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Abstract

There has been growing interest in millimeter-wave (mmWave) communication

due to the promising high speeds and immense amounts of unused bandwidth

available. However, mmWaves suffer from unusually high attenuation, through

free space, and especially through obstacles, which necessitates an obstacle free

line-of-sight (LOS) transmission path. This thesis deals with establishment of such

LOS paths, through obstacle detection and deployment of network infrastructure.

The usual approach to avoid static obstacles on transmission paths is to use

satellite imagery to detect the presence of static obstacles, an approach which

apart from raising proprietary concerns, is not able to capture smaller obstacles.

We propose a simple learning based approach to detect the presence of static as

well as dynamic obstacles, without having apriori access to any data regarding

their location from satellite imagery. We then use this knowledge to efficiently

select an appropriate transmission path for a user equipment (UE), lowering the

chance of allocating an obstacle prone link.

Dynamic obstacles are usually tracked by dedicated tracking hardware like

RGB-D cameras, which usually have small ranges, and hence lead to prohibitively

increased deployment costs to achieve complete camera coverage of the deployment

area. We propose an altogether different approach to track dynamic obstacles in an

mmWave network, solely based on short-term historical link failure information,

without resorting to any dedicated tracking hardware. Using the obtained trajec-

tories, we perform proactive handoffs for at-risk links. We compare our approach

with an RGB-D camera-based approach and show that our approach provides bet-

ter handoff performances when the camera coverage is low to moderate, which is

often the case in real deployment scenarios.

Stability of allocated transmission paths is an important problem in the do-

main of mmWave communication. The quality of an allocated transmission path

depends not only upon the present time, but also upon the maintenance of the

said path in the near future; the fragile nature of mmWaves necessitates this.

Thus, allocating the base station (BS) which provides the highest received signal

strength (RSS) at the current time instant is not always the best idea, considering

UE mobility, and presence of obstacles. We propose a simple geometric approach

vii
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to allocate stable transmission paths which are less likely to be broken in the near

future.

One way to deal with obstacle free strict LOS requirements of mmWaves is

to densely deploy small range mmWave BSs, to overcome outage due to obsta-

cles. Low cost reflectors have also been proposed to augment the transmission

environment, and reflect mmWaves in the desired direction, thereby bypassing the

obstacles. We argue that considering the placement of mmWave BSs and reflectors

independently may lead to suboptimal coverage. We consider an urban deploy-

ment scenario, and attempt to maximally cover it by jointly placing the mmWave

BSs and reflectors. Given the hardness of the joint problem, we first develop a

set cover based greedy solution, and also provide a linear programming (LP) re-

laxation based solution. With extensive simulations, we show that with a fixed

number of available mmWave BSs and reflectors to be placed, both our proposed

solutions achieve a larger coverage compared to an existing approach where BSs

and reflectors were placed sequentially.

Unmanned Aerial Vehicles (UAVs) are a potential platform for deploying mmWave

BSs. One challenge that has to be addressed is the limited power onboard a UAV,

which is used to hover and move the device, and of course, to transmit data. We

deal with the deployment of UAVs with an aim to minimise their displacement in

subsequent time instances. We take into consideration UE mobility, and propose

LazyUAV, a set cover based geometric approach to minimise UAV displacement,

while maintaining maximal coverage.
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Chapter 1

Introduction

This thesis deals with establishment of efficient millimeter-wave (mmWave) com-

munication links over short, unobstructed paths. We do so by detecting potential

obstructions, placing reflectors to bypass obstacles, and deploying base stations

(BSs) on board unmanned aerial vehicles (UAVs). However, before diving into the

technical details, for want of completeness, we give a brief background of wireless

communications, and of mmWaves in particular.

1.1 Background and Fundamentals

The global mobile network traffic jumped from 55 exabytes (EB) per month in

2020 to 108 EB in 2022, a rise of almost 100% in just 2 years. The numbers

are even more staggering if we look a little further back; a 20 fold increase over

the last 7 years. It is estimated that the average smartphone data usage in the

world will reach 46 gigabytes (GB) per month in 2028 (69% of it being served

by 5G networks), compared to 19 GB in 2023 [1]. This estimate may even fall

short if technologies such as virtual reality (VR) and augmented reality (AR) see

ubiquitous popularity in the next 5 years. Most of these applications require high

data rates; for example, uncompressed high resolution video streaming requires a

mandatory data rate of 1.78 - 3.56 Gbps [2]. This sharp, unending rise in wireless

1
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Figure 1.1: The electromagnetic spectrum1

traffic has led to depletion of the traditional microwave frequencies [3], most of

which have been contained in a narrow band of the electromagnetic spectrum with

frequencies from 300 MHz to 3 GHz. It is no surprise that the past decade has

seen a meteoric rise in the interest shown in the “el Dorado” of communication

spectrum, the mmWave realm [4–9].

mmWaves, as their name suggests, correspond to the band of radio frequen-

cies whose wavelengths are in the range of millimeters (see Figure 1.1). Their

frequencies typically range from 30 GHz to 300 GHz, of which up to 252 GHz

are expected be suitable for mobile communications [4]. Even if only 40% of this

unused spectrum is allocated, it will provide up to two orders of magnitude ex-

pansion [4] over the currently deployed spectrum! Apart from providing spectrum

expansion, communication in the mmWave domain provides another crucial ad-

vantage, enhanced data rate, in the rate of gigabits per second (Gbps). These

carrier frequencies permit allocation of larger bandwidths, which in turn translate

directly to higher data transfer rates. Besides the Gbps data rate, the latency

for wireless traffic has decreased in mmWave communication [10]. Data intensive

applications such as VR, AR, vehicle to everything (V2X), can possibly not be

served by the microwave spectrum, which typically provide a data rate in megabits

per second.

The drawbacks of mmWaves are their poor propagation characteristics, and

their acute sensitivity to blockages. Their poor penetration capacity has thrown

up intriguing challenges that were absent in microwave communication. Their

propagation loss through free space, however, which was once considered to be

a disadvantage, has now been turned to their advantage; their fast attenuation

1Modified from https://tikz.net/electromagnetic_spectrum/

https://tikz.net/electromagnetic_spectrum/
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over even modest distances allow aggressive frequency reuse, with low interfer-

ence. Additionally, narrow beams by highly directional antennas actually provide

additional security via eavesdropping immunity [11,12]. The consensus in the com-

munity thus is that to be scalable, mmWave communication should incorporate

short, unobstructed links [3]. We discuss about mmWave propagation in more

detail in Section 1.2.1.

The advancement in low cost gigahertz capable integrated circuit design [13–15]

has accelerated the transition into the mmWave realm. Indeed, devices like low

noise power amplifiers coupled with low cost CMOS technology that performs well

in mmWave frequency bands will make ubiquitous deployment of gigahertz com-

munication a rapid reality [15–17]. Several standards exist for wireless networks

around the 60 GHz spectrum, like ECMA-387 [18], IEEE 802.15.3c [19], and IEEE

802.11ad [20].

We give a few use case scenarios of short range, line of sight (LOS) communica-

tion in Figure 1.2. There is usually a central long term evolution (LTE) BS, and

several small cell mmWave enabled BSs inside the coverage area. These small

cells can operate only when a LOS exists with a nearby communicating device.

If there are obstacles on transmission path, a multi-hop LOS path can be estab-

lished via a nearby idle user equipment (UE), which directs the beam towards a

destination device bypassing obstacles. Additionally, these devices can also am-

plify and forward a received signal [21], thereby effectively increasing the coverage

range. Lastly, two nearby UEs that want to communicate with each other can do

so directly without involvement of the BS, a scheme known as device to device

(D2D) communication.

We now move on to some of the technical terms that are relevant to this thesis,

and describe each of them briefly.
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UE

BS

UE acting as relay

Obstacle

Area under BS

Direct UE-BS link

Relayed transmission

Direct D2D link

Figure 1.2: A Typical mmWave Network.

Path Loss

Path loss can be informally defined as the decay in the energy of a transmitted

signal as it passes through a medium; it depends on the transmission distance,

the carrier frequency, and other location specific parameters. Friis [22] gave the

following equation to model path loss way back in 1946

P2 = P1G1G2

(
λ

4πd

)2

, (1.1.1)

where P2 is the received power at the receiver, and P1 is the transmitted power,

both given in absolute linear units (eg., Watts); G2 and G1 correspond to the re-

ceiver and transmitter gains relative to an isotropic antenna, λ is the wavelength

of the transmitted signal, and d is the transmission distance. Path loss is actu-

ally captured by the the reciprocal of the term
(

λ
4πd

)
, indicating that path loss

will increase as the separation is increased, or as the wavelength is lessened. In

other words, for a fixed transmission distance between two communicating devices

having fixed gains, the path loss varies as the square of the carrier frequency.

By generalizing the log-distance slope in the far field, a better fit to path loss

measurements can be made using the log-distance path loss model as follows,

P2 = P1K

(
d0
d

)α

, d ≥ d0 (1.1.2)
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where d0 ≫ λ represents a close-in free space path loss reference distance in the

far field, K is a dimensionless constant, and path loss exponent α are adjusted to

fit field measurements [23]. Taking the decibel values, (1.1.2) transforms into

P2[dBm] = P1[dBm] + 10 log10K − 10 α log10(d/d0), d ≥ d0 (1.1.3)

SINR

The quality of a wireless link is typically expressed as the signal to noise plus

interference ratio (SINR) at the receiver. Broadly speaking, the SINR at a receiver

is given by

SINR =
P

I + η0
, (1.1.4)

where P is the power of the signal of interest at the receiver, I is the interfer-

ence caused by nearby interfering signals, and η0 is the background noise of the

medium. Let us consider a more general scenario of k transmitters, each of which

communicates with its corresponding receiver. Then the SINR received at receiver

j from transmitter i is given by

SINRj =
GiGjPL(di,j)∑

k:k ̸=i

PL(dk,j) + η0
, (1.1.5)

where di,j is the Euclidean distance between the device pair (i, j), and PL(di,j) is

the corresponding path loss between them. Usually, there is a threshold SINR below

which the received signal cannot be decoded correctly; similarly, an application

may require a minimum SINR, below which it cannot function properly. If the

SINR between a UE and a BS falls below this threshold, a mechanism called a

handoff is triggered. In this process, alternative BSs are explored for favourable

SINR, and if available, one of them is selected to serve the UE.
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Shanon Capacity

The maximum rate at which information may be transferred via a wireless channel

depends on its SINR, and is called its Shannon capacity. The Shannon capacity of

a channel is given by

C = B log2
(
1 + SINR

)
, (1.1.6)

C being the channel capacity in bits/s, and B the channel bandwidth in Hz.

1.2 mmWave Communication: The Pros and Cons

In this section, we describe some of the advantages, and challenges that come

with communication in the mmWave realm. However, departing from the usual

convention, we describe the disadvantages first.

1.2.1 The Cons

The disadvantages of mmWaves mainly stem from their propagation characteris-

tics, both through free space, and through obstacles.

1.2.1.1 Propagation Loss

There have been several studies on the propagation characteristics of mmWaves

[24–28]. These waves suffer from much higher propagation loss as compared to

their low frequencies microwave counterparts. The propagation loss in free space is

proportional to the square of the carrier frequency. If we consider communication

at 60 GHz, it corresponds to a wavelength of about 5 mm; on the other hand,

the typical WiFi band at 2.4 GHz corresponds to a wavelength of 12.5 cm. For

omnidirectional transmission and reception, mmWaves incur an astounding 625

times (28 dB) worse propagation loss as compared to WiFi [29]. Attenuation due

to atmospheric Oxygen absorption tops in the 60 GHz range at 15 dB/km, while
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that due to water vapour reaches 2 dB/km in the 24 GHz range [30]. However,

since most of today’s cell sizes in the urban environment are in the range of 200

meters, this atmospheric attenuation can effectively be neglected [5]; for example,

rainfall of 25.4 mm/hr causes an attenuation of only 1.4 dB over 200 m in the 28

GHz range. Both transmitter and receiver have to be equipped with directional

antennas to combat severe propagation loss.

1.2.1.2 Penetration Loss

Since electromagnetic waves can weakly diffract around obstacles of sizes larger

than the wavelengths, mmWaves with their small wavelengths are extremely sen-

sitive to blockage by obstacles. For example, common masonry items like bricks,

concrete, and drywall all induce enough attenuation of mmWaves to discourage

their usage without LOS. For example, brick pillars cause 28.3 dB penetration loss

at 28 GHz [5], making building penetration of mmWaves difficult. Even humans

cause intermittent attenuation of mmWave links. It is reported in [31] that upto

20-30 dB of penalization occurs due to human mobility. For a room with 1 to 5

persons, a mmWave channel is blocked for 1 to 2% of the time [32]. This can

lead to time-varying network topology, necessitating stable links for delay sensitive

applications like high definition live streaming. Foliage also causes non-negligible

attenuation of mmWaves. For example, penetration of 10 m of foliage causes

around 19 dB of attenuation at 40 GHz [30]. Since foliage is often not effectively

captured by satellite imagery, novel practices have to be harnessed to determine

their locations, and avoid them while transmitting data over the mmWave spec-

trum. We compile a list of common obstructing obstacles, and their corresponding

attenuation in Table 1.1, where most of the data has been sourced from [11]. It

is apparent that both static, as well as dynamic obstacles cause significant atten-

uation of mmWaves, and novel approaches are required to avoid them on the

transmission paths.
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Object Thickness [cm] Attenuation [dB]

Wooden panels 1.2 3.4-7.6
Drywall 4.8 5.2
Brick 11 16.9

Concrete 5 ≥ 30
Clear Glass 1 4.3

Double-pane Tinted Glass 0.4+1.5(gap)+0.4 ≥ 30
Foliage 50-100 16-27

Heavy Hailstorm 26
Human 28 20-40
Vehicle 15-40

Table 1.1: Attenuation of Different Obstacles for 60 GHz mmWaves.

1.2.2 The Pros

Now, let us turn towards the positives. We will see that some of the inherent

disadvantages of mmWaves will actually be turned into advantages.

1.2.2.1 High Data Rate

Shannon’s formula (1.1.6) dictates that providing higher data rates will require

sufficiently large transmission bandwidth. The good news is that the mmWave

spectrum has abundant frequencies, allowing bandwidth in the range of gigahertz.

The data rate provided by mmWaves is typically in the range of gigabits per

second, thus aptly naming the communication “pseudo wired” [2].

1.2.2.2 Interference Mitigation

The small wavelengths allow deployment of smaller antennas, which provide very

efficient focussing of transmission beams towards a narrow area, thereby effectively

mitigating inter cell interference. We describe this in detail in Section 1.3.1.
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1.3 Some Approaches in mmWave Domain

As described in Section 1.2.1.2, mmWaves have extremely poor penetrative prop-

erties. Hence, it is of paramount importance that the transmission links that are

assigned are visible from each other. Also, the high attenuation through free space

has to be countered too, by application of highly directional beamforming anten-

nas. In this section, we describe some of the methods that are usually employed

to allocate LOS paths.

1.3.1 Massive MIMO and Directional Beamforming

The microwave cellular spectrum currently in use typically transfers data over

carrier frequencies having large wavelengths, which requires larger antenna sizes;

this in turn limits the number of antennas on a device. The small wavelengths

of mmWaves will allow incorporating smaller antennas, thereby paving way for

massive multi input multi output (MIMO). If we consider a 38 GHz system,

a half-wavelength spaced antenna array can fit more than 600 antennas in an

area of just 1 square decimeter [33]. Massive MIMO extends the capabilities of

traditional MIMO by deploying a very large number of antennas in a compact

form factor on a device. Of late, Facebook has reported base stations with 96

antennas as part of a massive MIMO network [34]. The use of large number

of antenna elements corresponds to using large array gains, which are vital to

compensate for the high propagation loss of mmWaves. These antenna arrays

are different from traditional horn antennas; their radiation pattern is extremely

flexible, depending on the number, type and orientation of antenna elements.

Several arrangements are available, like uniform linear array, uniform rectangular

array, and uniform circular array. This “massive” number of antennas are used

to focus highly directional energy beams towards a narrow zone (also known as

beamforming), bringing about drastic improvements in throughput and spectral

efficiency [35].
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Beamforming is a technique of focusing a wireless signal towards a chosen direc-

tion, rather than radiating to a large area. All the antenna elements emit the same

signal, but with added phase shifts. These multiple phase shifted signals interfere

with each other, constructively in some directions, and destructively in others.

The result is that the signal is effectively steered towards a chosen direction, while

the other directions receive little to no power. Without such large number of an-

tenna elements to achieve beamforming, a base station would consume a lot of

energy to send data in the mmWave realm [36, 37]. Furthermore, with advent

of 3D beamforming, dynamic coverage for UEs in motion is also possible [38],

improving user experience. Lastly, these so called “pencil beams” [39] also help

in mitigating interference by not allowing the signal to travel towards unintended

recipients, allowing deployment of ultra dense networks (UDNs).

1.3.2 Ultra Dense Networks

Pencil beams emitted off massive MIMO antenna arrays allow for deployment

of a large number of small range BSs in a small area. These can be deployed

on trees, building walls, or even on top of lamp posts, usually in traffic hotspots.

Analysis in [40] showed that we can aggressively reuse frequencies, and place BSs

as close as 20 m apart. These UDNs can be defined as networks having more

BSs than active users [41, 42]. A more quantitative definition is given in [43],

which considered a network to be ultra dense if the number of deployed BSs is

in the range of several thousands per square kilometer. Bandwidth hungry, data

intensive applications of the near future can be served in localised environments

by such UDNs. They are expected to perform well in the mmWave spectrum

[44,45], relying heavily on high gain, highly directional beamforming to minimise

interference and attenuation. Additionally, numerous small range BSs can help in

reducing the amount of blind spots in a coverage area, with the poor propagation

characteristics of mmWaves actually helping to avoid inter cell interference. As is

obvious though, we cannot go on increasing the infrastructure density indefinitely.
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System parameters would reach a saturation point, post which adding more cells

would add no benefit. A comprehensive survey on UDNs is given in [46].

1.3.3 Device to Device Communication

D2D communication can be formally defined as direct communication between

two devices, without involving a base station or network [47]. This sort of BS

independent communication via directional mmWave links can be harnessed to

increase network capacity [2], and reduce end to end delay. Indeed, if two UEs

close to each other want to communicate with each other, the there seems no justi-

fication to route the data through a BS, which would increase network congestion.

Such D2D communication can be non-orthogonal (where multiple D2D pairs use

the same frequencies co-ordinated by the BS), or orthogonal (where there is no

spatial reuse); the former leads to increased spectral efficiency, albeit at the cost

of interference, while the latter has reduced spectral efficiency, but no interference.

D2D mmWave transmission paths can be multi-hop as well; if two UEs do not

have LOS, other idle UEs in the vicinity can act as relays [48, 49], and effec-

tively set up a multi-hop D2D path. Establishment of LOS paths, interference

management, scheduling, and energy efficiency are all inherent challenges in this

domain.

1.3.4 Tracking Obstacles

Locations of static obstacles are usually stored at the BS after being obtained

from satellite imagery, or from open source maps [50]. Avoiding static obstacles

is easier, while dynamic obstacles present an altogether different challenge. In-

termittent breaks in links cause degradation in user experience, while a number

of unnecessary handovers are often introduced because of dynamic obstacles [51],

which further add to system overhead. One way to deal with dynamic obstacles

is via multi-connectivity [52]. Here, multiple BSs have to be involved, some kept

as backup as a precautionary measure for possible link failure, a process which
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wastes precious resources. To track dynamic obstacles requires additional ded-

icated tracking hardware like LiDARs [53], cameras [54], and lasers [55]. The

primary drawback of deploying such additional hardware is the considerable cost

overhead that has to be borne by the service providers, and subsequently by the

end users. Indeed, hardware such as radars are quite expensive and are sometimes

prohibitive for ubiquitous deployment. Cameras on the other hand introduce

privacy concerns [56], along with considerable image processing overhead. After

tracking, handoffs may be triggered pre-emptively, without waiting for the link to

actually break, thereby improving user experience [54].

1.3.5 Reflecting Devices

Due to the presence of obstacles in the coverage area, and subsequent LOS block-

ages, the number of BSs required for complete coverage can grow large, resulting

in a high deployment expenditure. In this context, reflecting devices hold a lot of

promise. They can be used to reflect mmWave signals incident on it from trans-

mitter, towards the receiver, effectively establishing a 2-hop LOS path. These

devices can be passive reflectors as in [57] or intelligent reflecting surfaces (IRSs)

[58, 59]. While passive metallic reflectors (PMRs) simply reflect off incident sig-

nals according to Snell’s laws, IRSs can steer these signals towards their intended

destination. These IRSs work by tuning numerous low cost reflecting elements

(printed dipoles), which adds a controlled amount of phase shift in every reflected

signal. Much like massive MIMO, this causes interference among reflected signals,

effectively achieving directional beamforming. In the outdoor environment, IRSs

can be fixed on building facades, while in indoors they can be fixed on walls, ceil-

ings, and even furniture. These low cost devices will play a vital role in deploying

a sustainable mmWave enabled communication network in the near future [60].

Challenges in this field include phase shift optimisation, channel estimation, and

spatial placement of these devices to augment the transmission environment. In

Figure 1.3, we show the simple use case of a reflecting device. We see that the

UE does not posses an LOS with the BS, and hence is unable to communicate
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UE

Obstacle

BS

Reflector

Figure 1.3: Using a Reflector to Bypass an Obstacle.

using the mmWave spectrum. A nearby reflector comes to the aid, by reflecting

the signal transmitted by the BS towards the intended recipient.

1.3.6 Unmanned Aerial Vehicles (UAVs)

One of the more innovative promises of fifth generation (5G) networks is deploy-

ment of mobile, aerial BSs [61]. Though UAVs were first envisioned primarily for

military use, their usage for civilian communication is possibly a matter of time.

