0.9923
0.05 1 1 0.9992

performed reasonably well for monotone increasing hazard alternatives.
In the testing problem, we took θ1 = 0.26 and θ2 = 1.25. However, there is no particular

rule of choosing the generalizing parameters involved with the corresponding information
measure. In our case, one may choose the parameters in such a way that the asymptotic
variance of the estimator is minimum. If one is performing a testing problem, the parameters
can be chosen such that the power of the test will be maximum. The choice of the parameters
will depend on the underlying problem of interest.

We proposed non-parametric estimators based on the edf function. Other estimators like
Kernel based estimators, estimators based on L-statistics may be used as well. It will be
interesting to see under which circumstances these estimators outperform each other.



Chapter 3

Weighted cumulative Tsallis residual and
past entropy measures

TSALLIS entropy is perhaps the most important non-additive generalization of Shannon
entropy measure. It revolutionises statistical mechanics, thermodynamics and related fields.
For detailed review and applications of Tsallis entropy see Cartwright (2014). Recently,
cumulative Tsallis residual entropy (CTRE) measure has been introduced in the literature by
Sati and Gupta (2015) for studying cumulative information based on non-additive entropy
measure. For a rv X , CTRE is defined as

CTθ (X) =
1

θ −1

(
1−

∫ +∞

0
Sθ (x)dx

)
, 0 < θ < 1. (3.1)

Note that, if θ → 1, CTθ (X)→CRE(X). They also proposed the dynamic version of CTRE
measure and provide application in characterizing some well known lifetime distributions.
After the introduction of CTRE, various generalized Tsallis information measures have been
proposed. Tsallis entropy defined in Eq. (1.4) can also be represented as

Tθ (X) =
1

θ −1

∫ +∞

0

(
f (x)− f θ (x)

)
dx, 0 < θ < 1. (3.2)

An alternative version of CTRE was proposed by Rajesh and Sunoj (2019) by replacing the
pdf in Eq. (3.2) with the sf. The alternative form of CTRE is defined as

ξθ (X) =
1

θ −1

∫ +∞

0

(
S(x)−Sθ (x)

)
dx, 0 < θ ̸= 1. (3.3)
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As θ → 1, ξθ (X) reduces to CRE(X) and for θ = 2, it becomes Gini’s mean difference
(GMD). This alternative measure is more flexible than CTθ (X) because it has more relation-
ships with other measures related to reliability and information theory, see Rajesh and Sunoj
(2019) and Toomaj and Atabay (2022). A cdf based version of this measure is introduced
by Calì et al. (2017), which is called cumulative Tsallis past entropy (CTPE) and is defined
as

ξ̄θ (X) =
1

θ −1

∫ +∞

0

(
F(x)−Fθ (x)

)
dx, 0 < θ ̸= 1. (3.4)

Recently, a weighted measure based on CTRE has been studied by Khammar and Jahanshahi
(2018) which is defined as

CT w
θ (X) =

1
θ −1

(
1−

∫ +∞

0
xSθ (x)

)
dx, 0 < θ ̸= 1. (3.5)

In the present chapter, we consider the weighted forms of (3.3) and (3.4) and their dy-
namic versions. We study numerous properties, define new aging classes based on the dy-
namic measures and provide characterization theorems for Rayleigh and power distribution.
We propose non-parametric estimators of the proposed measures and study their asymptotic
properties.

The rest of the chapter is organised as follows. The weighted cumulative Tsallis residual
entropy (WCTRE) and its dynamic version are proposed and their properties are studied
in Section 3.1. The weighted cumulative Tsallis past entropy (WCTPE) and its dynamic
version are proposed in Section 3.2. Aging classes and characterization results based on
dynamic entropy measures are studied in Section 3.3. Non-parametric estimators are devel-
oped in Section 3.4. Some concluding remarks are made in Section 3.5.

3.1 Weighted cumulative Tsallis residual entropy and its
dynamic version

In this section, we propose WCTRE of order θ and its dynamic version and study some
interesting properties of these measures.

Definition 3.1.1. For a non-negative continuous rv X the WCTRE is defined as

ξ
w
θ (X) =

1
θ −1

∫ +∞

0
x
(

S(x)−Sθ (x)
)

dx, 0 < θ ̸= 1. (3.6)

Note that WCTRE is a generalization of weighted cumulative residual entropy (WCRE)
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proposed by Misagh et al. (2011). The WCRE is defined as

CREw(X) =−
∫ +∞

0
xS(x) logS(x)dx (3.7)

and WCTRE reduces to WCRE when θ → 1. The usefulness of the proposed entropy
measure is illustrated through the following example.

Example 3.1.1. Suppose X and Y are continuous rvs having U(0,a) and U(h,a+h), a,h >

0, distributions. Then from Eq. (3.3), it follows that ξθ (X) = ξθ (Y ) = a
2(θ−1) .

Now from Eq. (3.6) we get, ξ w
θ
(X) = a2(θ+4)

6(θ+1)(θ+2) and ξ w
θ
(Y ) = ah

2(θ+1) +
a2(θ−1)(θ+4)
6(θ+1)(θ+2) . So it

is seen that although ξθ (X) = ξθ (Y ) but ξ w
θ
(X) ̸= ξ w

θ
(Y ).

It is always interesting to express information measures in terms of expectations of a func-
tion of rv. Misagh et al. (2011) proved that WCRE and WCE measures of a rv X are the
expectation of WMRL and WMPL of X . In the following lemma, a relationship between
WCTRE and WMRL function is provided.

Lemma 3.1.1. For a non-negative continuous rv X with sf S,

ξ
w
θ (X) = E[mw

F(X)Sθ−1(X)].

Proof. Note that d
dx(m

w
F(x)S(x)) =−xS(x). Using this fact in Eq. (3.6) we get

ξ
w
θ (X) =

1
θ −1

[
−
∫ +∞

0

d
dx

(mw
F(x)S(x))(1−Sθ−1(x))dx

]
.

Using integration by parts we get

ξ
w
θ (X) =

1
θ −1

[
0+

∫ +∞

0
(θ −1)Sθ−2(x) f (x)mw

F(x)S(x)dx
]
.

Hence the proof.

Using this result Kattumannil et al. (2022) express WCTRE measure as a special case of
generalized entropy measure. The following examples illustrate Lemma 3.1.1.

Example 3.1.2. Suppose X have an exponential distribution with cdf F(x)= 1−e−λx, x> 0,
λ > 0, then ξ w

θ
(X) = θ+1

λ 2θ 2 , mw
F(x) =

x
λ
+ 1

λ 2 and E[mw
F(X)Sθ−1(X)] = θ+1

λ 2θ 2 .

Example 3.1.3. Suppose X have Pareto distribution with cdf F(x) = 1− (b
x )

a, x ≥ b, b > 0,
a > 0. Then ξ w

θ
(X) = ab2

(a−2)(aθ−2) , mw
F(x) =

x2

a−2 and E[mw
F(X)Sθ−1(X)] = ab2

(a−2)(aθ−2) .
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Next we obtain a bound for WCTRE of a rv X in terms of WCRE of X .

Theorem 3.1.1. For a rv X, ξ w
θ
(X)≤ (≥)CREw(X) if θ > 1(0 < θ < 1).

Proof. Suppose θ > 1, then

ξ
w
θ (X) =

1
θ −1

∫ +∞

0
x(S(x)−Sθ (x))dx

=
1

θ −1

∫ +∞

0
xS(x)(1−Sθ−1(x))dx

≤ − 1
θ −1

∫ +∞

0
xS(x) logSθ−1(x)dx

= −
∫ +∞

0
xS(x) logS(x)dx

= CREw(X),

where the inequality follows from the fact that for u > 0, 1− u < − logu. The inequality
will reverse for (0 < θ < 1).

Now we obtain upper bounds for WCTRE of smallest and largest order statistics.

Proposition 3.1.1. Let X1,X2, · · · ,Xn be a rs from a cdf F having finite support [0, l], then
for θ > 1

(i) ξ
w
θ (X1:n)≤ n

∫ l

0
xF(x)dx;

(ii) ξ
w
θ (X1:n)≤ nξ

w
θ (X);

(iii) ξ
w
θ (Xn:n)≤

∫ l

0
xF(x)dx.

Proof.

ξ
w
θ (X1:n) =

1
θ −1

∫ l

0
x(Sn(x)−Snθ (x))dx

= 1
θ−1

∫ l
0 x(S(x)−Sθ (x))(Sn−1(x)+Sn−2(x)Sθ (x)+ · · ·+S(n−1)θ (x))dx

≤ n
θ −1

∫ l

0
x(S(x)−Sθ (x))dx

=
n

θ −1

∫ l

0
x[S(x)− (1−F(x))θ ]dx

≤ n
θ −1

∫ l

0
x(S(x)+θF(x)−1)dx

= n
∫ l

0
xF(x)dx,
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where second inequality is obtained by using Bernoulli inequality. First inequality yields
ξ w

θ
(X1:n)≤ nξ w

θ
(X). Similarly using Bernoulli’s inequality in

ξ
w
θ (Xn:n) =

1
θ −1

∫ l

0
x[(1−Fn(x))− (1−Fn(x))θ ]dx,

it follows that ξ w
θ
(Xn:n) =

1
θ−1

∫ l
0 xFn(x)dx ≤

∫ l
0 xF(x)dx.

Note that X1:n and Xn:n represent the lifetimes of series and parallel systems, respectively, if
the random variables X1, · · · ,Xn represent the lifetimes of components. Then using Propo-
sition 3.1.1, bounds for the WCTRE of lifetimes of series and parallel systems can be ob-
tained. Now we define dynamic weighted cumulative Tsallis residual entropy (DWCTRE)
measure which is the WCTRE of Xt = [X − t|X ≥ t].

Definition 3.1.2. Let X be an absolutely continuous non-negative rv then DWCTRE of order
θ of X is given by

ξ
w
θ (X , t) =

1
θ −1

∫ +∞

t
x
(

SXt (x)− (SXt (x))
θ

)
dx

=
1

θ −1

∫ +∞

t
x

(
S(x)
S(t)

−
(

S(x)
S(t)

)θ
)

dx

=
1

θ −1

(
mw

F(t)−
∫ +∞

t
x
(

S(x)
S(t)

)θ

dx

)
. (3.8)

The relationship of DWCTRE and WMRL is provided in the next theorem.

Theorem 3.1.2. Let X be an absolutely continuous non-negative rv with WMRL function

mw
F(t) then ξ w

θ
(X , t) =

E[mw
F(X)Sθ−1(X)|X > t]

Sθ−1(t)
.

Proof. From Eq. (3.8) we have,

ξ
w
θ (X , t) =

1
θ −1

[
mw

F(t)+
1

Sθ (t)

∫ +∞

t

(
d
dx

(mw
F(x)S(x))S

θ−1(x)
)

dx
]

= 1
θ−1

[
mw

F(t)+
1

Sθ (t)

(
−mw

F(t)S
θ (t)+(θ −1)

∫+∞

t mw
F(x)S

θ−1(x) f (x)dx
)]

=
1

Sθ−1(t)

∫ +∞

t
mw

F(x)S
θ−1(x)

f (x)
S(t)

dx. (3.9)

Hence the proof.

Corollary 3.1.2.1. If X has decreasing (increasing) weighted mean residual life (DWMRL
(IWMRL)) then ξ w

θ
(X , t)≤ (≥)

mw
F (t)
θ

.
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Proof. If X is DWMRL (IWMRL) then for x ≥ t we have mw
F(x) ≤ (≥) mw

F(t). Using this
fact in Eq. (3.9) and after some simplifications, we get the result.

Next, the effect of linear transformation on DWCTRE measure is studied. Proofs are anal-
ogous to the results studied in Chapter 2 regarding linear transformation.

Proposition 3.1.2. If Y = cX +d with c > 0 and d ≥ 0 then,

(i) ξ w
θ
(Y ) = c2ξ w

θ
(X)+ cdξθ (X);

(ii) ξ w
θ
(Y, t) = c2ξ w

θ

(
X , t−d

c

)
+ cdξθ

(
X , t−d

c

)
.

We express the relationship of DWCTRE measure between the rvs Xη and X , where Xη and
X satisfies the PHRM i.e. SXη

(x) = [S(x)]η , η > 0.

Proposition 3.1.3. The DWCTRE between the rvs X, Xη and ηX can be expressed as fol-
lows:

(i) (θ −1) ξ w
θ
(Xη)− (θη −1) ξ w

θη
(X) = (1−η) ξ w

θ
(X);

(ii) (θ −1) ξ w
θ
(Xη , t)− (θη −1) ξ w

θη
(X , t) = (1−η) ξ w

θ
(X , t).

Proof. Proof follows from the definition of WCTRE (DWCTRE).

3.2 Weighted cumulative Tsallis past entropy and its dy-
namic version

In this section, we define WCTPE of order θ along with its dynamic version.

Definition 3.2.1. For a rv X the WCTPE of order θ is defined as

ξ̄
w
θ (X) =

1
θ −1

∫ +∞

0
x
(

F(x)−Fθ (x)
)

dx, 0 < θ ̸= 1. (3.10)

Note that WCTPE is a generalization of the weighted cumulative entropy (WCE) measure,
which was introduced by Misagh et al. (2011) as

CEw(X) =−
∫ +∞

0
xF(x) logF(x)dx. (3.11)

As θ → 1, WCTPE reduces to CEw(X). It is related to the WMPL measure which is demon-
strated through the following lemma and example.



3.2 Weighted cumulative Tsallis past entropy and its dynamic version 51

Lemma 3.2.1. For a rv X with cdf F, ξ̄ w
θ
(X) = E[µw

F (X)Fθ−1(X)].

Proof. Note that d
dx(µ

w
F (x)F(x)) = xF(x). Then using this fact in Eq. (3.10), we get

ξ̄
w
θ (X) =

1
θ −1

∫ +∞

0

d
dx

(µw
F (x)F(x))(1−Fθ−1(x))dx.

Now the result follows using integration by parts.

Example 3.2.1. Suppose X have U(0,1) distribution with cdf F(x) = x, 0 < x < 1 then
ξ̄ w

θ
(X) = 1

3(θ+2) , µw
F (x) =

x2

3 . It can be easily shown that,

E[µw
F (X)Fθ−1(X)] = E

(
Xθ+1

3

)
=

1
3(θ +2)

.

Next the relationship between WCTPE and WCE measures is provided. Also some bounds
for WCTPE of extreme order statistics are obtained.

Theorem 3.2.1. Let X be a rv with cdf F, then ξ̄ w
θ
(X)≤ (≥)CEw(X) if θ > 1(0 < θ < 1).

Proof. Proof is similar to that of Theorem 3.1.1.

Proposition 3.2.1. Let X1,X2, · · · ,Xn be i.i.d. rvs then for θ > 1

(i) ξ̄
w
θ (Xn:n)≤

n
2

E(X2);

(ii) ξ̄
w
θ (X1:n)≤ n ξ̄

w
θ (X);

(iii) ξ̄
w
θ (X1:n)≤

n
2

E(X2).

Proof. Proofs are analogous to that of Proposition 3.1.1.

Next we propose dynamic weighted cumulative Tsallis past entropy (DWCTPE) measure
and study some properties.

Definition 3.2.2. For a rv X the DWCTPE measure is given by

ξ̄
w
θ (X , t) =

1
θ −1

∫ t

0
x
(

FXt−(x)− (FtX(x))
θ

)
dx

=
1

θ −1

∫ t

0
x

(
F(x)
F(t)

−
(

F(x)
F(t)

)θ
)

dx

=
1

θ −1

(
µ

w
F (t)−

∫ t

0
x
(

F(x)
F(t)

)θ

dx

)
. (3.12)
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Theorem 3.2.2. Let X be an absolutely continuous non-negative rv with WMPL function
µw

F (t) then,

ξ̄
w
θ (X , t) =

E[µw
F (X)Fθ−1(X)|X < t]

Fθ−1(t)
. (3.13)

Proof. We have,

ξ̄
w
θ (X , t) =

1
θ −1

[
µ

w
F (t)−

1
Fθ (t)

∫ t

0

d
dx

(µw
F (x)F(x))Fθ−1(x)dx

]
.

Applying integration by parts and after some simplification, we get

ξ̄
w
θ (X , t) = 1

θ−1

[
µw

F (t)−
1

Fθ (t)

(
µw

F (t)F
θ (t)− (θ −1)

∫ t
0 µw

F (x)F
θ−1(x) f (x)dx

)]
=

1
Fθ−1(t)

∫ t

0
µ

w
F (x)F

θ−1(x)
f (x)
F(t)

dx.

Hence the result.

Corollary 3.2.2.1. If X has decreasing (increasing) WMPL then ξ̄ w
θ
(X , t)≥ (≤)

µw
F (t)
θ

.

Proof. If X has decreasing (increasing) WMPL then µw
F (x) ≥ µw

F (t) for x ≤ t. Using this
fact in Eq. (3.13) we get the result.

Next, the effect of linear transformation of X on DWCTPE is considered.

Proposition 3.2.2. If Y = cX +d with c > 0 and d ≥ 0 then,

(i) ξ̄ w
θ
(Y ) = c2ξ̄ w

θ
(X)+ cd ξ̄θ (X),

(ii) ξ̄ w
θ
(Y, t) = c2ξ̄ w

θ

(
X , t−d

c

)
+ cd ξ̄θ

(
X , t−d

c

)
.

We obtain the expression of WCTPE (DWCTPE) under PRHRM. Proof follows from their
definitions, hence omitted.

Proposition 3.2.3. Let Xη and X satisfies the PRHRM i.e. FXη
(x) = [F(x)]η , η > 0. Then,

(i) (θ −1) ξ̄ w
θ
(Xη)− (θη −1) ξ̄ w

θη
(X) = (1−η) ξ̄ w

θ
(X);

(ii) (θ −1) ξ̄ w
θ
(Xη , t)− (θη −1) ξ̄ w

θη
(X , t) = (1−η) ξ̄ w

θ
(X , t).

3.3 Aging classes and charaterizations

In this section, two new aging classes are introduced based on the proposed dynamic
information measures and some characterization results for Rayleigh and power distribu-
tions are obtained. First we show that DWCTRE uniquely determines the distribution. The
following lemma will be needed to prove the uniqueness result.
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Lemma 3.3.1. Let X1 and X2 be two non-negative continuous rvs with cdfs F1 and F2,

respectively. If
HR

X1 ≤ X2, then mw
F1
(t) ≤ mw

F2
(t), where mw

F1
(t) and mw

F2
(t) are the WMRL of

X1 and X2, respectively.

Proof. If
hr

X1 ≤ X2 then for x ≥ t, S1(x)
S1(t)

≤ S2(x)
S2(t)

. Now by multiplying both sides with x and
taking integration from t to +∞, the required result follows.

Theorem 3.3.1. Let X be a non-negative continuous rv having pdf f and sf S. Assume that
ξ w

θ
(X , t) < +∞; t ≥ 0, 0 < θ ̸= 1. Then for each θ , ξ w

θ
(X , t) uniquely determines the sf of

X.

Proof. Suppose X1 and X2 be two rvs with cdfs F1 and F2, respectively. Assume that

ξ
w
θ (X1, t) = ξ

w
θ (X2, t).

Differentiating both sides wrt t we get,

λF1(t)[θξ
w
θ (X1, t)−mw

F1
(t)] = λF2(t)[θξ

w
θ (X2, t)−mw

F2
(t)]. (3.14)

Now if ∀ t ≥ 0, λF1(t) = λF2(t) then F1 = F2 and the proof is complete. But suppose for
some t = t0, λF1(t0) ̸= λF2(t0) and without loss of generality, assume that λF1(t0)> λF2(t0).
Then (3.14) implies

θξ
w
θ (X1, t0)−mw

F1
(t0)< θξ

w
θ (X2, t0)−mw

F2
(t0)

and hence mw
F1
(t0) > mw

F2
(t0). This is a contradiction since from Lemma 3.3.1 we have

mw
F1
(t0)< mw

F2
(t0) when λF1(t0)> λF2(t0). Hence the proof.

Remark 3.3.1. Although DWCTRE uniquely determines the underlying distribution, this
can not be said for DWCTPE measure. The DWCTPE can not determine the underlying
cdf uniquely. i.e ξ̄ w

θ
(X , t)=ξ̄ w

θ
(Y, t) does not necessarily imply that X and Y have the same

distribution. Suppose X has uniform distribution with cdf F(x) = x
a , 0 < x < a and Y has

power distribution with cdf G(x) =
( x

a

)c ; 0 < x < a, c > 0. Then ξ̄ w
θ
(X , t) = t2

3(θ+2) and

ξ̄ w
θ
(Y, t) = c t2

(cθ+2)(c+2) and for c = 4
θ

, ξ̄ w
θ
(X , t) = ξ̄ w

θ
(Y, t).

Next we define some aging classes based on the proposed dynamic measures and study
some properties.

Definition 3.3.1. X is said to be increasing (decreasing) dynamic weighted cumulative Tsal-
lis residual entropy (IDWCTRE) (DDWCTRE) of order θ iff ξ w

θ
(X , t) is increasing (decreas-

ing) in t.
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Definition 3.3.2. X is said to be increasing (decreasing) dynamic weighted cumulative Tsal-
lis past entropy (IDWCTPE) (DDWCTPE) of order θ iff ξ̄ w

θ
(X , t) is increasing (decreasing)

in t.

The following theorem provide conditions for which the aging classes hold.

Theorem 3.3.2. The measure ξ w
θ
(X , t) is increasing (decreasing) in t iff

ξ
w
θ (X , t)≥ (≤)

mw
F(t)
θ

.

Proof. Differentiating Eq. (3.8) we get

d
dt

ξ
w
θ (X , t) =

1
θ −1

(
λF(t)mw

F(t)−θλF(t)
∫ +∞

t
x

Sθ (x)
Sθ (t)

)
dx,

which reduces to
d
dt

ξ
w
θ (X , t) = λF(t)(θξ

w
θ (X , t)−mw

F(t)) . (3.15)

The result follows from (3.15).

Theorem 3.3.3. The DWCTPE of X, ξ̄ w
θ
(X , t) is increasing (decreasing) in t iff

ξ̄
w
θ (X , t)≤ (≥)

µw
F (t)
θ

.

Proof. Differentiating Eq. (3.12) and after some simplifications, we get

d
dt

ξ̄
w
θ (X , t) = rF(t)(µw

F (t)−θξ̄
w
θ (X , t)), (3.16)

where rF(t) =
f (t)
F(t) is the rhr of X . The result follows from (3.16).

The following theorems address characterization results for Rayleigh and power distribu-
tions.

Theorem 3.3.4. For a non-negative, continuous rv X, DWCTRE is constant iff X has a
Rayleigh distribution.

Proof. If X has Rayleigh distribution then it immediately follows that ξ w
θ
(X , t) is constant.

Now suppose ξ w
θ
(X , t) = c, where c is a constant. This gives

d
dt

ξ
w
θ (X , t) = 0
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which implies
mw

F(t) = cθ

and hence
λF(t) =

t
cθ

,

which is the hr of Rayleigh distribution with cdf F(t) = 1− e−
t2

2cθ , t > 0, c > 0, θ ̸= 1.
Hence the result.

Theorem 3.3.5. Let X be a non-negative rv having support (0,b), with absolutely continu-
ous cdf F and rhr function rF . Then X has a power distribution with F(x) =

( x
b

)c
, 0 < x <

b, c > 0 iff
ξ̄

w
θ (X , t) = c µ

w
F (t),

where µw
F (t) is the WMPL function of X.

Proof. If part is straight forward. Now suppose ξ̄ w
θ
(X , t) = cµw

F (t) holds. Then differentiat-
ing with respect to t and after some simplification, we get

rF(t)µw
F (t) =

ct
1− (θ −1)c

.

This implies
d
dt

µ
w
F (t) =

1−θc
1− (θ −1)c

t.

Integrating wrt t and taking µw
F (0) = 0 we get

µ
w
F (t) =

1−θc
1− (θ −1)c

t2

2
,

which implies

rF(t) =
2c

(1−θc)
1
t
, cθ < 1.

Clearly rF(t) is the rhr of power distribution with F(t) =
( t

b

) 2c
1−cθ , 0 < t < b, cθ < 1. Hence

the proof.

In the following theorem we generalize Theorem 3.3.5 in the sense that instead of a constant
c we take a function of t, c(t), say, and obtain a generalized relation.

Theorem 3.3.6. Let X be a non-negative continuous rv having support (0,b) such that
ξ̄ w

θ
(X , t) = c(t)µw

F (t), then
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µ
w
F (t) = (Pθ (t))

θ

θ−1

∫ t

0

x(1−θc(x))

(Pθ (x))
θ

θ−1
dx, (3.17)

where Pθ (x) = 1− (θ −1)c(x).

Proof. Suppose the relation ξ̄ w
θ
(X , t) = c(t)µw

F (t) holds. Then differentiating this and after
simplification we have

µ
′∗
F (t)+

c′(t)
Pθ (t)

µ
w
F (t) =

1−θc(t)
(Pθ (t))

t.

This is a first order differential equation in µw
F (t), with solution of the form (3.17).

3.4 Estimation

In this section, we propose edf based non-parametric estimators of WCTRE and WCTPE
measures. Asymptotic normality of these estimators are established when the random sam-
ple comes from the Rayleigh distribution. Let X1,X2, · · · ,Xn be a rs from a continuous
distribution and X1:n,X2:n, · · · ,Xn:n are the corresponding order statistics. We propose non-
parametric estimators of WCTRE and WCTPE measures using the edf function of X . The
empirical WCTRE is defined as

ξ̂
w
θ (X) =

1
θ −1

∫ +∞

0
x(Sn(x)−Sθ

n (x))dx, θ ̸= 1, θ > 0. (3.18)

Substituting Sn(x) = 1− i
n , i = 1,2, · · · ,n−1, in (3.18) we get,

ξ̂
w
θ (X) =

1
2(θ −1)

n−1

∑
i=1

U(i+1)

[(
1− i

n

)
−
(

1− i
n

)θ
]
, (3.19)

where Ui+1 = X2
(i+1):n −X2

i:n and U1 = X2
1:n. Similarly, empirical WCTPE can be expressed

as
ˆ̄
ξ

w
θ (X) =

1
2(θ −1)

n−1

∑
i=1

U(i+1)

[
i
n
−
(

i
n

)θ
]
. (3.20)

Now we provide two central limit theorems (CLT) for the estimators when data comes from
the Rayleigh distribution.

Theorem 3.4.1. Let X1,X2, · · · ,Xn be a random sample from the Rayleigh distribution with

pdf f (x) = 2λxe−λx2
; x > 0, λ > 0, then

ξ̂ w
θ
(X)−E[ξ̂ w

θ
(X)]√

Var[ξ̂ w
θ
(X)]

→ N(0,1) in distribution as

n →+∞ and for θ > 2/3(̸= 1).
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Proof. The empirical WCTRE can be expressed as ξ̂ w
θ
(X) = ∑

n−1
i=1 Zi, where

Zi =
1

2(θ −1)
U(i+1)

[(
1− i

n

)
−
(

1− i
n

)θ
]
, i = 1,2, · · · ,n−1.

Since X has Rayleigh distribution with pdf f (x) = 2λxe−λx2
; x > 0, λ > 0, then X2 has

exponential distribution with mean 1/λ and Ui+1 = X2
(i+1):n −X2

i:n also has exponential dis-
tribution with mean 1/λ (n− i) (Pyke, 1965). So,

E(Zi) =
1

2(θ −1)λ (n− i)

[(
1− i

n

)
−
(

1− i
n

)θ
]
,

Var[Zi] =
1

4(θ −1)2λ 2(n− i)2

[(
1− i

n

)
−
(

1− i
n

)θ
]2

.

For any exponentially distributed rv Zi, Di Crescenzo and Longobardi (2009) showed that
E[|Zi −E(Zi)|3] = 2e−1(6− e)[E(Zi)]

3 . Denote

An
i,δ = E[|Zi −E(Zi)|δ ],

then for large n we have,
n

∑
i=1

An
i,2 =

n

∑
i=1

E[|Zi −E(Zi)|2]

=
1

4λ 2(θ −1)2

n

∑
i=1

1
(n− i)2

[(
1− i

n

)
−
(

1− i
n

)θ
]2

=
1

4λ 2(θ −1)2n2

n

∑
i=1

[
1−
(

1− i
n

)θ−1
]2

≈ C2

4λ 2(θ −1)2n
,

where C2 =
∫ 1

0 [1− (1− x)θ−1]2dx and C2 converges for θ > 1/2. Again,
n

∑
i=1

An
i,3 =

n

∑
i=1

E[|Zi −E(Zi)|3]

= 2e−1(6− e)
n

∑
i=1

1
8(θ −1)3λ 3(n− i)3

[(
1− i

n

)
−
(

1− i
n

)θ
]3

=
(6− e)

4e(θ −1)3λ 3n3

n

∑
i=1

[
1−
(

1− i
n

)θ−1
]3

≈ (6− e)C3

4e(θ −1)3λ 3n2 ,
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where C3 =
∫ 1

0 [1−(1−x)θ−1]3dx which converges for θ > 2/3. So both integral converges
for θ > 2/3.
Now

(∑n
i=1 θ n

i,3)
1/3

(∑n
i=1 θ n

i,2)
1/2 ≈

3
√

2e−1(6− e)C3√
C2

n−
1
6 ,

which goes to 0 as n → +∞ and for θ > 2/3. Therefore, Lyapunov’s condition for CLT is
satisfied. Hence the proof.

