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ABSTRACT

“It’s still magic even if you know how it’s done.”
— Terry Pratchett, A Hat Full of Sky.

In this thesis, we focus on the Quantum Private Query (QPQ) primitive in the
device-independent (DI) paradigm, addressing the challenges of preserving user and
database privacy without trusting the devices. Existing cryptographic primitives,
such as Symmetric Private Information Retrieval (SPIR) and 1 out of N Oblivious
Transfer (OT), lack unconditional security with a single server in both classical and
quantum domains. The QPQ primitive addresses this limitation by allowing the client
to gain probabilistic knowledge about unintended data bits while expecting the server
not to cheat if a non-zero probability exists of being caught.

The contributions of this thesis include proposing and analyzing QPQ schemes
within the DI framework. We introduce a novel QPQ scheme using EPR pairs,
exploiting self-testing of shared Bell states, projective measurement operators, and
a specific class of POVM operators to achieve complete device independence. We
address the limitations of a semi-DI-QPQ proposal and utilize the tilted version of
the actual CHSH game and self-testing of observables to enhance security and certify
full device independence. Furthermore, we suggest several strategies to reduce the
overall sample size required for DI testing of that semi-DI-QPQ proposal in the finite
sample scenario. Moreover, we address the limitations of the existing multi-user QPQ
schemes and propose a semi-DI multi-user QPQ scheme where each user can retrieve
different items simultaneously without revealing their choices to others or relying
on a semi-trusted server. We formally conduct security assessments for all our DI-
QPQ proposals and derive upper limits on the cheating probabilities to ensure robust
DI-QPQ implementations.

Overall, in this thesis, we contribute to advancing the QPQ primitive in the DI
paradigm, offering novel schemes and addressing the challenges posed by distrustful
settings and multi-user scenarios.
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1
Introduction

“Quantum cryptography would mark the end of the battle between codemakers and
codebreakers, the codemakers emerging victorious, because quantum cryptography is a
truly unbreakable system of encryption.”

— Simon Singh, The Code Book: The Secrets Behind Codebreaking.

Cryptography involves techniques for secure communication over an insecure chan-
nel in the presence of third parties called adversaries. Historically, the term cryp-
tography develops from two Greek words, kryptós meaning “secret” and graphein
meaning “to write”. Throughout human history, people have recognized the impor-
tance of keeping information secret, especially in the contexts of military, diplomatic,
and other sensitive communication. Evidence of encryption dates back some 4000
years to hieroglyphic inscriptions in ancient Egypt. The two world wars, the cold
war, and the rise of the Internet have all spurred rapid advancements in cryptogra-
phy. A comprehensive history and analysis of cryptography can be found in [64]. As
technology continues to evolve, the field of cryptography continues to expand beyond
privacy and confidentiality, now encompassing data integrity and authentication to
meet security needs in various public domains.

From a designer’s perspective, a cryptographic scheme should ideally maintain
its intended functionality despite repeated attempts by malicious third parties to
compromise it. This requires the proposal to be secure without relying on any as-
sumptions about the operational environment, and not merely resistant to specific
types of attacks. Many cryptographic schemes that claim to be secure under certain
assumptions can be shown to be vulnerable to more general attacks. For example,
the Caesar cipher can be easily broken using frequency analysis. This highlights the
importance of defining security notions based on rigorous mathematical foundations.

Before 1948-49, most cryptographic schemes were developed based on heuristic
and ad hoc approaches [6, 5, 3]. In 1948-49, Claude Shannon’s seminal work in his
two landmark papers from that period first introduced the notion of mathematical
cryptography. In his first paper [99], he laid the foundations of information theory,
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while in the second paper [100] titled “Communication Theory of Secrecy Systems,”
he presented the first concrete mathematical treatment of the field of cryptography.
This work focused on two primary objectives: secrecy and authenticity. Secrecy in
cryptography ensures that only authorized users can access a message, while authen-
ticity ensures that the message can only be created and sent by a legitimate source
and cannot be tampered with by anyone else. In 1976, Diffie and Hellman in their
paper “New Directions in Cryptography” [45], identified the requirement of data
integrity, authentication, and non-repudiation in cryptographic protocols. Modern
cryptography has incorporated all these elements along with the traditional need for
confidentiality. In fact, this work by Diffie and Hellman in 1976, is the first formal
exposition of Public Key Cryptography. However, the real breakthrough in cryp-
tography came when Rivest, Shamir, and Adlemann discovered an amazingly sim-
ple scheme for encryption, popularly known as RSA encryption [94]. From security
aspects, modern cryptographic schemes are mainly divided into two types, namely
information-theoretic secure schemes and computational secure schemes.

1.1 Information-theoretic and computational se-

curity

Claude Shannon’s seminal work in his two landmark papers in 1948-49 introduced
the notion of information-theoretic security in cryptography.

A cryptosystem is said to be perfectly secure or unconditionally secure
or information theoretically secure if an adversary, even with unlimited
computational power, can’t gain any information about the secret.

That is why, such a system is also called cryptanalytically unbreakable. The one-
time pad is an example of an information-theoretically secure cryptographic scheme,
where two parties share a secret key that has the same length as the message they
want to send securely. The encryption and decryption of this message simply involve
XORing the key to the message. Although the one-time pad offers perfect security,
the implementation of this scheme is challenging in the sense that it requires a long se-
cret key that can’t be reused. For this reason, in most cases, information-theoretically
secure cryptosystems are only used for the most sensitive governmental communica-
tions, such as diplomatic cables and high-level military communications. In practice,
it is desirable for most daily life applications to remain secure for a certain period
(instead of security for indefinite times) against adversaries that do not possess un-
limited capabilities. That is why, another security notion was introduced later called
computational security.

A cryptosystem is considered computationally secure if an attacker with
limited computational resources is unable to gain any information about the
secret.
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The achievement of computational security typically involves reducing the problem
of breaking the cryptosystem to solving a problem that is believed to be computation-
ally difficult. The security of the cryptosystem is then derived based on the fact that
no polynomial time algorithm (polynomial relative to the size of the input parame-
ter) exists yet to solve the problem with limited computational resources. In general,
proving that a problem can not be solved in polynomial time is often difficult. So,
one relies on computational assumptions to establish the security of a cryptosystem.
For example, one can consider the security of RSA cryptosystem [94]. Although it
is not known whether the RSA cryptosystem was designed considering the hardness
assumption of the prime factorization problem, recently it was shown in [32] that
“breaking RSA may be as difficult as factoring”. However, for the cryptosystems
designed based on some hard problems, the designers should be careful in choosing
the underlying problems as some cryptosystems have been broken recently because
of the vulnerability of the underlying problems. An example is the Merkle-Hellman
public key cryptosystem [83], which was based on the knapsack problem and has been
cryptanalized recently by several attacks [98, 10]. Moreover, advancements in tech-
nology and computing models can render certain cryptographic systems obsolete. For
example, the RSA cryptosystem is still considered secure against classical attacks, but
it becomes vulnerable in the quantum paradigm because of Shor’s algorithm [102].
Similarly, the vulnerability of the discrete log problem in the quantum paradigm also
causes the Diffie-Hellman key exchange scheme to become insecure in the quantum
scenario.

All these examples illustrate that along with the information-theoretic secure
schemes which are (in general) hard to design, even the construction of conditional se-
cure schemes become challenging with the invention of quantum computers. This has
led researchers to focus on developing quantum-secure cryptographic schemes, which
can resist attacks even in the presence of quantum computers. To ensure security in
the age of quantum computing, researchers have developed quantum secure schemes
both in the classical as well as in the quantum domain. Quantum cryptography (such
as quantum key distribution, quantum oblivious transfer, quantum bit commitment,
etc.) involves designing secure schemes in the quantum domain by leveraging the
unique properties of quantum mechanics, while post-quantum cryptography (such
as lattice-based cryptography, code-based cryptography, multivariate cryptography,
etc.) involves designing secure schemes in the classical domain by exploiting some
hard mathematical problems that are believed to be difficult to solve even for quan-
tum computers. This thesis is focused on Quantum Cryptography, which is both a
challenging and fascinating interdisciplinary field of research in the current scenario.

1.2 Two party cryptography

The field of cryptography has evolved to provide solutions for various applications.
However, this thesis is solely focused on two-party cryptography, which deals with
scenarios where two parties, Alice and Bob, are involved in a task but do not fully
trust each other. In such scenarios, it is crucial to minimize the amount of information
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revealed during the protocol. An example of such a scenario is the millionaires’
problem, introduced by Andrew Yao [118], in which two millionaires need to determine
who is richer without disclosing their actual wealth. This problem is relevant in
everyday life, and there are other similar scenarios, some of which are listed below.

• Oblivious Transfer : Suppose a user Alice wants to download a movie from
an online movie service, and Bob is the server handling the service. The service
charges per downloaded movie, and Alice has paid for one movie but is concerned
about privacy and does not want to reveal her choice to Bob. Bob, however,
wants to ensure that Alice only downloads the movie she has paid for and
does not access the entire movie database. This problem is known as oblivious
transfer, which is an important building block for two-party cryptography. It
can be used to construct any other two-party primitive [70].

• Bit Commitment : Suppose Alice wants to bid in an auction hosted by Bob,
but she doesn’t want to reveal her bid until the auction is open. To address this
issue, a commitment scheme is used, which is a type of primitive in two-party
cryptography. The simplest form of a commitment scheme [26, 29], known as
a bit commitment, allows Alice to commit to a single bit without revealing its
value to anyone, including Bob. A secure commitment scheme must satisfy two
properties: it must be hiding, meaning Bob cannot learn any information about
the bid before the opening phase, and binding, meaning Alice cannot change
the value of her bid after the commitment. This ensures that the auction is fair
and that neither party gains an unfair advantage.

• Position-based cryptography: In this scenario introduced in [36], the sole
credential used to access certain information is the geographic location of a
party. This type of authentication could be useful in a military context where
it is necessary to ensure that orders from the headquarters can only be accessed
by someone physically present inside the army base at a specific location, rather
than by enemies in the surrounding area.

In all the tasks mentioned above, the two parties have conflicting interests, which
makes it challenging to ensure security for both parties simultaneously. Ensuring
complete protection for one party would inevitably leave the other party completely
unprotected. For instance, in the case of oblivious transfer, Alice can sacrifice her
privacy and reveal which movie she wants to watch, or Bob can provide Alice with the
entire database, hoping that she won’t misuse his trust. However, these solutions come
at a cost and fail to satisfy both parties’ requirements. Therefore, the challenge is to
devise protocols that offer a reasonable trade-off between security and functionality
to ensure the security of both parties.

Designing information-theoretically secure cryptographic schemes for two-party
cryptography is generally considered impossible [41]. One way to overcome this chal-
lenge is to change the security model. For instance, in the case of a key exchange
where two parties want to share a secret over an insecure channel, it is impossible
to use only classical information. However, it becomes possible if Alice and Bob use
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quantum information, as demonstrated by the protocol developed by Charlie Bennett
and Gilles Brassard in their seminal paper on quantum key distribution (QKD) [21].
This discovery paved the way for a new research direction, known as quantum cryp-
tography.

In addition to quantum mechanics, other physical theories, such as the special the-
ory of relativity, can be utilized to achieve tasks with information-theoretic security.
While certain two-party cryptographic primitives, such as bit commitment, cannot
be achieved solely through quantum mechanics, they can be obtained by leveraging
the restrictions imposed by these physical theories. Such theories can limit the power
and resources of an adversary. Similarly, it is possible to define new security models,
such as the bounded storage and noisy storage models, by considering the current
limitations of technology, for instance, the unavailability of ideal quantum memories.

1.3 Assumptions for two-party cryptography

Regrettably, it has been proven that achieving information-theoretic security for both
parties in two-party cryptographic protocols is not possible (both in classical as well
as in quantum domain) without additional assumptions [41, 74]. Here we provide
a concise summary of several reasonable assumptions that enable the realization of
information-theoretically secure two-party cryptography.

• Assumption about trusted third-party : Introducing a trusted third party
is a simple solution for implementing any two-party primitive for Alice and Bob.
However, it is not satisfactory in a scenario where Alice and Bob do not trust
themselves. This solution also makes all tasks trivially possible.

• Assumption on pre-shared resources : For two-party cryptography, a se-
curity guarantee can be defined under the assumption that the adversaries
have limited resources. Typically, we make assumptions about the following
resources:

– Memory :

Bounded storage model : This model puts a restriction on the amount
of quantum or classical memory that an adversary can use. In the case of
quantum memory, this model was first introduced by Damgard et al. [44]
and it forces adversaries to convert some of their quantum information
into classical information, which may lead to the irreversible destruction of
some of their information. This model can be used to design information-
theoretically secure bit commitment and oblivious transfer protocols, as
shown in [44, 112].

Noisy storage model : In this scenario, we assume that the quantum
memory used by the adversary to store quantum states (or the information)
is affected by noise. This assumption enables the construction of basic
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cryptographic primitives like bit commitment and oblivious transfer with
information-theoretic security [111, 97, 72].

– Entanglement : By limiting the quantum correlations between adver-
saries, we can improve the security of certain cryptographic schemes, par-
ticularly in the context of position-based cryptography [36]. This is because
if the adversaries share an exponentially large number of entangled parti-
cles, then any position verification scheme is insecure [33]. However, if we
restrict the adversaries to share only a polynomial amount of entangled
particles, there exist some schemes [33] for which no attacks are known,
although explicit constructions for such schemes are not yet known.

• Assumption on no-communication : The no-go theorems state that cryp-
tographic primitives, such as bit-commitment or oblivious transfer, cannot be
achieved with information-theoretic security [18, 79, 75]. However, these the-
orems do not apply in the multi-party setting if we make assumptions about
communication between parties. In [18, 85], it was shown that if several spatially
separated agents per party are assumed to not communicate, then it is possi-
ble to design perfectly secure bit-commitment and oblivious transfer schemes.
However, enforcing this non-communication assumption in practice is challeng-
ing. In [68], Kent proposed using the special theory of relativity to enforce
non-communication between parties, which we will discuss next.

• Relativistic assumption : Based on the special theory of relativity and the
causality principle, the assumption is made that no physical carrier of in-
formation can travel faster than the speed of light. Using this assumption,
cryptographic primitives, such as bit-commitment, can be constructed with
information-theoretic security [68]. This is achieved by spatially separating
the parties in such a way that information cannot be exchanged faster than the
speed of light. This model, however, may be difficult to enforce in practice.

Now, we briefly discuss the challenging and fascinating interdisciplinary field called
quantum cryptography which is the main focus of this thesis.

1.4 Quantum cryptography

Quantum cryptography aims to make data secure by leveraging the fundamental prop-
erties of quantum mechanics such as entanglement and Heisenberg’s uncertainty prin-
ciple. The main idea behind quantum cryptography is that two parties communicating
through a quantum channel can be assured that their communication is not being in-
tercepted by eavesdroppers because measuring a quantum system inevitably disturbs
it, and this disturbance will alert the legitimate parties to the presence of eavesdrop-
pers. For this reason, quantum cryptography is considered to be completely secure.

The concept of quantum cryptography was first introduced by Stephen Wiesner
in the 1960s when he designed an unforgeable digital banknote using the laws of
quantum mechanics. Wiesner also explored the concept of quantum multiplexing
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channels [114], where one party could send two messages to another, but the receiver
could only read one at the cost of irreversibly destroying the other. Although in
back 60’s, researchers started to explore the use of quantum mechanics to design
cryptographic primitives, the term “Quantum Cryptography” was coined much later
by Bennett et al. in 1983 [22]. In [22], the authors pursued the previous ideas
of Wiesner to propose the transmission of confidential information over an insecure
quantum channel, leading to the first Quantum Key Distribution (QKD) protocol
in 1984 [21]. Since its invention in 1983, the field of quantum cryptography has
extensively developed in the past few years. Some of its most famous applications
are discussed below.

• Quantum Key Distribution : Quantum Key Distribution (QKD) is the
most well-known and developed application of quantum cryptography which
allows two distant parties to communicate securely through an insecure quan-
tum channel. The first QKD protocol was introduced in 1984 by Bennett and
Brassard [21] (popularly known as BB84 QKD), but it lacked rigorous security
proof. In 2000, Shor and Preskill [103] presented the first complete and simple
proof of security for BB84 QKD, and later in 2008, Renato Renner provided a
rigorous analysis of security proofs for QKD schemes in his thesis [93]. In 1991,
Ekert proposed a QKD scheme based on entanglement and Bell’s theorem [46].
Another protocol based on entanglement but not Bell’s theorem was presented
in 1992 [24]. The first experimental demonstration of QKD was reported in
the same year, along with concrete solutions for the classical post-processing
phase and security estimates [20]. Since then, quantum cryptography has made
significant progress in both theoretical and practical aspects of QKD. A recent
article by Ekert and Renner [47] provides an excellent account of the current
state of QKD.

Despite quantum key distribution being the main focus of research in quantum
cryptography, other applications have also been explored since the early days,
beginning with Wiesner’s unforgeable quantum money.

• Quantum Bit Commitment : Quantum Bit Commitment (QBC) is a cryp-
tographic primitive involving two parties: Alice, who sends a piece of evidence
such as a quantum state, and Bob, who receives the evidence. In the commit
phase, Alice decides on a value of a bit, either 0 or 1, and sends the evidence to
Bob. In the reveal phase, Alice announces the value of the bit and Bob checks
it against the evidence. A QBC protocol is considered unconditionally secure if
any attempt at cheating can be detected with a probability close to 1. Cheating
can occur if Alice tries to change the value of the bit after the commit phase or
if Bob tries to learn the value of the bit before the reveal phase.

Bennett and Brassard’s original paper on quantum cryptography included a
coin-tossing protocol based on bit-commitment [21]. However, the protocol was
deemed insecure if one of the parties simply left the quantum states untouched
instead of performing the prescribed measurements. This was considered a the-
oretical threat at that time, given the technical difficulties of implementing such
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a strategy. In 1990, Brassard and Crépeau proposed a different quantum bit
commitment protocol [30] that was not vulnerable to this issue but was instead
vulnerable to an adversary who could perform coherent measurements, i.e., joint
measurements on multiple quantum particles, which was also considered diffi-
cult. To overcome these limitations, the two protocols were combined to obtain
a quantum coin-tossing protocol that can only be broken by an adversary who
can both maintain entanglement and perform coherent measurements.

• Quantum Coin Flipping : Quantum coin flipping is a distrustful crypto-
graphic primitive that involves two parties communicating through a quantum
channel and exchanging information by sending qubits. The first party, Alice,
chooses a random sequence of qubits and bases and sends them to the second
party, Bob, who records the qubits. Bob then makes a guess about which basis
Alice used and reports it back to Alice. Alice then tells Bob whether he guessed
correctly or not and sends him her original qubit sequence. Since this is a dis-
trustful primitive, any of the parties may attempt to cheat at any point in the
process.

A quantum Oblivious Transfer (OT) protocol was proposed around the same
time as the quantum bit commitment protocol in [30] whose security also relies
on the assumption that the adversary is limited by technology [23].

Mayers [79] and Lo and Chau [75] independently proved that unconditionally
secure quantum bit commitment is impossible. In that same paper [75], Lo
and Chau also proved that ideal quantum coin flipping cannot be achieved with
unconditional security. Lo further demonstrated the impossibility of uncon-
ditionally secure one-out-of-two oblivious transfer and other secure two-party
computations [74]. The same techniques used in [74] can be extended to rule
out any one-sided two-party computation, where inputs from both parties pro-
duce an output that is only given to one of them. The more complicated case of
two-sided computation, for a restricted class of functions, was first considered
by Colbeck [41], while the general impossibility result was proven by Buhrman,
Christandl, and Schaffner [34].

In 2008, Giovannetti et al. proposed a potential solution to the problem of
achieving an unconditional secure single-server SPIR scheme by introducing a
weaker primitive called Quantum Private Query (QPQ).

• Quantum Private Query : Quantum Private Query (QPQ) is a two-party
mistrustful cryptographic primitive that offers the same functionality as Sym-
metric Private Information Retrieval (SPIR) and Oblivious Transfer (OT) but
with a weaker security requirement where the user is allowed to get some prob-
abilistic knowledge about her unintended data bits, and the server is allowed
to get some information regarding the client’s query indices in a cheat sensitive
way i.e., if the server tries to retrieve more information about the user’s query
indices, the user can detect it.

While quantum cryptographic protocols discussed above offer improved security
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compared to their classical counterparts, imperfect implementation or faulty devices
involved in the protocols can compromise their security. As a result, these protocols
are considered “probably secure,” meaning that their security relies on the assumption
of perfect operation of the involved devices.

Initially, all quantum cryptographic protocols were proposed assuming perfect
devices, which made them device-dependent. However, now researchers are focusing
on developing device-independent versions of those schemes, where security does not
rely on the trustful assumptions imposed over the quantum devices involved in the
scheme. Therefore, the security analysis of such protocols needs to consider scenarios
where devices are imperfect or even malicious.

1.5 Device independent quantum cryptography

Even though certain quantum cryptographic primitives offer unconditional security,
this does not necessarily mean that their implementations are secure. Any deviation
from the protocol’s specifications due to imperfect hardware can lead to side-channel
attacks [56, 107], thereby undermining the trust in these systems. To combat this
issue, Device-Independent (DI) quantum cryptography has emerged as a solution.
These protocols aim to design secure cryptographic schemes that can be implemented
with untrusted devices.

The work initiated by Mayers and Yao in [80] laid the foundation for the con-
cept of “self-testing” quantum apparatus. This approach involves utilizing Bell in-
equalities or non-local games to assess the quantum nature of devices based on their
input-output statistics. By examining whether the devices sufficiently violate a Bell
inequality, certain properties about the devices can be inferred. Expanding on this
idea, Roger Colbeck proposed the use of Bell tests to verify the integrity of devices in
his thesis [41]. Over time, notable advancements have been made in the development
of protocols that are both unconditionally secure and device-independent for various
problems, even when the physical devices employed to conduct the Bell tests are noisy
or far from ideal.

Device-independent (DI) cryptography has become a highly active research area
within the realm of quantum cryptography. It has seen significant developments,
particularly in the context of QKD [7, 92, 109] and randomness expansion or amplifi-
cation [27, 42, 108]. Building upon the foundational concept introduced in [80], Aćın
et al. proposed a fully DI-QKD protocol [7]. DI-QKD relies on a crucial assumption
that there is no communication between the adversary and the quantum devices. Un-
der this assumption, Vazirani and Vidick provided the first comprehensive proof for
a DI-QKD scheme in their work [109]. Ongoing research efforts in the field of QKD
are dedicated to developing more practical DI schemes that can effectively operate
and retain their functionality even in the presence of realistic levels of noise.

In contrast, two-party cryptography remains an area that has received relatively
little exploration within the DI framework. Recent analyses have focused on the secu-
rity of protocols for imperfect coin flipping and bit commitment in the DI regime [12,
104]. Notably, these works differ in their approach as they do not impose additional
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assumptions, leading to the pursuit of imperfect implementations rather than achiev-
ing a perfect primitive. Additionally, Adlam and Kent have proposed a DI relativistic
bit commitment protocol [9], which offers security for a specific duration under the
assumption that each party is divided into agents separated in space-like regions.
Furthermore, there have been advancements in the DI scenario for multi-round pro-
tocols on bit commitment [12], weak string erasure [66], and single-shot DI settings for
weak coin flipping [11] and XOR oblivious transfer [73]. These recent contributions
in two-party cryptographic primitives suggest the advancements of the DI scenario
beyond QKD.

1.6 Contribution and organization of the thesis

Within the realm of two-party distrustful cryptographic primitives, this thesis specif-
ically centers around the Quantum Private Query (QPQ) primitive in the Device-
Independent (DI) scenario. We have already briefly introduced this primitive in Sec-
tion 1.4, and now, in this section, we will outline our contributions in the subsequent
chapters of this thesis, with a specific focus on the field of QPQ in the DI paradigm.

In Chapter 2, we present an overview of the fundamental concepts of quantum
mechanics as a foundational understanding for the thesis. This chapter provides a
concise discussion of existing results and the mathematical formalisms employed in
quantum mechanics, which are utilized for achieving the outcomes mentioned in this
thesis.

Next, in Chapter 3, we present an overview of the QPQ primitive, along with a
discussion on existing results within this domain. We discuss the relation between
QPQ and other related primitives (i.e., SPIR, OT) and also conduct a comparative
study with the exact classical counterpart. We also introduce the security definitions
that we have defined in our works to analyze the performance of our QPQ proposals
and the assumptions taken in our proposals. Notably, Chapter 3 does not present
any specific achieved results, apart from the security definitions defined and the as-
sumptions taken in our proposals.

Following the introductory framework established in Chapter 3, the discussion in
subsequent chapters (starting from Chapter 4) focuses on the results achieved in this
thesis. In Chapter 4, we discuss our proposed novel QPQ scheme, which stands out
as the first known (to the best of our knowledge) fully DI-QPQ scheme employing
EPR pairs. This proposal incorporates self-testing of shared EPR pairs, self-testing
of projective measurement operators, and self-testing of a specific class of POVM
operators to certify full DI. Additionally, this chapter formally addresses the security
concerns associated with this scheme.

In Chapter 5, we address the limitations of the semi-DI-QPQ scheme proposed
in [77] and propose a full DI version of the QPQ scheme [117] by exploiting a proper
self-testing mechanism of observables along with the local version of the tilted CHSH
game. We compare the performance of this full DI version of the Yang et al. QPQ
proposal [117] with our full DI-QPQ scheme mentioned in Chapter 4. Additionally,
we propose a full DI version for a modified version of [117], where the client can
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retrieve the maximum raw key bits during the oblivious key generation phase.
Chapter 6 focuses on the finite sample analysis for the semi-DI-QPQ proposal

in [77]. In this chapter, we present a comparative analysis between the CHSH and
the three-party Pseudo Telepathy game to address the reduction in the overall sample
size required for the DI certification of the semi-DI-QPQ scheme [77] in a finite sample
scenario.

Moving forward to Chapter 7, we address the limitations of existing single-user
and multi-user QPQ schemes. In this chapter, we present a semi-DI multi-user QPQ
scheme that enables simultaneous retrieval of different items by each user without
revealing their respective choices. This proposal allows each user to retrieve optimal
raw key bits during the oblivious key generation phase and evaluates the security
issues formally.

In Chapter 8, we conclude the thesis by providing a concise summary of our work,
highlighting the key contributions and advancements made in the field of QPQ in the
DI paradigm. Additionally, we discuss several intriguing open problems that warrant
further exploration in the domain of QPQ.

The contribution of this thesis towards the evolution of QPQ is represented in the
form of a line diagram in Figure 1-1
.

Figure 1-1: Line diagram representing the contribution of this thesis towards the
evolution in the field of QPQ
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2
Preliminaries and Background

“I think I can safely say that nobody understands quantum mechanics.”

— Richard P. Feynman, The Messenger Lectures, 1964, MIT.

Quantum computing is an interdisciplinary field, encompassing physics, math-
ematics, and computer science. In this chapter, we review the basic introductory
knowledge of quantum mechanics, quantum computation, and quantum cryptogra-
phy that are relevant to this thesis. Note that most of these contents (mentioned here)
about the basics of quantum mechanics, and computation can be found in Nielsen
and Chuang’s textbook [86].

Here, we first discuss the mathematical formalism of quantum mechanics: quan-
tum states, measurements, entanglement, distance notion between different states,
etc.

2.1 Basics of quantum computation

In this section, we delve into the fundamental concepts and the standard model of
quantum computing. Firstly, we introduce the essential notations commonly used in
quantum computation, which are summarized in Table 2.1. Subsequently, we explore
various topics, including quantum states, measurements, operations, entanglement,
and other related background information, in the following subsections.

2.1.1 Quantum bits or qubits

In classical computation and digital communications, the most basic unit of informa-
tion is represented as a bit, which can be in two states - 0 or 1. Analogously, the
equivalent of a bit in quantum mechanical systems is represented as a qubit. Like
0 and 1 bit in classical computation, quantum computation also has its equivalent
representation in the form of |0〉 qubit and |1〉 qubit respectively. However, unlike
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Notation Description
z∗ Complex conjugate of the complex number z
|ψ〉 2n × 1 column vector to represent a n-qubit state.

Also known as ket notation.
〈ψ| Dual vector of |ψ〉. Also known as bra notation.
〈φ|ψ〉 Inner product between the vectors |φ〉 and |ψ〉.
|φ〉 ⊗ |ψ〉 Tensor product between the vectors |φ〉 and |ψ〉.
|φ〉|ψ〉 Abbreviated notation of tensor product between the vectors |φ〉 and |ψ〉.
A∗ Complex conjugate of the A matrix.
AT Transpose of the A matrix.
A† Hermitian conjugate or adjoint of the A matrix, A† = (AT )∗

〈φ|A|ψ〉 Inner product between |φ〉 and A|ψ〉.
Equivalently inner product between A†|φ〉 and |ψ〉.

Table 2.1: Basic notations used in quantum computation

classical bits, qubits (or quantum bits) can be in a superposition of states (such
quantum states are known as “pure states”).

Any one qubit pure state |ψ〉 can be represented as a superposition of the basis
states |0〉 and |1〉 with certain amplitudes say α and β i.e.,

|ψ〉 = α|0〉+ β|1〉. (2.1)

with α, β ∈ C such that it satisfies the normalization condition |α|2 + |β|2 = 1.
That means, any quantum state |ψ〉 can be fully determined by it’s two amplitudes α
and β and is represented by the complex column vector

(
α
β

)
of norm 1. Similarly, the

basis states |0〉 and |1〉 are represented by the column vectors
(

1
0

)
and

(
0
1

)
respectively.

For any isolated physical system, the state space associated with the system is
called the Hilbert space where the system is completely described by its state vector
which is a unit vector in the system’s state space. A qubit is described by a two-
dimensional Hilbert space (the smallest non-trivial Hilbert space), whose state can
take any value of the form mentioned in equation 2.1. Let, Q1 be the Hilbert space
associated with a one qubit pure state. That means, Q1 can be represented as,

Q1 = {α, β ∈ C : |α|2 + |β|2 = 1}. (2.2)

Here, if one restricts the choice of α, β ∈ R, then a qubit can be represented on a
unit circle as depicted in Figure 2-1.

For a composite quantum system, the state space is the tensor product of the state
spaces of the component physical systems. For example, the state space corresponding
to any two-qubit quantum state is C2⊗C2, and any of such states can be represented
as,
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Figure 2-1: Representation of a qubit on a unit circle

|ψ2〉 =
3∑
i=0

αi|i〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉.

where {|i〉}3
i=0 forms the orthonormal basis in C2⊗C2 and αi’s are complex num-

bers satisfying the normalization condition
∑

i αi = 1 (here, any two qubit state |ij〉
actually denotes |i〉 ⊗ |j〉).

Similarly, any N qubit pure state |ψn〉 can be represented as a superposition of 2N

possible outcomes in {0, 1}N (i.e., the superposition of all possible 2N basis states)
like the following.

|ψn〉 =
2N−1∑
i=0

αi|i〉 = α0|00 · · · 0〉+ α1|00 · · · 1〉+ · · ·+ α2N−1|11 · · · 1〉 =


α0

α1
...

α2N−1

 .

In general, any pure quantum state in a d-dimensional Hilbert space Hd ' Cd can
be represented as,

|ψ〉 =
d−1∑
i=0

αi|i〉. (2.3)

where {|i〉}d−1
i=0 forms an orthonormal basis for Hd and

∑
i |αi|2 = 1.

2.1.2 Operations on qubits

There are only two types of operations that can be performed on a quantum state
namely unitary operations and measurements.
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• Unitary Operations : The evolution of any closed quantum system is de-
scribed by a unitary operation or equivalently a unitary transformation. Any
unitary operator acting on a N -qubit state can be described by a 2N×2N matrix
U that satisfies the following condition.

UU † = U †U = I.

where U † denotes the conjugate transpose of U and I denotes the 2N × 2N

identity matrix. The outcome of a unitary operator U on any pure state |ψ〉 can
be easily determined from the result U |ψ〉 which is just a standard multiplication
of a matrix and a vector.

When a unitary operator is applied to an N -qubit state, it acts on all the
superposition states simultaneously. While it is possible to simulate quantum
operations using classical computers, this process takes exponential time. This
is one of the key reasons why quantum computers are more powerful than their
classical counterparts.

Here, we discuss about some of the most commonly used unitary operators or
gates in quantum information. At first, we discuss the single qubit gates i.e.,
the unitary operators which act on a single qubit.

• Identity Operator : A single qubit identity operator is simply the identity
on C2 and it’s N -qubit generalisation is simply the tensor between N single

qubit identity operators
(

(C2)
⊗N
)

.

• Pauli Operators : These are three single qubit operators defined as follows.

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy = −iσxσz =

(
0 i
−i 0

)
.

The operator σx is known as bit flip operator (as it flips a qubit from |0〉 to
|1〉 and vice versa) and σz is known as phase flip operator (as it flips the phase
whenever the qubit is |1〉). The operator σy performs both bit and phase flip.
These operators σx, σy, σz are also denoted as X, Y, Z respectively.

These Pauli matrices generate the Pauli group (denoted by P1) with factors
±1, ± i where P1 is of the following form.

P1 = {±I,±iI,±σx,±iσx,±σy,±iσy,±σz,±iσz}.

• Rotation Operators : The rotation operators or gates represent rotation
around different axes. These gates are defined as follows.

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
, Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
.
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The Pauli operators X, Y and Z can be regarded as special cases of Rx, Ry, Rz

respectively with rotation angles of π. The periods of Rx, Ry and Rz are 4π.
The rotation operators can be defined in terms of the Pauli operators as follows.

Rj(θ) = e(
−iθA

2 ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
A, j ∈ {x, y, z}, A ∈ {X, Y, Z}.

• Hadamard Operator : The Hadamard operator or the Hadamard gate
denoted by H is defined as follows.

H =
1√
2

(
1 1
1 −1

)
.

The Hadamard gate acts as the following on the single qubit basis states.

H|0〉 →
(
|0〉+ |1〉√

2

)
, H|1〉 →

(
|0〉 − |1〉√

2

)
.

It’s N -qubit generalization is denoted as H⊗N .

• T Gate : The T gate that operates on a single qubit is defined as follows.

T =

(
1 0

0 e
iπ
4

)
.

• Phase Gate : The phase gate that operates on a single qubit is defined as
follows.

S =

(
1 0
0 i

)
.

Other than these single-qubit operators, some two-qubit operators or gates
act on two qubits (instead of a single one) and can be defined by a 4×4 unitary
matrix.