They will find applications in two pretty important scenarios, the first of them be-

ing traffic offloading from terrestrial infrastructure [62,63]. For example, consider

an area which has seen a sudden spike in traffic demand. In such a case, these

UAVs with on board BSs can be deployed very fast to relieve the pressure on

terrestrial infrastructure. A second, more serious application scenario of UAVs is

when terrestrial infrastructure is destroyed during natural disasters [64,65]. These

vehicles can be deployed very quickly for disaster management groups, and pro-

vide faster relief. A network of multiple UAVs called flying ad hoc network

(FANET) can work independently but in tandem with each other to provide cov-

erage extension in infrastructure deficient areas [66, 67]. Incorporating mmWave

communication on UAVs can be advantageous due to their high altitude above

the ground which increases LOS probability with an end UE. In other words,

their higher degrees of freedom thanks to their highly controllable mobility make

them ideal for establishing short, LOS transmission paths. We show a sample
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Figure 1.4: A Sample Multi-UAV Network.

multi-UAV BS network in Figure 1.4, where there are 5 UAVs deployed, each

having a coverage area shown in grey. This coverage area depends on a variety of

factors, like transmit power, UAV height, and the azimuth angle of the antenna.

Note that the blue disks represent UEs who are within the transmission range of

a UAV, while the red disks represents those which are not.

Despite their inherent advantages, UAVs come with their own share of chal-

lenges. Unlike their terrestrial counterparts, UAVs do not possess a stable source

of power. Their range is limited by their on board battery backup, which has to

be utilised to hover, change position, and transmit power. Heavier battery packs

increase the weight, which decreases the range, and a tradeoff has to be found.

These constraints are popularly called size, weight, and power (SWAP) require-

ments [68], and give rise to interesting challenges, of which trajectory optimisation

of UAVs deployed to serve as BSs is an important one. Indeed, the conflicting

optimisation targets of maximising the number of UEs served, while minimising

energy expenditure so as to maximise flight time remains a challenging problem.

On top of that, the strict propagation constraints of mmWaves often require

spatial repositioning of these UAVs, opening up another direction of research.
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1.4 Research Gap and Motivation

In this section, we very briefly address the research questions that we try to answer

in this thesis. We start off by asking if a priori knowledge of the coverage area is an

absolute requirement before we start allocating links. Or, whether it can somehow

be learnt post deployment? Indeed, spatial coverage environment may not always

be available every time, and even if available, may not capture every single detail

regarding the propagation path. Additionally, via long term network performance

parameters, can we get a sense of where the zones of dynamic congestion are? Next

we tackle the question of online tracking of dynamic obstacles; the usual approach

is by deploying additional dedicated hardware, which is not at all an economic

approach. Can we do something without resorting to such hardware? We then

ask if the nearest BS is always the best choice, especially for UEs in motion?

Indeed, an allocated link may break soon after allocation due to UE motion, which

may either cause loss of LOS, or make the link too long to transmit data using

the mmWave spectrum. We then shift attention to the problem of infrastructure

deployment. We start off by asking if joint deployment of BSs and reflectors

would give better coverage than a sequential approach? Finally, we address the

problem of UAV deployment in mmWave networks. Since UAVs are highly

power constrained, can we assign them to serve mobile terrestrial UEs such that

their displacement is minimum, while ensuring coverage? These are the questions

we raise, and attempt to answer in this thesis.

1.5 Contribution of the Thesis

The contribution of this thesis can be broadly divided into two parts. In the first

part, we deal with detecting potential obstacles on mmWave transmission paths,

and avoiding them. In the latter part of the thesis, we shift focus to deployment

of mmWave enabling infrastructure to facilitate smoother communication.
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1.5.1 Obstacle Detection for Stable Link Allocation

1.5.1.1 Learning obstacles without satellite imagery

In Chapter 3, we consider the problem of learning the spatial and temporal trans-

mission characteristics of the transmission environment, without any access to

satellite imagery. The presence of obstacles was not a problem in microwave net-

works, as microwaves have good propagation characteristics, and can penetrate

obstacles such as walls. However, mmWaves with their poor penetration nature,

need obstacle free LOS paths to effectively transmit data. Spatial information

can be gathered a priori from satellite imagery, or government records. However

such information, apart from raising proprietary concerns, is often incomplete; for

example, small obstacles like foliage are often not captured accurately. In this

scenario, we make the following contributions:

Contribution 1 : We propose a simple, learning based, deterministic algorithm

to learn the location and size of static obstacles within the coverage area,

without resorting to satellite imagery or government records. We do so by

studying long term historical link failure data.

Contribution 2 : The approach is extended to determine zones of dynamic con-

gestion, that is, zones that usually have high density of obstacles that can

obstruct data transmission.

Contribution 3 : Finally, we give a path selection algorithm that has a high

probability of successful transmission. Performance of our approach is mea-

sured against an existing approach, with respect to link failures.

1.5.1.2 Tracking dynamic obstacles from short term link failure data

While in Chapter 3, we deal with zones of high dynamic congestion, we do not

track such obstacles online, rather only focussing on learning the zones where

high density of dynamic obstacles have been found in the past. This approach
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may lead to overestimation of dynamic obstacle presence, and possible under-

utilization of good links. The classical way to actively track dynamic obstacles is by

deploying additional hardware, an expensive approach. In Chapter 4, we propose

an approach to the problem of tracking dynamic obstacles in an mmWave network,

without using any dedicated tracking hardware such as camera, radar, or LiDAR.

Given usual baseline infrastructure and short term link failure information, we

attempt to obtain the trajectories of dynamic obstacles, and use them to perform

proactive handoffs for at-risk links. We divide the chapter in two parts, the first

one dealing with a single dynamic obstacle, while the second one considers multiple

such obstacles. More formally, our contributions in Chapter 4 are as follows:

Contribution 1 : The single dynamic obstacle scenario is easy to handle, the

proposed solution being extremely trivial. We use a signal space partitioning

scheme, and Euclidean geometry in a UDN, to extract the location, and

velocity of the said obstacle. We show the effectiveness of the proposed

approach to track a single dynamic obstacle.

Contribution 2 : The real challenge lies in tracking multiple dynamic obstacles

from short term link failure data, a problem which we model using a integer

linear program (ILP), and prove to be NP-complete.

Contribution 3 : We provide a greedy set cover based algorithm to obtain the

trajectories of dynamic obstacles.

Contribution 4 : We compare our proposed approach with an RGB-D camera

based approach. We show that for low to moderate camera coverage, our ap-

proach acheives better handoff performance. We emphasize that since ours

is merely a predictive approach, tracking through complete camera coverage

will definitely outperform our method. However, such ubiquitous tracking

would no doubt be accompanied by excessively high expenses, which would

possibly make it infeasible in practice. We also validate our proposed track-

ing approach through simulation using the San Francisco taxi dataset [69].
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1.5.1.3 Stable link allocation for avoiding unnecessary handoffs

In Chapter 5, we argue that selecting the transmission path which promises the

highest received signal strength (RSS) at the current time instance, might not

always be the most beneficial approach. Indeed, with user mobility considered, a

link which promises a high RSS at time t1 might deteriorate rapidly at time t2 due

to the presence of obstacles, or due to the transmission distance being increased.

Hence, it might be better to allocate a sub-optimal link, which might not give the

best data rate at the current instant, but will remain active for a long time. More

formally, the contribution in this chapter can be formalised as follows:

Contribution 1 : We formulate the problem of allocating stable paths as a ILP,

and prove that it is an NP-complete problem.

Contribution 2 : We select expected link active time as our metric, and assign

those paths which are likely to remain active for the longest time, using a

greedy approach.

Contribution 3 : Via simulation, we show that the proposed approach allocates

more stable links than the usual RSS based allocation.

1.5.2 Infrastructure Placement for Coverage Enhancement

1.5.2.1 Joint placement of BS and reflectors for coverage improvement

The BS deployment for wireless communication is an old, and well-studied prob-

lem. However, mmWaves have stringent LOS requirements for data transmission,

which led to the concept of deploying a high number of base stations in UDNs.

Base stations being a costly resource, researchers have explored the idea of reflect-

ing mmWaves off specially deployed, low cost reflectors, in an effort to bypass

obstacles. In Chapter 6, we argue that placing base stations and reflectors se-

quentially may lead to sub-optimal coverage. More formally, our contribution in

Chapter 6 is as follows:
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Contribution 1 : We consider the joint placement problem of BSs and reflectors

to attain maximum coverage of the service area, and we provide a ILP for

the same.

Contribution 2 : Given the hardness of the joint placement problem, we first

provide a greedy solution based on Max-Cover with an approximation bound.

Thereafter, we develop an linear program (LP) relaxation based solution,

and show that it achieves better coverage than the Max-Cover based solution.

Contribution 4 : We perform extensive simulations to demonstrate the superi-

ority of both our solutions over an existing two step approach.

1.5.2.2 Coverage ensured minimum displacement UAV deployment

Recently, there has been growing interest in deploying BSs on board unmanned

aerial vehicles to facilitate better network performance. The spatial flexibility of

UAVs provides crucial utility for two important scenarios; when terrestrial BSs are

saturated and require traffic offloading, and when the same are destroyed due to

natural calamities. However, the limited power on board a UAV plays a crucial

role in its effectiveness. In Chapter 7, we study the problem of deploying UAV

BSs in an mmWave network, with an aim to minimise their displacement in

subsequent time, while maintaining coverage of mobile UEs. More formally, our

contribution is as follows:

Contribution 1 : Although the UAV placement problem is NP-Complete [70]

in general, we show that the optimal placement of a single UAV for static

UEs can be efficiently solved in polynomial time using a geometric approach.

Contribution 2 : We then proceed to solve the multi UAV version of the same

static scenario; since it is NP-complete, we use a Max-Cover based greedy

approximation scheme.
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Contribution 3 : Taking into consideration UE mobility, we devise a polynomial

time geometric algorithm that efficiently finds optimal placement of a single

mobile UAV ensuring maximum coverage with minimum displacement.

Contribution 4 : Finally, we solve our main objective which is to achieve maxi-

mal coverage by placing multiple UAVs with minimum displacements, using

an approximate algorithm.

Contribution 5 : Via extensive simulation, we show that our proposed LazyUAV

algorithm achieves greater coverage with lower UAV mobility as compared

to two baseline approaches.

1.6 Outline of the Thesis

The rest of the thesis is arranged as follows. In Chapter 2, we review some of

the recent works in the field of mmWave communications. Thereafter, we dive

into the contributory chapters, which are divided into Part I, and Part II. Part I

deals mostly with obstacles and line of sight, with Chapter 3 learning the locations

of static obstacles, and zones of high dynamic congestion. We proceed to Chap-

ter 4, where we track dynamic obstacles online, without any dedicated tracking

hardware. In Chapter 5, we argue that selecting farther away base stations may

sometimes be beneficial for long term stability of allocated links. In Part II, we

shift focus towards efficient network infrastructure placement in mmWave net-

works. In Chapter 6, we deal with the joint deployment of mmWave base stations

and reflectors for coverage improvement. We develop a UAV deployment strategy

in Chapter 7, where we strive to serve maximal number of users, with minimum

UAV displacement. We conclude in Chapter 8 and give a few possible directions

for future extension.



Chapter 2

Literature Review

In this chapter, we summarize the state of the art in the problems considered in

this thesis, and identify the research gaps. Keeping up with the theme of the

thesis, this review is also divided into two parts as follows.

2.1 Obstacle Aware Communication

The poor transmission characteristics of mmWaves provide unique challenges that

were absent in traditional networks, and therefore call for newer ideas. A lot of

the literature deals with establishment of LOS transmission paths of these waves,

via relays. We first deal with the case of static obstacles.

2.1.1 Handling Static Obstacles

The effect of static obstacles on relay selection in mmWave networks is a well-

studied subject [71], and a variety of approaches exist. For example, authors in

[72] proposed that transmission over multiple short hops would actually provide

higher throughput than over a single long hop. The effect of obstacles on mmWave

transmission in an indoor scenario was studied in [73], where the authors concluded

that in the absence of an LOS path between transmission devices, reflected waves

21
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cannot alone provide robust connectivity. The idea of deploying mmWave relays in

an outdoor network was proposed in [74], and it was shown that the deployment

of relays can lead to better coverage, and transmission capacity of mmWave

networks. Several schemes for achieving multiple blockage avoidance were provided

in [75], wherein the authors considered BSs and relays to be deployed along

roads, as also considered in [76, 77]. Authors in [78] proposed a probabilistic

relay selection mechanism for choosing the relay that had the highest expected

data rate. A mobility aware relay selection mechanism was proposed in [79],

wherein a greedy metric namely connectivity factor was introduced; the approach

reported significant reduction in end-to-end delay, and packet loss. A multi-hop,

polynomial time heuristic routing algorithm was developed in [80] to maximize

the sum quality of the uncompressed HD video applications. Authors in [81]

proposed a relay probing based two hop transmission path selection algorithm

with an optimal threshold, reaching which the probing stops. A multi-hop relaying

transmission scheme was presented in [82] to deal with the blockage problem of

mmWaves, that steered blocked flows around obstacles by establishing multi-hop

relay paths. A relay selection algorithm was proposed in [83], where several pre-

planned relays were used in the area under a BS . The building topology of

the area was assumed to be known, and a greedy algorithm was proposed that

found an LOS of UEs with the help of close relays. Using a 3D model for

buildings targeted at urban environments [83] investigates a relay selection and

scheduling algorithm to support high end-to-end throughput in mmWave relay-

assisted backhaul networks. However, this relay selection framework assumes that

it has prior information regarding the location and sizes of static obstacles inside

the coverage area. It also does not take into account the obstruction due to

dynamic obstacles.

The idea of using nearby idle UEs to relay data between communicating devices,

known popularly as device relaying was proposed in [48, 49]. It was a dramatic

departure from the traditional network architecture, where the source and desti-

nation could select their own transmission paths, with limited or no intervention

from the base station. One of the main advantages of this approach was that
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of BS range extension via a relaying UE. Multi-hop transmissions using mobile

phones was proposed in [84] to deal with non line of sight (NLOS), and achieve

maximization of video quality. D2D relaying has been used in [85] to offload traf-

fic from BSs. In that paper, authors jointly dealt with route selection, resource

allocation, power control, and link scheduling with an aim to minimise transmit

power.

However, most of these works focus on the immediate data rate maximization.

For UEs in motion, if the nearest relay is chosen every time, there is a chance

of frequent link failures, due to the fragile nature of mmWaves (both due to

distance, and obstacles). A link failure is followed by a handoff requirement, which

necessitates subsequent searching. In mmWave scenario, the handoff interval can

be in the range of several seconds [86], which hinders user experience. Hence,

the number of handoffs should be minimised, to improve system throughput, and

subsequently quality of service. A path that remains active for a longer period of

time can effectively reduce the number of handoffs.

2.1.2 Handling Dynamic Obstacles

Dynamic obstacles like pedestrians and vehicles, on the other hand, pose a harder

problem. It has been found out that human blockages cause upto a 20-30 dB

attenuation [54], while for a tinted car window the attenuation is 30-35 dB [87].

Such obstruction causes intermittent outages, decay in system throughput, and

degrades overall user experience [54]. Additionally, a number of unnecessary han-

dovers are often introduced because of dynamic obstacles [51], which further add

to system overhead. As such, dealing with dynamic obstacles in an mmWave net-

work forms a key challenge. The classical way to actively track dynamic obstacles

is by deploying additional hardware. In fact, hardware dependent dynamic ob-

stacle tracking is well-studied. Usual hardware used for tracking include LiDARs

[53, 88, 89], cameras [54, 90–97], and lasers [55, 98, 99]. The primary drawback of

deploying such additional hardware is the considerable cost overhead that has to

be borne by the service providers, and subsequently by the end users. Indeed,
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hardware such as radars are quite expensive and are sometimes prohibitive for

ubiquitous deployment.

Obstacle induced link failures are typically dealt in one of two ways. In the

reactive approach as in [100, 101], the handoff takes place only after the blocking

has taken place, while in the proactive approach, link failures are predicted before-

hand, and corrective measures taken accordingly. The proactive approach usually

involves deploying dedicated tracking hardware, like RGB-D cameras, radars, or

LiDARs. Authors [102] used an RGB-D camera to predict the location and mo-

bility of human obstacles, and implemented a traffic mechanism that stops com-

munication on the soon-to-be-blocked path, thereby freeing up that channel for

use elsewhere. Authors in [103] leveraged camera imagery and convolutional long

short-term memory (LSTM) based machine learning to achieve proactive handoffs.

More recently, [92] proposed a machine learning based framework that deployed

RGB cameras at the BSs to track dynamic obstacles, and achieve proactive hand-

offs preventing link blockages. Authors in [104] also uses RGB-D camera images

to localise pedestrians and estimate their mobility to predict link blockages; sub-

sequently, proactive handoffs are carried out before the human can block the link,

thereby avoiding link failure. More recently, authors in [105] demonstrated the link

switching in an mmWave environment, by tracking obstacles using a stereo cam-

era for well-lit environment, and a LiDAR for dark environment. A reinforcement

learning based handover mechanism was proposed in [54], which used a dedicated

human tracking module. The problem with hardware like RGB-D cameras is that

they typically have ranges of a few meters (0.5 m to 3.5 m) [106]; indeed, authors in

[107] demonstrate an obstacle tracking approach using an RGB-D camera, where

the obstacle distance is in the range of few meters. As such, their extensive de-

ployment throughout the coverage area remains a big question. There have been

works [104] that assume complete knowledge of the mobility of obstacles in the

coverage area, an assumption which infeasible in real life. Similarly, authors in

[103] consider a model where the communication path is always within the field

of view of an RGB-D camera, which might not always be the case. Moreover,

learning based approaches often require prohibitively large training overhead (for
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example, [54] uses 1010 tuples just for a 4 m × 5 m area, and two BSs), which

might be unscalable in practice.

A slightly different way of dealing with dynamic obstacle induced link failures

is via multi-connectivity [108,109], an extension of the dual connectivity [52] that

has already been proposed in LTE. Here, multiple BSs are associated with the

same UE; if one link fails due to an obstacle, communication continues via the

others. Another way that uses multiple beams was proposed recently in [110]. It

used an extra guard beam to predict incoming obstructions, in order to protect

the main communication beam. However, while multi-connectivity for all users

has been recently reported to decrease network throughput [111], using a separate

guide beam would decrease spectral efficiency and increase energy demands. An

altogether different approach is therefore needed to deal with dynamic obstacles.

2.2 Infrastructure Deployment

Now we turn our attention towards the second part of the thesis, efficient deploy-

ment of network infrastructure to facilitate mmWave coverage. These can be fixed

terrestrial ones like BSs and reflectors, or aerial ones like BS-equipped UAVs.

The terrestrial ones are placed once, the target usually being to achieve a maximal

cover given a fixed amount of resources. Deployment of UAVs on the other hand

can have multiple optimization targets, including trajectory optimization, power

optimization, amongst others. We first describe the recent works on deployment

of fixed terrestrial infrastructure, and then move on to the aerial ones.

2.2.1 Terrestrial Infrastructure

Terrestrial infrastructure includes BSs and reflectors, which have to be deployed

by the service provider based on spatial environment, and user demand. As is

obvious, one would want to serve the maximum number of users with the minimum

deployment cost, i.e., with the minimum number of BSs and reflectors. This can
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be seen as a variant of the well-known Max-Cover problem with a fixed number

of resources.

Base station deployment for wireless communications is an old, and well-studied

problem. However, mmWaves BSs have stringent LOS requirements for data

transmission which were absent in the traditional networks. With UDNs fast

becoming a reality, dense deployment of small range BSs is a challenge that has

to be addressed. Authors in [112] use computational geometry and LP relaxation

to maximize the LOS coverage for a given number of BSs. A decomposition

based approach was used in [113] to obtain an efficient solution to the problem of

BS placement under outage constraints. A multi-arm bandit approach was used in

[114] for deployment of such infrastructure outdoors, while swarm optimisation was

used in [115] to minimally achieve LOS coverage in an indoor setting. A minimum

cost, low complexity mmWave BS deployment algorithm was proposed in [116]

that guaranteed network connectivity. A computational geometry based algorithm

to automatically place large numbers of mmWave enabled BSs in an urban

area with highly irregular buildings was given in [117]. A cooperative stochastic

approximation based approximation framework was developed in [118] to deploy

infrastructure with an aim to improve long term outage probability. Authors in

[119] presented an outage guaranteed BS deployment technique in urban areas,

using a scenario sampling approach to obtain a small scale deployment problem

and optimally solving it by an iterative algorithm.

Due to the presence of obstacles in the coverage area, and subsequent LOS

blockages, the number of BSs required for complete coverage can grow large,

resulting in a high deployment expenditure. In this context, reflecting devices

hold a lot of promise [58, 120, 121]. They can be used to reflect mmWave signals

incident on it from transmitter, towards the receiver, effectively establishing a 2-

hop LOS path. They have been used in [122] to improve the average received

signal to noise ratio. Location of a single reflector was optimized in [123] to assist in

data transmission from one BS and achieve maximum coverage, while a 2 reflector

indoor scenario was considered in [124]. Authors in [125] showed that a reflector

has to be placed nearer to the receiver compared to the transmitter to maximize
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the signal to noise ratio. Authors in [121] reported an increase of 19 dB in received

power by using a reflector in a 28 GHz setting. Passive and active repeaters were

used in [126] for coverage enhancement, and improving received signal strength.

Authors in [127] proposed an adaptive differential evolution algorithm to jointly

optimize the number, locations, and phase shift coefficients of multiple IRSs.

Simultaneous placement of BSs and reflectors, however, has not been studied

as much. Authors in [57] proposed a two step approach where they first solved a

ILP to optimally deploy a given number of BSs, and subsequently solved another

ILP to achieve increased coverage by optimally placing a fixed number of reflectors.

However, such a sequential approach may lead to sub-optimal deployment. Hence,

a combined approach is needed to deploy mmWave BSs and reflectors to increase

the coverage area.

2.2.2 Aerial Infrastructure

The usage of UAVs in traditional networks is a well-studied subject [128], with

UAV placement optimization at its very core [129–131]. Additionally, due to the

power constraint, UAV trajectory design problems [132] have also received a lot

of interest. There have been a lot of work involving efficient trajectory design to

achieve a variety of targets. Authors in [133] provide a trajectory design of a UAV

to efficiently achieve wireless power transfer. A throughput maximization scheme

was presented in [134] by alternatingly optimizing power allocation and UAV

trajectories. Authors in [135] provide a reinforcement learning based approach to

establish UAV trajectories to maximise the expected uplink sum rate. A trajec-

tory design algorithm was proposed in [136] that minimizes mission completion

time, while ensuring data transfer with a high probability. Yet another trajectory

planning approach was proposed in [137] that used a reinforcement learning based

approach without any information about the UEs .