Theorem 3.4.2. Let X1,X2, · · · ,Xn be a random sample from the Rayleigh distribution with

pdf f (x) = 2λxe−λx2
; x > 0, λ > 0, then for every 0< θ ̸= 1,

ˆ̄
ξ w

θ
(X)−E[ ˆ̄

ξ w
θ
(X)]√

Var[ ˆ̄
ξ w

θ
(X)]

→N(0,1)

in distribution as n →+∞.

Proof. Note that ˆ̄
ξ w

θ
(X) can be represented as ˆ̄

ξ w
θ
(X) = ∑

n−1
i=1 Z1

i , where

Z1
i =

1
2(θ −1)

U(i+1)

[
i
n
−
(

i
n

)θ
]
, i = 1,2, · · · ,n−1.

Along the same line as Theorem 3.4.1 the mean and variance of Z1
i can be obtained as

E(Z1
i ) =

1
2(θ −1)λ (n− i)

[
i
n
−
(

i
n

)θ
]
,

Var(Z1
i ) =

1
4(θ −1)2λ 2(n− i)2

[
i
n
−
(

i
n

)θ
]2

.

Denote Bn
i,δ = E[|Z1

i −E(Z1
i )|δ ]. For large n,

n

∑
i=1

Bn
i,2 =

n

∑
i=1

E[|Z1
i −E(Z1

i )|2] =
1

4(θ −1)2λ 2n2

n

∑
i=1

[
i
n −
( i

n

)θ
]2

(
1− i

n

)2

≈
C1

2
4(θ −1)2λ 2n

and

n

∑
i=1

Bn
i,3 =

n

∑
i=1

E[|Z1
i −E(Z1

i )|3] =
(6− e)

4e(θ −1)3λ 3n3

n

∑
i=1

[
i
n −
( i

n

)θ
]3

(
1− i

n

)3

≈
(6− e)C1

3
4e(θ −1)3λ 3n2 ,

where C1
2 =

∫ 1
0

(x−xθ )2

(1−x)2 dx <+∞ and C1
3 =

∫ 1
0

(x−xθ )3

(1−x)3 dx <+∞ ∀θ > 0(̸= 1).
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Since,

(∑n
i=1 Bn

i,3)
1/3

(∑n
i=1 Bn

i,2)
1/2 ≈

3
√

2e−1(6− e)C1
3√

C1
2

n−
1
6

goes to 0 as n →+∞, Lyapunov’s condition for CLT is satisfied. Hence the result.

3.5 Discussions

In this chapter, we proposed weighted cumulative Tsallis residual and past entropy mea-
sures and their dynamic versions and studied various properties, developed aging classes
and obtained characterization results for Rayleigh and power distributions. It is shown that
dynamic weighted cumulative Tsallis residual entropy uniquely determines the underlying
distribution; however, the same can not be said for dynamic weighted cumulative Tsallis
past entropy measure. Also we proposed non-parametric estimators and it is observed that
CLT holds for the estimators when a random sample comes from Rayleigh distribution.

The choice of the parameter θ remains a problem of interest. One can choose θ in such
a way that the asymptotic variance of the estimators will be minimum. More work is needed
in this direction. Also we have found that weighted cumulative Tsallis residual entropy is a
generalization of weighted cumulative residual entropy measure and it has similar proper-
ties that weighted cumulative residual entropy possesses. Being a generalized information
measure, it is much more useful than weighted cumulative residual entropy (which is a spe-
cial case) because of the generalization parameter θ which give this measure a wide variety
of possibilities in computing information.



Chapter 4

On weighted cumulative
Kullback-Leibler information with
application in testing exponentiality

THE Kullback-Leibler (KL) divergence defined in Eq. (1.15) is widely used as a measure
of closeness between two models. It is extensively used in goodness-of-fit tests and model
discrimination problems. An enormous amount of applications of KL divergence makes it
a very popular measure and motivates researchers in further study regarding extensions and
applications of this measure. Over the years, various KL type measures have been proposed
in the literature based on different entropy measures like Renyi and Tsallis entropy. In
recent years, KL type information measures are introduced based on cumulative entropies.
Baratpour and Rad (2012) first proposed cumulative residual Kullback-Leibler information
(CRKL) between two rvs X and Y as

CRKL(X ,Y ) =
∫ +∞

0
S1(x) log

S1(x)
S2(x)

dx+(E(Y )−E(X)),

where S1 and S2 are the sfs of X and Y , respectively. Similarly, based on cumulative entropy
measure, Di Crescenzo and Longobardi (2015) proposed the cumulative Kullback-Leibler
information (CKL) between two rvs X and Y as

CKL(X ,Y ) =
∫ +∞

0
F(x) log

F(x)
G(x)

dx+(E(X)−E(Y )),

where F and G are the cdfs of X and Y , respectively. It may be noted that, CRKL and
CKL are non-negative and equal to zero when F(x) = G(x) for all x. For further details
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on CRKL, see Chamany and Baratpour (2014). Both CRKL and CKL measures do not
consider the realization of the rvs. Recently, weighted information measures gained pop-
ularity among authors but not much attention is given towards weighted KL type diver-
gence measures. Moharana and Kayal (2019) studied weighted Kullback-Leibler diver-
gence measure for double truncated data. In this chapter, we propose weighted cumulative
Kullback-Leibler information measures and study their properties. Using weighted cumula-
tive residual Kullback-Leibler information we develop goodness-of-fit tests for exponential
distribution for complete and censored data. We assess the performance of the proposed
tests by means of power. Real data sets are analysed for illustrations. The organization of
the Chapter is as follows.

Weighted cumulative residual Kullback-Leibler information (WCRKL) measure and
its dynamic version, are introduced and their properties are studied in Section 4.2. The
weighted cumulative Kullback-Leibler information (WCKL) measure is studied along with
its dynamic version in Section 4.3. Goodness-of-fit tests for exponential distribution using
WCRKL measure for complete and censored data are developed and their performance with
other entropy based exponentiality tests are compared in Section 4.4. Finally, we conclude
the chapter in Section 4.5.

4.1 Weighted cumulative residual Kullback-Leibler infor-
mation measure

In this section, based on WCRE measure defined in Eq. (3.7), we define WCRKL measure.
The WCRKL between two rvs X and Y is defined as

CRKLw(X ,Y ) =
∫ +∞

0
xS1(x)

(
S2(x)
S1(x)

− log
S2(x)
S1(x)

−1
)

dx

=
∫ +∞

0
xS1(x) log

S1(x)
S2(x)

dx+
∫ +∞

0
xS2(x)dx−

∫ +∞

0
xS1(x)dx

=
∫ +∞

0
xS1(x) log

S1(x)
S2(x)

dx+
1
2
(E(Y 2)−E(X2)). (4.1)

Note that CRKLw(X ,Y )≥ 0 using the fact that x− logx−1≥ 0, ∀x and CRKLw(X ,Y )= 0 iff
S1(x) = S2(x), ∀x > 0. Next, some basic results regarding WCRKL measure are provided.

Remark 4.1.1. For two continuous non-negative rvs X and Y

CRKLw(X ,Y ) = Kw(X ,Y )−CREw(X)+
1
2
(E(Y 2)−E(X2)),
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where Kw(X ,Y ) =−
∫+∞

0 xS1(x) logS2(x)dx is the weighted cumulative residual inaccuracy
measure proposed by Daneshi et al. (2019) and CREw(X) is the WCRE of X.

Example 4.1.1. Suppose X and Y follow exponential distributions with respective means 1
λ

and 1
θ

, then WCRKL between X and Y is 2θ

λ 3 − 3
λ 2 +

1
θ 2 , which is zero when λ = θ .

Proposition 4.1.1. If
st

X ≥ Y then CREw(X)+ 1
2E(X2)≤CREw(Y )+ 1

2E(Y 2).

Proof. Since CRKLw(X ,Y )≥ 0, from Remark 4.1.1 we have,

CREw(X)+
1
2

E(X2)≤ Kw(X ,Y )+
1
2

E(Y 2).

Now
st

X ≥ Y implies Kw(X ,Y )≤CREw(Y ). Hence the result.

Next we provide lower bound for WCRKL measure in terms of the second raw moments of
X and Y .

Proposition 4.1.2. For two rvs X and Y

CRKLw(X ,Y )≥ 1
2

(
E(X2) log

E(X2)

E(Y 2)
+E(Y 2)−E(X2)

)
. (4.2)

Proof. Proof follows using log-sum inequality. Note that the RHS of (4.2) is non-negative
as x log x

y ≥ x− y.

Example 4.1.2. Suppose X and Y are exponentially distributed rvs with mean 1 and 1
a ,

respectively. Then WCRKL between X and Y is 2a+ 1
a2 − 3 and the lower bound in Eq.

(4.2) is 2loga+ 1
a2 −1. We plot these values for 0.3 ≤ a ≤ 3 in Figure 4.1.

From Figure 4.1 it is observed that, WCRKL and its lower bound is zero when a = 1, which
is obvious. The difference between WCRKL and its lower bound increases as a moves away
from 1.

Next we define the dynamic version of WCRKL measure. Let X and Y be two non-
negative continuous rvs with sfs S1 and S2, respectively. Let Xt = [X − t|X > t] and Yt =

[Y − t|Y > t] be the respective residual lifetimes. Then, dynamic WCRKL between X and Y
is given by

CRKLw(X ,Y ; t) =CRKLw(Xt ,Yt) =
∫ +∞

t
x

S1(x)
S1(t)

log
S1(x)/S1(t)
S2(x)/S2(t)

dx+mW
G (t)−mW

F (t).
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Fig. 4.1: WCRKL and its lower bound.

Remark 4.1.2. For two rvs X and Y , the following relation holds.

CRKLw(X ,Y ; t) = Kw(X ,Y ; t)−CREw(X ; t)+mw
G(t)−mw

F(t),

where Kw(X ,Y ; t) =
∫+∞

t xS1(x)
S1(t)

log S2(x)
S2(t)

dx is the dynamic weighted cumulative residual in-

accuracy measure (Daneshi et al., 2019) and CREw(X ; t) =−
∫+∞

t
S(x)
S(t) log S(x)

S(t)dx is the dy-
namic WCRE of X, see Mirali and Baratpour (2017).

Now we provide lower bound for CRKLw(X ,Y ; t) in terms of WMRL of X and Y .

Proposition 4.1.3. The following inequality holds for dynamic WCRKL measure.

CRKLw(X ,Y ; t)≥ mw
F(t) log

mw
F(t)

mw
G(t)

+mw
G(t)−mw

F(t).

Proof. The result follows by substituting U = S1(x)
S1(t)

and V = S2(x)
S2(t)

in the log-sum inequality
U log U

V ≥U −V and integrating from t to +∞ wrt x.

Following theorem addresses the monotonicity of CRKLw(X ,Y ; t).

Theorem 4.1.1. The CRKLw(X ,Y ; t) is increasing (decreasing) in t, iff

CRKLw(X ,Y ; t)≥ (≤)ψ(t), t ≥ 0,

where ψ(t) =
(

1− λG(t)
λF (t)

)
(mw

G(t)−mw
F(t)) and, λF(t) and λG(t) are the hrs of X and Y ,

respectively.



4.2 Weighted cumulative Kullback-Leibler information and its dynamic version 64

Proof. Differentiating CRKLw(X ,Y ; t) wrt t we have

d
dt

CRKLw(X ,Y ; t) = λF(t)CRKLw(X ,Y ; t)+(λG(t)−λF(t))(mw
G(t)−mw

F(t)), t ≥ 0,

which gives the result.

Proposition 4.1.4. If
hr

X ≤ Y then ψ(t) is increasing in t.

Proof. If
hr

X ≤ Y the λF(t) ≥ λG(t) so
(

1− λG(t)
λF (t)

)
is increasing in t. Again from Lemma

3.3.1, (mw
G(t)−mw

F(t)) is increasing in t. Hence the result.

4.2 Weighted cumulative Kullback-Leibler information and
its dynamic version

Now we propose WCKL and its dynamic version and study their properties. Let X and Y be
two non-negative continuous rvs having cdfs F and G, respectively. Then, WCKL between
X and Y can be defined as

CKLw(X ,Y ) =
∫ +∞

0
xF(x)

(
G(x)
F(x)

− log
G(x)
F(x)

−1
)

dx

=
∫ +∞

0
xF(x) log

F(x)
G(x)

dx+
∫ +∞

0
xG(x)dx−

∫ +∞

0
xF(x)dx

=
∫ +∞

0
xF(x) log

F(x)
G(x)

dx+
1
2
(E(X2)−E(Y 2)). (4.3)

Note that, CKLw(X ,Y )≥ 0 and equality holds iff F(x) = G(x), ∀x.

Remark 4.2.1. For two continuous non-negative rvs X and Y

CKLw(X ,Y ) =CKw(X ,Y )−CEw(X)+
1
2
(E(X2)−E(Y 2)),

where CKw(X ,Y ) = −
∫+∞

0 xF(x) logG(x)dx is the weighted cumulative inaccuracy mea-
sure (Daneshi et al., 2019) and CEw(X) is the WCE of X.

Example 4.2.1. Suppose X ∼U(0,1) and Y follows the power distribution with cdf G(x) =
xc, 0 < x < 1, c > 0. Then WCKL between X and Y is c−1

9 + 1
c+2 −

1
3 .

Proposition 4.2.1. If
st

X ≤ Y then CEw(X)− 1
2E(X2)≤CEw(Y )− 1

2E(Y 2).

Proof. Proof follows proceeding similarly as in the proof of Proposition 4.1.1 and using the

fact that
st

X ≤ Y implies CKw(X ,Y )≤CEw(Y ).
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Proposition 4.2.2. For two non-negative continuous rvs X and Y having cdfs F and G with
common support [0,u],

CKLw(X ,Y )≥ 1
2

[
(u2 −E(X2)) log

u2 −E(X2)

u2 −E(Y 2)
+E(X2)−E(Y 2)

]
.

Proof. Proof follows using log-sum inequality.

Now we define the dynamic version of CKLw(X ,Y ) measure. Dynamic weighted cumu-
lative Kullback-Leibler information between X and Y is the WCKL between past lifetimes

tX = [t −X |X < t], t > 0 and tY = [t −Y |Y < t], t > 0. Dynamic CKLw(X ,Y ) is defined as

CKLw(X ,Y ; t) =
∫ t

0
x

F(x)
F(t)

log
F(x)/F(t)
G(x)/G(t)

dx+µ
w
G(t)−µ

w
F (t),

where µw
F (t) =

∫ t
0 xF(x)

F(t)dx and µw
G(t) =

∫ t
0 xG(x)

G(t)dx are the weighted mean past lifetimes (see,
Misagh et al. (2011)) of X and Y , respectively.

Remark 4.2.2. The following relation holds for CKLw(X ,Y ; t), analogous to dynamic WCRKL
measure.

CKLw(X ,Y ; t) =CKw(X ,Y ; t)−CEw(X ; t)+µ
w
G(t)−µ

w
F (t),

where CKw(X ,Y ; t) =
∫ t

0 xF(x)
F(t) log G(x)

G(t)dx, is the dynamic weighted cumulative inaccuracy

measure (Daneshi et al., 2019) and CEw(X ; t) = −
∫ t

0
F(x)
F(t) log F(x)

F(t)dx is the dynamic WCE
measure.

Proposition 4.2.3. For two non-negative, continuous rvs X and Y ,

CKLw(X ,Y ; t)≥ µ
w
F (t) log

µw
F (t)

µw
G(t)

+µ
w
G(t)−µ

w
F (t).

Proof. Proof follows along the same line as Proposition 4.1.3.

In the following theorem we study the monotonicity property of CKLw(X ,Y ; t) measure.

Theorem 4.2.1. CKLw(X ,Y ; t) is increasing (decreasing) in t, iff

CKLw(X ,Y ; t)≤ (≥)

[
rG(t)
rF(t)

−1
]
[µw

F (t)−µ
w
G(t)] , t ≥ 0. (4.4)

rF(t) and rG(t) are the rhr functions of X and Y , respectively.

Proof. Differentiating CKLw(X ,Y ; t) with respect to t we have

d
dt

CKLw(X ,Y ; t) = (rG(t)− rF(t))(µw
F (t)−µ

w
G(t))− rF(t)CKLw(X ,Y ; t), t ≥ 0.
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Thus if CKLw(X ,Y ; t) is increasing (decreasing) in t iff (4.4) holds.

In the following section we develope goodness-of-fit test for exponential distribution
using WCRKL.

4.3 Exponentiality test for complete sample

Exponential distribution is the most popular distribution used in reliability. In life-testing,
one of the important problem is to check whether a random sample comes from an expo-
nential distribution or not. Here we develop a test statistic based on the WCRKL measure
for testing exponentiality. Let Fθ be the cdf of X under consideration, and Fn, the edf of X .
Then WCRKL between Fn(x) and Fθ (x) can be obtained as

CRKLw(Fn,Fθ ) =
∫ +∞

0
xSn(x) log

Sn(x)
Sθ (x)

dx+
∫ +∞

0
xSθ (x)dx−

∫ +∞

0
xSn(x)dx,

where Sθ and Sn are the sf and empirical sf of X . Let X1,X2, · · · ,Xn be a random sample of
size n from Fθ and X1:n,X2:n, · · · ,Xn:n be the corresponding order statistics. Then WCRKL
can be expressed as

CRKLw(Fn,Fθ ) =
n−1

∑
i=0

∫ Xi+1:n

Xi:n

xSn(x) log
Sn(x)
Sθ (x)

dx+
∫ Xn:n

0
xSθ (x)dx−

∫ Xn:n

0
xSn(x)dx

=
n−1

∑
i=0

X2
i+1:n −X2

i:n

2

(
n− i

n

)
log
(

n− i
n

)
−

n−1

∑
i=0

n− i
n

∫ Xi+1:n

Xi:n

x logSθ (x)dx

+
∫ Xn:n

0
xSθ (x)dx− 1

2n

n

∑
i=1

X2
i .

Now suppose X1,X2, · · · ,Xn come from a non-negative continuous cdf F . Let Fθ (x) = 1−
e−

x
θ , x > 0, θ > 0, be the cdf of an exponential distribution with parameter θ . We want to

test the hypothesis

H0 : F(x) = Fθ (x) vs. H1 : F(x) ̸= Fθ (x).

The WCRKL between Fθ and its edf Fn can be written as
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CRKLw(Fn,Fθ ) =
n−1

∑
i=0

X2
i+1:n −X2

i:n

2

(
n− i

n

)
log
(

n− i
n

)
+

1
3θ

n−1

∑
i=0

n− i
n

(X3
i+1:n −X3

i:n)+θ
2 − 1

2n

n−1

∑
i=0

X2
i . (4.5)

We estimate θ by its mle θ̂ = X̄ = 1
n ∑

n
i=1 Xi. The expression in (4.5) is not scale invariant.

To obtain a scale invariant test statistic we divide equation (4.5) by
∫ Xn:n

0 xSn(x)dx. So the
scale invariant test statistic T is defined as

T =
1∫ Xn:n

0 xSn(x)dx
CRKLw (Fn,Fθ̂

)
=

n

∑
n−1
i=1 X2

i

n−1

∑
i=1

(X2
i+1:n −X2

i:n)

(
n− i

n

)
log
(

n− i
n

)
+

2n
3X̄ ∑

n−1
i=1 X2

i

n−1

∑
i=0

n− i
n

(X3
i+1:n −X3

i:n)+
2nX̄2

∑
n
i=1 X2

i
−1. (4.6)

The null hypothesis is rejected for large values of T . Reject H0 in favour of H1 at significance
level α , if T > Tα,n, where Tα,n is the 100(1-α)% quantile point of the distribution of T . The
sampling distribution of T is intractable, so we use Monte Carlo simulation to compute the
critical points Tα,n. We generate 10000 samples from standard exponential distribution for
n = 8(1)20, 25(5)50 and 50(10)100. The critical points of 1%, 5% and 10% are presented
in Table 4.1.
The performance of T is compared with two entropy based test statistics proposed by
Ebrahimi et al. (1992) and Baratpour and Rad (2012). Baratpour and Rad test statistic is
given by

T ∗ =
∑

n−1
i=1

n−i
n log

(n−i
n

)
(X(i+1):n −Xi:n)+

∑
n
i=1 X2

i
2∑

n
i=1 Xi

∑
n
i=1 X2

i
2∑

n
i=1 Xi

and Ebrahimi et al. (1992) test statistic is defined as

KLmn = exp(Hmn − log X̄ −1),

where Hmn =
1
n ∑

n
i=1 log[ n

2m(X(i+m):n−X(i−m):n)] is the Vasicek’s entropy estimate (Vasicek,
1976). The window size m is a positive integer less that n

2 , Xi:n = X1:n if i < 1 and Xi:n = Xn:n

if i > n. We reject the null hypothesis for large values of T ∗ and for small values of KLmn.
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Table 4.1: Critical values of T.

n T0.01,n T0.05,n T0.10,n n T0.01,n T0.05,n T0.10,n

8 0.9985 0.8138 0.7056 20 0.7592 0.5160 0.4300
9 0.9765 0.7613 0.6718 25 0.6991 0.4577 0.3807

10 0.9270 0.7208 0.6244 30 0.6716 0.4129 0.3411
11 0.9110 0.7030 0.6035 35 0.6424 0.3869 0.3196
12 0.8941 0.6713 0.5715 40 0.6341 0.3554 0.2903
13 0.8497 0.6389 0.5502 45 0.6138 0.3361 0.2722
14 0.8442 0.6199 0.5255 50 0.5951 0.3113 0.2539
15 0.8312 0.5899 0.5024 60 0.5433 0.2840 0.2303
16 0.8175 0.5681 0.4827 70 0.4987 0.2634 0.2066
17 0.7979 0.5573 0.4702 80 0.4846 0.2401 0.1920
18 0.7919 0.5456 0.4564 90 0.4365 0.2261 0.1766
19 0.7806 0.5328 0.4486 100 0.4301 0.2089 0.1648

We calculate power of the tests based on 10000 samples of size n = 10, 15, 20 and 25
and with significance level α = 0.05 and provide them in Tables 4.2 and 4.3. We consider
monotone decreasing and increasing, and non-monotone hazard alternatives. The scale pa-
rameters are taken to be 1. The alternative distributions are taken as follows:

• Weibull distribution, denoted by WE(β ), with pdf fWE(x) = βxβ−1e−xβ

, x,β > 0.

• Gamma distribution, denoted by GA(β ), with pdf fGA(x) = e−xxβ−1

Γ (q) , x,β > 0.

• Lognormal distribution. denoted by LN(β ), with pdf fLN(x) = 1
βx

√
2π

e
− log2 x

2β2 , x,β > 0.

For monotone decreasing hazard alternatives we take WE(0.5), GA(0.4) and LN(2). For
monotone increasing hazard alternatives we consider WE(2), GA(2) and GA(3) and for
non-monotone hazard alternatives we consider LN(0.6) and LN(1.2).

From Tables 4.2 and 4.3, it is observed that neither test dominates the others for all
the alternatives. Test based on WCRKL performs better than the other two tests when
alternative distribution has monotone decreasing hazard rate. All the tests attain the nominal
significance level.
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Table 4.2: Power (%) of the test for α = 0.05.

n Alternatives T KLm,n T ∗ n Alternatives T KLm,n T ∗

10 WE(0.5) 32.59 11.26 17.53 15 WE(0.5) 50.06 24.52 37.80
WE(2) 62.52 71.58 65.75 WE(2) 76.64 86.95 82.73

GA(0.4) 16.56 5.30 4.81 GA(0.4) 26.91 11.60 16.07
GA(2) 23.63 34.92 26.76 GA(2) 27.08 44.71 33.15
GA(3) 47.15 65.29 50.81 GA(3) 57.79 80.27 65.99

LN(0.6) 38.71 67.21 43.22 LN(0.6) 44.65 81.07 50.82
LN(1.2) 14.21 5.20 7.68 LN(1.2) 22.89 6.01 15.39
LN(2) 45.10 20.44 30.35 LN(2) 62.68 38.56 54.87
Exp(1) 5.35 5.38 4.81 Exp(1) 5.04 5.09 4.82

Table 4.3: Power (%) of the test for α = 0.05.

n Alternatives T KLm,n T ∗ n Alternatives T KLm,n T ∗

20 WE(0.5) 61.64 54.84 54.22 25 WE(0.5) 72.49 63.10 66.42
WE(2) 85.18 93.68 91.66 WE(2) 91.63 97.25 96.79

GA(0.4) 34.88 33.89 25.02 GA(0.4) 40.73 39.11 33.03
GA(2) 30.81 52.41 38.93 GA(2) 34.42 58.82 44.56
GA(3) 65.17 89.28 73.59 GA(3) 72.71 94.92 83.14

LN(0.6) 47.09 90.86 57.56 LN(0.6) 50.47 95.37 64.56
LN(1.2) 29.80 12.17 21.48 LN(1.2) 37.16 12.32 29.09
LN(2) 77.58 66.02 71.98 LN(2) 86.10 74.28 82.53
Exp(1) 4.93 5.37 4.72 Exp(1) 5.15 4.99 4.82

4.3.1 Data analysis

In this section three real data sets are analysed for illustrative purposes. It is shown how
the proposed test works for these data sets. Exponential distribution provides good fit for
the first two data sets. However, Chen distribution (Yousaf et al., 2019) provides better fit
than exponential distribution for the third data set.

Data set 1

The data set is given in Grubbs (1971) that provides the mileages for 19 military personnel
carriers that failed in service. The mileages are:
162, 200, 271, 320, 393, 508, 539, 629, 706, 778, 884, 1003, 1101, 1182, 1463, 1603, 1984,
2355, 2880.

Ebrahimi et al. (1992) showed that this data can be fitted well with exponential distri-
bution. Here sample size is n = 19 and T = 0.2916. From Table 4.1 it is observed that the
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critical value at 5% significance level is 0.5328. Since T < T0.05,19, we can not reject the
null hypothesis at 5% significance level. Also the corresponding p-value is 0.3346, which
is very high.

Data set 2

Here we consider a data set from Lawless (2011) that consists of failure times of 36
appliances. Baratpour and Rad (2012) studied this data set and found that exponential dis-
tribution fits the data reasonably well. The failure times are:
11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451,
2471, 2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504,
4329, 6367, 6976, 7846, 13403.
Here n = 36, T = 0.1283 and T0.05,36 = 0.3741. The corresponding p-value is 0.7041. So we
can not reject the null hypothesis for this data as well.

Data set 3

Now we consider a data set represent quantity of 1000s of cycles to failure for electrical
appliances. This data is from Lawless (2011). The observations are:
0.014, 0.034, 0.059, 0.061, 0.069, 0.080, 0.123, 0.142, 0.165, 0.210, 0.381, 0.464, 0.479,
0.556, 0.574, 0.839, 0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.270, 1.275, 1.355,
1.397, 1.477, 1.578, 1.649, 1.702, 1.893, 1.932, 2.001, 2.161, 2.292, 2.326, 2.337, 2.628,
2.785, 2.811, 2.886, 2.993, 3.122, 3.248, 3.715, 3.790, 3.857, 3.912, 4.100.
Yousaf et al. (2019) showed that Chen distribution fits this data better than exponential dis-
tribution. Xiong et al. (2022) found that for this data many popular tests like Kolmogorov-
Smirnov, Kuiper, Cramer-von Misess, Anderson-Darling etc. can not reject the null hypoth-
esis that the data follows exponential distribution. Here n = 50, T = 0.3537 and T0.05,50 =
0.3133. Also the corresponding p-value is 0.0344. So we can reject the null hypothesis for a
5% level of significance. So our proposed test can detect the difference between exponential
and Chen distribution for a 5% significance level for this data set.

4.4 Testing exponentiality for censored data

Type-I and Type-II censoring are the two most common and widely used censoring
schemes in life-testing. The simplicity as well as effectiveness of these schemes make them
very popular among practitioners. In Type-I censoring, the experiment is continued until a
prefixed time tc and the number of failures is random. The Type-II censoring is continued
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until a pre-specified number of failures r is obtained. Here the duration of the experiment is
random. The problem of testing exponentiality under Type-I and Type-II censored data are
often encountered in life-testing. We propose a test for exponentiality using WCRKL based
on censored data.

4.4.1 Exponentiality test under type-II censoring

Suppose n units are put on a Type-II censored experiment and X1:n,X2:n, · · · ,Xr:n be the
Type-II censored sample. We want to test the hypothesis

H0 : F(x) = 1− e−
x
θ , x,θ > 0 vs. H1 : F(x) ̸= 1− e−

x
θ , x,θ > 0.