The most common two-qubit operators are the controlled operators which act
on two qubits - a control qubit and a target qubit. Suppose U is an arbitrary
single-qubit operation. For any controlled-U (CU) operation, if the control
qubit c is set, then U is applied to the target qubit t, otherwise the target qubit
t is left alone i.e.,

|c〉|t〉 → |c〉U c|t〉.

• CNOT Operator : CNOT operator or CNOT gate is a specific type of CU
operator with U = σx (i.e., Pauli X) gate. That means, whenever the control
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qubit of the CNOT gate is |1〉, the target qubit flips, otherwise it remains the
same. The operation of the CNOT gate can be defined as follows.

|c〉|t〉 → |c〉Xc|t〉 = |c〉|t⊕ c〉.

• SWAP Operator : SWAP operator or SWAP gate is another popular two-
qubit gate that acts on two qubits as follows.

SWAP|ψ〉|φ〉 = |φ〉|ψ〉.

The matrix representation of these CNOT and SWAP gates are as follows.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Note that the CNOT gate, together with other single-qubit gates, forms a uni-
versal set of gates i.e., any N qubit unitary operator can be decomposed as a
product of such elementary gates. By restricting the single-qubit gates to Pauli
operators and the T-gate, and combining them with the CNOT gate, any N
qubit unitary can be approximated to arbitrary precision where the approxima-
tion factor ε is related to the depth of the underlying quantum circuit according
to the result of Solovay and Kitaev [86]. More precisely, this Solovay-Kitaev
theorem states that for any single-qubit gate U and a given accuracy parameter
ε ≥ 0, it is possible to approximate U to the precision ε using O (logc(1/ε)) gates
from a fixed finite set, where c is a small constant approximately equals to 2.

• Quantum Measurements : Quantum measurement is described by a collec-
tion {Mm} of measurement operators that act on the state space of the system
being measured. The measurement operators must satisfy the completeness
condition i.e.,

∑
m

M †
mMm = I.

Here, m refers to the measurement outcome generated after the experiment.
If a quantum system |ψ〉 is measured then after measurement, the probability
p(m) of occurring the result m is given by,

p(m) = 〈ψ|M †
mMm|ψ〉.

After the measurement, the state of the system will be,
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Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
.

For example, one can consider the state |ψ〉 as mentioned in equation 2.1. If
this state |ψ〉 is measured in {|0〉, |1〉} basis, then the measurement outcome
will be |0〉 with probability |α|2 and |1〉 with probability |β|2.

There are two types of measurement, Projective Measurement and Positive-
Operator-Valued Measurement (POVM). A measurement is called projective
measurement if the measurement operators Πm = M †

mMm satisfy the property
Π2
m = Πm. This measurement has the property that performing the same mea-

surement again immediately after the one yields the same result with probability
1.

If the post-measurement state is not of particular interest, then one can perform
a more efficient measurement known as POVM. This measurement is described
by a set on non-negative operators {Em} such that

∑
mEm = I where the index

m denotes the measurement outcome. If a quantum state |ψ〉 is measured then
for this measurement, the probability of getting the measurement outcome m
is given by,

p(m) = 〈ψ|Em|ψ〉.

2.1.3 Mixed states

All the operations and measurements are discussed till now considering the states
of the form as mentioned in equation 2.1 which is known as pure state. However,
sometimes it may not be possible to describe the state of a quantum system only
using a state of the form as mentioned in equation 2.1. If a quantum system is in a
state {|ψi〉}1≤i≤n with probability pi then the state of that system is called a mixed
state. A mixed state is represented by a density matrix or a density operator which is
a positive semidefinite operator having unit trace and is represented in the following
form.

ρ =
∑
i

pi|ψi〉 〈ψi| .

Note that a pure state can also be represented in a density matrix form. A
quantum state ρ is pure if it has rank 1 or equivalently if it satisfies Tr[ρ2] = 1.

If the evolution of a closed quantum system is described by a unitary U between
time t1 and t2 then the corresponding density operators ρt1 and ρt2 will be related
through the following equation.

ρt2 = Uρt1U
†.
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If we perform a measurement defined by the measurement operators {Mm}m on
the density operator ρ then the probability of getting the outcome m will be,

p(m) = Tr(M †
mρMm).

and the post measurement state will be,

M †
mρMm

Tr(M †
mρMm)

.

Density operators can also be used to describe any subsystems of a composite
system using the reduced density operator. If we have a bipartite physical system in
the state ρAB on HA ⊗ HB, then the reduced density operator for system A can be
defined as

ρA = TrB(ρAB).

where TrB denotes the partial trace over system B.

2.1.4 Entanglement

Entanglement is a unique feature in quantum mechanics that captures the form of
correlation between multiple quantum systems. A state on HA ⊗ HB is called a
product state if it can be written of the form |φ〉⊗|ψ〉 where |φ〉 ∈ HA and |ψ〉 ∈ HB.
Any density operator ρ on HA ⊗ HB is called separable if it can be written as a
convex combination of such product states. More specifically, we can say that a
density operator represents a separable state if it can be written in the following
form.

ρ =
∑
i

pi|ψi〉 〈ψi| ⊗ |φi〉 〈φi| . (2.4)

where {|ψi〉} denotes the family of states in HA and {|φi〉} denotes the family
of states in HB with the corresponding probability distribution {pi}. Operationally,
these kinds of separable (mixed) states can be created using Local Operation and
Classical Communication (LOCC).

On the other hand, the states that are not separable are called entangled states.
More specifically, the pure states that are not product states i.e., can’t be written
of the form as mentioned in equation 2.4 are called entangled states. The most
common examples of two-qubit entangled states are the Bell states or EPR pairs.
These Bell states are also considered as two-qubit maximally entangled states. As
entanglement can’t be created using LOCC, this resource is exploited for tasks that
can’t be achieved using classical correlations. Although entanglement doesn’t carry
any information, it is assumed to provide some inherent communication between the
distant parties (who share the entanglement among them) and increase the efficiency
of many information processing tasks which is evident from the context of nonlocal
games, communication complexity and quantum cryptography. For a detailed review
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and applications of quantum entanglement, one may refer to [61].

2.1.5 Distance measures between quantum states

Distance measures are mathematical tools used to compare different aspects of sys-
tems, such as their information quantity. In the classical scenario, comparing bit
strings is usually straightforward by checking their equality or using the notion of
Hamming distance. However, comparing quantum states is more complicated due to
the probabilistic nature of measurement and the continuous vector space where the
state of a qubit resides. Fortunately, a variety of quantum distance measures have
been defined in the literature to handle this problem, each useful for different scenar-
ios in quantum mechanics and quantum information. Here, we only discuss the two
notions called Trace Distance (DTr or ∆) and Fidelity (F ) that compare the closeness
between two quantum states.

• Trace Distance: Trace distance compares two probability distributions pi and
qi over the same index set as

DTr(pi, qi) =
1

2

∑
i

|pi − qi|

• Quantum trace distance measures similarity of two quantum states σ and ρ and
is defined as the trace norm of an operator M as,

||M ||1 = Tr|M |

where |M | =
√
M †M . For the two quantum states σ and ρ, the trace distance

is defined as,

DTr(σ, ρ) = Tr|σ − ρ|
= ||σ − ρ||1

where |A| =
√
A†A is the positive square root of

√
A†A.

• Fidelity: Fidelity is another measure of the closeness between two probability
distributions qi and pi, defined as follows,

F (qi, pi) =

(∑
i

√
qipi

)2

• For the two quantum states σ and ρ, the fidelity is defined as,

F (σ, ρ) =
[
Tr(
√
σ1/2ρσ1/2)

]2
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• The fidelity between pure states |φ〉 and |ψ〉 can be defined as the squared
overlap of the states i.e.,

F (σ, ρ) = |〈φ|ψ〉|2

where the pure states |φ〉 and |ψ〉 are represented by the density matrix repre-
sentation σ = |φ〉〈φ| and ρ = |ψ〉〈ψ| respectively.

• There is a relationship between trace distance and fidelity, two measures of
similarity between quantum states, as shown in [49],

1−
√
F (ρ, σ) ≤ 1

2
Tr|ρ− σ| ≤

√
1− F (ρ, σ)

• The trace distance of two quantum states ρ and σ is linked to their distinguisha-
bility. If a referee prepares ρ and σ with a probability of 1

2
each, and another

party (Alice) tries to guess which state was prepared, then Alice’s optimal prob-
ability pcorrect is linked to the trace distance through,

pcorrect =
1

2

(
1 +

1

2
Tr|ρ− σ|

)
Thus, the trace distance is proportional to the maximum success probability in
identifying the two states. For more information, see [58].

2.1.6 Distinguishability of quantum states

It is well known that because of the no-cloning theorem, it is impossible to retrieve
the complete classical description of a quantum system from only a single copy of
the state. However, from multiple copies of the same quantum system, it is possible
to retrieve the exact description of the system with more certainty. This is the state
estimation problem in quantum information.

Another related but different problem in this domain is the problem of state dis-
crimination. The state discrimination problem refers to the problem of identifying or
distinguishing an unknown state (pure or mixed) ρ from a set of known states. More
specifically, from the set {pi, ρi}Ni=1 i.e., from the ensemble of states ρi’s where each
happening with probability pi, the problem is to identify a particular given state ρ
from this set by performing optimal measurement (projective or POVM) that leads
to the minimum error discrimination probability.

The Holevo-Helstrom bound is a well-known result in quantum information theory
that determines the following optimal probability for discriminating between two
mixed states.

Propt
guess =

1

2
+

1

2
||p1ρ1 − p2ρ2||1 = DTr(p1ρ1, p2ρ2). (2.5)

On the other hand, for a pure d-dimensional state |ψ〉 known to be either |ψ1〉
or |ψ2〉, there may be two types of errors - 1) the wrong guessing probability p1
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whenever the state is |ψ1〉 and 2) the wrong guessing probability p2 whenever the
state is |ψ2〉. In this scenario, the following optimal strategy minimizes the parame-
ter “max(p1, p2)” with projective measurements known as Neumark’s measurements
which has an indirect consequence with Neumark’s theorem (or Naimark’s theorem)
for general POVMs.

The best discrimination strategy for two pure states |ψ1〉 and |ψ2〉 with projec-
tive measurements {|v1〉, |v2〉}, where |v1〉, |v2〉 are in the span of |ψ1〉 and |ψ2〉
such that 〈v1|v2〉 = 0, they are symmetric with respect to the angle bisector
of |ψ1〉 and |ψ2〉, and |vi〉 is closer to |ψi〉 for i = 1, 2. Also consider that the
angle θ between |ψ1〉 and |ψ2〉 (detailed orientation in Figure 2-2) is defined as
θ = arccos|〈ψ1|ψ2〉|2. In this scenario, if one adopts the strategy that he guesses
|ψi〉 whenever the outcome is |vi〉, then the success probability is given by,

Prsucc = |〈vi|ψi〉|2 = cos2

( π
2
− θ
2

)
=

1

2
+

1

2
cos
(π

2
− θ
)

=
1

2
+

1

2
sin θ.

Figure 2-2: Pure states and the corresponding measurement basis for Neumark’s
measurement

One can check that in a special case, this optimal probability can be obtained
from the Holevo-Helstrom bound [60] as mentioned in equation 2.5.

From the description of the above discrimination strategy using projective mea-
surement, it is clear that some false results occur during the prediction. However, for
the scenarios where conclusive outcomes are required, these optimal strategies may
not be effective. Fortunately, there exists another discrimination strategy that allows
inconclusive outcomes instead of false results. That means if a measurement outcome
in this strategy indicates one of the states, then the predicted state will be the correct
result with certainty. In the literature, this strategy is known as Unambiguous State
Discrimination (USD) [62]. This kind of discrimination strategy aims to find the
optimal POVM that minimizes the probability of an inconclusive outcome. For the
case of two pure states with equal probability of occurrence, the following optimal
strategy provides the maximum conclusive success probability of discrimination.
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To unambiguously discriminate [62] two pure states say |ψ1〉 and |ψ2〉, the best
strategy is to carry out the POVM {D1, D2, D3} where the result D1 implies
that the unknown state is |ψ2〉, the result D2 implies that the unknown state
is |ψ1〉 and the result D3 implies that the discrimination is inconclusive. If the
angle between the states |ψ1〉 and |ψ2〉 is θ and the unknown state provided is
(say) ψ1, then the optimal probabilities of different outcomes for this case will
be as follows.

Pr(outcome D1) = Tr(D1ρ) = 0

Pr(outcome D2) = Tr(D2ρ) = (1− cos θ)

Pr(outcome D3) = Tr(D3ρ) = cos θ.

Where ρ is the density matrix representation of the unknown state.

The problem of unambiguous state discrimination has been generalized recently
to N linearly independent states in [37], and has also been studied for mixed states
in [25, 95]. More recent developments on this topic can be found in [67].

In the next chapter, we move our discussion towards the overview of the primitive
called Quantum Private Query (QPQ), which is the main area of work in this thesis.
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3
Quantum Private Query

3.1 Overview

The invention of quantum cryptography by Bennett and Brassard [21] in 1984 has led
to a surge of interest in secure communication due to its increased security compared
to classical cryptography. In addition to secure communication, the use of quantum
mechanical properties in cryptography has enabled many functionalities that were
previously impossible to achieve classically. One such functionality is Symmetric Pri-
vate Information Retrieval (SPIR), which is made possible in a single server scenario
(in terms of the Quantum Private Query primitive) through the incorporation of
quantum mechanics into cryptography.

SPIR is a distrustful primitive involving two parties, where a client requests spe-
cific data bits from a server’s database without revealing the indices of the requested
bits (user privacy), and the server does not disclose any information about the data
bits that is not requested (database security). Oblivious Transfer (OT) also provides
the same functionality. However, it has been shown in [74] that it is impossible to
achieve information-theoretic secure SPIR or OT schemes in a single server scenario
without further assumptions. Nonetheless, an unconditional secure SPIR scheme [71]
can be designed in a distributed database setting, where the servers share randomness
and do not communicate with each other.

The Quantum Private Query (QPQ) primitive is a solution to the problem of
implementing unconditional secure single server SPIR or OT schemes. QPQ offers
the same functionality as SPIR and OT but with a weaker security requirement where
the client can know some probabilistic knowledge about her unintended data bits,
and the server is assumed not to cheat as there exists a non-zero probability of being
caught cheating [4]. If the server tries to retrieve more information about the client’s
query indices, the client can detect that, and it may ruin the server’s reputation as a
database owner [63].
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3.2 Relation between QPQ, SPIR and OT

Oblivious Transfer (OT) is a well-studied cryptographic primitive that was first intro-
duced informally by Wiesner [114] and then subsequently formalized as 1 out of 2 OT
in [101]. In 1 out of N oblivious transfer protocol, a client wants to privately learn one
of N entries from a database owned by a server, without the server knowing which
entry the client is interested in (known as “user privacy”) and also the client should
not know anything about the unintended data bits (known as “data privacy”). This
scheme is also referred to as Symmetric PIR (or SPIR). However, there is a minimal
difference between SPIR and OT. The main difference between PIR (a weaker version
of SPIR where only user privacy is maintained) and OT is that PIR has bound on the
communication complexity of the protocol (more specifically, it requires “sublinear”
communication in the size of the database) whereas OT has no such requirements.
For SPIR, generally, multiple databases are involved to achieve both low communi-
cation complexity and information-theoretic security. Although one can have both
distributed PIR and distributed OT, because of this communication requirement, PIR
is already non-trivial even if the input of the receiver is protected (asymmetric PIR).
On the other hand, Symmetric PIR implies 1 out of N OT (but not the other way
around).

Alternatively, private query protocols provide similar functionalities to OT and
SPIR, but their security requirements are generally relaxed [54]. In the QPQ primi-
tive, it is assumed that the server will not cheat if there exists a non-zero probability
of being caught, and the client may obtain a few extra entries, but the number is
strictly bounded. All existing QPQ protocols are designed for a single database and
are like probabilistic 1 out of N OT or imperfect version of (quantum) SPIR with
imperfect data privacy.

It is already shown in [74] that information-theoretically secure two-party compu-
tational schemes are impossible in the quantum scenario. This implies the impossibil-
ity of designing an information-theoretic secure OT scheme that satisfies both client’s
and server’s security requirements. This result also suggested the impossibility of de-
signing information-theoretic secure (quantum or classical) SPIR with a single server
without further assumptions. However, the information-theoretic secure single-server
classical PIR scheme does exist with Θ(n) communication complexity [38] (where n is
the size of the database). For quantum PIR with a single classical database, Baumeler
and Broadbent [17] first come up with an information theoretic secure scheme (with
the assumption of specious server) having Θ(n) communication complexity. Later,
Le Gall [50] proposed a scheme with O(

√
n) communication complexity, and Kereni-

dis et al [69] came out with two proposals - one having O(log(n)) communication
with the requirement of linear pre-shared entanglement and the other one having
poly logarithmic communication with no requirement of pre-shared entanglement.
For multi-server scenario, both classical [53] and quantum [71] SPIR schemes do ex-

ist having communication complexity around O(n
1

(2k−1) ) (where k is the number of
servers) with the assumption that the servers don’t communicate with each other.
There are also results for quantum PIR with a single quantum database (i.e., a single
server holding a database where the database elements are qubits) and quantum SPIR
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for multiple quantum databases [105] having both linear and sub-linear communica-
tion complexity. However, in this present effort, we are only interested in classical
databases.

All the existing literature demonstrates that OT schemes only offer computational
security, while SPIR schemes have high storage overhead and impractical assumptions
(like no communication between multiple servers) for additional (unconditional) secu-
rity. Fortunately, due to the relaxed security requirements of QPQ discussed earlier,
it is possible to design unconditionally secure QPQ schemes in a single-server sce-
nario with sub-linear (O(log(n))) communication complexity [54]. This makes QPQ
schemes more efficient than existing SPIR or OT schemes in terms of practicality, secu-
rity, storage overhead, and communication complexity. Additionally, QPQ protocols
can resist all attacks, including those using quantum resources, whereas classical or
even quantum OT protocols may not be able to defend against such attacks. We have
demonstrated the relations between QPQ, SPIR, and PIR through a line diagram in
Figure 3-1. We have also revisited the existing results for QPQ and (S)PIR protocols
for single-server scenarios (in both classical and quantum settings) in Table 3.1 which
is already mentioned in [4]. For further details regarding the relation between QPQ
and (S)PIR, one may refer to [4].

Figure 3-1: Line Diagram for the relations between QPQ, PIR, and SPIR
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Problem Additional Opt. Comm. Reference
Assumption Complexity

Classical PIR Θ(N) [38]
Classical SPIR NA (Impossible)

Quantum PIR
(Classical Database)

Specious server Θ(N) [17]

Specious server and
prior entanglement

Θ(N) [13]

Honest server O(poly log(N)) [69]

Honest server and
prior entanglement

O(log(N)) [69]

Quantum SPIR
(Classical Database)

NA (Impossible) [74]

The server will not cheat
if there is a non-zero probability

of being caught cheating and
imperfect data privacy

(This is the QPQ primitive).

O(log(N)) [54]

Quantum PIR
(Quantum Database)

Honest server and
blind setting

Θ(N) [105]

Honest server and
visible setting

Θ(N) (for one-round) [105]

Honest server and
prior entanglement

O(log(N)) [105]

Quantum SPIR
(Quantum Database)

Table 3.1: Known results for (S)PIR protocols in single server scenario

3.3 Comparison with the exact classical primitive

It is well-known that in the classical setting, it is impossible to design an information-
theoretically secure OT or SPIR scheme [41]. However, to the best of our knowledge,
it is not known whether we can design an unconditional secure classical private query
(CPQ) scheme. Here, we point out that, it is very easy to come up with a naive and
inefficient unconditional secure classical private query scheme. A rough idea of the
scheme is given below.

• Suppose, the client Alice wants to know I1 number of bits from the N bit
database X but asks for I2 positions (that include her I1 positions) to the
server Bob where I2 is exponentially larger than I1 but exponentially smaller
than N .

• Bob then returns all the bits corresponding to these I2 positions to Alice. This
implies that Alice can’t learn more than I2 bits from the database which is very
small compared to the size of the entire database.
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• On the other hand, Bob can learn about the positions of Alice’s query with
probability I1

I2
which is also very small.

One can easily check that although this naive classical solution is information-
theoretically secure, it has the following disadvantages as compared to the existing
quantum solutions.

• In the naive classical solution of the private query primitive, the server Bob
leaks more data bits to the client Alice as compared to the existing quantum
solutions. In the above-mentioned classical solution, Alice knows an exponential
amount of additional data bits as compared to the size of her intended query
index set. Whereas, in the quantum scenario, Alice knows a very small amount
of additional data bits compared to the size of her intended query index set.

• In the mentioned classical solution, Bob can guess the query indices of Alice with
a more certain probability as compared to the existing quantum solutions. In
the quantum scenario, Bob guesses each of the data bits as Alice’s query with
non-zero probability. Whereas in this mentioned classical solution, Bob can
simply eliminate (N−I2) indices (exponential number of data bits as compared
to the size of the query index set) that are not asked by Alice.

The study of designing an efficient classical private query scheme is beyond the
scope of the research direction in this thesis.

3.4 Evolution of Quantum Private Query

As discussed in Section 3.2, the concept of designing QPQ protocols emerged as a
response to the difficulties encountered in developing unconditionally secure single-
server SPIR schemes that enforce a cheat sensitivity in the adversarial model assuming
that if there is a non-zero probability of being caught cheating then the server will
not cheat.

The history of QPQ protocols began with the proposal of Giovannetti et al. [54].
This was followed by [55] and [88], but these protocols relied on quantum memories,
which are not implementable in practice. Several modifications and advancements
have been made towards the proposal of the first implementable QPQ scheme by
Jakobi et al. [63], which was based on a Quantum Key Distribution (QKD) proto-
col [96]. This was followed by a flexible generalization by Gao et al.[52] and further
efficiency improvements suggested by Rao et al.[91]. Zhang et al.[120] proposed a
QPQ protocol based on the counterfactual QKD scheme [87] and Yang et al. devel-
oped a flexible QPQ protocol [117] based on the B92 QKD scheme [19]. The domain
continues to develop, as seen in recent publications [113, 51]. Based on this discussion
of the existing and previous proposals in the field of QPQ, it becomes evident that
there are primarily two types of QPQ proposals, namely:

• QPQ protocols based on quantum random access memory (most of the early
proposals in this domain) [54, 55, 88].
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• QPQ protocols based on quantum oblivious key distribution (most of the recent
proposals in this domain) [63, 52, 117].

This thesis is focused on the second type of QPQ schemes (i.e., the QPQ schemes
based on QKD). Some of these QKD-based QPQ protocols use entangled states to
create a shared key between the server (Bob) and client (Alice), while others use a
single qubit sent to the client, which is prepared in specific states and measured to
retrieve the key bit. All the recent QKD-based QPQ protocols, despite differences in
the key generation procedure, share common concepts. Their security is based on the
following fundamental principles.

• The server (Bob) and the client (Alice) share a key between them.

• Bob knows the whole key which would be used for the encryption of the database.

• Alice knows only a fraction of bits of the key.

• Bob does not get any information about the known indices of Alice.

In QPQ, either party may act as an adversary and attempt to compromise security.
Alice may try to learn more about the original key bits (that implies the extraction
of more data bits in a single query), while Bob may try to learn the indices of the bits
known to Alice. Because of this, QPQ is a two-party cryptographic primitive where
both parties are distrustful. In reality, the desired primitive is as follows.

• The malicious client Alice’s knowledge of additional data bits is limited to a
small fraction beyond what is intended to know by her. The server Bob’s
goal is to minimize dishonest Alice’s knowledge of extra information about the
database.

• While being honest, the server Bob can only gain limited information about Al-
ice’s query indices. Jakobi et al. [63] demonstrated that dishonest Bob can’t ob-
tain both conclusiveness information and the values of the raw key bits recorded
by Alice during the oblivious key generation phase. If Bob attempts to retrieve
more information about Alice’s query indices, there is a risk of providing false
information about the intended data bits to Alice, which would damage Bob’s
reputation as a database owner. Thus, in the QPQ primitive, it is assumed
that Bob will not cheat if there exists a non-zero probability of being caught
cheating.

Recently, Maitra et al. [77] pointed out that the security of the existing QKD-based
QPQ proposals (up until that time) relies on the assumption that the communicating
parties trust the devices involved in their scheme, just as it is in the case of initial QKD
schemes or for other quantum cryptographic proposals too. In Device Independent
(DI) scenario, these trustful assumptions over the devices are removed and security is
guaranteed even after removing them. However, unlike QKD, proving DI security for
the QPQ distrustful primitive is challenging mainly because of the following reasons.
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• In QKD, the parties Alice, and Bob both know all the bits of their shared raw
key. However, in QKD-based QPQ schemes, only the server Bob knows all the
bits of the shared raw key, and the client Alice knows only some of the shared
raw key bits.

• In QKD, both Bob and Alice trust each other, and any third party will act as
an adversary. Contrary to this, in QPQ, neither of the parties trusts the other,
and any one (or both) of them may act as an adversary.

Despite these challenges, a DI-QPQ scheme has been proposed recently in [77] to
enhance the overall security in the QPQ domain by removing trustful assumptions
over the devices. However, this protocol only introduced a testing phase on the server
side, making it a semi-DI version of the Yang et al. [117] QPQ scheme.

Until that time, there were no full DI proposals in the QPQ domain. In this
thesis, we focus on the QPQ domain in the DI paradigm. We come up with some
full DI proposals considering different parameters and based on certain assumptions
mentioned in Section 3.6. We also analyze the security issues of all our proposals
formally by introducing the security definitions discussed next in Section 3.5 of this
chapter.

3.5 Security definitions

In the QPQ distrustful cryptographic primitive, none of the parties trusts the other,
resulting in different security goals for each party. The security of the entire protocol
is termed “Protocol Correctness”, while the security of the server is referred to as
“Privacy of the Database Owner” and the security of the client (or each of the clients
in the multi-user scenario) is called “Privacy of the User”. To discuss the security
issues of our proposals more precisely, we have introduced the following security
definitions.

Definition 1. Protocol Correctness:
If both the client (or the clients in a multi-user scenario) and the server are honest,

then after the protocol execution, it is highly likely that the client (or every client in
the multi-user scenario) will correctly retrieve the expected number of data bits in a
single database query. That means if the client (or a client in the multi-user scenario)
is aware of X data bits and is expected to know Y data bits (according to the scheme),
then following the shared key generation phase,

Pr(|X − Y | ≤ δt ∧ the scheme doesn’t terminate) ≥ Pc. (3.1)

where the server tolerates a deviation of δt and the probability of X being within the
range of [Y − δt, Y + δt] is referred to as Pc, which should ideally be high.

Definition 2. Protocol Robustness:
In case of honest implementation of a QPQ scheme, the likelihood of the client

(or all of the clients in a multi-user scenario) not knowing any of the final key bits
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(or data bits in a single query) and the scheme needing to restart after the shared key
generation phase is low. Formally,

Pr(the scheme terminates in honest scenario) ≤ Pa. (3.2)

where Pa denotes the probability that no final key bits are known to the client (or any
of the clients in a multi-user scenario) and the protocol terminates. Ideally, it should
be low.

Definition 3. Privacy of the Database Owner:
A QPQ protocol is considered to protect data privacy if, in a single query, a

dishonest client (C∗) can only retrieve at most (on average) τ fraction of bits from
the entire N-bit database X, where τ (0 < τ < 1) is very small compared to N , or if
the scheme terminates with a high probability in the asymptotic limit. If the number
of bits extracted (on average) by the dishonest client (or any of the dishonest clients
in the multi-user scenario) in a query is denoted as DC∗, then according to the above
definition,

ER(DC∗) ≤ τN. (3.3)

where τ is a small fraction compared to N and the expectation is calculated over the
random coin R utilized in the proposal.

The data privacy against a dishonest client (or the dishonest clients in a multi-user
scenario) can also be defined (from the correctness definition) in terms of the success
probability in guessing more than the expected number of data bits in a single query. In
this notion, after the shared key generation phase, either the scheme terminates with
high likelihood (as the limit approaches infinity), or the probability that a dishonest
client (C∗) correctly retrieves more data bits than expected and the protocol doesn’t
terminate is very low. This means that if the number of data bits known to a dishonest
client is represented by X and the expected number is represented by Y , then after the
shared key generation phase,

Pr(|X − Y | > δt ∧ the scheme doesn’t terminate) ≤ Pd. (3.4)

where δt represents the allowed deviation by the server from the expected number of
data bits and the probability that the actual number of data bits (i.e., X) known to
a dishonest client lies outside the range of [Y − δt, Y + δt] is denoted by Pd, which
should ideally be very low.

Definition 4. Privacy of the User:
A QPQ scheme ensures user privacy if either the dishonest server (S∗) can accu-

rately identify, on average, at most a small fraction δ of indices from the client’s query
index set Il (or from every i-th client’s query index set Ili in a multi-user scenario) or
the scheme terminates with a high likelihood in the long run. If the dishonest server
correctly predicts lS

∗
number of indices from the client’s query index set Il (or from

any i-th client’s query index set Ili) then according to the above definition,

ER′(l
S∗) ≤ δl. (3.5)
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where the expectation is based on the random coin R′ utilized in the proposal (the right-
hand side of this inequality will be δli in case of every i-th client in the multi-user
scenario).

The user privacy against the dishonest server can also be defined in terms of the
success probability in guessing a query index correctly from the set of the client’s
query indices (or from any of the client’s query index set in case of a multi-user
scenario). In this notion, either the proposal terminates with high likelihood (as the
limit approaches infinity), or the probability of the dishonest server (S∗) accurately
guessing a query index from the client’s query index set Il (or from any of the i-th
client’s query index set Ili in a multi-user scenario) and the protocol not aborting is
very low. In other words, if the server guesses an index j from the database and the
protocol continues, then the probability of j being in the client’s query index set Il (or
in any of the i-th client’s query index set Ili in case of a multi-user scenario) is low.
i.e.,

Pr(Server guesses j ∈ Il ∧ scheme doesn’t terminate) ≤ Pu. (3.6)

where Pu represents the probability that j is in Il (or in Ili for any i-th client in case
of a multi-user scenario) and the protocol doesn’t terminate (Pu should ideally be very
small).

3.6 Security assumptions

The list of assumptions for the security of the QPQ proposals involved in this thesis
can be summarized as follows.

1. Devices follow the laws of quantum mechanics i.e., the quantum states and the
measurement operators involved in our schemes lead to the observed outcomes
via the Born rule.

2. Like the recent DI proposal for oblivious transfer from the bounded-quantum-
storage-model and computational assumptions in [31], in this thesis also we
assume that for all our schemes, the state generation device and the measure-
ment devices (both at honest and dishonest party’s end) are described by a
tensor product of Hilbert spaces, one for each device and the devices follow the
i.i.d. assumption such that each use of a device is independent of the previous
use and they behave the same in all trials. This also implies that the statis-
tics of all the rounds are independent and identically distributed (i.i.d.) and
the devices are memoryless. We also assume that the honest party chooses the
inputs randomly and independently for each round.

Note : As QPQ is a distrustful primitive, to detect the fraudulent behavior (if
any) of the dishonest party, the i.i.d. assumption on the inputs chosen by the
honest party seems justified here.

3. The honest party can interact with the unknown devices at his end only by
querying the devices with the inputs and getting the corresponding outputs
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whereas the dishonest party can manipulate all the devices before the start of
the protocol. However, we assume that after the protocol starts, the dishonest
party can no longer change this behavior - he cannot manipulate any devices
held by the honest party, and also cannot “open up” any devices he possesses at
his end (i.e., the dishonest party is also restricted to only supplying the inputs
and getting the corresponding outputs from the devices after the start of any of
our QPQ proposals). We also assume that the dishonest party processes their
data in an i.i.d. fashion.

4. Generally, in the Device Independent (DI) scenario, it is assumed that the
laboratories of the parties are perfectly secured, i.e., there is no communication
between the laboratories. As QPQ is a distrustful primitive, here we assume
that each party’s aim is not only to retrieve as much additional information as
possible from the other party but also to leak as little additional information as
possible from his side. For this reason, while testing the cheating of a dishonest
party (or parties) in a particular testing phase, the party who wants to find out
the cheating must act honestly in that test to detect the fraudulent behavior (if
any) of the dishonest party (or parties). If all the parties act deceitfully in any
testing phase, then none of them can detect the cheating of any other party (or
parties). So, one party must act honestly in every testing phase.

In the local tests, the honest party performs the test at his end and chooses
the input bits randomly for the devices (on behalf of the referee). So, there is
no communication between the laboratories. But for distributed tests (i.e., the
tests performed by both of them with the shared states), we assume that the
honest party chooses the input bits for all the parties on behalf of the referee
and then the dishonest party (or parties) announces the measurement outcomes.
Therefore, in the case of distributed tests, communication is permitted from the
honest party’s end regarding the input bits and from the dishonest party’s (or
parties’) output bits.

We also assume that the honest party can somehow “shield” his devices such
that no information (regarding the inputs and the outputs) is leaked from his
laboratory until he chooses to announce something.

Note : Here, one may think that in the case of a distributed test, the dishonest
party (or parties) may not measure his (their) qubits according to the input
values chosen by the honest party. In that case, how the honest party can
detect this dishonest behavior in the corresponding testing phase is mentioned
later in the analysis of device-independent security.

5. The inputs for self-tests are chosen freely and independently i.e., the device used
to generate input bits for one party does not have any correlations (classical or
quantum) with the devices of the other parties involved in a scheme.
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4
Improved and Formal Proposal for Fully Device

Independent QPQ using EPR Pairs

Recently, Maitra et al. [77] highlighted that the security of the existing QPQ pro-
posals (up until that time) relied on the assumption of trust in the involved devices,
similar to initial QKD proposals. However, in a Device Independent (DI) scenario,
these assumptions are removed, and security is guaranteed without relying on trust.
Nevertheless, achieving DI security in QPQ is challenging due to its inherent lack of
trust between the parties.

Despite this challenge, a DI-QPQ scheme was recently proposed in [77], and its
analysis for finite sample scenario was discussed in [16]. However, the proposal in [77]
only introduced a testing phase on the server’s side, making it a semi-DI version of
the QPQ scheme by Yang et al. [117].

Similar to [117], most QKD-based QPQ schemes involve the client generating a
partial key by distinguishing non-orthogonal states. In the case of [117], Bob and
Alice share non-maximally entangled states, and Alice randomly measures her qubits
on a specified basis to retrieve the raw key bits chosen by Bob with certainty.

It is well-known that maximally entangled states are easier to prepare and more
robust in a DI setting compared to non-maximally entangled states. Additionally, ac-
cording to [62, 90], unambiguous discrimination strategy using POVM measurements
offers an optimal distinction between non-orthogonal states (discussed in detail in
subsection 2.1.6 of Chapter 2).