Deployment of mmWave BSs on board UAVs, on the other hand, presents

unique challenges that were absent in traditional sub-6 GHz networks, since mmWaves
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attenuate sharply through obstacles, and over moderate distances even in free

space. A comprehensive analysis of the challenges, and existing solutions for UAV

aided mmWave communications is given in [33, 138, 139]. The blockage effect of

UAV rotors on mmWaves was first studied in [140]. A joint optimisation of UAV-

BS positioning, UE assignment, and beamforming for maximizing the sum rate

of the UEs was done in [141], and a sub-optimal algorithm for the non-convex

problem was proposed. A reinforcement learning based trajectory design approach

was presented in [135], where the target was to to maximize the expected uplink

sum rate. Yet another reinforcement learning based approach was given in [142]

which aimed at maximizing the coverage for an unknown environment. A lot of

the works in literature [70, 143] deal with a one time deployment of mmWave

enabled UAVs, allocating links to satisfy the immediate need. The problem is

usually dealt with a variation of the K-means algorithm [62, 70]. Due to the in-

herent mobile nature of UEs , the transmission distance may change over time,

possibly leading to link failures. Thus, UAV mobility certainly cannot be ruled

out in order to maintain coverage. Since UAV mobility is to be fueled by limited

on board power, initial placement and assignment become important parameters

to maximise the up time.

2.3 Research Gap and Our Contribution

Majority of the static obstacle avoidance approaches mentioned in this review re-

quire a priori knowledge about the deployment area, which may not always be

feasible. Indeed, satellite imagery can often fail to capture smaller obstacles like

foliage, bushes, and billboards, which also obstruct mmWave communication. In

Chapter 3, we propose a method to learn the locations and dimensions of static

obstacles without any satellite imagery. We extend this notion to learn the zones

of dynamic congestion, and provide a path selection algorithm that avoids these

obstacles. We consider the problem of dynamic obstacle tracking in Chapter 4

without any dedicated tracking hardware. Using short term link failure informa-

tion, we aim to localise dynamic obstacles, and thereafter use the information to
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achieve proactive handoffs even before links are actually broken. In Chapter 5,

we argue that for mobile UEs, it might not always be advisable to allocate the

nearest BS. Taking into consideration UE mobility, and static obstacles, we al-

locate paths that will be unobstructed for the longest possible time. We show via

simulations that this approach leads to longer link active times, as compared to

the RSS based approach. We treat the problem of deploying BSs and reflectors

in Chapter 6, in a joint fashion. For a given amount of infrastructure, we aim to

maximise the coverage area. Finally, in Chapter 7, we take into consideration UE

mobility and deal with the deployment of UAVs with on board BSs, with an aim

to minimising total displacement.





Part I

All about Obstacles
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Chapter 3

Link Selection in mmWave

Networks through Obstacle

Learning1

3.1 Overview

As outlined in Chapter 1, mmWave communications can only bring about some

noticeable change in data transmission rate if the two communicating devices

are near and visible to each other. By visible we mean that the corresponding

communication devices exhibit an LOS transmission path between them. By

near we mean that the distance between the communicating devices is less than a

threshold, above which mmWave communication does not provide a marked high

data rate, even in the presence of LOS. However, it might not always be possible

to know the propagation characteristics of the coverage area a priori. One way

1This chapter is based on the following papers:
Subhojit Sarkar and Sasthi C. Ghosh. “Relay selection in millimeter wave D2D communica-
tions through obstacle learning” In: Proceedings of the 12th International Conference on
COMmunication Systems & NETworkS (COMSNETS 2020), IEEE, Bengaluru, India,
January 7–11, 2020, pp. 468-475, DOI: 10.1109/COMSNETS48256.2020.9027458.

Subhojit Sarkar and Sasthi C. Ghosh. “Relay selection in millimeter wave D2D communi-
cations through obstacle learning” in: Ad Hoc Networks (Elsevier), Vol. 114, pp 102419,
January 2021, ISSN 1570-8705,DOI: 10.1016/j.adhoc.2021.102419.
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to obtain such data is via using satellite imagery, open source maps [50], or by

using government records. However, there may still be small obstacles that are not

captured by satellites; indeed, obstacles such as bushes, billboards, cannot always

be captured by satellite data. Similar problems arise at locations that do not

have a clear view of the sky; for example, satellites cannot usually capture spatial

details of regions beneath a bridge. For efficient mmWave communication, we

need to obtain spatial details of potential obstacles in order to avoid them while

assigning links. In this chapter, we consider the problem of learning the presence

of obstacles in a coverage area served by a mmWave network, without resorting

to any pre-obtained terrain data. The main contributions of this chapter are as

follows:

• We develop a simple, learning based, deterministic algorithm to find the loca-

tions and sizes of static obstacles within the coverage area, without resorting

to satellite imagery or maps.

• We extend this approach to determine the spatial zones with high vehicular

traffic congestion, with an aim to avoid such zones while allocating links.

• We then create a visibility graph using the knowledge about the spatial en-

vironment that we have learnt in the primary learning phase.

• We use this notion of visibility graph to allocate links which are less likely

to be obstructed. Via extensive simulations, we show how our algorithm

performs with respect to the locations and sizes of obstacles. We compare

our approach against a baseline link allocation approach, and show that

though our approach performs poorly in the initial phases, its performance

improves over time, ultimately outperforming the existing approach.

3.2 System Model and Assumptions

We now describe the system model considered, and the various assumptions made

in this chapter.



3.2. System Model and Assumptions 35

Network architecture : We consider a deployment architecture which is

similar to that proposed in [2]. As shown in Figure 3.1, there is a central LTE

BS (shown by the square), and 6 mmWave BSs (shown by circles) arranged

symmetrically on a regular hexagon, at the periphery of the coverage area of the

LTE BS. These mmWave BSs are connected to the LTE BS, and thus to each

other, by a high speed, wired backhaul network. The UEs (shown by crosses)

are distributed uniformly at random in the coverage area of the LTE BS. All

the BSs ( mmWave BS and LTE BS) have electronically steerable directional

antennas (Liu et al. [6]) and mmWave transreceivers, to compensate for the high

attenuation of mmWaves. For ease of analysis, we assume that all mmWave BSs

are placed at a fixed height from the ground. A UE can directly communicate

with an mmWave BS or with another UE if they are near and visible to each

other. A UE can also reach an mmWave BS or another UE via other idle UEs

which are willing to act as relays, provided each such hop satisfies the near and

visible conditions. If a UE cannot establish such a path with an mmWave BS

or the UE to which it wants to communicate, the UE has to use the LTE BS

for traditional communication.

LTE Base Station

mmwave Base Station

User Equipment

Figure 3.1: Considered mmWave Architecture.

UE Hardware: Each UE is equipped with a superaccurate chip [144] that

can report its location to the LTE BS with accuracy of upto 30cm. They also

have electronically steerable directional antennas (Liu et al. [6]) and mmWave
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transreceivers, to compensate for the high attenuation of mmWaves. Each UE

can support a maximum of one pair of incoming and outgoing signals. The height

of each UE is considered fixed, for ease of analysis.

Coverage Area: We divide up the area under an LTE BS into square grids,

the smallest resolution of which can be the resolution of the global positioning

system (GPS) accuracy (which can be as low as 30 cm) , though such a small

resolution is hardly necessary. The smaller the resolution, the better the accu-

racy (and greater the computation). We assume that the LTE BS knows the

locations of the UEs within its coverage area and hence can assign them to their

corresponding grids. The LTE BS forwards such information to the relevant

mmWave BSs.

Time Epoch: The speed of transmission being in the range of gigabits per

second, a lot of information can be transferred within a short time, thereby al-

lowing small time epochs. For example, assuming pedestrian speeds being 2-4

meters/second and GPS resolution being 30 cm, UEs will remain within the

same grid for at least 0.075 second. To avoid the high computation time involved

with such a small resolution, we can assume a grid size of 1 meter and time epoch

of 0.25 second; i.e., an UE remains within a grid of 1m for at least 0.25 second.

We also discretize the user location into the centre of these grids, so that the

exact location of the user within the grid is immaterial. Note that every time a

link is assigned, alignment of transmitter-receiver antenna pair needs to be done.

However, this alignment overhead is in the order of hundreds of microseconds even

for mmWaves with extremely narrow beamwidths as mentioned and validated in

Congiu et al. [145]. Thus we can safely ignore the overhead as the time epoch is

several order of magnitude larger.

Propagation Model: The path loss and SINR are modelled using equations

described in Chapter 1. The relevant parameters which mostly have been taken

from Bai and Heath [146], are included in Table 3.2 in the simulation section.

At a particular time epoch, we can define the quality of a link between two

communicating devices as good or bad, as follows. If the measured SINR is almost
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equal to the maximum SINR for a pair of communicating devices, the difference

being less than a particular threshold ν, we call the link good. When the differ-

ence is above the threshold, we call the link bad. Here measured SINR (A SINR)

means the actual SINR obtained after the link allocation, whereas maximum SINR

(MAX SINR) means the theoretical maximum SINR between two communicating

devices, assuming an LOS path between them.

Obstacle modelling: We consider two types of obstacles, static and dynamic.

Some of the static obstacles can be known from satellite images, open source maps,

and government records. However, satellite imagery cannot acquire all possible

static obstacles, especially the smaller ones like bushes, trees and signboards. Also,

as described in a following section, presence of a building in the transmission path

between an mmWave BS and a UE does not guarantee obstruction. Obstruction

depends on the location and size of the obstacle with respect to the heights of

the mmWave BS and the UE. There might be a short obstruction, which is

big enough to be captured by satellite imagery, but fails to obstruct the LOS

between an mmWave BS and a UE. Motivated by this fact, we prefer to learn

the presence of static as well as dynamic obstacles, without resorting to satellite

imagery. Detailed learning procedure is elaborated in the next section.

Static obstacles: The static obstacles involve bigger barriers like buildings,

bridges and towers, and smaller ones like bushes, trees and signboards. We use a

simple training algorithm to store the probable locations of these obstacles in ar-

rays, hereafter referred to as look-up tables. Simply put, we assume that there are

no obstacles (unless it is present in the look-up table) and if, after link allocation,

the measured SINR of a link is found to be much less than the maximum SINR all

the time, we can come to a reasonable conclusion that there is an unknown static

obstacle in the path of transmission, and transmission has taken place via NLOS

paths. The obstacles can subsequently be added to the look-up table.

Dynamic obstacles: These include mobile obstacles like vehicles and humans.

These hamper transmission, but we can say that in most cases, there is a good

probability that in the subsequent time epochs, the obstacle will move away,
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thereby providing theoretical maximum data rates. Thus, if a link has measured

SINR comparable to the maximum SINR even once, we assume that any subsequent

obstacle on that path is bound to be dynamic. Our subsequent path allocation

algorithm avoids those links that are more likely to have a dynamic obstacle in

their transmission paths. For example, two UEs on opposite footpaths at a busy

intersection are more likely to have poor data rates due to the high chance of one

or more dynamic obstacles being present, and would not be allocated a link if

there are better options available.

Note that signal degradation can happen due to multiple reasons, like inter-

ference from neighbouring devices, antenna misalignment, along with obstacles

presence on transmission path. There have been approaches proposed that can

detect abrupt changes in signal strength caused due to the presence of obstacles.

For example, authors in [147] propose a change point detection test for identifying

the times where blockage happens, and ends.

Known obstacle

Unknown static obstacle

UE1

UE2UE3

UE4

UE5

UE7

UE6

Dynamic obstacle

Figure 3.2: Different Types of Obstacles Hampering LOS Transmission.

We explain our proposed approach by an example. In Figure 3.2, we see that

UE4 and UE5 have a good link quality. Hence, we deduce that the there are no

static obstacles between them. The link UE1 and UE3 is known to be bad because

of a previously known obstacle, and hence it is never active in our algorithm.

However, when it comes to link between UE1 and UE2, we initially believe that
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there are no static obstacles in between them and hence, can possibly assign it as a

link. However, we will soon find out that every time the link is active, the quality

is bad. Thus, we will deduce that there exists a previously unknown static obstacle

on the transmission path and update our look-up table accordingly. For UE6 and

UE7, we will notice that the link is bad at one time epoch, but in the subsequent

epoch, the link quality becomes good. This signifies that the initial obstruction

was due to a dynamic obstacle, and there are no unknown static obstacles between

these two locations. We point out here that even though UE1 may receive some

signal from UE2 via reflections and multipath, it will undoubtedly have far lesser

SINR as compared to a dominant LOS path, if present. Hence, it would be easy

to check if the dominant path is indeed blocked by any obstacle. For example,

authors in [147] propose a change point detection test for identifying the times

where blockage happens, and ends.

The notation used in this chapter are described in Table 3.1 for completeness.

Symbol Interpretation
di,j Euclidean distance between i and j
ν SINR threshold
S Static obstacle look-up table
D Dynamic obstacle look-up table
C Array storing number of times a grid has been part of transmission path
Bi,j Set of grids on line joining i and j
Ni,j Subset of Bi,j not been cleared

Table 3.1: Notation

3.3 Learning Based Relay Selection Algorithm

Using the above architecture and model assumptions, we learn the presence of

both static and dynamic obstacles in the transmission path between a pair of

communicating devices. We use this information to create a visibility graph, which

captures the quality of the links between the communicating devices, residing at

their respective grids. Then using the visibility graph, we smartly assign links for

relay selection.
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3.3.1 Learning Approach

Now as pointed out, our algorithm has a learning phase. Initially, the LTE BSs

assign links to UEs arbitrarily. A record of the quality of the assigned links are

maintained. If the measured SINR of such a link is much less than the maximum

SINR (the difference being above a threshold ν) all the time, we can reasonably

begin to guess that there is a static obstacle there. However, if the difference

between the measured SINR and the maximum SINR is less than the threshold

value even once, we will know that the obstacle was a dynamic obstacle, like a

vehicle.

There is a subtle point to be noted here. The obstructing power of an obstacle

actually depends on whether the link is UE- UE or UE- mmWave BS, and we

need to deal with them separately. As shown in Figure 3.3, the UE has an LOS

with the mmWave BS, despite the “presence” of an obstacle in the path. In

other words, a good link between two devices does not automatically rule out a

presence of static obstacles on the transmission path if one of them is a mmWave

BS. There might be a short obstruction, which is big enough to be captured by

satellite imagery, but fails to obstruct the LOS between a mmWave BS and

a UE. Similarly, the presence of an obstacle on a 2-D map does not necessarily

mean that in 3-D that obstacle will block transmission. This further motivates

us to consider a learning based approach rather than relying on satellite imagery

and subsequently going for the learning method. Hence we determine whether an

LOS exists between two communicating devices depending on whether one such

device is an mmWave BS. In Algorithm 3.1, we describe the procedure for static

and dynamic obstacles for the case of UE- UE transmission. The other cases can

be handled similarly.

We take a link represented by a UE pair (u1, u2), and compute the maximum

SINR (assuming LOS) and measure the actual SINR obtained. We then check if the

difference is less than the threshold ν, which is an input parameter. If there is an

obstacle on the transmission path, we assume that the corresponding attenuation

is at least ν = 25 dB. This 25 dB is chosen because a tinted glass window has



3.3. Learning Based Relay Selection Algorithm 41

UE

BS

Obstacle

(a) Top view

BS

UEObstacle

(b) Side view

Figure 3.3: LOS Between UE and mmWave BS Despite Presence of an
Obstacle.

the same loss as pointed out in [4]. We assume that a tinted window offers a

minimal obstruction to any link. We take Bresenham’s algorithm (Bresenham

[148]) and modify it slightly to compute Bu1u2 , the set of squares which lie on the

path between u1 and u2. It is a well-known algorithm in computer graphics that

takes input two grids, and avoiding any floating point computations, computes

the intermediate grids in between the two input grids, such that they form a close

approximation of a straight line. We modify it to include all the grids that lie on

the transmission path. We also compute Nu1u2 , a subset of Bu1u2 , which is the

set of all intermediate grids between u1 and u2, which have not yet being cleared

of the possibility of having static obstacles. We use 2 arrays, S and D, to store

the probabilities of each grid obstructing transmission due to static and dynamic

obstacles respectively. We need an additional array, C which keeps a record of

the number of times a grid has been a part of a transmission path. Initially, all

three arrays are initialized with zeroes. For S and D this implies that there are no

obstacles (static or dynamic) initially. The value of C being zero implies that the

corresponding grid has not yet been a part of any transmission path. We mention

here that the value of the arrays S and D will be interpreted as the probabilities

of a grid square obstructing transmission, only if the corresponding value in array

C is greater than zero, i.e., has been part of a transmission.

For a link represented by (u1, u2), if the difference between A SINR and MAX SINR
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Algorithm 3.1: Obstacle Learning.

Data: (u1, u2), A SINRu1,u2 , ν, S, D, C
Result: S, D, C

1 MAX SINRu1u2 ← maximum SINR between u1 and u2 assuming LOS using
Friis free space equation;

2 Bu1u2 ← Set of squares lying between u1 and u2 found by Bresenham’s
algorithm;

3 Nu1u2 ← {b : b ∈ Bu1u2 | Cb = 0 or Sb ̸= 0)};
4 if |MAX SINRu1,u2 − A SINRu1,u2| < ν then
5 for b ∈ Bu1u2 do
6 Sb ← 0;

7 Db ← Db×Cb+0
Cb+1

;

8 Cb ← Cb + 1;

9 end

10 else
11 for b ∈ Nu1u2 do
12 Sb ← 1− (1− Sb)(1− 1

|Nu1u2 |
);

13 end
14 for b ∈ Bu1u2 do

15 Db ←
Db×Cb+

1
|Bu1u2 |

Cb+1
;

16 Cb ← Cb + 1;

17 end

18 end

is below ν, in our array S for static obstacles, we clear all the intermediate grid

squares in Nu1u2 , of the possibility of having static obstacles. That is, Sb = 0

for all b ∈ Bu1u2 . In the subsequent cases, any obstruction from these grids are

guaranteed to be from dynamic obstacles only (unless new construction takes

place). Similarly, in our array D for dynamic obstacles, we update the previous

values of all the intermediate grid squares b ∈ Bu1u2 , as follows:

Db =
Db × Cb + P c

b

Cb + 1
. (3.3.1)

where P c
b is the current probability that grid point b ∈ Bu1u2 has obstructed the

transmission due to the presence of dynamic obstacles in it. Clearly, in this case,

P c
b = 0 for all b ∈ Bu1u2 . Therefore, D stores the updated probability, computed

by considering the past probability D with the current probability P c.

On the other hand, for two UEs u1 and u2, if the difference between A SINR
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and MAX SINR is above ν, we conclude that there is an obstacle on the transmission

path. We assume that there is an equal likelihood of the presence of an obstacle in

each of the intermediate squares and without further information, we cannot say

which grid square is actually obstructing the LOS (or, indeed if all of them are).

More specifically, if the obstacle is static, we assume that it can only be present

in Nu1u2 , the set of intermediate grid squares which have not yet been cleared of

the presence of static obstacles. For each grid square b ∈ Nu1u2 , we update the S

array as follows

Sb = 1− (1− Sb)(1−
1

|Nu1u2|
), (3.3.2)

as we have assumed equiprobable presence of obstacles in Nu1u2 . We update D

according to equation (3.3.1), by taking P c
b to be 1

|Bu1u2 |
for all b ∈ Bu1u2 . This is

done because the clearing a grid of the possibility of having static obstacles does not

ensure it will have no dynamic obstacle. After a sufficient number of iterations, the

look-up tables S and D contain the information about all the discovered obstacles.

We illustrate this process with an example.

1 2 3 4 5 6

1

2

3

4

5

6

Figure 3.4: An Example Demonstrating Computation of S.

Consider an empty 6×6 array S in Figure 3.4. From the past data, we see that

UEs in (3, 5) and (5, 5) had good link quality, leading us to conclude that (4, 5) has

no static obstacle. However, UEs in (1, 2) and (5, 2) have reported much lesser

than maximum SINR, when they were allocated a D2D link. Therefore, there
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is/was an obstacle on the transmission path between the communicating grids.

We find the questionable grid squares between (1, 2) and (5, 2), and they being 3

in number, update the corresponding grid squares in S using equation (3.3.2) with

the value 1
3
(|N(1,2)(5,2)| being 3). A similar incident occurs when UEs in (2, 1)

and (5, 4) tries to communicate. As earlier, we find the questionable grids between

(2, 1) and (5, 4), in this case |N(2,1)(5,4)| being 2. Finally, from equation (3.3.2),

S3,2 stores the value 1 − (1 − 1
3
)(1 − 1

2
) = 2

3
, while S2,2 and S4,2 both store 1

3
and

(4, 3) stores 1
2
. Thus, S3,2 stores the highest probability of a static obstacle. The

dynamic obstacles can be handled similarly.

After the locations of static obstacles, and the zones of congestion due to dy-

namic obstacles are learnt, the lookup tables S and D are combined into one array

A, post thresholding. Algorithm 3.2 subsequently divides up the area around a

grid into equiangular sectors, and stores its distance from the nearest probable ob-

stacle along each sector. The corresponding mmWave BS then uses this new look

up table to create a visibility graph, as shown in Algorithm 3.3 and subsequently

the greedy Algorithm 3.4 is used to assign paths. Note here that the tables can be

updated as and when new link status information is available. Hence, the table

contains most recent information when it is being used.

We formally describe the process of sectoring in Algorithm 3.2. The input

consists of the combined SDTh array after thresholding (this stores only boolean

values), the maximum distance dmax till which D2D mmWave communication

can be allowed, and the discrete angle ϕ. The output is the obstacle array A.

Each element in the array consists of a list of nearest distances to obstacles, in

each disjoint sector j subtending an angle 360◦

ϕ
at the corresponding grid point.

Typically the value of dmax is in the range of 100-150 meters (Hu and Blough [83]);

to incorporate this in our model, for each grid point i, we assign a virtual obstacle

in each sector j, at a distance dmax m. If an obstacle is found at a distance d (less
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than dmax) from grid i along sector j, we update the array A. Thus,

A(i, j) =

dmax, d ≥ dmax

d, otherwise.

(3.3.3)

Here, A(i, j) stores the nearest obstacle (real, or virtual) from grid point i along

sector j. This algorithm is an exhaustive search. However, this needs to be run

only once, when the learning phase is over. One point to note here that if ϕ is

large, we might miss obstacles. On the other hand a small value of ϕ would lead

to higher memory overhead. This value of ϕ depends on the obstacle size, and the

maximum transmission distance, and can be chosen accordingly. The effect of ϕ

on accuracy is showed in the simulation section.