The WCRKL between Fn and F
θ̂

, where θ̂ is the mle of θ for Type-II censored sample, can
be written as

CRKLw
C(Fn,Fθ̂

) =
∫ Xr:n

0
xSn(x) log

Sn(x)
S

θ̂
(x)

dx+
∫ Xr:n

0
xS

θ̂
(x)dx−

∫ Xr:n

0
xSn(x)dx

=
r−1

∑
i=1

X2
i+1:n −X2

i:n

2

(
n− i

n

)
log

n− i
n

+
1
θ̂

r−1

∑
i=1

(X3
i+1:n −X3

i:n)
n− i

n

+ θ̂
2
(

1− e−
Xr:n

θ̂

)
− θ̂Xr:ne−

Xr:n
θ̂ − ∑

r
i=1 X2

i:n +(n− r)X2
r:n

2n
.

(4.7)

We use the scale invariant test statistic TC = 1∫ Xr:n
0 xSn(x)dx

CRKLw
C(Fn,Fθ̂

) to perform goodness-

of-fit tests. We generate 10000 Type-II censored samples from standard exponential distri-
bution for various values of n and r and compute TC. We reject the null hypothesis for large
values of TC. We calculate the power of the test when alternatives are Weibull, gamma and
log-normal. It is observed from simulation that the proposed test is suitable for monotone
decreasing hazard alternatives. We compare the power of the test with tests based on KL
and CRKL. The test based on KL divergence was proposed by Park (2005) as

TKL =
r
n

log(θ̂ +1)− 1
n

r

∑
i=1

log
( n

2m
(Xi+m:n −Xi−m:n)

)
+
(

1− r
n

)
log
(

1− r
n

)
.

The CRKL based test was developed by Park and Lim (2015) as

TCRKL =
1
θ̂

r−1

∑
i=0

(Xi+1:n −Xi:n)
n− i

r
log

n− i
n

+
1

2θ̂ 2

r−1

∑
i=0

n− i
r

(X2
i+1:n −X2

i:n)

+
n
r

(
1− exp

(
−Xr:n

θ̂

))
−1.
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The results corresponding to sample sizes n = 10, 20 and 30 are provided in Tables 4.4, 4.5
and 4.6, respectively. From the tables it is observed that the proposed test performs well
than the other two tests. As r increases (number of censored items reduces), performance of
TC and TCRKL become similar.

Table 4.4: Power of the test when n = 10.

Alternatives r = 4 r = 6 r = 8
TC CRKL KL TC CRKL KL TC CRKL KL

WE(0.5) 30.26 8.37 3.18 40.06 27.18 3.28 49.04 49.57 3.20
WE(0.8) 10.10 4.12 3.43 12.22 7.21 2.47 14.71 13.17 1.70
GA(0.5) 23.75 6.62 3.05 28.04 17.74 2.04 30.11 29.55 1.15
LN(2) 13.22 3.64 3.21 25.67 15.11 2.19 44.20 42.36 2.92

EXP(1) 5.05 5.05 4.89 4.79 4.90 4.89 5.11 4.94 4.85

Table 4.5: Power of the test when n = 20.

Alternatives r = 8 r = 12 r = 16
TC CRKL KL TC CRKL KL TC CRKL KL

WE(0.5) 49.05 25.49 3.66 62.47 51.86 18.43 73.61 49.57 31.01
WE(0.8) 13.62 5.36 2.23 17.26 10.36 2.57 20.29 17.87 2.06
GA(0.5) 38.56 17.90 2.26 44.61 33.17 8.60 45.97 45.66 8.87
LN(2) 20.15 7.53 2.16 42.39 29.50 7.88 69.10 66.22 23.36

EXP(1) 4.89 5.08 4.92 4.85 5.25 5.09 5.02 4.94 5.02

Table 4.6: Power of the test when n = 30.

Alternatives r = 12 r = 18 r = 24
TC CRKL KL TC CRKL KL TC CRKL KL

WE(0.5) 65.43 41.53 17.40 79.20 69.27 37.67 87.78 87.62 66.36
WE(0.8) 18.80 7.46 2.70 22.44 12.90 3.30 27.49 22.02 5.07
GA(0.5) 51.21 30.31 9.76 58.22 46.96 18.17 60.20 59.50 30.55
LN(2) 27.84 11.11 4.44 56.18 42.47 16.27 83.95 80.24 49.98

EXP(1) 5.08 5.04 4.78 4.96 4.98 5.90 5.09 4.99 5.01

Data Analysis

Consider Data set 2 where 36 units are put into test and assume that only first 20 failures
are observed and rest are censored. So this becomes a Type-II censored sample with n = 36
and r = 20. The test statistic TC = 0.96085 and the p-value is 0.6904. So we can not reject
the null hypothesis.
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4.4.2 Exponentiality test under type-I censoring

Suppose n units are put on a life-testing experiment which is terminated after time tc. Let
X1:n,X2:n, · · · ,Xd:n be the failure times from the Type-I censored experiment. We want to
test

H0 : F(x) = 1− e−
x
θ , x,θ > 0 vs. H1 : F(x) ̸= 1− e−

x
θ , x,θ > 0.

Using WCRKL, we can test the hypothesis under type-I censored data by following the
procedure suggested by Pakyari and Balakrishnan (2013). They used the idea that con-
ditional on D = d, (X1:n, · · · ,Xd:n) = (Z1:n, · · · ,Zd:d), where (Z1:n, · · · ,Zd:d) can be treated
as an iid sample of size d from a scaled exponential distribution truncated at time tc, see
Arnold et al. (2008) and David and Nagaraja (2004). The mle of θ under Type-I censoring

is θ̂ = ∑
d
i=1 Xi:n+(n−d)tc

d . Now according to Pakyari and Balakrishnan (2013), we can use the
following transformation to uniformity as

Ui:d =
1− e−

X1:n
θ̂

1− e−
tc
θ̂

, i = 1,2, · · · ,d.

Note that, U1:d, · · · ,Ud:d can be treated as iid standard uniform observations and based on
this sample one can perform edf based goodness-of-fit tests. By using this approach, the
goodness-of-fit tests can be performed under Type-I censoring based on WCRKL. So the
test of exponentiality under Type-I censoring has now been reduced to a test of uniformity
under a complete sample of size d. The test statistic is

T 1
C =

d−1

∑
i=1

U2
i+1:d −U2

i:d

2

(
d − i

d

)
log
(

d − i
d

)
+

U2
d:d
2

−
U3

d:d
3

−
d−1

∑
i=0

d − i
d

∫ Ui+1:d

Ui:d

u log(1−u)du− 1
2d

d

∑
i=1

U2
i:d,

where
∫

u log(1− u)du = u2−1
2 log(1− u)− u2

4 − u
2 . Reject the null hypothesis at signif-

icance level α if T 1
C > τα,n where τα,n is the 100(1-α)% quantile point of the distribu-

tion of T 1
C . The quantile points are generated by simulation. We calculate the power of

the test at 5% level of significance with Weibull, gamma and generalized exponential al-
ternatives having decreasing hr function. Generalized exponential distribution has the cdf

FGE(x) =
(

1− e−(λx)
)β

, x,β ,λ > 0. We will denote it by GE(β ,λ ). We generate 10000
samples from standard exponential distribution with sample size 20 and 30 for various pro-
portions of failures and compute the power. The results are provided in Table 4.7. From the
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table it is observed that the proposed test attains the specified level of significance. Power
increases when the proportions of failures and sample size increases.

Table 4.7: Power of the test with various proportions of failures.

n Alternatives Proportions of failures
0.5 0.6 0.7 0.8 0.9 0.95

20 WE(0.5) 21.72 28.63 35.60 44.35 54.54 63.04
GA(0.3) 19.84 21.72 22.51 27.06 37.47 51.77
GE(0.3) 23.51 25.82 26.79 30.15 37.56 50.86
Exp(1) 5.24 5.26 5.06 5.02 4.92 5.05

30 WE(0.5) 37.77 47.66 50.84 59.82 71.00 78.06
GA(0.3) 28.42 30.87 32.12 40.11 57.40 70.41
GE(0.3) 34.32 37.25 37.58 42.81 55.16 68.97
Exp(1) 4.92 5.05 4.91 5.02 5.15 5.01

Data Analysis

For illustrative purposes, we analyse a real data set consisting of breakdown times of an
insulating fluid (in minutes) tested at 34KVs given in Nelson (2003). The breakdown times
are: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75*,
32.52*, 33.91*, 36.71*, 72.89*.
In this experiment, test termination time is tc = 15, number of units at risk is n = 19 and
number of failures is d = 14. Number of censored observations are 5. The censored obser-
vations are marked by an asterisk. The mle of exponential parameter θ is θ̂ = 10.003. The
observed value of the test statistics is T 1

C = 0.009 and the p-value is 0.3015. The p-value is
very high so we can not reject the null hypothesis.

4.5 Discussions

In this chapter, we proposed weighted cumulative residual Kullback-Leibler information
measure as an alternative measure of closeness between two lifetime models. We intro-
duced the dynamic version as well and studied its bound and monotonicity properties. Also
we introduced weighted cumulative Kullback-Leibler information and its dynamic version.
Based on weighted cumulative residual Kullback-Leibler information measure, goodness-
of-fit tests are developed for exponential distribution under complete, Type-I and Type-II
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censored samples. The proposed tests perform well. The tests perform better for censored
data when the alternative distributions have decreasing hr function.

These tests can be modified to perform goodness-of-fit tests for other models like Weibull,
log-logistic, inverse Rayleigh etc. The proposed test for Type-II censored data can be ex-
tended to progressive Type-II censoring as well. Using the dynamic version, a goodness-
of-fit test for exponential distribution in residual lifetime can be developed. More work is
needed in this direction.



Chapter 5

Analysis and applications of cumulative
residual extropy in system reliability and
hypothesis testing problem

CUMULATIVE residual extropy (CREx) measure has been introduced recently by Jahan-
shahi et al. (2020). For a non-negative continuous rv X , CREx is defined as

ξ J(X) =−1
2

∫ +∞

0
S2(x)dx.

For two rvs X and Y , ξ J(X) < ξ J(Y ) means that X is more uncertain than Y . Note that
for non-negative iid rvs, CREx can be expressed in terms of the expectation of X1:2 =
min{X1,X2} which has sf S2(x) i.e.

E(X1:2) =
∫ +∞

0
S2(x)dx =−2CREx.

Jahanshahi et al. (2020) studied various properties of CREx and they provided applications
of CREx measure as a risk measure and also developed a test of independence between
two rvs using conditional CREx measure. They showed that the CREx measure has a lot of
potential in actuarial science due to its relationship with Gini’s coefficient. Gini’s coefficient
is widely used in economics and actuarial science. It is effectively used as a risk measure in
finance. The Gini’s coefficient between two iid rvs X and Y is defined as

G(X) =
E(|X −Y |)
E(X +Y )

= 1−
∫+∞

0 S2(x)dx
E(X)

= 1+
2ξ J(X)

E(X)
.
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So one can estimate Gini’s coefficient from the estimate of CREx measure and vice-versa. In
this Chapter we discuss some applications of CREx in reliability engineering and statistics.

Information measures have many applications in system reliability for comparing be-
tween systems, measuring system complexity and reliability optimization problems. The
problem of comparing different coherent and mixed systems has emerged in recent years af-
ter the introduction of signature representation of systems, following the works of Samaniego
(2007). A system is said to be coherent if all the components are relevant to the system and
the structure function of the system is monotone (Barlow and Proschan, 1975). A k-out-
of-n system is a coherent system which fails when the k component fails. This system is
also referred to as the k-out-of-n:F system. Note that there is another system denoted as the
k-out-of-n:G system, which functions as long as k components are working (good). In this
study, by k-out-of-n system we mean k-out-of-n:F system. A mixed system is a stochastic
mixture of coherent systems i.e. a mixed system is constructed by selecting a number of co-
herent systems according to a known probability distribution. So any coherent system is a
special case of a mixed system. The practical implementation of a mixed system is random-
ization of a coherent system in which an experimenter selects a coherent system according
to a mixture probability distribution and uses that coherent system thereafter. Boland and
Samaniego (2004) showed that the mixture of coherent systems can always be represented
as mixture of k-out-of-n systems.

The concept of system signature opens the way of analysing information properties of
coherent and mixed systems consisting of iid components and various comparisons of sys-
tems are studied using system information measures. Entropy, extropy, CRE and other
generalized measures are used for this purpose. Toomaj and Doostparast (2014, 2016) first
analyzed entropy and KL divergence for the lifetime of a mixed system when the lifetimes
of components are iid. Toomaj et al. (2017) studied CRE of coherent and mixed systems
and Qiu et al. (2019) analyzed extropy for mixed reliability systems. For related works on
analysis of different information measures of mixed systems, see for example, Kayal (2019),
Rahimi et al. (2020), Toomaj (2017), Toomaj et al. (2021, 2018) and the references therein.
These works mainly considered the study of various density based entropy measures in the
context of system reliability. The component lifetimes are assumed to be iid. Comparison
results between systems are developed in terms of the respective information measures and
numerous bounds are obtained. However, the authors did not consider dependency among
components. Toomaj (2017) first considered properties of information measure for series
and parallel systems with dependent components. The series and parallel systems also be-
long to the class of k-out-of-n systems. We provide the structure of a 3-component series
and parallel system in Figures 5.1a and 5.1b, respectively. An n-component series system
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fails when any one component fails and an n-component parallel system fails when all the
components fail. A series system is the least reliable system and a parallel system is the
most reliable system. Entropy of coherent and mixed systems consisting of dependent and
identically distributed (d.i.d.) components are analyzed by Toomaj et al. (2017). Recently,
Qiu et al. (2019) obtained properties of extropy for mixed systems with iid components.

Fig. 5.1: Structure function of series and parallel systems.

(a) 3-component series system

(b) 3-component parallel system

To the best of our knowledge, there is no work on CREx for mixed systems. In this work,
we express the CREx measure for a coherent and mixed system consisting of iid as well as
d.i.d. components using system signature and distortion functions. We obtain some com-
parison results between systems having the same structure but different components. We
provide some bounds for CREx of coherent and mixed systems which is useful for highly
complex systems when exact CREx can not be computed due to the complicated structure of
the systems. Our study makes two contributions in the literature of reliability engineering.
We introduced a new divergence measure, called Jensen-Cumulative residual extropy diver-
gence, to measure the complexity of mixed systems having iid components. Complexity of
a system is measured with respect to the k-out-of-n systems (least complex systems). Using
the proposed divergence measure we compute how much more complex an n-component
system is than the k-out-of-n systems consisting of the same number of iid components.
Another major finding of the work is a new discrimination measure for comparing two sys-
tems. For this purpose, first we introduce a relative CREx measure between two rvs X and Y
by replacing the pdfs in the relative extropy measure of Lad et al. (2015) with the sfs of the
rvs. Using the relative CREx measure, we develop a discrimination measure that calculates
how close (far) a system is towards a series or parallel system having the same components.
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A system is good (bad) if it is close to a parallel (series) system. Also we provide some
potential applications of these proposed measures in systems involving redundancy.

We used the CREx measure for testing equality between two distribution functions. We
propose three non-parametric estimators of CREx measure, study their asymptotic proper-
ties and compare their performances by evaluating their MSE. Using asymptotic normality
of one of the proposed estimators, we develop a test for equality between two distributions.

The rest of the chapter is organized as follows. We obtain CREx of mixed systems hav-
ing iid components and obtain stochastic ordering results and some bounds in Section 5.1.
The CREx for d.i.d. components are discussed in Section 5.2. We discuss the applications
in system reliability in Section 5.3. We consider estimations of CREx measure in Section
5.4. We construct an equality test between two distributions in Section 5.5. Finally, we
conclude the Chapter in Section 5.6.

5.1 CREx of mixed systems consisting of iid components

In this section, we obtain expression of CREx measure for coherent and mixed reliability
systems and study several properties. The CREx defined in Eq. (1.13) can be expressed as

ξ J(X) = −1
2

∫ +∞

0
S2(x)dx

= −1
2

∫ 1

0

u2

f (S−1(u))
du. (5.1)

Note that S−1(u) = sup{x : S(x)≥ u} is called the quantile function (qf) of S = 1−F . Now,
consider a mixed system constructed by n iid components having lifetimes X1,X2, · · · ,Xn

with common cdf F and sf S. Suppose T represents the lifetime of the system. Then the sf
of T is given by (Samaniego, 2007)

ST (t) =
n

∑
i=1

siSi:n(t), (5.2)

where Si:n(t) = ∑
i−1
j=0
(n

j

)
[F(t)] j[S(t)]n− j, ∀i = 1(1)n are the sfs of the ordered component

lifetimes X1:n,X2:n, · · · ,Xn:n, and si = P(T = Xi:n) is the probability that the system fails
due to the failure of i-th component, i = 1,2, · · · ,n, ∑

n
i=1 si = 1 and s = (s1,s2, · · · ,sn) is

known as system signature. Note that, the k-th order statistics Xk:n denotes the lifetime of a
(n− k+1)-out-of-n system.
Now consider the transformation U = S(X). Then for i = 1(1)n we have,
Ui = S(Xi)∼U(0,1) and Wi:n = S(Xi:n)∼Beta (n− i+1, i) with the cdf
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Gi:n(w) =
i−1

∑
j=0

(
n
j

)
(1−w) jwn− j; 0 ≤ w ≤ 1.

To obtain the CREx of T , we consider the transformation V = S(T ). Then the cdf of V is
given by

GV (v) =
n

∑
i=1

siGi:n(v); 0 ≤ v ≤ 1.

Using ST (t) = GV (S(t)) in Eq. (5.1), the CREx of a mixed system is expressed as

ξ J(T ) = −1
2

∫ +∞

0
S2

T (t)dt

= −1
2

∫ 1

0

G2
V (v)

f (S−1(v))
dv. (5.3)

We consider some examples for illustration.

Example 5.1.1. Suppose the coherent system with lifetime T =max{min{X1,X2},min{X3,X4}}
has iid components with common sf S(t) = exp(− t

λ
); λ > 0, t ≥ 0. This is a parallel-series

system where two 2-component series systems are put in parallel. For exponential distribu-
tion, f (S−1(v)) = v

λ
. The signature vector for T is s =

(
0, 2

3 ,
1
3 ,0
)
. The CREx of the system

is obtained as

ξ J(T ) =−1
2

λ

∫ 1

0

(2v2 − v4)2

v
dv =−0.2292λ .

Example 5.1.2. Suppose the mixed system with signature s =
(1

2 ,0, · · · ,0,
1
2

)
has n stan-

dard exponentially distributed components. This is the uniform mixture of n-component
series and parallel systems. This system is constructed by selecting n-component series and
parallel systems with probability 1

2 . The system cdf is

GV (v) =
1
2
[1+ vn − (1− v)n]; 0 ≤ v ≤ 1,

and the CREx of the system is given by

ξ J(T ) =−1
8

∫ 1

0

[1+ vn − (1− v)n]2

v
dv.

We plot the CREx of T for different values of n in Figure 5.2 and find that the CREx
of the system decreases as the number of components increases. This is natural, since the
value of the information measure increases if the number of elements increases.

Now suppose T X and TY are the lifetimes of two mixed systems having the same struc-
ture (signature) and n iid components with cdfs F and G, respectively. The component
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Fig. 5.2: Values of CREx of the system in Example 5.1.2 for n = 2(1)10.

lifetimes of T X and TY are (X1,X2, · · · ,Xn) and (Y1,Y2, · · · ,Yn), respectively. Since the com-

ponents of each systems are identically distributed, we use the notation
disp

X ≤ Y which implies
that the components lifetimes of T X are smaller than that of TY in dispersive ordering. In
the following proposition, we will compare CREx of two systems having the same structure
but different components when the component lifetimes maintain dispersive ordering.

Proposition 5.1.1. Let T X and TY be the lifetimes of two mixed systems having same sig-

nature and n iid components with cdfs F and G, respectively. If
disp

X ≤ Y then,

ξ J(T X)≥ ξ J(TY ).

Proof. Proof follows applying the definition of dispersive order in Eq. (5.1).

In the next proposition, we compare two systems but relax the dispersive ordering assump-
tion among component lifetimes. Here we only assume that ξ J(X)≥ ξ J(Y ) i.e. the CREx
of the components of the first system is higher than that of the second system.

Proposition 5.1.2. Let D(v)= v2

g(S−1
2 (v))

− v2

f (S−1
1 (v))

, A1 =
{

v ∈ [0,1] : f (S−1
1 (v))> g(S−1

2 (v))
}

and A2 =
{

v ∈ [0,1] : f (S−1
1 (v))≤ g(S−1

2 (v))
}

. If infv∈A1
G2

V (v)
v2 ≥ supv∈A2

G2
V (v)
v2 and

ξ J(X)≥ ξ J(Y ) then, ξ J(T X)≥ ξ J(TY ).

Proof. From Eq. (5.1) we have,

ξ J(X)≥ ξ J(Y ) ⇒
∫ 1

0
D(v)dv ≥ 0.

Now using Eq. (5.3) we can write
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2[ξ J(T X)−ξ J(TY )] =
∫ 1

0

G2
V (v)
v2 D(v)dv

=
∫

A1

G2
V (v)
v2 D(v)dv+

∫
A2

G2
V (v)
v2 D(v)dv.

≥ inf
v∈A1

G2
V (v)
v2

∫
A1

D(v)dv+ sup
v∈A2

G2
V (v)
v2

∫
A2

D(v)dv

≥ sup
v∈A2

G2
V (v)
v2

∫
A1

D(v)dv+ sup
v∈A2

G2
V (v)
v2

∫
A2

D(v)dv

= sup
v∈A2

G2
V (v)
v2

∫ 1

0
D(v)dv ≥ 0.

The inequalities follows since

∫
A1

G2
V (v)
v2 D(v)dv ≥ inf

v∈A1

G2
V (v)
v2

∫
A1

D(v)dv

and as D(v)< 0 in A2 ∫
A1

G2
V (v)
v2 D(v)dv ≥ sup

v∈A2

G2
V (v)
v2

∫
A2

D(v)dv.

Hence the proof.

Next we provide some bounds of CREx of a mixed system. These will be useful to approx-
imate system CREx in situations when it can not be calculated due to the highly complex
nature of the structure function.

Proposition 5.1.3. Let T be the lifetime of a mixed system with signature s having n iid
components. Let X1,X2, · · · ,Xn be the component lifetimes with common sf F. Then

B1ξ J(X)≤ ξ J(T )≤ B2ξ J(X),

where B1 = supv∈[0,1]
G2

V (v)
v2 and B2 = infv∈[0,1]

G2
V (v)
v2 .

Proof. We have,

ξ J(T ) = −1
2

∫ 1

0

G2
V (v)
v2

v2

f (S−1(v))
dv ≥− sup

v∈[0,1]

G2
V (v)
v2

∫ 1

0

v2

f (S−1(v))
dv

= B1ξ J(X).

Upper bound can be obtained similarly.
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Proposition 5.1.4. Suppose T denote the lifetime of a mixed system of n iid components
having lifetimes with common pdf f . Then

− 1
2m

∫ 1

0
G2

V (v)dv ≤ ξ J(T )≤− 1
2M

∫ 1

0
G2

V (v)dv,

where m = infx∈A f (x), M = supx∈A f (x) and A is the support of f .

Proof. Note that m ≤ f (S−1(v))≤ M. Now

ξ J(T ) =−1
2

∫ 1

0

G2
V (v)

f (S−1(v))
dv ≤− 1

2M

∫ 1

0
G2

V (v)dv.

Lower bound can be obtained similarly.

Example 5.1.3. For the system considered in Example 5.1.1, m = 0 and M = 1
λ

. From
Proposition 5.1.4 we have, ξ J(T )≤−0.1698λ . Also here B1 = 1.1851 and B2 = 0. So from
Proposition 5.1.3 we get, −0.2963λ ≤ JS(T ) ≤ 0. The exact value of JS(T ) is −0.2292λ

and JS(X) =−0.25λ .

We compute the CREx and its upper bound using Proposition 5.1.2 for a set of systems
with four iid components having standard exponentially distributed lifetimes. This set of
systems was studied by Shaked and Suarez-Llorens (2003). We present the CREx and its
upper bound in Table 5.1. It is observed that the CREx of the parallel system is minimum
but maximum for the series system. It is natural since the parallel (series) system is the most
(least) reliable system so the CREx of parallel (series) system is minimum (maximum). So
if CREx of a system with lifetime T1 is less than that of a system with lifetime T2 then T1 is
more close towards a parallel system than T2. From the table we find that the CREx of the
3-out-of-4 system is smaller than that of the 2-out-of-4 system so the 3-out-of-4 system is
better than the 2-out-of-4 system. Since, lower value of CREx implies better performance
of systems so we can determine which systems are more reliable by comparing their CREx
measure.

Next we provide an important lower bound for ξ J(T ) in terms of CREx of k-out-of-n
systems. Later we will use this result to study the system complexity.

Proposition 5.1.5. Consider a mixed system of n iid components having lifetimes X1,X2, · · · ,Xn.

Then the CREx of the system lifetime T satisfies ξ J(T )≥∑
n
j=1 s jξ J(X j:n), where X1:n, · · · ,Xn:n

are the ordered lifetimes of the components. Equality holds for k-out-of-n systems.

Proof. Applying Jensen’s inequality in Eq. (5.3) we get,

ξ J(T ) ≥ −1
2

∫ 1

0

∑
n
j=1 s jG2

j:n(v)

f (S−1(v))
dv =

n

∑
j=1

s jξ J(X j:n).
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Equality holds for a k-out-of-n systems since s j = 0 for all j ̸= n− k + 1 and s j = 1 for
j = n− k+1.

Table 5.1: CREx and its upper bound for coherent systems.

Systems s JS(T ) Upper bound

Group 1

1) X1:4 (Series) (1,0,0,0) -0.0625 -0.0556
2) X4:4 (Parallel) (0,0,0,1) -0.7244 -0.3556
3) X2:4 (3-out-of-4) (0,0,1,0) -0.3673 -0.2429
4) X3:4 (2-out-of-4) (0,1,0,0) -0.1815 -0.1429

Group 2

5) max{X1:2,min{X1,X3,X4},min{X2,X3,X4}} (0,5
6 ,1

6 ,0) -0.2036 -0.1556
6) min{X2:2,max{X1,X3,X4},max{X2,X3,X4}} (0,1

6 ,5
6 ,0) -0.3274 -0.2223

Group 3

7) max{X1:2,min{X3,X4}} (0,2
3 ,1

3 ,0) -0.2292 -0.1698
8) max{X1:2,min{X1,X3},min{X2,X3,X4}} (0,2

3 ,1
3 ,0) -0.2292 -0.1698

9) max{X2:2,max{X3,X4}} (0,1
3 ,2

3 ,0) -0.2911 -0.2032
10) max{min{X1,max{X2,X3,X4}},min{X2,X3}} (0,1

3 ,2
3 ,0) -0.2911 -0.2032

Group 4

11) max{X1:2,min{X2,X3},min{X3,X4}} (0,1
2 ,1

2 ,0) -0.2583 -0.1857
12) max{min{X1,max{X2,X3,X4}},min{X2,X3,X4}} (0,1

3 ,2
3 ,0) -0.2911 -0.2032

Group 5

13) min{X1:3,X4} (1
4 ,

3
4 ,0,0) -0.1429 -0.1151

14) max{X1:3,X4} (0,0, 1
4 ,

3
4) -0.6083 -0.3214

Group 6

15) max{X1:3,min{X2,X3,X4}} (1
2 ,

1
2 ,0,0) -0.1101 -0.0913

16) max{X1,X2,min{X3,X4}} (0,0, 1
2 ,

1
2) -0.5101 -0.2913

Group 7

17) min{X2:2,max{X1,X3},X4} ( 3
12 ,

7
12 ,

2
12 ,0) -0.1613 -0.1258

18) max{X1,min{X2,X4},min{X3,X4}} (0, 2
12 ,

7
12 ,

3
12) -0.3839 -0.2425

Group 8

19) min{X3:3,X4} (1
4 ,

1
4 ,

2
4 ,0) -0.2089 -0.1520

20) max{X1,min{X2,X3,X4}} (0, 2
4 ,

1
4 ,

1
4) -0.3030 -0.2020

We provide bounds for system CREx in terms of CREx of k-out-of-n systems for the same
set of systems discussed in Table 5.1. The set of systems have four iid components with
standard exponential lifetimes. From Tables 5.1 and 5.2, it is observed that bounds in terms
of the k-out-of-n system perform better than the bounds discussed in Proposition 5.1.4.
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In the following section we express CREx of a mixed system consisting of d.i.d. com-
ponents using distortion function and copula.

5.2 CREx of mixed systems consisting of d.i.d. compo-
nents

Here we obtain CREx of mixed systems having n d.i.d. components. Let X1,X2, · · · ,Xn

be the lifetimes of the components and T be the system lifetime. It is assumed that the
component lifetimes are d.i.d. with common marginal cdf F and pdf f . We consider the
representation of sf of the system using a continuous and increasing distortion function
h : [0,1]→ [0,1] as (Navarro et al., 2013).