Taking these factors into consideration, here in this chapter, we propose a new
QPQ protocol that utilizes shared EPR pairs and optimal POVM measurements at the
client’s side to distinguish non-orthogonal quantum states and extract the maximum
number of raw key bits during the oblivious key generation phase. This scheme pro-
vides full device-independent certification through self-testing of shared EPR states,
self-testing of POVM measurements (at the client), and self-testing of projective mea-
surements (at the server). Furthermore, we provide a formal discussion of the security
aspects and establish upper limits on the maximum cheating probabilities for both
the server and the client.

The chronology of this Chapter can be described as follows. Atfirst, we explain
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our exact contributions in detail in Section 4.1. Then we discuss our proposed full DI-
QPQ scheme using EPRR pairs in Section 4.2. In Section 4.3, we discuss the security
related issues of our proposal formally and derive an upper limit of the maximum
cheating probabilities for both the dishonest client and the dishonest server. In the
next section (Section 4.4), we discuss the procedure of choosing initial samples in finite
sample scenario. Next, in the subsequent sections (Sections 4.5, 4.6), we mention the
detailed proofs of our results. At last, in Section 4.7, we discuss the correctness of
our proposal considering devices “up to a unitary”.

4.1 Contribution of this chapter

In the chapter, we study the QPQ distrustful primitive in device independent (DI)
scenario. Given the distrustful nature of QPQ, proving its DI security is a challenging
task. With that in mind, our proposal in this chapter aims to maintain both data
privacy and user security, while also detecting any attempts by a party to compromise
the system’s security. The main focus of this chapter is outlined below.

1. Unlike the previous semi-DI version in [77], here we come up with a full DI-
QPQ scheme using maximally entangled EPR pairs for better preparation and
robustness in DI certification. Our proposed QPQ scheme removes device trust-
worthiness by performing self-testing of EPR pairs (following the procedure of
CHSH test), projective measurements operators (following the procedure men-
tioned in [65]), and POVM operators (following a new strategy mentioned here
without imposing any dimension bound). All these self-testing mechanisms
provide full DI security, a first of its kind in QPQ (as far as we know). We
thoroughly examine the connection of QPQ with comparable primitives, such
as OT and SPIR, and compare it with its classical counterpart.

2. Our proposal utilizes optimal POVM measurement at the client’s side, replac-
ing the traditional projective measurement. This allows the client Alice to
accurately distinguish two non-orthogonal states with maximum probability,
improving the efficiency of the scheme. The result is that, on average, Alice
is able to secure the maximum number of raw key bits with certainty. That
means, our proposal also enables Alice to retrieve the optimal number of data
bits in a single query.

3. We introduce the security definitions for data privacy and user privacy in terms
of the maximum fraction of information known by the dishonest party, and also
in terms of the probability with which the dishonest party guesses more than
the expected amount of information in a scenario where the protocol doesn’t
abort. We formally evaluate the performance of our proposal in terms of these
security definitions considering all types of attacks that maintain the accuracy
requirement. Taking into account all our assumptions, we perform a detailed DI
security analysis of our proposal to certify all the devices. We also discuss briefly
about the practical implementation (considering finite number of samples) of
our scheme.
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4.2 Our DI-QPQ proposal

The QPQ protocols are composed of several phases. Depending on the functionality,
we have divided the entire protocol into five phases. The first phase is termed the
“entanglement distribution phase”. In this phase, a third party (need not be a trusted
one and may collude with the dishonest party) distributes several copies of entangled
states between the server (Bob) and the client (Alice). The next phase is called
the “source device verification phase”. In this phase, the server and the client self-
test their shared entangled states using the CHSH game. The third phase is termed
as “Bob’s measurement device verification phase”. In this phase, Bob self-tests his
measurement device (in some specific measurement basis that will be used for the
QPQ protocol).

In QPQ, before the protocol, the server Bob decides how much information the
client Alice can retrieve from the database in a single query. For this reason, Bob
chooses a parameter θ and performs measurements on his qubits (of the shared entan-
gled states) in this θ rotated basis (during the protocol) to restrict Alice’s information
about the database 1. As Alice and Bob get the measurement devices from an un-
trusted third party, (in the device-independent setting) they need to check the devices
before proceeding with the protocol. Here we assume that dishonest Bob’s aim is not
only to know Alice’s query indices but also to leak as little additional information
about the database as possible. For this reason, in “Bob’s measurement device veri-
fication phase”, only Bob will act as a referee and choose input bits for both parties.
They first perform some measurements assuming the devices as unknown boxes and
then after getting the outcome, they conclude about their functionality. After mea-
surement, if the probability of winning the specified game is equal to some predefined
value, then they can conclude that Bob’s measurement devices are noiseless for those
specified bases.

The next phase of this protocol is termed “Alice’s POVM device verification
phase”. In this phase, Alice first performs specific measurements assuming the POVM
devices as unknown boxes and then concludes about their functionality based on the
outcome i.e., in this phase, Alice checks the functionality of her POVM device. If the
POVM device works as expected, then Alice and Bob generate key bits in the next
phase for the remaining instances which is termed as “shared key generation phase”.
After this phase, Bob has a secret key such that Alice knows some of those bits and
Bob doesn’t know the indices of the bits known by Alice.

In the last phase, i.e., in “private query phase ”, Bob encrypts the database using
the key generated at his side and sends the encrypted database to Alice. Alice then
decrypts the intended data bits using the known key bits at her side.

Here we outline the different steps of our proposal in detail. Note that this proposal
follows all the assumptions mentioned in Chapter 3 Section 3.6. Also, note that we
have not taken into account channel noise and therefore all operations are assumed
to be flawless.

1Once chosen, this value of θ remains fixed for the entire QPQ protocol
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1. Entangled State Sharing Phase:

(a) A third party distributes K (where K is assumed to be asymptotically
large) number of states, |φ〉AB, between Alice and Bob with Alice receiving
subsystem A and Bob receiving subsystem B in each pair.

2. Source Device Certification Phase:

The source device verification phase is composed of two subphases. In the first
subphase, Bob acts as a referee, chooses random samples (for testing phase),
receives the corresponding qubits from Alice, generates random input bits for
those instances and performs a localCHSHtest to certify the states. Similarly,
in the second subphase, Alice acts as a referee and does the same that Bob does
in the previous phase. In each phase, after receiving the inputs, Alice’s and
Bob’s devices measure the states and return output bits (ci, bi). The detailed
description of different subphases is as follows.

(a) Bob chooses γ1K
2

instances randomly from these K shared states (in prac-
tice, how Bob and Alice choose the specific value of γ1 from the set [0, 1] is
mentioned in Section 4.4), declares those instances publicly and constructs
the set ΓBCHSH with these chosen instances.

(b) For all the instances in ΓBCHSH, Alice sends her qubits to Bob.

(c) For the instances in ΓBCHSH, Bob plays the role of the referee as well as the
two players and plays LocalCHSH game.

(d) For every i-th sample in ΓBCHSH, Bob randomly generates input bits ri and
si for his two measurement devices (these devices act as separate parties
without any communication), with ri, si ∈ {0, 1}.

(e) Bob performs LocalCHSHtest(ΓBCHSH, Bob), according to the procedure
outlined in Algorithm 1 (which is equivalent to the local version of the
CHSH game) for the set ΓBCHSH.

(f) If Bob passes this LocalCHSHtest(ΓBCHSH, Bob) then both Alice and Bob
proceed further, otherwise they abort.

(g) From the rest
(
K − γ1K

2

)
shared states, Alice randomly chooses γ1K

2
in-

stances, declares those instances publicly and constructs the set ΓACHSH

with these chosen instances.

(h) For all the instances in ΓACHSH, Bob sends his qubits to Alice.

(i) For these instances in ΓACHSH, Alice plays the role of the referee as well as
the two players and plays LocalCHSH game.

(j) For every i-th sample in ΓACHSH, Alice randomly generates input bits ri and
si for her two measurement devices (these devices act as separate parties
without any communication), with ri, si ∈ {0, 1}.

(k) Alice performs LocalCHSHtest(ΓACHSH, Alice), according to the procedure
outlined in Algorithm 1 (which is equivalent to the local version of the
CHSH game) for the set ΓACHSH.
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Algorithm 1: LocalCHSHtest(S,P)

• For every i ∈ S, P does the following.

(a) The device of P measures on first qubit of the i-th state for inputs si = 0
and si = 1 and outputs ci = 0 or ci = 1.

(b) The device of P measures on second qubit of the i-th state for inputs
ri = 0 and ri = 1 and outputs bi = 0 or bi = 1.

• From the inputs si, ri and their corresponding outputs ci, bi, P calculates the
following quantity.

C =
1

|S|
∑
i∈S

Ci.

where Ci is defined as,

Ci :=

{
1 If siri = ci ⊕ bi
0 otherwise.

• If C = cos2 π
8

then P continues with the protocol, otherwise P aborts the
protocol
(In the case of honest implementation, this exact desired value can be obtained
for this algorithm and for all the other algorithms mentioned in this thesis
using asymptotically large number of samples. However, in practice, with finite
number of samples, it is nearly always impossible to exactly match with the
desired value of the estimated statistic. Hence, a small deviation from the
desired value is allowed in practice. A discussion regarding the variation of the
deviation range with the sample size is mentioned later in Section 4.4.
However, how the existing security definitions will vary with the noise
parameter, is out of the scope of these present works mentioned in this thesis
and we will try to explore this issue in our future works).
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(l) If Alice passes the LocalCHSHtest(ΓACHSH, Alice) test then both Bob and
Alice proceed to the next phase where Bob self-tests his measurement
device, otherwise they abort.

3. Bob’s Measurement Device Verification Phase:

Algorithm 2: OBStest(S)

• For every i ∈ S, Bob and Alice do the following.

(a) Bob randomly generates a bit si (either 0 or 1) to input into Alice’s device
and announces the input publicly.

(b) Alice measures her share of the i-th state for inputs si = 0 and si = 1, and
obtained outputs ci = 0 or ci = 1.

(c) Bob has already measured his share of the i-th state for inputs ri = 0 and
ri = 1, and obtained outputs bi = 0 or bi = 1.

(d) Alice and Bob announce their inputs si, ri and their corresponding outputs
ci, bi.

• Bob and Alice estimate the following quantity from their declared outcomes.

β =
1

4

∑
s,r,c,b∈{0,1}

(−1)dsrcbα1⊕s〈φAB|Asc ⊗Br
b |φAB〉.

where α = (cos θ+sin θ)
|(cos θ−sin θ)| and dsrcb is as follows ,

dsrcb :=

{
0 If sr = c⊕ b
1 otherwise.

• If β = 1√
2|(cos θ−sin θ)| , then they continue with the protocol, otherwise they abort

the protocol.

(a) In the previous phase (i.e., in source device certification phase), Bob and
Alice selected a total of |ΓCHSH| samples, with ΓCHSH = ΓACHSH ∪ ΓBCHSH.
For every i-th instance from the remaining (K − |ΓCHSH|) samples, Bob
performs the following.

• Bob generates random bit ri ∈R {0, 1} for every i-th state, as the input
of his device. (essentially, these randomly generated bits serve as the
initial key bits for Bob, meaning Ri = ri).

• If ri = 0, Bob measures his share of the i-th state using the operator
{B0

0 , B
0
1} and produces the output bit bi = 0 and bi = 1 respectively.

• If ri = 1, Bob measures his share of the i-th state using the operator
{B1

0 , B
1
1} and produces the output bit bi = 0 and bi = 1 respectively.
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• Bob announces ai = 0 if his device outputs bi = 0, meaning the
operator B0

0 or B1
0 was applied for the i-th instance.

• Bob announces ai = 1 if his device outputs bi = 1, meaning the
operator B0

1 or B1
1 was applied for the i-th instance.

(b) Bob chooses γ2(K−|ΓCHSH|)
2

instances randomly from these (K − |ΓCHSH|)
shared states, declares them publicly and constructs a set ΓBobs with these
instances.

(c) Alice then chooses γ2(K−|ΓCHSH|)
2

instances randomly from the rest (K −
|ΓCHSH| − |γ2(K−|ΓCHSH|)

2
|) shared states, declares the instances publicly and

constructs a set ΓAobs with these instances.

(d) Bob and Alice create a set Γobs with all their chosen samples i.e., Γobs =
ΓAobs ∪ ΓBobs.

(e) They then perform OBStest(Γobs), by following the procedure mentioned
in Algorithm 2, for the set Γobs.

4. Alice’s POVM Device Verification Phase:

(a) After Bob’s measurement device verification phase, Alice and Bob move
on to this phase with the remaining (K − |ΓCHSH| − |Γobs|) shared states,
referred to as ΓPOVM.

(b) Alice randomly selects γ3|ΓPOVM| samples from ΓPOVM, calls this set Γtest
POVM,

and declares the instances.

(c) Bob first declares the x values for each of the instances in the set Γtest
POVM,

and then Alice performs KEYgen(Γtest
POVM) followed by POVMtest(Γtest

POVM)
according to the procedures described in Algorithms 3 and 4 respectively
for the same set.

Algorithm 3: KEYgen(S)

• For every i ∈ S, Alice performs the following.

(a) If Bob stated ai = 0, Alice uses measurement device M0 = {M0
0 ,M

0
1 ,M

0
2}

to measure her qubit in the shared state indexed by i.

(b) If Bob stated ai = 1, Alice uses measurement device M1 = {M1
0 ,M

1
1 ,M

1
2}

to measure her qubit in the shared state indexed by i.
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Algorithm 4: POVMtest(S)

• In this step, Alice first separates instances where Bob declared ai = 0 into a set
S0, and the rest (where Bob declared ai = 1) into S1.

• Alice assumes that for each set Sy (where y = ai, the values declared by Bob),
the states at her side are either ρyx or ρyx⊕1 (where x = ri, the raw key bit values
randomly chosen by Bob).

• For each set, Alice calculates the parameter Ωy as

Ωy =
∑

b,x∈{0,1}

(−1)b⊕xTr[My
b ρ

y
x].

where My
b is Alice’s measurement outcome in KEYgen().

• If for every Sy (y ∈ {0, 1}),

Ωy =
2 sin2 θ

(1 + cos θ)

then Alice continues with the scheme, otherwise Alice aborts the scheme.

5. Key Generation Phase:

(a) After Alice’s POVM device verification phase, Alice continues with the
remaining shared states (|ΓPOVM|−γ3|ΓPOVM|), which she denotes as ΓKey.

(b) Alice performs the KEYgen (ΓKey) for these shared states.

(c) After KEYgen(ΓKey), Alice determines the original raw key bits based on
her measurement results-

• For each shared state with ai = 0, if Alice gets M0
0 (M0

1 ), she concludes
the i-th raw key bit as 0(1). If she receives M0

2 , she ignores it.

• Similarly, for each shared state with ai = 1, if Alice obtains M1
0 (M1

1 ),
she concludes the i-th raw key bit as 0(1). If she receives M1

2 , she
ignores it.

(d) Bob and Alice then proceed to the private query phase with the shared
states in ΓKey. This set contains kN many states, where k > 1 and k is
exponentially smaller than N , the number of bits in the database.

(e) Alice and Bob conduct the next phase using the kN raw key bits obtained
from the shared states.

6. Private Query Phase:

(a) Bob and Alice possess a raw key of length kN bits with Bob aware of all
its values and Alice aware of some of them (without Bob knowing which
bits Alice knows).
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(b) Bob rearranges the order of the kN -bit string by randomly announcing a
permutation, and both parties then apply that permutation to their raw
key bits.

(c) Bob divides the raw key into N partitions, each with k bits, and informs
Alice of each bit’s position. Alice and Bob then XORed the bits of each
substring to form the final key, which is N bits long. If Alice is not aware
of any bits of the final key, the protocol must be repeated.

(d) Alice, who knows only the i-th bit of Bob’s final key F , requests the j-th
bit of the database mj by announcing a permutation PA. This permutation
moves the i-th bit of the final key to the j-th position. Bob applies the
permutation PA on the final key F and uses it to encrypt the database
with a one-time pad. Alice can recover mj as it is encrypted by Fi after
receiving the encrypted database.

(e) Alice must announce the permutation l times if she wants to retrieve l bits
of the database with only one known final key bit.

(f) If Alice knows more than one final key bit then she announces a permu-
tation that links her known final key bits to the database bits she wants
to know. This way she can retrieve multiple intended database bits in a
single query.

Figure 4-1: Visual representation of different steps of our DI-QPQ proposal.
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Our QPQ Proposal (In Case of Honest Implementation)

• Alice and Bob share K EPR pairs, with Alice having the first qubit and
Bob having the second qubit.

• For each shared state, they generate raw key bits by following the proce-
dure mentioned below.

– Bob randomly generates a value of either 0 or 1 for the i-th raw key
bit ri.

– If ri = 0, Bob performs measurement on his share for the i-th state
in {|0〉, |1〉} basis, otherwise (i.e., for ri = 1) he performs mea-
surement in {|0′〉, |1′〉} basis where |0′〉 = (cos θ|0〉 + sin θ|1〉) and
|1′〉 = (sin θ|0〉−cos θ|1〉) (the value of θ is chosen as per the relation
specified in equation 4.7).

– Bob announces ai = 0(ai = 1) if the outcome at his side correspond-
ing to the i-th shared state is either |0〉(|1〉) or |0′〉(|1′〉).

– When Bob declares ai = 0, Alice performs measurement on her share
of the i-th state using the POVM M0 = {M0

0 ,M
0
1 ,M

0
2} where

M0
0 ≡ (sin θ|0〉 − cos θ|1〉)(sin θ 〈0| − cos θ 〈1|)

1 + cos θ

M0
1 ≡ (|1〉 〈1|)

1 + cos θ

M0
2 ≡ I −M0

0 −M0
1

– Similarly, for ai = 1, Alice performs measurement on her share of
the i-th state using the POVM M1 = {M1

0 ,M
1
1 ,M

1
2} where

M1
0 ≡ (cos θ|0〉+ sin θ|1〉)(cos θ 〈0|+ sin θ 〈1|)

1 + cos θ

M1
1 ≡ (|0〉 〈0|)

1 + cos θ

M1
2 ≡ I −M1

0 −M1
1

– When Bob declares ai = 0, if Alice gets M0
0 (M0

1 ), she concludes
the i-th raw key bit as 0(1). For measurement outcome M0

2 , Alice
remains uncertain.

– When Bob declares ai = 1, if Alice gets M1
0 (M1

1 ) for ai = 1, she
concludes the i-th raw key bit as 0(1). For measurement outcome
M1

2 , Alice remains uncertain.
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• Atfirst, Bob decides the value of θ and the number of raw key bits needed
to generate each bit of the final key based on equation 4.7. Bob and Alice
generate a final key by processing their raw key bits through permutation
and XOR such that the final key and the database are of the equal size
and Bob knows all the bits but Alice knows only some bits of the final
key.

• Bob encrypts the whole database using one time pad with his final key
and sends it to Alice.

• Alice recovers the desired bits from the encrypted database using her
partial knowledge of the final key.

4.3 Analysis of the protocol

In this section, we cover the workings of our proposed scheme. We start by examining
the accuracy of the protocol, followed by estimating the security parameters involved.
Finally, we delve into the security aspects of our scheme. It’s worth noting that all
our analyses are based on asymptotic scenarios, and the actual values of parameters
may vary in practice based on the sample size selected.

4.3.1 Correctness of the protocol

We begin by demonstrating the accuracy of the protocol.

Theorem 1. In case of honest implementation of our proposal, on average, Al-
ice can correctly retrieve around (1 − cos θ)kN bits of the raw key R at the end of
shared key generation phase.

Proof. Bob and Alice have kN raw key bits after shared key generation phase. These
raw key bits were generated from kN copies of maximally entangled states of the
form

1√
2

(|0〉A|0〉B + |1〉A|1〉B)

=
1√
2

(|0′〉A|0′〉B + |1′〉A|1′〉B),

where, |0′〉 = (cos θ|0〉 + sin θ|1〉) and |1′〉 = (sin θ|0〉 − cos θ|1〉). Here θ may vary
from 0 to π

2
. The generation of such kN raw key bits can be redefined as follows.

Bob prepares a random bit stream R = r1 . . . rkN of length kN . If ri = 0, Bob
measures his qubits in {|0〉, |1〉} basis. Whereas, if ri = 1, Bob measures his qubit in
{|0′〉, |1′〉} basis. After each measurement Bob announces a bit ai ∈ {0, 1}. If he gets
|0〉 or |0′〉, he announces ai = 0. If he gets |1〉 or |1′〉, he announces ai = 1. Now,
Alice’s job is to guess the value of each ri.
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Thus, whenever Bob declares ai = 0, Alice can understand that Bob gets either
|0〉 or |0′〉 and the shared qubit of her side also collapses to |0〉 or |0′〉 respectively.
However, to obtain the value of the raw key bit, Alice has to distinguish these two
states with certainty. As, |0〉 and |0′〉 are non-orthogonal states (when θ 6= π

2
), Alice

cannot distinguish these two states with certainty for all the instances.

According to the strategy mentioned in the protocol, whenever Bob declares ai =
0, Alice chooses the POVM {M0

0 ,M
0
1 ,M

0
2}. After measurement, if Alice receives the

outcome M0
0 , she concludes that Bob’s measurement outcome was |0〉. In such case,

Alice concludes that ri = 0. If Alice receives the outcome M0
1 , she concludes that

Bob’s measurement outcome was |0′〉. In such a case, Alice concludes that ri = 1.
However, if the measurement outcome is M0

2 , then Alice remains uncertain about the
value of the raw key bit. Alice follows the similar methodology for ai = 1.

Now, we calculate the success probability of Alice to guess each ri correctly. Let
us assume that Pr(Mai

j ||φ
ai
i 〉) denotes the corresponding success probability of getting

the result Mai
j when the given state is |φaii 〉 i.e.,

Pr(Mai
j ||φ

ai
i 〉) = 〈φaii |M

ai
j |φ

ai
i 〉.

We now calculate the corresponding success probabilities of getting different results
for the states |0〉 and |0′〉. For |0〉, the success probabilities will be

Pr(M0
0 ||0〉) = 〈0|M0

0 |0〉
= (1− cos θ)

Pr(M0
1 ||0〉) = 〈0|M0

1 |0〉
= 0

Pr(M0
2 ||0〉) = 〈0|M0

2 |0〉
= cos θ

Similarly, for the state |0′〉, the success probabilities will be

Pr(M0
0 ||0′〉) = 〈0′|M0

0 |0′〉
= 0

Pr(M0
1 ||0′〉) = 〈0′|M0

1 |0′〉
= (1− cos θ)

Pr(M0
2 ||0′〉) = 〈0′|M0

2 |0′〉
= cos θ

Similarly, whenever Bob declares ai = 1, Alice chooses the POVM {M1
0 ,M

1
1 ,M

1
2}.

In a similar way, we can calculate the success probability here. We formalize all the
conditional probabilities in the following table.
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Cond. Probability of Alice

a
Bob

Alice
A=M0

0 /M
1
0 A=M0

1 /M
1
1 A=M0

2 /M
1
2

0 B = |0〉 1− cos θ 0 cos θ

0 B = |0′〉 0 1− cos θ cos θ

1 B = |1〉 1− cos θ 0 cos θ

1 B = |1′〉 0 1− cos θ cos θ

According to the protocol, if ai = 0 and Alice gets M0
0 (M0

1 ), she outputs rAi =
0(1). When ai = 1 and she gets M1

0 (M1
1 ), she outputs rAi = 0(1). Thus, the success

probability of Alice to guess the i-th raw key bit ri of Bob can be written as

Pr(rAi = ri)

= Pr(rAi = 0, ri = 0) + Pr(rAi = 1, ri = 1)

= (1− cos θ).

So, according to the proposed scheme, the overall success probability of Alice in
guessing a raw key bit is equal to (1− cos θ). This implies that at the end of the key
establishment phase, Alice can guess (on average) around (1 − cos θ)kN many raw
key bits with certainty.

4.3.2 Estimation of parameters for private query phase

In this subsection, the different parameter values are calculated to ensure that both
user and data privacy are preserved. After shared key generation phase, Bob and
Alice share kN raw key bits, with Bob having full knowledge of them and Alice
having partial knowledge. In private query phase , both Alice and Bob cut their
raw keys in some particular positions to prepare N substrings of length k such that

k =
|ΓKey|
N

where |ΓKey| denotes the total number of raw key bits at the private query
phase and N denotes the number of database bits. Alice and Bob then perform bit
wise XOR among the bits of each substring to get the N bit final key F . Here,
ri(1 ≤ i ≤ kN) denotes the i-th raw key of Bob and fi(1 ≤ i ≤ N) denotes the
i-th final key of Bob. Based on the procedure mentioned in private query phase for
generating final key bits, the relation between ri and fi can be written as,

fi = ⊕ikj=(i−1)k+1rj (1 ≤ i ≤ N)

where ⊕ denotes addition modulo 2.

It will be clearer by a toy example. Consider N = 10 and k = 2. Let us assume
that the raw key at Bob’s side is,

01 10 01 00 10 01 01 11 00 11

and after the shared key generation phase, the raw key at Alice’s side is,

?1 ?? 0? ?? ?? 01 ?1 ?? 0? ?1
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i.e., Alice knows the values of 2nd, 5th, 11th, 12th, 14th, 17th and 20th key bits of
the original raw key (? stands for inconclusive key bit i.e., the positions where Alice
can’t guess the key bits with certainty).

Now, after the modulo operation on the raw key, Bob’s final key will be,

1 1 1 0 1 1 1 0 0 0

and Alice’s final key will be,
? ? ? ? ? 1 ? ? ? ?

Thus, the number of known key bits by Alice is reduced from 7 to 1. The significance
of such modulo operation is to enhance the security of the protocol. This is similar
to the privacy amplification in a QKD protocol.

Estimation of the security parameter θ :

In the proposed scheme, Alice can expect to know approximately (1 − cos θ)kN
of the kN shared raw key bits. The expected value of nr, the number of raw key bits
known to the client Alice after the shared key generation phase of our scheme, can be
expressed as,

E[nr] = (1− cos θ) kN. (4.1)

Bob and Alice combine k raw key bits using XOR to produce each bit of the final
key. So, for Alice to correctly guess a final key bit, she must correctly guess all k
corresponding raw key bits, which has a probability of (1− cos θ)k. Let nf denotes the
total final key bits known to Alice. It follows that nf is a binomial random variable

with N trials and probability Pf = (1− cos θ)k. Hence, the expected number of final
key bits known by Alice after the shared key generation phase is,

E[nf ] = PfN ≈ (1− cos θ)kN. (4.2)

Our DI proposal requires that dishonest Alice correctly measure (using the desig-
nated POVM) in order to pass the DI testing stage. It is recognized that the maximum
probability of distinguishing between two non-orthogonal states is (1−cos θ) [62]. This
means that in the non-abort scenario, dishonest Alice’s guess for the i-th raw key bit,
Ri, is limited to at most (1− cos θ) i.e.,

Pr[RA∗i = Ri] ≤ (1− cos θ) . (4.3)

where A∗i denotes dishonest Alice’s subsystem corresponding to the i-th shared
state.

As after Bob’s measurement, Alice’s states are independent and the measurement
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devices at dishonest Alice’s side are also independent and memoryless, the maximum
probability that dishonest Alice can guess the i-th final key bit Fi will be (1− cos θ)k

i.e.,

Pr[FA∗i = Fi] = Pf ≤ (1− cos θ)k . (4.4)

Based on the results in equation 4.2 and equation 4.4, it can be concluded that in
non-abort scenario, the expected maximum number of final key bits guessed correctly
by dishonest Alice will be limited by,

E[FA∗ ] ≤ (1− cos θ)kN. (4.5)

Our proposal involves encrypting the database, which is the same size as the final
key, by bitwise XORing it with the final key. Thus, a correct guess of a final key
bit also implies a correct guess of the corresponding database bit. Hence, in a single
query, if the scheme doesn’t terminate, dishonest Alice’s expected number of correctly
guessed database bits is also upper bounded by (1− cos θ)kN i.e.,

E[DA∗ ] ≤ (1− cos θ)kN. (4.6)

In our scheme, for the protocol to continue, Alice must know at least one final key
bit, while Bob wants Alice to know less than two final key bits. Thus, the following
condition must be met in the non-abort scenario.

1 ≤ E[nf ] < 2.

This implies that,

1 ≤ (1− cos θ)kN < 2

1

N
≤ (1− cos θ)k <

2

N
. (4.7)

All these results boil down to the following conclusion.

Corollary 1. To ensure that Alice knows atleast one final key bit but no more than
one, Bob needs to select k and θ such that,

1

N
≤ (1− cos θ)k <

2

N
.

Now, for our proposal, we derive the limits on the values of Pa (from definition 2)
and Pc (from definition 1) set by the correctness condition.

Estimation of the security parameters Pa and Pc :
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Initially, we evaluate the likelihood that the protocol won’t end during the honest
scenario. Then, using the obtained upper bound on (1− cos θ)k from equation 4.7, we
can calculate a lower bound on Pc with the Chernoff-Hoeffding inequality [59] (since
we consider a scenario where dishonest Alice measures i.i.d.).

Our scheme calculates the probability of Alice correctly guessing a final key bit as

(1− cos θ)k. So, the probability of Alice not guessing a final key bit is
[
1− (1− cos θ)k

]
.

Therefore, the likelihood of Alice not knowing any of the N final key bits is

[
1− (1− cos θ)k

]N
≈ e−(1−cos θ)kN . (4.8)

i.e., for our proposal, we obtain the following bound on the value of Pa.

Pa ≤ e−(1−cos θ)kN . (4.9)

If Bob sets θ such that (1− cos θ)k = 1
N

, then equation 4.9 gives us the following
result according to the relation in equation 4.7.

Pa ≤ e−1. (4.10)

That means our proposed scheme results in a small value of Pa. The likelihood of
our proposal not terminating in an honest scenario, where Alice knows at least one
final key bit, is calculated as

Pr(the scheme doesn’t terminate) ≥
[
1− e−1

]
. (4.11)

Therefore, our proposed scheme has a high likelihood of not aborting, as demon-
strated by the above calculation. We now mention the Chernoff-Hoeffding inequal-
ity [59].

Proposition 1. (Chernoff-Hoeffding Inequality) Let X = 1
m

∑
1≤i≤mXi be the av-

erage of m independent random variables X1, X2, · · · , Xm with values (0, 1), and let
E[X] = 1

m

∑
1≤i≤m E[Xi] be the expected value of X. Then for any δCH > 0, we have

Pr [|X − E[X]| ≥ δCH ] ≤ exp(−2δ2
CHm).

Our scheme defines Xi = 1 if the i-th final key bit is known to Alice (i.e., she
gets conclusive outcomes from the POVMs), and Xi = 0 otherwise. Total N final
key bits result in the random variable X as the sum of these Xi values. If the scheme
doesn’t terminate, the expected number of final key bits that Alice should know is
Y = (1− cos θ)kN .

To ensure the value of X lies within the error margin of δCH = ε (1− cos θ)kN
from the expected value, we use the Chernoff-Hoeffding inequality. This is because
Alice’s final key bits are independent, as the collapsed states and measurement devices
are also independent and memoryless. The values of X and Y are calculated under
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the assumption that the scheme doesn’t terminate. So, using the expression for the
Chernoff-Hoeffding bound from proposition 1, we can write that,

Pr [|X − Y | < δCH ∧ scheme doesn’t terminate]

≥ 1− exp(−2δ2
CHm). (4.12)

The shared key generation phaseresults in N final key bits shared by Alice and
Bob. Among those N bits, we aim to have the number of final key bits known to
Alice fall within [p− εp, p+ εp], where p = (1− cos θ)kN and the allowed deviation is
δCH = ε (1− cos θ)kN . Using the expression in 4.12 with δCH and m values, we get,

Pr [|X − Y | < δCH ∧ scheme doesn’t terminate]

≥ 1− exp(−2δ2
CHN)

where δCH = ε (1− cos θ)kN

. (4.13)

We have already established the bound 1
N
≤ (1− cos θ)k < 2

N
for (1− cos θ)k

from equation 4.7 for our proposed scheme. If we let Bob choose θ and k such that
(1− cos θ)k = 1

N
, then substituting this value into equation 4.13 will yield,

Pr [|X − Y | < ε ∧ scheme doesn’t terminate]

≥ 1− exp(−2ε2N)
. (4.14)

In our proposal, a correct guess of a final key bit means a correct guess of the
related data bit. So, as per definition 1, we can say that when Alice and Bob are
both honest, the lower bound of the parameter Pc in our proposal is determined by,

Pc ≥ [1− exp(−2ε2N)]. (4.15)

That means the likelihood of Alice knowing the expected number of final key bits
and the scheme not terminating is high in the honest scenario of our proposed scheme,
as the value of N is large in practice.

Bob chooses θ and k so that Alice knows at least one and fewer than two final key
bits. So, the deviation, δCH , has the following bound according to equation 4.7.

ε ≤ δCH < 2ε. (4.16)

That means the upper bound of ε can be derived from 2ε ≤ 1, yielding ε ≤ 1
2
.

To evaluate performance, we consider the variant 1-out-of-2 probabilistic oblivious
transfer (for N = 2 and k = 1). If Bob chooses θ such that (1− cos θ) = 1

2
(minimum

value for N = 2, k = 1), the expected number of final key bits (or data bits) Alice
can retrieve in a single query is

(
1
2
× 2
)

= 1. From equation 4.11, we can say that in
honest scenario, for this 1 out of 2 variant,

Pr(protocol doesn’t abort) ≥ (1− e−1) ≈ 0.632. (4.17)
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The equation 4.15 implies that if the variant 1-out-of-2 probabilistic oblivious
transfer is considered with ε = 1

2
, then the likelihood of Alice receiving the expected

number of final key bits and the protocol not aborting is lower bounded by,

Pc ≥ (1− e−1) ≈ 0.632. (4.18)

4.3.3 Security of the protocol

Here, we point towards the security issues of our proposal. We have mentioned
the detailed proofs of all our results and showed how these results certify device-
independent security, data security, and user security for our proposed scheme.

Based on the results in Corollary 2, Theorem 2, Theorem 3 and Theorem 4, we
conclude about the DI security of our proposed scheme. All these results guarantee
that either the proposal terminates with high probability (as the limit approaches
infinity) or the devices involved in our proposal attain the desired values of the pa-
rameters C, β, Ω0 and Ω1. Later on, we move towards deriving upper bounds on
the information gained by dishonest Alice and dishonest Bob. In Lemma 1, we show
that dishonest Alice cannot guess (on average) more than (1 − cos θ) fraction from
the entire raw key. Lemma 2 together with corollary 5 shows that dishonest Bob can
guess only l

N
fraction from the query index set of Alice.