3.3.2 Visibility Graph Creation

We subsequently create a visibility graph Gm = (Vm, Em) at each mmWave BSm,

using A. The LTE BS sends the set U of devices and their location information

to the respective mmWave BSs, where UEs are identified by their corresponding

grids. Using this information, each mmWave BS constructs a visibility graph,

with the devices themselves forming the vertices. The graph formations are done at

the mmWave BSs themselves, to keep the graph size manageable. The visibility

graph creation is formally described in Algorithm 3.3. For each pair of devices

(u1, u2), we first find the sector s on which u2 lies with respect to u1. If the distance

between two devices u1 and u2 is less than the smallest distance of an obstacle from

u1 along s, the addEdge() function forms an edge between u1 and u2. The edge

weight w is the calculated maximum SINR of the u1-u2 path, which depends on the

distance between them (assuming free space transmission). The construction of

visibility graph could have been done in a decentralized manner, each UE sending

out a handshaking signal and all others within this range responding. However,

since we expect to compute this frequently, in order to reduce battery drainage,

we prefer to do it centrally at the mmWave BS.
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Algorithm 3.2: Discretizing the Angular Neighbourhood.

Data: SDTh, dmax, ϕ
Result: A

1 for i = 1 to N ×N do
2 for j = 1 to 360

ϕ
do

3 A(i, j)← 0
4 Hi ← all grids in sector j, within dmax distance from i arranged in

increasing order of distance;
5 for h ∈ Hi do
6 if SDTh

h = 1 then
7 A(i, j)← dih
8 break

9 end

10 end
11 if A(i, j) = 0 then
12 A(i, j)← dmax;
13 end

14 end

15 end

Algorithm 3.3: Creating a Visibility Graph.

Data: A, U
Result: Gm = (Vm, Em)

1 Gm ← ϕ
2 Vm ← D
3 foreach pair(u1, u2) ∈ U do
4 Find the sector s in which u2 lies with respect to u1 ;
5 if A(u1, s) > dist(u1, u2) then
6 w ← SINR(dist);
7 addEdge(Gm, u1, u2, w)

8 end

9 end

3.3.3 Path Selection

Suppose device u1 wants to establish a path to device u2. We have Gm at our

disposal. Starting from u1, we start a hop limited breadth first search for u2. The

maximum hop count k limits the depth till which breadth first search algorithm

runs. P stores the set of all paths with short, visible hops, the hop count being

limited by k. The hopCount() function computes the number of hops in a path.

If a 1-hop path exists in P , it signifies that u1 and u2 have a short LOS path
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between them. If the only paths in P are multi-hop paths, we return the path

having the highest SINR. For a multi-hop path, the SINR is taken as the SINR of

the weakest link; i.e., the smallest SINR in a hop of a multi-hop path. We formally

describe this in Algorithm 3.4. If no k-hop restricted path is returned, the the

communication has to happen via the LTE BS. In Figure 3.5, we demonstrate

execution of our algorithm for finding obstacle free paths, taking k as 2. The

circles denote mmWave base stations, and the parallelograms are static obstacles.

A demanding user is allocated links to a base station either directly, or via a nearby

idle user (i.e., k = 2).

Algorithm 3.4: Path Selection Algorithm.

Data: d1, d2, k, Gm

Result: p∗

1 P ← hopLimitedBFS(d1, d2, k, Gm);
2 max← 0;
3 p∗ ← ϕ;
4 for p ∈ P do
5 if HopCount(p) = 1 then
6 p∗ ← p;
7 break;

8 end
9 if SINR(p) > max then

10 max← SINR(p);
11 p∗ ← p;

12 end

13 end
14 return p∗;

3.3.4 Bringing It All Together

Now for want of clarity, we very briefly reiterate the flow of algorithms in this

chapter. The static obstacles and the zones of probable dynamic congestion are

stored in S and D respectively (Algorithm 3.1). In Algorithm 3.2, we store the

nearest obstacle in each sector with angle ϕ, for each grid point, and use it to

create the visibility graph in Algorithm 3.3. We make use of Algorithm 3.4 to find

the best path between a source-destination pair (u1, u2). If a 1-hop path is not
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Figure 3.5: An Example to Demonstrate our Path Selection Algorithm For
k = 2.

present we try to find k-hop restricted paths. If even this fails, the communication

is handled by the LTE network.

One point to note here is that areas where no links were assigned during the

learning phase, remain largely unexplored by our algorithm. However, as the

learning algorithm always runs in the background, to quickly find new obstacles

that might crop up in near future.

3.4 Simulation Results

The simulation parameters are mostly taken from [149] and [150]. The path loss

parameters are α = 75.85 and β = 3.73. The signal bandwidth is 20 MHz, and

the maximum transmit power of a UE is 24 dBm, while the thermal noise density

is −174 dBm/Hz. We assume a square of size 1000 × 1000 m2 as the coverage

area under the LTE BS. The LTE BS is positioned at the center, and 6 pe-

ripheral mmWave BSs are arranged on a regular hexagon inside the coverage

area, as shown in Figure 3.1. There are some axes parallel static square obstacles

having lengths and breadths both 15 m, distributed uniformly at random inside

the coverage area. Some more smaller (1 × 1 m2) static obstacles are also placed
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Parameter Value
Frequency 60 GHz
Bandwidth 20 MHz

Noise power spectral density (KBTe) -174 dBm/Hz
Max. transmit power (UE) 24 dBm

Max. distance between one D2D pair 150 m
Min. attenuation by solid obstruction 25 dB

Path loss exponent for LOS 2
Path loss exponent for NLOS 4.49

No. of mmWave BS 6
α 75.85
β 3.73

Table 3.2: Simulation Parameters.

uniformly at random inside the coverage area. These smaller obstacles represent

trees, bushes, signboard-like obstacles which cannot be captured accurately by

satellite imagery. Locations and dimensions of no static obstacle is known be-

forehand by our algorithm. We assume there are 2000 pedestrians with handheld

UEs inside the area. Inside the area, there are two straight roads, intersecting

each other at a right angle. The roads handle bidirectional traffic in two separate

lanes, with car speeds chosen uniformly at random from 0 m/s to 15 m/s, the

maximum speed slowing down to 7.5 m/s near the intersection. We assume that

there are 50 cars on the roads at any time epoch. The vehicles are of size 2 m × 3

m each. The vehicles follow Manhattan mobility model; they travel in a straight

line and when they arrive at the intersection, they continue along the same path

with probability 0.5, turn either left or right with probability 0.2 each, and make

a u-turn with probability 0.1. We assume that at one time, half of the UEs have

to transmit or receive data. The rest are willing to act as relays. The parameters

are listed in Table 3.2. If there is an obstacle on the transmission path, we assume

that the corresponding attenuation is at least ν = 25 dB. This 25 dB is chosen

because a tinted glass window has the same loss as pointed out in [4]. We assume

that a tinted window offers a minimal obstruction to any link.

It is assumed that an oracle possessed the information about the locations of

obstacles while performing the simulation. We use the information provided by the

oracle, to measure the actual SINR in our simulation. In our proposed algorithm,
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we use only the link status information to find the locations of obstacles. Later, we

verify the accuracy of our algorithm with the information provided by the oracle.

It would be pertinent to point out here that there is no direct way of determining

if an obstacle obstructing a link is dynamic or static. It is only when we study long

term link status information, regarding the blockage contribution of a grid, that

we can reasonably begin to guess the nature of obstruction (if present) in a grid.

More specifically, if a link passing through a grid has high SINR even once, it is

guaranteed to be free of static obstacles; in that case, any subsequent obstruction

was surely due to a dynamic obstacle.
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Figure 3.6: Learning Phase for Varying Number of Static Obstacles.

We plot the accuracy of our learning algorithm as the amount of past data

increases. For the static obstacles, we define accuracy of the algorithm as the

percentage of grid squares correctly identified to have static obstacles. Array

S stores the probabilities of grid squares having static obstacles, we carry out

normalization, followed by some thresholding. Figure 3.6 shows the accuracy of our

algorithm (threshold being 0.2) for different number of unknown static obstacles

(160, 100 and 40), in the presence of dynamic obstacles as described earlier. As is

expected, a higher number of obstacles need a longer learning time. After about

200, 000 cycles of learning, the algorithm is able to detect almost all the static
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obstacles. If we are reasonably certain regarding the sizes of static obstacles in

the deployment area, i.e., if we are certain that obstruction is mainly due to large

buildings, we can remove the smaller islands of 1’s by filtering. Similarly, if we

have an idea about the shape of obstacles, we can trim the edges of 1’s in S. This

speeds up the learning rate as shown in Figure 3.7.
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Figure 3.7: Increase in Learning Rate with Filtering and Trimming.

For the dynamic obstacles, we define the accuracy as the percentage of dy-

namic obstacles lying in the zone identified to have a high probability of dynamic

obstacles at the concerned time epoch. For the dynamic case as well, similar

normalization and thresholding are carried out as for the static case. Figure 3.8

shows the corresponding accuracy for dynamic obstacles (threshold being 0.2), in

the presence of 50 static obstacles. Note that while some dynamic obstacles move

arbitrarily without having any regular pattern, some others like cars follow reg-

ular movement patterns. The latter can be identified, but the former is hard to

learn within a specified number of cycles. Thus, the accuracy of the algorithm for

identifying dynamic obstacles is far from hundred percent even after 1, 000, 000

cycles. In comparison, the accuracy for identifying static obstacles is very close to

hundred percent, just after 200, 000 cycles.

We compare the path allocation performance of our learning based algorithm
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Figure 3.8: Learning Phase for Dynamic Obstacles.

against an existing solution [83], which assumed prior knowledge regarding the di-

mensions and locations of the larger static obstacles from satellite imagery. How-

ever, smaller static obstacles remained unidentified from satellite imagery. The

effect of dynamic obstacles had also not been considered. We test our algorithm

at various stages of learning by assigning links based on S and D, and compare

it with the existing solution. Figure 3.9 shows the percentage difference from

the optimal link allocation for the two algorithms, plotted along various stages of

learning. We see that our algorithm gives much worse results as compared to the

existing solution at the earlier stages of learning. However, as learning progresses,

the performance of our algorithm gets much better. The optimal solution is de-

rived by assuming the location of all static and dynamic obstacles (at each time

epoch) to be known.

In Figure 3.10 we plot the maximum number of sectors (each 36◦) needed to

be explored to to check for LOS between a UE- UE pair, as the GPS resolution

is varied. Simulation is performed by varying transmission distances from 10 m

to 150 m, for GPS accuracies ranging from 1 m to 20 m. For an inaccurate UE

location, and a small small transmission distance, the algorithm has to explore a

large number of sectors in the database in the neighbourhood of the UE.
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Figure 3.9: Comparison with an Existing Algorithm.
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Figure 3.10: Number of Sectors to be Checked versus the UE-UE Distance,
for Varying GPS Accuracies.

In Figure 3.11, we plot the inaccuracy of our algorithm as the grid resolution

is varied from 10m to 20m. Since our learning algorithm uses a modified version

of Bresenham’s Algorithm, when an LOS path exists between two grid points,

all the large grid squares (having length 10 m and above) corresponding to each

of the smaller ones (as used previously) will be set to zero. This gives us pretty

inaccurate results, especially as the resolution worsens.

Finally, to check the validity of the proposed method in a real life scenario, we

capture a small portion (100 m × 100 m) of Kolkata, India from OpenStreetMap
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Figure 3.12: Performance in a Real Life Scenario.

[50] and run the static obstacle detection algorithm. The results are plotted in

Fig. 3.12.
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3.5 Conclusion

In this chapter, we propose a simple learning based algorithm for path selection

using millimeter wave communication in 5G cellular network. It does not need any

sort of satellite or terrain mapping beforehand; as a result, this directly bypasses

the problem of detecting smaller obstacles by satellite imagery. Even zones of high

dynamic congestion, like busy intersections, parking zones, can be detected by this

approach. Subsequently, a path allocation algorithm is used to assign smart links,

with less probability of obstruction.





Chapter 4

Tracking Dynamic Obstacles

using Historical Link Failures1

4.1 Overview

In Chapter 3, we dealt with locations of static obstacles, and zones of high dynamic

congestion. However, we did not track dynamic obstacles online, rather only

focusing on learning the zones with high density of dynamic obstacles from long

term historical link failure data. However, this may lead to overestimation of

dynamic obstacle presence, and possible under-utilization of good links. Indeed,

‘live’ tracking of dynamic obstacles would perhaps be better in avoiding prone-to-

failure links. This is the problem we focus on in this chapter. The classical way

to actively track dynamic obstacles is by deploying additional hardware. In fact,

hardware dependent dynamic obstacle tracking is quite a well-studied domain.

Usual hardware used for tracking include LiDARs [53], cameras [54, 90–97], and

lasers [55,98,99]. The primary drawback of deploying such additional hardware is

the considerable cost overhead that has to be borne by the service providers, and

1First half of the chapter is primarily based on the following paper:
Subhojit Sarkar and Sasthi C. Ghosh. “Mobility Aware Path Selection for Millimeterwave 5G
Networks in the Presence of Obstacles”. In: Proceedings of the 3rd International Conference
on Computer and Communication Engineering (CCCE 2023), Stockholm, Sweden,
March 10-12, 2023 pp. 67-80, Communications in Computer and Information Science, vol 1823.
Springer, Cham. , DOI: 10.1007/978-3-031-35299-7 6.

57
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subsequently by the end users. Hardware such as radars are quite expensive and

are sometimes prohibitive for ubiquitous deployment. Cameras on the other hand

introduce privacy concerns [56], along with considerable image/video processing

overhead.

In this chapter, we aim to tackle the problem of tracking dynamic obstacles

in an mmWave network, without using any additional hardware such as camera,

radar, or LiDAR. Given usual baseline infrastructure, and historical link failure

information, we attempt to obtain the trajectories of dynamic obstacles. We divide

up the chapter into two sections, the first one dealing with a single dynamic

obstacle, while the second one considers multiple such obstacles; but first, we

describe the system model considered, and the various assumptions made.

4.2 System Model and Assumptions

Network architecture: We consider an ultra dense [44], urban deployment

scenario. A central LTE BS provides ubiquitous coverage. There is a set

B = {b1, b2, · · · , bB} of mmWave BSs distributed uniformly at random inside

the coverage area. Each such BS is connected to the central LTE BS, as well

as to each other by a high speed backhaul network. We assume that the maxi-

mum mmWave transmission distance under LOS conditions is dmax; above this

threshold distance, the attenuation is so high, that the usage of mmWave bands

is not justified. We discretize the time into slots 0,∆, 2∆, . . . , where each slot is

of duration ∆.

UE modelling: There is a set of mmWave enabled UEs inside the coverage

area. All UEs have electronically steerable directional antennas [6] and mmWave

transreceivers, to compensate for the high attenuation of mmWaves. Each UE

has a superaccurate GPS chip [144], and as part of the location update process,

communicates its location to the LTE BS as part of the location update process.

Each UE can communicate with an mmWave BS if there is an LOS path

between the two, and the free space path loss is lesser than a threshold. Though



4.2. System Model and Assumptions 59

NLOS mmWave communication has been reported in some works like [151], the

corresponding path loss exponents double as compared to LOS [11]; hence, we

assume communication can happen over LOS paths only. If an LOS does not

exist between a UE and any one of the mmWave BSs, the LTE BS steps in to

provide traditional sub 6 GHz service. Each mmWave link can be represented by

a line segment {u − b}, the end points being the positions of the UE u and the

mmWave BS b respectively. The path loss between two nodes is computed using

equations from Section 1.1. We use u1 ←→ u2 to denote that the devices u1 and

u2 can communicate with each other via mmWaves.

Obstacle Modelling: There are a number of dynamic obstacles inside the

coverage area, each travelling along a straight line for a small time epoch T (elab-

orated in the next paragraph). This is a reasonable assumption, since for example,

a car changes directions rather infrequently, and T is a small period in the order

of seconds. Indeed, intersections in roadways form a small percentage of the total

road network. Unlike the UEs, the dynamic obstacles are not connected to any

of the BSs. As such, the LTE BS has no information regarding the position,

velocity, and past trajectory of the said obstacles. Since primary focus of this

chapter is to track the dynamic obstacles from past link failures, we assume that

unanticipated link failures occur due to the presence of dynamic obstacles only.

We ignore the other possible causes of link failures such as imperfect channel state

information, or high interference from neighbouring UEs. If there is an abrupt

degradation of signal quality of a link, it implies that there is a dynamic obstacle

on the transmission path. There have been existing approaches [147] that can

detect abrupt changes in signal strength, and thus detect obstacles.

Discovery and Implementation Phases: We divide up the time into

epochs of duration T . Each time epoch is further divided up into two phases,

namely the discovery phase of duration τ , and the implementation phase of re-

maining duration T − τ , as shown in Fig. 4.1. The information obtained during

the discovery phase is used during the implementation phase. After each time

epoch T , the process starts afresh. As mentioned in the previous paragraph, the

dynamic obstacles do not change their direction over an epoch. For completeness,
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τ T − τ

∆ 2∆ τ − ∆3∆ · · ·

T

· · ·
0 τ

Observation phase Implementation phase

Figure 4.1: A Time Tpoch T .

we summarize the notations used in this chapter in Table 4.1.

Symbol Interpretation
T Length of a time epoch
∆ Length of a time slot
τ Duration of discovery phase
B Set of mmWave BSs

u1 ←→ u2 u1 and u2 can communicate over mmWaves
dmax Maximum transmission distance
K Maximum number of dynamic obstacles

Table 4.1: Notation.

4.3 Tracking A Single Dynamic Obstacle

We first deal with tracking a single dynamic obstacle without additional hardware,

i.e., in this section, we considerK = 1. We achieve this by a very simple processing

of link failure data. The coverage area under consideration is discretized into

small square grids, whose resolution is limited only by GPS accuracy. Our idea

uses a modified version of the signal space partitioning scheme proposed in [51].

There, the authors estimated the spatial location of a UE by processing the set

of BSs from which is receives signals, without resorting to pinpointing the exact

geographical location. Our idea involves both signal partitioning and accurate

geographical locations to get an idea regarding the presence of a dynamic obstacle

on a transmission path. In the toy example shown in Figure 4.2, the crosses (×)

enumerated with letters are the mmWave BSs, and the disks (•) enumerated
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Figure 4.2: Estimating Possible Trajectories.

with numbers are the UEs. The dark black squares represent the known static

obstacles, and the light grey squares represent the positions of a single dynamic

obstacles at time slots t0 and t1. The dynamic obstacle is moving in the shown

direction with a velocity v. For the location of a UE i, the LTE BS is aware

of Li, the list of all mmWave BSs from which it is supposed to receive signals

(under the absence of any dynamic obstacle). At a time t, an idle UE receives

signals from the set L′
i(t) of all mmWave BSs that are within its close LOS

range, and transmits the same to the LTE BS. Comparing this list with Li,

we get an idea regarding the presence of a dynamic obstacle. In Figure 4.2, we

see that links 3 − B and 4 − C are blocked at time t0. This tells us there is a

dynamic obstacle on their spatial intersection position (as we have considered a

single dynamic obstacle). We note that at time t0, even link 1 − B is blocked;

however, since the location of the static obstacle is known beforehand, we do not

take this as a marker for dynamic obstacle. Similarly at time t1, we find that links

2−D and 5− A are blocked, which tells us the updated location of the dynamic

obstacle. We summarize this in Table 4.2. Using the two intersecting locations,

and the time interval [t1, t0], we estimate the trajectory of the dynamic obstacle.

We point out here that it may very well happen that the dynamic obstacle will not

obstruct any link at multiple time instances, thereby making position extraction

impossible. However for UDNs, this happens in rare cases, as validated in the

simulation section.
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UE (i) Li L′
i(t0) L′

i(t1)
1 A A A
2 A, B, C, D A, B, C, D A, B, C
3 B, C C B, C
4 B, C B B, C
5 A, C, D A, C, D C, D
6 C, D C, D C, D

Table 4.2: Signal Partitioning.

In the pre-processing stage the LTE BS computes the set of all transmissible

mmWave BSs from each grid location. The following array based implementation

is done to generate L(i, j), with i representing a grid point, and j being a mmWave

BS in B.

L(i, j) =

1, if i←→ j

0, otherwise

(4.3.1)

After deployment, each idle UE i sends the list of mmWave BSs from which

it is receiving signals, to the LTE BS. Using this data over a the discovery phase

{∆, 2∆, · · · , τ}, the LTE BS generates L′
i(t). In other words, L′

i(t) stores the

list of mmWave BSs from which i had an unobstructed, short LOS at time t.

For a given τ , Li and L′
i(t) become the input of Algorithm 4.1, Li(t) being the

subset of Li corresponding to the grid locations of i at time t. We calculate the

exclusive OR (X-OR) of the two input arrays for each time slot t and UE i, and

store it in Y t
i . This gives us an efficient measure of those links that are blocked

due to a dynamic obstacle. For a pair of blocked UEs (u1, u2) at time t, the

logical OR of Y t
u1

and Y t
u2

gives us the spatial intersection points of the two links,

and is subsequently used as a point in the trajectory T of the dynamic obstacle in

the intersect() function. Repeating this step over the discovery phase τ , we get

a set of points along with the corresponding time slots. Using T and W , we can

estimate trajectory cone
−→
C and velocity −→v of the dynamic obstacle. We define

trajectory cone as the set of grids that encompasses all the possible grid locations

of the dynamic obstacle in the future.
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Algorithm 4.1: Trajectory Cone Estimation of a Dynamic Obstacle.

Data: L, L′[∆, 2∆, · · · , τ ]
Result:

−→
C , −→v

1 for t ← 1 : τ do
2 foreach user i do
3 Yt

i ← Li ⊕ L′
i(t)

4 foreach (u1, u2) | u1 ̸= u2 do
5 if Yt

u1
∨ Yt

u2
̸= 0 then

6 Ti ← intersect(Yt
u1
, Yt

u2
, u1, u2)

7 break

8 Using T and τ , estimate
−→
C and −→v

9 return
−→
C , −→v

(a) (b)

Figure 4.3: (a) Possible Trajectory Cone of Dynamic Obstacle, and (b)
Possible Zone of Obstruction Due to Dynamic Obstacle.