ST (t) = h(S(t)). (5.4)

Now if the components are exchangeable, then we have

h(v) =
n

∑
i=1

ciK(v, · · · ,v︸ ︷︷ ︸
i times

,1, · · · ,1︸ ︷︷ ︸
n-i times

), (5.5)

where c = (c1, · · · ,cn) is the maximal signature of the mixed system and K is the diagonal
section of the survival copula of the random vector (X1,X2, · · · ,Xn). For iid components

h(v) =
n

∑
i=1

civi. (5.6)

The pdf of T can be expressed as

fT (t) =− d
dt

h(S(t)) = f (t)h′(S(t)), (5.7)

where h′(t) = d
dt h(t). Now using Eq. (5.1) we can express the CREx of a mixed system T

consisting of d.i.d. components with common cdf F as

ξ J(T ) =−1
2

∫ 1

0

h2(v)
f (S−1(v))

dv. (5.8)

Example 5.2.1. Suppose the system given in Example 5.1.1 consisting of d.i.d. and ex-
changeable components having FGM copula:

K(v1,v2,v3,v4) = v1v2v3v4(1+a(1− v1)(1− v2)(1− v3)(1− v4)), a ∈ [−1,1].
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Then
ST (t) = 2K(S(t),S(t),1,1)−K(S(t),S(t),S(t),S(t)).

So we have, h(v) = 2v2−v4(1+a(1−v)4). If the common sf of the components is S(t) = e−t

and a = 0.5, then

ξ J(T ) = −1
2

∫ 1

0

(2v2 − v4(1+ 1
2(1− v)4))2

v
dv

= −0.2285.

It is observed that CREx of T for iid components having standard exponential distribution
is −0.2292, which is less than the CREx of T consisting of dependent components. So in
this case, the uncertainty is lower for d.i.d. components.

Example 5.2.2. We consider a series system having three components with d.i.d. compo-
nents having standard exponential distribution. The lifetime of the system is T = X1:3. Sup-

pose the d.i.d. components have Clayton survival copula: K(v1,v2,v3,)=

(
∑

3
i=1 v

− 1
a

i −2
)−a

,

where a > 0. So the diagonal section of the copula is h(v) = k(v,v,v) =
(

3v−
1
a −2

)−a
.

Hence the CREx of T is

ξ J(T ) =−1
2

∫ 1

0

(3v−
1
a −2)−a

v
dv.

We plotted the CREx with respect to the dependency parameter a in Figure 5.3. From Figure
5.3 we see that, as the dependency parameter a increases the CREx of T increases hence
the uncertainty associated with T decreases.

Fig. 5.3: Values of CREx in Example 5.2.2 for different values of a.

Now we consider some comparison results and bounds for CREx of mixed systems
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consisting of d.i.d. components. The results are analogous to the iid case so we omit the
proofs.

Proposition 5.2.1. (i)
disp

X ≤ Y⇒ ξ J(T X)≥ ξ J(TY ).
(ii) infv∈A1

h2(v)
v2 ≥ supv∈A2

h2(v)
v2 and ξ J(X)≥ ξ J(Y ) , then ξ J(T X)≥ ξ J(TY ), where A1 and

A2 are defined in Proposition 5.1.2.

Proposition 5.2.2. Suppose X1,X2, · · · ,Xn are the component lifetimes with common cdf F
of a mixed system T with signature s. Then

B3ξ J(X)≤ ξ J(T )≤ B4ξ J(X),

where B3 = supv∈[0,1]
h2(v)

v2 and B4 = infv∈[0,1]
h2(v)

v2 .

Proposition 5.2.3. The CREx of a mixed system with n d.i.d. components satisfies

− 1
2m

∫ 1

0
h2(v)dv ≤ ξ J(T )≤− 1

2M

∫ 1

0
h2(v)dv,

where m = infx∈A f (x), M = supx∈A f (x), f is the common pdf of component lifetimes and
A is the support of f .

Example 5.2.3. Consider the series system with d.i.d. components given in Example 5.2.2.
Here for different values of a, we present the upper bound given in Proposition 5.2.3 along
with ξ J(T ) is Figure 5.4. It is observed that as the dependency parameter increases the
bound performs better.

Fig. 5.4: Upper bounds of CREx for different values of a.
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5.3 Applications in reliability engineering

We provide applications of CREx of mixed systems in engineering reliability problems.
In reliability engineering, one important problem is to measure the complexity of systems.
Also comparisons among various systems is a useful area in system reliability where it is
often required to choose the better system among different systems that can not be compa-
rable by usual stochastic orderings. In this section, we provide two applications on mea-
suring complexity and comparing systems based on CREx of mixed systems consisting of
iid components. For these purposes, we propose a Jensen type divergence measure and a
new ordering of systems and obtain some interesting results associated with them. Also we
discuss some applications involving system redundancy.

5.3.1 Jensen-Cumulative residual extropy divergence and complexity
of systems

As stated earlier, one of the important applications of information measures in reliability
engineering is to measure the complexity of the system. To address this issue, Asadi et al.
(2016) proposed the Jensen-Shannon (JS) divergence between the system T and X1:n, · · · ,Xn:n

as

JS(T : X1:n, · · · ,Xn:n) = H(T )−
n

∑
i=1

si H(Xi:n), (5.9)

where H(T ) is the Shannon entropy of T . This measure compares the system entropy with
its component entropies and it is zero for the k-out-of-n systems. This property helps us to
study the complexity of systems as higher values of JS(T : X1:n, · · · ,Xn:n) will imply that the
n-component system T is more complex than the k-out-of-n systems consisting of same type
of components. Analogous to JS divergence, Qiu et al. (2019) defined the Jensen-Extropy
(JE) divergence between system T and X1:n, · · · ,Xn:n as

JE(T : X1:n, · · · ,Xn:n) = J(T )−
n

∑
i=1

si J(Xi:n), (5.10)

where J(T ) is the extropy of T . By analogy of Eq. (5.9) and (5.10), we propose the
Jensen-Cumulative residual extropy (JCREx) divergence in terms of the CREx function.
The JCREx divergence between T and X1:n, · · · ,Xn:n is defined as

JCREx (T : X1:n, · · · ,Xn:n) = ξ J(T )−
n

∑
i=1

si ξ J(Xi:n). (5.11)
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We can express Eq. (5.11) as

JCREx (T : X1:n, · · · ,Xn:n) =−1
2

∫ 1

0

G2
V (v)−∑

n
i=1 si G2

i:n(v)
f (S−1(v))dv

dv. (5.12)

Like JS and JE divergence measures, JCREx divergence is non-negative and from Propo-
sition 5.1.5 we can see that JCREx (T : X1:n, · · · ,Xn:n) = 0 for k-out-of-n systems. JCREx
divergence measures the complexity of a system in comparison with a k-out-of-n system
having the same number of iid components. In the following proposition, we compare the
JCREx divergence of two systems having the same structure but different components.

Proposition 5.3.1. Consider two mixed systems with lifetime T X and TY having same signa-
ture s with components lifetimes X1,X2, · · · ,Xn and Y1,Y2, · · · ,Yn, respectively. If X ≤disp Y ,
then

JCREx (T X : X1:n, · · · ,Xn:n)≥ JCREx (TY : Y1:n, · · · ,Yn:n).

Proof. Proof follows using the definition of dispersive ordering in Eq. (5.13).

Table 5.2: JCREx divergence and lower bounds in terms of k-out-of-n systems.

System ∑
n
i=1 siJS(Xi:n) JCREx System ∑

n
i=1 siJS(Xi:n) JCREx

Group 1 Group 5

1) -0.0625 0 13) -0.1518 0.0089
2) -0.7244 0 14) -0.6351 0.0268
3) -0.3673 0
4) -0.1815 0

Group 2 Group 6

5) -0.2125 0.0089 15) -0.1220 0.0119
6) -0.3363 0.0089 16) -0.5458 0.0357

Group 3 Group 7

7) -0.2434 0.0143 17) -0.1827 0.0214
8) -0.2434 0.0143 18) -0.4256 0.0416
9) -0.3054 0.0143
10) -0.3054 0.0143

Group 4 Group 8

11) -0.2744 0.0161 19) -0.2446 0.0357
12) -0.2744 0.0161 20) -0.3637 0.0607

Now we propose a relative CREx measure, analogous to the relative extropy measure of
Lad et al. (2015), which will be used for comparisons between two systems. This measure
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is a scale transformation of the energy distance between two non-negative rvs. Also this is
related to quadratic distance between two sfs. The relative CREx between two non-negative
continuous rvs X and Y with sfs S1 and S2 is defined as

R(X : Y ) =
1
2

∫ +∞

0
(S1(x)−S2(x))

2 dx. (5.13)

The JCREx divergence can be expressed in terms of the relative CREx measure.

Proposition 5.3.2. For a system T with iid components X1,X3, · · · ,Xn, the JCREx divergence
between the system T and its ordered component lifetimes X1:n, · · · ,Xn:n is given by

JCREx (T : X1:n, · · · ,Xn:n) =
n

∑
i=1

si R(T : Xi:n).

Proof. From Eq. (5.13) we have,

n

∑
i=0

si R(T : Xi:n) =
1
2

n

∑
i=0

si

∫ +∞

0
(ST (x)−Si:n(x))2dx

=
1
2

n

∑
i=0

si

∫ +∞

0

(
n

∑
i=0

si Si:n(x)−Si:n(x)

)2

dx

=
1
2

n

∑
i=0

si

∫ 1

0

(GV (v)−Gi:n(v))2

f (S−1(v))
dv

=
1
2

n

∑
i=0

si

∫ 1

0

[G2
V (v)−2GV (v)Gi:n(v)+G2

i:n(v)]
f (S−1(v))

dv

= −1
2

∫ 1

0

G2
V (v)−∑

n
i=0 si G2

i:n(v)
f (S−1(v))

dv

= JCREx (T : X1:n, · · · ,Xn:n).

The JCREx divergence for the set of systems in Table 5.1 are presented in Table 5.2.
The set of systems have four iid components having standard exponential lifetimes. Asadi
et al. (2016) divided the 20 systems into 8 groups in accordance with the dualities of the
system signatures. Systems with dual signatures are put in the same group. In Table 5.2 it
is observed that Group 1 contains k-out-of-4 systems, for k = 1(1)4, with JCREx divergence
zero. These systems are the least complex systems. From Table 5.2 we also observe that
as the complexity of the systems increases, the JCREx divergence also increases. Like JE
divergence as pointed out in Qiu et al. (2019), JCREx divergence for Groups 2-4 are the
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same for the different structures with dual signatures in each Group. However, from Groups
5-8 the JCREx divergence for the structures with dual signatures in the same Group are
different.

One advantage of the JCREx divergence measure is that, we can compare system com-
plexity of systems consisting of different numbers of iid components. Consider the follow-
ing examples illustrating this fact.

Example 5.3.1. Consider the 3-components series-parallel system Tsp =min{X1,max{X2,X3}}
and the parallel-series system Tps = max{min{X1,X2},X3}. The series-parallel system has
the signature

(1
3 ,

2
3 ,0
)
, CREx is J(Tsp) = -0.1381 and its lower bound is ∑

n
i=1 siJ(Xi:n) = -

0.1476. The JCREx divergence between Tsp and its components is JCREx(Tsp : X1:3,X2:3,X3:3)=
0.0095. The parallel-series system has the signature

(
0, 2

3 ,
1
3

)
and the values of the corre-

sponding information measures and bound are J(Tps) = -0.2214, ∑
n
i=1 siJ(Xi:n) = -0.2309

and JCREx(Tsp : X1:3,X2:3,X3:3) = 0.0095. Obviously, the parallel-series system is the bet-
ter system and this is also evident from the fact that J(Tps)< J(Tsp). The complexity of these
two systems are the same. From Table 5.2, it is observed that systems of Group 2 and the
first system of Group 5 are less complex than the 3-components series-parallel and parallel-
series systems. So, increasing the number of components of a system does not necessarily
imply that the system will become more complex. Complexity also depends on the structure
of the systems.

Fig. 5.5: Structure functions of 3-component series-parallel and parallel-series systems.

(a) 3-component series-parallel system. (b) 3-component parallel-series system

5.3.2 A new ordering of systems

Sometimes pairwise comparisons of systems by usual stochastic order may not be pos-
sible due to the complicated structure of the systems (Kochar et al., 1999). So instead of
pairwise comparisons of systems, Toomaj et al. (2017) compared systems by determining
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how close (far) the structure of the system is towards the structure of the parallel (series)

system. Since for any system T we have X1:n
st
≤ T

st
≤ Xn:n, so one can compare two systems

by observing how close the system is towards the structure of the parallel system and how
far the system is towards the structure of the series system. Toomaj et al. (2017) considered
this type of ordering of systems using cumulative residual KL divergence measure.

We propose a new measure to compare the performance of two systems based on the
relative CREx defined in Eq. (5.13). Consider the following lemma which will be helpful
in the development of the discrimination measure for comparison of the systems.

Lemma 5.3.1. Let X1,X2 and X3 be three rvs with sfs S1,S2 and S3, respectively. If

X1
st
≤ X2

st
≤ X3 then R(X1,X2)≤ R(X1,X3) and R(X2,X3)≤ R(X1,X3).

Proof. X1
st
≤ X2

st
≤ X3 implies S1(t)≤ S2(t)≤ S3(t), ∀t > 0. So we have,

(S2(t)−S1(t))2 ≤ (S3(t)−S1(t))2,∀t > 0.

Also, we have, S1(t)
S3(t)

≤ S2(t)
S3(t)

≤ 1. Using the fact that (x−1)2 is decreasing in (0,1), we get

(S2(t)−S3(t))2 ≤ (S1(t)−S3(t))2,∀t > 0.

The results follows by integration.

Remark 5.3.1. Since X1
st
≤ X2

st
≤ X3, from Lemma 5.3.1 we have, for any mixed system T

having n iid component lifetimes X1, · · · ,Xn, R(T,Xi:n)≤ R(X1:n,Xn:n).

Now we define the discrimination information based on relative CREx. Discrimination
information for a mixed system T is defined as

∆(T ) =
R(T,X1:n)−R(T,Xn:n)

R(X1:n,Xn:n)
.

Clearly −1 ≤ ∆(T ) ≤ 1, where ∆(T ) = 1 iff T is a parallel system and ∆(T ) = −1 iff T
is a series system. So when ∆(T ) is close to 1, the system T is close to a parallel system
and when ∆(T ) is close to -1, the system T is close to a series system. Now we define an
ordering between two systems based on ∆(·). It is easy to see that, ∆(T ) = 0 if T is the
uniform mixture of series and parallel systems defined in Example 5.1.2.

Now we define an ordering between two systems based on ∆(·) for comparing various
systems which are not comparable by conventional methods.

Definition 5.3.1. For two mixed systems with lifetimes T X and TY , T X is said to be less

preferable than TY , denoted by T X
∆

≤ TY , if ∆(T X)≤ ∆(TY ).
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Example 5.3.2. Consider two coherent systems with four iid standard exponentially dis-
tributed components with system lifetimes T1 = min{X1,max{X2,X3,X4}} and
T2 = max{X1,min{X2,X3,X4}}. These two systems are not comparable by usual stochastic

order. Now ∆(T1) =−0.3392 and ∆(T2) =−0.0044 and therefore T1
∆

≤ T2. So the system T2

is closer to the parallel system X4:4 than system T1. As we have mentioned, ∆(T ) = 0 for the
uniform mixture of series and parallel systems. Now ∆(T2) =−0.0044, which is very close
to zero so the system T2 can be effectively approximated by the uniform mixture of series
and parallel systems. Series and parallel systems are easily understood by the practitioners
and they are least complex systems. So working with their mixture will be much easier than
working with other complex systems. Therefore, the proposed discrimination method ∆(T )
may be used to approximate various complex systems with relatively less complex mixed
systems. Although we introduced ∆(T ) for systems comparison purposes, it can also be
used for potential application of mixed reliability systems.

In the following result we show that stochastic ordering among the system signatures
implies the Delta ordering among systems.

Proposition 5.3.3. Let T1 and T2 be the lifetimes of two mixed systems, each consisting of n

iid components with respective signatures s1 and s2. If s1
st
≤s2 then T1

∆

≤ T2.

Proof. s1
st
≤s2 implies X1:n

st
≤ T1

st
≤ T2

st
≤ Xn:n (Navarro et al., 2008). From Lemma 5.3.1 we

have, R(T1,X1:n)≤ R(T2,X1:n) and R(T2,Xn:n)≤ R(T1,Xn:n). Hence the proof.

Note that for two mixed systems T1 and T2 consisting of iid components (X1, · · · ,Xn),

T1
st
≤ T2 implies T1

∆

≤ T2 and if
st

T1 = T2 then
∆

T1 = T2. So we can use ∆ order two compare
two systems when usual stochastic orders can not be applicable.

5.3.3 Application in redundancy allocation

In reliability engineering, a common way to enhance reliability of a system is to build re-
dundancy into it. One way to achieve this is to attach spare components in parallel to each
component of the system. This is called redundancy at component level. Another method is
to add the same system parallel to the original system. This is called redundancy at system
level. Redundancy at component level is better than redundancy at system level (Barlow
and Proschan, 1975). Adding redundancy to a system will increase the reliability of the
system but the cost will also increase. Consider the 3-component parallel-series system
Tps = max{min{X1,X2},X3}. The structure function of the system is given in Figures 5.5b.
The redundant systems corresponding to the system Tps are shown in Figure 5.6a and 5.6b,
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Fig. 5.6: Redundant systems of parallel-series system at component and system level

(a) Redundancy at component level. (b) Redundancy at system level.

respectively. Now we study information properties of these redundant systems. We de-
note the redundant systems at component and system levels by T cr

ps and T sr
ps , respectively.

The signature vector of T cr
ps is

(
0, 2

30 ,
4
30 ,

8
30 ,

16
30 ,0

)
. The CREx of T cr

ps is -0.2444, the lower
bound is ∑

n
i=1 siJ(Xi:n) = -0.2578 and the JCREx divergence between T cr

ps and its compo-
nents is 0.0134. The signature of T sr

ps is
(
0, 2

30 ,
7

30 ,
13
30 ,

8
30 ,0

)
, CREx is -0.2183, lower bound

is -0.2303 and the JCREx divergence is 0.0119. Since CREx of T cr
ps is less than that of

T sr
ps , we conclude that redundancy of components level is better than redundancy at system

level. However, JCREx divergence for T cr
ps is higher than JCREx for T sr

ps . So, the system
T cr

ps is more complex than T sr
ps . Clearly, the cost of constructing and running a more com-

plex system is higher than a less complex one. Also redundancy at system level is easier to
build since it is only required to add two same systems in parallel. A reliability engineer
needs to decide to what extent redundancy is needed for reliability improvement while also
keeping the cost as reasonable as possible. Another problem is how many redundant com-
ponents one should add to the systems. Here we add one redundant component to each of
the components and one redundant system to the system redundancy. One can add multiple
components and systems in parallel as well. This type of redundancy is used in situations
where high reliability is required. This is an interesting problem worth investigating. Also
in component level redundancy, often the number of spare components are not sufficient for
adding redundant components to each of the components. In those situations, a reliability
engineer needs to find out which components are more important to the system and add
redundant components to it so that the reliability is maximized.

In terms of information theory, adding redundancy will decrease the CREx of the system
and increase the complexity of the system as well as the cost. So one needs to minimize
the CREx of the system by adding redundancy subject to an upper bound of the JCREx
divergence.
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5.4 Estimation of CREx

In this Section, we propose three non-parametric estimators for CREx measures, study their
properties and compare their performances by evaluating their MSEs. Let X1,X2, · · · ,Xn be
a rs drawn from a continuous distribution having cdf F and let X1:n,X2:n, · · · ,Xn:n be the
corresponding order statistics. We propose the first estimator of CREx measure analogously
to the estimator of GWSE defined in Eq. (2.21) as

ξ J1
Fn
(X) =−1

2

n−1

∑
i=0

(X(i+1):n −Xi:n)

(
1− i

n

)2

. (5.14)

This estimator is a modification of the estimator proposed by Jahanshahi et al. (2020). The
proposed estimator is consistent.

Next we suggest another estimator of the CREx measure. First, consider the following
theorem which will be useful in defining the estimator.

Theorem 5.4.1. For a non-negative, continuous rv X with cdf F and sf S,

ξ J(X) =−
∫ +∞

0
xS(x)dF(x). (5.15)

Proof. We have,

−
∫ +∞

0
xS(x)dF(x) = −

∫ +∞

0

(∫ x

0
dv
)

S(x)dF(x)

= −
∫ +∞

0

(∫ +∞

v
S(x)dF(x)

)
dv

= −1
2

∫ +∞

0
S2(v)dv.

Hence the proof.

Using Theorem 5.4.1, we propose the second estimator of CREx as

ξ J2
Fn
(X) = −

∫ +∞

0
xSn(x)dFn(x)

= −1
n

n−1

∑
i=1

(
1− i

n

)
Xi:n. (5.16)

In the following theorem we study the consistency and asymptotic normality of ξ J2
Fn
(X).
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Theorem 5.4.2. Let X1,X2, · · · ,Xn be a rs from a non-negative, continuous distribution with
finite second moment. Then,

√
n
(
ξ J2

Fn
(X)−ξ JF(X)

)
is asymptotically normally distributed

with mean zero and variance σ2
F , where

σ
2
F =

∫ +∞

0

∫ +∞

0
[F(min(u,v))−F(u)F(v)]

(
1− u

n

)(
1− v

n

)
dudv. (5.17)

Proof. Proof is similar to that of Theorems 2 and 3 of Stigler (1974), hence it is omitted.

Note that, σ2
F contains unknown parameters. A consistent estimator of σ2

F can be obtained
as

σ̂2
F = ∑

n−1
i=1 ∑

n−1
i=1

(
min

(
i
n ,

j
n

)
− i

n
j
n

)(
1− i

n

)(
1− j

n

)
(X(i+1):n −Xi:n)(X( j+1):n −X j:n).

(5.18)

An approximate 100(1-α)% confidence interval for ξ J2
Fn
(X) can be computed as

ξ J2
Fn
(X)±Z α

2

√
σ̂2

F
n
,

where Zα is the upper-α point of the standard normal distribution.

Next estimator is based on the Kernel function (Parzen, 1962). Kernel estimation of f (·) is
given by

f̂n(x) =
1

nhn

n

∑
i=1

K
(

x−Xi

hn

)
,

where hn is the bandwidth parameter. The kernel function K satisfies the following proper-
ties:
1. K(v)≥ 0 for all v.
2.
∫+∞

−∞
K(v)dv = 1.

3. K(·) is symmetric about zero.
4. K(·) satisfies the Lipschitz condition, that there exists a positive constant M such that
| K(v)−K(w) |≤ M | v−w |.
Kernel estimator for CREx is defined as

ξ J3
Fn
(X) =−1

2

∫ +∞

0
Ŝ2

n(x)dx, (5.19)

where Ŝn(x) =
∫+∞

x f̂n(w)dw. From the consistency of kernel, it is obvious that ξ J3
Fn
(X) is

consistent. Now we compare the performance of these estimators.
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Table 5.3: Bias and MSEs for standard exponential distribution.

n ξ J1
Fn
(X) ξ J2

Fn
(X) ξ J3

Fn
(X)

Bias MSE Bias MSE Bias MSE
10 -0.0249 0.0101 0.0243 0.0079 -0.0214 0.0093
20 -0.0121 0.0047 0.0113 0.0040 -0.0088 0.0041
30 -0.0088 0.0030 0.0080 0.0027 -0.0074 0.0027
40 -0.0065 0.0022 0.0062 0.0021 -0.0035 0.0021
50 -0.0056 0.0018 0.0052 0.0016 -0.0031 0.0016
100 -0.0025 0.0009 0.0022 0.0008 -0.0021 0.0008

Table 5.4: Bias and MSEs for standard uniform distribution.

n ξ J1
Fn
(X) ξ J2

Fn
(X) ξ J3

Fn
(X)

Bias MSE Bias MSE Bias MSE
10 -0.0088 0.0024 0.0170 0.0021 -0.0049 0.0021
20 -0.0040 0.0011 0.0083 0.0011 -0.0088 0.0010
30 -0.0024 0.0007 0.0051 0.0007 -0.0074 0.0007
40 -0.0020 0.0006 0.0039 0.0005 -0.0035 0.0006
50 -0.0015 0.0004 0.0037 0.0004 -0.0031 0.0004
100 -0.0009 0.0002 0.0017 0.0002 -0.0021 0.0002

5.4.1 Comparison of estimators

We conduct a simulation study to check the performance of the estimators by means of
MSE. We consider exponential distribution with mean 1 and standard uniform distribution.
We generate rs of size 10, 20, 30, 40, 50 and 100 from each reference distribution and
calculate the Bias and MSE using 10000 replications. The true value of CREx for standard
exponential distribution is −1

4 and for standard uniform distribution is −1
6 . The results are

provided in Tables 5.3 and 5.4, respectively. From the tables we observe that, as sample size
increases, the MSE of all the estimators decreases. All the estimators perform similarly for
uniform distribution in terms of MSE. For exponential distribution, ξ J2

Fn
(X) performs better

than other two estimators and ξ J3
Fn
(X) performs better than ξ J1

Fn
(X). So it may be useful to

use ξ J2
Fn
(X) for estimating CREx because it is very easy to calculate and its null distribution

is normal, whose parameter can easily be estimated from a data set using Eq. (5.18).

5.4.2 Data Analysis

We analyse a real data set for illustration. The data set is given in Grubbs (1971) that we
studied in Chapter 2, where we observed that exponential distribution with cdf
Fθ (x) = 1−e−

x
θ , x > 0, θ > 0, fits the data well. The mle of θ is θ̂ = 1

X̄ = 0.001. Parametric
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estimate of ξ JF(X) is − 1
4θ̂

= -249.4868. The non-parametric estimates are
ξ J1

Fn
(X) = -299.392, ξ J2

Fn
(X) = -273.1302 and ξ J3

Fn
(X) = -287.2928. We see that ξ J2

Fn
(X)

is closer to the parametric estimate than the other two and kernel based estimator ξ J3
Fn
(X)

is closer to the true value than ξ J1
Fn
(X). We noticed this same pattern in Table 5.3 as well.

5.5 Testing equality between two distribution functions

In this section, we provide an application in hypothesis testing problems. Making use of
the asymptotic normality of ξ J2

Fn
(X), we provide a test statistic to perform goodness-of-fit

tests among two distributions. Jahanshahi et al. (2020) showed that for two rvs X1 and X2,
st

X1 ≤ X2 =⇒ ξ J(X1)≤ ξ J(X2). Now it is known that, if
st

X1 ≤ X2 and
st

X2 ≤ X1, then
st

X1 = X2

i.e. FX1(v) = FX2(v), ∀v. So it is quite obvious that, for two non-negative, continuous rvs
X1 and X2 having cdfs (sfs) F and G, ξ J(X1) = ξ J(X2) implies F(v) = G(v), ∀v > 0. And
consequently, ξ J2

Fn
(X) = ξ J2

Gn
(X) also implies F(v) = G(v), ∀v > 0.

Let U1,U2, · · · ,Un1 and V1,V2, · · · ,Vn2 be two independent rs from non-negative, contin-
uous distributions with cdfs F and G, respectively. We want to test the hypothesis

H0 : F(u) = G(u) vs. H1 : F(u) ̸= G(u).

Consider the following theorem which will be used to develop the test statistic.

Theorem 5.5.1. Let U1,U2, · · · ,Un1 and V1,V2, · · · ,Vn2 be two rs from non-negative contin-
uous distributions with cdfs F and G, respectively. Also let ξ J2

Fn
(U) and ξ J2

Gn
(V ) be the

empirical estimators of ξ J(U) and ξ J(V ), respectively. Both U and V have a finite second
moment. Consider the difference,
∆(U,V ) = ξ J(U)−ξ J(V ) and ∆N(U,V ) = ξ J2

Fn
(U)−ξ J2

Gn
(V ). Then,

√
N (∆N(U,V )−∆(U,V ))

d−→ N
(

0,
σ2(F)

τ
+

σ2(G)

1− τ

)
,

where N = n1 +n2 and as min{n1,n2}→+∞ we have n1
N → τ, n2

N → 1− τ .

Proof. Proof follows by using Theorem 5.4.2 and additive property of normal distribution.

Now we can define the test statistic as

Z =

√
N∆N(U,V )√

σ2(F)
τ

+ σ2(G)
1−τ

.
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Note that ∆(U,V ) = 0 under H0. Since Z contains unknown parameter so we will estimate
the variances by (5.18) and thus obtain the estimated test statistic as

Z̃ =

√
N∆N(U,V )√

σ̂2(F)
τ

+ σ̂2(G)
1−τ

.

Reject the null hypothesis at significance level α if |Z̃|> Z α

2
.

5.5.1 Simulation Study

A simulation study is conducted to assess the performance of the proposed test. We compare
the power of the test with that of Kolmogorov-Smirnov (KS) and Wilcoxon rank sum (W)
tests. For reference distributions, we consider exponential, Weibull and gamma.