Security in device independent scenario

The proposed scheme undergoes device independent testing in three phases. The
first two are in the source device verification phase and Bob’s measurement device
verification phase. The third takes place in Alice’s POVM device verification phase.

In source device verification phase, at first LocalCHSH game has been performed
by each of Alice and Bob independently (as mentioned in LocalCHSHtest) at their
end for some randomly chosen samples. In this phase, both Alice and Bob test
individually whether the states provided by the third party are EPR pairs. Bob and
Alice choose the samples randomly for which they want to perform LocalCHSHtest
and share this information publicly to get the corresponding qubits from the other
party and also to identify all the samples for which they perform LocalCHSHtest.

As QPQ is a distrustful scheme, both the parties may not behave honestly in
every phase of the protocol. For this reason, here we assume that the party who acts
honestly for a particular phase, will take the responsibilities of the referee as well as
the two parties in the CHSH game to ensure the random and independent choice of
inputs for the devices involved in the LocalCHSHtest at his end. This guarantees
that in LocalCHSHtest, the inputs to the devices are random and independent.

The results from the rigidity of CHSH game in [92, Lemma 4.2] lead us to the
following conclusion.

Corollary 2 (Verification of shared states). The LocalCHSHtest of source device cer-
tification phaseeither detects if Alice’s and Bob’s devices achieve C = cos2 π

8
, meaning

they were given EPR pairs (or the unitary equivalent of the actual states) by the third
party, or the scheme is likely to abort in the long run.
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In the next phase, Bob verifies his measurement device. Here, Bob is assumed to
act honestly in Bob’s measurement device verification phase, as it’s clear from Lemma
2 that a dishonest Bob who wants to guess Alice’s query indices more accurately must
let Alice know more data bits in a single query, violating assumption 4 that neither
party reveals more information to get more information from the other.

Atfirst Bob starts by randomly choosing inputs for his device and measuring the
particles. Then Bob and Alice independently pick samples and discuss publicly. Bob
generates random input bits for Alice and announces them publicly, so Alice can
measure her particles based on the bits. After measurements, they both publicly
share inputs and outputs and calculate β as in the OBStest. From this result, one
can conclude the following.

Theorem 2 (Bob’s measurement device verification). In OBStest, either Bob’s mea-
surement devices achieve the value of the parameter β = 1√

2|(cos θ−sin θ)| (i.e., his devices

correctly measure in {|0〉, |1〉} and {|0′〉, |1′〉} basis where |0′〉 = (cos θ|0〉 + sin θ|1〉),
|1′〉 = (sin θ|0〉 − cos θ|1〉)), or the protocol terminates with a high likelihood of failure
(as the limit approaches infinity).

A detailed proof of this theorem is provided in Section 4.5 later, using the same
method outlined in [65] for certifying non-maximally incompatible observables.

This implies that the LocalCHSHtest certifies the states provided by the third
party and OBStest certifies the projective measurement device (for the specific mea-
surement bases used in OBStest) of Bob. As Bob declares ai values for all the shared
instances before OBStest and Alice randomly chooses some of those instances for
OBStest, the successful completion of OBStest also implies that for all the remaining
instances (i.e., for the instances which are not chosen for OBStest), Alice’s state must
be either |0〉 〈0| or |0′〉 〈0′| whenever Bob declares ai = 0 and must be either |1〉 〈1| or
|1′〉 〈1′| whenever Bob declares ai = 1.

The third DI test is performed in Alice’s POVM device verification phase. The
protocol moves to this phase once both Alice and Bob have passed the first two
DI tests. So, Alice and Bob are in this phase implies that both Bob’s projective
measurement device and their shared states are noiseless. Now, this testing phase
basically guarantees the functionality of Alice’s POVM device. Note that in this
phase, Bob does not need to test his measurement device again. During OBStest,
his devices are tested already. However, Alice has to shift to a new measurement
device for better conclusiveness. Device independent security demands that Alice’s
new device should be tested further for certification. In this phase, Alice measures the
selected instances with either device M0 = M0

0 ,M
0
1 ,M

0
2 or M1 = M1

0 ,M
1
1 ,M

1
2 based

on the declared ai values. She calculates Ω0 and Ω1 from the measurement outcomes
and verifies if they equal 2 sin2 θ

(1+cos θ)
. Theorem 3 shows that, for the instances where

ai = 0, if Alice observes that Ω0 = 2 sin2 θ
(1+cos θ)

then it guarantees that the measurement

devices are the desired POVM {D0
0, D

0
1, D

0
2} i.e., M0 = D0. Similarly, Theorem 4

shows that, for the instances where ai = 1, if Alice observes that Ω1 = 2 sin2 θ
(1+cos θ)

then

it guarantees that the measurement devices are the desired POVM {D1
0, D

1
1, D

1
2} i.e.,

M1 = D1.
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Theorem 3 (Verification of Alice’s measurement device M0). POVMtest either re-
sults in a high probability of termination of this proposed scheme (as the limit ap-
proaches infinity), or it guarantees that for the instances where Bob declares ai = 0,
Alice’s measurement devices attain Ω0 = 2 sin2 θ

1+cos θ
, meaning they are of this specified

form (up to a local unitary),

M0
0 =

1

(1 + cos θ)
(|1′〉〈1′|) (4.19)

M0
1 =

1

(1 + cos θ)
(|1〉〈1|) (4.20)

M0
2 = I−M0

0 −M0
1 . (4.21)

where |1′〉 = sin θ|0〉 − cos θ|1〉.
Theorem 4 (Verification of Alice’s measurement device M1). POVMtest either re-
sults in a high probability of termination of this proposed scheme (as the limit ap-
proaches infinity), or it guarantees that for the instances where Bob declares ai = 1,
Alice’s measurement devices attain Ω1 = 2 sin2 θ

1+cos θ
, meaning they are of this specified

form (up to a local unitary),

M1
0 =

1

(1 + cos θ)
(|0′〉〈0′|) (4.22)

M1
1 =

1

(1 + cos θ)
(|0〉〈0|) (4.23)

M1
2 = I−M1

0 −M1
1 . (4.24)

where |0′〉 = cos θ|0〉+ sin θ|1〉.
The proofs of these two theorems are deferred to Section 4.6 entitled Verifica-

tion of Alice’s POVM elements. In the proof, we restate the functionality of the
POVM devices in the form of a two party game (namely POVMgame), consider a gen-
eral form for the single qubit three outcome POVM {M0

0 ,M
0
1 ,M

0
2} ({M1

0 ,M
1
1 ,M

1
2})

and show that if the input states are chosen randomly between |0〉 〈0| (|1〉 〈1|) and
|0′〉 〈0′| (|1′〉 〈1′|) and if Ω0 = 2 sin2 θ

1+cos θ
(Ω1 = 2 sin2 θ

1+cos θ
) then M0

0 = D0
0 (M1

0 = D1
0),

M0
1 = D0

1 (M1
1 = D1

1), M0
2 = D0

2 (M1
2 = D1

2).

Note: Here, we claim that if Alice and Bob successfully pass the LocalCHSHtest,
the OBStest and the POVMtest mentioned in our DI proposal, then in the actual
QPQ scheme, none of Alice and Bob can retrieve any additional information in the
noiseless scenario. Now, suppose that our claim is wrong i.e., Alice and Bob can pass
all the tests mentioned in our scheme and later Alice can retrieve more data bits (than
what she intends to know) in a single query or Bob can guess Alice’s query indices
with a more certain probability (than his intended probability).

We now discuss this issue in the context of a particular form of non-i.i.d. attack,
where a specific number of states are independently corrupted (more general attacks
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are also possible but these are outside the scope of this work). In this context, we
will show that if some of the corrupted states are included during the testing phases,
then there is some probability of being caught in the asymptotic limit.

At the beginning of our scheme, the untrusted third party shares all the states with
Alice and Bob. As in the source device certification phase, both the parties choose
the states randomly from the shared instances for the local tests at their end, the
dishonest party can not guess beforehand the shared instances that the honest party
will choose at his end for the local test. According to our assumption, the dishonest
party can not manipulate the honest party’s device once the protocol starts. So,
to successfully pass the LocalCHSHtest at the honest party’s end, the shared states
must be EPR pairs as specified in our scheme. This implies that the source device
certification phase certifies all the states provided by the untrusted third party.

We now explain these things more formally. Let us suppose that initially, the
untrusted third party colludes with either the dishonest Alice or the dishonest Bob
and shares either KA corrupted states in favour of Alice (let us denote this type of
states as A-type) or KB corrupted states in favour of Bob (let us denote this type
of states as B-type) among K shared states. So, while choosing randomly for the
LocalCHSHtest at honest Bob’s end, the probability that a chosen state is of A-type
is KAK . Similarly, for the LocalCHSHtest at honest Alice’s end, the probability that

a chosen state is of B-type is KBK . Let us further assume that for the A-type states,
the value of the parameter C is CA (where CA = C + εA such that εA > 0) and for
the B-type states, the value of the parameter C is CB (where CB = C + εB such that
εB > 0).

Now, suppose that only Alice is dishonest and the third party supplies KA number
of corrupted states (in favour of dishonest Alice) along with (K −KA) actual states.
Then, in the localCHSHtest at Bob’s end, the probability that a chosen state is not
of the A-type is

(
1− KAK

)
. One can easily check that this probability is also same for

a chosen state in the final QPQ phase. As, dishonest Alice’s aim is to gain as much
additional data bits as possible in the final QPQ phase, she needs to choose the value
of KA such that (K −KA) = c where c is exponentially smaller than K (i.e., she will
try to maximize the probability that a state chosen for the final QPQ phase is of the
A type). Then, the probability that Bob will choose none of the corrupted states
(i.e., the A type states) among his chosen γ1K

2
states for the LocalCHSHtest at his

end is,

(
1− KA

K

) γ1K
2

=
( c
K

) γ1K
2
.

which is very small compared to K. Similarly, whenever Bob is dishonest, the same
thing can be shown for the LocalCHSHtest at honest Alice’s end. This implies that if
the third party colludes with the dishonest party and supplies corrupted states then
the probability that none of those corrupted states are chosen for the localCHSHtest
at the honest party’s end is very small.

In our scheme, we consider the ideal scenario where there are no channel noise.
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So for dishonest Alice, to successfully pass the LocalCHSHtest at the honest Bob’s
end, the following relation must hold in the noiseless condition.

KACA
K

+
(K −KA)C
K

= C

KACA + (K −KA)C = KC
KA(CA − C) = 0.

Now, replacing the values of CA from the relation CA = C + εA, one can get,

KAεA = 0. (4.25)

As the value of εA > 0, from this relation, one can easily conclude that in the
noiseless scenario, the value of KA must be zero to successfully pass the LocalCHSHt-
est at the honest Bob’s end. Similarly, one can show that whenever Bob is dishonest,
the value of KB must be zero to successfully pass the LocalCHSHtest at the honest
Alice’s end. In practice, for finite number of samples, one can show that the values
of KA and KB must be very small to successfully pass the local test at the honest
party’s end.

Here, all the states are shared between the two parties before the start of the
protocol and the dishonest party can not manipulate the honest party’s device after
the start of the protocol. In this study, as the focus is on the i.i.d. scenario, it is easy
to conclude that the protocol will either abort with high probability in the long run,
or the LocalCHSHtest will verify that the states shared in the QPQ scheme have the
desired value of C.

The next DI testing is done in Bob’s measurement device verification phase where
Bob and Alice perform distributed test to certify Bob’s device. Here, one may think
that if Bob is dishonest, then for the instances chosen in Bob’s measurement device
verification phase and in Alice’s POVM device verification phase, he will measure in
the actual measurement basis at his end to detect the fraudulent behaviour of Alice,
and later for the instances to be used for the actual QPQ phase, he will measure in
some different basis to guess the positions of Alice’s known key bits.

The results in [63] already showed that dishonest Bob can’t possess both the
correct bit values and conclusiveness information of Alice and if he tries to cheat,
then it will damage his reputation as a database owner. So, for the QPQ primitive,
the server Bob is expected not to cheat. Moreover, the result in Lemma 2 shows that if
Bob wants to increase his chances of guessing Alice’s query indices with more certainty
while following the exact protocol, he must let dishonest Alice know more data bits
in a single query, but this goes against assumption 4, which prohibits the parties from
leaking more information to gain extra information from the other party. From the
discussion in Lemma 1, it is also clear that for our scheme, the client Alice performs
optimal strategy at her end. That means dishonest Alice can’t retrieve more data
bits in a single query without manipulating the shared states and Bob’s measurement
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device. Thus, to ensure that dishonest Alice will not get any additional data bits,
Bob must behave honestly in Bob’s measurement device verification phase to certify
his device after the successful completion of source device certification phase.

In our scheme, before the Bob’s measurement device verification phase, Bob gen-
erates a random bit for each of his qubits and measures his qubits accordingly. In
the Bob’s measurement device verification phase, Bob generates random bits for each
of the Alice’s qubits chosen for Bob’s measurement device verification phase and de-
clares those bits so that Alice can measure her particles accordingly. As Bob behaves
honestly in Bob’s measurement device verification phase (to restrict Alice from know-
ing additional data bits) and chooses all the inputs randomly for OBStest, there is
no possibility that the inputs for OBStest are chosen according to some dishonest
distribution. From the analysis of Theorem 2, it is clear that if the inputs are chosen
randomly then OBStest certifies that Bob’s measurement device measures correctly
in {|0〉, |1〉} and {|0′〉, |1′〉} basis for our proposed QPQ scheme.

This implies that the successful completion of source device certification phase and
Bob’s measurement device verification phase certifies that the shared states are EPR
pairs and Bob’s measurement device measures correctly for all the instances. This
also implies that for all the remaining instances (that will be used for Alice’s POVM
device verification phase and in the actual QPQ phase), Alice has non-orthogonal
qubits (i.e., either |0〉 or |0′〉 for ai = 0 and either |1〉 or |1′〉 for ai = 1) at her end.

It is already mentioned that in our scheme, the client Alice performs optimal
(POVM) measurement at her end to extract maximal number of data bits conclu-
sively in a single query. So, after successful completion of source device certification
phase and Bob’s measurement device verification phase, Alice must behave honestly
in Alice’s POVM device verification phase to ensure that her measurement device
is the optimal one. For this reason, Alice must measure her qubits accordingly as
mentioned in KEYgen() and POVMtest() to certify her device. From the analysis of
Theorem 3 and Theorem 4, it is clear that the successful completion of Alice’s POVM
device verification phase certifies Alice’s POVM device.

Note that in the proof of Theorem 3 and Theorem 4 in Section 4.6 (entitled
Verification of Alice’s POVM Elements), we have not imposed any dimension bound
like the self-testing of POVM in a prepare and measure scenario in [106]. So, the
devices that perform a Neumark dilation of this mentioned POVM (i.e., the equivalent
larger projective measurement on both the original state and some ancilla system
instead of the actual POVM measurement) could still achieve the intended value of
Ω. But both of these operations produce the same output probabilities, which is
sufficient for the purposes of this work.

Therefore, from all these discussions, one can conclude the following.

Corollary 3. Our DI proposal either terminates with high likelihood (as the limit
approaches infinity), or it confirms that the devices in our QPQ proposal meet the
target values of C, β, and Ω0 (or Ω1) in the LocalCHSHtest, OBStest, and POVMtest
respectively.
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Security of database against dishonest Alice

In this subsection, we calculate the number of raw key bits that an dishonest Alice
can determine in our proposed scheme’s shared key generation phase.

Theorem 5. In our proposal, in the absence of POVMtest, dishonest Alice can re-
trieve, at most,

(
1
2

+ 1
2

sin θ
)

fraction of bits from the entire raw key, inconclusively
(i.e., the indices of the correctly guessed bits are unknown), during the shared key
generation phase.

Proof. At the end of the shared key generation phase, dishonest Alice (A∗) and honest
Bob (B) share kN raw key bits obtained from kN EPR pairs. The i-th copy of the
state is given by |φ+〉A∗iBi = 1√

2
|00〉A∗iBi + 1√

2
|11〉A∗iBi , where i-th subsystem of Alice

and Bob is denoted by A∗i and Bi respectively. At Alice’s side the reduced density
matrix is of the form

ρA∗i = TrBi
[
|φ+〉A∗iBi〈φ

+|
]

=
I2

2
.

At the beginning, Bob measures each of his part of the state |φ+〉A∗iBi in either
{|0〉, |1〉} basis or in {|0′〉, |1′〉} basis. The choice of the basis is completely ran-
dom as this choice depends on the random raw key bit values chosen by Bob. Let
ρA∗i |ri denotes the state at Alice’s side after the choice of Bob’s measurement basis.
For ri = 0, we have,

ρA∗i |ri=0 = TrBi [φ
+〉A∗iBi〈φ

+|]

= TrBi [
1

2
(|00〉+ |11〉)A∗iBi(〈00|+ 〈11|)]

=
I2

2
.

Similarly, for ri = 1, we have, ρA∗i |ri=1 = I2
2

= ρA∗i . This implies that ρA∗i |ri = ρA∗i .
In Bob’s measurement device verification phase, Alice knows the declared ai values for
all the instances. Let ρA∗i |ai denotes the state of Alice given the value of ai. According
to the protocol,

ρA∗i |ai=0 =
1

2
|0〉〈0|+ 1

2
|0′〉〈0′|

ρA∗i |ai=1 =
1

2
|1〉〈1|+ 1

2
|1′〉〈1′|.

This implies that for a fixed ai = 0 (ai = 1) if Alice wants to guess the value of ri
then she needs to distinguish the state from the ensemble of states {(1

2
|0〉〈0|), (1

2
|0′〉〈0′|)}

({(1
2
|1〉〈1|), (1

2
|1′〉〈1′|)}). In other words, whenever Bob measures his qubit and an-

nounces the bit ai = 0, Alice knows that Bob gets either |0〉 or |0′〉. Similarly, when
Bob announces the bit ai = 1, Alice knows that Bob gets either |1〉 or |1′〉. So, to
retrieve the value of the original raw key bit, Alice needs to distinguish between the
states |0〉 and |0′〉 or between the states |1〉 or |1′〉.
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Now, in the absence of the POVMtest (i.e., if Alice’s measurement device is not
tested), Alice can choose any measurement device at her side to distinguish the non-
orthogonal states generated at her side. As it is known that non-orthogonal quantum
states cannot be distinguished perfectly, Alice cannot guess the value of each raw key
bit with certainty. This distinguishing probability has a nice relationship with the
trace distance between the states in the ensemble [58]. According to this relation we
have,

Pr
guess

[ri|ρA∗i |ai=0] =
1

2
(1 +

1

2
|||0〉〈0| − |0′〉〈0′|||1)

≤ 1

2
(1 +

√
1− F (|0〉〈0|, |0′〉〈0′|))

=
1

2
(1 + sin θ) =

1

2
+

1

2
sin θ.

One can check that Prguess[ri|ρA∗i |ai=0] = Prguess[ri|ρA∗i |ai=1]. This implies that if
Alice is allowed to use any measurement device at her end after Bob’s measurement
device verification phase then Alice can successfully retrieve the i-th raw key bit ri
with probability at most

(
1
2

+ 1
2

sin θ
)
. As after Bob’s measurement device verification

phase, the qubits at Alice’s side are all independent, dishonest Alice can inconclusively
retrieve (on average) atmost

(
1
2

+ 1
2

sin θ
)

fraction of bits of the entire raw key.

Note : Here, the term ‘inconclusive’ means that Alice can’t determine the posi-
tions of the accurately guessed key bits with certainty. For example, whenever Alice
tries to guess each of the key bits randomly, she can guess correctly for around half
of the instances. However, she can’t tell with certainty what are those instances for
which she guesses correctly.

Now let us consider the operator E = {E0, E1, E2} where,

E0 ≡
1

sin θ
(sin θ|0〉 − cos θ|1〉)(sin θ 〈0| − cos θ 〈1|)

E1 ≡
1

sin θ
|1〉 〈1|

E2 ≡ I − E0 − E1

One can easily check that this operator E = {E0, E1, E2} is not a valid POVM as
E2 is not positive semi-definite. Let us consider the operator E ′ = {E ′0, E ′1} where

E ′0 ≡ E0 +
E2

2

E ′1 ≡ E1 +
E2

2

Now, this is a valid POVM to distinguish |0〉 and |0′〉 = (cos θ|0〉+ sin θ|1〉). If a
party considers the strategy that for the outcome E ′0, he considers the corresponding
input qubit as |0〉 and |0′〉 otherwise, then one can check that this is the POVM
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corresponding to the optimal success probability (i.e., 1
2
+ sin θ

2
) in distinguishing |0〉 and

|0′〉. However, the guessing outcome of this POVM is uncertain as the inconclusive
element (the outcome which can’t determine the state with certainty) E2 is involved
in both the elements E ′0 and E ′1 of the POVM E ′. So, in the proof of Theorem 5,
we refer the optimal guessing probability as inconclusive (i.e., uncertainty about the
positions of the known key bits).

In theorem 5, we show that if Alice is allowed to choose any measurement device
at her side then, on average, dishonest Alice can correctly retrieve at most around(

1
2

+ sin θ
2

)
fraction from the entire raw key but she remains uncertain about the

positions of those known bits.
However, in this DI proposal, dishonest Alice’s (A∗) main intention is to con-

clusively (i.e., with certainty about the positions of the correctly guessed key bits)
retrieve as many raw key (as well as final key) bits as possible because otherwise
she can’t know which data bits she has retrieved correctly. For this reason, dishon-
est Alice has to perform the mentioned POVM measurement at her end to retrieve
maximum number of raw key bits conclusively. Because of this, one can get a bound
on the number of raw key bits that dishonest Alice can guess (on average) in this
DI-QPQ proposal.

Lemma 1. Either this proposed DI-QPQ scheme terminates with high likelihood in
the long run, or dishonest Alice (A∗) can retrieve (on average) (1− cos θ) fraction of
bits from the entire raw key after the shared key generation phase of our proposal.

Proof. According to our proposal, after the Alice’s POVM device verification phase,
the client Alice has kN independent non-orthogonal qubits at her end. For each of
these instances, dishonest Alice now tries to distinguish between the non-orthogonal
states either |0〉 and |0′〉 (for ai = 0) or |1〉 and |1′〉 (for ai = 1).

In this regard, she chooses the measurement device {M0
0 ,M

0
1 ,M

0
2} when Bob

announces ai = 0 and measurement device {M1
0 ,M

1
1 ,M

1
2} when Bob announces ai =

1.
Whenever the outcome is M0

0 (M1
0 ), Alice concludes that the state is |0〉 (|1〉).

If it is M0
1 (M1

1 ), she concludes that the state is |0′〉 (|1′〉). The guessing remains
inconclusive (i.e., can’t guess the outcome with certainty) only when the measurement
outcome is M0

2 (M1
2 ).

It is evident from [62] that the maximum probability of successfully distinguishing
two non-orthogonal states is (1−cos θ). From Theorem 1, we get that in our protocol,
the success probability of Alice in guessing a key bit correctly and conclusively is also
(1 − cos θ). As Alice has to measure each of her qubits independently depending on
the declared ai values, on average she can conclusively retrieve (1 − cos θ) fraction
from the entire raw key. This concludes the proof.

Dishonest Alice can employ a broader attack strategy by storing all the photons
in a quantum memory and deferring the measurements until the initial step of the
private query phase where Bob discloses the qubits that contribute to each final key
bit. In this scenario, without performing optimal measurements individually for each
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of the k qubits, dishonest Alice can perform a joint optimal measurement on all the
k qubits associated with a final key bit to extract the key bits. It is well-known that
the probability of correctly identifying one of two equally likely quantum states (say
ρ0 and ρ1) is upper bounded by 1

2
+ 1

2
D(ρ0, ρ1), where D(ρ0, ρ1) represents the trace

distance. In the case of a joint Helstrom measurement by dishonest Alice on k qubits

(related to a final key bit in our proposal), this probability boils down to
(

1
2

+ sink θ
2

)
as the number of added qubits (k) increases. Furthermore, as explained in the note
following the proof of Theorem 5, this optimal measurement would be inconclusive.
In other words, dishonest Alice cannot accurately determine the indices of her known
final key bits, which is a crucial requirement for the QPQ primitive. Therefore, this
joint measurement attack is ineffective for our (and any other) QPQ proposal.

Although there is a chance that dishonest Alice can successfully pass all tests and
learn more data bits than allowed through statistical fluctuations, the likelihood of
this happening is low according to Corollary 3. Now from Definition 3 and equation
4.6, we can conclude the following.

Corollary 4. In the case of dishonest Alice and honest Bob, either our proposal will
terminate (as the limit approaches infinity) or dishonest Alice will, on average, be
able to retrieve τ fraction of bits from the entire final key, where

τ ≤ (1− cos θ)k . (4.26)

By using the upper bound from equation 4.7 in place of (1− cos θ)k, one can obtain
the following bound on the value of τ .

τ <
2

N
. (4.27)

This relation signifies that in our DI-QPQ proposal, τ is significantly smaller than
N .

Now, we validate the probabilistic definition of data privacy for this proposed
scheme and show that the probability Pr [|X − Y | > δ ∧ scheme doesn’t terminate]
is negligible (where, similar to our previous definition, X and Y denote the actual
and expected number of final key bits respectively for Alice). More specifically, we
will calculate the probability with which dishonest Alice can guess more than the
expected number of final key bits (with a deviation more than the ε fraction of the
expected number of final key bits).

The negligibility of the probability Pr [|X − Y | > δ ∧ scheme doesn’t terminate]
can be shown using the properties of basic probability theory. Note that the proba-
bility Pr [|X − Y | > δ ∧ scheme doesn’t terminate] is upper bounded by both
Pr [|X − Y | > δ] and Pr [scheme doesn’t terminate], according to the properties Pr[A∧
B] ≤ Pr[A] and Pr[A∧B] ≤ Pr[B]. As in our scheme, we consider the i.i.d. assump-
tion, there will be two different subcases- 1) all the devices attain ideal values in all
the testing phases (i.e., in LocalCHSHtest, OBStest and POVMtest) 2) all the devices
don’t attain ideal values in all the testing phases.
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For the first subcase, from the correctness result (i.e., the value of Pc for our
scheme in equation 4.15) and the DI security statement in Corollary 3, one can
easily conclude that Pr [|X − Y | > δ] ≤ negl(N) where negl(N) denotes negligi-
ble in N . For the second subcase, by an analysis similar to the proof of Theo-
rem 2 and from the DI security statement in Corollary 3, it can be concluded that
Pr [scheme doesn’t terminate] ≤ negl(N). This implies that for both of these two
subcases, Pr [|X − Y | > δ ∧ scheme doesn’t terminate] ≤ negl(N) (under the i.i.d.
assumption).

Although it is easy to derive the negligibility of the expression
Pr [|X − Y | > δ ∧ scheme doesn’t terminate] for both the two subcases, in general
for the second subcase, it is hard to derive the exact bound on the probability with
which dishonest Alice can guess more than the expected number of final key bits.
For our proposed scheme, as Alice performs optimal POVM measurement at her end,
it is relatively easier to derive an upper bound on the parameter Pd for our scheme
because it is unlikely that dishonest Alice can retrieve more number of raw key bits
(on average) by performing any other measurements at her end.

To derive the exact bound on the parameter Pd for this proposal, like the previous
discussion considering X and Y be the actual and expected number of final key bits
respectively for Alice, here from the Chernoff-Hoeffding inequality [59] mentioned in
proposition 1, one can conclude the following.

Pr [|X − Y | ≥ δCH ∧ scheme doesn’t terminate]

≤ exp(−2δ2
CHN). (4.28)

Here, we aim to calculate the likelihood of the value of X being outside the error
range of δCH = ε (1− cos θ)kN from its expected value.

From the relation in equation 4.7, it can be easily derived that whenever Bob
selects θ so that (1− cos θ)k = 1

N
, the equation 4.28 becomes,

Pr [|X − Y | ≥ ε ∧ scheme doesn’t terminate]

≤ exp(−2ε2N). (4.29)

So, from definition 3, the parameter Pd in our proposed scheme (that corresponds
to dishonest Alice and honest Bob) can be upper bounded by,

Pd ≤ exp(−2ε2N). (4.30)

That means the probability that dishonest Alice can learn more than the expected
amount of final key bits (beyond the ε deviation) while the protocol doesn’t abort is
very low in practice because the value of N is very large.

For the purpose of illustration, again we evaluate here the performance of our
scheme as a 1 out of 2 probabilistic oblivious transfer, where N = 2 and k = 1.
From expression 4.30, with an error margin of ε = 1

2
, the probability that dishonest
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Alice can guess more than the expected number of final key bits (which is 1) is upper
bounded by,

Pd ≤ e−1 ≈ 0.368. (4.31)

The comparison between the highest probability of inconclusive success (i.e., un-
certainty in guessing the position of correct bits) and the highest probability of con-
clusive success (i.e., ability to accurately guess the position of correct bits) is depicted
in Figure 4-2. The figure demonstrates that for small values of θ, the highest incon-
clusive success probability surpasses the highest conclusive success probability.

Figure 4-2: Comparison between maximum inconclusive and conclusive success prob-
ability of the client.

Security of Alice against dishonest Bob

In this subsection, we determine the number of indices (lB∗) that dishonest Bob can
correctly guess from Il (the query index set of Alice) and calculate the probability
of Bob correctly guessing more than the expected number of indices. In [63], it was
discussed that the dishonest Bob could employ a middle-state attack to gain insight
into Alice’s conclusiveness or her known bit values. However, it is impossible (shown
in [63]) for dishonest Bob to possess knowledge of both the correct bit values and the
conclusiveness information. Engaging in systematic cheating would result in incorrect
answers provided to Alice, damaging Bob’s reputation as a database provider. Thus,
in the QPQ primitive, Bob is expected to adhere to the actual protocol, as there
exists a non-zero probability of being caught cheating.

Lemma 2. Dishonest Bob can correctly guess a maximum of l
N

fraction of the indices
from the query set Il of Alice after l queries to the N-bit database, i.e., for a particular
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index i,

Pr(Bob correctly guesses i ∈ Il) ≤
l

N
.

Proof. In the shared key generation phase of our proposal, Alice does not broadcast
anything about her measurement outcome. So, dishonest Bob has no information
about Alice’s measurement outcomes and her known key bits. Now, Alice queries
l many times to the database and retrieves l many data bits. After these l many
queries, dishonest Bob will try to guess those query indices of Alice. As Bob has no
information about Alice’s known final key bits, he has no other options other than
randomly guessing these l many indices (out of the N data bits).

So, for any i-th data bit, dishonest Bob can guess whether i ∈ Il with probability
atmost l

N
. This completes the proof.

This means that when Bob makes a guess at a specific data bit index, the chance
of it being in Alice’s query index set is roughly l

N
. Assuming that after l queries, the

set Il of Alice’s query indices has l data bits, and the chosen indices are independent,
the expected number of indices (lB∗) that dishonest Bob correctly guesses from Il
would be,

E[lB∗ ] = Pr(Bob correctly guesses i ∈ Il).l

≤ l2

N
. (4.32)

However, this guess will be inconclusive i.e., Bob can’t identify his correctly
guessed indices with certainty because of the random guess. Now, comparing the
expression in definition 4 with equation 4.32 provides the following upper bound for
δ in our proposal.

Corollary 5. Our DI-QPQ proposal either terminates with high likelihood in the long
run, or dishonest Bob can guess, on average, δ fraction of indices in Alice’s query
index set Il where,

δ ≤
(
l

N

)
. (4.33)

The typical size of the database is much larger (exponentially so) than the size of
Alice’s query index set, i.e., N = ln, where n is a positive integer (n > 1). Plugging
this into equation 4.33 gives the following upper bound on the value of δ.

δ ≤ 1

l(n−1)
. (4.34)

This relation shows that for our DI-QPQ proposal, δ is significantly smaller com-
pared to l.

Now, we validate the probabilistic definition of user privacy against dishonest Bob
for our full DI proposal and derive the exact bound on the security parameter Pu. As
shown in Lemma 1, dishonest Bob’s chance of guessing if an index i is in the index
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set Il (of Alice) is limited to l
N

. Also, this upper bound is determined incorporating
the scenario that the proposal doesn’t terminate. This implies that,

Pr [Bob guesses i ∈ Il ∧ scheme doesn’t terminate]

≤ l

N
. (4.35)

So, from definition 4, the parameter Pu in our proposed scheme (that corresponds
to dishonest Bob and honest Alice) can be upper bounded by,

Pu ≤
l

N
. (4.36)

In practice, the probability of dishonest Bob correctly guessing a database index
in Alice’s query index set is low due to a large difference in size between the database
(N) and query index set (l).

Here also, we evaluate the performance of our proposal considering it as 1-out-of-2
probabilistic oblivious transfer (i.e., N = 2, k = 1 and l = 1). From expression 4.36,
we get that the value of Pu for our scheme is upper bounded by,

Pu ≤
1

2
≈ 0.5. (4.37)

4.4 Choice of initial sample size in practice

In this section, we discuss how Bob and Alice choose the initial sample size required
for the proposed DI-QPQ scheme. In practice, Alice and Bob have to allow some
deviation (from the actual value of the parameter because of finite number of samples)
in each testing phase to certify the devices.

It is well-known that the approximate number of samples required to distinguish
two events having probabilities p and p(1+ε) (for small ε) is O( 1

pε2
). One may require

approximately 64
pε2

samples to achieve a confidence of more than 99% in distinguishing
these two events. A more involved expression of the sample size is recently derived
in [16] using Chernoff-Hoeffding [59] bound which is stated in proposition 1.

For the testing phases mentioned in our proposed scheme, we consider Xi = 1
whenever Bob and Alice win the i-th instance and Xi = 0 otherwise. Now if we
consider E[Xi] = p and want to estimate the success probability p within an error
margin of εp and confidence 1 − η, then from the result mentioned in [16], we can
write that the required sample size mreq will be,

mreq ≥
1

2ε2p2
ln

1

η
. (4.38)
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From this expression of mreq, Bob and Alice can estimate the expected number
of samples required for a particular testing phase to certify a device with certain
accuracy and confidence.

Now to ensure that Bob and Alice get the expected number of samples in each
phase (to conclude with certain accuracy and confidence), they choose the total initial
sample size (i.e., the value of K) as follows-

• Before the start of the protocol, Alice and Bob (based on the protocol de-
scription) calculate the minimum number of samples required (according to the
expression in inequality 4.38) in each testing phase to conclude with chosen
accuracy and confidence.

• Then they choose the value of k to calculate the total number of samples re-
quired in private query phase.

• At last, they sum up all these number of samples required in each testing phase
along with the number of samples required in private query phase to calculate
the total initial sample size.