Remark I : There is however, a subtle additional point that has to be taken

care of. The finite grid resolution introduces inaccuracy in the predicted path. In

other words, trajectories at different angles may very well have same intersecting

grids. In Figure 4.3(a), the positions of the dynamic obstacle at time t0 and

t1 are shown by disks. As is evident, the finite grid resolution maps multiple

possible trajectories to the same points. The larger the resolution, the larger is

the estimated trajectory cone. In other words, the trajectory cone is the set of

grids that contains all possible obstacle trajectories. To deal with this as shown

in Figure 4.3(b), we enumerate the maximal set of possible trajectories of the
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dynamic obstacle. If we have more and more information regarding the positions

of the dynamic obstacle, this cone shrinks. In other words, the larger the τ , the

greater the accuracy; however, too long a discovery phase decreases the duration

of the implementation phase. This decreases the usefulness of tracking since the

dynamic obstacle may change its velocity after a time epoch T .

Remark II : We point out here that this approach cannot be applied very easily

for multiple obstacle scenario. This is because in such a case, there is no way of

deducing which of the obstacles obstructed the transmission (or indeed, if multiple

of them did). In Figure 4.2, the links 2−D and 5−A may be have been blocked

at time t1 by an entirely different obstacle that obstructed link 4− C at time t0.

We would have no way of knowing which obstacle(s) obstructed the links; in fact,

each link might even have been blocked by multiple obstacles on a transmission

path. In such cases, we would not have been able to distinguish between them

using this approach.

Results On Single Obstacle Tracking

The modelling parameters are mostly adapted from [152]. We consider a square

area of size 200 m × 200 m as the coverage area under the LTE BS, the grid

resolution being 1m. An LTE BS provides ubiquitous coverage, while some

mmWave BSs provide high speed, short range services. There are some known

static obstacles inside the coverage area, size of each being 5 m × 5 m. There is a

single dynamic obstacle moving in a straight line, over a time epoch. We define the

accuracy of our approach as the percentage of time the dynamic obstacle is present

in the reported trajectory cone, and plot it in Figure 4.4. Our approach would

not have been very successful in sparsely deployed networks, with the trajectory

being identified in only 20% of the cases for 10 mmWave BSs and 50 relay UEs.

However, as we move towards ultra dense networks and heavy user density, we see

that the trajectory of the dynamic obstacle can be obtained accurately in upto

90% of the cases.
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Figure 4.4: Obstacle Tracking Accuracy.

In this half of the chapter, we have proposed a simple algorithm to track a

dynamic obstacle inside an mmWave transmission environment without using any

additional hardware. It should be pointed out here that this approach requires a

large number of mmWave BSs to track the obstacle, which might be impractical.

However, the target of this section was primarily to be a proof of concept of the fact

that a dynamic obstacle can be tracked without cameras. Next, we will consider

the more challenging problem of tracking multiple dynamic obstacles, without

resorting to any additional hardware.

4.4 Tracking Multiple Dynamic Obstacles

We now turn our attention towards the much harder, multiple dynamic obstacle

tracking challenge. As in the previous section, we will not use any additional

dedicated tracking hardware like radars, LiDARs, or cameras. Instead, we will

rely solely on short term link failure data. Formally, our main contribution in this

section can be summarised as follows:
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• We have embarked upon, what we believe, is the first attempt to track

multiple dynamic obstacles that obstruct LOS transmission in an mmWave

network, without resorting to any dedicated tracking hardware like RGB-D

cameras.

• A ILP is developed for the dynamic obstacle tracking problem (DOTP),

and the problem is proved to be NP-complete.

• Using short term historical link failure information, we provide a greedy set

cover based algorithm to obtain the trajectories of dynamic obstacles, and

use them to achieve proactive handoffs before links are actually disrupted.

• We compare our proposed approach with an RGB-D camera based approach.

We show that for low to moderate camera coverage, our approach produces

better obstacle tracking, and subsequently manages to avoid more link fail-

ures. We emphasize that since ours is merely a predictive approach, tracking

through complete camera coverage will definitely outperform our method.

However, such ubiquitous tracking would no doubt be accompanied by ex-

cessively high expenses, which would possibly make it infeasible in practice.

It would be pertinent to point out here that the aim of this section is primarily to

demonstrate the viability of using link failure information to track dynamic obsta-

cles, without the need for any tracking hardware. The approaches presented here

are very basic, and we hope that this idea sparks interest in hardware indepen-

dent obstacle tracking approach, which can possibly help in lowering infrastructure

costs in next generation networks.

4.5 Problem Formulation

Let L be the set of all blocked links associated with an mmWave BS after the

discovery phase of a certain epoch. Let us assume that the upper bound on the

number of dynamic obstacles is K.
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In order to write the considered DOTP in a mathematical form, we introduce a

set of binary indicator variables Xk ∈ {0, 1} for all 0 ≤ k ≤ K defined as follows:

Xk =

1 when obstacle k causes at least one link failure

0 otherwise

Now, our objective is to find the minimum number of obstacles accounting for all

link failures. Thus, the objective function can be given by:

minimize :
K∑
k=1

Xk (4.5.1)

Now let us introduce another set of binary indicator variables Yk,l ∈ {0, 1} for all

1 ≤ k ≤ K and 1 ≤ l ≤ |L| defined as follows:

Yk,l =

1 when l-th link is failed due to k-th obstacle

0 otherwise

Clearly we need to have,
K∑
k=1

Yk,l ≥ 1 ∀l (4.5.2)

At time instant t, a link l is failed due to an obstacle k, only if the trajectory

line of obstacle k intersects the line segment representing the link. For notational

brevity, from now onward we refer to the trajectory of obstacle k, and the line

segment representing the link l, simply by the indices k and l respectively. A link

l is defined by its two end points lb and le. Now an obstacle k intersects a link

l at point Pk,l if and only if k partitions the line segment l in the ratio αk,l and

1− αk,l, where 0 ≤ αk,l ≤ 1 . The coordinate of Pk,l can be computed from l and

αk,l as follows.

Pk,l[x] = αk,llb[x] + (1− αk,l)le[x] (4.5.3)

Pk,l[y] = αk,llb[y] + (1− αk,l)le[y] (4.5.4)

Pk,l[t] = t such that l ∈ Lt (4.5.5)
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Here for a point P , (P [x], P [y]) denotes its spatial coordinates on the Cartesian

plane, and P [t] denotes the time when this point on the link l is being considered

and Lt is the set of all such links which are blocked at time t. Similarly, for points

lb and lb, the spatial coordinates on the Cartesian plane are given by (lb[x], lb[y])

and (le[x], le[y]) respectively. Thus L = ∪1≤t≤τLt. Now the intersection point Pk,l

must also lie on the trajectory line k, and it must therefore satisfy the equation of

the line k given by
x− xk

δxk

=
y − yk
δyk

=
t− 0

δtk

Here (xk, yk, 0) is the initial point on the line k at time t = 0. The parameters

δxk, δyk and δtk are the intercept values with x, y and t axes respectively. Thus,

we have x = xk+t δxk

δtk
and y = yk+t δyk

δtk
. Since for a line, δxk

δtk
and δyk

δtk
are constants,

they can be dealt with only two variables, namely Ak and Bk respectively, in our

mathematical program. Thus, whether the point Pk,l lies on the line k or not, can

be encoded by the following linear constraints ∀k, l:

Pk,l[x] = xk + Pk,l[t] Ak (4.5.6)

Pk,l[y] = yk + Pk,l[t] Bk (4.5.7)

Note that here, Pk,l[t] = t, is a constant specified by the link l ∈ Lt. Now

combining (4.5.3) with (4.5.6), and (4.5.4) with (4.5.7) we have the following two

linear constraints:

αk,llb[x] + (1− αk,l)le[x] = xk + Pk,l[t] Ak (4.5.8)

αk,llb[y] + (1− αk,l)le[y] = yk + Pk,l[t] Bk (4.5.9)

Note here αk,l, xk, yk, Ak, Bk all are optimization variables and the rest are con-

stants. We must also ensure 0 ≤ αk,l ≤ 1 whenever Yk,l = 1. This can be encoded

as a linear constraint by introducing a large positive constant M , denoting positive

infinity as follows:

−(1− Yk,l)M ≤ αk,l ≤ 1 + (1− Yk,l)M (4.5.10)
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If M is infinity, it can be verified that whenever Yk,l = 1, 0 ≤ αk,l ≤ 1, and

−∞ < αk,l <∞ when Yk,l = 0.

The integrality constraints are given by

Xk, Yk,l ∈ {0, 1} (4.5.11)

Thus the ILP is given by the objective function (4.5.1) and constraints (4.5.2),

(4.5.8), (4.5.9), (4.5.10) and (4.5.11).

We next prove that the problem of detecting multiple obstacle trajectories is

NP-complete.

Lemma 4.1. DOTP is NP-complete.

Proof. To show that DOTP is NP-complete, we choose the point-line-cover (PLC)

[153] problem as the candidate for reduction. In PLC, given n points and an

integer K, we need to decide whether there exists K straight lines such that all

points are covered. Here, a line L is said to cover a point p if and only if p lies on

L. PLC is a known NP-complete problem [153]. Given an instance I = (P,K),

where P = {p1, p2, · · · , pn}, of PLC, we apply the following reduction. For every

point pi ∈ P , we create two points p′i and p′′i , both having coordinates same as

that of pi. Moreover, (p′i, p
′′
i ) forms a link of zero length at time ti for our DOTP.

Now suppose, there exists a deterministic polynomial time algorithm D for DOTP.

Then for a given instance I ′ = (L, K) of DOTP, where Lti = {(p′i, p′′i ) | pi ∈ P},

and L =
n⋃

i=1

Lti , D decides in polynomial time whether there exist K lines such

that all links are intersected by at least one of these lines. Now by construction, if

a line intersects a link (p′i, p
′′
i ), it must also cover the original point pi in PLC, and

vice versa. This means we have essentially solved instance I of PLC in polynomial

time. This is a contradiction. Therefore, DOTP is NP-hard, and such an algorithm

D cannot exist unless P=NP.

Now to show DOTP is also in NP, consider the following. Given an obstacle

trajectory and a link, we can check in constant time whether the link intersects
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the trajectory. Thus, for K trajectories, and n links, we can check whether all

links are blocked in O(nK) time. Thus, DOTP is NP-complete.

4.6 Discovery and Implementation Algorithms

As mentioned in Section 6.2, our approach works in two phases. While in the

discovery phase we try to obtain the possible trajectories of the dynamic obstacles,

in the implementation phase we apply this knowledge to achieve proactive handoffs

with an aim to avert link failures. We now present a greedy algorithm to obtain

the set of obstacle trajectories O, and follow it up with a simple handoff scheme

to avert link failures.

4.6.1 Dynamic Obstacle Tracking Algorithm

We can model DOTP as a set cover problem as follows. Suppose we are given some

candidate trajectory lines, each covering a subset of the universe L. A trajectory

line k covers a link l ∈ L if k intersects l. Then an optimal (minimum) set cover

of this universe, essentially gives us the required solution of the DOTP. Recall that

the set cover problem is a well known APX-hard problem [154]. A greedy solution

to set cover can be obtained by repeatedly selecting the set covering maximum

number of yet-to-be-covered elements. This approach has an approximation ratio

of log n, where n is the number of candidate sets. Thus given a set of possible

trajectory lines, we already have an approximation algorithm that returns a min-

imal subset of trajectory lines covering all links. The main challenge is to get

this set of candidate trajectory lines, as there can be infinitely many possible lines

intersecting just two links! However, using the following lemma, we show that we

can always generate a finite set of such candidate lines.



4.6. Discovery and Implementation Algorithms 71

Observation 1. For a set of links associated with a single BS and blocked by a

common obstacle, the links (line segments), the obstacle trajectory (line), and the

BS (point), lie on the same plane.

The intersection point of a blocked link and an obstacle trajectory is actually

a point in 3-D, where the third dimension is the time instant at which the link is

blocked by the obstacle trajectory. Let us consider a single base station, and a set

of links which are blocked by a common obstacle trajectory. Thus, if we consider

a 3-D environment, with time being the third axis, the BS, the said blocked links,

and the obstacle trajectory must lie on a single plane. Now, for such a plane, we

have the following lemma.

Lemma 4.2. If a line L intersects the set of m links L =
{
{u1 − b}, {u2 −

b}, · · · , {um − b}
}
associated with a BS b, there exists at least one (ui, uj) pair

(1 ≤ i, j ≤ m, i ̸= j) such that the line passing through ui and uj must also

intersect all of these links.

Proof. Let us assume that an oracle has provided us with the actual trajectory

line L of the obstacle which causes the m links to fail. We can always translate

the given trajectory line parallel to itself till it reaches the location of any one

UE, say i; let the new line parallel to L and passing through i be called L′.

Thereafter, keeping i as a pivot, we can rotate L′ till it touches another UE,

say j. Let this line obtained after rotating L′ about i be called L′′. Notice that

L′′ is an extension of the line segment formed by joining i and j. Furthermore,

the translation and rotation operations have been done ensuring that all links are

touched by the line L′′, i.e., none of the links become uncovered. Hence L′′ is a

candidate trajectory.

In Fig. 4.5, L represents the actual trajectory line. L′ is the translated line

that passes through u4 and parallel to L. After rotating L′, about u4, we get L′′

which passes through both u2 and u4, and intersects all the links in L =
{
{u1−b},

{u2 − b}, {u3 − b}, and {u4 − b}
}
.
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L

L′

L′′
u4

u2

b

u1

u3

Figure 4.5: L′′ is a Candidate Trajectory Line that Intersects All the
Blocked Links.

Remember that L represented a set of blocked links which had been blocked by

a single obstacle. Let us denote L̂ as the set of all blocked links associated with b.

If there are k obstacles that block all the links in L̂, there are essentially k planes

as described above. However, we have no idea regarding the number of obstacles

that were involved in blocking. Using the above lemma, we can essentially find(|L̂
2

)
planes (each containing b, and a pair of UEs). This actually gives us a way

to obtain a finite candidate trajectory set. If we consider the set C of all lines

passing through the all possible pairs of UEs associated with a BS, the required

trajectory lines must be a subset of C. As there can be
(|L̂|

2

)
possible UE pairs,

|C| = O(|L̂|2). Moreover, the optimal solution must be the minimum subset of C

covering entire L̂.

Given a candidate line c ∈ C joining two end points of two links from L, we

scan the entire L, to find how many links are intersected by this line k (taking

into account the respective lines), which gives us the set Ck ⊆ L, the set of links

covered by this line. This can be computed in linear time with respect to L. Once

we obtain all such Ck, we follow the footsteps of greedy set cover solution described

above. This will return us at most OPT × log(|L|) many trajectories where OPT

is the size of optimal set cover solution. This process is formalized into Algorithm

4.2. Note that the intersection() procedure has to perform the checking in 3-D,

time being the third dimension.

Algorithm 4.2 takes input the set L after the time τ , and outputs the set O of
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Algorithm 4.2: Set Cover based DOTP.

Data: L
Result: O

1 Set U ← L// universe to cover

2 Set C ← ∅ // candidate trajectories

3 Set O ← ∅ // output trajectories which covers U
/* generating candidate lines */

4 for {u− b} ∈ L do
5 for {u′ − b} ∈ L and u′ ̸= u do
6 c← (u, u′) // candidate line

7 C ← C ∪ {c}

/* apply greedy set cover */

8 while U ̸= ∅ do
9 for c ∈ C do

10 Ic ← {u ∈ U | intersection(c, u) = 1}
11 k ← argmax

c′∈C
{Ic′}

12 U ← U \ Ik
13 O ← O ∪ {k}
14 Return O

trajectories that intersects all links in L. Since |C| = O(|L|2), and intersection()

takes O(|L|2), the overall running time of Algorithm 4.2 is O(|L|4).

4.6.2 Proactive Handoff Algorithm

Armed with the set O of reported trajectory lines, and the currently active set of

links A, we can now proceed towards triggering handoffs for obstacle prone links

in the implementation phase. The algorithm begins off by taking input O and A,

and outputs a set of new links L′. Here, an active link a ∈ A is represented by a

pair {u− b}. For each such active link a, we call the intersection() subroutine,

and check for any possible intersection with trajectories in O in future; if such

a possibility exists, we trigger a handoff. For the UE u, we check whether an

mmWave BS b′ ̸= b exists, such that {u − b′} is not intersected by any of the

obstacle trajectories in O (in future). If such an mmWave BS b′ exists, we update

the set L′ with the new link {u − b′}. If no such mmWave BS exists, the LTE
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BS steps in to provide sub-6 GHZ service, and we update the set L′ with the link

{u− LTE BS}. This process is formalized into Algorithm 4.3.

Algorithm 4.3: Proactive Handoff Algorithm.

Data: A, O, B
Result: L′

1 Set L′ ← ∅ // new links

2 for a = {u− b} ∈ A do
3 for o ∈ O do
4 if intersection(a, o) = 1 then // trigger handoff

5 Set flag ← 0
6 for b′ ∈ B | b′ ̸= b do
7 for o′ ∈ O do
8 if intersection({u− b′}, o′) = 0 then
9 L′ ← L′ ∪ {u− b′}

10 Set flag ← 1
11 break;

12 if flag = 0 then
13 L′ ← L′ ∪ {u− LTE BS}

14 A ← A \ a
15 Return L′

4.7 Simulation Experiments

To demonstrate the handoff performance of our algorithm and compare it with an

RGB-D camera based method [90], we first select a smaller simulation setup as

follows. We consider a service area of size 100 m × 100 m. There are 2 mmWave

BSs which can provide coverage to the UEs having LOS with any of them, and

an LTE BS which provides ubiquitous coverage. There are a few obstacles of

size 1 m × 1 m which are moving independently inside with a velocity chosen

uniformly at random from [0, 10] m/s. The obstacle can change its direction after

an epoch T of duration 5 second. There are several UEs communicating with

the mmWave BSs. The obstacles cause link failures, and the same is reported

at the corresponding mmWave BS over the discovery phase. After the end of

time τ = 3 second, each mmWave BS runs Algorithm 4.2, and determines a
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set of trajectories O. Thereafter, Algorithm 4.3 is run in a centralised manner

at the LTE BS, and the set of links that are at risk of breaking due to the

obstacles is determined. Handoff is triggered at such UEs in an attempt to

provide uninterrupted service. As is obvious, scarce UE density will lead to
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Table 4.3: Confusion Matrices.

low number of link failures, leading to insufficient information, and inaccurate

predictions. We demonstrate the effect of UE density in two confusion matrices;

Table 4.3a shows the effect for 10 failed links, while Table 4.3b shows the effect for

100 failed links. It is evident that the algorithm performs poorly when the UE

density is low, giving correct handoff requirements only 50% of the time. However,

the performance improves to above 80% when the number of failed links is 100.

We point out here though, that achieving complete accuracy appears unlikely

without dedicated tracking hardware. Indeed, the same obstacle may obstruct

links associated with multiple mmWave BSs, which our algorithm would report

as multiple trajectories, thereby introducing inherent false positives. In other

words, in the absence of sufficient link failure information, the algorithm performs

poorly.

Next, we show the tracking performance of an RGB-D camera based approach.

As in [90, 102], we consider Microsoft Kinect cameras [106] to be the tracking

devices. These cameras typically have a field of view of 90◦, and range around few

meters (0.5 to 3.5 m) [106]. We vary the camera count, and deploy them uniformly

at random inside the coverage area. We assume that obstacles whose trajectories

lie fully within the coverage area of the cameras, are successfully tracked. As shown
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Figure 4.6: Coverage by Typical RGB-D Cameras.

in Fig. 4.6, it takes hundreds of RGB-D cameras are deployed for the considered

100 m × 100 m service area to achieve complete tracking capability.
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Figure 4.7: Handoff Performance vs RGB-D Camera Count.

The comparison of handoff performance between our method, and an RGB-D

camera based method [90] is given in Fig. 4.7. We define handoff performance

as the percentage of links actually required handoffs, and were handed over to

unobstructed mmWave BSs. For low camera count, the performance is worse since
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handoff requires tracking information at two stages; one to determine the at risk

links, and the other to predict whether the newly allocated link will be obstructed.

If the number of deployed RGB-D cameras is below 150 for the considered coverage

area of size 100 m × 100 m, our proposed approach clearly outperforms the camera

based approach. If the camera density is huge (more than 150 in this case), then

the camera based approach performs better than ours. Since ours is simply a

prediction algorithm based on historical link failure data alone, sufficient coverage

obtained by means of deploying a large number of RGB-D cameras will certainly

outperform our approach. In real life, achieving complete RGB-D camera coverage

will seldom be the case; this is because of their small ranges (few meters), and all

obstacles may not have line of sight with the deployed cameras. To achieve this

practically, a huge number of cameras are required to be deployed in the coverage

area, with marked increase in deployment costs.

To validate the performance of our proposed tracking approach in a real life sce-

nario, we run simulations using the CRAWDAD taxi dataset [69], which contains

GPS taxi traces in San Francisco Bay Area, USA. We randomly select 15 taxis

from this dataset as our dynamic obstacles, and run our experiments considering

a service area of size 5000 m × 5000 m. We consider a set of link requests gen-

erated uniformly at random over the service area, for the considered time period

epoch T = 12 second. We execute Algorithm 4.2 on the blocked links generated

upto time τ . We measure the performance of our proposed scheme based on three

metrics, namely accuracy, precision, and sensitivity, which are defined as follows.

• accuracy : the ratio of number of links correctly predicted according to their

blocking status, to the total number of links under consideration.

• sensitivity : ratio of the number of links correctly predicted to be “blocked”,

to the total number of actually blocked links.

• precision: ratio of the number of links correctly predicted as “blocked”, to

the total number of links predicted as “blocked” (both correctly, as well as

incorrectly).
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We vary the duration of discovery phase τ from 5 to 10 seconds, and plot these

three metrics in Fig. 4.8 for different number of obstacles and broken links. As

is intuitive, all three metrics see an improvement with increase in discovery phase

time τ . With increase in τ , we get more information about the blocked links, lead-

ing to improved accuracy, sensitivity, and precision. However, we cannot indefi-

nitely increase τ , since as τ increases, duration of implementation phase decreases,

leading to less utility of the learnt information. In other words, if we increase τ

indefinitely, the duration of the implementation phase shortens, thereby reducing

the time for which the output of our tracking algorithm can be used for achieving

uninterrupted service.