Table 5.5: Power of the test of equality between two exponential distributions.

λ1 λ2 Z̃ KS W
5 1 0.996 1 1

2 0.999 0.999 1
3 0.856 0.766 0.876
4 0.266 0.205 0.273
5 0.054 0.049 0.051
6 0.203 0.154 0.195
7 0.499 0.416 0.543
8 0.792 0.687 0.838
9 0.939 0.891 0.945

Table 5.6: Power of the test of equality between two Weibull distributions.

λ1 λ2 Z̃ KS W
5 1 0.99 1 0.575

2 0.948 0.975 0.318
3 0.595 0.446 0.158
4 0.168 0.084 0.063
5 0.050 0.045 0.051
6 0.139 0.062 0.066
7 0.339 0.163 0.082
8 0.593 0.351 0.126
9 0.756 0.562 0.171

For each family of distributions, we take rs of size n1 = n2 = 100 and test the hypothesis
whether the two samples come from the same distribution. For the Exp(λ ) distribution, we
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Table 5.7: Power of the test of equality between two gamma distributions.

λ1 λ2 Z̃ KS W
5 1 1 1 1

2 1 1 1
3 1 1 1
4 0.933 0.825 0.932
5 0.044 0.040 0.049
6 0.879 0.730 0.862
7 1 1 1
8 1 1 1
9 1 1 1

take λ = 5 of the first sample and varied λ of the second sample from 1 to 9. For Weibull
and gamma distributions, the shape parameter of the first sample is fixed at 5 and the shape
parameter of the second sample varies from 1 to 9. With no loss of generality, the scale
parameters of Weibull and gamma distribution are taken to be 1. We obtain power of the
tests at 5% significance level from 5000 replications and provide them in Tables 5.5, 5.6 and
5.7, respectively. From the tables, we observe that the proposed test performs better than
KS and Wilcoxon tests for Weibull distribution. For exponential and gamma distributions,
all tests perform similarly. However, when the two distributions are close (i.e. λ2 = 4, 6), the
proposed test has higher power than the other two tests. All the tests attain the significance
level under the null hypothesis.

5.6 Discussions

We studied CREx of mixed systems with identically distributed components and obtained
some bounds. We computed the CREx of coherent systems with iid components having
standard exponentially distributed lifetimes and observed that the parallel system has the
minimum CREx and the series system has the maximum CREx. This is quite obvious since
for two rvs the one with minimum extropy is better than the other. Also we compare various
systems with the same structure but different components using CREx and analyze CREx
for systems having d.i.d. components. We developed a discrimination information that mea-
sures how close (far) a system is towards a parallel (series) system and this discrimination
information can be used to compare two systems (consisting of iid components) when usual
stochastic order is not possible. We also proposed a divergence measure based on CREx of
a mixed system which measures the complexity of the system, i.e how much the system is
more complex than the k-out-of-n system.
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We provided numerous applications in comparing between systems, measuring system
complexity and in redundancy allocation problems. A future problem that we discussed is
to allocate redundant components to minimize the CREx of the respective system subject
to a suitable upper bound of the system complexity measure. Various problems can arise
in this direction such as: How many redundant components need to apply to minimize the
system CREx subject to a given budget. When the spare components stock is low, then
which components should have redundant components in order to minimize the CREx of
the respective systems. More work is needed in this direction.

We proposed two estimators of CREx measure and study their asymptotic properties.
We compared these estimators with kernel based estimators. We found that the best esti-
mator, in terms of MSE, is very easy to calculate and asymptotically normally distributed.
Consistent estimator of the variance of the asymptotic normal distribution is obtained. Using
the asymptotic normality of the proposed estimator that has minimum MSE, we constructed
an equality test between two distributions. We compared the power of the proposed test with
that of Kolmogorov-Smirnov and Wilcoxon rank sum test and found that our test performed
better than the other two tests. For future work, we can extend this test for random right
censored data.



Chapter 6

On some weighted generalized extropy
measures with applications

CONCEPT of weighted entropy was introduced in the literature five decades ago by
Guiasu (1971). However, only in recent years, considerable attention has been given to-
wards the analysis and development of various weighted cumulative information measures
following the works of Misagh et al. (2011). The recent developments in this area are deal-
ing with weighted information measures related to extropy measure. Balakrishnan et al.
(2022) have proposed the weighted extropy measure, defined in Eq.(1.14), studied various
properties and also defined dynamic versions (residual and past) of weighted extropy mea-
sure. For more details on dynamic extropy measures see Sathar and Nair (2021a). Recently,
Sathar and Nair (2021b) have proposed the weighted version of CREx measure which they
termed as weighted survival extropy (WSEx) measure. They have also introduced dynamic
WSEx (DWSEx) measure, studied some properties and obtained its non-parametric estima-
tor. For a rv X , the WSEx is defined as

ξ Jw(X) =−1
2

∫ +∞

0
xS2(x)dx (6.1)

and the DWSEx measure can be defined as

ξ Jw(X ; t) =− 1
2S2(t)

∫ +∞

t
xS2(x)dx. (6.2)

Note that ξ Jw(X ;0) = ξ Jw(X). It is important to note that these measures are non-positive
quantities. In actuarial study, information measures are often used as risk measures for port-
folio optimization problems. Risk measures are always positive quantities and in order to
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use extropy and related measures as risk measures, some modifications have to be made.
Jahanshahi et al. (2020) used |ξ J(X)| for this purpose. Extropy and its related measures
are all negative. These measures are popular because of their useful applications in vari-
ous fields which we discussed in detail. This is the reason that these measures are widely
used although they are not positive. If we do not want to work with negative measures
such as CREx, then we can use negative CREx (−ξ J(X)) or the absolute value of CREx
(|ξ J(X)|) instead. Note that |ξ J(X)| is basically −ξ J(X), since ξ J(X) is non-positive. The
mathematical properties will remain the same (inequalities will reverse) and higher value
of −ξ J(X) means more uncertainty. Using this notion of negative CREx, Tahmasebi and
Toomaj (2022) have proposed a new information measure called negative cumulative ex-
tropy (NCEx) measure. The NCEx for a rv X is defined as

C (X) =
1
2

∫ +∞

0

[
1−F2(x)

]
dx. (6.3)

We can also express NCEx measure in terms of the expected value of X2:2. Now X2:2 =

max{X1,X2} is the lifetime of a 2-component parallel system with cdf F2(x). So we have

E(X2:2) =
∫ +∞

0
SX2:2(x)dx =

∫ +∞

0
[1−F2(X)]dx = 2C (X).

Now if we have an even number of iid sample X1,X2, · · · ,Xn then, max{X1,X2}, max{X3,X4},
· · · ,max{Xn−1,Xn} is a sample from X2:2 and this can be used to estimate NCEx measure.

From an application point of view, NCEx is a very important measure since it has ap-
plications in various areas. For example, Tahmasebi and Toomaj (2022) used NCEx as
an alternative risk measure and also provided applications in system reliability. Noughabi
(2021) developed a goodness-of-fit test for uniform distribution using NCEx measure.

In this Chapter, we study some important properties of WSEx measure such as exis-
tence, convolution property and some bounds. Next we propose a generalization of WSEx
called weighted extended survival extropy (WESEx) along with its dynamic version and
obtain some interesting results. Also, we introduce weighted negative cumulative extropy
(WNCEx) measure and obtain some properties. Estimations and applications of these pro-
posed measures are the main focus of this chapter. We propose edf based non-parametric
estimators for WESEx, Dynamic WESEx and WNCEx measures for iid observations and
obtain some asymptotic results of these estimators. Also we propose a recursive kernel
based estimator for WSEx measure when the underlying sample satisfies α - mixing de-
pendent condition (Rosenblatt, 1956). Extensive simulation studies are carried out to assess
the performance of the proposed estimators. Several examples are provided and real data
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sets are analyzed. Two applications of WSEx measure are considered in model discrimi-
nation problems and in financial risk analysis. Using the estimator of WNCEx measure, a
goodness-of-fit test is developed for uniform distribution. The power of the proposed test is
compared with tests based on entropy, NCEx and some popular existing tests. The proposed
test performs well.

The rest of this chapter is organised as follows. Some new properties of WSEx measure
are considered in Section 6.1. The WESEx measure and its dynamic version are proposed
and their properties are studied in Section 6.2. The WNCEx measure is introduced in Sec-
tion 6.3. Non-parametric estimations of these proposed measures are studied in detail in
Section 6.4. Applications of these measures are considered in Section 6.5. Finally, some
concluding remarks are made in Section 6.6.

6.1 Weighted survival extropy

In this section, we study some interesting properties of the WSEx measure. Note that WSEx
is a measure of information which takes into account the realizations of the rvs. For a given
data set, if ξ Jw(X1) ≤ ξ Jw(X2) then X1 is considered better than X2. We calculate WSEx
for some well known distribution and report them in Table 6.1.

Table 6.1: WSEx for some distributions.

Distributions ξ Jw(X)

Exponential: F(x) = 1− e−λx; x > 0,λ > 0 − 1
8λ 2

Power: F(x) = 1− xα , 0 < x < 1, α > 0 − α2

4(α+1)(α+2)
Finite Range: F(x) = (1−ax)b, x ∈ (0, 1

a), a,b > 0 − 1
4a2(b+1)(2b+1)

Rayleigh: F(x) = 1− e−
x2

2σ2 , x > 0, σ > 0 −σ2

4

In the following theorem, we study the existence of WSEx measure i.e. we provide condi-
tions for WSEx being finite.

Theorem 6.1.1. For a non-negative continuous rv X, WSEx will be finite if for some p > 1,
E(X p)<+∞.

Proof. We have∫ +∞

0
xS2(x)dx =

∫ 1

0
xS2(x)dx+

∫ +∞

1
xS2(x)dx
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Using Markov’s inequality we have,∫ +∞

0
xS2(x)dx ≤

∫ 1

0
xdx+

∫ +∞

1
x
(

E(X p)

xp

)2

dx

=
1
2
+(E(X p))2

∫ +∞

1
x1−2pdx.

Note that for p > 1,
∫+∞

1 x1−2pdx is finite. Hence the result.

Next, we consider the effect of location and scale transformation on WSEx in the following
lemma. This result will be used later in deriving some results and also in the application of
WSEx measure.

Lemma 6.1.1. Let X be a non-negative continuous rv and Z = cX +d, c > 0,d ≥ 0. Then
ξ Jw(Z) = c2ξ Jw(X)+ cdξ J(X).

Proof. The proof follows using ScX+d(z) = SX(
z−d

c ), x ∈ R+.

Lemma 6.1.1 shows that WSEx is a shift-dependent measure and it is not position free. Now
we provide a bound of WSEx for convolution of two independent rvs.

Theorem 6.1.2. For two non-negative, continuous and independent rvs X1 and X2 with
respective cdfs F1 and F2 and sfs S1 and S2,

ξ Jw(X1 +X2)≥ max
{

ξ Jw(X1)+E(X2)ξ J(X1)−
E(X2

2 )

4
, ξ Jw(X2)+E(X1)ξ J(X2)−

E(X2
1 )

4

}
.

Proof. Since X1 and X2 are independent, we have

P(X1 +X2 > t) =
∫ +∞

0
S1(t − x2)dF2(x2).

Using Jensen’s inequality to the convex function [P(X1 +X2 > t)]2 we get,

[P(X1 +X2 > t)]2 =
[∫ +∞

0
S1(t − x2)dF2(x2)

]2

≤
∫ +∞

0
S2

1(t − x2)dF2(x2). (6.4)

Multiplying both sides by − t
2 and integrating with respect to t from 0 to +∞ we have

− 1
2

∫ +∞

0
t [P(X1 +X2 > t)]2 dt

≥ −1
2

∫ +∞

0

∫ +∞

0
tS2

1(t − x2)dt dF2(x2)

= −1
2

∫ +∞

0

[∫ x2

0
tS2

1(t − x2)dt +
∫ +∞

x2

tS2
1(t − x2)dt

]
dF2(x2)



6.1 Weighted survival extropy 106

= −1
2

∫ +∞

0

[∫ x2

0
tdt +

∫ +∞

0
(u+ x2)S2

1(u)du
]

dF2(x2).

⇒ ξ Jw(X1 +X2) ≥ −
E(X2

2 )

4
+ξ Jw(X1)+E(X2)ξ J(X1)

Similarly, it can be proved that, ξ Jw(X1+X2)≥−E(X2
1 )

4 +ξ Jw(X2)+E(X1)ξ J(X2). Hence
the result.

The following Proposition gives upper and lower bounds for WSEx of a rv X in terms of
WCRE and second raw moment of X .

Proposition 6.1.1. For a non-negative, continuous rv X,

−E(X2)

4
≤ ξ Jw(X)≤ 1

2

[
CREw(X)− E(X2)

2

]
.

Proof. The proof of lower bound follows using the fact that

−1
2

∫ +∞

0
xS2(x)dx ≥−1

2

∫ +∞

0
xS(x)dx.

The upper bound follows applying the inequality logx ≤ x−1, ∀x > 0 in CREw(X) and after
some simplifications.

Consider the following examples which illustrate the bounds defined in Proposition 6.1.1.

Example 6.1.1. Suppose X follows exponential distribution with mean 1
λ

then ξ Jw(X) =

− 1
8λ 2 , ξ w(X) = E(X2) = 2

λ 2 . So from Proposition 6.1.1 we have, − 1
2λ 2 < ξ Jw(X)< 1

2λ 2 .

Example 6.1.2. Suppose X has the Rayleigh distribution with cdf given in Table 6.1. Then
we have, ξ Jw(X) = −σ2

4 , ξ w(X) = σ2 and E(X2) = 2σ2. So we have ξ Jw(X) = −σ2

4 >

−E(X2)
4 =−σ2

2 and ξ Jw(X)< 0.

In the following lemma we compare WSEx of X , Xθ and θX where Xθ and X satisfy the
PHRM with proportionality constant θ .

Lemma 6.1.2. Suppose Xθ and X are independent and satisfy the PHRM. Then,

ξ Jw(Xθ )≥ ξ Jw(X)≥ ξ Jw(θX), i f θ ≥ 1.

The inequality will reverse for 0 < θ < 1.
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Proof. For θ > 1,

ξ Jw(Xθ ) =−1
2

∫ +∞

0
xSθ (x)dx ≥−1

2

∫ +∞

0
xS2(x)dx.

From Lemma 6.1.1 we have, ξ Jw(θX) = θ 2ξ Jw(X)≤ ξ Jw(X). Hence the result.
Proof for 0 < θ < 1 can be obtained similarly.

Example 6.1.3. Suppose X has the Rayleigh distribution with cdf given in Table 6.1. Then
for θ ≥ 1 we have, ξ Jw(Xθ ) =−σ2

4θ
≥ ξ Jw(X) =−σ2

4 ≥ ξ Jw(θX) =−θ 2σ2

4 .

6.2 Weighted extended survival extropy and its dynamic
version

In this section, we introduce two new information measures called weighted extended sur-
vival extropy (WESEx) and dynamic weighted extended survival extropy (DWESEx) mea-
sures. Here we consider WESEx in the sense that we take the weight as a non-negative
continuous function of x. The WESEx is a generalized information measure which contains
SEx and WSEx measures as special cases.

Definition 6.2.1. For a non-negative, continuous rv X, the WESEx is defined as

ξ Jε(X) =−1
2

∫ +∞

0
ε(x)S2(x)dx, (6.5)

where ε(·) is a non-negative function of x.

From the WESEx measure, we obtain SEx if ε(x) = 1 and WSEx if ε(x) = x. In practice,
the choice of ε(x) will depend on the data. The weight function should be continuous in its
arguments. If the observations are large then fraction weights such as ε(x) = 1− e−x, will
be a good choice. The different choices of ε(x) for a given data set will have an impact on
the MSE of the estimators of WESEx. It is ideal to choose weights such that the estimators
of WESEx measure have minimum MSE. An empirical study will be required to determine
the proper weights.

Now we define DWESEx measure of a rv X which is the WESEx of the residual lifetime
[X − t|X > t].

Definition 6.2.2. Dynamic version of WESEx for a non-negative continuous rv X is defined
as

ξ Jε(X ; t) =− 1
2S2(t)

∫ +∞

t
ε(x)S2(x)dx. (6.6)
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If we take ε(x) = x then ξ Jε(X ; t) reduces to ξ Jw(X ; t). Now we provide some examples of
DWSEx measure.

Example 6.2.1. (i) Let X be distributed as U(0,a) then ξ Jw(X ; t) =− (a−t)(a+3t)
24 .

(ii) If X has the exponential distribution with mean 1
λ

, then ξ Jw(X ; t) =−
(

t
4λ

+ 1
8λ 2

)
.

Sathar and Nair (2021b) showed that dynamic survival extropy of exponential distribution
is constant, which is not the case for DWSEx. The DWSEx for exponential distribution is a
linear function of time t and is decreasing in t.

(iii) Suppose X has Rayleigh distribution with cdf given in Table 6.1. Then ξ Jw(X ; t) =
−σ2

4 , is a constant.

Fig. 6.1: DWSEx for U(0,1) distribution as a function of t.

We plot the DWSEx for U(0,1) distribution as a function of t in Figure 6.1. From the
figure it is observed that DWSEx decreases and then increases. So DWSEx for U(0,1)
distribution is not monotone. Next we define two new orderings based on WESEx and
DWESEx measures.

Definition 6.2.3. X1 is smaller than X2 in WESEx order, denoted by, X1
WESEx
≤ X2, if

ξ Jε(X1)≥ ξ Jε(X2).

Definition 6.2.4. X1 is smaller than X2 in DWESEx order, denoted by, X1
DWESEx

≤ X2, if for
all t > 0

ξ Jε(X1; t)≥ ξ Jε(X2; t).
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In the following propositions, we provide some basic properties of these measures. Most
of the proof follows from the definition of WESEx and DWESEx measures. Proofs of the
other results are discussed in detail in terms of other weighted information measures that we
proposed earlier. So we omit the proofs of these propositions.

Proposition 6.2.1. WESEx has the following properties:

(i) If ε(x) = f (x) i.e. the pdf of the rv X then ξ Jε(X) =−1
6 .

(ii) If ε(x) = λF(x) i.e. the hr function of the rv X then ξ Jε(X) =−1
4 .

(iii) The inequality 0 ≥ ξ Jε(X)≥−1
2mε

F(0) holds, where mε
F(0) =

∫+∞

0 ε(x)S(x)dx.

(iv) For two rvs X1 and X2,
st

X1 ≤ X2 =⇒ X1
WESEx
≤ X2.

Proposition 6.2.2. The following properties hold for DWESEx measure:

(i) ξ Jε(X ;0) = ξ Jε(X).

(ii) If ε(x) = λF(x) i.e. the hr function of the rv X then

ξ Jε(X ; t) =−1
2

∫ +∞

t

f 2(x)
S2(t)

dx = J(X ; t),

where J(X ; t) is the dynamic extropy of X proposed by Qiu and Jia (2018b).

(iii) The inequality 0 ≥ ξ Jε(X ; t)≥−1
2mε

F(t) holds, where mε
F(t) =

∫+∞

t ε(x)S(x)
S(t)dx is the

weighted extended mrl of X.

(iv) For two rvs X1 and X2,
hr

X1 ≤ X2 =⇒ X1
DWESEx

≤ X2 ∀t > 0.

(v) DWESEx is increasing (decreasing) in t, iff,

ξ Jε(X ; t)≥ (≤)− ε(t)
4λF(t)

, ∀t > 0,

where λF(t) is the hr function of X.

(vi) DWESEx uniquely determines the underlying distribution of the rv.

Proposition 6.2.3. For a non-negative continuous rv X, let ε(cX +d) = cε(X)+d, where
c > 0 and d ≥ 0. Then

(i) ξ Jε(cX +d) = c2ξ Jε(X)+ cdξ J(X),
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(ii) ξ Jε(cX +d; t) = c2ξ Jε(X ; t−d
c )+ cdξ J(X ; t−d

c ).

Following theorem addresses the closure of DWESEx order under scale transformation.

Theorem 6.2.1. Let X1 and X2 be two non-negative continuous rvs with
DWESEx

X1 ≥ (≤) X2 and

ε(cX +d) = cε(X)+d. Let Z1 = c1X1 and Z2 = c2X2, where c1,c2 > 0. Then
DWESEx

Z1 ≥ (≤) Z2,
if ξ Jε(X ; t) is decreasing in t > 0 and c1 ≤ (≥) c2.

Proof. Suppose c1 ≤ c2. Since ξ Jε(X ; t) is decreasing in t, we have ξ Jε(X1; t
c1
)≤ ξ Jε(X1; t

c2
).

Again, ξ Jε(X1; t
c2
) ≤ ξ Jε(X2; t

c2
) as

DWSEx
X1 ≥ X2. Combining these two inequalities and using

part (ii) of Proposition 6.2.3, we get

ξ Jε(Z1; t) = c2
1 ξ Jε

(
X1;

t
c1

)
≤ c2

2 ξ Jε

(
X2;

t
c2

)
= ξ Jε(Z2; t).

Similarly, when c1 ≥ c2 and
DWSEx

X1 ≤ X2, we can prove that
DWSEx

Z1 ≤ Z2.

Corollary 6.2.1.1. If ε(x) = x then the above result can be interpreted in terms of WSEx
measure.

Corollary 6.2.1.2. Let X1 and X2 be two non-negative continuous rvs with
DWESEx

X1 ≥ (≤) X2 and
ε(x) = 1. Let Z1 = c1X1 + d1 and Z2 = c2X2 + d2, where c1,c2 > 0 and d1,d2 ≥ 0. Then

DWESEx
Z1 ≥ (≤) Z2, if ξ Jε(X ; t) is decreasing in t > 0 and c1 ≤ (≥) c2.

6.2.1 Generalized inequalities

Now we consider some generalized inequalities associated with the WESEx measure. Also
we study inequalities related to WESEx for some popular choices of ε(X). First we provide
some important inequalities which will be used to obtain various results.
For a non-negative continuous function f ∈ Lp(0,+∞), Hardy inequality reads∫ +∞

0

(
1
x

∫ x

0
f (v)dv

)p

dx ≤
(

p
p−1

)p ∫ +∞

0
f p(x)dx, p > 1. (6.7)

For details see Hardy (1920). For probabilistic proof of Hardy’s inequality see Walker
(2015). Kaijser et al. (2002) proposed a generalized Hardy-Knopp type inequality for posi-
tive functions f as

∫ +∞

0

(
1
x

∫ x

0
f (t)dt

)
dx
x

≤
∫ +∞

0
Ψ( f (x))

dx
x
, (6.8)
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where Ψ is a convex function in (0,+∞). Čižmešija et al. (2003) generalized inequality
(6.8) which is given in the following theorem.

Theorem 6.2.2. (Čižmešija et al., 2003) Suppose 0 < b < +∞, u : (0,b) → R is a non-
negative function such that the function x :→ u(x)

x2 is locally integrable in (0,b) and the
function v is defined by

v(u) = t
∫ b

t

u(x)
x2 dx, t ∈ (0,b).

If the real valued function Ψ is convex on (a,c), where −∞ < a < c <+∞, then the inequal-
ity ∫ b

0
Ψ

(
1
x

∫ x

0
f (t)dt

)
dx
x

≤
∫ b

0
v(x)Ψ( f (x))

dx
x

(6.9)

holds for all integrable functions f : (0,b)→ R, such that f (x) ∈ (a,c) ∀x ∈ (0,b).

Now we propose generalized inequalities in terms of WESEx measure for different choices
of the weight function.

Theorem 6.2.3. Let X be a non-negative continuous rv with sf S. If ε(x) = 1
x then

ξ Jε(X)≤−1
2

∫ +∞

0

(
1
x

∫ x

0
S(t)dt

)
dx
x
.

Proof. If ε(x) = 1
x then ξ Jε(X) = −1

2
∫+∞

0 S2(x)dx
x . From inequality (6.9) we can write∫+∞

0 S2(x)dx
x ≥

∫+∞

0
(1

x
∫ x

0 S(t)dt
) dx

x . Hence the result.

Theorem 6.2.4. Let X be a non-negative continuous rv with sf S. If ε(x) = Sm(x) then

ξ Jε(X)≤−1
2

(
m+1
m+2

)m+2 ∫ +∞

0

(
1
x

∫ x

0
S(t)dt

)2+m

dx.

Proof. If ε(x) = Sm(x) then ξ Jε(X) =−1
2
∫+∞

0 S2+m(x)dx. Now applying Hardy’s inequal-
ity and after some calculation, the result follows.

Corollary 6.2.4.1. If m = 0 then we have ξ J(X)≤−1
8
∫+∞

0
(1

x
∫ x

0 S(t)dt
)

dx. This inequality
for survival extropy measure is obtained by Goodarzi and Amini (2021).

Theorem 6.2.5. For a non-negative continuous rv X with sf S, if ε(x)=mF(x) then ξ Jε(X)≤
−1

2
∫+∞

0 S(x)(
∫ x

0 S(t)dt)dx, where mF(t) =
∫+∞

t
S(x)
S(t)dx is the MRL of X.

Proof. If ε(X) = mF(x) then, we have

ξ Jε(X) =−1
2

∫ +∞

0
xmF(x)S(x)S(x)

dx
x
. (6.10)
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Consider the function u(x) = x2S(x) then from Theorem 6.2.2 we get v(x) = x mF(x)S(x).
Now applying Theorem 6.2.2 in Eq. (6.10) we obtain the required result.

Theorem 6.2.6. For a non-negative continuous rv X, the following inequalities holds:

(i) ξ Jε(X)≤−1
2 exp(H(X)+E[logε(X)]−2),

(ii) ξ Jε(X)≥ J(X)exp(2H(X)+E(logε(X))−2),

(iii) ξ Jε(X)≤−1
2 exp

(
logE(X)− CRE(X)

E(X) + 1
E(X)

∫+∞

0 S(x) logε(x)dx
)

.

Proof. (i) From log-sum inequality we have,∫ +∞

0
f (x) log

f (x)
ε(x)S2(x)

dx ≥
∫ +∞

0
f (x)dx log

∫+∞

0 f (x)dx∫+∞

0 ε(x)S2(x)dx
= log

1
−2ξ Jε(X)

.

(6.11)

After some simplifications,
∫+∞

0 f (x) log f (x)
ε(x)S2(x)dx becomes −H(X)−E[logε(X)]+2. Hence

the result.
(ii) Using log-sum inequality we get∫ +∞

0
f (x) log

f 2(x)
ε(x)S2(x)

dx ≥ log
J(X)

ξ Jε(X)
. (6.12)

After some algebraic simplifications, the term
∫+∞

0 f (x) log f 2(x)
ε(x)S2(x)dx reduces to

−2H(X)−E[logε(X)]+2 and the result follows from Eq. (6.12).

(iii) Proof follows by applying log-sum inequality in
∫+∞

0 S(x) log S(x)
ε(x)S2(x)dx and pro-

ceeding similarly as (i).

6.3 Weighted negative cumulative extropy

In this section, we propose weighted negative cumulative extropy (WNCEx) measure and
obtain some properties. First we define weighted negative survival extropy (WNSEx) mea-
sure.

Definition 6.3.1. For a non-negative absolutely continuous rv X with sf S, the weighted
negative survival extropy (WNSEx) is defined as

J w(X) =
1
2

∫ +∞

0
xS2(x)dx. (6.13)
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Note that WNSEx is nothing but the negative of WSEx measure and naturally it possesses
similar properties like WSEx. Now we define WNCEx measure.

Definition 6.3.2. Let X be a non-negative absolutely continuous rv with cdf F. Then,
weighted negative cumulative extropy (WNCEx) of X is defined as

C w(X) =
1
2

∫ +∞

0
x
[
1−F2(x)

]
dx. (6.14)

Table 6.2: WNCEx for some distributions.

Distributions F(x) C w(X)

Uniform x
a ; 0 < x < a a2

8

Exponential 1− e−λx; x > 0, λ > 0 7
8λ 2

Rayleigh 1− e−λx2
; x ≥ 0, λ > 0 3

8λ

Power (βx)α ; 0 < x < 1
β
, α, β > 0 α

4(α+1)β 2

Pareto I 1−
(k

x

)a
; 0 < x < k, k > 0 k2(2−3a)

4(a−1)(a−2) , a > 2

Weibull 1− e−(λx)α

; x > 0, α, λ > 0
Γ ( 2

α )
(

2
α+2

α −1
)

2
α+2

2 αβ2

Pareto II 1− (1+ px)−q ; x ≥ 0, p > 0,q > 0 1
p2(q−1)(q−2) −

1
4p2(q−1)(2q−1) , q > 2

The WNCEx for some popular distributions are provided in Table 6.2. We plot the WNCEx
of uniform and Rayleigh distributions provided in Table 6.2 and present them in Figure
6.2a. The parameters of the distributions vary from 0.10 to 4. From the figure it is observed
that WNCEx of uniform distribution increases as the parameter a increases and WNCEx for
Rayleigh distribution decreases as λ increases. Also we plot WNCEx for power distribu-
tions for β = 0.2, 0.3, 0.4 and 0.5 and, α varies from 0.10 to 4. The plots are provided in
Figure 6.2b and it is found that WNCEx for power distribution is increasing in α for fixed
β and decreasing in β for fixed α .
Now we study some important properties of WNCEx measure. Consider the following
lemma that shows the effect of linear transformation of X on WNCEx.