• After getting the initial sample size, Bob and Alice proceed to each of the
testing phases (according to the description of the protocol), select the required
number of samples randomly from the shared instances and check whether the
value of a predefined parameter lies within the interval [V − εp, V + εp] where V
is the actual value of the parameter obtained for asymptotically large number
of samples. If this is the case, then with accuracy εp and chosen confidence
(1− η), they conclude that the devices behave accordingly.

As an example, here we demonstrate the method of choosing samples for the first
phase namely source device verification phase. Before the start of the protocol, Bob
and Alice choose the accuracy and confidence parameter for this phase with which
they want to certify the source device and let n1 be the required number of samples.
Now, similar to this source device certification phase, they calculate the required
number of samples for the other phases also and from that calculate the required
number of total initial samples K.

Bob and Alice then calculate the value of γ1 such that,

n1 = γ1K.

After getting the value of γ1, Bob first chooses γ1K
2

number of samples randomly

from the K shared states and then from the rest
(
K − γ1K

2

)
number of samples, Alice

randomly chooses γ1K
2

number of samples. They then discuss their chosen instances
publicly, get the qubits from the other party and perform LocalCHSHtest for their
chosen γ1K samples. In this similar way, they choose the samples for the remaining
testing phases.

Note that this is a particular way of choosing samples that we demonstrate here
from the several other possibilities. It is needless to say that one may follow any other
strategies for choosing samples in different testing phases.
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4.5 Statement and proof of Theorem 2

Theorem 2: In OBStest, either Bob’s measurement devices achieve the value of
the parameter β = 1√

2|(cos θ−sin θ)| (i.e., his devices correctly measure in {|0〉, |1〉} and

{|0′〉, |1′〉} basis where |0′〉 = (cos θ|0〉 + sin θ|1〉), |1′〉 = (sin θ|0〉 − cos θ|1〉)), or the
protocol terminates with a high likelihood of failure (as the limit approaches infinity).

Proof: Suppose, Alice’s measurement operators are {Asc}s,c∈{0,1}, corresponding to
the input s and output c. Similarly, Bob’s measurement operators are {Br

b}r,b∈{0,1},
corresponding to the input r and output b. This implies that Alice’s observable,
corresponding to the input s ∈ {0, 1} is,

As =
∑

c∈{0,1}

(−1)cAsc. (4.39)

Similarly, Bob’s observable corresponding to the input r ∈ {0, 1} is,

Br =
∑

b∈{0,1}

(−1)bBr
b . (4.40)

Note that, in the OBStest, the fraction β is being computed as follows,

β =
1

4

∑
s,r,c,b∈{0,1}

(−1)dsrcbα1⊕s〈φAB|Asc ⊗Br
b |φAB〉 (4.41)

=
1

4
〈φAB|WA|φAB〉. (4.42)

where WA :=
(∑

s,r,c,b∈{0,1}(−1)dsrcbα1⊕sAsc ⊗Br
b

)
which is the operator corre-

sponding to the OBStest. We can also rewrite the expression of WA in the following
way.

WA =

 ∑
r,c,b∈{0,1}

(−1)dsrcbαA0
c ⊗Br

b

+

 ∑
r,c,b∈{0,1}

(−1)dsrcbA1
c ⊗Br

b


= W 0

A +W 1
A. (4.43)

whereW 0
A :=

(∑
r,c,b∈{0,1}(−1)dsrcbαA0

c ⊗Br
b

)
andW 1

A :=
(∑

r,c,b∈{0,1}(−1)dsrcbA1
c ⊗Br

b

)
.

Note that, we can simplify further the expression of W 0
A in following way.
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W 0
A =

∑
r,c,b∈{0,1}

(−1)dsrcbαA0
c ⊗Br

b

=
∑

r,c,b∈{0,1}
c⊕b=0

αA0
c ⊗Br

b −
∑

r,c,b∈{0,1}
c⊕b 6=0

αA0
c ⊗Br

b

= α(A0
0 ⊗B0

0 + A0
0 ⊗B1

0 + A0
1 ⊗B0

1 + A0
1 ⊗B1

1)−
α(A0

0 ⊗B0
1 + A0

0 ⊗B1
1 + A0

1 ⊗B0
0 + A0

1 ⊗B1
0)

= α[A0
0 ⊗ (B0

0 −B0
1)− A0

1 ⊗ (B0
0 −B0

1)+

A0
0 ⊗ (B1

0 −B1
1)− A0

1 ⊗ (B1
0 −B1

1)]

= α[(A0
0 − A0

1)⊗ (B0
0 −B0

1) + (A0
0 − A0

1)⊗ (B1
0 −B1

1)]

= α(A0
0 − A0

1)⊗ [(B0
0 −B0

1) + (B1
0 −B1

1)].

By substituting the values of (A0
0−A0

1), (B0
0 −B0

1) and (B1
0 −B1

1) from equation 4.39
and equation 4.40 on the right-hand side of the above expression we get,

W 0
A = αA0 ⊗ (B0 +B1). (4.44)

Using similar approach we get the following simplified version of the expression
W 1
A.

W 1
A = A1 ⊗ (B0 −B1). (4.45)

By substituting the values of W 0
A and W 1

A from equation 4.44 and equation 4.45
to equation 4.43 we get,

WA = αA0 ⊗ (B0 +B1) + A1 ⊗ (B0 −B1). (4.46)

Note that, the right-hand side of this OBStest operator WA is exactly same as the
tilted CHSH operator, described in [65].

So, the expression of W 2
A can be written as

W 2
A = α2A2

0 ⊗ (B2
0 +B2

1 + {B0, B1})
+ A2

1 ⊗ (B2
0 +B2

1 − {B0, B1})
= (α2A2

0 + A2
1 + α{A0, A1})⊗B2

0

+ (α2A2
0 + A2

1 − α{A0, A1})⊗B2
1

+ (α2A2
0 − A2

1)⊗ {B0, B1} − α[A0, A1]⊗ [B0, B1].

Using the property A2
j ≤ I, we can rewrite this expression as,
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W 2
A ≤ [(α2 + 1).I + α{A0, A1}]⊗B2

0

+ [(α2 + 1).I− α{A0, A1}]⊗B2
1

+ I⊗ (α2 − 1){B0, B1} − α[A0, A1]⊗ [B0, B1].

Since −2.I ≤ {A0, A1} ≤ 2.I, we have,

[(α2 + 1).I± α{A0, A1}] ≥ 0.

We can use the property B2
k ≤ I and get the following simplified expression.

W 2
A ≤ 2(α2 + 1).I⊗ I + I⊗ (α2 − 1){B0, B1}
− α[A0, A1]⊗ [B0, B1].

We can further upper bound the commutators by their matrix modulus and use
the relation |[A0, A1]| ≤ 2.I to get the following expression.

W 2
A ≤ 2(α2 + 1).I⊗ I + Tα ⊗ I. (4.47)

where Tα := (α2 − 1){B0, B1}+ 2α|[B0, B1]|
Now the expression of Tα can also be upper bounded by upper bounding the anti

commutators by its matrix modulus. So, the value of Tα will be upper bounded by,

Tα ≤ (α2 − 1)|{B0, B1}|+ 2α|[B0, B1]|.

Again one can easily check that,

|{B0, B1}|2 + |[B0, B1]|2

= |B0B1 +B1B0|2 + |B0B1 −B1B0|2

= (B0B1 +B1B0)†(B0B1 +B1B0)

+ (B0B1 +B1B0)†(B0B1 +B1B0)

= 2(B0B1)†(B0B1) + 2(B1B0)†(B1B0). (4.48)

Let us consider that the measurement operators are projective i.e., (Asc)
2 = Asc

and (Br
b )

2 = Br
b . Now for the projectors B0

0 and B0
1 , (B0

0 +B0
1) = I. From this relation

we can write,
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(B0
0 +B0

1)(B0
0 +B0

1)† = I

B0
0 .B

0
0
†

+B0
0 .B

0
1
†

+B0
1 .B

0
0
†

+B0
1 .B

0
1
†

= I

(B0
0 +B0

1) + (B0
0 .B

0
1
†

+B0
1 .B

0
0
†
) = I.

This implies,

(B0
0 .B

0
1
†

+B0
1 .B

0
0
†
) = 0.

Now B0 = (B0
0 −B0

1). From this we can get,

B0B
†
0 = (B0

0 −B0
1)(B0

0 −B0
1)†

= B0
0 .B

0
0
† −B0

0 .B
0
1
† −B0

1 .B
0
0
†

+B0
1 .B

0
1
†

= (B0
0 +B0

1)− (B0
0 .B

0
1
†

+B0
1 .B

0
0
†
)

= I + 0 = I.

Similarly, it can be shown that, B1B
†
1 = B†1B1 = I.

So, from equation 4.48, we can write that for unitary observables B0 and B1,

|{B0, B1}|2 + |[B0, B1]|2 = 2(B0B1)†(B0B1)

+ 2(B1B0)†(B1B0)

= 2I + 2I = 4I.

This implies,

|{B0, B1}| =
√

4.I− |[B0, B1]|2.

So, the simplified expression of Tα will be of the form

Tα = (α2 − 1)
√

4.I− |[B0, B1]|2 + 2α|[B0, B1]|.

This is the maximum value of Tα and here Tα attains this maximum value because
of projective observables. Now one can easily check that the value of |[B0, B1]| which
maximizes the value of Tα is |[B0, B1]| = 4α

(α2+1)
.I and the corresponding value of Tα

is 2(α2 + 1).I. This implies that,

Tα = 2(α2 + 1).I.
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From this value of Tα and from the expression of W 2
A mentioned in equation 4.47,

we can easily write that the value of WA is upper bounded by the following quantity.

WA ≤
√

2(α2 + 1)I⊗ I + Tα ⊗ I. (4.49)

where Tα = 2(α2 + 1).I.
Now, the value β obtained in OBStest of our algorithm can be written alternatively

as β = Tr(WAρAB)
4

where ρAB is the density matrix representation of the shared states
|φ〉AB i.e., ρAB = |φ〉AB 〈φ|. From this expression of β, one can easily derive that the
value of β2 is upper bounded by the following quantity.

β2 ≤ Tr(W 2
AρAB)

16
.

Now if we assume tα := 1
4
Tr(TαρB) − 1

2
(α2 − 1) (where ρB is the reduced state

at Bob’s side) then using this value of tα along with the value of WA obtained from
expression 4.49 and the upper bound on the value of β2, we can write that the β value
mentioned in OBStest is upper bounded by the following quantity.

β ≤
√
α2 + tα

2
. (4.50)

Now here, the observables are projective (i.e., B2
j = I) and the anti commutator

{B0, B1} is a positive semi definite operator. Since we have already shown that the
value of the anti-hermitian operator |[B0, B1]| is |[B0, B1]| = 4α

(α2+1)
.I for the maximum

value of Tα, the spectral decomposition of [B0, B1] can be written as,

[B0, B1] =
4α.i

(α2 + 1)
(P+ − P−).

for some orthogonal projectors P+ and P− such that (P+ + P−) = I. As it
is well-known that for projective observables, the commutator holds the property
B0[B0, B1]B0 = −[B0, B1], we can easily conclude that B0P±B0 = P∓. Let us con-
sider that {|e0

j〉}j is an orthonormal basis for the support of P+ and {|e1
j〉}j is an

orthonormal basis for the support of P− where |e1
j〉 = B0|e0

j〉. We define the unitary
operator U0 as

U0|edj 〉 =
1√
2

[|0〉+ (−1)di|1〉]|j〉.

for d ∈ {0, 1}. Then we can easily verify that

U0[B0, B1]U †0 =
4α.i

(α2 + 1)
σY ⊗ I.
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Since {I, σX , σY , σZ} constitute an operator basis for linear operators acting on
C2, without loss of generality we can write

U0B0U
†
0 = I⊗K0 + σX ⊗Kx + σY ⊗Ky + σZ ⊗Kz.

for some hermitian operator K0, Kx, Ky, Kz. For projective observable B0, one can
easily check that {B0, [B0, B1]} = 0. This relation satisfies only when K0 = Ky = 0.
As B2

0 = I, Kx and Kz must satisfy the relation

K2
x +K2

z = I and [Kx, Kz] = 0.

So, we can easily write Kx and Kz in the following form.

Kx =
∑
j

sin 2γj|j〉 〈j|

Kz =
∑
j

cos 2γj|j〉 〈j| .

for some angle γj and some orthonormal basis {|j〉}. This implies that

U0B0U
†
0 = σX ⊗Kx + σZ ⊗Kz

=
∑
j

(sin 2γjσX + cos 2γjσZ)⊗ |j〉 〈j| .

We now consider the following controlled unitary to align the qubit observables.

U1 =
∑
j

exp(iγj.σY )⊗ |j〉 〈j| .

Now for this defined unitary operator, one can easily check that

U1U0B0U
†
0U
†
1 = σZ ⊗ I

U1U0[B0, B1]U †0U
†
1 =

4α.i

(α2 + 1)
σY ⊗ I.

Like observable B0, an analogous reasoning can also be applied for observable B1

and from that, without loss of generality we can write

U1U0B1U
†
0U
†
1 = σX ⊗K ′x + σZ ⊗K ′z.
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Since the commutators are positive semi definite and the observables are projec-
tive, we can easily check that

{B0, B1} = |{B0, B1}| =
√

4.I− |[B0, B1]|2

=
2(α2 − 1)

(α2 + 1)
.I.

Now we define 2θ := arcsin
(
α2−1
α2+1

)
∈ [0, π

2
]. From this relation, imposing consis-

tency on the anti commutator, we get,

K ′z = sin 2θ.I.

On the other hand, imposing consistency on the commutator, we get,

K ′x = cos 2θ.I.

Now, from the relation 2θ := arcsin
(
α2−1
α2+1

)
, we can get the value of α which is

α =
(cos θ + sin θ)

|(cos θ − sin θ)|
.

For this value of α, we can easily derive that tα = 1. This implies that the
simplified expression for β is,

β =

√
1 + α2

2
. (4.51)

where α = (cos θ+sin θ)
|(cos θ−sin θ)| . Now from this value of α, we can derive the value of√

1 + α2 which is,

√
1 + α2 =

√
2

|(cos θ − sin θ)|
. (4.52)

So, the value of β corresponding to these observables B0 and B1 will be,

β =
1√

2|(cos θ − sin θ)|
. (4.53)

If we consider UB = U †0U
†
1 then the observables B0 and B1 will be of the form

B0 = UB(σZ ⊗ I)U †B
B1 = UB(cos 2θσX + sin 2θσZ ⊗ I)U †B.
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This implies that in the OBStest, if β is equal to 1√
2|(cos θ−sin θ)| , then the corre-

sponding observables of Bob are same as the one described in the OBStest. This
concludes the proof.

4.6 Verification of Alice’s POVM elements

In the QPQ protocol, Alice needs to make sure her measurement device works prop-
erly, i.e., she should be able to distinguish between |0〉 (|1〉) and |0′〉 (|1′〉) with cer-
tainty for (on average) around (1−cos θ) fraction of instances, where, |0′〉 = cos θ|0〉+
sin θ|1〉 (|1′〉 = sin θ|0〉 − cos θ|1〉). Let M0 = {M0

0 ,M
0
1 ,M

0
2} (M1 = {M1

0 ,M
1
1 ,M

1
2})

the set of Alice’s POVMs, which distinguishes the states {|0〉, |0′〉} ({|1〉, |1′〉}). Here
we show that if the input states are of the form |0〉 (|1〉) or |0′〉 (|1′〉) and Alice manages
to distinguish the states with certainty for (on average) around (1 − cos θ) fraction
of instances then M0

i = D0
i (M1

i = D1
i ) for i ∈ {0, 1, 2}. In order to prove this, here

we first represent the interactions between Bob and Alice in the proposed DI-QPQ
protocol in the form of a game, called POVMgame(My, y) for better understanding,
where the agent A1 represents Bob and the agent A2 represents Alice. The game is
as follows,

Algorithm 5: POVMgame(My, y)

• A1 declares y whenever the state at his side (and also at A2’s side) is either ρyx
or ρyx⊕1 for the randomly chosen x values (i.e., for x ∈R {0, 1}), where
ρ0

0 = |0〉〈0|, ρ0
1 = |0′〉〈0′|, ρ1

0 = |1〉〈1| and ρ1
1 = |1′〉〈1′|.

• A2 measures her state (which is either ρyx or ρyx⊕1) using the POVM My

(where My = {My
0 ,M

y
1 ,M

y
2 }) and sends the outcome b ∈ {0, 1, 2} to A1.

• A2 wins if and only if, Ωy =
∑

b,x∈{0,1}(−1)b⊕xTr[My
b ρ

y
x] = 2 sin2 θ

1+cos θ
.

Theorem 6. In POVMgame(My, y), if A1 chooses y = 0 and the states at A2’s end
are ρ0

0 = |0〉〈0| and ρ0
1 = |0′〉〈0′| and if A2 manages to win the game, i.e., Ω0 = 2 sin2 θ

1+cos θ
,

then this implies, A2’s measurement devices are of the following form (up to a local
unitary).

M0
0 =

1

(1 + cos θ)
(|1′〉〈1′|) (4.54)

M0
1 =

1

(1 + cos θ)
(|1〉〈1|) (4.55)

M0
2 = I−M0

0 −M0
1 . (4.56)

where, |1′〉 = sin θ|0〉 − cos θ|1〉.
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Proof. In the POVMgame(My, y), A2 applies M0 on a single qubit state ρ0
x (where

x ∈R {0, 1}). So, without any loss of generality we can assume that M0
i ∈ M0 has

the following form.

M0
i = λ0

i (I + ~m0
i .~σ). (4.57)

where ~m0
i = [m0

i0,m
0
i1,m

0
i2] and it is the Bloch vector with length at most one, ~σ =

[σX , σY , σZ ] are the Pauli matrices and λi ≥ 0. In this case, one may wonder how
we can fix the dimension of M0

i here in the proof in DI scenario. The answer to this
question is that here we are able to fix the dimension of M0

i and choose this particular
general form because of the tests mentioned earlier in the source device verification
phase (corresponding result mentioned in Corollary 2) and DI testing phase for Bob’s
measurement device (corresponding result mentioned in Theorem 2) which certifies
that the states shared between Alice and Bob are EPR pairs (up to a unitary) and
after Bob’s projective measurements, the reduced states at Alice’s side are one qubit
states. Now, the condition

∑2
i=0 M

0
i = I leads us to the following relations.

2∑
i=0

λ0
i = 1 (4.58)

2∑
i=0

λ0
i ~m

0
i = 0. (4.59)

In terms of Bloch vector we can rewrite ρ0
0, ρ

0
1 in following way.

ρ0
0 =

1

2
(I + σZ) (4.60)

ρ0
1 =

1

2
(I + sin 2θσX + cos 2θσZ). (4.61)

In the POVMgame(My, y) if A2 would like to maximize her winning probability
then she needs to maximize the following expression.

Ω0 =
∑
b,x∈0,1

(−1)b⊕xTr[M0
b ρ

0
x]. (4.62)

In terms of λ0
i , ~m

0
i , ~σ we have,

Tr[M0
0ρ

0
0] = λ0

0(1 +m0
02)

Tr[M0
0ρ

0
1] = λ0

0(1 +m0
00 sin 2θ +m0

02 cos 2θ)

Tr[M0
1ρ

0
0] = λ0

1(1 +m0
12)

Tr[M0
1ρ

0
1] = λ0

1(1 +m0
10 sin 2θ +m0

12 cos 2θ).

In terms of λ0
i , ~m

0
i , ~σ can rewrite Ω0 as,
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Ω0 = λ0
0(1 +m0

02) + λ0
1(1 +m0

10 sin 2θ +m0
12 cos 2θ) (4.63)

− λ0
0(1 +m0

00 sin 2θ +m0
02 cos 2θ)− λ0

1(1 +m0
12).

As both Tr[M0
0ρ

0
1] and Tr[M0

1ρ
0
0] are positive quantity, hence

Ω0 ≤ λ0
0(1 +m0

02) + λ0
1(1 +m0

10 sin 2θ +m0
12 cos 2θ). (4.64)

and this implies,

(1 +m0
00 sin 2θ +m0

02 cos 2θ) = 0 (4.65)

(1 +m0
12) = 0. (4.66)

According to the equation 4.66 we have m0
12 = −1. As both of ρ0

0, ρ
0
1 lie on the

XZ plane and due to the freedom of local unitary without loss of generality we can
assume m0

01 = m0
11 = m0

21 = 0. Due to the positivity constraint (M0
i ≥ 0) we have,

m0
00

2
+m0

02
2 ≤ 1 (4.67)

m0
10

2
+m0

12
2 ≤ 1 (4.68)

m0
20

2
+m0

22
2 ≤ 1. (4.69)

By combining the constraint equation 4.66 with the equation 4.68 we get, m0
10 = 0.

Hence,

~m0
1 = [0, 0,−1]. (4.70)

and by substituting the values of m0
10,m

0
12 in equation 4.64 we get the following

expression of Ω0.

Ω0 ≤ λ0
0(1 +m0

02) + λ0
1(1− cos 2θ). (4.71)

Note that the expression of Ω0 maximizes when λ0
0,m

0
02, λ

0
1 maximizes and from

the constraint equation 4.67 we get that m0
00

2
+ m0

02
2 ≤ 1. Hence, without any loss

of generality we can assume that for the maximum value of Ω0, m0
00

2
+ m0

02
2

= 1.
So, we can parameterize m0

00,m
0
02 as sinα, cosα (0 ≤ α ≤ 2π). By substituting

m0
00 = sinα,m0

02 = cosα in equation 4.65 we get,

1 + sinα sin 2θ + cosα cos 2θ = 0.

This implies,

cos(α− 2θ) = −1.
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As 0 ≤ α ≤ 2π, so cos(α− 2θ) = −1this implies,

α− 2θ = π and,

α = π + 2θ. (4.72)

From the equation 4.72 we get,

~m0
0 = [− sin 2θ, 0,− cos 2θ]. (4.73)

By substituting the expression of ~m0 in equation 4.71 we get,

Ω0 ≤ (λ0
0 + λ0

1)(1− cos 2θ). (4.74)

By substituting the values of ~m0
0, ~m

0
1 in equation 4.59 we get,

λ0
2m

0
22 − λ0

0 cos 2θ = λ0
1 (4.75)

λ0
2m

0
20 = λ0

0 sin 2θ. (4.76)

Due to the constraint equation 4.69, similar to ~m0
0, here we parameterize the

expression of m0
20,m

0
22 as sin β, cos β respectively. By substituting m0

20 = sin β and
m0

22 = cos β in the equations 4.75 and 4.76 we get,

λ0
2 cos β − λ0

0 cos 2θ = λ0
1 (4.77)

λ0
2 sin β = λ0

0 sin 2θ. (4.78)

By solving equation 4.77 and equation 4.78 together with equation 4.58 we get,

λ0
0 =

sin β

sin β + sin 2θ + sin(2θ − β)
(4.79)

λ0
1 =

sin(2θ − β)

sin β + sin 2θ + sin(2θ − β)
. (4.80)

Hence,

λ0
0 + λ0

1 =
sin β + sin(2θ − β)

sin β + sin 2θ + sin(2θ − β)
(4.81)

=
cos(θ − β)

cos θ + cos(θ − β)
. (4.82)

According to equation 4.74, for getting a tight upper bound on Ω0 we need to
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maximize (λ0
0 + λ0

1). By equating
d(λ00+λ01)

dβ
= 0 in equation 4.82 we get,

sin(θ − β) cos θ

cos θ + cos(θ − β)
= 0. (4.83)

This implies,

β = θ. (4.84)

It is also easy to check that for θ = β, the expression
d2(λ00+λ01)

dβ2 < 0. Hence,

the expression λ0
0 + λ0

1 maximizes at the point β = θ. Substituting this relation in
equations 4.79 and 4.80 we get,

λ0
0 = λ0

1 =
1

2(1 + cos θ)
. (4.85)

By substituting the values of λ0
0 + λ0

1 in equation 4.58 we get,

λ0
2 =

cos θ

1 + cos θ
. (4.86)

Hence, we get,

Ω0 ≤ 2 sin2 θ

1 + cos θ
. (4.87)

and

M0
0 =

1

2(1 + cos θ)
(I− sin 2θσX − cos 2θσZ) (4.88)

M0
1 =

1

2(1 + cos θ)
(I− σZ) (4.89)

M0
2 =

cos θ

1 + cos θ
(I + sin θσX + cos θσZ). (4.90)

We can rewrite the above expressions as follows,

M0
0 =

1

(1 + cos θ)
(|1′〉〈1′|)

M0
1 =

1

(1 + cos θ)
(|1〉〈1|)

M0
2 = I−M0

0 −M0
1 .

where |1′〉 = sin θ|0〉 − cos θ|1〉. This concludes the proof.

Similarly for the input states |1〉, |1′〉, one can conclude the following.
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Theorem 7. In POVMgame(My, y), if A1 chooses y = 1 and the states at A2’s end
are ρ1

0 = |1〉〈1| and ρ1
1 = |1′〉〈1′| and if A2 manages to win the game, i.e., Ω1 = sin2 θ

1+cos θ
,

then this implies, A2’s measurement devices are of the following form (up to a local
unitary).

M1
0 =

1

(1 + cos θ)
(|0′〉〈0′|) (4.91)

M1
1 =

1

(1 + cos θ)
(|0〉〈0|) (4.92)

M1
2 = I−M1

0 −M1
1 . (4.93)

where |0′〉 = cos θ|0〉+ sin θ|1〉.

Proof. In the POVMgame(My, y), A2 applies M1 on a single qubit state ρ1
x (where

x ∈R {0, 1}). So, without any loss of generality we can assume that M1
i ∈ M1 has

the following form.

M1
i = λ1

i (I + ~m1
i .~σ). (4.94)

where ~m1
i = [m1

i0,m
1
i1,m

1
i2] and it is the Bloch vector with length at most one, ~σ =

[σX , σY , σZ ] are the Pauli matrices and λ1
i ≥ 0. The condition

∑2
i=0 M

1
i = I leads us

to the following relations.

2∑
i=0

λ1
i = 1 (4.95)

2∑
i=0

λ1
i ~m

1
i = 0. (4.96)

In terms of Bloch vector we can rewrite ρ1
0, ρ

1
1 in following way.

ρ1
0 =

1

2
(I− σZ) (4.97)

ρ1
1 =

1

2
(I− sin 2θσX − cos 2θσZ). (4.98)

In the POVMgame(My, y) if A2 would like to maximizes her winning probability
then she needs to maximize the following expression.

Ω1 =
∑
b,x∈0,1

(−1)b⊕xTr[M1
b ρx]. (4.99)

In terms of λ1
i , ~m

1
i , ~σ we have,
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Tr[M1
0ρ

1
0] = λ1

0(1−m1
02)

Tr[M1
0ρ

1
1] = λ1

0(1−m1
00 sin 2θ −m1

02 cos 2θ)

Tr[M1
1ρ

1
0] = λ1

1(1−m1
12)

Tr[M1
1ρ

1
1] = λ1

1(1−m1
10 sin 2θ −m1

12 cos 2θ).

In terms of λ1
i , ~m

1
i , ~σ can rewrite Ω1 as,

Ω1 = λ1
0(1−m1

02) + λ1
1(1−m1

10 sin 2θ −m1
12 cos 2θ) (4.100)

− λ1
0(1−m1

00 sin 2θ −m1
02 cos 2θ)− λ1

1(1−m1
12).

As both Tr[M1
0ρ

1
1] and Tr[M1

1ρ
1
0] are positive quantity, hence

Ω1 ≤ λ1
0(1−m1

02) + λ1
1(1−m1

10 sin 2θ −m1
12 cos 2θ). (4.101)

and this implies,

(1−m1
00 sin 2θ −m1

02 cos 2θ) = 0 (4.102)

(1−m1
12) = 0. (4.103)

According to the equation 4.103 we have m1
12 = 1. As both of ρ1

0, ρ
1
1 lie on the

XZ plane and due to the freedom of local unitary without loss of generality we can
assume m1

01 = m1
11 = m1

21 = 0. Due to the positivity constraint (M1
i ≥ 0) we have,

m1
00

2
+m1

02
2 ≤ 1 (4.104)

m1
10

2
+m1

12
2 ≤ 1 (4.105)

m1
20

2
+m1

22
2 ≤ 1. (4.106)

By combining the constraint equation 4.103 with the equation 4.105 we get, m1
10 =

0. Hence,

~m1
1 = [0, 0, 1]. (4.107)

and by substituting the values of m1
10,m

1
12 in equation 4.101 we get the following

expression of Ω1.

Ω1 ≤ λ1
0(1−m1

02) + λ1
1(1− cos 2θ). (4.108)

Note that the expression of Ω1 maximizes when λ1
0, λ

1
1 maximizes and m1

02 min-
imizes and from the constraint equation 4.67 we get that m1

00
2

+ m1
02

2 ≤ 1. Hence,
without any loss of generality we can assume that for the maximum value of Ω1,
m1

00
2

+m1
02

2
= 1. So, we can parameterize m1

00,m
1
02 as sinα, cosα (0 ≤ α ≤ 2π). By
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substituting m1
00 = sinα,m1

02 = cosα in equation 4.65 we get,

1− sinα sin 2θ − cosα cos 2θ = 0.

This implies,

cos(α− 2θ) = 1.

As 0 ≤ α ≤ 2π, so cos(α− 2θ) = 1 this implies,

α− 2θ = 0 or 2π and,

α = 2θ or (2π + 2θ). (4.109)

One can easily check that for both these values of α, the value of m1
00 and m1

02 are
sin 2θ and cos 2θ respectively. From the equation 4.109 we get,

~m1
0 = [sin 2θ, 0, cos 2θ]. (4.110)

By substituting the expression of ~m1
0 in equation 4.108 we get,

Ω1 ≤ (λ1
0 + λ1

1)(1− cos 2θ). (4.111)

By substituting the values of ~m1
0, ~m

1
1 in equation 4.96 we get,

λ1
2m

1
22 + λ1

0 cos 2θ + λ1
1 = 0 (4.112)

λ1
2m

1
20 + λ1

0 sin 2θ = 0. (4.113)

Due to the constraint equation 4.106, similar to ~m1
0, here we parameterize the

expression of m1
20,m

1
22 as sin β, cos β respectively. By substituting m1

20 = sin β and
m1

22 = cos β in the equations 4.112 and 4.113 we get,

λ1
2 cos β + λ1

0 cos 2θ + λ1
1 = 0 (4.114)

λ1
2 sin β + λ1

0 sin 2θ = 0. (4.115)

By solving equation 4.114 and equation 4.115 together with equation 4.95 we get,

λ1
0 =

sin β

sin β + sin(2θ − β)− sin 2θ
(4.116)

λ1
1 =

sin(2θ − β)

sin β + sin(2θ − β)− sin 2θ
. (4.117)

Hence,

81



λ1
0 + λ1

1 =
sin β + sin(2θ − β)

sin β + sin(2θ − β)− sin 2θ
(4.118)

=
cos(θ − β)

cos(θ − β)− cos θ
. (4.119)

According to equation 4.111, for getting a tight upper bound on Ω1 we need to

maximize (λ1
0 + λ1

1). By equating
d(λ10+λ11)

dβ
= 0 in equation 4.119 we get,

− sin(θ − β) cos θ

cos θ + cos(θ − β)
= 0. (4.120)

This implies,

either β = θ or (θ − β) = π. (4.121)

Now, one can easily check that for θ = β, the eigen value of M1
2 becomes negative

which is not possible. So, the solution here is (θ − β) = π. One can also check that

for (θ−β) = π, the expression
d2(λ10+λ11)

dβ2 < 0. Hence, the expression λ1
0 +λ1

1 maximizes

at the point (θ − β) = π. Substituting this relation in equations 4.116 and 4.117 we
get,

λ1
0 = λ1

1 =
1

2(1 + cos θ)
. (4.122)

By substituting the values of λ1
0 + λ1

1 in equation 4.95 we get,

λ1
2 =

cos θ

1 + cos θ
. (4.123)

Hence, we get,

Ω1 ≤ 2 sin2 θ

1 + cos θ
. (4.124)

The corresponding measurement operators using which A2 can achieve Ω1 = 2 sin2 θ
1+cos θ

is given by,

M1
0 =

1

2(1 + cos θ)
(I + sin 2θσX + cos 2θσZ) (4.125)

M1
1 =

1

2(1 + cos θ)
(I + σZ) (4.126)

M1
2 =

cos θ

1 + cos θ
(I− sin θσX − cos θσZ). (4.127)

We can rewrite the above expressions as follows,
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M1
0 =

1

(1 + cos θ)
(|0′〉〈0′|)

M1
1 =

1

(1 + cos θ)
(|0〉〈0|)

M1
2 = I−M1

0 −M1
1 .

where, |0′〉 = cos θ|0〉+ sin θ|1〉. This concludes the proof.

From the results of theorem 6 and 7, it is clear that the success probability (1−
cos θ) in distinguishing two non-orthogonal states {|0〉, |0′〉} (or {|1〉, |1′〉}) can be
achieved only when the chosen POVM’s are of the specified form as chosen by Alice
for the QPQ scheme. From the results mentioned in [62], one can easily conclude that
(1 − cos θ) is the optimal success probability that can be achieved in distinguishing
two non-orthogonal states. So from these two results, one can easily conclude that
Alice can get optimal number of raw key bits in this QPQ scheme.

4.7 Correctness of the scheme considering devices

“up to a unitary”

In the device independent testing phases of our proposed scheme (i.e., in source device
verification phase, Bob’s measurement device verification phase and Alice’s POVM
device verification phase), the tests certify that the devices perform exactly same as
that is mentioned in the proposed scheme or “up to a unitary” of the actual device.
This implies that the source device supplies states that are exactly of the same form
or “up to a unitary” (i.e., the states received after applying a unitary operation) of
the original state and the measurement devices measure in exactly the same specified
basis or “up to a unitary” (i.e., the measurement bases received after applying a
unitary operation) of the actual basis.

Thus, because of this “up to unitary” deviation, it is necessary to check whether
the protocol preserves its correctness condition whenever the devices are “up to uni-
tary” of the actual devices.

Let us consider that the measurement devices of Alice and Bob perform measure-
ments in the bases which are up to unitary U2 such that

U2 =

[
a b

−eiφb∗ eiφa∗

]
.

Where, a, b ∈ C such that |a|2 + |b|2 = 1 and φ is the relative angle. Let us also
assume that the source device supplies states which are up to unitary U4 where

U4 = U2 ⊗ U2.

This implies that the states supplied by the source device are of the form
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U4(φAB) =
1√
2

[|00〉+ eiφ(a∗b− ab∗)|01〉+

eiφ(a∗b− ab∗)|10〉+ e2iφ(a∗
2

+ b∗
2

)|11〉].