4.8 Conclusion

In this chapter, we have taken a rather ambitious attempt at tracking multiple

dynamic obstacles in an mmWave enabled coverage area, without deploying any

sort of dedicated tracking hardware. The aim of this work was to demonstrate the

viability of such an approach, and achieve subsequent proactive handoffs in an at-

tempt to lower link failures. We proved the hardness of the problem, and modelled

it as a version of the classical set cover problem, which we solved using the usual

greedy approximation approach. Given the range constraints of RGB-D cameras,

we show that unless near complete coverage is provided with huge number of such

hardware, our approach performs better obstacle tracking, and subsequent hand-

offs. We further show that the performance of our predictive approach improves

with high UE density (more link failure information), hypothesising that in sparse

networks, we might need augmentation with some additional hardware to obtain

satisfactory prediction, which can lead to new optimization problems. Since our

tracking algorithm runs independently at each mmWave BS, in the implemen-

tation phase we can end up having more reported trajectories than the number

of actual obstacles. This is because, the same obstacle which obstructed links

associated with multiple mmWave BSs may be reported as multiple obstacles in

our approach. One seemingly interesting way to improve the approaches in this
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Figure 4.8: Accuracy, Sensitivity and Precision vs. Discovery Time τ for
Varying Number of Dynamic Obstacles and Link Requests.

work is by considering dedicated roads and sidewalks along which the dynamic

obstacles are constrained to move upon. We have not assumed any such paths; it
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seems logical that such constraints will in fact, improve prediction performance.

Such avenues will be explored in our future work.



Chapter 5

Nearest is not the best! Towards

Stable Link Allocation1

In Chapter 3, we provided a path selection algorithm that assigned the path with

the highest calculated SINR, without any consideration for UE mobility. How-

ever, that might not be the most prudent approach. Indeed, a link with high

SINR at a time may degrade rapidly at the next time instant due to the intro-

duction of obstacles on the transmission path brought about by UE mobility.

We illustrate this by an example in Figure 5.1(b). Let us consider a D2D link

between two UEs UA and UB moving in the directions as shown, with velocities

vA and vB respectively. At time t0, the two UEs had an unobstructed LOS, and

were assigned a link. However, there is a nearby static obstacle, which at time

t2, will cause obstruction of the said link. Depending on UE velocity and static

obstacle density, such obstruction may soon trigger handoff requests, which will

not only decrease network throughput, but also degrade user experience. A simi-

lar incident will occur if the transmission distance between two devices increases

rapidly due to their mobility. We illustrate this in Figure 5.1(a). The two UEs

1This chapter is primarily based on the following paper:
Subhojit Sarkar, Subhankar Ghosal, Subhadip Bandyopadhyay and Sasthi C. Ghosh. “A
Stable Link Allocation Algorithm for 5G Millimeterwave Networks.” In: Proceedings of the 15th
International Conference on COMmunication Systems & NETworkS (COMSNETS
2023) IEEE, Bengaluru, India, January 3-8, 2023, pp. 674-681,
DOI: 10.1109/COMSNETS56262.2023.10041333.
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Figure 5.1: Toy Example Demonstrating Link Failure.

were close to each other at time t0, and hence a good D2D link was established.

However, due to the high relative velocity between them, the transmission distance

increases rapidly, and at time t4, exceeds the threshold distance dmax, above which

mmWave communication is not viable. This again leads to link degradation, and

potentially link failure.

In this chapter, we take the notion of link stability as our metric, and try to

assign transmission paths that are likely to remain active for a long time. In

Figure 5.2(a), the BS B1 is closer to the UE than B2; however, due to its

mobility, the UE is likely to spend more time in the transmission range of B2.

Thus counter-intuitively, the UE is allocated B2. A similar thing happens due

to static obstacles. In Figure 5.2(b), the closer B1 is likely to lose LOS with

the UE due to the static obstacle, unlike the farther away B2. In other words,

it might not be advisable to always assign the mmWave link with the highest

SINR (and consequently highest RSS), based on current network parameters, but

rather assign them looking towards the future, with an aim to avoid frequent link
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failures. This is the main motivation of this chapter. Note that the same notion

can be extended to relaying UEs as well; in that case, we would not always allocate

the shortest D2D link, rather study on how long the possible links are likely to

maintain the propagation requirements of mmWaves.

B1 B2

UE

v

(a)

B1 B2

UE

v

Obstacle

(b)

Figure 5.2: Further BS is Better Due to(a) UE Mobility, and (b) Static
Obstacle.

More formally, the contribution in this chapter are as follows:

1. We give a mathematical formulation of the the problem of assigning stable

mmWave links, and show that the problem is NP-complete.

2. Assuming a known UE mobility model, we provide a link allocation algo-

rithm that allocates links that have the longest calculated link active time.

3. Via simulations, we show that this approach increases the average link active

time (Tactive).

5.1 System Model

There is a central LTE BS operating at sub-6GHz, providing ubiquitous coverage.

A set B = {b1, b2, · · · , bB} of mmWave BSs is distributed uniformly at random

inside the coverage area. These BSs are connected to the LTE BS, as well

as among themselves by a high speed backhaul network. There are some known

static obstacles inside the coverage area, which block mmWave signals. Some
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mobile UEs are moving independently inside the coverage area; they can include

pedestrians with handheld mobile phones, bicyclists, or vehicular UEs with in-

built mmWave-enabled devices. All the UEs move following the random waypoint

mobility model [155]. More specifically, a UE chooses a direction uniformly at

random from [0, 2π], and a velocity uniformly at random from [vmin, vmax], and

continues in said direction for a specific amount of time, after which the process

repeats. All the UEs have electronically steerable directional antennas [6] and

mmWave transreceivers, to compensate for the high attenuation of mmWaves.

Each UE has a superaccurate GPS chip [144], an inbuilt compass, and an ac-

celerometer, which it uses to communicate its location and velocity to the LTE

BS as a part of the location update process. Two devices can communicate over

the mmWave spectrum only if the distance between them is within dmax, and

they have an LOS between them. Furthermore, to limit network congestion, the

maximum allowable hops in a transmission path is constrained to hmax.

5.2 Problem Formulation

Let us consider that at time t, there is a set U(t) of demanding UEs, and a set

W(t) of willing-to-relay UEs. Additionally, there is a time invariant set B of small

cell mmWave BSs. There is a set S of known static obstacles, whose locations and

dimensions are known at the LTE BS. An idle UE w ∈ W(t) can act as a relay

for only one demanding UE u ∈ U(t). We consider a graph G(t) = (V,E) where

there is a vertex corresponding to each element in U(t) ∪W(t) ∪ B, and there is

an edge between a pair of vertices if the two devices have an LOS path from one

another, and their distance is within a threshold dmax.

Note that there may exist multiple potential paths from each ui ∈ U(t) towards

each BS bk in B. Let pik be the set of all such paths from ui to bk. Let Pi =
⋃

k∈B pik

be the set of all paths from ui to any of the BSs. For a given UE ui, our task is to

allocate the most stable path in Pi. The stability of a path is defined in the next
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Figure 5.3: A Toy Example Demonstrating Stable Path Finding.

paragraph. If there is no such path from a UE, i.e., |Pi| = 0, data transmission

takes place over traditional sub-6GHz network.

Since UEs are mobile and network topology is time varying, a path active at

time t may not remain active at next time instant t + 1. Re-assigning a path in

place of a broken one would involve substantial searching, which would incur an

overhead on the communication. Thus, we need to minimize the number of path

switches. A way to achieve this is by selecting paths which are less likely to fail

in the near future. A path would fail if any one of its corresponding link fails.

Now, we define the stability of a link −→yz at time t as the probability eyz(t) that

the two devices y and z can communicate using mmWaves at time t, i.e., y and z

can communicate if dist(y,z)≤ dmax and there is an LOS between them at time t.

Since the UEs are assumed to move independently of each other, the stability of

each link is assumed to be independent. Thus for a multi-hop path, the stability

of the entire path is defined as the product of the individual stabilities of all the

links that form the path. That is, the stability of a path originating at ui ∈ U(t),

going through the willing relays w1, w2, · · · , wn ∈ W(t) and terminating at bk ∈ B

is defined as Si = eiw1ew1w2 · · · ewnbk . Our aim is to find a stable path for each

UE to any BS. In other words, our objective is to find a set of most stable relay

disjoint paths for all ui ∈ U(t) to some BS in B. Here two paths are disjoint if

there are no common willing relays between them; this is because each relaying

UE can handle a maximum of one incoming/outgoing traffic at any given time

instant. Note however, that multiple paths can terminate at the same mmWave

BS.
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We illustrate this using a simple example in Fig. 5.3. There are two UEs

u1 and u2 which want to communicate with a BS b. There are 2 nearby idle

UEs r1, and r2 which can act as relays. The edge weights denote the stabilities

of the corresponding links. Note that a relaying UE can relay the data from at

most one demanding user. Thus the corresponding stabilities of the paths u1 − b,

u1−r1− b, u2−r1− b, and u2−r2− b are 0.6, 0.72, 0.54, and 0.4 respectively. The

problem basically boils down to allocating stable multi-source, multi-destination,

edge-disjoint paths. We call this problem stable path selection problem (SPSP).

Let us consider an indicator variable X i
yz, for y ∈ U(t) ∪W(t), z ∈ W(t) ∪ B,

and ui ∈ U(t), such that

X i
yz =

1, if −→yz is assigned for ui

0, otherwise.

(5.2.1)

We can now formally present the problem as a mathematical program as follows:

maximize
∑
i

(
Si
∑
z

X i
iz

)
(5.2.2)

subject to the following constraints

Si =
∏
y

∏
z

(
X i

yz ∗ eyz + (1−X i
yz)

)
∀ui (5.2.3)∑

y

X i
yα −

∑
z

X i
αz = 0 ∀α ∈ W (t) & ∀ui (5.2.4)∑

y

X i
yα ≤ 1 ∀α ∈ W (t) & ∀ui (5.2.5)∑

i

X i
yz ≤ 1 ∀y, z (5.2.6)∑

y

∑
z

X i
yz ≤ hmax ∀ui (5.2.7)

X i
yz ∈ {0, 1} (5.2.8)

We intend to maximize the sum of stabilities of the allocated paths (5.2.2). The

stability of the path for each requesting UE is computed by equation (5.2.3).
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Here if a link −→yz is allocated to the path originating at ui (i.e., X
i
yz = 1), we get

X i
yz ∗ eyz + (1 − X i

yz) = eyz; otherwise, we get 1 when the link is not allocated

to the path (i.e., X i
yz = 0). Flow constraint (5.2.4) signifies that the number of

incoming links is exactly equal to the number of outgoing links at all relay nodes

on a given path. Constraint (5.2.5) together with (5.2.4) ensures that each relay

node appears at most once in a particular path. Furthermore, a relay device can

be part of at most one such path, which is ensured by the constraint (5.2.6). The

maximum hop count constraint (5.2.7) puts an upper bound on the number of

links in an allotted path. The X i
yz’s are binary variables as given by (5.2.8). The

objective function (Si
∑

z X
i
iz) = Si when a path from UE i to any BS in B

exists, and 0 otherwise.

We now prove that our problem is NP-complete.

Lemma 5.1. SPSP is NP-complete.

Proof. Consider a special case of our problem where every edge weight eyz of G(t)

has the value 1. Now we construct a flow graph G ′(t) = (V ′, E ′) from G(t) = (V,E)

as follows; we designate U(t) to be the set of source vertices and and introduce

|U(t)| many sink vertices, whose set is denoted as S. Thus V ′ = V ∪ S = U(t) ∪

R(t)∪B∪S. In addition to the edges in G(t), we introduce a few extra edges (from

each b ∈ B to each s ∈ S) each with unit weights in G ′(t) such that B ∪S forms a

complete bipartite graph. Thus E ′ = E ∪ {(b, s)|b ∈ B, s ∈ S}. The edge weights

in G ′(t) denotes the flow capacity through that edge. Thus G ′(t) essentially denotes

a multi-commodity flow network. Now any algorithm that solves SPSP for the

instance G(t), essentially obtains a optimal solution of the multi-commodity flow

problem for the instance G ′(t) by selecting appropriate edges between B and S.

Since multi-commodity flow problem is NP-Complete even for unit capacity values

[156], SPSP is also NP-Complete.
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Figure 5.4: Estimating Link Active Time.

5.3 Proposed Stable Path Finding Algorithm2

In this section, we propose a greedy solution to SPSP. We consider that over a

time epoch, a UE continues along a straight line, with no change in velocity.

This is not unjustified, since in real life, obstacles usually do not change directions

frequently. We illustrate the UE- BS scenario in detail, while the UE- UE case

can be similarly approached. In Figure 5.4, there is a single static mmWave BS

at (bx, by), a static obstacle at position (ox, oy), and a mobile UE. At time t0, the

location of the UE is at U(t0) = (x0, y0), its velocity is v, and it is moving at an

angle θ with the horizontal axis. From high school geometry, the position of the

UE at time t will be

xt = x0 + v × cos(θ)× t (5.3.1)

yt = y0 + v × sin(θ)× t (5.3.2)

According to our mobility pattern, we can find the time varying equation of

the link between the UE and the BS as:

y − yt =
by − yt
bx − xt

× (x− xt) (5.3.3)

2This algorithm is drawn from the following paper:
Subhojit Sarkar, Sasthi C. Ghosh: Mobility Aware Path Selection for Millimeterwave 5G Net-
works in the Presence of Obstacles. CCCE 2023: 67-80
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Plugging in the position of the static obstacle (ox, oy) in Equation (5.3.3), we get

the calculated time t1 at which the link will be broken due to the static obstacle

lying on its transmission path. Note that an additional checking has to be done to

ensure that the obstacle lies on the line segment joining the two devices, and not

merely on the extended line. Also, it might very well be the case that t1 is negative;

it simply implies that in such a case, the said obstacle will never block the link

under consideration as long as the velocity is unchanged. A similar checking has

to be done to calculate t2, the time for which the UE will be within the maximum

transmission distance dmax, from the BS. That is,

√
(xt − bx)

2 + (yt − by)
2 ≤ dmax (5.3.4)

Plugging Eqns. (5.3.1) and (5.3.2) in Eq. (5.3.4), we get a second degree equation

in t which gives us t2. For non-zero v, we can get one of the following scenarios:

• two imaginary values, indicating that said UE is never within transmission

range of the BS

• two unequal real values, indicating UE will lie inside the transmission range

of the BS within this time interval. In this case, we take the least positive

value as t2, the time after which the UE is likely to move out of the trans-

mission range. In case both values are negative, we can safely ignore the

considered obstacle.

• two equal real values, indicating the UE is moving tangentially to the cov-

erage area of the BS.

The final calculated transmission time for the link (considering static obstacles

and UE mobility) is the minimum of the two values t1 and t2. The UE- UE case

can be handled exactly similarly. Armed with the locations of static obstacles,

and the UE trajectories, we can now formally describe the proposed algorithm.

At time t, Algorithm 5.1 greedily allocates paths to all demanding UE, i.e.,

U(t). We create a visibility graph G = (V,E) where the nodes are communicating
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Algorithm 5.1: Stable Path Allocation Algorithm.

Data: U , W , B, S, dmax

Result: P
// Creating graph

1 for i ∈ U
⋃
W do

2 for j ∈ W
⋃
B | i ̸= j do

3 T1
ij ← obstacle(i, j, S)

4 T2
ij ← transmit(i, j, dmax)

5 Tcal ←min(T1
ij,T2

ij)

6 if Tcal > 0 then
7 addEdge(G, i, j, Tcal)

// Creating supernode

8 for b ∈ B do
9 addEdge(G, b, B, INF)
// Greedily run widest path algorithm

10 for u ∈ U do
11 Pu ← widestPath(G, u, B)
12 if Pu ̸= ϕ then
13 Add Pu to P
14 Remove non-BS nodes in Pu from G
15 else
16 Serve u via sub-6GHz band
17 Remove u from G

18 return P

devices (all UEs and all mmWave BSs). There is an edge between two nodes

only if the calculated link active time (Tactive) between the two devices is strictly

positive. The obstacle() function calculates the time to failure of a link due

to a static obstacle in S, while the transmit() function calculates the time for

which a link will be active due to the maximum transmission range criterion. The

weight of an edge in G is the minimum of the two calculates. We run a widest

path algorithm widestPath() on G, starting from each d ∈ U , and terminating

at the supernode B =
⋃
B
f . This is a modified version of Dijkstra’s shortest path

algorithm as suggested in [157]. It returns Pu, the path beginning at u and ending

at any b ∈ B, and having the longest calculated active time. The calculated

active time for a path is defined as the minimum calculated active time for a link

on that path. Thus, widestPath() basically maximises the minimum calculated
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Figure 5.5: Max. UE Velocity vs Tactive.

path active time. If the widestPath() function finds a path, the same is added

to P; the participating non-BS nodes are removed from G. In case Pd is empty,

data transmission takes place over sub-6GHz service.

5.4 Simulation Results

The modelling parameters are mostly adapted from [152]. We consider a square

area of size 100 m × 100 m as the coverage area under the LTE BS, which

provides ubiquitous coverage. Some mmWave BSs are distributed uniformly at

random inside, and provide high speed, short range services. There are users with

mmWave enabled devices moving around inside with speeds ranging from [0,10

m/s]; 50% of the UEs require a high speed link to any mmWave BS, while the

rest are willing to act as relays. There are some known static obstacles inside the

coverage area, size of each being 5 m× 5 m. We now define average link active time,

Tactive as the average time to failure of all allocated paths, which may occur due to

either obstacles, or UE mobility. In Figure 5.5, we plot the effect of the maximum

velocity (Vmax) of the UEs on the average link active time. The maximum velocity

is varied from 5 m/s to 30 m/s. We see that for low speeds, the proposed approach

outperforms the traditional RSS based approach by a significant amount. As Vmax
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Figure 5.6: No. of mmWave BS vs Tactive.

increases, the difference becomes smaller, although the proposed method continues

to outperform the RSS based method. In Figure 5.6, we plot the effect of the

mmWave BS density on the average link active time. We vary the mmWave BS

count from 5 to 30, and see that the average link active time stabilizes around BS

count of 20, and the proposed algorithm continues to provide more stable links

than the RSS based approach. The effect of the number of static obstacles inside

the coverage area on the average link active time is shown in Figure 5.7. The

obstacle count is varied from 2 to 10; since each obstacle is of size 25m2, the

number of grids covered is obtained by multiplying the obstacle count by 25. As

is obvious, with increasing number of static obstacles, the average link active time

falls for both the methods, though the proposed method continues to outperform

the traditional method.

5.5 Conclusion

In this chapter, we allocate mmWave transmission paths which have the longest

calculated time to failure, by taking into consideration static obstacles, and UE

mobility. We show via simulation that our approach provides higher average link

active times than the usual RSS-based approach. The obvious drawback of this
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Figure 5.7: No. of Static Obstacles vs Tactive.

approach is the simple mobility model considered. In real life, UE traffic is highly

correlated with the traffic environment, both spatially and temporally. One way

to bypass this is by using real life mobility traces, and satellite maps to extract

actual UE mobility, and use that data to obtain more accurate link failure times.
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Chapter 6

Joint Placement of Base Stations

and Reflectors in Urban mmWave

Networks1

6.1 Overview

Obstacle free, strict LOS requirement is one of the primary hurdles that has to be

dealt with before deploying mmWave networks. One way to deal with this prob-

lem is to densely deploy small range base stations (also called gNBs), to overcome

outage due to obstacles. However, these base stations are costly resources, and

their dense deployment may not always be feasible. Reflectors have been proposed

to augment the transmission environment, and reflect mmWaves bypassing the

obstacles. Evidently, they can be used to provide coverage in area that do not

have LOS with the available BSs, as demonstrated in Figure 6.1. One deploy-

ment approach is to place BSs and reflectors sequentially, i.e., optimally placing

the available BSs first, and subsequently deploying the reflectors at locations to

1This chapter is based on the following paper:
Rathindra Nath Dutta, Subhojit Sarkar and Sasthi C. Ghosh. “Joint Base Station and Re-
flector Placement in an urban mmWave Network”. In: 3rd International Mediterranean
Conference on Communications and Networking (MeditCom 2023), IEEE, Dubrovnik,
Croatia, September 4–7 2023 (to appear)
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Reflector

UE

gNB

Reflector

UE

gNB

Figure 6.1: Example Demonstrating Utility of Reflecting Devices.

maximally cover the uncovered area. In a two step approach, even if optimal

placement of BSs is achieved, and followed by optimal reflector placement, it is

not guaranteed that the result will achieve global optimum. We demonstrate this

by a toy example in Figure 6.2. We have a single BS, and only one reflector, and

want to achieve maximum coverage of the service area. In case we are to place the

BS without considering the reflector, the optimal location of the BS would have

been as shown in Figure 6.2. Subsequently we place the reflector R1 as shown in

Figure 6.2 to maximally cover the remaining area that do not have an LOS with

the deployed BS. It can be observed that the area shaded in grey is still uncov-

ered. However, as shown in Figure 6.3, we can achieve complete coverage by using

only one reflector R1 and one BS by considering their placement jointly. In this

chapter, we jointly deal with the problem of deploying a given number of BSs and

reflectors in a mmWave environment. In other words, we try to achieve maximum

coverage for a given amount of network infrastructure ( BSs and reflectors). Our

contribution in this chapter can be summarized as follows:

• We consider the joint placement problem of BSs and reflectors to attain

maximum coverage of the service area, and we provide a ILP for the same.

• Given the hardness of the joint placement problem, we first provide a greedy

solution based on set cover with an approximation bound.
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BS

R1

Figure 6.2: Sub-optimal Placement Failing to Achieve Maximum Coverage.

BS

R1

Figure 6.3: Optimal Placement Maximizing Coverage.

• Furthermore, we develop an LP relaxation based solution and show that it

works better that the set cover based solution.

• We perform extensive simulations to demonstrate the superiority of our pro-

posed joint solution over the existing two step approach.

6.2 System Model

We consider an urban deployment area and divide it up into grids of equal size

as in [158], each grid being represented by its centre point. The resolution of the

grids can be as small as possible, at the cost of high computational overhead. We

further consider the following for modelling our system.

Obstacles: The spatial environment of this considered area is known be-

forehand. This data can be obtained by using OpenStreetMap [50] in the pre-

processing stage. The environment consists of a set S of static obstacles like

buildings whose positions and all 3 dimensions (length, breadth, and height) are
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known to a good accuracy. For tractability, we consider the buildings to be axes

parallel cuboids.