Lemma 6.3.1. Consider the linear transformation Y = cX +d, c > 0,d ≥ 0. Then

C w(Y ) = c2C w(X)+ cdC (X)+
d2

4
.
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Fig. 6.2: WNCEx for some distributions given in Table 6.2.

(a) WNCEx for uniform and Rayleigh distri-
butions for 0.10≤ a,λ ≤ 4.

(b) WNCEx for power distributions for
0.10≤ α ≤ 4.

Proof. We have

FaX+b(x) =

0, if x < d,

FX
(x−d

c

)
, if x ≥ d.

Using this in Eq. (6.14), we get

C w(X) =
1
2

[
b2

2
+
∫ +∞

b
x
[

1−F2
X

(
x−d

c

)]
dx
]

=
1
2

∫ +∞

0
c(cx+d)

[
1−F2

X (x)
]

dx+
d2

4

= c2C w(X)+ cdC (X)+
d2

4
.

Hence the proof.

Remark 6.3.1. For NCEx measure, the effect of linear transformation is expressed through
the following relation:

C (X) = cC (X)+
d
2
.

Next we study WNCEx for convolution of two independent rvs. The following theorem
states that WNCEx for convoluted rv is greater than that of either.

Theorem 6.3.1. Let X and Y be two non-negative, independent and continuous random
variables having cdfs F and G, respectively. Then

C w(X +Y )≥ max [C w(X),C w(Y )] .

Proof. Proof is similar to Theorem 2.6 of Tahmasebi and Toomaj (2022), hence omitted.

Corollary 6.3.1.1. Let X1,X2, · · · ,Xn be independent, non-negative and continuous rvs with
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WNCEx C w(Xk), k = 1(1)n, respectively. Then

C w

(
n

∑
k=1

Xk

)
≥ max{C w(X1), · · · ,C w(Xn)}.

The following proposition provides an alternative representation of WNCEx which will be
useful to prove some important results.

Proposition 6.3.1. For a non-negative continuous rv X with cdf F and sf S,

C w(X) =
1
2

[
1
2

E(X2)+
∫ +∞

0
xF(x)S(x)dx

]
. (6.15)

Proposition 6.3.2. For a non-negative continuous rv X, sum of WNCEx and WNCREx is
equal to 1

2E(X2).

Proof. Using Eqs. (6.13) and (6.15), it follows that

C w(X)+J w(X) =
1
2

[
1
2

E(X2)+
∫ +∞

0
x [1−S(x)]S(x)dx+

∫ +∞

0
xS2(x)dx

]
=

1
2

[
1
2

E(X2)+
1
2

E(X2)

]
=

1
2

E(X2).

An important property of WNCEx is that it can be expressed in terms of both WMRL and
WMPL of the rv. Consider the following definitions.

Theorem 6.3.2. Suppose for a non-negative continuous rv X, WMRL and WNCEx are mw(x)
and C w(X), respectively. Then the following identity hold.

C w(X) =
1
2

[
1
2

E(X2)+E[mw(X)S(X)]

]
.

Proof. From Eq. (6.15) and changing order of integration, one can obtain

C w(X) =
1
2

[
1
2

E(X2)+
∫ +∞

0

(∫ x

0
f (v)dv

)
xS(x)dx

]
=

1
2

[
1
2

E(X2)+
∫ +∞

0
f (v)

∫ +∞

v
xS(x)dx dv

]
=

1
2

[
1
2

E(X2)+E[mw(X)S(X)]

]
.

Hence the proof.
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Example 6.3.1. If X has the exponential distribution with cdf F(x) = 1−e−λx; x> 0,λ > 0.
Then, we have E[mw(X)S(X)] = 3

4λ 2 and 1
2E(X2) = 1

λ 2 . Therefore,

C w(X) =
1
2

[
1
2

E(X2)+E[mw(X)S(X)]

]
=

7
8λ 2 .

Theorem 6.3.3. Suppose for a non-negative continuous rv X, WMPL and WNCEx are µw(x)
and C w(X), respectively. Then the following identity holds.

C w(X) =
1
2

[
1
2

E(X2)+E[µw(X)F(X)]

]
.

Proof. Proceeding along the same lines as in the proof of Theorem 6.3.2, we have from Eq.
(6.15)

C w(X) =
1
2

[
1
2

E(X2)+
∫ +∞

0

(∫ +∞

x
f (v)dv

)
xF(x)dx

]
=

1
2

[
1
2

E(X2)+
∫ +∞

0
f (v)

∫ v

0
xF(x)dx dv

]
=

1
2

[
1
2

E(X2)+E(µw(X)F(X))

]
.

Hence the proof.

Example 6.3.2. Suppose X follows power distribution with cdf F(x)= xα ; 0< x< 1, α > 0.
Then, we have E(X2) = α

2(α+2) , E[µw(X)F(X)] = α

2(α+1)(α+2) and

C w(X) =
1
2

[
1
2

E(X2)+E(µw(X)F(X))

]
=

α

4(α +1)
.

Proposition 6.3.3. Let Xθ and X satisfy the PRHM with proportionality parameter θ then,
for θ ≥ (≤)1,

C w(Xθ )≥ (≤)C w(X).

Proof. Proof follows using F2θ (x)≥ (≤)F2(x) for θ ≤ (≥)1.

Proposition 6.3.4. Let X1 and X2 be two non-negative rvs with cdfs F and G, respectively.

If X1
st
≤ X2 then,

C w(X1)≤ C w(X2).

Proof. Proof follows using the definition of stochastic order and WNCEx.

Example 6.3.3. Suppose X1 and X2 follows the exponential distribution with cdf F(x) =
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1− e−2x; x > 0, and G(x) = 1− e−x; x > 0, respectively. Then we have C w(X1) =
7
32 and

C w(X2) =
7
8 . Hence X1

st
≤ X2 =⇒ C w(X1)≤ C w(X2).

In the next theorem we provide an upper bound of WNCEx in terms of Shannon entropy.

Theorem 6.3.4. Let X be a non-negative continuous rv having pdf f and cdf F, respectively.
Then,

C w(X)≥ 2e−2 exp[H(X)+E(log(X))].

Proof. Using the log-sum inequality, we have∫ +∞

0
f (x) log

f (x)
x[1−F2(x)]

dx ≥
∫ +∞

0
f (x)dx log

∫+∞

0 f (x)dx∫+∞

0 x[1−F2(x)]dx

= log
1

2C w(X)
. (6.16)

After some calculation,
∫+∞

0 f (x) log f (x)
x(1−F2(x))dx reduces to

−H(X)−E[logX ]+2−2log2.

Therefore, from Eq. (6.16) we get

−H(X)−E[logX ]+2−2log2 ≥ log
1

2C w(X)
.

The result follows after some simplification.

6.4 Non-parametric Estimation

In this section, we study non-parametric estimations of the proposed measures. First, we
consider estimations of WESEx and WNCEx measures based on the edf function for iid data
sets. We study asymptotic properties of these estimators and also evaluate their performance
by simulation. Finally, we propose a recursive kernel based non-parametric estimator of
WSEx measure when the underlying observations are not independent. Various real data
sets are also analyzed.

6.4.1 Estimation of WESEx and related measures for iid observations

Here we propose non-parametric estimators for WESEx and dynamic WESEx measures.
As special cases, we obtain non-parametric estimators for SEx and WSEx measures as well.
Some examples are provided for illustrative purposes. Let X1,X2, · · · ,Xn be a rs drawn from
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a continuous distribution with cdf F and let X1:n,X2:n, · · · ,Xn:n be the corresponding order
statistics. Suppose Fn(x) be the edf of F . Then a non-parametric estimator for WESEx can
be defined as

ξ Jε(Fn) = −1
2

∫ +∞

0
ε(x)S2

n(x)dx

= −1
2

n−1

∑
i=1

∫ X(i+1):n

Xi:n

ε(x)
(

1− i
n

)2

dx

= −1
2

n−1

∑
i=1

[η(X(i+1):n)−η(Xi:n)]

(
1− i

n

)2

, (6.17)

where η(x) =
∫ x

0 ε(u)du.

Example 6.4.1. Let X1,X2, · · · ,Xn be a rs drawn from a continuous distribution with cdf F
and pdf f . Suppose the weight function is ε(x) = f (x) then we have,

ξ Jε(Fn) =−1
2

n−1

∑
i=1

[F(X(i+1):n)−F(Xi:n)]

(
1− i

n

)2

.

Let Zi = F(X(i+1):n)−F(Xi:n), i = 1,2, · · · ,n−1. Then Zi’s are independent and have Beta
(1,n) distribution. So the mean and variance of ξ Jε(Fn) are given by,

E[ξ Jε(Fn)] =−1
2

n−1

∑
i=1

1
n+1

(
1− i

n

)2

and

V [ξ Jε(Fn)] =
1
4

n−1

∑
i=1

n
(n+1)2(n+2)

(
1− i

n

)4

.

Table 6.3: Mean and variance of ξ Jε(Fn) with density as weight function.

n E[ξ Jε(Fn)] V [ξ Jε(Fn)] n E[ξ Jε(Fn)] V [ξ Jε(Fn)]

10 -0.1295 0.0026 40 -0.1565 0.0011
20 -0.1470 0.0018 50 -0.1585 0.0009
30 -0.1533 0.0013 100 -0.1625 0.0004

We calculate the means and variances of the estimator for the WESEx measure with
density as weight function for n =10, 20, 30, 40, 50 and 100 and show them in Table 6.3.
Note that, mean and variance depends only on the sample size. The true value of WESEx
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in this case is -0.1667. The mean approaches to the true value as sample size increases and
variances approaches to zero.

Now if we take ε(x) = 1 in ξ Jε(Fn) then we get the non-parametric estimator for the
SEx proposed by Jahanshahi et al. (2020), which is given by,

ξ J(Fn) =−1
2

n−1

∑
i=1

(X(i+1):n −Xi:n)

(
1− i

n

)2

. (6.18)

If we take ε(x) = x then we will get the non-parametric estimator for the WSEx as

ξ Jw(Fn) = −1
4

n−1

∑
i=1

(X2
(i+1):n −X2

i:n)

(
1− i

n

)2

= −1
4

n−1

∑
i=1

Ui

(
1− i

n

)2

, (6.19)

where Ui = (X2
(i+1):n −X2

i:n), i = 1, · · · ,n−1.

Example 6.4.2. Suppose X1,X2, · · · ,Xn follows Rayleigh distribution with pdf f (x) =
2λxe−λx2

, x > 0, λ > 0, then Ui = (X2
(i+1):n −X2

i:n) are independent and exponentially dis-
tributed with mean 1

(n−i)λ , for i = 1, · · · ,n−1. Therefore, the mean and variance of ξ Jw(Fn)

for Rayleigh distribution are given by,

E[ξ Jw(Fn)] = −1
4

n−1

∑
i=1

E(Ui)

(
1− i

n

)2

= − 1
8λ

(
1− 1

n

)
and

V [ξ Jw(Fn)] =
1

16

n−1

∑
i=1

V (Ui)

(
1− i

n

)4

=
1

96λ 2n

(
1− 1

n

)(
2− 1

n

)
.

The true value of WSEx is − 1
8λ

and limn→+∞ E[ξ Jw(Fn)] =− 1
8λ

.

We provide the numerical values for mean and variance of WSEx for Rayleigh distribution
with λ=1 for n =10, 20, 30 40, 50 and 100 in Table 6.4. The mean closes to the true value
and the variance decreases as sample size increases.

The following theorem address the convergence of ξ Jε(Fn) measure.
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Table 6.4: Mean and variance of ξ Jw(Fn) for Rayleigh distribution.

n E[ξ Jw(Fn)] V [ξ Jw(Fn)] n E[ξ Jw(Fn)] V [ξ Jw(Fn)]

10 -0.1125 0.0018 40 -0.1218 0.0005
20 -0.1187 0.0010 50 -0.1225 0.0004
30 -0.1208 0.0007 100 -0.1237 0.0002

Theorem 6.4.1. Let X ∈ Lp for some p > 2 then ξ Jε(Fn)→ ξ Jε(X) a.s.

Proof. We have to prove that
∫+∞

0 ε(x)S2
n(x)dx →

∫+∞

0 ε(x)S2(x)dx a.s.
We have, ∫ +∞

0
ε(x)S2

n(x)dx =
∫ 1

0
ε(x)S2

n(x)dx+
∫ +∞

1
ε(x)S2

n(x)dx.

The first integral converges to
∫ 1

0 ε(x)S2(x)dx as n → +∞ by Glivenco-Cantelli and domi-
nated convergence theorem. Now from Rao et al. (2004) we have for x ∈ [1,+∞],

Sn(x)≤ x−p

(
sup

n

1
n

n

∑
i=1

X p
i

)
.

Therefore, by dominated convergence theorem we have∫ +∞

1
ε(x)S2

n(x)dx →
∫ +∞

1
ε(x)S2(x)dx.

Hence the result.

Next we establish asymptotic normality of ξ Jw(Fn) measure when the observations
come from a Rayleigh distribution.

Theorem 6.4.2. Let X1,X2, · · · ,Xn be a rs from a Rayleigh distribution with pdf f (x) =
2λxe−λx2

, x > 0, λ > 0, then

ξ Jw(Fn)−E[ξ Jw(Fn)]

[Var(ξ Jw(Fn))]1/2
d−→ N(0,1).

Proof. Note that ξ Jw(Fn) can be expressed as ξ Jw(Fn)=∑
n−1
i=1 Zi, where Zi =−1

4Ui
(
1− i

n

)2
.

Now U1, · · · ,Un are independent exponential rvs with mean 1
λ (n−i) . So the mean and vari-

ance of Zi can be obtained as

E(Zi) =− 1
4λn

(
1− i

n

)
and Var(Zi) =

1
16λ 2n2

(
1− i

n

)2

.
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For any exponentially distributed rv Zi, E[|Zi−E(Zi)|3] = 2e−1(6−e)[E(Zi)]
3 (Di Crescenzo

and Longobardi, 2009). Denote An
i,p = E[|Zi −E(Zi)|p], then for large n we have,

n

∑
i=1

An
i,2 =

n

∑
i=1

E[|Zi −E(Zi)|2] =
1

16λ 2n2

n

∑
i=1

(
1− i

n

)2

≈ C1

16λ 2n
,

where C1 =
∫ 1

0 (1− x)2dx = 1
3 .

Again
n

∑
i=1

An
i,3 =

n

∑
i=1

E[|Zi −E(Zi)|3] =
2(6− e)
64eλ 3n3

n

∑
i=1

(
1− i

n

)3

≈ (6− e)C2

32eλ 3n2 ,

where C2 =
∫ 1

0 (1− x)3dx = 1
4 . Now for some constant C,

(∑n
i=1 An

i,3)
1/3

(∑n
i=1 An

i,2)
1/2 ≈Cn−

1
6 → 0, as n →+∞.

So Lyapunov’s condition for CLT is satisfied. Hence the proof.

Similar result also holds for SEx measure when a rs comes from exponential distribution.

Theorem 6.4.3. Let X1,X2, · · · ,Xn be a rs from the exponential distribution with mean 1
λ

,
then

ξ J(Fn)−E(ξ J(Fn))

(Var(ξ J(Fn)))1/2
d−→ N(0,1).

Next we study non-parametric estimation of dynamic DWESEx measure. The estimator
for DWESEx measure is defined as

ξ Jε(Fn; t) =−1
2

∫ +∞

t
ε(x)

(
Sn(x)
Sn(t)

)2

dx. (6.20)

Suppose the sample values that are greater than t are X j:n, · · · ,Xn:n then Eq. (6.20) reduces
to

ξ Jε(Fn; t) =−1
2

n−1

∑
i= j

[η(X(i+1):n)−η(Xi:n)]

(
n− i

n− j+1

)2

. (6.21)

In the following theorem we show that ξ Jε(Fn; t) converges to ξ Jε(X ; t) a.s.

Theorem 6.4.4. Let X ∈ Lp for some p > 2 then ξ Jε(Fn; t)→ ξ Jε(X ; t) a.s.
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Proof.

−ξ Jε(Fn; t) =
1
2

∫ +∞

t
ε(x)

(
Sn(x)
Sn(t)

)2

dx

=
1

2S2
n(t)

[∫ +∞

0
ε(x)S2

n(x)dx−
∫ t

0
ε(x)S2

n(x)dx
]
. (6.22)

From Theorem 6.4.1 we have, 1
2
∫+∞

0 ε(x)S2
n(x)dx → 1

2
∫+∞

0 ε(x)S2(x)dx a.s. Again, using
dominated convergence theorem we have, 1

2
∫ t

0 ε(x)S2
n(x)dx → 1

2
∫ t

0 ε(x)S2(x)dx a.s. Also
Sn(t)→ S(t) a.s. Then using these in Eq. (6.22) the result follows.

Fig. 6.3: Non-parametric estimates of DWSEx for the Rayleigh distribution with parameter
1 and for the U(0,1) distribution for different values of t.

(a) Empirical DWSEx for Rayleigh distribu-
tion.

(b) Empirical DWSEx for U(0,1) distribu-
tion.

We simulate a rs of size 500 from the Rayleigh distribution with parameter 1 and from
U(0,1) distribution and calculate the non-parametric estimate of DWSEx for different val-
ues of t and plot them in Figure 6.3. We know that for Rayleigh distribution DWSEx is
constant, which is -0.25. From Figure 6.1 it is observed that for U(0,1) distribution DWSEx
is not monotone, first it decreases then increases. The empirical DWSEx behaves similarly.
From Figure 6.3 we see that for Rayleigh distribution most of the points lie around the line
x = -0.25 and for U(0,1) the non-parametric estimate of DWSEx behaves similar to that in
Figure 6.1.

Data Analysis

We analyze the average daily wind speeds data of Best et al. (2010) for illustration. The mle
of Rayleigh distribution for this data set is σ2 = 10.1095. The parametric estimate of WSEx
for Rayleigh distribution is -2.527 and the estimate of WSEx is -1.879. The parametric and
non-parametric estimates of SEx for Rayleigh distribution are -1.409 and -0.616. So we
see that WSEx is less than SEx which means that WSEx measures more information than
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SEx. We also obtain the non-parametric estimates of the dynamic versions of WSEx and
SEx measure based on this data and plot them in Figure 6.4.

Fig. 6.4: Plots of non-parametric estimates of DWSEx and DSEx for the Rayleigh distribu-
tion for average wind speed data.

6.4.2 Non-parametric estimation of WNCEx measure

In this section we propose an estimator for WNCEx measure analogous to that of WE-
SEx measure and study its performance by simulation. The non-parametric estimator for
WNCEx is defined as

C w(F̂n) =
1
2

∫
∞

0
x[1− F̂2

n (x)]dx

=
1
2

n−1

∑
k=1

∫ X(k+1):n

Xk:n

x

[
1−
(

k
n

)2
]

dx

=
1
2

n−1

∑
k=1

X2
(k+1):n −X2

k:n

2

[
1−
(

k
n

)2
]

=
1
2

n−1

∑
k=1

Zk+1

[
1−
(

k
n

)2
]
, (6.23)

where Zk+1 =
X2
(k+1):n−X2

k:n
2 , k = 1,2, · · · ,n−1.

Example 6.4.3. Let X1,X2, · · · ,Xn be a rs from a distribution with pdf f (x) = 2x, 0 < x < 1.

Then X2 has standard uniform distribution. Further Zk+1 =
X2
(k+1):n−X2

k:n
2 , k = 1,2, · · · ,n−

1, follows beta distribution with mean 1
2(n+1) and variance n

4(n+1)2(n+2) . The mean and



6.4 Non-parametric Estimation 124

variance of C w(F̂n) is given by

E
(
C w(F̂n)

)
=

1
2

n−1

∑
k=1

E[Zk+1]

[
1−
(

k
n

)2
]

=
1

4(n+1)

n−1

∑
k=1

[
1−
(

k
n

)2
]

and

Var
(
C w(F̂n)

)
=

1
4

n−1

∑
k=1

Var[Zk+1]

[
1−
(

k
n

)2
]2

=
n

16(n+1)2(n+2)

n−1

∑
k=1

[
1−
(

k
n

)2
]2

.

Lemma 6.4.1. The estimator C w(F̂n) is consistent.

Proof. We can write,

C w(X) =
1
2

∫ 1

0
x
(
1−F2

n (x)
)

dx+
1
2

∫ +∞

1
x
(
1−F2

n (x)
)

dx.

Now proceeding along the same line as in Theorem 6.4.1 we have C w(F̂n) → C w(X) as
n →+∞. Hence the proof.

Analogous to the WSEx measure, we can obtain a CLT for C w(F̂n) when rs comes from
Rayleigh distribution.

Theorem 6.4.5. Let X1,X2, · · · ,Xn be a rs from a Rayleigh distribution with pdf f (x) =
2λxe−λx2

; x > 0, λ > 0. Then,

C w(F̂n)−E
[
C w(F̂n)

]√
Var

[
C w(F̂n)

] d−→ N(0,1).

Proof. Proof follows proceeding along the same line as Theorem 6.4.2.

We have found that the estimators for weighted entropy measures are asymptotically
normally distributed when the sample comes from Rayleigh distribution. These results will
be useful for testing goodness-of-fit for Rayleigh distribution. Due to the nature of these
weighted measures, tests based on these measures will be less likely to be influenced by
extreme observations.
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We conduct a simulation study to assess the performance of the proposed estimator by
means of bias and MSE. We generate 10000 samples from an exponential distribution with
λ = 1, 2 and 3 and for n = 10, 20, 30, 40, 50 and 100 and calculate the bias and MSE. The
results reported in Table 6.5. From Table 6.5, it is observed that as sample size increases
bias and MSE decreases. Also bias and MSE decreases as λ increases.

Table 6.5: Bias and MSE of C w(F̂n) for exponential distribution with λ = 1 and 2 and for
various n.

λ=1 λ=2 λ=3
n Bias MSE Bias MSE Bias MSE
10 0.04240 0.38169 0.01035 0.02404 0.00445 0.00492
15 0.02026 0.27832 0.00601 0.01724 0.00332 0.00320
20 0.01394 0.20504 0.00496 0.01281 0.00267 0.00240
25 0.01283 0.16138 0.00370 0.01001 0.00165 0.00202
30 0.01193 0.13787 0.00349 0.00856 0.00120 0.00170

We analyse a real data set for illustrative purposes. The data represents failure times of
23 deep-groove ball bearings. Rayleigh distribution with cdf F(x,λ ) = 1−e−λx2

; x, λ > 0,
provides a good fit for this data set, see Raqab (2002). The observations are: 0.1788, 0.2892,
0.33, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184, 0.5196, 0.5412, 0.5556, 0.6780, 0.6864,
0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 1.7340.
The mle of λ is λ̂ = 1.5242. The parametric estimate of WNCEx is 0.2460 and C w(F̂n) =
0.2380.

6.4.3 Recursive kernel estimation of WSEx for dependent observations

We considered Kernel based estimation of CREx measure in Chapter 6 for iid observation.
Here we study estimation of WSEx measure when the underlying sample need not be inde-
pendent. We consider recursive kernel function for this purpose. The kernel (Parzen, 1962)
estimation of f (x) is given by

fn(x) =
1

nhn

n

∑
i=1

K
(

x−Xi

hn

)
,

where hn is the bandwidth parameter. The kernel function K satisfies the following proper-
ties:
1. K(v)≥ 0 for all v.
2.
∫+∞

−∞
K(v)dv = 1.

3. K(·) is symmetric about zero.
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4. K(·) satisfies the Lipschitz condition, i.e. there exists a positive constant M such that
| K(v)−K(w) |≤ M | v−w |.

Recursive kernel estimation of f (x) was introduced by Wolverton and Wagner (1969) as

f̂n(x) =
1
n

n

∑
i=1

1
hi

K
(

x−Xi

hi

)
,

where K is a kernel of order s and {hi} is a sequence of real numbers satisfying
1. limn→+∞ hn = 0;
2. limn→+∞ nhn =+∞;

3. limn→+∞
1
n ∑

n
i=1

(
hi
hn

)l
= βl <+∞, l = 1,2, · · · ,s+1;

4. limn→+∞
1
n ∑

n
i=1

(
hn
hi

)l
= θl <+∞, 1 ≤ l < 2.

The function f̂n(x) has the following recursive property

f̂n(x) =
n−1

n
f̂n−1(x)+

1
nhn

K
(

x−Xn

hn

)
.

Using this recursive kernel function, we define a non-parametric estimator for WSEx mea-
sure under α-mixing dependent condition. The α-mixing condition, also known as the
strong mixing condition, was introduced by Rosenblatt (1956). Consider the following def-
inition.

Definition 6.4.1. Let (Ω ,A ,P) be a probability space and for −∞ < L <U <+∞, A U
L is

the σ -field of events generated by the rvs {Xi, L < i <U}. Let Q, R be two σ -fields belong
to A . Then the stationary process {Xi} is said to follow α-mixing condition if for Q ∈ A i

−∞

and R ∈ A ∞
i+n,

sup|P(Q∩R)−P(Q)P(R)|= a(n)→ 0 as n →+∞.

This mixing condition has many applications and various stochastic and time series pro-
cesses follow the α-mixing condition, see, for example, Bradley (2007) and Doukhan (2012).
For weakly stationary process under α-mixing setup, the bias and variance of the recursive
kernel estimator are given by

Bias( f̂n(x))≈
hs

nCs

s!
f (s)(x)βs
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and
Var( f̂n(x))≈

θ1Ck

nhn
f (x),

where Cs =
∫+∞

−∞
wsK(w)dw, Ck =

∫+∞

−∞
K2(w)dw and f (s)(x) is the s-th derivative of f with

respect to x. See Masry (1986) for further details. Now we define the recursive kernel based
estimator of WSEx measure.

Definition 6.4.2. Let X1,X2, · · · ,Xn be identically distributed rvs not necessarily indepen-
dent. A non-parametric estimator of WSEx is defined as

ξ Jw(Ŝn) =−1
2

∫ +∞

0
xŜ2

n(x)dx, (6.24)

where Ŝn(x) =
∫+∞

x f̂n(w)dw.

Maya et al. (2021) provided the bias and variance of Ŝn(x) as

Bias(Ŝn(x))≈
hs

nCsβs

s!

∫ +∞

x
f (s)(w)dw (6.25)

and

Var(Ŝn(x))≈
θ1CkS(x)

nhn
. (6.26)

Now we study the consistency and asymptotic normality of the proposed estimator.

Theorem 6.4.6. The recursive kernel based estimator ξ Jw(Ŝn) is consistent.

Proof. Applying Taylor’s expansion we get,

Ŝ2
n(x)≈ S2(x)+2S(x)(Ŝn(x)−S(x)).

Now from Eq. (6.24), we obtain the bias and variance of ξ Jw(Ŝn) as,

Bias(ξ Jw(Ŝn)) ≈ −1
2

∫ +∞

0
2x S(x)Bias(Ŝn(x))dx

= −hs
nCsβs

s!

∫ +∞

0
xS(x)

(∫ +∞

x
f (s)(w)dw

)
dx (6.27)

and

Var(ξ Jw(Ŝn)) ≈ 1
4

∫ +∞

0
4x2S2(x)Var(ξ Jw(Ŝn))dx

=
θ1Ck

nhn

∫ +∞

0
x2S3(x)dx. (6.28)
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It is easy to see that, as n →+∞, bias and variance of ξ Jw(Ŝn) reduce to zero. So the MSE
of ξ Jw(Ŝn) also approaches to zero as n →+∞. Hence ξ Jw(Ŝn) is consistent.

Theorem 6.4.7. Let ξ Jw(Ŝn) be a recursive kernel estimator of ξ Jw(X). Then as n →+∞,

(nhn)
1
2

(
ξ Jw(Ŝn)−ξ Jw(x)

σ̂

)
d−→ N(0,1).

Proof. Proof follows using the asymptotic normality of f̂n(x).

Simulation study and data analysis

We conduct a simulation study to assess the performance of the proposed kernel based esti-
mator. We consider standard exponential distribution and generate {Xi} from AR(1) process
i.e. Xi = ρXi−1 + εi, with correlation coefficient (ρ) 0.10, 0.20 and 0.30, respectively. We
calculated Bias and MSE for sample size 50, 100 and 200 and provided them in Table 6.6.
From Table 6.6, we see that as sample size increases MSE decreases and when correlation
coefficient of AR(1) model increases, MSE also increases.

Table 6.6: Bias and MSEs of ξ Jw(Ŝn).