Bob’s device measures in the basis {U2|0〉, U2|1〉} = {(a|0〉 − eiφb∗|1〉), (b|0〉 +
eiφa∗|1〉)} and {U2|0′〉, U2|1′〉} = {(a cos θ+b sin θ)|0〉+eiφ(a∗ sin θ−b∗ cos θ)|1〉, (a sin θ−
b cos θ)|0〉− eiφ(a∗ cos θ+ b∗ sin θ)|1〉} instead of the basis {|0〉, |1〉} and {|0′〉, |1′〉} re-
spectively. Alice’s POVM devices are eitherD′0 = {D′00 , D′01 , D′02 } orD′1 = {D′10 , D′11 , D′12 }
for ai = 0 and ai = 1 respectively where

D′00 =
1

(1 + cos θ)
(U2|1′〉 〈1′|U †2)

D′01 =
1

(1 + cos θ)
(U2|1〉 〈1|U †2)

D′02 = I−D′00 −D′01 .

and

D′10 =
1

(1 + cos θ)
(U2|0′〉 〈0′|U †2)

D′11 =
1

(1 + cos θ)
(U2|0〉 〈0|U †2)

D′12 = I−D′10 −D′11 .

One can easily check that whenever Bob measures in {U2|0〉, U2|1〉} or {U2|0′〉, U2|1′〉}
basis randomly on his qubit of the shared state U4(φAB), the qubit at Alice’s side will
also collapse to U2|0〉 or U2|1〉 for the first case and U2|0′〉 or U2|1′〉 for the second
case.

Now, if Alice chooses POVM device D′0 = {D′00 , D′01 , D′02 } for ai = 0, the proba-
bilities of getting different outcomes for two different input states are as follows-

Pr(D′00 |U2|0〉) = (1− cos θ)

Pr(D′01 |U2|0〉) = 0

Pr(D′02 |U2|0〉) = cos θ

Pr(D′00 |U2|0′〉) = 0

Pr(D′01 |U2|0′〉) = (1− cos θ)

Pr(D′02 |U2|0′〉) = cos θ

Similarly, if Alice chooses POVM device D′1 = {D′10 , D′11 , D′12 } for ai = 1, the
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probabilities of getting different outcomes for two different input states are as follows-

Pr(D′10 |U2|1〉) = (1− cos θ)

Pr(D′11 |U2|1〉) = 0

Pr(D′12 |U2|1〉) = cos θ

Pr(D′10 |U2|1′〉) = 0

Pr(D′11 |U2|1′〉) = (1− cos θ)

Pr(D′12 |U2|1′〉) = cos θ

According to the protocol, whenever ai = 0 and Alice gets D′00 (D′01 ), she outputs
rAi = 0(1). Whenever, ai = 1 and she gets D′10 (D′11 ), she outputs rAi = 0(1). So, in
this case, the success probability of Alice to guess the i-th raw key bit ri of Bob will
be,

Pr(rAi = ri)

= Pr(rAi = 0, ri = 0) + Pr(rAi = 1, ri = 1)

= (1− cos θ).

This shows that whenever the devices (both source and measurement devices)
involved in this scheme are “up to a unitary” of the original specified device, then
also the proposed scheme satisfies the correctness condition.

4.8 Discussion and Conclusion

The initial QPQ schemes assumed trust in the devices involved, leading to security
issues depending on device functionality. Maitra et al. [77] first introduced DI in
the QPQ domain by proposing a semi-DI version of the QPQ scheme [117]. In this
chapter, we move one step further and propose a novel fully DI-QPQ scheme us-
ing maximally entangled states (EPR Pairs) for improved robustness. Our scheme
achieves the optimal number of raw key bits for client Alice. We analyze security in
a general way against all attacks preserving correctness. We provide upper bounds
on the cheating probabilities for both the dishonest client and server. This new QPQ
scheme with the incorporation of QKD has the potential to become a crucial near-
term application of the quantum internet.
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5
Proposal For Fully Device Independent QPQ using

Non-maximally Entangled States

As mentioned earlier, Maitra et al. [77] initially highlighted that the security of the
existing QPQ schemes (up until that point) relied on trust assumptions regarding the
devices involved, including the source and measurement devices. They specifically
examined the proposal by Yang et al.[117] and demonstrated that if the source device,
responsible for providing the shared states, does not function correctly, the client can
retrieve more data bits than intended. To overcome this security loophole and remove
the trustful assumptions over the devices, they suggested a Device Independent (DI)
version of the QPQ scheme [117] in [77]. They introduced a local testing phase at the
server side in [77] which certifies the measurement devices at the server side and the
state generation device. However, this test does not certify the measurement devices
at the client’s side. So, their proposal in [77] is basically a semi-DI version of the QPQ
scheme [117]. Although this limitation is mentioned in the previous chapter (i.e., in
paper [15]), to the best of our knowledge, the procedure for proper DI certification of
the QPQ scheme [117] is not mentioned anywhere.

In this direction, here in this chapter, we discuss about our work that overcomes
the limitations in [77] and propose a full DI version of the Yang et al. scheme [117].
Our proposal exploits the proper self-testing mechanism of the observables involved
in [117] along with a local version of the tiltedCHSH test to certify all the measurement
devices. We also compare the performance of this proposed full DI version of the
QPQ scheme [117] with the performance of the full DI-QPQ scheme mentioned in
the previous chapter (i.e., in [15]) and discuss the relative advantages of both these
protocols. We further come up with a DI proposal for a modification of [117] where
the client can retrieve optimal raw key bits at her end. In opposition to current
DI-QPQ approaches, here in this modified proposal, we replace the usual projective
measurement at the client’s side with the optimal POVM measurement to retrieve
the maximum number of shared raw key bits. A flow diagram involving the evolution
of the QPQ scheme [117] in the DI scenario is shown in Figure 5-1.

Before explaining our exact contributions in detail in Section 5.2, we first revisit
the QPQ scheme [117] and its DI version in [77] in Section 5.1. Then we discuss
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Figure 5-1: Evolution of QPQ schemes in DI scenario

an attack on the DI-QPQ scheme [77] in Section 5.3 and propose the full DI version
of the QPQ scheme [117] in Section 5.4. We further propose a full DI version for a
modification of [117] in Section 5.5 where the client can retrieve an optimal number
of raw key bits during the oblivious key generation phase. Next, in the subsequent
sections (i.e., in Sections 5.6, 5.7 and 5.8), we mention the detailed proofs of our
results.

5.1 Revisiting the QPQ scheme [117] and its DI

version in [77]

In this section, we first revisit the QPQ protocol mentioned in [117] and then restate
the DI version of this QPQ scheme introduced in [77]. In [117], the authors proposed
a QKD-based QPQ scheme exploiting the idea of B92 QKD protocol. Their proposed
QPQ scheme is composed of mainly two phases namely the key generation phase and
the private query phase.

In [117], non-maximally entangled states are shared between Bob and Alice which
are of the form 1√

2
(|0〉|φ0〉 + |1〉|φ1〉) where |φ0〉 =

(
cos θ

2
|0〉+ sin θ

2
|1〉
)

and |φ1〉 =(
cos θ

2
|0〉 − sin θ

2
|1〉
)

(at the beginning of the protocol, the exact value of this θ is
decided by the server Bob to the third party based on the number of raw key bits
that Bob wants Alice to know after the key generation phase). Bob first receives the
states from the third party and then sends the second particle of each of those states
to Alice. After receiving the particles, Alice announces all those instances where she
receives the particles correctly, and then they discard all the rest instances where
Alice does not receive the particles correctly. After post-selection, Bob measures
each of his particles of the shared states in {|0〉, |1〉} basis, and Alice measures each
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of her particles either in {|φ0〉, |φ⊥0 〉} basis or in {|φ1〉, |φ⊥1 〉} basis randomly. Bob
considers the raw key bit of a particular instance as 0 if he receives the outcome |0〉
and 1 otherwise. Similarly, if Alice receives |φ⊥0 〉 for a particular instance, then she
concludes that the corresponding raw key bit at Bob’s side is 1 and if she receives
|φ⊥1 〉, she concludes that the corresponding raw key bit at Bob’s side is 0. This implies
that Alice can retrieve the raw key bits correctly only when she receives the outcome
|φ⊥0 〉 or |φ⊥1 〉. After measurement, Alice and Bob perform classical post-processing
over their raw key bits so that Alice’s information about the final key reduces to
one bit. This implies that after this key generation phase, Bob knows the entire key
whereas Alice knows only some bits (more specifically one bit) of the final key.

In the private query phase, if Alice knows the j-th bit of the final key and wants to
retrieve the bit indexed by i of the database then she declares the integer s = (j − i)
publicly. Bob then shifts his key by s bits, encrypts the database with this shifted
key using the one-time pad, and sends it to Alice. Alice decrypts the j-th bit and
gets the required element of the database.

It is already mentioned in [117] that by following the specified strategy, Alice
can conclusively retrieve only sin2 θ

2
(on average) fraction of bits of the entire raw

key obtained by Bob. This guarantees the security of the proposed QPQ scheme
because although Alice gets the whole encrypted database, she can not retrieve all
the database bits because of her partial knowledge about the raw key as well as the
final key.

However, it was shown in [77] that if the dishonest Alice colludes with the third
party and supplies the states of the form (α|0〉|φ0〉 + β|1〉|φ1〉) where |α|2 =

(
1
2

+ ε
)

and |β|2 =
(

1
2
− ε
)

then the dishonest Alice can retrieve additional 2ε2 sin2 θ fraction
of bits of the entire raw key. For this reason, to overcome the security loophole (a
schematic diagram of different phases of the DI-QPQ scheme [77] is shown in Subfigure
(a) of Figure 5-3), a DI version of the QPQ scheme [117] was proposed in [77].

In the DI scheme proposed in [77], the server Bob performs a tilted version of the
original CHSH test locally to certify the devices. Although this local test certifies
the states and Bob’s measurement devices (for the specific measurement bases chosen
in the test), this local test actually fails to provide any certification about Alice’s
measurement devices as those devices aren’t involved in this test. This implies that
the scheme mentioned in [77] is a semi-DI version of the Yang et al. [117] QPQ scheme.
Here we overcome the limitation of this scheme [77] and propose a full DI version of
the Yang et al. [117] QPQ scheme.

5.2 Contribution of this chapter

In this chapter, we focus on the Yang et al. [117] QPQ scheme that provides privacy
for both the user and the database owner in a classical database search. While Maitra
et al. [77] came up with a semi-DI proposal of the scheme for improved security, we
present an improvement with a full DI version. The contributions of this chapter can
be summarized as follows.

1. In the DI proposal [77], the server Bob locally performs a tiltedCHSH test which
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only involves the entangled states and his own measurement devices. Here, we
show that the local test mentioned in [77] fails to preserve the data privacy of
the database (as the client’s measurement devices are not tested in [77]), and
the client Alice can retrieve some additional raw key bits (as well as the data
bits in a single database query) if she performs an optimal POVM measurement
at her side instead of the projective measurement mentioned in [117].

2. We propose a full DI version of the QPQ scheme [117] by exploiting a local
version of the tiltedCHSH test (mentioned in [8, 14]) at both the server and
the client’s side (in the source device and Bob’s measurement device verification
phase of our scheme) along with the self-testing of projective measurements
(mentioned in [65]) at the client Alice’s side (in the Alice’s POVM device verifi-
cation phase of our proposal). The local test mentioned in [77] does not certify
the functionality of the client Alice’s measurement device, and Alice also can
not certify the shared states. Here we overcome these limitations and check
the functionality of all the devices involved in the QPQ scheme [117]. We also
compare this proposed full DI version with the full DI-QPQ scheme mentioned
in [15] considering different parameters and show that both these schemes have
some relative advantages.

3. We further came up with a full DI proposal for a modification of [117] where the
client Alice can retrieve optimal raw key bits at her end during the oblivious key
generation phase. In this improved proposal, we exploit the proper self-testing
mechanism of a particular class of POVM device along with the local version
of the tiltedCHSH test (mentioned in [8, 14]) and the self-testing of projective
measurement operators (mentioned in [65]) to certify all the devices.

5.3 An attack on the DI-QPQ scheme [77]

In the DI-QPQ scheme [77], the server Bob first selects some entangled states (from
the set of states that will be used for the QPQ scheme [117]) and performs a tilted
version of the actual CHSH test locally to certify the states and the measurement
devices involved in the QPQ scheme [117]. However, this local test does not certify
Alice’s measurement devices as it only involves the entangled states and Bob’s mea-
surement devices. This implies that if Alice performs some other measurement at her
side instead of the actual projective measurement (mentioned in [117]), then the local
test (mentioned in [77]) can not detect that.

Now suppose, for the QPQ scheme [117], Alice measures her qubits using the
POVM D = {D0, D1, D2} instead of performing the projective measurements in
{|φ0〉, |φ⊥0 〉} or {|φ1〉, |φ⊥1 〉} basis randomly where
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D0 ≡
(sin θ

2
|0〉+ cos θ

2
|1〉)(sin θ

2
〈0|+ cos θ

2
〈1|)

(1 + cos θ)

D1 ≡
(sin θ

2
|0〉 − cos θ

2
|1〉)(sin θ

2
〈0| − cos θ

2
〈1|)

(1 + cos θ)

D2 ≡ I −D0 −D1

In this case, Alice can successfully pass the local CHSH test (at Bob’s side men-
tioned in [77]) if Bob’s measurement devices measure correctly in all the bases men-
tioned in algorithm 1 of [77] and the states are of the actual form. So, Alice and
Bob proceed further for the QPQ scheme where Alice measures her qubits using the
POVM D = {D0, D1, D2}.

Now, in this case, whenever Alice gets the outcome D0, she concludes that Bob’s
measurement outcome for that instance is |0〉 and the raw key bit at Bob’s side is 0.
Similarly, whenever Alice gets the outcome D1, she concludes that Bob’s measurement
outcome for that instance is |1〉 and the raw key bit at Bob’s end is 1. However, if
Alice gets the outcome D2, she remains inconclusive about the value of the raw key
bit at Bob’s side.

We now calculate the success probability of Alice in guessing the raw key bits
correctly. Let us assume that Pr(Dj||φi〉) denotes the probability of getting the result
Dj whenever the state at Alice’s side is |φi〉 i.e.,

Pr(Dj||φi〉) = 〈φi|Dj|φi〉.

This implies that whenever the state at Alice’s side is |φ0〉, the success probabilities
are

Pr(D0||φ0〉) = 〈φ0|D0|φ0〉
= (1− cos θ)

Pr(D1||φ0〉) = 〈φ0|D1|φ0〉
= 0

Pr(D2||φ0〉) = 〈φ0|D2|φ0〉
= cos θ

Similarly, one can calculate the success probabilities whenever the state at Alice’s
side is |φ1〉. The following table (i.e., Table 5.1) shows all the conditional probabilities.

Cond. Probability of Alice

Bob
Alice

A=D0 A=D1 A=D2

B=|φ0〉 1− cos θ 0 cos θ

B=|φ1〉 0 1− cos θ cos θ

Table 5.1: Probabilities of Different POVM Outcomes
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According to this strategy, whenever Alice gets the outcome D0(D1), she concludes
that the raw key bit at Bob’s side is 0(1). Thus, the success probability of Alice in
guessing Bob’s i-th raw key bit can be written as

Pr(Ri = RAi)

= Pr(Ri = 0, RAi = 0) + Pr(Ri = 1, RAi = 1)

= (1− cos θ).

Figure 5-2: Comparison between the success probabilities of getting a raw key bit
using projective and POVM measurements

The comparative study between this success probability (that can be achieved by
Alice using the mentioned POVM) and the success probability of Alice in guessing a
raw key bit correctly in the protocol [117] is shown in Figure 5-2. From the figure, one
can easily check that the success probability using the mentioned POVM measurement
outperforms the success probability using the projective measurements mentioned
in [117] for all the values of θ.

It implies that whenever Bob’s measurement device measures correctly in all the
bases specified in [77] (algorithm 1), and the states in [117] are of the actual form,
then Alice can successfully pass the testing phase in [77] even if she uses a different
measurement device at her side and later can retrieve more number of raw key bits
which violates the database privacy of the protocol [117].

Thus, our proposed attack is on the DI proposal in [77] which reveals the vulner-
ability of the scheme [77] and shows that the DI proposal in [77] fails to preserve the
data privacy of the QPQ scheme [117].

To propose a full DI version of the scheme [117], a device certification test must
be performed on all devices involved in the scheme.
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5.4 Full DI proposal for the QPQ scheme [117]

In this section, we describe our proposal for certifying all the devices involved in
the QPQ scheme [117]. We split up this entire section into two subsections. In the
first subsection, we introduce different steps of our proposed scheme, and in the last
subsection, we mention the security related issues of our proposal. Note that this
proposal follows all the assumptions mentioned in Chapter 3 Section 3.6. Along with
that, this proposal also assumes the following.

• For the QKD-based QPQ schemes, it is already shown in [63] that if the server
attempts to retrieve more information about a client’s query indices, then there
is a risk of providing false information about the intended data bits to the client,
which would damage the server’s reputation as a database owner. That’s why
for the QPQ schemes, it is assumed that the server will not cheat if there exists
a non-zero probability of being caught cheating. For this proposal, the server
Bob can cheat without being detected because of the underlying computational
hiding commitment scheme. But here, we assume that Bob has limitations on
his computational resources and he is a polynomial time adversary i.e., Bob will
try at most polynomial times to guess a committed value of the client Alice.

Note : For the QKD-based QPQ schemes, the size of the final key is equal to
the size of the database which is usually very large, and the number of raw key
bits is even more than that (usually some integer multiple of the number of final
key bits). In this situation, it is impractical that the server spends more than
the polynomial time to retrieve a raw key bit. For this reason, the polynomial
time assumption seems justified here.

5.4.1 Proposed full DI version of the scheme [117]:

Depending on the functionality, our entire protocol is divided into four phases. The
first phase is termed as Source Device and Bob’s Measurement Device Verification
Phase. This phase certifies that the states are of the specified form and Bob’s device
measures correctly on the specified basis. In this phase, Bob first receives all the
states (that will be used for the protocol) from a third party (need not be a trusted
one and may collude with the dishonest party) and shares those states with Alice.
After that, they check the functionality of the devices in two subphases where at first
Bob acts as a referee, chooses some samples randomly, and performs a tilted version
of the original CHSH test locally to certify the states and his devices. In the next
subphase, Alice also does the same that Bob did in the previous subphase and certifies
the states.

After the certification of this source device and Bob’s measurement device, they
proceed to Alice’s Measurement Device Verification Phase. This phase certifies the
measurement bases of Alice specified in [117]. In this phase, Alice and Bob consider
the remaining shared states and perform some measurements assuming their devices
as unknown boxes. Then from the outcomes, Alice concludes about the functionality
of her measurement device for those specified bases. After successful completion of
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these two testing phases, Bob and Alice conclude that the states given to them are
of the specified form and their measurement devices measure correctly in the bases
specified in [117].

The next phase is termed Key Generation Phase where Bob generates a key and
Alice knows some bits of that key and Bob can not guess the known indices of Al-
ice. The last phase is termed as private query phase where Bob encrypts the entire
database using the key generated in the previous phase and sends it to Alice. Alice
then decrypts the intended bits of the database using her partial knowledge about
the final key bits.

Our scheme consists of several steps, which are described below. It should be
noted that channel noise is not considered in this description, so it is assumed that
all operations are error-free.

Source Device and Bob’s Measurement Device Verification Phase:

1. Bob starts with K (we assume here that K is asymptotically large) number of
states (say |ψ〉BA) provided by the third party and shares those states with Alice
in such a way that the first particle of each state corresponds to Bob and the
second particle corresponds to Alice.

2. Bob chooses γ1K
2

instances randomly from these K shared states (in practice,
how Bob and Alice choose the specific value of γ1 from the set [0, 1] is mentioned
in Section 4.4 of Chapter 4), declares those instances publicly and constructs
the set ΓBCHSH with these chosen instances.

3. For all the instances in ΓBCHSH, Alice sends her qubits to Bob.

4. For the instances in ΓBCHSH, Bob plays the role of the referee as well as the two
players and plays TiltedCHSH game.

5. For every i-th sample in ΓBCHSH, Bob randomly generates input bits xi and yi
for his two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ {0, 1}.

6. Bob performs TiltedCHSH(ΓBCHSH, Bob), according to the procedure outlined
in algorithm 6 for the set ΓBCHSH.

7. If Bob passes this TiltedCHSH(ΓBCHSH, Bob) test then both Alice and Bob pro-
ceed further, otherwise they abort.

8. From the rest
(
K − γ1K

2

)
shared states, Alice randomly chooses γ1K

2
instances,

declares those instances publicly and constructs the set ΓACHSH with these chosen
instances.

9. For all the instances in ΓACHSH, Bob sends his qubits to Alice.

10. For these instances in ΓACHSH, Alice plays the role of the referee as well as the
two players and plays TiltedCHSH game.
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Algorithm 6: TiltedCHSH(S,P)

• For every i ∈ S, P does the following.

1. If yi = 0, P ’s device applies the measurement operator B0
0 or B0

1

randomly on the i-th state’s first qubit and generates the output bits
bi = 0 and bi = 1 respectively.

2. If yi = 1, P ’s device applies the measurement operator B1
0 or B1

1

randomly on the i-th state’s first qubit and generates the output bits
bi = 0 and bi = 1 respectively.

3. Similarly, if xi = 0, P ’s device applies the measurement operator A
′0
0 or

A
′0
1 randomly on the i-th state’s second qubit and generates the output

bits ai = 0 and ai = 1 respectively.

4. If xi = 1, P ’s device applies the measurement operator A
′1
0 or A

′1
1

randomly on the i-th state’s second qubit and generates the output bits
ai = 0 and ai = 1 respectively.

• From these inputs and outputs, the following quantity is estimated by P .

βB = αB
∑

a∈{0,1}

(−1)a〈ψBA|I⊗ A
′0
a |ψBA〉

+
∑

x,y,a,b∈{0,1}

(−1)dxyab〈ψBA|By
b ⊗ A

′x
a |ψBA〉,

where αB = 2√
1+2 tan2 θ

(for the same θ chosen for the states) and dxyab is
defined as follows,

dxyab :=

{
0 If xy = a⊕ b
1 otherwise.

• If βB = 4√
1+sin2 θ

1 (for the θ chosen for the states) then P continues with the

protocol, otherwise P aborts the protocol.
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11. For every i-th sample in ΓACHSH, Alice randomly generates input bits xi and yi
for her two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ {0, 1}.

12. Alice performs TiltedCHSH(ΓACHSH, Alice), according to the procedure outlined
in algorithm 6 for the set ΓACHSH.

13. If Alice passes the TiltedCHSH(ΓACHSH, Alice) test then both Alice and Bob
proceed to the next phase where Alice self-tests her measurement device.

Algorithm 7: OBStestAlice(S)

• Bob has already measured his share of every i-th state of the remaining
instances for inputs yi = 0 and yi = 1, and obtained outputs bi = 0 or bi = 1.

• Similarly, Alice has already measured her share of every i-th state of the
remaining instances for inputs xi = 0 and xi = 1, obtained outputs ai = 0 or
ai = 1, and sent the commitments of those ai values to Bob.

• For every i ∈ S, Bob and Alice do the following-

1. Alice reveals the commitments of ai values only for the instances chosen
in the set S.

2. Bob then estimates the following quantity from the declared outcomes,

βA =
1

4

∑
x,y,a,b∈{0,1}

(−1)d
′
xyabα1⊕y

A 〈ψBA|B
y
b ⊗ A

x
a|ψBA〉

where αA = cot θ (for the same θ chosen for the shared states) and d′xyab
is as follows,

d′xyab :=

{
0 If xy = a⊕ b
1 otherwise.

3. If βA = 1
2 sin θ

(for the θ chosen for the shared states) then Bob continues
with the protocol, otherwise Bob aborts the protocol.

Alice’s Measurement Device Verification Phase:

1. Alice and Bob consider the rest (K − γ1K) states and do the following.

• For every i-th state, Bob randomly generates an input bit xi ∈R 0, 1 for
Alice’s device and publicly declares all (K − γ1K) xi values. After all xi
values are declared, Alice acknowledges receipt to Bob.
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• Bob further generates another random bit yi ∈R {0, 1} for every i-th state,
as the input of his device.

• If yi = 0, Bob applies measurement operator B0
0 or B0

1 randomly on his
share of the i-th state and generates the output bit bi = 0 and bi = 1
respectively.

• If yi = 1, Bob applies measurement operator B1
0 or B1

1 randomly (here
B1

0 = B0
0 and B1

1 = B0
1) on his share of the i-th state and generates the

output bit bi = 0 and bi = 1 respectively.

• Similarly, if xi = 0, Alice applies measurement operator A0
0 or A0

1 randomly
on her share of the i-th state and generates the output bit ai = 0 and ai = 1
respectively.

• If xi = 1, Alice applies measurement operator A1
0 or A1

1 randomly on her
share of the i-th state and generates the output bit ai = 0 and ai = 1
respectively.

• Alice encodes all her ai values using a computational hiding perfect binding
commitment scheme (Computationally hiding statistically binding com-
mitment schemes are easy to design from a pseudo-random generator and
one-way permutation [84, 1, 2]. As these schemes are perfectly binding,
Alice can’t cheat at all. For the hiding part, we assume that Bob has lim-
itations on his computational resources and he is a polynomial adversary.
That means, we assume that Bob can try at most polynomial time to guess
a committed bit value. In the multi-client scenario, it is also possible to use
some relativistic bit commitment schemes [76, 35, 48]. However, these are
outside the scope of this work.) and send those commitments of ai values
to Bob (The inclusion of a commitment scheme is crucial in this context
because here Alice performs a non-optimal projective measurement at her
end. This introduces the possibility that she might perform the exact
projective measurement during the testing phases and later switch to the
optimal POVM measurement discussed in Section 5.3 for the instances
used in the private query phase. To eliminate this possibility, bit commit-
ment is required as it prevents Alice from postponing measurements for
any of her particles and ensures that Alice measures all her particles using
the actual projective measurement).

2. Bob then chooses γ2(K − γ1K) instances randomly from these rest (K − γ1K)
instances, constructs a set Γobs with those chosen instances and declares those
instances publicly.

3. Alice reveals the commitments of ai values for all the instances in Γobs.

4. Bob then performs OBStestAlice(Γobs), by following the procedure mentioned
in algorithm 7, for the set Γobs.

5. If Alice passes the OBStestAlice(Γobs) then Bob and Alice proceed to the next
phase of the protocol where they generate the raw key bits at their end.
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Key Generation Phase:

• Alice and Bob consider the rest (K− |ΓCHSH| − |Γobs|) samples and construct a
set ΓQPQ with those instances where |ΓQPQ| = kN .

• For 1 ≤ i ≤ (|ΓQPQ|), Bob and Alice do the following.

– If Bob’s measurement device generates the outcome bi = 0(bi = 1) for the
i-th shared state, Bob considers Ri = 0(Ri = 1).

– Alice already knows the ai values for all these instances. If Alice’s measure-
ment device receives the input xi = 1 (xi = 0) and generates the outcome
ai = 1 for her share of the i-th state, Alice considers RAi = 0(RAi = 1).

– If Alice’s measurement device receives the input xi = 0 or xi = 1 and
generates the outcome ai = 0 for her share of the i-th state, Alice remains
inconclusive about the value of the raw key bit indexed by i.

Private Query Phase:

Alice and Bob perform the following steps (as mentioned in [117]) for the rest
|ΓQPQ| samples.

• Alice and Bob share a kN bit raw key after the shared key generation phase,
with Bob having full knowledge of the raw key and Alice knowing some unknown
bits (corresponding indices unknown to Bob).

• The raw key is divided into k substrings of length N and a bitwise XOR oper-
ation is performed to produce the N bit final key.

• If Alice wants to retrieve the bit indexed by j of the database and knows only
the i-th bit Fi of Bob’s final key F , she declares the shift number s = (i− j).

• Bob shifts his key F by s positions and encrypts the database using one-time
pad.

• The encrypted database can be retrieved by Alice as the j-th database bit is
encrypted with Fi (the final key bit indexed by i) known to her.

A schematic diagram of this full DI proposal for the QPQ scheme [117] is shown
in the right subfigure (i.e., Subfigure (b)) of Figure 5-3.

5.4.2 Analysis of our scheme

Here, we examine the performance of the proposed full DI version of the QPQ
scheme [117]. First, we determine the values of relevant parameters. Then, we eval-
uate the DI security of our proposed scheme. Finally, we assess the security of the
database and user in our proposal.

Note that here we present all our analyses considering the asymptotic scenario.
In reality, the values of different parameters (derived here) may deviate from their
derived value depending on the chosen sample size.
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(a) Semi DI version of the QPQ scheme [117]
in [77]

(b) Our proposed full DI version of the QPQ
scheme [117]

Figure 5-3: Schematic diagram of the semi DI-QPQ scheme [77] (left) and our pro-
posed full DI version of [117] (right)

Estimation of parameters for private query phase

Here, we perform parameter estimation for maintaining both user and data privacy.
In this scheme, after the shared key generation phase, Bob has kN many raw key bits
such that Bob knows all the bits but Alice knows only some of those bits. In the pri-
vate query phase , both Bob and Alice cut their raw keys in some particular positions

to prepare N substrings of length k such that k =
|ΓQPQ|
N

where |ΓQPQ| denotes the
total number of samples at the private query phase and N denotes the number of
database bits.

Estimation of θ for improved security :

Similar to the QPQ scheme [15], here also the server Bob wants the client Alice
to retrieve only one data bit in a single query for database security.

In [117], Alice and Bob share kN raw key bits, with Alice able to retrieve on

average
(

sin2 θ
2

)
fraction of them. The expected number of raw key bits known to

Alice after the shared key generation phase (denoted as nr here) can be calculated as
follows,

E[nr] ≈
(

sin2 θ

2

)
kN. (5.1)

Alice’s probability of correctly guessing a final key bit is roughly Pf ≈
(

sin2 θ
2

)k
since she must correctly guess all k corresponding raw key bits, which are XORed to
form the final key bit.

Here, the number of final key bits known by Alice, nf (let’s say), is a binomial

random variable with N total bits and a success probability of Pf =
(

sin2 θ
2

)k
. So,
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the expected number of final key bits known by Alice after the shared key generation
phase is,

E[nf ] = PfN ≈
(

sin2 θ

2

)k
N. (5.2)

In the scheme, dishonest Alice needs to perform correct basis measurements (as
specified in [117]) to successfully complete DI testing phases. That means, if the
protocol does not abort, the maximum probability of dishonest Alice in guessing Ri

(the raw key bit indexed by i) correctly will be atmost sin2 θ
2

i.e.,

Pr[RA∗i = Ri] ≤
sin2 θ

2
, (5.3)

where A∗i denotes dishonest Alice’s subsystem corresponding to the i-th shared
state.

It is clear that after Bob’s measurement, Alice’s states are independent and we
assume that the measurement devices at dishonest Alice’s side are also independent
and memoryless. So, the guessing probability of dishonest Alice for Fi (i.e., the final

key bit indexed by i) will be upper bounded by
(

sin2 θ
2

)k
i.e.,

Pr[FA∗i = Fi] = Pf ≤
(

sin2 θ

2

)k
. (5.4)

Based on the equations 5.2 and 5.4, it can be seen that the maximum expected
number of final key bits that a dishonest Alice can correctly guess, assuming the
protocol does not abort, will be limited to a maximum of,

E[FA∗ ] ≤
(

sin2 θ

2

)k
N. (5.5)

In our scheme, the expected number of data bits correctly guessed by dishonest

Alice in a single query is also limited to
(

sin2 θ
2

)k
N as the database is encrypted by

XORing with the final key and correctly guessing a final key bit implies correctly
guessing a corresponding database bit, provided the protocol does not abort. This
implies that,

E[DA∗ ] ≤
(

sin2 θ

2

)k
N. (5.6)

In our scheme, for the protocol to continue, Alice must know at least one final key
bit, while Bob wants Alice to know less than two final key bits. Thus, the following
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condition must be met in the non-abort scenario.

1 ≤ E[nf ] < 2.

This implies that,

1 ≤
(

sin2 θ

2

)k
N < 2

1

N
≤
(

sin2 θ

2

)k
<

2

N
. (5.7)

All these results boil down to the following conclusion.

Corollary 6. To ensure that the client Alice only knows less than two final key bits
and the proposal doesn’t terminate, the server Bob must select the values of θ and the
parameter k such that,

1

N
≤
(

sin2 θ

2

)k
<

2

N
.

Estimation of Pa and Pc for improved security :

Here, we first determine the likelihood that the protocol will not terminate in
an honest scenario. Then using the derived bound on the value of sin2 θ, we can
obtain a lower bound on the value of Pc from the Chernoff-Hoeffding inequality [59]
(we estimate the value of Pc using Chernoff-Hoeffding inequality because we consider
here the i.i.d. scenario).

In our proposal, the likelihood of Alice not correctly guessing a final key bit is

calculated as

[
1−

(
sin2 θ

2

)k]
based on the success probability of Alice in guessing a

final key bit, which is
(

sin2 θ
2

)k
.

So, the probability that Alice does not know any of the N final key bits is approx-
imately,

[
1−

(
sin2 θ

2

)k]N
≈ e

−
(

sin2 θ
2

)k
N
. (5.8)

That means the following bound on Pa can be obtained for our proposed scheme.

Pa ≤ e
−
(

sin2 θ
2

)k
N
. (5.9)
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If Bob sets θ such that
(

sin2 θ
2

)k
= 1

N
, then equation 5.9 gives us the following

result according to the relation in equation 5.7.

Pa ≤ e−1 . (5.10)

That means this scheme offers a small Pa value. So, the likelihood of the proposal
not aborting in the honest scenario (i.e., Alice knowing at least one final key bit) is

Pr(scheme doesn’t terminate in honest scenario)

≥
[
1− e−1

]
. (5.11)

So, our proposed scheme has a high probability of not aborting in the honest
scenario. We now refer to the Chernoff-Hoeffding inequality [59] which is already
mentioned in Chapter 4 Proposition 1.

To derive the bound on Pc, we consider Xi = 1 when Alice knows the value of
the final key bit indexed by i (or its corresponding data bit) in a non-abort scenario
(meaning all raw key bits related to the final key bit indexed by i give either |φ⊥0 〉 or
|φ⊥1 〉 as an outcome at Alice’s side). If the final key has N many bits, the random
variable X is defined as X =

∑N
i=1 Xi.