Base stations: We consider small cell base stations, with effective transmission

distance of upto dmax, beyond which the free space propagation is too large to

provide an effective data rate. These base stations, equivalently called gNBs,

can only be deployed on the rooftops of the buildings. The set of potential BS

locations, i.e., the grids containing rooftop edges of the buildings are denoted by

G. We consider that there are NG base stations to be deployed.

Reflectors: These reflecting devices can be of two types, namely IRSs [159],

and PMRs [57]. IRSs are comparatively costlier, and can reflect radio waves

towards a particular direction using a controllable phase shift. PMRs are basically

metallic sheets and have the advantages of low cost, zero energy consumption

(unlike IRSs), but can reflect incident signals towards only one fixed direction

[cite twoStep]. Reflectors are allowed to be deployed on the building facades. The

building facades are also discretized up into grids similar to the coverage area.

The potential reflector locations on the building facades are denoted by R. We

consider that there are NR reflectors to be deployed.

Demand vector: Since some of the grids are occupied by static obstacles,

the rest form a set C of serviceable grids. We are provided with a demand vector

W = {W1,W2, · · · ,W|C|} which gives the normalised demand weights of each grid

in C. This data can be obtained by historical demand records available with service

providers. This indirectly captures the effect of dynamic obstacles, since operators

can provide appropriate weights depending on the congestion in the service area.

For example, a busy crossing may have a high demand, while a secluded alley may

have a low demand.

LOS criteria: We consider that data transmission between UE and BS (di-

rectly or via a reflector), takes place in the far-field region. The pathloss PL(a, b)

between two grids a and b can be calculated using the 3GPP pathloss models [160].

If the the distance da,b between the grids is less than dmax, and subsequently the

pathloss is lesser than a threshold, we assume that devices placed at these two
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grids can communicate with each other. For each location i ∈ C, we precompute

the LOS sets as follows:

LOS(i) = {j | di,j < dmax and i-j have LOS}

Reflection criteria: The visibility of a potential BS location j with a

grid location i via reflection off a reflector placed at k and oriented at ô can

be computed by a function A as follows, using ray tracing and Snell’s Laws.

Therefore, A(i, j, k, ô) = 1 if a reflector placed at a location k ∈ R with orientation

ô ∈ O can reflect a signal coming from BS placed at j ∈ G to a location i ∈ C,

otherwise A(i, j, k, ô) = 0. Thus we define the REFLECT sets as follows:

REFLECT(i) = {(j, k, ô) | k ∈ LOS(i), j ∈ LOS(k)

and A(i, j, k, ô) = 1}

In case the reflector being considered is a IRS, adherence to Snell’s Law is not

required, since the programmable phase shifts of the reflecting elements can reflect

a signal towards a desired direction using constructive and destructive interference.

In such cases, A(i, j, k, ô) is always treated as 1, and the REFLECT sets are defined

as follows:

REFLECT(i) = {(j, k, ô) | k ∈ LOS(i), j ∈ LOS(k)}

The notations used throughout this chapter are listed in Table 6.1.

6.3 Problem Formulation

To help us formulate the problem in an optimization framework, we introduce four

sets of binary indicator variables Ci, Gj and Rk,ô where i ∈ C, j ∈ G, k ∈ R, and
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Symbol Interpretation
S Set of static obstacles
G Set of potential gNB locations
R Set of potential reflector locations
C Set of grids to be covered
W Demand vector
dmax Maximum transmission distance
NG No. of gNB to be deployed
NR No. of reflectors to be deployed
Gpos gNB deployment locations
Rpos Reflector deployment locations

Table 6.1: Notation.

ô ∈ O, and define them as follows:

Ci =

1 if i-th grid is covered

0 otherwise

Gj =

1 if j-th grid has a gNB

0 otherwise

Rk,ô =

1 if k-th grid has a reflector oriented at ô

0 otherwise

We approximate a grid by its centre. As such, we assume a grid to be covered

if its centre has an LOS and is closer than a threshold distance, from either a base

station, or a reflector. The objective of the optimization is to obtain a maximum

weighted coverage of the service area formulated as follows:

maximize
∑
i∈C

CiWi (6.3.1)
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subject to the following constraints:

Ci ≤
∑

j∈LOS(i)

Gj +
∑

(j,k,ô)∈REFLECT(i)

Gj Rk,ô ∀i (6.3.2)

∑
j∈G

Gj ≤ NG (6.3.3)∑
k

∑
ô

Rk,ô ≤ NR (6.3.4)∑
ô

Rk,ô ≤ 1 ∀k (6.3.5)

Ci, Gj, Rk,ô ∈ {0, 1} ∀i, j, k, ô (6.3.6)

The objective function given in expression (6.3.1) tries to maximize the weighted

sum of the covered area with the given number of BSs and reflectors. Constraint

(6.3.2) forces all Cis to 0 whenever i-th grid is not covered directly by any BS

or indirectly via any reflector coupled with a BS. Constraints (6.3.3) and (6.3.4)

state the upper bound as per the available BSs and reflectors. Constraint (6.3.5)

ensures that a reflector having a unique orientation is associated with a single BS.

Finally, the 0/1-integrality constraints are given in expression (6.3.6).

Recall that for three binary variables X,A,B, the expression X = AB can be

linearized asX ≤ A,X ≤ B andX ≥ A+B−1. Now notice that constraint (6.3.2)

is nonlinear as it involves multiplication of two binary variables. This can be lin-

earized by introducing a set of new binary variables Xj,k,ô, where Xj,k,ô = Gj Rk,ô.

Now we can replace the constraint (6.3.2) with the following new constraints:

Ci ≤
∑

j∈LOS(i)

Gj +
∑

(j,k,ô)∈REFLECT(i)

Xj,k,ô ∀i (6.3.7)

Xj,k,ô ≤ Gj ∀j, k, ô (6.3.8)

Xj,k,ô ≤ Rk,ô ∀j, k, ô (6.3.9)

Xj,k,ô ≥ Gj +Rk,ô − 1 ∀j, k, ô (6.3.10)

Xj,k,ô ∈ {0, 1} ∀j, k, ô (6.3.11)
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Thus the final ILP is given by the objective function (6.3.1) and the constraints

(6.3.3) through (6.3.11).

6.4 Joint Placement Algorithms

In this section, we present two greedy approaches for the considered joint place-

ment problem. The first one is based on the classical set-cover problem, while the

second one uses deterministic rounding with LP relaxation.

6.4.1 Joint Placement Using Set Cover

Recall that given a set S = {S1, S2, . . . , Sn} with each Si being a subset of some

universe U , for a given integer k the objective of the max-cover problem [161,162] is

to choose k sets from S such that their union is maximized. Now observe that, we

can pose the joint placement problem as a set cover instance as follows. Let C be

the universe that we want to maximally cover. Each BS or a reflector associated

with a BS has a fixed coverage area and thus forms the sets Si. Now we apply

an iterative greedy selection procedure, where in each iteration we select a BS

(or a reflector) location that maximally covers the (remaining) area. Note that a

new BS can only be placed if the number of placed BSs is less than NG, while a

reflector can only be placed if the number of placed reflectors is less than NR and

a BS is there for its association. After placing a BS (or a reflector) we update the

remaining coverage area. We continue this process until we run out of resources,

or the entire area is covered. This process is formalized into Algorithm 6.1.

In Algorithm 6.1, covGj and covRk,ô denote the set of locations covered by the

BS placed at location j, and the reflector placed at location k with orientation ô,

respectively. Here Gpos and Rpos are the set of selected BS locations and reflector

positions/orientations respectively. Initially both Gpos and Rpos are empty sets

and at each iteration of the while loop, either a BS or a reflector is selected, and

the corresponding set is updated. We update the set of uncovered locations U
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Algorithm 6.1: Joint Placement Using Set Cover.

Data: C, LOS, REFLECT, NG, NR

Result: Gpos, Rpos

1 Initialize U ← C, ℓ← 0, Gpos ← ∅ and Rpos ← ∅
// Locations covered by each gNB/reflector

2 covGj = {i ∈ C | j ∈ LOS(i)} ∀j ∈ G
3 covRk,ô = {i ∈ C | ∃j, (j, k, ô) ∈ REFLECT(i)} ∀k, ô
4 while ℓ < NG +NR do
5 j ← argmax

j′
{covGj′ ∩ U}

6 k, ô← argmax
k′,ô′

{covRk′,ô′ ∩ U}

7 if |covGj ∩ U | ≥ |covRk,ô ∩ U | and gNBs already placed < NG then
// Finalise a gNB at j

8 Gpos ← Gpos ∪ {j}
9 Update U ← U \ covGj

10 else
// Finalise a reflector at k

11 Rpos ← Rpos ∪ {(k, ô)}
12 Update U ← U \ covRk,ô
13 if U = ∅ then
14 break

15 ℓ← ℓ+ 1

16 return Gpos and Rpos

accordingly. If we achieve complete coverage, i.e., U = ∅, we terminate the loop;

otherwise, the loop continues till the resources ( BSs and reflectors) are exhausted.

With efficient hashing, the set intersection and set minus operations can be

implemented efficiently that runs in linear time with respect to the cardinality of

the sets. Here the size of cov sets can be at most |C|. Therefore, each iteration

requires at most O(|C|(|G| + |R||O|2)) time. Since we iterate at most (NG +NR)

times the overall running time of Algorithm 6.1 is O(|C|(|G|+ |R||O|2)(NG+NR)).

It in known that the greedy max-cover algorithm has a tight approximation ratio

of 1 − 1
e
[161, 162]. Since our Algorithm 6.1 follows the same strategy of greedy

max-cover it must also provide the similar approximation guarantee. Thus, the

locations covered by Algorithm 6.1 should be at least (1 − 1
e
)OPT , where OPT

is the optimum number of locations that could have been covered by an optimal

algorithm.
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6.4.2 Joint Placement Using LP Relaxation

Although the previous algorithm returns a solution with some guarantee, we

present another solution to the same joint placement problem which we exper-

imentally find to be better than the previous solution. More specifically, here we

present an LP relaxation based joint solution for the considered base station and

reflector placement problem. Note that while solving a ILP is computationally

hard for large instances, the corresponding relaxed LP can be solved in polyno-

mial time. Here, relaxed LP corresponding to a ILP implies that the integrality

constraints (6.3.6) and (6.3.11) are relaxed so that the variable can take any real

value in the closed interval [0, 1]. Now solving a relaxed LP in no way guarantees

the variables to attain integral values which is required in an actual solution of

the problem. One can round-off all the variables to closest integers but it may not

satisfy all the constraints of the original ILP, making the solution invalid. Here

we apply an iterative rounding-off scheme where in each iteration, we round-up a

single variable either a Gj or a Rk,ô which is closest to 1 maintaining feasibility,

that is satisfying all the constraints. This essentially means that we fix placement

of either a BS or a reflector in each iteration thus solving the placement prob-

lem jointly. Given Gj = 1 (or Rk,ô = 1) as an additional constraint, we solve

the relaxed LP once again and repeat the same process. Note that, here we are

adding the constraint Gj = 1 (or Rk,ô = 1) one variable at a time. Thus to avoid

infeasibility, the only thing we need to take care of are constraints given in (6.3.3)

and (6.3.4), the rest are automatically satisfied as per our design. Whenever a

full coverage is attained, we may terminate the loop early. Otherwise we continue

until the available BS and reflectors are exhausted. This procedure is formalized

into Algorithm 6.2, which we briefly describe now.

Here Gpos and Rpos are the sets of BS locations and reflector positions/orien-

tations respectively, as before. Let LP(ℓ) denotes the LP at iteration ℓ. Initially

LP(0) is the relaxed version of the original ILP formulated in Section 6.3. At each

iteration of the while loop, we solve LP(ℓ) and select either a BS or a reflector

having the highest fractional value satisfying the constraints (6.3.3) and (6.3.4).



6.4. Joint Placement Algorithms 107

Algorithm 6.2: Joint Placement Using LP Relaxation.

Data: C, LOS, REFLECT, NG, NR

Data: Gpos, Rpos

1 Initialize i← 0, Gpos ← ∅ and Rpos ← ∅
2 Set LP(0) ← relax the ILP given in Section 6.3
3 while i < NG +NR do

4 Solve LP(i) optimally
5 j ← argmax

j′
{Gj′}

6 k, ô← argmax
k′,ô′

{Rk′,ô′}

7 if Gj ≥ Rk,ô and gNBs already placed < NG then
// Finalise a gNB at j

8 Gpos ← Gpos ∪ {j}
// Add constraint Gj = 1 in LP

9 LP(i+1) ← LP(i) ∪ {Gj = 1}
10 else

// Finalise a reflector at k

11 Rpos ← Rpos ∪ {(k, ô)}
// Add constraint Rk = 1 in LP

12 LP(i+1) ← LP(i) ∪ {Rk,ô = 1}
13 if

∑
Ci = |C| then

14 break

15 i← i+ 1

16 return Gpos and Rpos

We update the corresponding set Gpos or Rpos accordingly, and a corresponding

constraint added to the LP. If we achieve complete coverage, i.e.,
∑

iCi becomes

equal to the number of serviceable grids, we terminate the loop early; otherwise,

the loop continues till the resources ( BSs and reflectors) are exhausted.

Observe that in each iteration, we place either one BS or a reflector. Thus

the loop is repeated at most (NG + NR) times. In each iteration, the dominant

task is solving the relaxed LP. Here the relaxed LP can have at most n =

|C| + |G| + |R||O|2 + |G||R||O|2 number of variables with O(n) many constraints

and requires O(n3.5) time to solve using the Karmarkar’s algorithm [163]. Thus

overall running time of Algorithm 6.2 is (NG +NR)n
3.5.
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6.5 Simulation Results

We consider a rectangular service area of size 1000 m × 1000 m, discretized into

grids of size 1m. There are some buildings inside the area, that have rectangular

cross-sectional area, and rise vertically up. The percentage of area covered by these

obstacles are varied from 5% to 20% in our simulations. The maximum height of

the buildings where a BS can be placed is considered to be 10 m, and the building

facades are also discretized into grids of size 1 m. The maximum transmission

distance dmax, and UE height is taken to be 100 m and 1.5 m respectively. The

maximum transmitted power at a BS is 49 dBm, and the antenna gains at a BS

and UE are 21.5 dBi and 5.5 dBi respectively, as in [57]. For modelling the path

loss, we follow the 3GPP [160] standard models for omni-directional Urban Micro

LOS and NLOS path loss. The number of BSs and reflectors are varied in our

experiments, and the coverage noted as performance parameter.

We refer to our joint placement solution based on Max-Cover given in Algorithm

6.1 as JP-SC and the one based on LP relaxation given in Algorithm 6.2 as JP-LPR.

We denote the sequential deployment scheme as proposed in [57] as Two Step and

compare our proposed two approaches with this. To check for optimality, we also

solve the ILP for a small instance using Gurobi solver [164]. We denote the

optimal solution as Optimal.

Our main comparison metric is the coverage, which we define as the percentage

of the total number of grids that is covered by a given deployment scheme. We

demonstrate the coverage performance of the aforesaid four approaches in Figure

6.4. Note that here we consider a smaller instance (NG = 20), as solving a ILP

for larger instances is intractable. We see that our JP-LPR approach follows the

optimal one closely, outperforms both the JP-SC and the Two-Step methods, with

the Two-Step approach performing the worst. For the rest of the test cases with

large instances, we do not solve the ILP but give a comparative study of the

performance of the three other methods.
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Figure 6.4: Effect of Reflector Count on Coverage for a Small Instance.
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Figure 6.5: Effect of Reflector Count on Coverage, for NG = 50.

We see that the trends in Figure 6.4 are maintained in Figures 6.5 and 6.6 as

well. In Figure 6.5, we fix the number of BSs to 50, and vary the reflector count,

whereas in Figure 6.6, we fix the available reflectors at 50 and vary the number

of BSs. In both cases, the increase in coverage percentage with the number of

BSs or reflectors saturates after a point. This is because no further serviceable

area can be covered by placing any more resources The percentage of obstacles

present naturally plays a role in the coverage obtained for a given amount of
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Figure 6.6: Effect of gNB Count on Coverage, for NR = 50.
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Figure 6.7: Effect of Obstacle Percentage on Coverage.

resources. We demonstrate this in Figure 6.7, where for a given 50 BSs and

50 reflectors, the percentage of grids achieving coverage decreases with increase

in obstacle percentage, as expected. The relative performance among JP-LPR,

JP-SC and Two-Step is also preserved here. The discretization of the service area

introduces inherent inaccuracies in the results. We show the effect of the grid

resolution (in meters) on the inaccuracy. We define inaccuracy percentage as the

relative number of grids incorrectly considered to be covered as compared to the

total number of grids. The plot in Fig. 6.8 shows that as the grid resolution is

made larger, more and more inaccuracy creeps in. It is pertinent to mention here

that a smaller grid size leads to heavier computational overhead, and a balance
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Figure 6.8: Inaccuracy Due to Grid Resolution.

usually has to be found. To analyse the effect of reflector size on the deployment

strategies, we run the simulations for a NG = 30, NR = 10 and varying the reflector

sizes as 1 m × 1 m, 3 m × 3 m, and 5 m × 5 m. The results are plotted in Fig.

6.9. As is obvious, larger reflector size achieves greater coverage as compared to

smaller ones, however the effect saturates at 3 m × 3 m only.
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Figure 6.9: Effect of PMR Size on Coverage.

6.6 Conclusion

In this chapter, we jointly deal with the problem of BS and reflector placement in

an outdoor mmWave network. We model the problem as a ILP, which is hard to

solve. We then provide a Max-Cover based greedy solution, and an LP relaxation

based solution for the same. We demonstrate via simulation that both approaches

provide larger coverage than a sequential approach.





Chapter 7

LazyUAV: A Minimal

Displacement Coverage Strategy

for Multi-UAV mmWave

Networks1

7.1 Overview

Recently, there has been growing interest in deploying BSs on board UAVs

[138] to facilitate better network performance. The spatial flexibility of UAVs

provides crucial utility for two important scenarios; when terrestrial BSs are

saturated and require traffic offloading [62, 63], and when the same are destroyed

due to disasters like natural calamities [64, 65]. However, the downside of UAVs

is their limited onboard power supply, which is used to hover, shift, and transmit,

altogether a daunting task [165]. Increasing the battery capacity increases the

payload weight, which in turn increases energy demand, decreasing flight time;

1This chapter is based on the following paper:
Subhojit Sarkar, Rathindra Nath Dutta and Sasthi C. Ghosh. “LazyUAV: AMinimal Displace-
ment Coverage Strategy for Multi-UAV mmWave Networks” In: 3rd International Mediter-
ranean Conference on Communications and Networking (MeditCom 2023), IEEE,
Dubrovnik, Croatia, September 4–7 2023 (to appear)
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hence, it is inadvisable to keep on increasing battery capacity. Harnessing other

techniques like trajectory optimization would be a better approach. When it comes

to the mmWave realm, the stringent propagation requirements pose yet another

challenge. Consequently, mmWave BS deployment on UAVs is an exciting area

of current research [33, 139]. The mobility of UEs plays a key role in how long

an allotted link can remain active, without the UAV itself having to move; the

poor propagation characterestics of mmWaves necessitate this. In this chapter, we

consider the problem of deploying multiple UAVs with an aim to minimising their

displacements in subsequent time. This is done to ensure that minimum energy

is utilized in displacing a UAV from one point to another to ensure coverage.

We take into consideration user mobility, and propose LazyUAV, a Set-Cover based

geometric approach to minimise UAV displacement, while maintaining maximal

coverage. The main contributions of this chapter are summarised as follows:

• Although the UAV placement problem is NP-Complete [70] in general, we

show that the optimal placement of a single UAV for a static scenario can

be efficiently solved in polynomial time using a geometric approach.

• We then proceed to solve the multi UAV version, which is NP-hard, using

a Max-Cover based greedy approximation scheme.

• Taking into consideration UE mobility, we devise a polynomial time geo-

metric algorithm that efficiently finds optimal placement of a single UAV

ensuring maximum coverage, with minimum displacement.

• We solve the multi- UAV deployment problem, ensuring minimum displace-

ment while maintaining maximal coverage by a greedy max-cover based ap-

proach.

• Via extensive simulation, we show that our proposed approach achieves

greater coverage with lower UAV mobility as compared to two baseline

approaches.
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7.2 System Model

Let us consider a service area under a central BS. There is a set of N terrestrial

UEs inside, and over a short time interval ∆t, they move along a straight line with

constant velocity. ∆t depends on the traffic mobility model, and the available

routes in the coverage area. For example, if it is a highway with mostly straight

roads, δt can be quite large, as there is low chance of users abruptly changing

direction. In an urban environment, there are frequent intersections, which allows

users to change directions frequently. The value of ∆t can thus be chosen depend-

ing on the deployment scenario. Each UE communicates its position and velocity

to the central BS as part of the location update process. The high bandwidth

demand of the UE is served by a set of K mmWave enabled UAVs, whose

heights are fixed at H. A UAV can serve a UE if the transmission distance is

within a threshold, dmax. UAVs can usually change their azimuth angle to achieve

better beamforming; however to keep things simple in this chapter, we consider

the azimuth angle of each antenna to be 0◦, i.e., the coverage area of each UAV

is circular. Due to the fixed height and transmit power considered, the 2-D pro-

jection of the coverage area of an individual UAV becomes a circle with centre at

the location of the UAV, and having fixed radius r, where r =
√

d2max −H2. The

UAVs can travel in straight lines towards their destination. This assumption holds

true since with the absence of very high altitude buildings, there are effectively

no restricted zones for the UAVs. We assume that there are enough frequency

channels available so that nearby links do not interfere with each other. A UE is

said to be covered by a UAV, if it lies within a circle of radius r centered around

that UAV. Note that mmWave links can fail both due to distance, as well as

obstacles. However, in this paper we focus only on the distance criterion, leaving

the problem of handling obstacles for possible future work.
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7.3 Proposed Approach: LazyUAV

Our proposed LazyUAV solution is built up in four stages, where we first discuss

the optimal placement of a single UAV for a static scenario in Section 7.3.1, which

is then extended to placing multiple UAVs in Section 7.3.2. We then consider

mobility of the UEs in Section 7.3.3, where a single UAV is placed and displaced

optimally. Finally, we generalize our solution for placing of multiple UAVs for

mobile UEs in Section 7.3.4.