ρ n = 50 n = 100 n = 200
Bias MSE Bias MSE Bias MSE

0.10 -0.04320 0.00431 -0.03916 0.00266 -0.03780 0.00200
0.20 -0.08692 0.01146 -0.08631 0.00932 -0.08620 0.00839
0.30 -0.1590 0.03202 -0.15770 0.02817 -0.15582 0.02601

For illustration, we analyze real data relating to relief times of 20 patients receiving an
analgesic. This data set was reported by Gross and Clark (1975):
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0.
This data can be fitted by a 3-parameter Weibull distribution with shape, scale and location
parameters 0.9924, 0.8755 and 1.0568, respectively. The true value of ξ Jw(Ŝn) is -0.3270.
Bias and MSE have been calculated from 100 Bootstrap samples of size 20 as 0.1869 and
0.0542, respectively.

6.5 Applications

In this section, we consider three applications in different fields namely, model discrimina-
tion, quantitative risk analysis and uniformity test. This section has been divided into three
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subsections. First two subsections consist of the application of WSEx in model discrimina-
tion and as risk measure. In the final subsection we study WNCEx based goodness-of-fit
tests for uniform distribution.

6.5.1 Discriminating between distributions

In reliability analysis one important problem is to choose the correct lifetime model for
a given data set. One popular method is to use ratio of maximized likelihood (RML) to
discriminate the distributions (Gupta and Kundu, 2003). According to Burnham and An-
derson (2004), for a given data set the best fitted model is the one that contains maximum
uncertainty. Now both SEx and WSEx are uncertainty measures and lower values of them
indicate higher uncertainty. Using SEx and WSEx measures, we can discriminate between
two distributions for a given data set. Consider the groove ball bearings data studied by
Gupta and Kundu (2003) provided below:
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.40.
They showed that both Weibull (WE) and generalized exponential (GE) distribution fit
the data set reasonably well. Weibull distribution has the cdf FWE(y,β ,θ) = 1− e−(θy)β

,
y,β ,θ > 0 and GE distribution has the cdf FGE(y,α,λ ) = (1− e−(λy))α , y,α,λ > 0. Now
the mles of the parameters of WE distribution are β̂ = 2.1031 and θ̂ = 0.0122 and the log-
likelihood (LL) value is -113.69. The mles for the parameters of GE distribution are α̂ =
5.2589 and λ̂ = 0.0314 and LL is -112.98. GE distribution is a better fit since it has higher
LL value.

Now let us consider the SEx and WSEx measures for both fitted distributions. We calcu-
late SEx and WSEx and provide them in Table 6.7 along with LL values, Akaike information
criterion (AIC) and Bayesian information criterion (BIC).

Table 6.7: Discrimination measures for fitted WE and GE distributions.

Discrimination measures WE(β̂ , θ̂ ) GE(α̂, λ̂ ) Difference (WE-GE)

SEx -26.1068 -26.7731 0.6663
WSEx -851.7 -856.2 4.5

LL -113.69 -112.98 -0.71
AIC 231.38 229.96 1.42
BIC 233.65 232.23 1.42

From the table it is observed that, both SEx and WSEx for GE distribution are less than
the ones of WE distribution. So according to SEx and WSEx measures, GE distribution is
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a better fit. AIC and BIC also support this claim. Here also we see that WSEx measures
more information than SEx as it measures both quantitative and qualitative characteristics of
information. However, the difference between RML and SEx measures for the distributions
is negligible. But WSEx clearly suggests that GE distribution fits the data better than WE
distribution. So in situations like this, we can use WSEx for model selection.

6.5.2 Risk measure

Use of cumulative entropy measures as an alternative risk measure has gained quite popu-
larity in recent years. Yang (2012) first studied CRE as an alternative to standard deviation
(s.d.) for heavy tailed distributions and Psarrakos and Toomaj (2017) studied generalized
CRE as a risk measure. For more works on cumulative entropy as a risk measure see Tah-
masebi and Parsa (2019), Tahmasebi and Toomaj (2022). Weighted cumulative entropy
measures have also been used as an alternative risk measure in recent years. Recently,
Kayal (2018) considered weighted CRE as a risk measure. We consider WSEx as a risk
measure and apply it for analysing stock return data.

Let X be a rv describing payoff. Positive values of X indicates gain and negative values
of X indicates loss. Let Ω be the set of all values of X . A risk measure µ is a mapping
µ : Ω → R that satisfies some of the following properties (Ramsay, 1995):

• Sub-additivity. For X ,Y ∈ Ω , µ(X +Y )≤ µ(X)+µ(Y ).

• Consistency. For X ∈ Ω and a ∈ R, µ(X +a) = µ(X).

• Positive Homogeneity. X ∈ Ω and c > 0, µ(cX) = cµ(X).

• Monotonicity. For X ,Y ∈ Ω and X ≤ Y , µ(X)≥ µ(Y ).

• Convexity. For X ,Y ∈ Ω and λ ∈ [0,1], µ(λX +(1−λ )Y )≤ λ µ(X)+(1−λ )µ(Y ).

Jahanshahi et al. (2020) used | ξ J(X) | as a risk measure which possesses consistency
and positive homogeneity properties of risk measure. Under the assumption of usual stochas-
tic order, | ξ J(X) | also possesses monotonicity property. We consider | ξ Jw(X) | as an al-
ternative risk measure and compare it with the s.d., variance and | ξ J(X) |. Now | ξ Jw(X) |
being a shift-dependent measure, it does not satisfy the consistency property of the risk mea-
sure. In order to satisfy positive homogeneity properties, we consider δ (X) =

√
| ξ Jw(X) |

as a risk measure. Now from Lemma 6.1.1, we see that δ (X) satisfies the positive homo-
geneity property. From Proposition 6.2.1 (iv), we find that δ (X) possesses monotonicity
property under usual stochastic ordering.
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Jahanshahi et al. (2020) showed that the sub-additivity property for | ξ J(X) | can hold
under some specific assumptions. They proved that for two non-negative independent rvs
X and Y with same right-end support ux = uy < +∞ and if X and Y have log-concave den-
sities, then ξ J(X +Y ) ≥ ξ J(X)+ ξ J(Y ). This follows from the fact that, under the above

assumptions, X
st
≥ X +Y and Y

st
≥ X +Y . From Proposition 6.2.1 (iv) we get ξ Jw(X +Y )≥

ξ Jw(X)(ξ Jw(Y )). Since ξ Jw(X) is always negative, we have, ξ Jw(X +Y ) ≥ ξ Jw(X) +

ξ Jw(Y ). Therefore,

| ξ Jw(X +Y ) | ≤ | ξ Jw(X) |+ | ξ Jw(Y ) |
⇒ δ (X +Y ) ≤

√
| ξ Jw(X) |+ | ξ Jw(Y ) | ≤ δ (X)+δ (Y ).

So δ (X) also satisfies sub-additivity property as | ξ J(X) |. Consider the following example.

Example 6.5.1. Suppose X has a distribution with sf S(x) = (1− x)3, 0 < x < 1. Then
s.d.(X) = 0.1936, | ξ J(X) | = 0.0714 and δ (X) = 0.0945. So | ξ J(X) |< δ (X)<s.d.(X).

Table 6.8: Variance, s.d., | ξ J(X) | and δ (X) of normalized log-rate of returns of each
months in 2015 from BSE SENSEX.

Month s.d.(X) Var(X) | ξ J(X) | δ (X)
January 0.2147 0.0461 0.2376 0.2581
February 0.2458 0.0604 0.1922 0.2170
March 0.2388 0.0570 0.1840 0.2098
April 0.2939 0.0864 0.2298 0.2611
May 0.2632 0.0693 0.2304 0.2608
June 0.2559 0.0655 0.2338 0.2622
July 0.2696 0.0727 0.2359 0.2667
August 0.2089 0.0436 0.3077 0.3270
September 0.3022 0.0914 0.2024 0.2424
October 0.2640 0.0697 0.0801 0.1165
November 0.2703 0.0731 0.1668 0.2015
December 0.3420 0.1170 0.1358 0.1904

Now we analyze a real life data set. The data on daily BSE SENSEX are collected from
Yahoo Finance website for the period from 1st January to 31st December 2015. Let Zt be
the closing price of day t. The log-rate of return is defined as Rt = log Zt

Zt−1
. Consider the

normalizing transformation of Rt as Xt =
Rt−min(Rt)

max(Rt)−min(Rt)
. Here X denotes the normalized

log-rate of returns. We obtain the variance, s.d., | ξ J(X) | and δ (X) for each month in the
year 2015. The results are provided in Table 6.8.

From Table 6.8 it is observed that δ (X) is greater than | ξ J(X) | for all the months.
When | ξ J(X) | increases δ (X) also increases. High values of the risk measures imply high
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volatility in the market. Note that δ (X) measures more variability than | ξ J(X) |. In terms
of δ (X) and | ξ J(X) |, the month of August has the highest volatility while in terms of
s.d.(X), the month of December contains highest volatility in the market. We can use δ (X)

and | ξ J(X) | as alternative risk measures for heavy tailed distributions for which s.d. is not
a suitable risk measure.

6.5.3 Test of uniformity

Uniform distribution is the simplest model among all probability distributions. Perhaps the
most important application of uniform distribution is random number generation. The cdf of
any distribution is uniformly distributed in the interval [0,1]. This property has been widely
used to simulate rs from various distributions. So the problem of testing uniformity is of
high importance among statisticians and it has been studied quite extensively in the litera-
ture. Stephens (1974) studied uniformity test using edf based statistics and Dudewicz and
Van Der Meulen (1981) proposed entropy based uniformity test. They found that entropy
based tests perform better than several other popular tests. Recently, Noughabi (2021, 2022)
applied CRE and NCEx to test uniformity and compare the power of the test with several
alternatives. Motivated by their work, we proposed a uniformity test using the estimator
of the WNCEx measure and compared the performance of our test with the test based on
NCEx and other popular tests.

Suppose X1,X2, · · · ,Xn is a rs from a continuous distribution with cdf F and pdf f con-
centrated on [0,1], i.e. f (x) = 0 if x /∈[0,1]. Also let X1:n,X2:n, · · · ,Xn:n be the corresponding
order statistics. We want to test whether the sample comes from a uniform distribution,
denoted by U(0,1). So the hypothesis is

H0 : f (x)∼U(0,1) vs. H1 : f (x) ̸∼U(0,1).

Consider the non-parametric estimator of WNCEx in Eq. (6.23)

C w(F̂n) =
1
2

n−1

∑
k=1

X2
(k+1):n −X2

k:n

2

[
1−
(

k
n

)2
]
.

Consider the following lemma which will be useful in developing the test.

Lemma 6.5.1. Let X1,X2, · · · ,Xn be a rs drawn from a continuous distribution concentrated
on [0,1]. Then, 0 ≤ C w(F̂n)≤ 1

4 .
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Table 6.9: Critical values of C w(F̂n).

n T0.025,n T0.975,n T0.05,n T0.95,n n T0.025,n T0.975,n T0.05,n T0.95,n

4 0.02118 0.17785 0.02983 0.16697 27 0.08748 0.15628 0.09227 0.15139
5 0.03088 0.17607 0.04062 0.16653 28 0.08769 0.15616 0.09298 0.15089
6 0.04021 0.17467 0.04814 0.16539 29 0.08825 0.15589 0.09414 0.15073
7 0.04551 0.17417 0.05547 0.16499 30 0.08971 0.15507 0.09493 0.15043
8 0.05085 0.17308 0.06201 0.16449 32 0.09105 0.15500 0.09551 0.14980
9 0.05620 0.17103 0.06594 0.16304 34 0.09164 0.15432 0.09654 0.14933

10 0.05914 0.16945 0.06821 0.16271 36 0.09220 0.15363 0.09776 0.14857
11 0.06217 0.16910 0.07295 0.16164 38 0.09340 0.15221 0.09804 0.14832
12 0.06681 0.16632 0.07454 0.16108 40 0.09397 0.15177 0.09899 0.14743
13 0.06865 0.16623 0.07667 0.16016 45 0.09541 0.15055 0.10108 0.14633
14 0.06899 0.16549 0.07867 0.15891 50 0.09791 0.14934 0.10171 0.14526
15 0.07284 0.16535 0.08059 0.15864 55 0.09917 0.14820 0.10297 0.14492
16 0.07514 0.16476 0.08252 0.15706 60 0.09974 0.14783 0.10405 0.14374
17 0.07695 0.16424 0.08346 0.15636 65 0.10074 0.14659 0.10509 0.14349
18 0.07844 0.16195 0.08441 0.15566 70 0.10221 0.14589 0.10610 0.14267
19 0.07435 0.16182 0.08638 0.15548 75 0.10389 0.14544 0.10621 0.14229
20 0.08007 0.16052 0.08744 0.15491 80 0.10397 0.14455 0.10697 0.14131
21 0.08147 0.16025 0.08851 0.15433 85 0.10424 0.14420 0.10760 0.14090
22 0.08215 0.15952 0.08995 0.15412 90 0.10452 0.14369 0.10783 0.14043
23 0.08425 0.15912 0.09099 0.15308 95 0.10545 0.14345 0.10860 0.14040
24 0.08455 0.15821 0.09091 0.15297 100 0.10546 0.14283 0.10885 0.13960
25 0.08562 0.15766 0.09179 0.15250 110 0.10688 0.14171 0.10965 0.13908
26 0.08667 0.15720 0.09181 0.15159 120 0.10798 0.14126 0.11063 0.13869

Proof. The function g(v) = 1−v2

2 , 0 ≤ v ≤ 1 has maximum value 1
2 . So we have,

C w(F̂n)≤
1
4

n−1

∑
k=1

(
X2
(k+1):n −X2

k:n

)
≤

X2
n:n −X2

1:n
4

≤ 1
4
.

Hence the proof.

For U(0,1) distribution, C w = 0.125 which lies exactly between (0, 0.25). So we can use
C w(F̂n) as a test statistic. We will reject the null hypothesis if C w(F̂n) is large or small. The
critical region for a sample of sixe n and significance level α is

C w(F̂n)≤ Tα

2 ,n
or C w(F̂n)≥ T1−α

2 ,n
,

where Tα,n( T1−α,n) is the lower (upper) α% quantile point of the distribution of C w(F̂n).

Lemma 6.5.2. The test based on C w(F̂n) is consistent.

Proof. From Lemma 6.4.1 we know C w(F̂n) → C w(X) a.s. Therefore, under H0, C w(F̂n)
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converges to the true value 0.125. Hence the result.

The exact distribution of C w(F̂n) is intractable so we obtain the critical points by Monte-
Carlo simulation. We generate 10000 samples from U(0,1) distribution and compute critical
points at 5% and 10% level of significance for different sample sizes and present them in
Table 6.9. To obtain the power of the proposed test, we consider the following alternatives
given in Stephens (1974). These alternative distributions are specifically developed for test-
ing uniformity. Stephens argues that, alternatives A and B provide points close to 0 and 1,
respectively and alternative C gives two points close to 0 and 1.

A j : F(z) = 1− (1− z) j, 0 ≤ z ≤ 1 ( j = 1.5, 2)

B j : F(z) =


2 j−1z j, 0 ≤ z ≤ 0.5

( j = 1.5, 2, 3)

1−2 j−1(1− z) j, 0.5 ≤ z ≤ 1

C j : F(z) =


0.5−2 j−1(0.5− z) j, 0 ≤ z ≤ 0.5

( j = 1.5, 2)

0.5+2 j−1(0.5− z) j, 0.5 ≤ z ≤ 1

The performance of our test is compared with some omnibus tests such as Kolmogorov-
Smirnov (KS), Cramer-von Mises (CvM), Kuiper and Anderson-Darling (AD). These tests
are widely popular among practitioners across various fields. Also we compare the per-
formance of our test with some tests that are specially developed for testing uniformity.
D’Agostino and Stephens (1986) discussed various directed tests for testing uniformity. For
power comparison we use two tests based on order statistics and sample entropy. The first
test statistic is T = 1

n ∑
n
i=1 v2

i where vi = U(i) − i
n+1 and U(1),U(2), · · · ,U(n) are the order

statistics of the U(0,1) distribution. We reject the null hypothesis for large values of T . The
second statistics is based on the estimation of entropy introduced by Vasicek (1976). This
test statistic was used for uniformity test by Dudewicz and Van Der Meulen (1981). The
test statistic is defined as

Hmn =
1
n

n

∑
k=1

log[
n

2m
(X(k+m)−X(k−m))],

where m is a positive integer less than n
2 . Under H0, Hmn converges to zero and it is less than

zero otherwise. So the null hypothesis is rejected for small values for Hmn. Note that this test
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is based on higher order sample spacings. The test is called the ENT test and Dudewicz and
Van Der Meulen (1981) found that the ENT test performed significantly better than many
popular tests. We use another uniformity test for power comparison which was introduced
recently by Noughabi (2021). The test is based on the non-parametric estimator of NCEx
measure which is defined as

C J (F̂n) =
1
2

n−1

∑
k=1

(
T(k+1)−T(k)

)[
1−
(

k
n

)2
]
.

This test is based on sample spacings. The null hypothesis is rejected if C J (F̂n) is large
or small.

Table 6.10: Power of the test for various sample sizes.

n Alternatives C J w(F̂n) C J (F̂n) T ENT KS CvM Kuiper AD

10 A1.5 0.2375 0.0658 0.2162 0.1420 0.1489 0.1660 0.0962 0.1608
A2 0.4924 0.1328 0.4728 0.2893 0.3762 0.4378 0.2303 0.4091

B1.5 0.1423 0.1188 0.1268 0.1884 0.0421 0.0330 0.1272 0.0200
B2 0.2421 0.3188 0.2253 0.4363 0.0398 0.0226 0.2962 0.0081
B3 0.3722 0.7505 0.4504 0.7958 0.0908 0.0486 0.7061 0.0182

C1.5 0.0458 0.1244 0.0218 0.0302 0.1137 0.0978 0.1329 0.1354
C2 0.0780 0.2524 0.0126 0.0330 0.2003 0.1491 0.2875 0.2180

20 A1.5 0.4356 0.0823 0.3573 0.2411 0.2841 0.3184 0.1712 0.3065
A2 0.8183 0.2208 0.7502 0.6207 0.7038 0.7726 0.4668 0.7480

B1.5 0.1584 0.2683 0.1525 0.3039 0.0555 0.0502 0.2256 0.0258
B2 0.2850 0.7025 0.3579 0.7115 0.1176 0.0972 0.5804 0.1003
B3 0.4623 0.9887 0.7552 0.9905 0.4201 0.5089 0.9828 0.5639

C1.5 0.0586 0.2037 0.0383 0.0589 0.1455 0.1224 0.2355 0.1633
C2 0.1158 0.4265 0.0958 0.1461 0.3092 0.2538 0.6006 0.3846

30 A1.5 0.5924 0.0908 0.4784 0.3268 0.3988 0.4713 0.2356 0.4667
A2 0.9389 0.2929 0.8835 0.8201 0.8617 0.9192 0.6660 0.9173

B1.5 0.1907 0.4048 0.1846 0.4047 0.0788 0.0585 0.3226 0.0600
B2 0.3482 0.8873 0.4947 0.8849 0.2413 0.2568 0.8044 0.3011
B3 0.5560 1 0.9128 0.9991 0.7320 0.8915 0.9969 0.9259

C1.5 0.0814 0.2756 0.0547 0.1112 0.1836 0.1397 0.3184 0.2022
C2 0.1730 0.5914 0.2125 0.3577 0.4403 0.4016 0.8129 0.5296

We calculate power for n = 10, 20 and 30 and present the results in Table 6.10. The
proposed tests perform better than other tests for A j alternatives. Tests best on WNCEx
performs better when alternative distributions have points close to 0 or 1. This phenomenon
is quite natural because weighted information measures put importance to the observed
values of the rvs. So in dealing with inferential problems involving extreme observations
of tail probabilities, weighted information measures can be useful instead of non-weighted
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information measures.

Remark 6.5.1. Consider the problem of goodness-of-fit tests for U(a,b) distribution. The
U(a,b) has the pdf f (t) = 1

b−a ; a < t < b. If the parameters (a,b) are known then the
transformation V = U−a

b−a gives a random sample from U(0,1) distribution. So we can easily
apply these tests by transforming to standard uniform samples. The power of the tests will
not be effected for testing U(a,b) distribution when (a,b) are known.

If the parameters are not known then we will estimate them from the data using the
maximum likelihood estimators. Suppose U1,U2, · · · ,Un are a random sample of size n from
the U(a,b) distribution. The maximum likelihood estimators for a and b are the smallest
and the largest order statistics U(1) and U(n), respectively. Now the transformation Vi =
U(i+1)−U(1)
U(n)−U(1)

, i = 1,2, · · · ,n−2 yields a random sample of size n−2 from U(0,1) distribution.
So this transformation converts the problem of testing U(a,b) from a sample of size n, to a
problem of testing U(0,1) from a sample of size n−2. So we can apply the proposed test for
testing uniformity with unknown parameters as well. Here the sample size reduces from n to
n−2. Therefore, the power of the test may be slightly low for small sample sizes. However,
for large or moderately large samples, the power will be more or less the same.

6.6 Conclusion

In this chapter, we considered weighted survival extropy measure and further generalized
this measure by taking a non-negative continuous function as weight function instead of X .
This measure is called weighted extended survival extropy measure. Also we proposed its
dynamic version and studied various properties of these generalized information measures
by considering different weight functions. Also, we introduced weighted negative cumula-
tive extropy measure and studied various properties. Non-parametric estimations of these
proposed measures are studied in detail. First we considered estimation of these measures
when the underlying observations are iid. Also we proposed a recursive kernel based es-
timation for weighted survival extropy measure when sample obeys α-mixing dependent
condition. The performance of these estimators are assessed by simulation and real data
sets are also analyzed for illustrations.

We proposed two potential applications of weighted survival extropy measure in model
discrimination and quantitative risk analysis. As an application of weighted negative cu-
mulative extropy measure, we developed a uniformity test. The power of the proposed
test is compared with some omnibus tests and with some specific tests of uniformity. The
proposed test performed better than the other tests when alternative distribution has obser-
vations closer to the smallest extreme point.



Chapter 7

Application of cumulative entropy
measures in life testing

APPLICATIONS of information measures in life-testing mainly focused on developing
goodness-of-fit tests for various lifetime models under complete as well as censored data.
These topics have been addressed in the literature by many authors. Park (2005) first devel-
oped an entropy based exponentiality test under Type-II censoring and Balakrishnan et al.
(2007) extended this to the progressive Type-II censoring case. Goodness-of-fit tests un-
der censored data are also developed using divergence measures (CRKL and CKL) that are
based on cumulative entropy measures. Using CRKL information measure, Park and Lim
(2015) proposed an exponentiality test for Type-II censored data and, Baratpour and Rad
(2016) studied exponentiality tests for progressive Type-II censored data using both CRKL
and CKL measures. In Chapter 4, we have proposed new KL type information measures
WCRKL and WCKL based on WCRE and WCE measures and obtained an exponentiality
test for complete, Type-I and Type-II censored data.

In life-testing, censored life tests are considered due to time and cost constraints. An im-
portant problem in life-testing is to design the censoring experiment. Some questions that
frequently arise in life-testing are "How long an experimenter should run the experiment?"
and "How many units are required for the life-tests and how many units to be censored?". An
increase in the number of units and test time will result in increasing the total information
of the experiment. Increasing information implies that the precision of estimating param-
eters associated with the life-test will rise. But this will also increase the cost of running
the experiment which is not ideal in any practical scenario. Optimal design of life-testing
experiments are usually obtained by minimizing variance or equivalently maximizing infor-
mation of the life-test and by minimizing the total cost of the experiment. In this Chapter,
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we introduce design criteria based on cumulative entropy measures for progressive type-II
censored experiments.

In many instances, it is required to remove the surviving units from a life-test before
the end of the test due to constraints in testing facilities and getting quick information on
lifetimes. Type I, Type II and hybrid censoring schemes are the common censoring schemes
used in life-tests. However, these censoring schemes do not allow the removal of surviving
units during the test. Progressive censoring allows removal of surviving units before the end
of the test (Cohen, 1963, 1965). Progressive Type I and Progressive Type II (PCII) censoring
schemes are the common progressive censoring schemes. This flexibility of removing items
during the experiment makes progressive censoring very effective but it also increases the
number of possible censoring schemes. So the problem of choosing optimal progressive
censoring schemes has gained a lot of attention in the literature. A PCII censoring scheme is
described as follows. Suppose n units are put on a test and a pre-fixed number m of failures
is allowed. Let R1,R2, · · · ,Rm be prefixed integers such that R1 +R2 + · · ·+Rm = n−m.
When first failure occurs, R1 of the remaining n−1 surviving units are randomly removed
from the test. Then R2 of the remaining n−R1 −2 units are randomly removed at the time
of second failure. Finally, at the time of the m-th failure, all the remaining Rm = n−m−
∑

m−1
i=1 Ri units are removed from the test. The failure times are denoted by X1:m:n, · · · ,Xm:m:n.

Note that these are known as progressively type-II censored order statistics (PCOS). For
details on PCII censoring scheme and data, see Balakrishnan and Aggarwala (2000) and
Balakrishnan and Cramer (2014). Complete sample observations are obtained when m = n
and Ri = 0,∀i. If Ri = 0 for i = 1, · · · ,m − 1 and Rm = n − m, it reduces to the Type-
II censoring scheme. A schematic representation of PCII censoring scheme in presented
in Figure 7.1. In a PCII censored experiment, a reliability engineer needs to choose the

Fig. 7.1: Schematic representation of progressive Type-II censoring scheme.

design parameters of the experiment (n,m,R1, · · · ,Rm) beforehand. An important problem
in life-testing is designing the experiment. For example, in PCII censored experiments,
the choice of the design parameters will affect the reliability of the products and thus, it is
important to choose the design parameters appropriately. Optimal PCII censoring schemes
usually obtained by optimizing some design criteria set by the experimenter. Usually, design
criteria are developed based on the information and cost of the experiment. One wants
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to maximize the overall information contained in the experiment or equivalently reduce
the variability. The most commonly used criteria for this purpose are A and D-optimality
criteria which minimize the trace and the determinant of the variance-covariance matrix
of the estimated model parameters, respectively. For example, see Ng et al. (2004) and
Dahmen et al. (2012). Recently, Pradhan and Kundu (2009, 2013) obtained optimal PCII
censoring schemes by minimizing a new variability measure

∫ 1
0 Var(log T̂p)d p, where T̂p is

the MLE of the p-th quantile of the underlying distribution. This measure is independent of
p. Another approach of determining optimal design is to choose the design that minimizes
the total cost of the experiment. Bhattacharya et al. (2014) first developed optimal PCII
censored design by minimizing the total cost of the experiment.

However, these criteria have some disadvantages. The A and D-optimality criteria are
not scale invariant. The quantile based criterion of Pradhan and Kundu (2009, 2013) is an
important design criterion as it is not influenced by the extreme observations and also it is
scale invariant. One drawback of this criterion is that it is based on the asymptotic result. It
is important to note that for fixed values of n and m, there exists

(n−1
m−1

)
number of different

censoring schemes. Therefore the number of progressive censoring schemes becomes very
large even for moderate n and m. So from a practical point of view, it is not ideal to use large
or moderately large samples for PCII censored experiments. If sample size is not large then
using asymptotic results based criteria may not be accurate. To overcome this problem, we
propose cumulative entropy based design criteria that are independent of asymptotic results.

In this chapter, we consider optimal design of PCII censored experiment using criteria
based on cumulative entropy measures i.e. CRE and CE measures. As we have mentioned
earlier, CRE (CE) is an alternative information measure and the large value of CRE (CE)
of an experiment means more information contained in that experiment. We obtain optimal
design by maximizing the joint CRE (CE) of PCII censored experiment and obtain a con-
straint design of the experiment by maximizing the joint CRE subject to a cost constraint. A
new design strategy is implemented following the procedure of Bhattacharya (2020), called
compound optimal design (COD), in which we optimize two competitive criteria simulta-
neously in order to achieve a trade off between them. The rest of the chapter is organised as
follows.

We discuss information measures for consecutive order statistics and PCOS in Section
7.1. We propose design criteria and study maximum cumulative information designs of PCII
censored experiments in Section 7.2. Maximum cumulative information design subject to a
cost constraint is discussed in Section 7.3. The COD is implemented in Section 7.4. Some
concluding remarks are made in Section 7.5.
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7.1 Cumulative entropy measures of consecutive order statis-
tics and PCOS

In this section, we discuss entropy, CRE and CE measures for consecutive order statistics
and PCOS. We will use these results to construct design criteria for optimum design of PCII
censored experiments. Park (2005) obtained the expression of joint entropy of first r order
statistics as

H1···r:n =−(logn+ · · ·+ log(n− r+1))+ r−n
∫ +∞

0
(1−Fr:n−1(x)) f (x) logh(x)dx,

where h(x) = f (x)
S(x) is the hazard rate of X . Extending this result to the PCII censoring case,

Balakrishnan et al. (2007) provided the expression of joint entropy of PCOS as

H1···m:m:n =− logc+m−
∫ +∞

0

m

∑
i=1

fXi:m:n logh(x)dx,

where c = n(n−R1 −1) · · ·
(
n−∑

m−1
i=1 Ri −m+1

)
. However, as it is mentioned earlier that

entropy for continuous rvs can be negative and this also true for entropy of PCOS. So the
CRE and CE measures become useful in this context. Recently, Park and Kim (2014) studied
CRE of first r order statistics and provided a single integral representation as

CRE1···r:n =−n
∫ +∞

0
Sr:n−1(x)S(x) logS(x)dx,

where Sr:n−1 is the sf of the rth order statistic of a sample of size n−1. Abo-Eleneen et al.
(2018) obtained joint CRE of PCOS as

CRE1···m:m:n =−
∫ +∞

0

1
h(x)

logS(x)
m

∑
i=1

fXi:m:n(x)dx, (7.1)

where fXi:m:n is the pdf of Xi:m:n. However, CE for order statistics has not been studied in the
literature. In the next theorem, we provide expression of CE measure for consecutive last
(n− s+1) order statistics.