We have already determined that in the scenario where the proposal doesn’t ter-

minate, the expected final key bits that Alice knows is Y =
(

sin2 θ
2

)k
N out of a total

of N final key bits. To ensure that the number of known final key bits (X) falls within

an error margin δt = ε
(

sin2 θ
2

)k
N (where ε is a small constant that depends on the

number of samples, one may refer to Section 4.4 of Chapter 4 for details), we use the
Chernoff-Hoeffding inequality. This is because the final key bits are independent and
the measurement devices at Alice’s end are also independent and memoryless. The
calculations of X and Y are based on the non-abort scenario. So, we can write the
following from the Chernoff-Hoeffding inequality in Proposition 1.

Pr [|X − Y | < δt ∧ scheme doesn’t terminate]

≥ 1− exp(−2δ2
tm). (5.12)

After the shared key generation phase, Bob hasN final key bits and we want Alice’s

known final key bits to fall within the range of [p− εp, p+ εp], where p =
(

sin2 θ
2

)k
N

and δt = ε
(

sin2 θ
2

)k
N is the accepted deviation. Plugging in δt and m = N into
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equation 5.12 gives,

Pr [|X − Y | < δt ∧ scheme doesn’t terminate]

≥ 1− exp(−2δ2
tN)

where δt = ε

(
sin2 θ

2

)k
N.

(5.13)

In equation 5.7, the following bound is already derived on
(

sin2 θ
2

)k
.

1

N
≤
(

sin2 θ

2

)k
<

2

N
.

By setting
(

sin2 θ
2

)k
= 1

N
in equation 5.13, we obtain,

Pr [|X − Y | < ε ∧ scheme doesn’t terminate]

≥ 1− exp(−2ε2N).

If the scheme is implemented honestly, the following lower bound of the parameter
Pc can be obtained from the definition 1 as guessing a final key bit correctly means
correctly guessing the corresponding data bit.

Pc ≥ [1− exp(−2ε2N)]. (5.14)

As in practice, N is large, this probability will be significant. That means, in case
of honest implementation of our proposed scheme, the probability that Alice knows
the expected number of data bits (with atmost ε deviation from the expected number)
and the scheme does not terminate is high.

The bound on δt can be obtained from equation 5.7 as δt = ε
(

sin2 θ
2

)k
N .

ε ≤ δt < 2ε. (5.15)

From this, it’s clear that ε must satisfy the constraint 2ε ≤ 1, resulting in an
upper bound of ε ≤ 1

2
. Now we move to discuss the security concerns of our proposal.

Security in device independent scenario

In this work, we propose a full DI version of the QPQ scheme [117]. The correctness
of this scheme is already mentioned in [77]. Hence, we mention here only the security
related issues of our full DI proposal. Based on the results obtained from Theorem 8
and Theorem 9, here we conclude about the DI security of the QPQ scheme [117].

Theorem 8. (DI testing of shared states and Bob’s measurement devices) In the
TiltedCHSH test of the source device and Bob’s measurement device verification phase,
either the devices achieve βB = 4√

1+sin2 θ
for both Alice and Bob (i.e., the states

103



provided by the third party are identical with the actual states as mentioned in the
QPQ scheme [117] and Bob’s measurement device measures correctly in the {|0〉, |1〉}
basis) or the scheme is likely to abort with high probability (as the limit approaches
infinity).

The proof of this theorem exactly follows from the results mentioned in [8] and
[14]. We present an outline of this proof later in Section 5.6.

So, Theorem 8 guarantees that either the states shared between Alice and Bob are
of the specified form and Bob’s measurement device measures correctly in {|0〉, |1〉}
basis or the scheme terminates with high likelihood (as the limit approaches infinity).
The next DI testing is done in Alice’s measurement device verification phase. This
phase basically guarantees the functionality of Alice’s measurement device. Alice and
Bob lead to this phase whenever they successfully pass the first DI testing phase.
In this phase, Alice measures in {|φ0〉, |φ⊥0 〉} or {|φ1〉, |φ⊥1 〉} basis randomly whereas
Bob measures in {|0〉, |1〉} basis. From the measurement outcome, they estimate the
value of a parameter βA and check whether this value is equal to 1

2 sin θ
. Theorem 9

guarantees that either Alice’s devices measure correctly in the specified basis, resulting
in βA = 1

2 sin θ
, or the protocol will abort with high probability as the limit approaches

infinity.

Theorem 9 (DI testing of Alice’s measurement devices). In OBStestAlice, either
Alice’s measurement devices achieve the value of the parameter βA = 1

2 sin θ
(i.e.,

her devices correctly measure in {|φ0〉, |φ⊥0 〉} and {|φ1〉, |φ⊥1 〉} basis) or the protocol
terminates with a high likelihood of failure (as the limit approaches infinity).

The proof of this theorem is explained later in detail in Section 5.7 and follows the
same method outlined in [65] for certifying non-maximally incompatible observables.

Note: Here, we claim that if Alice and Bob successfully pass both the Tilted-
CHSH test and the OBStestAlice mentioned in our full DI proposal, then in the QPQ
scheme [117], neither of Alice and Bob can retrieve any additional information in the
noiseless scenario. Now, suppose that our claim is wrong i.e., Alice and Bob can pass
all the tests mentioned in our scheme and later Alice can retrieve more data bits
(than what she intends to know) in a single query or Bob can guess the query indices
of Alice with a more certain probability (than his intended probability).

Similar to the analysis in [15], here also we discuss this issue in the context of a
particular form of non-i.i.d. attack, where a specific number of states are indepen-
dently corrupted (more general attacks are also possible but these are outside the
scope of this work). In this context, we will show that if some of the corrupted states
are included during the testing phases, then there is some probability of being caught
as the limit approaches infinity.

At the beginning of our scheme, the untrusted third party provides all the states
to the server Bob and then Bob shares those states with Alice. As in the source device
and Bob’s measurement device verification phase, both the parties choose the states
randomly from the shared instances for the local tests at their end, the dishonest party
can not guess beforehand the shared instances that the honest party will choose at
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his end for the local test. According to our assumption, the dishonest party can not
manipulate the honest party’s device once the protocol starts. So, to successfully
pass the TiltedCHSH test at the honest party’s end, the shared states must be of
the actual form as specified in [117]. Similarly, in the TiltedCHSH test performed
at Bob’s side, the honest Bob must measure the states in the specified basis (to
detect the corrupted states) which also certifies the specific measurement bases of
Bob. This implies that the source device and Bob’s measurement device verification
phase certifies all the states provided by the untrusted third party and also certifies
the measurement device of Bob for the standard basis.

We now explain these things more formally. Let us suppose that initially, the
untrusted third party colludes with either the dishonest Alice or the dishonest Bob
and shares either KA corrupted states in favour of Alice (let us denote this type of
states as A-type) or KB corrupted states in favour of Bob (let us denote this type
of states as B-type) among K shared states. So, while choosing randomly for the
TiltedCHSH test at honest Bob’s end, the probability that a chosen state is of A-
type is KAK . Similarly, for the TiltedCHSH test at honest Alice’s end, the probability

that a chosen state is of B-type is KBK . Let us further assume that for the A-type
states, the value of the parameter βB is β′A (where β′A = βB + εA such that εA > 0)
and for the B-type states, the value of the parameter βB is β′B (where β′B = βB + εB
such that εB > 0).

Now, suppose that only Alice is dishonest and the third party supplies KA number
of corrupted states (in favour of Alice) along with (K − KA) actual states. Then, in
the local test at Bob’s end, the probability that a chosen state is not of the A-type
is
(
1− KAK

)
. One can easily check that this probability is also same for a chosen

state in the final QPQ phase. As, dishonest Alice’s aim is to gain as much additional
data bits as possible, she needs to choose the value of KA such that (K − KA) = c
where c is exponentially smaller than K (i.e., she will try to maximize the probability
that a state chosen for the final QPQ phase is of the A type). Then, the probability
that Bob will choose none of the corrupted states (i.e., the A type states) among his
chosen γ1K

2
states for the TiltedCHSH test at his end is,

(
1− KA

K

) γ1K
2

=
( c
K

) γ1K
2
,

which is negligible in K. Similarly, whenever Bob is dishonest, the same thing
can be shown for the local TiltedCHSH test at Alice’s end. This implies that if the
third party colludes with the dishonest party and supplies corrupted states then the
probability that none of those corrupted states will be chosen for the local test at the
honest party’s end is negligible.

In our scheme, we consider the ideal scenario where there is no channel noise. So
for dishonest Alice, to successfully pass the TiltedCHSH test at the honest Bob’s end,
the following relation must hold in the noiseless condition.
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KAβ′A
K

+
(K −KA)βB

K
= βB

KAβ′A + (K −KA)βB = KβB
KA(β′A − βB) = 0.

Now, replacing the values of β′A from the relation β′A = βB + εA, one can get,

KAεA = 0. (5.16)

As the value of εA > 0, from this relation, one can easily conclude that in the
noiseless scenario, the value of KA must be zero to successfully pass the local test at
the honest Bob’s end. Similarly, one can show that whenever Bob is dishonest, the
value of KB must be zero to successfully pass the local test at the honest Alice’s end.
In practice, for finite number of samples, one can show that the values of KA and KB
must be negligible to successfully pass the local test at the honest party’s end.

In this proposal, we consider a scenario where the shared states are exchanged
between the two parties before the start of the protocol, and the dishonest party
cannot manipulate the honest party’s device after the start of the protocol. As we
focus on the i.i.d. case, it’s clear from the proof of Theorem 8 in Section 5.6 that
either the scheme terminates with high likelihood (as the limit approaches infinity),
or the TiltedCHSH test will certify that the shared states in the QPQ scheme [117]
reach the desired value of the parameter βB.

Similarly, the TiltedCHSH test at the honest Bob’s end also confirms that either
Bob aborts the scheme with high probability (as the limit approaches infinity), or
the TiltedCHSH test at his end certifies that his measurement devices achieve the
intended value of the parameter βB.

The next DI testing is done in Alice’s POVM device verification phase where Bob
and Alice perform distributed test to certify Alice’s projective measurement device.
Here, one may think that if Bob is dishonest, then for the instances chosen in Alice’s
POVM device verification phase, he will measure in the actual measurement basis at
his end to detect the fraudulent behaviour of Alice, and later for the instances to be
used for the actual QPQ phase, he will measure in some different basis to guess the
positions of Alice’s known key bits.

From the result obtained in Lemma 4, it is clear that for Bob to guess Alice’s
query indices with more certainty, he must reveal more data bits to dishonest Alice
in a single query. But doing so violates assumption 4, which states that neither Alice
nor Bob leaks more information (from their side) to gain additional knowledge from
the other party. Therefore, Bob should act honestly for all the instances in Alice’s
POVM device verification phase as well as in shared key generation phase to ensure
the validity of Alice’s measurement device, prevent dishonest Alice from obtaining
any additional information, and also to maintain his reputation as a database owner
(For our proposal, Bob has a chance to cheat because of the inclusion of the compu-
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tational hiding perfect binding commitment scheme. However, we assume that Bob
has limitations on his computational resources and he is a polynomial-time adversary.
This assumption bounds Bob to guess a committed bit of Alice. It is also impractical
that Bob spends more than the polynomial time to retrieve a particular raw key bit.
That’s why the computational hiding commitment scheme introduced in our scheme
will not leak any additional information to Bob).

As Bob acts honestly for Alice’s POVM device verification phase and chooses the
input bits randomly for both the parties in OBStestAlice, there is no possibility that
the inputs for OBStestAlice are chosen according to some dishonest distribution. As
the focus of this proposal is on the i.i.d. scenario, it can be easily concluded (based
on the proof of Theorem 9 in Section 5.7) that either Alice and Bob will abort the
scheme with high likelihood (as the limit approaches infinity), or OBStestAlice will
confirm that Alice’s measurement devices achieve the intended value of βA.

That means we can conclude the following from all these discussions.

Corollary 7. Our DI scheme either terminates with high likelihood (as the limit
approaches infinity) or certifies that the devices in the QPQ scheme [117] achieve the
desired values of βB and βA in the TiltedCHSH test and OBStestAlice respectively.

Given the discussion above on some types of non-i.i.d. attack in our DI proposal,
the statement in corollary 7 can probably be generalized to some non-i.i.d. cases, but
it is outside the scope of this work.

Security of database against dishonest Alice

Here we estimate the amount of raw key bits that dishonest Alice can guess in the
shared key generation phase, and the probability of her retrieving more than the
expected data bits in a single query. Dishonest Alice can guess additional raw key bits
either from the loophole of the underlying bit commitment scheme or by manipulating
the other devices and using an optimal measurement device at her side.

For the underlying computational hiding and perfect binding bit commitment
scheme using a pseudo-random generator, the security of the database against dis-
honest Alice follows from Claim 3.1 in [84] which states that for any i-th committed
bit ai, Alice can fool Bob (i.e., Alice can successfully verify the commitment for a
different bit other than the committed one) with probability at most 2−n where n
is the security parameter which is chosen such that no feasible machine can break
the underlying pseudorandom generator for seeds of length n. That means, dishonest
Alice can’t retrieve more raw key bits and if she tries to do so and commits the ai
values obtained from the optimal measurement then it will be detected by Bob dur-
ing OBStestAlice. More precisely, the security of the entire bit commitment protocol
follows from the result mentioned in [84, Theorem 3.1] which states the following.

Corollary 8. If the underlying device G is a pseudorandom generator, then for all
polynomials p and large enough security parameter n, the corresponding bit commit-
ment protocol obeys the following.
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• After commitment, no probabilistic polynomial-time Bob can guess any commit-

ted ai value with probability greater than
(

1
2

+ 1
p(n)

)
.

• Alice can reveal only the committed bit, except with probability less than 2−n.

In the case of the manipulation of the other devices and her device, the estimation
follows from the DI results in corollary 7 which states that after the DI testing phases,
either the scheme will abort with high probability (as the limit approaches to infinity)
or the devices involved in [117] will meet the intended values of parameters βA and
βB as indicated in our proposal.

Theorem 10. In our scheme, in the absence of OBStestAlice, dishonest Alice can
inconclusively retrieve (i.e., the indices of the correctly guessed bits are unknown)(

1
2

+ 1
2

sin θ
)

fraction of the entire raw key during the shared key generation phase.

The proof of this Theorem directly follows from the proof of Theorem 5 in [15]
(i.e., the proposal mentioned in Chapter 4). The only difference here is that in this
scheme, Alice needs to distinguish between the two non orthogonal quantum states
|φ0〉 and |φ1〉 as compared to the two non orthogonal states |0〉 and |0′〉 (or |1〉 and
|1′〉) in [15] (i.e., the proposal mentioned in Chapter 4).

In our full DI proposal, dishonest Alice (A∗) can not perform any other mea-
surement other than the projective measurement mentioned in [117] because if she
performs any other measurement at her side then it will be detected in Alice’s POVM
device verification phase. Because of this, we can get a bound on the number of raw
key bits that dishonest Alice can retrieve (on average) in this full DI proposal of the
QPQ scheme [117].

Lemma 3. Either our protocol terminates with high likelihood in the long run, or
dishonest Alice (A∗) can retrieve (on average) sin2 θ

2
fraction of bits from the entire

raw key after the shared key generation phase.

Proof. According to the QPQ scheme [117], after the measurements at the server
Bob’s side, the client Alice has kN independent non-orthogonal qubits at her end.
For each of the instances, Alice now tries to distinguish between the non-orthogonal
states |φ0〉 and |φ1〉.

From the QPQ scheme [117], it is clear that if Alice measures her qubits in
{|φ0〉, |φ⊥0 〉} and {|φ1〉, |φ⊥1 〉} basis randomly, then Alice can guess a raw key bit with
certainty whenever the outcome is either |φ⊥0 〉 or |φ⊥1 〉.

From the correctness of the QPQ scheme [117], it is clear that for each of the
instances, the probability of getting the outcome |φ⊥0 〉 or |φ⊥1 〉 using projective mea-
surement is sin2 θ

2
.

Our DI proposal requires dishonest Alice to independently measure each of the
kN qubits at her end in a specified basis to pass the testing phases. If she performs
random and independent projective measurements in the |φ0〉, |φ⊥0 〉 and |φ1〉, |φ⊥1 〉
basis, on average, she can retrieve

(
sin2 θ

2

)
kN raw key bits correctly. This concludes

the proof.
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In this DI proposal, the database contains N data bits. Although there is a
chance that dishonest Alice can successfully pass all tests and learn more data bits
than allowed through statistical fluctuations, the likelihood of this happening is low
according to Corollary 7. Now, based on Definition 3 and equation 5.6, we can
conclude the following.

Corollary 9. In the case of dishonest Alice and honest Bob, either the proposed
scheme will likely abort (as the limit approaches infinity) or dishonest Alice will, on
average, be able to obtain τ fraction of bits from the entire final key, where

τ ≤
(

sin2 θ

2

)k
. (5.17)

By using the upper bound from equation 5.7 in place of
(

sin2 θ
2

)k
, we can obtain

the following upper limit for the value of τ .

τ <
2

N
. (5.18)

It shows that our full DI proposal results in τ being significantly smaller than N .

It is possible to validate the data privacy of our scheme in another way (other than
the data privacy definition mentioned in Definition 3) showing that the probability
with which dishonest Alice can successfully guess more than the expected number of
final key (or equivalently data) bits (with a deviation more than the ε fraction from
the expected number) such that the protocol doesn’t terminate is low.

Like the discussion in Subsection 5.4.2 (entitled “estimation of parameters for
private query phase”), here also we assume that the random variable X denotes the
number of final key bits known to the dishonest Alice and Y be the expected value
in honest scenario.

Here, we shall prove that the probability Pr [|X − Y | > δt ∧ scheme doesn’t terminate]
is negligible. In general, this can be shown using the properties of basic probability
theory. As we consider the i.i.d. assumption in our proposal, there will be two dif-
ferent subcases- 1) all the devices attain the ideal TiltedCHSH value, or 2) all the
devices do not attain the ideal TiltedCHSH value.

Note that Pr [|X − Y | > δt ∧ scheme doesn’t terminate] is upper bounded by both
Pr [|X − Y | > δt] and Pr [scheme doesn’t terminate], according to the property of ba-
sic probability theory (which says Pr[A ∧B] ≤ Pr[A] and Pr[A ∧B] ≤ Pr[B]).

Now for the first subcase, from the DI security statement in Theorem 9 (more
precisely, from the self-testing argument of Theorem 9), one can easily conclude that
Pr [|X − Y | > δt] ≤ negl(N).

For the second subcase, by an analysis similar to the proof of Theorem 9, it can
be concluded that Pr [scheme doesn’t terminate] ≤ negl(N). This implies that for
both of these two subcases, Pr [|X − Y | > δt ∧ scheme doesn’t terminate] ≤ negl(N)
(under the i.i.d. assumption).
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Security of user against dishonest Bob

In this subsection, we determine the number of indices (lB∗) that dishonest Bob can
accurately guess from Il (the query index set of Alice). Additionally, we calculate the
probability of Bob correctly guessing more indices than expected. Generally, for any
QKD-based QPQ schemes, if Bob attempts to cheat, there is a risk of providing false
information about the intended data bits to Alice, potentially harming his reputation
as a database owner [63]. Therefore, for the QPQ primitive, Bob is assumed not to
cheat if there is a non-zero probability of being caught. Our scheme provides Bob a
chance to cheat without being detected due to the underlying bit commitment scheme.
However, we assume that Bob is a polynomial-time adversary and has computational
limitations. For this reason, even with the existence of a computational hiding bit
commitment scheme, Bob cannot gain any information about Alice’s committed bits.
So, the calculation here is only based on the results of corollary 7, which states that
either the scheme terminates with high likelihood or the devices in [117] achieve the
desired values of βA and βB after the DI testing phases. Based on these results and
those in [15], we can conclude the following.

Lemma 4. Dishonest Bob can correctly predict a maximum of l
N

fraction of the
indices from Il after l queries to the N-bit database (in [117]), i.e., for a particular
index i,

Pr(Bob correctly guesses an index i ∈ Il) ≤
l

N
.

Proof. At the shared key generation phase of our proposal, Alice does not broadcast
anything about her measurement outcome. So, dishonest Bob has no information
about Alice’s measurement outcomes and her known key bits. Now, Alice queries
l many times to the database and retrieves l many data bits. After these l many
queries, dishonest Bob will try to guess those query indices of Alice. As, Bob has no
information about the known final key bits of Alice, he has to guess these l many
indices (out of the N data bits) randomly.

So, for any i-th data bit, dishonest Bob can guess whether i ∈ Il with probability
atmost l

N
. This completes the proof.

This implies that Bob can guess whether a database index is in Il (the query index
set of Alice) with a probability of at most l

N
. Assuming Alice only knows one data

bit per query, if Bob guesses l bits, the expected number of correct guesses Bob can
make from Alice’s query set Il will be,

E[lB∗ ] = Pr(Bob correctly guesses an index i ∈ Il).l

≤ l2

N
. (5.19)

This DI-QPQ proposal includes tests to prevent Bob from discovering too much
about Il (the query index set of Alice), but due to statistical fluctuations, Bob still
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has a chance of passing the tests and obtaining more information than a negligible
fraction of the indices. As the limit approaches infinity, Bob’s likelihood of passing all
the tests becomes low according to Corollary 7. Furthermore, if Bob wants to increase
the certainty of guessing a query index, he would need to allow Alice to know more
data bits (as stated in the result of Lemma 4), which goes against assumption 4.

Comparing the expression in definition 4 with equation 5.19 provides the following
upper bound for δ in our proposal.

Corollary 10. The DI-QPQ proposal will either abort with high likelihood (as the
limit approaches infinity), or dishonest Bob will be able to correctly predict, on aver-
age, δ fraction of indices from Il where,

δ ≤
(
l

N

)
. (5.20)

In practice, the number of data bits in the database, N , is significantly larger than
the size of Il (i.e., l), with N approximately equal to ln for some positive integer n.
Using this information and equation 5.20, the following upper bound on the value of
δ can be obtained.

δ ≤ 1

l(n−1)
. (5.21)

This equation shows that the value of δ is small compared to l in our proposal.

5.4.3 Comparison with the QPQ scheme mentioned in Chap-
ter 4

Our proposal in Chapter 4 also addresses the same problem of Quantum Private Query
in Device Independent scenario. Here we mention a comparative study between the
full DI proposal of the QPQ scheme [117] mentioned in this chapter and the full
DI-QPQ scheme mentioned in Chapter 4.

• Total number of samples :

In the DI-QPQ scheme mentioned in Chapter 4, there are total 6 phases namely
entanglement distribution phase, source device verification phase, DI testing
phase for Bob’s measurement device, DI testing phase for Alice’s measurement
device, key establishment phase and private query phase. On the other hand,
in our proposed DI version of Yang et al. [117] QPQ scheme, there are total 4
phases namely source device and Bob’s measurement device verification phase,
Alice’s measurement device verification phase, key generation phase and private
query phase. For consistency and simplicity of comparison, here we consider
that each of the protocols starts with N number of samples (i.e., states) and
whenever Alice and Bob choose some samples for testing purposes, they choose
γ fraction of instances all the time (i.e., for the scheme mentioned in Chapter 4,
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here we consider γ1 = γ2 = γ3 = γ). Here we show that if Alice and Bob start
with same number of initial states (i.e., N) for both the protocols and choose γ
fraction of samples for all the testing phases, then Alice and Bob can use more
number of samples in the private query phase for this proposed full DI version
of the QPQ scheme [117] as compared to the number of samples used in private
query phase for the DI-QPQ scheme mentioned in Chapter 4.

So, for the DI-QPQ protocol mentioned in Chapter 4, considering K = N and
γ1 = γ2 = γ3 = γ, Alice and Bob first choose γN samples for their localCHSH
test which certifies the given states. Next in OBStest, each of Alice and Bob
independently chooses γ

2
(N − γN) samples randomly from the rest (N − γN)

states to certify Bob’s measurement device. So, the total number of samples
used in the OBStest is γ(N − γN). Next in the DI testing phase for Alice’s
measurement device, Alice chooses γ fraction of samples randomly from the
rest (1 − γ)(N − γN) samples to certify her measurement device. Atlast, the
rest [(1− γ)(N − γN)− γ(1− γ)(N − γN)] = (1− γ)3N samples are used for
private query phase. This implies that in the DI-QPQ scheme mentioned in
Chapter 4, the server Bob can generate a raw key of length (1−γ)3N bits using
N number of states. So, if we consider that in the QPQ scheme mentioned in
Chapter 4, Alice and Bob use Fold fraction of initial samples for private query
phase then Fold = (1− γ)3.

Similarly, for the full DI version of the QPQ scheme [117] mentioned here,
considering K = N and γ1 = γ2 = γ, Bob and Alice first choose γN samples
randomly for their local TiltedCHSH test which certifies the given states and
Bob’s measurement device. Each of Alice and Bob then chooses γ(N−γN)

2
samples

randomly from the rest (N−γN) states for OBStestAlice which certifies Alice’s
measurement device. Atlast, the rest (N − γN) − γ(N − γN) = (1 − γ)2N
samples are used for key generation. This implies that in the full DI version of
the QPQ scheme [117] mentioned here, the server Bob can generate (1− γ)2N
raw key bits using N number of states. So, if we consider that in this scheme,
Alice and Bob use Fnew fraction of initial samples for private query phase then
Fnew = (1− γ)2.

A comparative study between the number of samples used for raw key generation
in two different protocols for different values of γ is shown in Figure 5-4. From
this figure, it is clear that for any value of γ (where γ ∈ (0, 1)), the size of the raw
key generated in the proposed full DI version of the QPQ scheme [117] is always
greater than the size of the raw key generated in the DI-QPQ scheme mentioned
in Chapter 4. This implies that to generate a raw key of a particular size, the
DI-QPQ scheme mentioned in Chapter 4 requires more number of initial samples
as compared to the full DI version of the QPQ scheme [117] mentioned here.
So, in terms of the total number of samples, this full DI version of the QPQ
scheme [117] is more efficient as compared to the DI-QPQ scheme mentioned in
Chapter 4.

• Projective measurement Vs. POVM:
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Figure 5-4: Comparison between the fraction of samples used for raw key generation
in two different protocols for different values of γ

The DI-QPQ schemes in this chapter and the scheme mentioned in Chapter 4
are QKD-based, using non-orthogonal state distinction for key generation. In
the scheme mentioned in Chapter 4, the client uses POVM measurements to
distinguish non-orthogonal states, while this chapter’s full DI version of [117]
uses projective measurements.

Although it is well-known that POVM measurements can be implemented as a
projective measurements in the higher dimension, it requires additional gates
as compared to the projective measurements in actual dimension. This implies
that the implementation of POVM measurement is complicated as compared to
the projective measurement. So, from the viewpoint of practical implementation
of the measurement devices, the full DI version of [117] mentioned here is more
efficient as compared to the DI-QPQ scheme mentioned in Chapter 4.

• It is well-known that the maximally entangled states are easy to prepare as
compared to the non-maximally entangled states. The DI-QPQ scheme men-
tioned in Chapter 4 uses maximally entangled states whereas the full DI version
of the QPQ scheme [117] mentioned here uses non-maximally entangled states.
So, from the viewpoint of practical implementation of the source device, the
DI-QPQ scheme mentioned in Chapter 4 is more efficient as compared to the
DI-QPQ schemes mentioned in this chapter.

5.5 Full DI proposal for a modified version of the

QPQ scheme [117]

From the analysis of section 5.3, it is clear that for the QPQ scheme [117], the client
Alice can retrieve more number of database bits in a single query, if she performs
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optimal POVM measurement at her side instead of the projective measurements
mentioned in [117]. In this direction, here we propose a full DI protocol for a modified
version of [117] where the client Alice can retrieve optimal number of raw key bits at
her end.

We divide this entire section into two subsections. In the first subsection, we
propose different steps of our modified DI-QPQ scheme and in the last subsection,
we mention the security related issues of this modified proposal. The assumptions
for this modified DI-QPQ scheme are also same as the assumptions mentioned in
Section 3.6 of Chapter 3.

5.5.1 Modified full DI protocol

Like the previous DI proposal, here also we divide the entire protocol into four phases
based on the functionality. The first phase which certifies the state generation de-
vice and Bob’s measurement device is termed Source Device and Bob’s Measurement
Device Verification Phase.

The next phase certifies the measurement devices for the client Alice and is termed
Alice’s Measurement Device Verification Phase.

After successful completion of these two testing phases, Bob and Alice conclude
that the states given to them are of the specified form and their measurement de-
vices measure correctly in the specified bases (here ’specified’ refers to the state and
measurement bases mentioned in this modified QPQ proposal). After these testing
phases, Bob and Alice proceed to the Key Generation Phase where Bob generates
a key and Alice knows some bits of that key such that Bob can not know anything
about Alice’s known key bits. At last, they proceed to the private query phase where
Bob encrypts the entire database using the key generated in the key generation phase
and sends it to Alice. Alice then decrypts the intended bits of the database using her
partial knowledge about the final key bits.

Now we describe different steps of our entire protocol. Note that like our previous
scheme, here also we consider that there is no channel noise i.e., all the operations
are perfect.

Algorithm 8: KeyGenAlice(S)

• For each index i ∈ S, Alice performs the following steps.

1. Alice uses the measurement device D = {D0, D1, D2} to measure her
qubit of the shared state indexed by i.

2. Alice concludes the raw key bit indexed by i as 0(1) if she gets the
measurement outcome D0(D1) for the shared state indexed by i.

3. Alice remains uncertain about the raw key bit indexed by i if she gets the
measurement outcome D2 for the shared state indexed by i.
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Algorithm 9: POVMtestAlice(S)

• For each index i ∈ S, Bob and Alice perform the following steps.

1. Bob first declares the value of Ri (i.e., the raw key bit indexed by i).

2. Whenever Ri = 0 (Ri = 1), Alice considers that the state at her side is ρ0

(ρ1).

• Alice then computes the parameter

Ω =
∑

Ri,RAi∈{0,1}

(−1)Ri⊕RAiTr[DRAi
ρRi ],

where DRAi
is Alice’s measurement outcome in KeyGenAlice() for the i-th

instance.

• If for the set S,

Ω =
2 sin2 θ

(1 + cos θ)
,

then they continue with the protocol, otherwise they abort.

Source Device and Bob’s Measurement Device Verification Phase:

1. Bob starts with K (we assume here that K is asymptotically large) number of
states (say |ψ〉BA) provided by the third party and shares those states with Alice
in such a way that the first particle of each state corresponds to Bob and the
second particle corresponds to Alice.

2. Bob chooses γ1K
2

instances randomly from these K shared states, declares those
instances publicly and constructs the set ΓBCHSH with these chosen instances.

3. For all the instances in ΓBCHSH, Alice sends her qubits to Bob.

4. For the instances in ΓBCHSH, Bob plays the role of the referee as well as the two
players and plays TiltedCHSH game.

5. For every i-th sample in ΓBCHSH, Bob randomly generates input bits xi and yi
for his two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ 0, 1.

6. Bob performs TiltedCHSH(ΓBCHSH, Bob), according to the procedure outlined
in algorithm 6 for the set ΓBCHSH.

7. If Bob passes this TiltedCHSH(ΓBCHSH, Bob) test then both Alice and Bob pro-
ceed further, otherwise they abort.
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8. From the rest
(
K − γ1K

2

)
shared states, Alice randomly chooses γ1K

2
instances,

declares those instances publicly and constructs the set ΓACHSH with these chosen
instances.

9. For all the instances in ΓACHSH, Bob sends his qubits to Alice.

10. For these instances in ΓACHSH, Alice plays the role of the referee as well as the
two players and plays TiltedCHSH game.

11. For every i-th sample in ΓACHSH, Alice randomly generates input bits xi and yi
for her two measurement devices (these devices act as separate parties without
any communication), with xi, yi ∈ 0, 1.

12. Alice performs TiltedCHSH(ΓACHSH, Alice), according to the procedure outlined
in algorithm 6 for the set ΓACHSH.

13. If Alice passes the TiltedCHSH(ΓACHSH, Alice) test then both Alice and Bob
proceed to the next phase where Alice self-tests her measurement device.

Alice’s Measurement Device Verification Phase:

• Alice and Bob consider the rest (K − γ1K) samples and construct a set Γtest

• For 1 ≤ i ≤ |Γtest|, Bob does the following.

– Bob applies measurement operator B0
0 or B0

1 randomly on his particle of
the shared state indexed by i and generates the output bit bi = 0 and
bi = 1 respectively.

– If the outcome of Bob’s device for the shared state indexed by i is bi = 0,
Bob considers the raw key bit indexed by i as Ri = 0.

– If the outcome of Bob’s device for the shared state indexed by i is bi = 1,
Bob considers the raw key bit indexed by i as Ri = 1.

• Alice chooses γ2|Γtest| instances randomly from these |Γtest| states, constructs a
set ΓPOVM with those samples and declares those instances (Note that no com-
mitment scheme is required here like our previous proposal as in this modified
scheme, Alice is performing optimal individual measurements at her end. So,
Alice can’t retrieve any additional bits in the shared key generation phase by
performing any other measurements. Alice can at most perform joint mea-
surements to retrieve the final key bits instead of the individual raw key bits.
However, these optimal joint measurements are already shown to be inconclu-
sive [63, 15] and are of no use to Alice).

• Alice first performs KeyGenAlice(ΓPOVM), according to the procedure intro-
duced in algorithm 8 for the set ΓPOVM.

• Bob and Alice then perform POVMtestAlice(ΓPOVM), according to the proce-
dure introduced in algorithm 9 for the same set ΓPOVM.
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• If Alice and Bob pass the POVMtestAlice(ΓPOVM) then they proceed to the
next phase of the protocol where they generate the shared key.

Key Generation Phase:

• Alice and Bob consider the rest (|Γtest|−|ΓPOVM|) samples, construct a set ΓQPQ

with those instances and do the following.

1. Alice performs KeyGenAlice(ΓQPQ), as mentioned in algorithm 8 for the
set ΓQPQ.

2. Bob already generates the raw key bits for each of the instances in ΓQPQ.

Private Query Phase:

• Alice and Bob then use classical methods to process the raw key and move to the
private query phase described in [117] (detailed procedure is already mentioned
in the previous proposal of this chapter).

A visual illustration of different steps of this full device-independent proposal for
a modification of the QPQ scheme [117] is depicted in Figure 5-5.

Figure 5-5: Visual representation of our modified DI-QPQ scheme

5.5.2 Analysis of the modified scheme

Here, we address the functionality of this proposal. At first, we prove its correctness,
and next, we discuss the security aspects.
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Correctness of our modified scheme

First, we prove the correctness of this modified scheme.

Theorem 11. If the modified proposal is implemented honestly, then after the key
generation phase, Alice is able to retrieve only (1 − cos θ) fraction of the entire raw
key.