7.3.1 Covering Static UEs with a Single UAV

Initially we consider that each UE has a fixed location, and we have a single UAV

that needs to be placed optimally. This can be thought of as covering maximum

number of points using a disk of radius r. A point is said to be covered by a

disk of radius r, if and only if the point lies on the periphery, or inside the disk.

In other words, a point is covered only if its distance from the center of a disk

is lesser than or equal to r. From here onward, we will use the words ‘UAV’

and ‘disk’, interchangeably as convenient, and they both have the same coverage

radius r. Moreover, we also interchangeably use the terms ‘UE’ and ‘point’ as

per convenience. We can now make the following observation, which then leads to

Lemma 7.1.

Observation 2. If a set of points P can be covered by a disk of radius r, there

might be infinitely many placements of the disk as depicted in Figure 7.1. However,

note that all of them can be considered equivalent in terms of covering P . Indeed,

the infinite number of possible disk locations that cover P are all equivalent with

respect to their coverage. Furthermore, consider an arbitrary placement of the disk

covering all points in P . One can always suitably displace this disk, such that at

least two points in P end up on its periphery. This new placement is equivalent to

the original one with respect to the coverage.

Lemma 7.1. Given N points, there are at most 2
(
N
2

)
distinct maximal covers

using a disk of radius r.
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Figure 7.1: A Few of the Possible Covers for a Set of Points.

Proof. Assume on the contrary, that there are more than 2
(
N
2

)
distinct maximal

covers. Now by above observation, we can place a disk for each cover such that it

touches at least two of the covered points. Now using pigeonhole principle, there

must be at least a pair of points for which there exists more than two distinct

covers. This is a contradiction, since there exists at most two circles of fixed

radius r, which passes through two arbitrarily given points. Hence the proof.

One can evaluate each of these O(N2) distinct covers, and take the one having

maximum coverage which will result into a O(N3) solution. Instead, an optimal

placement of the UAV can be efficiently obtained in O(N2 logN) time using a

angular-sweep method, where N is the total number of points (UEs) considered.

The mechanism of angular-sweep is now briefly described for completeness. Note

that, if two points are more than 2r distance apart, both of them cannot be covered

by a single disk of radius r. Let us fix a point p, and for all the remaining N − 1

points q, which are within 2r distance from p, we compute the angle αp,q. Here αp,q

is the angle of q about p with respect to the positive x-axis as shown in Figure 7.2.

We sort the points based on αp,q, which takes O(N logN) time.

We then place the periphery of the disk on p, and rotate the disk about p and

observe the covered set of points. Here we consider only discrete rotations of the
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Figure 7.2: The Replica q′ of a Point q About the Point p.

circle, such that each rotation denotes an event: either a new point enters into the

circle or an already covered point leaves the circle. Although, at each orientation

of the circle, calculating the coverage from scratch requires O(N) time; this can

be amortized into O(1) when we consider a complete 360◦ rotation of the circle.

For implementing this efficiently and get the amortized cost of O(1) per rotation,

we replicate each of those N − 1 points. For a point q, its replica is rotated

about p with an angle 2θp,q where θp,q = 90◦ − αp,q as depicted in Figure 7.2.

Furthermore, we tag the original points as ‘start’ events, while the replicas are

tagged as ‘end’ events. Now we sort these 2(N − 1) points, and then process them

linearly as per the sorted order. If we keep track of number of covered points for

each rotation, we can report in O(N) time, when it had covered maximum number

of points among all rotations. Thus the overall time required is still O(N logN).

Now repeating this angular-sweep process for each of the N points, and taking the

overall maximum actually gives us the required cover. Thus total time complexity

is O(N2 logN).
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7.3.2 Multiple Static UAV Placement using Set-Cover

Since each UAV has same coverage radius r (can be treated as unit), the prob-

lem reduces to a Unit-Disk-Cover problem [166], which is basically the geometric

version of the classical Set-Cover problem. In particular, since K, the number

of UAVs, is a constant, we are interested in the Max-Cover problem where given

an integer K and a collection of sets Si ⊆ U , we want to maximally cover the

elements (UEs) from the universe U . Given a set of possible UAV placements,

we can obtain the UEs covered by each such placement, which gives us the sets

Si. Here, we apply a simple greedy strategy [162] as explained below. We pick a

UAV position that covers maximum number of uncovered UEs. Removing these

covered UEs from the universe, we iteratively run the process again, till all UEs

are covered, or all UAVs are used up. This results into an approximation ratio of

1− 1
e
[162].

Now the main hurdle is constructing a finite number of such candidate sets Si.

On the surface, it may seem like a impossible task, as there can be infinitely many

placement of a unit-disk each of which covers same set of points as depicted in

Figure 7.1. Fortunately by establishing an equivalence of all such covers, we get

only a finitely many candidate sets by Lemma 7.1. Now given K, we can readily

apply the (1− 1
e
)-approximation algorithm for the Max-Cover problem. Here the

number of candidate sets is O(N2), and to check for coverage of an individual disk,

and update the residual coverage in each iteration of the Max-Cover solution, we

get a worse case complexity of O(N3f). Here f is the maximum possible number

of sets that can contain a point.

7.3.3 Covering Mobile UEs with a Single UAV

Since the UEs are assumed to move independently of each other, there is no

certainty that a set of UEs covered by a single UAV at time t, can still be covered

by the same UAV at time t + ∆t. In this case, we would prefer to maintain a

maximum possible coverage, by allowing the UAV to change its position. Here



120
Chapter 7. LazyUAV: A Minimal Displacement Coverage Strategy for

Multi-UAV mmWave Networks

our objective is to move the UAV in such a way, that its displacement from time

t to time t+∆t is also minimized. Let us first focus only on the coverage at time

points t and t+∆t. Note that, solving the UAV placement problem independently

for the two time slots, even using the approach given in Section 7.3.1, may produce

two entirely non-overlapping coverage solutions. Additionally, it does not provide

any reasonable bound on the UAV displacement. We therefore must consider the

UAV placement at two time points jointly. Suppose a set of points P is covered

by a UAV at time t, now at time t+∆t they move to some new positions P ′. We

can apply the same angular-sweep method to obtain a maximum coverage of P ′

with a disk of radius r in O(m2 logm) time, where m = |P | = |P ′|. Suppose only

m′ ≤ m points can be covered at time t+∆t. We will use this m′ as the selection

metric. Therefore while doing the angular-sweep at time t we select the placement

having maximum m′. If there is a tie, we consider the one requiring minimum

displacement of the UAV. The optimality of this selection process guaranteed by

the following lemma.

Lemma 7.2. Maximum number of mobile UEs covered by a single UAV, can be

found in polynomial time.

Proof. As discussed earlier, there are only O(N2) many possible coverings at time

t. All the corresponding coverage sets Si can be obtained in O(N3) time. For

each Si, let S′
i ⊆ Si be the maximum set of UEs that can still be covered at

time t + ∆t. Let mi = |Si| and m′
i = |S′

i|, clearly we have m′
i ≤ mi. Using the

angular-sweep method discussed earlier, each S′
i can be obtained in O(m2

i logmi),

making the total required time O(
∑

i m
2
i logmi) = O(N2f 2 log(Nf)). Finally we

take the coverage set Si∗ where i
∗ = argmax{m′

i}. This takes at most O(N2) time.

Now by construction, Si∗ denotes the maximum possible cover by a single UAV

considering two time points t and t+∆t.

Now recall that, for the optimal coverage set Si∗ , a single disk may have infinitely

many placements for each time point t and t + ∆t. We now place the disk at t

and t + ∆t in such a way that their displacement is minimized. Recall that we
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Figure 7.3: Possible Cases for Optimal UAV Displacement.

can only cover S′
i∗ ⊆ Si∗ at time t + ∆t, thus we focus only on the UEs in S′

i∗ .

Let P be the set of coordinates of the UEs in S′
i∗ at time t. Now they move to a

new place at time t +∆t, and let P ′ be set of new coordinates. By construction,

both P and P ′ can independently be covered by a disk of radius r. Consider a

2D plane containing the points from both P and P ′. Now suppose we place a

circle C1 of radius r around P at any arbitrary position, such that all points in

P is covered. Similarly another circle C2 is placed around P ′. For our minimum

UAV displacement, the center of these two circles C1 and C2 must be as close as

possible. In optimal placement of C1 and C2 one of the following cases must occur:

Case 1-1 : Let C1 touches a only single point p ∈ P and C2 also touches a single

point q ∈ P ′. In this case the both the centres of C1 and C2 must lie on the

line joining p and q as depicted in Figure 7.3(a). Let (xp, yp) and (xq, yq)

be the coordinates of points p and q respectively; then centers of C1 and C2
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will respectively be at (xp + ∆x, yp + ∆y) and (xq − ∆x, yq − ∆y), where

∆x = r(xq − xp)/dist(p, q) and ∆y = r(yq − yp)/dist(p, q). Here dist(p, q) is

the Euclidean distance between the points p and q.

Case 1-2 : Let C1 touches only a single point p ∈ P , while C2 touches two

points q1, q2 ∈ P ′. Let q be the mid point of q1 and q2. In this case the two

centres lie on the line joining p and q as depicted in Figure 7.3(b). Moreover,

the line pq is the perpendicular bisector of q1q2. The centre of C1 can be

determined similarly as above, while the centre of C2 is given by (xq−r′(xq−

xp)/dist(p, q), yq − r′(yq − yp)/dist(p, q)), where r′ =
√
r2 − dist(q1, q2)2.

Case 1-3+ : Let C1 touches only a single point p ∈ P , while C2 touches three or

more points from P ′. In this case there is only one circle that covers P ′, and

its centre is uniquely determined by the (at least) three points it touches.

Let c2 be the centre of circle C2. Now the centre of C1 must lie on the line

joining p and c2, and be obtained similarly as above. This is depicted in

Figure 7.3(c).

Case 2-2 : Let C1 touches two points p1, p2 ∈ P and C2 also touches two points

q1, q2 ∈ P ′. Let p and q be the mid points of the line segments p1p2 and

q1q2 respectively. Then the centres of C1 and C2 must lie on the line pq.

Moreover, pq is perpendicular bisector of both p1p2 and q1q2. This scenario

is depicted in Figure 7.3(d). The centres of C1 and C2 can be obtained

similarly as discussed above.

Case 2-3+ : Let C1 touches two points p1, p2 ∈ P , while C2 touches three or more

points from P ′. Here also the centre c2 of circle C2 is uniquely determined.

Now the center of C1 must lie of the line pc2, where p is the mid point of of

the line segment p1p2, and can be similarly computed. This case is depicted

in Figure 7.3(e).

Case 3+-3+ : Let both C1 and C2 touches three or more points from P and

P ′ respectively. Here the both circles are uniquely determined by its three

peripheral points as depicted in Figure 7.3(f).
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All the remaining cases are basically symmetrical to these listed ones, and thus

can be handled in a similar fashion.

Now to obtain the optimal placement of the disk covering P at time t and P ′ at

time t+∆t with minimum displacement, we can exhaustively check for the above

cases and take the one giving optimum displacement. To do this efficiently, we

first make the following observations.

Observation 3. A set of points P is covered by a disk of radius r, only if the hull

points of P are covered by the disk.

Observation 4. If a disk covering P touches two or more points from P , the

points must be adjacent hull points.

Let the convex hulls of the point sets P and P ′ be CHP and CHP ′ respectively.

Therefore, we can only focus on these hull points and try out all possible combi-

nations of them as per the aforementioned cases. For each hull point in CHP (or

CHP ′) we only observe a finite number of combinations, which takes constant O(1)

time. Recall that, the convex hull of n points can be obtained in O(n log h) time,

where h is the number of hull points [167]. Thus the total time to exhaustively

search for an optimal placement of each UAV considering both time points, is

upper bounded by O(mi∗ log h) = O(N logN).

Notice that we have solved the problem of placing a single UAV covering

mobile UEs. For this we considered the coverage at two discrete time points t

and t + ∆t, but not in between. In the following lemma we guarantee that our

discrete coverage solution ensures a continuous coverage.

Lemma 7.3. For a UE and a UAV moving along two arbitrary straight lines, if

the UAV covers the UE at two time instances t1 and t2, it covers the UE for all t

in the interval [t1, t2].

Proof. Let the positions of the UE at times t1 and t2 be û1 and û2 respectively.

Similarly, the positions of the UAV at times t1 and t2 are v̂1 and v̂2 respectively.

Note that since the UE moves along a straight line, all its positions within (t1, t2)
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can be effectively written as û = αû1 + (1−α)û2, where 0 < α < 1. Similarly, all

positions of the UAV in (t1, t2) can be effectively written as v̂ = βv̂1 + (1− β)v̂2,

where 0 < β < 1. Now, since the time period of travel for both devices is the

same, it follows trivially that α = β. Also, we are given that the UAV covers the

UE at both t1 and t2, i.e., ||û1− v̂1|| ≤ r, and ||û2− v̂2|| ≤ r, where || · || denotes

the Euclidean (l2) norm. Hence, it suffices to prove that ||û− v̂|| ≤ r. Now,

||û− v̂||2 = ||α(û1 − v̂1) + (1− α)(û2 − v̂2)||2

= α2||û1 − v̂1||2 + (1− α)2||û2 − v̂2||2

+ 2α(1− α)| ⟨û1 − v̂1, û2 − v̂2⟩ |

Here, ⟨·, ·⟩ denotes the inner product. Using the Cauchy-Schwarz inequality we

have,

| ⟨û1 − v̂1, û2 − v̂2⟩ | ≤ ||û1 − v̂1|| ||û2 − v̂2|| ≤ r2.

Plugging this into the above inequality we have:

||û− v̂||2 ≤ α2r2 + (1− α)2r2 + 2α(1− α)r2 = r2.

7.3.4 Multiple Mobile UAV Placement using Set-Cover

Similar as before, we consider each candidate coverage set Si at time t and con-

struct the maximal coverage S′
i for time t + ∆t using the angular-sweep method

as discussed in Section 7.3.3. Now following the method given in Section 7.3.2, we

similarly obtain a Max-Cover solution using these S′
i as the candidate sets. Let S

be the set of coverage sets obtained though the Max-Cover algorithm. For each

S′
i ∈ S, we independently fix the UAV positions considering minimum displace-

ment. Thus sum of the UAV displacement is minimized. Now by Lemma 7.3,

each UAV maintains its assigned cover within the ∆t interval. Thus using K

UAVs, we maximize the number of UEs that are continuously covered within the

∆t interval, with minimum UAV displacement. Note here that for a small ∆t,

the UAV displacement will obviously be small, but this entire operation of UAV
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assignment has to be done frequently. For larger ∆t, UAV displacement will be

higher, but the algorithm has to be run less frequently.

7.4 Simulation Experiments

We consider a square service area of size 1000 m × 1000 m. There are 100 users dis-

tributed uniformly at random inside this area. Each of them travels in a straight

line for a time period 10s with a velocity chosen uniformly at random from [0,

10 m/s]. We compare our proposed LazyUAV algorithm against two baseline ap-

proaches, the first one being a Greedy approach where we try to cover the UEs

maximally with the available UAVs without considering the mobility of the UEs.

After the covers are decided, we observe the number of UEs are fully covered

considering their mobility, and take that as the measured value. To implement

this Greedy approach we utilize the scheme proposed in Section 7.3.2. Another

is a deployment strategy based on line segment disk cover (LSDC) algorithm pro-

posed in [168]. In LSDC, we aim to maximally cover the mobile UEs with zero

displacement. In other words, both the end points of each covered mobile UE,

are covered by a single static UAV. We consider two metrics, namely the number

of mobile UEs covered and the average displacement of the UAVs, to test the

performance of these three strategies.

In Figure 7.4, we show the effect of varying the number of UAVs on cover-

age. With increase in number of UAVs, the coverage starts to increase; however,

LazyUAV outperforms the other two significantly. Note that, due to the lack of in-

sight into the device mobility, the coverage of Greedy approach gets stuck around

30 after a point, and does not increase any more withK. The effect of the coverage

radius r of each UAV on the number of UEs covered, is shown in Figure 7.5. As

evident, the UE coverage increases with r increases, where LazyUAV performs the

best.

Next we consider the displacement of the UAVs for each of the three approaches

in Figures 7.6 and 7.7. Observe the in both these figures, the LSDC approach has
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Figure 7.4: Effect of K on Coverage.
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Figure 7.5: Effect of r on Coverage.

zero average displacement as one would expect. In Figure 7.6, it is evident that

our LazyUAV approach has almost same average displacement while K is increased,

while the displacement in Greedy approach decreases with K. This is because,

Greedy only covers up to 30% of the UEs which leaves plenty of room for it to

minimize the UAV displacements. Whereas, LazyUAV sacrifices in terms of UAV

displacements to maximize its coverage. On the other hand in Figure 7.7, the

displacement decreases for LazyUAV as r increases as expected, while for Greedy

the displacement slightly increases with r. The reason for displacement increase

for Greedy, is due its gradual increase in coverage with r.
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7.5 Conclusion

In this work, we considered minimising the displacements of UAVs while ensuring

maximal coverage. We modelled the problem of deploying UAVs as a variant of

unit disk cover problem, and used a greedy Max-Cover based geometric approach

to provide a coverage scheme that ensures UAV mobility is minimised. Using sim-

ulations, we show that our approach outperforms the baseline approaches. The

obvious drawback of this work is the obstacle free coverage area considered. Strin-

gent propagation requirements of mmWaves also include the LOS component,

along with the distance criterion. Moreover, the coverage provided by each UAV
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has been considered to be equal. In reality, UAVs can change their heights, trans-

mission powers, and azimuth angles to achieve a required coverage. In that case,

the problem will no longer remain equivalent to the unit disk cover problem, pos-

ing interesting challenges. Finally, we have considered coverage with respect to

the initially allocated UAV; i.e., handoffs have not been considered. Intuitively,

the total UAV mobility would appear to decrease if we allow a UE to be covered

by different UAVs at different points of time, which in itself is an even more

interesting problem.



Chapter 8

Conclusion and Future Directions

In this thesis, we have broadly dealt with two problems in the field of mmWave

communications, namely obstacle detection for obstruction-free, stable transmis-

sion path allocation, and efficient deployment of network infrastructure for achiev-

ing maximal coverage of the service area. The weakly penetrating nature of

mmWaves necessitates LOS paths between the transmitter and receiver. Hence,

achieving such LOS transmission paths by avoiding obstacles and efficiently de-

ploying transmission hardware is of paramount importance for large scale migra-

tion to the mmWave communication spectrum.

In Part I of the thesis, we deal with obstacle detection, and subsequent stable

path allocation. In Chapter 3, we first detect locations of static obstacles without

resorting to any a priori satellite imagery, based on historical link failure data

alone. We extend this approach to detect zones of high dynamic congestion, and

allocate paths avoiding such obstruction-prone zones. In Chapter 4, we aim to

track dynamic obstacles without resorting to additional tracking hardware like

RGB-D cameras, and use that information to trigger handoffs for potentially at-

risk links. We first consider the case of tracking a single dynamic obstacle in the

coverage area, and propose a simple approach to track the same. Thereafter, we

turn our attention towards the much harder problem of tracking multiple dynamic

obstacles from short term link failure information alone. We show that the problem

is NP-complete, and propose a greedy set cover based algorithm to solve the same.

129
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Via simulations, we show that for low to moderate camera coverage, our approach

achieves better handoff performance in comparison with an RGB-D camera based

approach. We deal with the notion of link stability for mobile UEs, in Chapter 5.

Taking into consideration the mobility of UEs, and static obstacles in the coverage

area, we assign those links to mobile UEs that are likely to satisfy the mmWave

transmission criteria for the longest possible time.

We shift focus to the hardware deployment problem in Part II of the thesis. We

first deal with the joint placement of mmWave BSs and reflectors in Chapter 6,

with an aim to maximise the coverage area for a given amount of infrastructure. We

propose two approaches to solve the joint problem, one based on the classical set-

cover approximation, and another based on LP relaxation. We demonstrate the

superiority of the coverage obtained by treating the problem jointly, as compared to

a two step sequential approach. Finally in Chapter 7, we consider the deployment

of UAVs equipped with on board mmWave BSs. Taking into consideration

UE mobility, we propose LazyUAV, an algorithm that attempts to deploy multiple

mobile UAVs while ensuring minimum displacement, and maximal coverage. We

show via simulations that LazyUAV achieves lesser displacement compared to two

baseline approaches.

Next, we discuss some of the limitations of the works presented in this thesis.

We begin off by stating that the path allocation algorithms in this thesis can only

be applied in an outdoor scenario. Indeed, a bulk of the algorithms use accurate

location of the users, which might not be available for indoor scenarios. Addi-

tionally, the joint base station and reflector problem does not consider zones of

dynamic congestion, instead focusing only on static obstacles. It would be logical

to utilise the tracking information obtained in Chapters 3 and 4 to better place

the infrastructure. As for the LazyUAV algorithm, it does not consider any obsta-

cles, just focusing merely on transmission range. Incorporating the information

learnt from Chapters 3 and 4 would undoubtedly bring the problem closer to real

life. Due to the lack of obstacles, the coverage area of each UAV is assumed to

be circular, which is almost never the case in real life. We have also not consid-

ered changing the heights of the UAVs, or their corresponding azimuth angles to
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modify the coverage area. Finally, in a broader aspect, we have not considered

any interference in infrastructure placement problem, relying instead on the as-

sumption that the number of channels available at a base station is sufficient to

serve the demanding users. With massive surge in user demand, this may not be

very realistic. Frequency has to be shared between demanding users, leading to

interference and fairness concerns. Finally, UAVs may even incorporate handoff

UEs to neighbouring UAVs along with self displacement. This approach has not

been explored in the thesis.

Some of the directions of continuing the works in this thesis can be as follows.

The dynamic obstacle tracking approaches may be improved by considering the

fact that a single obstacle may block links associated with multiple mmWave

BSs, especially for the case of fast moving dynamic obstacles. Apart from link

failure information, link success information can also be encoded in the problem

to obtain better obstacle tracking results. For the mmWave BS and reflector

placement problem, we have considered a grid to be covered if it is served by one

such BS (either directly, or via reflector) alone. However in real life, k-cover of the

deployment area may be necessary, especially in places with high dynamic obstacle

congestion. Additionally, incorporating the effect of dynamic obstacle directly into

the infrastructure placement problem seems to a challenging problem, which we

would like to explore in the future. Finally, LazyUAV in its current form does

not incorporate handoffs; such handoffs would undoubtedly reduce UAV mobility

even more. We would like to explore these directions in future.
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