Theorem 7.1.1. The joint cumulative entropy CEs···m:n for the last (n−s+1) order statistics
is given by

CEs···n:n =−n
∫ +∞

0
F(x)Fs−1:n−1(x) logF(x)dx.
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Proof. CE for the largest order statistic is given by

CEn:n =−
∫ +∞

0
Fn:n(x) logFn:n(x)dx.

After some algebraic simplification, it can be expressed as

CEn:n =−
∫ +∞

0

1
r(x)

fn:n(x) logF(x)dx, (7.2)

where r(x) = f (x)
F(x) is the rhr of X . Using the decomposition property, we have

CEs···n:n =CEn:n +CEn−1:n|n:n + · · ·+CEs:n|s+1:n, (7.3)

where CEi:n|i+1:n is the conditional CE of the i-th order statistic given (i+1)-th order statis-
tic. Following the result given in Arnold et al. (2008) (p. 23), the i-th order statistic given
(i+1)-th order statistic can be treated as the largest order statistic of a sample of size i from

a distribution having cdf
[

F(x)
F(xi+1)

]i
, x < xi+1. Therefore, from Eq. (7.2), we have

CEi:n|i+1:n =−
∫ +∞

0

1
r(x)

fi:n(x) logF(x)dx. (7.4)

Using (7.4) in (7.3), we get

CEs···n:n = −
∫ =∞

0

1
r(x)

n

∑
i=s

fi:n(x) logF(x)dx

= −
∫ +∞

0

n

∑
i=s

n!
(i−1)!(n− i)!

F i(x)Sn−i(x) logF(x)dx

= −n
∫ +∞

0
F(x)

n

∑
i=s

(
n−1
i−1

)
F i−1(x)Sn−i(x) logF(x)dx

= −n
∫ +∞

0
F(x)Fs−1:n−1(x) logF(x)dx.

In general, reverse Markovian property does not hold for PCOS as the lifetimes of the re-
moved items Ri, i = 1(1)m might as well be greater than xi+1. So like CRE1···m:m:n, CE for
PCOS can not be represented in a single integral formation. However, for the special cases
when the lifetimes of Ri, i = 1(1)m is less than xi+1, then we can express CE for PCOS in a
simplified expression which can be used for optimization problems.
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Theorem 7.1.2. The cumulative entropy for progressive type-II censored order statistics
can be expressed as

CE1···m:m:n =−
∫ +∞

0

1
r(x)

logF(x)
m

∑
i=1

fXi:m:n(x)dx, (7.5)

provided the lifetimes of the removed items Ri, i = 1(1)m is less than xi+1.

Proof. Using decomposition property, we have

CE1···m:m:n =CEm:m:n +CEm−1:m:n|m:m:n +CEm−2:m:n|m−1:m:n + · · ·+CE1:m:n|2:m:n,

(7.6)

where CEi:m:n|i+1:m:n is the conditional CE of the i-th PCII censored order statistic given
(i+ 1)-th PCII censored order statistic Xi+1:m:n = xi+1. Let Fi:m:n|i+1:m:n be the conditional
cdf of Xi:m:n|Xi+1:m:n = xi+1. Then Fi:m:n|i+1:m:n has the same distribution as the largest order

statistic of a sample of size ∑
i
j=1 R j+ i = n−∑

m
j=i+1 R j−m+1 with cdf

[
F(x)

F(xi+1)

]
, x < xi+1.

Therefore, proceeding in the same way as Theorem 7.1.1, we readily have

Fi:m:n|i+1:m:n(x|xi+1) =

[
F(x)

F(xi+1)

](∑
i
j=1 R j+i)

, x < xi+1.

Proceeding with the similar arguments as in Theorem 7.1.1, From Eq. (7.2) we get

CEi:m:n|i+1:m:n =−
∫ +∞

0

1
r(x)

fXi:m:n(x) logF(x)dx. (7.7)

The theorem follows upon replacing (7.7) in (7.6).

The expressions of CE1···m:m:n(X) and CE1···m:m:n(X) can be further simplified by using
the expression of fXi:m:n(x) provided by Balakrishnan and Aggarwala (2000). Note that,
fXi:m:n = ci−1 ∑

i
j=1 a j,i (1−F(x))γ j−1 f (x), −∞ < x < +∞, 1 ≤ i ≤ m, where γi = m− i+

1+∑
m
j=i R j, ci−1 = ∏

i
j=1 γ j and a j,i = ∏

i
k=1,k ̸= j

1
γk−γ j

, 1 ≤ j ≤ i ≤ m. Therefore, by taking
F(x) = v, one can express CRE1···m:m:n as

CRE1···m:m:n =
m

∑
i=1

ci−1

i

∑
j=1

a j,i

∫ 1

0
vγ j(logv)

(
d
dv

(
F−1(1− v)

))
dv. (7.8)

Similarly, CE1···m:m:n can be expressed as

CE1···m:m:n =−
m

∑
i=1

ci−1

i

∑
j=1

a j,i

∫ 1

0
v(1− v)γ j−1 logv

(
d
dv

(
F−1(v)

))
dv. (7.9)
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Example 7.1.1. Let X follows Weibull distribution with cdf given by

F(x) = 1− e−(λx)α

, x > 0 ,α,λ > 0,

where α and λ are the shape and scale parameters, respectively. Then, CRE and CE for
PCOS can be computed as

CRE1···m:m:n =− 1
αλ

m

∑
i=1

ci−1

i

∑
j=1

a j,i

∫ 1

0
vγ j−1(logv)(− logv)

1
α
−1dv

and

CE1···m:m:n =− 1
αλ

m

∑
i=1

ci−1

i

∑
j=1

a j,i

∫ 1

0
v(1− v)γ j−2 logv [− log(1− v)]

1
α
−1 dv.

In the next section, we obtain optimal design for PCII censored experiment by maximiz-
ing design criterion based on CRE1···m:m:n and CE1···m:m:n measures for the Weibull lifetime
distribution.

7.2 Determination of optimal censoring schemes using cu-
mulative entropy measures

In this section, we study optimal designs of PCII censored experiments by maximizing
CRE and CE measures of PCOS. This is also equivalent to minimizing the variability of
the experiment. We consider the Weibull distribution for illustrations. The CRE1···m:m:n and
CE1···m:m:n measures represent overall information of a PCII censored experiment but they
are not scale-invariant. So we propose two scale-invariant design criteria as follows

φA(R) =
CRE1···m:m:n

E[X1:m:n]
(7.10)

and
φB(R) =

CE1···m:m:n

E[X1:m:n]
. (7.11)

Note that E[X1:m:n] is the expected value of the first failure of a PCII censoring experiment.
Also E[X1:m:n] = E[X1:n], where X1:n is the first order statistic of a sample of size n. For
Weibull distribution

E[X1:m:n] =
Γ
(
1+ 1

α

)
λn

1
α

.
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Lemma 7.2.1. The criteria φA(R) and φB(R) defined in Eq. (7.10) and (7.11) are scale-
invariant.

Proof. Suppose that Y = cX , with c being a non-zero constant. Then it is easy to verify
that E[Y1:m:n] = cE[X1:m:n]. Now, using the relation FcX(x) = FX

(x
c

)
, x ∈ R, and after some

algebraic calculations, we have

CRE1···m:m:n(Y ) = c CRE1···m:m:n(X).

Therefore, φA(R) is scale-invariant. Similarly, we can show that φB(R) is scale-invariant.
Hence the result.

Table 7.1: Optimal designs for Weibull distribution by maximizing φA(R).

n m (α,λ ) = (2,1) (α,λ ) = (3,1)
Optimal Scheme (R∗) φA(R

∗) Optimal Scheme (R∗) φA(R
∗)

10 5 (1,1,1,1,1) 5.5902 (1,1,1,1,1) 2.85
15 5 (10,0,0,0,0) 8.6564 (10,0,0,0,0) 3.7613
15 10 (1*5,0*5) 17.69 (1*5,0*5) 7.6925
20 5 (15,0,0,0,0) 9.8098 (15,0,0,0,0) 4.0729
20 10 (1*10) 15.8114 (1*10) 7.1814
20 15 (1*5,0*10) 32.1189 (1*5,0*10) 13.1371
25 5 (20,0,0,0,0) 10.8334 (20,0,0,0,0) 4.3390
25 10 (15,0*9) 23.75 (15,0*9) 9.3460
25 15 (1*10,0*5) 32.3230 (1*10,0*5) 13.1427
25 20 (1*5,0*15) 48.7319 (1*5,0*15) 19.1104

In planning the experiment, it is very difficult to search the optimal scheme out of all
possible censoring schemes even for a moderate size of n and m. Addressing this problem,
Bhattacharya et al. (2016) proposed a variable neighbourhood search (VNS) algorithm that
provides optimal or near optimal schemes within a reasonable computation time. VNS is an
excellent tool to perform discrete optimization problems under progressive censoring setup.
Now, for fixed n and m, we obtain optimal schemes by maximizing φA(R) and φB(R) using
the VNS algorithm. The optimal schemes for different (α,λ ) and for various combinations
of (n,m) are reported in Tables 7.1 and 7.2, respectively. The notation a ∗ b refers to a
is repeated b times. For instance, corresponding to (n,m) = (15,10), the term (1 ∗ 5,0 ∗
5) refers to (1,1,1,1,1,0,0,0,0,0). From the tables it is observed that as sample size n
increases φA(R) and φB(R) also increases. This is because as n increases the duration of
PCII experiment also increases and, consequently, information increases resulting in smaller
variance.
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Table 7.2: Optimal designs for Weibull distribution by maximizing φB(R).

n m (α,λ ) = (0.5,1) (α,λ ) = (2,1)
Optimal Scheme (R∗) φB(R∗) Optimal Scheme (R∗) φB(R∗)

10 5 (1,1,1,1,1) 177.533 (0,0,0,0,5) 7.164
15 5 (10,0,0,0,0) 819.676 (4,0,0,0,6) 8.647
15 10 (1*5,0*5) 1634.716 (0*9,5) 17.562
20 5 (15,0,0,0,0) 1430.132 (10,0,0,0,5) 9.8624
20 10 (1*10) 1420.264 (0*9,10) 20.335
20 15 (1*5,0*10) 4755.537 (0*14,5) 30.239
25 5 (20,0,0,0,0) 2209.845 (15,0,0,0,5) 10.919
25 10 (15,0*9) 4965.943 (5,0*0,10) 22.598
25 15 (1*10,0*5) 6049.293 (0*14,10) 34.178
25 20 (1*5,0*15) 10200.93 (0*19,5) 44.829

7.3 Constraint optimal design

In industrial setup, a reliability engineer has to design certain experiments within a given
budget. It is not always feasible to design PCII censored life-testing experiments by con-
sidering maximum information principle only. Since the maximum information design will
also have the highest cost associated with it. A reasonable practical approach is to design
PCII censored experiments subject to a pre-fixed cost constraint, see Bhattacharya et al.
(2016). Motivated from their work, we have proposed a constraint optimal design. First, we
give a brief discussion of the total cost associated with a PCII experiment defined as

C0 +C f m+CtE[Xm:m:n],

where Ct is the cost per unit duration, C f is the cost per unit failure and C0 is fixed cost
independent of design parameters. The quantity E[Xm:m:n] is interpreted as the expected
duration of the experiment and, for the Weibull distribution, it is given by

E[Xm:m:n] =
1
λ

Γ

(
1+

1
α

)
cm−1

m

∑
j=1

a j,m

γ
1+ 1

α

j

.

Therefore, the constraint design problem can be formulated as follows:

Maximize φA(R) =
CRE1···m:m:n

E[X1:m:n]

subject to C0 +C f m+CtE[Xm:m:n]≤Cb, (7.12)

where Cb is the pre defined budget cost. For solving this constraint optimization problem,
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Table 7.3: Optimal solutions for constraint design problem with m = 5 and (C0,C f ,Ct) =
(20, 10, 50).

Parameters (α,λ ) n m Cb R∗ φA(R
∗)

(2,1) 15 5 120 (8, 0, 0, 0, 2) 6.741
140 (9, 1, 0, 0, 0) 8.409
160 (10, 0, 0, 0, 0) 8.656

20 5 120 (13, 0, 0, 0, 2) 7.567
140 (14, 1, 0, 0, 0) 9.52
160 (15, 0, 0, 0, 0) 9.81

25 5 120 (18, 0, 0, 0, 2) 8.320
140 (19, 1, 0, 0, 0) 10.506
160 (20, 0, 0, 0, 0) 10.833

(1,1) 15 5 120 (7, 1, 0, 0, 2) 35.071
160 (7, 2, 0, 1, 0) 49.821
180 (10, 0, 0, 0, 0) 65.00

20 5 120 (12, 1, 0, 0, 2) 45.095
160 (13, 1, 0, 1, 0) 66.667
180 (15, 0, 0, 0, 0) 85.00

25 5 120 (18, 0, 0, 0, 2) 57.50
160 (18, 1, 0, 1, 0) 82.083
180 (20, 0, 0, 0, 0) 105.00

(0.5,1) 15 5 120 (6, 1, 0, 1, 2) 368.00
160 (8, 0, 0, 1, 1) 617.00
200 (9, 0, 0, 0, 1) 839.125

20 5 120 (12, 0, 0, 1, 2) 659.116
160 (13, 0, 0, 1, 1) 1058.873
200 (14, 0, 0, 0, 1) 1447.778

25 5 120 (17, 0, 0, 1, 2) 1001.684
160 (18, 0, 0, 1, 1) 1620.556
200 (19, 0, 0, 0, 1) 2222.569

we first find those set of PCII censoring schemes (R̃) such that the condition

C0 +C f m+CtE[Xm:m:n]≤Cb

is satisfied. Then using the VNS algorithm, we can find the optimal schemes from the set
of R̃, that maximizes φ(R). We obtain optimal schemes for WE (2,1), WE (1,1) and WE
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(0.5,1) with (C0,C f ,Ct) = (20, 10, 50) and for various choices of Cb. We choose n = 15,
20, 25 and m = 5 and report the results in Table 7.3. From the table it is observed that for
fixed n and m, as the budget increases, the overall information of the PCII experiment also
increases, as expected.

7.4 Compound optimal design

Recently, Bhattacharya (2020) developed a compound optimal design strategy under the
PCII experiment by simultaneously optimizing two competitive criteria. Suppose φ1(R)

and φ2(R) are two competitive design criteria and R∗
1 and R∗

2 are the corresponding optimal
designs, respectively. Then, the compound criterion maximizes

Ψ(R|λ ) = λΨ1(R)+(1−λ )Ψ2(R),

where the functions Ψi(R) = φi(R
∗)

φi(R) , i = 1,2, are the relative efficiencies of the criterion.
Note that, these relative efficiencies lie between 0 and 1. For detailed discussion on the
fundamental properties of the compound optimal design, see Bhattacharya (2020).

From Tables 7.1 and 7.2, it is observed that as the information of a PCII censored ex-
periment increases, the duration of the experiment also increases. This implies that a PCII
censored experiment with high information will result in a high cost associated with the
experiment. So there are two competitive criteria. The aim is to choose an experiment
such that the information is maximized and the cost is minimized simultaneously. This
is the situation where the COD optimizes the two criteria simultaneously. First, we obtain
COD by simultaneously optimizing the total cost of the experiment and the criterion φA(R).
Therefore, the design criteria are

φ1(R) =C0 +C f m+CtE[Xm:m:n],

and
φ2(R) =

1
φA(R)

.

To obtain COD, first we need to find the respective single objective optimal designs i.e. φ1-
optimal design and φ2-optimal design. Bhattacharya et al. (2016) showed that, for Weibull
distribution with parameters (α,λ ), conventional type-II censoring (0,0, · · · ,n−m) mini-
mizes the total cost φ1(R). To obtain φ2-optimal design, we use the VNS algorithm. Now
for WE (2,1) with (C0,C f ,Ct) = (100, 10, 50) we obtain compound optimal design for (n,m)
= (15,11), (20,14), (25,10) and (25,20). From Figure 7.2, we get the approximate λ val-
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ues as 0.66, 0.68, 0.69 and 0.66, respectively and corresponding compound optimal design
schemes are (1*3, 0*7, 1), (5, 0*12, 1), (14, 0*8, 1) and (1*4, 0*15, 1).

Table 7.4: Comparison between φ1 and φ2-optimal and compound optimal designs under
Weibull distribution with (α,λ ) = (2,1).

(n,m) φ1-optimal design φ2-optimal design compound optimal design

Scheme Cost CRE Scheme Cost CRE Scheme Cost CRE

(15,11) (0*10,4) 264.86 16.31 (1*4,0*7) 293.94 20.22 (1*3,0*7,1) 280.70 18.86

(20,14) (0*13,6) 293.04 23.10 (1*6,0*8) 327 29.27 (5,0*12,1) 314.86 28.58

(25,10) (0*9,15) 234.83 13.13 (15,0*9) 282.86 23.75 (14,0*8,1) 268.97 21.57

(25,20) (0*19,5) 361.44 40.48 (1*5,0*15) 392.98 48.73 (1*4,0*15,1) 380.14 46.37

A comparative study is presented in Table 7.4. From the table, we observe that the φ1-
optimal design has the minimum cost and minimum information; and the φ2-optimal design
has the maximum information and highest cost among the three designs. As expected, the
cost and the CRE values corresponding to COD lie in between the other two designs, which
can be interpreted as a trade-off between them.

Similarly, using the CE measure of PCOS, we can obtain COD for PCII censored exper-
iments. Since the total cost of the experiment and the CE are competitive criteria, hence we
can take the compound design criteria as

φ1(R) =C0 +C f m+CtE[Xm:m:n]

and
φ2(R) =

1
φB(R)

.

Now for WE (0.5,1) distribution with (C0,C f ,Ct) = (100,10,50) we obtain compound opti-
mal design for (n,m) = (15,5), (20,5), (20,14) and (25,20). From Figure 7.3 the approximate
λ values are calculated as 0.61, 0.60, 0.50 and 0.44, respectively and corresponding com-
pound optimal design schemes are (1,0,0,0,9), (8,0,0,0,7), (2,0*12,4) and (3,0*18,2).

The findings are reported in Table 7.5 and it is observed that the φ1-optimal design has
the minimum cost and minimum CE; and the φ2-optimal design has the maximum CE and
highest cost among the three designs. This is evident from the fact that if the CE of the
PCII scheme increases (decreases), the overall cost of the experiment will also increase
(decrease). Like the CRE case, the cost and CE value corresponding to COD lie in between
the other two designs, which implies that the trade-off is achieved.
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Fig. 7.2: Plotting of relative efficiencies of the compound design (CRE and cost) versus
values of λ in [0,1].

(a) n = 15 and m = 11 (b) n = 20 and m = 14

(c) n = 25 and m = 10 (d) n = 25 and m = 20
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Table 7.5: Comparison between φ1 and φ2-optimal and compound optimal designs under
Weibull distribution with (α,λ ) = (0.5,1).

(n,m) φ1-optimal design φ2-optimal design compound optimal design

Scheme Cost CE scheme Cost CE Scheme Cost CE

(15,5) (0*4,10) 159.11 120.461 (10,0*4) 452.528 819.676 (1,0*3,9) 160.508 131.726

(20,5) (0*4,15) 154.692 132.370 (15,0*4) 448.861 1430.132 (8,0*3,7) 163.814 266.789

(20,14) (0*13,6) 311.104 1956.355 (1*6,0*8) 811.14 4255.305 (2,0*12,4) 347.207 2411.236

(25,20) (0*19,5) 424.553 5681.97 (1*5,0*15) 1031.58 10200.93 (3,0*18,2) 556.291 7700.36

Remark 7.4.1. The budget cost Cb is pre-fixed and most of the time there isn’t any specific
guidance available to choose the appropriate amount required for experimentation. If the
budget is small then it is likely impossible to design certain experiments due to cost con-
straints. As a consequence, usually a high budget is preferred on the cost. This often leads
to wastage of money which is not ideal in any business. Using COD, we can determine the
budget cost Cb for the constraint design problem. Bhattacharya (2020) studied the equiva-
lence between compound and constraint optimal designs and, by making use of this method,
we can determine Cb for the constraint problem.

We can equivalently formulated the constraint problem defined in (7.12), in terms of the
relative efficiencies, as

Maximize Ψ2(R)

subject to Ψ1(R)≥ ε,

where Ψ1 and Ψ2 are the relative efficiencies and ε =
φ1(R

∗
1 )

Cb
. Now for WE (2,1) with (n,m)

= (15, 11), (C0,C f ,Ct) = (10, 10, 50) and Cb = 200, the corresponding constraint optimal
design is R = (1*3,0*6,1,0). The equivalent COD (see Lemma 3 in Bhattacharya (2020)) is
Rλ = (1*3,0*7,1) where λ = 0.57. So we have, Ψ1(Rλ ) = 0.9170 and the adjusted budget
constraint is Cb = φ1(R

∗
1)/0.9170 = 190.6963, which is less than the corresponding budget

of constraint problem in 7.12. This established the fact that it is beneficial to compute the
bound Cb (or equivalently ε) for the constraint optimization problem from the corresponding
equivalent COD problem. As a matter of fact, the experimenter no need to specify the bound
beforehand, instead it can be approximated from the solution of COD.

7.4.1 Data Analysis

In this section, we analyse a real data set. The progressively type-II censored data is pre-
sented by Viveros and Balakrishnan (1994) from a data set of failure times of an insulating
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Fig. 7.3: Plotting of relative efficiencies of the compound design (CE and cost) versus values
of λ in [0,1].

(a) n=15 and m=5 (b) n=20 and m=5

(c) n=20 and m=14 (d) n=25 and m=20
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Table 7.6: φ1 and φ2-optimal and compound optimal designs under Weibull distribution
with (α,λ ) = (0.974, 0.108) and (n,m) = (19,8).

φ1-optimal design φ2-optimal design compound optimal design
Scheme Cost CE scheme Cost CE Scheme Cost CE
(0*7,11) 205.99 64.89 (11,0*7) 316.127 100.90 (10,0*6,1) 270.083 94.74

fluid in an accelerated test conducted by Nelson (1982), Table 6.1, p. 228. The progres-
sively censored data is generated from n = 19 observations recorded at 34kV in Nelson’s
Table 6.1 with m = 9 number of failures using censoring scheme R = (0, 0, 3, 0, 3, 0, 0,
5). The data is presented in table 7.6. Weibull distribution provides a good fit to this data
with shape and scale parameters 0.974 and 0.108, respectively. Now, we apply compound
optimal design for Weibull distribution with parameters (α,λ ) = (0.974, 0.108) and (n,m)
= (19,8). We plot the φ1 and φ2 efficiencies in Figure 7.4. From the figure, we find that the
approximate value of λ is 0.49. The corresponding numerical results are provided in Table
7.6 and it is observed that the corresponding φ1, φ2-optimal designs and compound optimal
design are (0*7, 11), (11, 0*7) and (10, 0*6, 1), respectively. The CE value for φ1-optimal
design is low and the cost is high for the φ2-optimal design, whereas the COD is a trade-off
between them, as expected.

Fig. 7.4: Efficiency plot under Weibull distribution with parameters (α,λ ) = (0.974, 0.108).
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7.5 Conclusion

In this Chapter, we proposed new criteria based on cumulative entropy measures that repre-
sent the overall information of a PCII censored experiment. Maximizing these criteria, we
obtained optimal progressive censoring schemes. Maximizing information will increase the
total cost of the experiment, so we implement a constraint optimal design in which we max-
imized the information of the PCII experiment subject to a cost constraint. In the constraint
design, we found that as the budget amount increases the information of the experiment also
increases. This is practical because increasing information of an experiment means increas-
ing the duration of that experiment. Hence, the cost associated with the experiment will
also increase. Also we studied compound optimal design that simultaneously maximizes
the information criterion and minimizes the total cost of the experiment. These cumulative
entropy based design criteria are very easy to calculate and they do not rely on asymptotic
results thus the designs based on these measures are also independent of asymptotic results.



Chapter 8

Conclusions and future work

THIS thesis considers development of some weighted cumulative information measures
along with their inference and applications. Throughout the course of this thesis, vari-
ous weighted information measures are proposed and numerous properties such as bounds,
monotonicity, convolution and relationship with some well known information measure are
studied in detail. Aging classes are proposed using the dynamic information measures and
some characterization results for Rayleigh and power distributions are obtained. In the fol-
lowing we discuss some problems as part of future work.

Weighted extended information measures

We propose a weighted extended survival extropy measure by taking ε(x), a continuous
function of x as the weight function. Analogously we can define extended versions of the
various weighted information measures that we have introduced. For example, generalized
weighted extended survival entropy (GWESE) measure of order (θ1,θ2) can be defined as

ξ
ε
θ1,θ2

(X) =
1

θ2 −θ1
log
∫ +∞

0
ε(x)Sθ1+θ2−1(x)dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

As a future problem, one can study the properties of ξ ε
θ1,θ2

(X) for different choices of the
weight functions.
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Double truncated weighted information measures

In many situations, we only have informations betweeen two time points i.e. the random
variable (rv) is double truncated. In reliability, double truncated residual rv is defined as
Xt1,t2 = (X − t1|t1 ≤ X ≤ t2) and this reduces to the residual rv when t +2 →+∞. One can
study our proposed information measures for double truncated rvs. For {(t1, t2) : S(t1) >
S(t2)}, the GWSE for double truncated (interval) rv can be defined as

ξ
ε
θ1,θ2

(X ; t1, t2) =
1

θ2 −θ1
log
∫ t2

t1
x
(

S(x)
S(t1)−S(t2)

)θ1+θ2−1

dx, θ2 ≥ 1, θ2 −1 < θ1 < θ2.

In similar manner, we can also define other measures for double truncated set up as well.
These areas can be explored in future work.

Estimations of these measures are an important issue that have been discussed in detail.
Non-parametric estimators based on edf, L- statistics and kernel function are proposed and
their performances are compared in terms of MSE. A recursive kernel based non-parametric
estimator for weighted survival extropy measure is considered for identically distributed
observations which may not be independent. Various real data also analyzed for illustrative
purposes.

One future problem that can be considered is developing estimators of the proposed in-
formation measures using U-Statistics. It will be interesting to see how U-Statistics based
estimators perform compared to the proposed estimators. Non-parametric Bayesian estima-
tions of the proposed measures is another problem of interest. Also estimations of the
weighted extended and double truncated information measures is an interesting problem
worth studying.

Application in life-testing

Another key aspect of this thesis is the applications of proposed measures as well as some
existing measures such as cumulative residual entropy (CRE) and cumulative residual ex-
tropy (CREx) measures. We studied CREx for mixed reliability systems and proposed two
applications in system complexity analysis and comparison between systems. Also using
the L- statistics based estimator of CREx measure, we construct a test of equality between
two distributions. We develop goodness-of-fit tests for complete, type-I and type-II censored
data and uniformity tests using various proposed measures and also provide potential appli-
cations in risk analysis and model discrimination problems. Based on the CRE measure,
we proposed a design criterion for optimally selecting a progressive type-II (PCII) censored
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experiment. This design is independent of asymptotic results. As a future problem, this
asymptotic free design criterion can be used to determine optimum reliability acceptance
sampling plans (RASP) for PC-II censored experiments.

A RASP can be expressed as follows: Suppose L is a lower specification limit and
an item with lifetime less than L is nonconforming i.e. unacceptable. Let µ and σ are
the location and scale parameters of a lifetime distribution belonging to the location-scale
family. Lieberman and Resnikoff (1955) define a criterion for a lot to be accepted it

µ̂ − lσ̂ ,

where µ̂ and σ̂ are the maximum likelihood estimates of µ and σ , respectively. Now using
CRE based criterion, a RSAM for PCII can be formulated as

maximize
n,m,R

CRE1···m:m:n

E[X1:m:n]
,

subject to Cfm+CtE[Xm:m:n]≤Cb,[
uα −u1−β

zpα
− zpβ

]2

[I 11(θ)+ l2I 22(θ)−2lI 12(θ)] = 1. (8.1)

The Eq. (8.1) is the solution of the sample size n (Ng et al., 2004). We will undertake this
problem in future study. The CRE based RASP under Bayesian environment will also be
considered.
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