Proof. After the shared key generation phase, Bob and Alice share |ΓQPQ| raw key
bits. These raw key bits were generated from |ΓQPQ| copies of shared entangled states
which are of the form

1√
2

(|0〉|φ0〉+ |1〉|φ1〉)

where, |φ0〉 = cos θ
2
|0〉+ sin θ

2
|1〉 and |φ1〉 = cos θ

2
|0〉 − sin θ

2
|1〉. Here θ may vary from

0 to π
2
.

Bob and Alice generate these |ΓQPQ| many raw key bits as follows-

For each of the states in the set ΓQPQ, Bob measures his qubits in {|0〉, |1〉} basis.
For any i-th instance, if Bob receives the outcome |0〉, he considers Ri = 0 and Ri = 1
otherwise (i.e., for outcome |1〉).

Now, Alice understands that after Bob’s measurement, her qubits corresponding
to each of the shared states collapse to either |φ0〉 or |φ1〉. However, to obtain the
value of the raw key bit, Alice has to distinguish these two states conclusively. As,
|φ0〉 and |φ1〉 are non-orthogonal states (when θ 6= π

2
), Alice cannot distinguish these

two states with certainty.

According to the strategy mentioned in this modified protocol, Alice chooses the
POVM {D0, D1, D2} for measurement. After measurement, if Alice receives the out-
come D0 for i-th instance, she concludes that Bob’s corresponding measurement out-
come was |0〉. In such case, Alice concludes that RAi = 0. Similarly, if Alice receives
the outcome D1 for i-th instance, she concludes that Bob’s corresponding measure-
ment outcome was |1〉. In such a case, Alice concludes that RAi = 1. However, if the
measurement outcome is D2, then Alice remains inconclusive about the value of the
raw key bit.

Now, we calculate the success probability of Alice in guessing each Ri correctly.
Let us assume that Pr(Dj||φi〉) denotes the corresponding success probability of get-
ting the result Dj when the given state is |φi〉 i.e.,

Pr(Dj||φi〉) = 〈φi|Dj|φi〉.

We now calculate the corresponding success probabilities of getting different re-
sults for the states |φ0〉 and |φ1〉.
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For |φ0〉, the success probabilities will be

Pr(D0||φ0〉) = 〈φ0|D0|φ0〉
= (1− cos θ)

Pr(D1||φ0〉) = 〈φ0|D1|φ0〉
= 0

Pr(D2||φ0〉) = 〈φ0|D2|φ0〉
= cos θ

Similarly, for the state |φ1〉, the success probabilities will be

Pr(D0||φ1〉) = 〈φ1|D0|φ1〉
= 0

Pr(D1||φ1〉) = 〈φ1|D1|φ1〉
= (1− cos θ)

Pr(D2||φ0〉) = 〈φ1|D2|φ1〉
= cos θ

We formalize all the conditional probabilities in Table 5.1. Thus, the success
probability of Alice in guessing Ri of Bob can be written as

Pr(RAi = Ri)

= Pr(RAi = 0, Ri = 0) + Pr(RAi = 1, Ri = 1)

= (1− cos θ).

So, the success rate of Alice in guessing each bit of Bob’s raw key in this modified
proposal’s shared key generation phase is (1 − cos θ), meaning she can determine on
average (1− cos θ) fraction of bits from the entire raw key with certainty (about the
positions of the correctly predicted bits).

Estimation of parameters for private query phase

Considering the honest implementation of this modified scheme, here we determine
the values for different parameters to ensure both the privacy of the user and the
privacy of the database owner.

Estimation of θ for security purpose :

Like our previous full DI version of [117], here also the server Bob wants the client
Alice to know not more than one final key bit. In this modified proposal, the server
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Bob has a raw key with kN many bits and the client Alice can correctly guess each
of those bits with likelihood around (1− cos θ). So, the expected number of raw key
bits that Alice can know in (1− cos θ)kN .

Then each of Alice and Bob XOR k raw key bits to construct every final key bit at
their end. So, Alice can correctly guess every bit of Bob’s final key with probability
around (1− cos θ)k.

Now, if FA denotes Alice’s known final key bits then we can conclude that the
expected value of FA will be,

E[FA] ≈ (1− cos θ)kN. (5.22)

In this modified DI scheme, for dishonest Alice to pass DI testing phases, she
must measure correctly for all instances. Moreover, it is known that the optimal
probability in distinguishing two non orthogonal states is (1 − cos θ), which means
dishonest Alice’s probability of correctly guessing a raw key bit and a final key bit
without causing the scheme to terminate is capped at (1 − cos θ) and (1 − cos θ)k,
respectively. That means, when the protocol doesn’t terminate, the expected number
of correctly guessed final key bits by dishonest Alice is at most limited by,

E[FA∗ ] ≤ (1− cos θ)kN. (5.23)

Like the Yang et al. [117] QPQ scheme, here also the database is encrypted with
the final key by performing bitwise XOR. Hence, in non abort scenario, the expected
maximum number of correctly guessed data bits by dishonest Alice in a single query
is limited to (1− cos θ)kN . i.e.,

E[DA∗ ] ≤ (1− cos θ)kN. (5.24)

Now, like the previous proposal, here also for the protocol to continue, Alice must
know atleast one final key bit, while Bob wants Alice to know less than two final key
bits i.e.,

1 ≤ E[FA] < 2.

This implies that,

1 ≤ (1− cos θ)kN < 2

1

N
≤ (1− cos θ)k <

2

N
. (5.25)

These results boil down to the following conclusion.

Corollary 11. To ensure that the client Alice only knows less than two final key bits
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and the scheme doesn’t terminate in this modified proposal, the server Bob must select
the values of θ and the parameter k such that,

1

N
≤ (1− cos θ)k <

2

N
.

Estimation of Pa and Pc for security purpose:

Proceeding to the similar way as discussed in corollary 6, here we can assert that
Alice can’t guess any final key bit with probability

Pr(the protocol aborts) ≈ [1− (1− cos θ)k]N

≈ e−(1−cos θ)kN . (5.26)

So, for the parameter Pa, we get the following upper bound for this modified
scheme.

Pa ≤ e−(1−cos θ)kN . (5.27)

If Bob sets θ so that (1− cos θ)k = 1
N

, then equation 5.25 and 5.27 yield

Pa ≤ e−1. (5.28)

This implies that this modified proposal has a small Pa value. So, the probability
of the protocol not aborting in the honest scenario is,

Pr(protocol doesn’t terminate in honest scenario)

≥ (1− e−1). (5.29)

Hence, this modified proposal has a high probability of not aborting in the honest
scenario.

Like the previous scheme, here also (proceeding to the similar way) one can achieve
the below mentioned bound on Pc for this modified scheme.

Pc ≥ [1− exp(−2ε2N)], (5.30)

where ε ≤ 1
2

for security purpose.

We now proceed to the security aspects of this modified proposal.

Security in device independent scenario

In this subsection, we discuss about the DI security of this modified QPQ proposal.
Based on the results obtained from Theorem 12 and Theorem 13, here we conclude
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about the DI security of this modified QPQ scheme.

Theorem 12 (DI testing of shared states and Bob’s measurement devices). In
the TiltedCHSH test of the source device and Bob’s measurement device verification
phaseof our modified proposal, either the devices achieve βB = 4√

1+sin2 θ
for both Al-

ice and Bob (i.e., the states provided by the third party are identical with the actual
states and Bob’s measurement device measures correctly in the {|0〉, |1〉} basis) or the
scheme is likely to abort with high probability (as the limit approaches infinity).

Proof. This proof is same as the proof of theorem 8.

So, Theorem 12 guarantees that either the states shared between Alice and Bob is
of the specified form and Bob’s measurement device measures correctly in {|0〉, |1〉}
basis or this modified scheme aborts with high likelihood in the long run. The next
testing for full DI certification is done in Alice’s measurement device verification phase.
This phase basically guarantees the functionality of Alice’s POVM device. They lead
to this phase whenever both of them successfully pass the first DI testing phase. In
this phase, Alice performs the POVM measurement D = {D0, D1, D2} on the chosen
states. From the measurement outcome, Alice computes the value of the parameter Ω
and checks whether this value is equal to 2 sin2 θ

(1+cos θ)
. Theorem 13 guarantees that either

Alice measures correctly using the measurement device {D0, D1, D2} (i.e., the devices
achieve Ω = 2 sin2 θ

(1+cos θ)
) or this modified proposal terminates with high probability (as

the limit approaches infinity).

Theorem 13 (DI Testing of Alice’s POVM D). POVMtestAlice either results in a
high probability of termination of this modified proposal (as the limit approaches infin-
ity), or it guarantees that Alice’s measurement devices attain Ω = 2 sin2 θ

(1+cos θ)
, meaning

they are of this specified form (up to a local unitary),

D0 =
1

(1 + cos θ)
(|φ⊥1 〉

〈
φ⊥1
∣∣)

D1 =
1

(1 + cos θ)
(|φ⊥0 〉

〈
φ⊥0
∣∣)

D2 = I−D0 −D1,

where |φ⊥1 〉 =
(
sin θ

2
|0〉+ cos θ

2
|1〉
)

and |φ⊥0 〉 =
(
sin θ

2
|0〉 − cos θ

2
|1〉
)
.

The detailed proof of this theorem is mentioned later in Section 5.8. In the proof,
we consider a general form of a single qubit three outcome POVM {D0, D1, D2} and
show that if the input states are chosen randomly between |φ0〉 = (cos θ

2
|0〉+ sin θ

2
|1〉)

and |φ1〉 = (cos θ
2
|0〉 − sin θ

2
|1〉) then either Ω = 2 sin2 θ

(1+cos θ)
i.e., {D0, D1, D2} are of the

specified form as mentioned in POVMtestAlice or this modified proposal terminates
with high likelihood(as the limit approaches infinity).

Note that in our proof, we have not imposed any dimension bound like the self-
testing of POVM in a prepare and measure scenario in [106]. So, the devices that
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perform a Neumark dilation of this mentioned POVM (i.e., the equivalent larger
projective measurement on both the original state and some ancilla system instead
of the actual POVM measurement) could still achieve the intended value of Ω. But
both of these operations produce the same output probabilities, which is sufficient for
the purposes of this work.

Like the previous full DI proposal of the QPQ scheme [117], here also one can argue
in a similar way that this modified scheme either terminates with high probability (as
the limit approaches infinity) or it certifies that the devices in this modified QPQ
proposal achieve the desired values of the parameters βB and Ω in the TiltedCHSH
test and POVMtestAlice respectively.

Security of database against dishonest Alice

Here, we estimate the amount of raw key bits guessed by dishonest Alice during the
shared key generation phase of this modified scheme. Similar to the result in Theorem
10, here also we can conclude the following.

Theorem 14. For this modified DI-QPQ scheme, in the absence of POVMtestAlice,
dishonest Alice can retrieve, at most,

(
1
2

+ 1
2

sin θ
)

fraction of the entire raw key,
inconclusively (i.e., the indices of the correctly guessed bits are unknown), during the
key generation phase.

The proof is exactly the same as the proof of Theorem 5 in [15].
In this modified DI-QPQ proposal, Alice performs a particular POVM measure-

ment to distinguish the non-orthogonal states at her end which is also the optimal
measurement to distinguish that specified non-orthogonal states. Because of this spe-
cific measurement, we can get a bound on the number of raw key bits guessed (on
average) by dishonest Alice in this proposed scheme.

Lemma 5. Either our modified protocol terminates with high likelihood in the long
run, or dishonest Alice (A∗) can retrieve (on average) (1 − cos θ) fraction from the
entire raw key after the key generation phase of this modified scheme.

The proof of this Lemma is based on the Theorem 11 which establishes the cor-
rectness of this modified scheme.

One can also note that this (1− cos θ) is the optimal probability (this optimality
is proven in [62]) of success in distinguishing two non-orthogonal states with certainty
(which is the main objective of the client Alice here in this modified proposal).

Here, for this modified scheme, equation 5.24 and definition 3 yield the following
bound on τ .

Corollary 12. In the case of dishonest Alice and honest Bob, either this modified
proposal will likely abort (as the limit approaches infinity), or dishonest Alice will, on
average, be able to obtain τ fraction of bits from the entire final key, where

τ ≤ (1− cos θ)k. (5.31)
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By using the upper bound from equation 5.25 in place of (1−cos θ)k, we can obtain
the following bound on τ .

τ <
2

N
. (5.32)

It shows that this modified proposal results in τ being significantly smaller than N .

Security of user against dishonest Bob

In this subsection, we estimate the number of indices that dishonest Bob can correctly
guess from Il (the query index set of Alice) after successfully passing the shared key
generation phase of this modified scheme. Similar to the result in Lemma 4, here also
we can conclude the following.

Lemma 6. Dishonest Bob can correctly predict a maximum of l
N

fraction of the
indices from the query set Il for this modified proposal, i.e., for a particular index i,

Pr(Bob correctly guesses i ∈ Il) ≤
l

N
.

The proof of Lemma 6 is identical to the proof of Lemma 4.
Like the discussion in corollary 10, bounds on δ and Pu can also be obtained for

this modified proposal.

Corollary 13. In dishonest Bob and honest Alice scenario of this modified DI-QPQ
proposal, the scheme will either abort with high likelihood (as the limit approaches
infinity), or dishonest Bob will be able to correctly predict, on average, δ fraction of
indices from Il (the query index set of Alice) where,

δ ≤ 1

l(n−1)
, (5.33)

where n is a positive integer such that n > 1. From this relation, one can conclude
that δ is smaller than l for this modified proposal.

Now we mention the detailed proof of our results (i.e., theorems) in subsequent
sections.

5.6 Statement and proof of Theorem 8

Statement of Theorem 8: In the TiltedCHSH test of the source device and Bob’s
measurement device verification phase, either the devices achieve βB = 4√

1+sin2 θ
for

both Alice and Bob (i.e., the states provided by the third party are identical with the
actual states as mentioned in the QPQ scheme [117] and Bob’s measurement device
measures correctly in the {|0〉, |1〉} basis) or the scheme is likely to abort with high
probability (as the limit approaches infinity).
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Proof. Here we prove the result considering that the game is played at the party P ’s
end (one can replace P with Alice or Bob for the specific instances). Suppose, the
first measurement operators of P are {By

b }y,b∈{0,1}, for the input y and the output b
and the second measurement operators of P are {A′xa }x,a∈{0,1}, for the input x and
the output a. Here, P ’s observable corresponding to the input y ∈ {0, 1} is,

By =
∑

b∈{0,1}

(−1)bBy
b . (5.34)

Similarly, P ’s observable corresponding to the input x ∈ {0, 1} is,

A′x =
∑

a∈{0,1}

(−1)aA
′x
a . (5.35)

Note that, in the TiltedCHSH test, the fraction βB is being computed as follows,

βB = αB
∑

a∈{0,1}

(−1)a〈ψBA|I⊗ A
′0
a |ψBA〉 (5.36)

+
∑

x,y,a,b∈{0,1}

(−1)dxyab〈ψBA|By
b ⊗ A

′x
a |ψBA〉 (5.37)

= [〈ψBA|W 1
B|ψBA〉+ 〈ψBA|W 2

B|ψBA〉] (5.38)

= 〈ψBA|WB|ψBA〉, (5.39)

where W 1
B := αB

∑
a∈{0,1}(−1)aI ⊗ A

′0
a , W 2

B :=
(∑

x,y,a,b∈{0,1}(−1)dxyabBy
b ⊗ A

′x
a

)
are the two operators corresponding to βB of the TitedCHSH test andWB := W 1

B+W 2
B.

We can rewrite the expression of W 1
B in the following way.

W 1
B = αB

∑
a∈{0,1}

(−1)aI⊗ A′0a

= αB(I⊗ A′00 − I⊗ A′01 )

= αB[I⊗ (A
′0
0 − A

′0
1 )].

By substituting the value of (A
′0
0 −A

′0
1 ) from the equation 5.35 on the right-hand

side of the above expression we get,

W 1
B = αB(I⊗ A′0). (5.40)

Similarly, We can also rewrite the expression of W 2
B in following way.
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W 2
B =

 ∑
x=0

y,a,b∈{0,1}

(−1)dxyabBy
b ⊗ A

′0
a

+

 ∑
x=1

y,a,b∈{0,1}

(−1)dxyabBy
b ⊗ A

′1
a


= W 02

B +W 12
B , (5.41)

where W 02
B :=

(∑
x=0

y,a,b∈{0,1}
(−1)dxyabBy

b ⊗ A
′0
a

)
and W 12

B :=(∑
x=1

y,a,b∈{0,1}
(−1)dxyabBy

b ⊗ A
′1
a

)
. Note that, we can simplify further the expression

of W 02
B in the following way.

W 02
B =

∑
x=0

y,a,b∈{0,1}

(−1)dxyabBy
b ⊗ A

′0
a

=
∑
x=0

y,a,b∈{0,1}
a⊕b=0

By
b ⊗ A

′0
a −

∑
x=0

y,a,b∈{0,1}
a⊕b 6=0

By
b ⊗ A

′0
a

= (B0
0 ⊗ A

′0
0 +B1

0 ⊗ A
′0
0 +B0

1 ⊗ A
′0
1 +B1

1 ⊗ A
′0
1 )−

(B0
1 ⊗ A

′0
0 +B1

1 ⊗ A
′0
0 +B0

0 ⊗ A
′0
1 +B1

0 ⊗ A
′0
1 )

= [(B0
0 −B0

1)⊗ A′00 − (B0
0 −B0

1)⊗ A′00 +

(B1
0 −B1

1)⊗ A′00 − (B1
0 −B1

1)⊗ A′01 ]

= [(B0
0 −B0

1)⊗ (A
′0
0 − A

′0
1 )+

(B1
0 −B1

1)⊗ (A
′0
0 − A

′0
1 )]

= [(B0
0 −B0

1) + (B1
0 −B1

1)]⊗ (A
′0
0 − A

′0
1 ).

By substituting the values of (A
′0
0 −A

′0
1 ), (B0

0 −B0
1) and (B1

0 −B1
1) from the equation

5.35 and the equation 5.34 on the right-hand side of the above expression we get,

W 02
B = (B0 +B1)⊗ A′0. (5.42)

Using similar approach we get the following simplified version of the expression
W 12
B .

W 12
B = (B0 −B1)⊗ A′1. (5.43)

By substituting the values of W 02
B and W 12

B from the equation 5.42 and the equa-
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tion 5.43 to the equation 5.41 we get,

W 2
B = (B0 +B1)⊗ A′0 + (B0 −B1)⊗ A′0. (5.44)

So, the right-hand side of the TiltedCHSH operator WB is of the form,

WB = αB(I⊗ A′0) + (B0 +B1)⊗ A′0 + (B0 −B1)⊗ A′1. (5.45)

Note that this TiltedCHSH operator is exactly of the same form as the Tilted-
CHSH operator mentioned in [8]. Also, the states mentioned in our protocol can be
obtained from the non-maximally entangled states mentioned in [8] by just applying
a local unitary (Hadamard gate) on the first qubit of the states mentioned in [8]. So,
by following the same strategy as mentioned in [8], we can derive the following upper
bound on the value of βB.

βB ≤
4√

1 + sin2 θ
. (5.46)

One can easily check that for the TiltedCHSH test, the observables of P are of
the following form.

B0 = σz B1 = σx (5.47)

A′0 = cosµσz + sinµσx A′1 = cosµσz − sinµσx. (5.48)

It is already mentioned in [14] that the maximum value of the TiltedCHSH oper-
ator (here βB = 4√

1+sin2 θ
) certifies that the states are of the form cos θ

2
|00〉+ sin θ

2
|11〉

and the observables of P ’s are of the same form as mentioned in our TiltedCHSH test.
As the states shared in our scheme is just a local isometry of the states mentioned
in [14], we can easily conclude from the results mentioned in [14] that the maximum
value of βB (i.e., βB = 4√

1+sin2 θ
) certifies the states in our scheme along with the stan-

dard basis of Bob’s measurement device. According to our DI proposal, whenever the
devices don’t achieve the value βB = 4√

1+sin2 θ
, the protocol aborts. This concludes

the proof.

5.7 Statement and proof of Theorem 9

Statement of Theorem 9: In OBStestAlice, either Alice’s measurement devices
achieve the value of the parameter βA = 1

2 sin θ
(i.e., her devices correctly measure in

{|φ0〉, |φ⊥0 〉} and {|φ1〉, |φ⊥1 〉} basis) or the protocol terminates with a high likelihood
of failure (as the limit approaches infinity).

Proof. It is already mentioned in the proof of theorem 8 that Alice’s measurement
operators are {Axa}x,a∈{0,1}, corresponding to the input x and output a and Bob’s
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measurement operators are {By
b }y,b∈{0,1}, corresponding to the input y and output b.

So, Alice’s observable, corresponding to the input x ∈ {0, 1} is,

Ax =
∑

a∈{0,1}

(−1)aAxa. (5.49)

Similarly, Bob’s observable corresponding to the input y ∈ {0, 1} is,

By =
∑

b∈{0,1}

(−1)bBy
b . (5.50)

Note that in the OBStestAlice, the fraction βA is being computed as follows,

βA =
1

4

∑
x,y,a,b∈{0,1}

(−1)d
′
xyabα1⊕y

A 〈ψ|B
y
b ⊗ A

x
a|ψ〉 (5.51)

=
1

4
〈ψ|WA|ψ〉, (5.52)

where WA :=
(∑

x,y,a,b∈{0,1}(−1)d
′
xyabα1⊕yBy

b ⊗ Axa
)

which is the operator corre-

sponding to βA of OBStestAlice. Now, proceeding like the similar way as mentioned
in the derivation of the simplified form for operator W 2

B in the proof of theorem 8,
here we can get the following expression of WA.

WA = αAB0 ⊗ (A0 + A1) +B1 ⊗ (A0 − A1). (5.53)

Note that, the right-hand side of the OBStestAlice operator WA is almost of the same
form as the tiltedCHSH operator, described in [65].

So the expression of W 2
A can be written as,

W 2
A = α2

AB
2
0 ⊗ (A2

0 + A2
1 + {A0, A1})

+B2
1 ⊗ (A2

0 + A2
1 − {A0, A1})

= (α2
AB

2
0 +B2

1 + αA{B0, B1})⊗ A2
0

+ (α2
AB

2
0 +B2

1 − αA{B0, B1})⊗ A2
1

+ (α2
AB

2
0 −B2

1)⊗ {A0, A1} − αA[B0, B1]⊗ [A0, A1].

Using the property B2
j ≤ I, we can rewrite this expression as,

W 2
A ≤ [(α2

A + 1).I + αA{B0, B1}]⊗ A2
0

+ [(α2
A + 1).I− αA{B0, B1}]⊗ A2

1

+ I⊗ (α2
A − 1){A0, A1} − α[B0, B1]⊗ [A0, A1].

Since −2.I ≤ {B0, B1} ≤ 2.I, we have,
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[(α2
A + 1).I± αA{B0, B1}] ≥ 0.

We can use the property A2
k ≤ I and get the following simplified expression.

W 2
A ≤ 2(α2

A + 1).I⊗ I + I⊗ (α2
A − 1){A0, A1}

− α[B0, B1]⊗ [A0, A1].

We can further upper bound the commutators by their matrix moduli and use the
relation |[B0, B1]| ≤ 2.I to get the following expression.

W 2
A ≤ 2(α2

A + 1).I⊗ I + TαA ⊗ I, (5.54)

where TαA = (α2
A − 1){A0, A1}+ 2αA|[A0, A1]|

Now the expression of TαA can also be upper bounded by upper bounding the
anticommutators by its matrix modulus. So, the value of TαA will be upper bounded
by,

TαA ≤ (α2
A − 1)|{A0, A1}|+ 2αA|[A0, A1]|.

Again one can easily check that,

|{A0, A1}|2 + |[A0, A1]|2

= |A0A1 + A1A0|2 + |A0A1 − A1A0|2

= (A0A1 + A1A0)†(A0A1 + A1A0)

+ (A0A1 + A1A0)†(A0A1 + A1A0)

= 2(A0A1)†(A0A1) + 2(A1A0)†(A1A0). (5.55)

Let us consider that the measurement operators are projective i.e., (Asc)
2 = Asc

and (Br
b )

2 = Br
b . Now for the projectors A0

0 and A0
1, (A0

0 +A0
1) = I. From this relation

we can write,

(A0
0 + A0

1)(A0
0 + A0

1)† = I

A0
0.A

0
0
†

+ A0
0.A

0
1
†

+ A0
1.A

0
0
†

+ A0
1.A

0
1
†

= I

(A0
0 + A0

1) + (A0
0.A

0
1
†

+ A0
1.A

0
0
†
) = I.

This implies,

129



(A0
0.A

0
1
†

+ A0
1.A

0
0
†
) = 0.

Now A0 = (A0
0 − A0

1). From this we can get,

A0A
†
0 = (A0

0 − A0
1)(A0

0 − A0
1)†

= A0
0.A

0
0
† − A0

0.A
0
1
† − A0

1.A
0
0
†

+ A0
1.A

0
1
†

= (A0
0 + A0

1)− (A0
0.A

0
1
†

+ A0
1.A

0
0
†
)

= I + 0 = I.

Similarly, it can be shown that, A1A
†
1 = A†1A1 = I.

So, from equation 5.55, we can write that for unitary observables A0 and A1,

|{A0, A1}|2 + |[A0, A1]|2 = 2(A0A1)†(A0A1)

+ 2(A1A0)†(A1A0)

= 2I + 2I = 4I.

This implies,

|{A0, A1}| =
√

4.I− |[A0, A1]|2.

So, the simplified expression of TαA will be of the form

TαA = (α2
A − 1)

√
4.I− |[A0, A1]|2 + 2αA|[A0, A1]|.

Now one can easily check that the value of |[A0, A1]| for which the value of TαA
becomes maximum is |[A0, A1]| = 4αA

(α2
A+1)

.I and the corresponding value of TαA is

2(α2
A + 1).I. This implies that,

TαA = 2(α2
A + 1).I.

From this value of TαA and from the expression of W 2
A mentioned in equation 5.54,

we can easily write that the value of WA is upper bounded by the following quantity.

WA ≤
√

2(α2
A + 1)I⊗ I + TαA ⊗ I, (5.56)

where TαA = 2(α2
A + 1).I.

Now, the value βA obtained in OBStestAlice of our algorithm can be written
alternatively as βA = Tr(WAρBA)

4
where ρBA is the density matrix representation of the
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shared states |ψ〉BA i.e., ρBA = |ψ〉BA 〈ψ|. From this expression of βA, one can easily
derive that the value of β2

A is upper bounded by the following quantity.

β2
A ≤

Tr(W 2
AρBA)

16
. (5.57)

Now if we assume tαA := 1
4
Tr(TαAρA)− 1

2
(α2
A − 1) (where ρA is the reduced state

at Alice’s side) then using this value of tα along with the value of WA obtained from
expression 5.56 and the upper bound on the value of β2

A, we can write that the βA
value mentioned in OBStestAlice is upper bounded by the following quantity.

βA ≤
√
α2
A + tαA

2
, (5.58)

where, tαA := 1
4
Tr(TαAρA)− 1

2
(α2
A − 1).

Now here, the observables are projective (i.e., A2
j = I) and the anticommutator

{A0, A1} is a positive semi definite operator. Since we have already shown that the
value of the anti-hermitian operator |[A0, A1]| is |[A0, A1]| = 4αA

(α2
A+1)

.I for the maximum

value of TαA , the spectral decomposition of [A0, A1] can be written as,

[A0, A1] =
4αA.i

(α2
A + 1)

(PA+ − PA− ),

for some orthogonal projectors PA+ and PA− such that (PA+ + PA− ) = I. As it
is well-known that for projective observables, the commutator holds the property
A0[A0, A1]A0 = −[A0, A1], we can easily conclude that A0P

A
±A0 = PA∓ . Let us con-

sider that {|e0
j〉}j is an orthonormal basis for the support of PA+ and {|e1

j〉}j is an
orthonormal basis for the support of PA− where |e1

j〉 = A0|e0
j〉. We define the unitary

operator U0 as

U0|edj 〉 =
1√
2

[|0〉+ (−1)di|1〉]|j〉,

for d ∈ {0, 1}. Then we can easily verify that,

U0[A0, A1]U †0 =
4αA.i

(α2
A + 1)

σY ⊗ I.

Since {I, σX , σY , σZ} constitute an operator basis for linear operators acting on
C2, without loss of generality we can write

U0A0U
†
0 = I⊗K0 + σX ⊗Kx + σY ⊗Ky + σZ ⊗Kz,
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for some hermitian operator K0, Kx, Ky, Kz. For projective observable A0, one can
easily check that {A0, [A0, A1]} = 0. This relation satisfies only when K0 = Ky = 0.
As A2

0 = I, Kx and Kz must satisfy the relation

K2
x +K2

z = I and [Kx, Kz] = 0.

So, we can easily write Kx and Kz in the following form.

Kx =
∑
j

sin 2γj|j〉 〈j|

Kz =
∑
j

cos 2γj|j〉 〈j| ,

for some angle γj and some orthonormal basis {|j〉}. This implies that,

U0A0U
†
0 =

∑
j

(sin γjσX + cos γjσZ)⊗ |j〉 〈j| .

We now consider the following controlled unitary to align the qubit observables.

U1 =
∑
j

exp(−i0.σY )⊗ |j〉 〈j| .

Now for this defined unitary operator, one can easily check that,

U1U0A0U
†
0U
†
1 = (sin γjσX + cos γjσZ)⊗ I

U1U0[A0, A1]U †0U
†
1 =

4αA.i

(α2
A + 1)

σY ⊗ I.

Like observable A0, an analogous reasoning can also be applied for observable A1

and from that, without loss of generality we can write

U1U0A1U
†
0U
†
1 = σX ⊗K ′x + σZ ⊗K ′z.

Since the commutators are positive semi definite and the observables are projec-
tive, we can easily check that

132



{A0, A1} = |{A0, A1}| =
√

4.I− |[A0, A1]|2

=
2(α2

A − 1)

(α2
A + 1)

.I.

Now we define 2γj := arccos
(
α2
A−1

α2
A+1

)
= 0. From this relation, imposing consistency

on the anticommutator, we get,

K ′x sin γj +K ′z cos γj = cos 2γj. (5.59)

On the other hand, imposing consistency on the commutator, we get,

K ′x cos γj −K ′z sin γj = − sin 2γj. (5.60)

Now, solving equation 5.59 and 5.60, we get,

K ′x = sin γj and K ′z = cos γj.

From the relation 2γj := arccos
(
α2
A−1

α2
A+1

)
= 0, we can get the value of αA which is

αA = cot γj.

For this value of αA, we can easily derive that tαA = 1. This implies that the
value of βA corresponding to these observables A0 and A1 will be,

βA =
1

2 sin γj
. (5.61)

If we consider UA = U †0U
†
1 then the observables A0 and A1 will be of the form

A0 = UA(cos γjσZ + sin γjσX ⊗ I)U †A
A1 = UA(cos γjσZ − sin γjσX ⊗ I)U †A.

Setting γj = θ shows that in OBStestAlice, if the value of the parameter βA is
equal to 1

2 sin θ
, then the measurement operators at Alice’s side are same as the one

described in the OBStestAlice. In our DI proposal, whenever the devices involved
in OBStestAlice do not achieve the value βA = 1

2 sin θ
, the protocol aborts. This

concludes the proof.
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5.8 Statement and proof of Theorem 13

Statement of Theorem 13: POVMtestAlice either results in a high probability of
termination of this modified proposal (as the limit approaches infinity), or it guaran-
tees that Alice’s measurement devices attain Ω = 2 sin2 θ

(1+cos θ)
, meaning they are of this

specified form (up to a local unitary),

D0 =
1

(1 + cos θ)
(|φ⊥1 〉

〈
φ⊥1
∣∣)

D1 =
1

(1 + cos θ)
(|φ⊥0 〉

〈
φ⊥0
∣∣)

D2 = I−D0 −D1,

where |φ⊥1 〉 =
(
sin θ

2
|0〉+ cos θ

2
|1〉
)

and |φ⊥0 〉 =
(
sin θ

2
|0〉 − cos θ

2
|1〉
)
.

Proof. In algorithm KeyGenAlice of this modified protocol, Alice applies the POVM
D on a single qubit state ρRi (where Ri is the raw key bit indexed by i at Bob’s side).
So, without any loss of generality we can assume that Di ∈ D has the following form.

Di = λi(I + ~di.~σ), (5.62)

where ~di = [di0, di1, di2] and it is the Bloch vector with length at most one, ~σ =
[σX , σY , σZ ] are the Pauli matrices and λi ≥ 0.

In this case, one may wonder how we can fix the dimension of Di here in the
proof in DI scenario? The answer to this question is that here we are able to fix
the dimension of Di and choose this particular general form because of the tests
mentioned earlier in the source device and Bob’s measurement device verification
phase (corresponding result mentioned in Theorem 12) which certifies that the states
shared between Alice and Bob are of the specified form (upto a unitary) as mentioned
in [117] and after Bob’s projective measurements, the reduced states at Alice’s side
are one qubit states.

Now, the condition
∑2

i=0 Di = I leads us to the following relations.

2∑
i=0

λi = 1 (5.63)

2∑
i=0

λi~di = 0. (5.64)

In terms of Bloch vector we can rewrite ρ0, ρ1 in the following way.
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ρ0 =
1

2
(I + cos θσZ + sin θσX) (5.65)

ρ1 =
1

2
(I + cos θσZ − sin θσX). (5.66)

In the algorithm POVMtestAlice, if Alice would like to maximize her winning
probability then she needs to maximize the following expression.

Ω =
∑

Ri,RAi∈0,1

(−1)Ri⊕RAiTr[DRAi
ρRi ]. (5.67)

In terms of λi, ~di, ~σ we have,

Tr[D0ρ0] = λ0(1 + d00 sin θ + d02 cos θ)

Tr[D0ρ1] = λ0(1− d00 sin θ + d02 cos θ)

Tr[D1ρ0] = λ1(1 + d10 sin θ + d12 cos θ)

Tr[D1ρ1] = λ1(1− d10 sin θ + d12 cos θ).

In terms of λi, ~di, ~σ can rewrite Ω as,

Ω = λ0(1 + d00 sin θ + d02 cos θ)

+ λ1(1− d10 sin θ + d12 cos θ)

− λ0(1− d00 sin θ + d02 cos θ)

− λ1(1 + d10 sin θ + d12 cos θ). (5.68)

As both Tr[D0ρ1] and Tr[D1ρ0] are positive quantity, hence

Ω ≤ λ0(1 + d00 sin θ + d02 cos θ) + λ1(1− d10 sin θ + d12 cos θ), (5.69)

and this implies that for maximum value of Ω,

λ0(1− d00 sin θ + d02 cos θ) = 0 (5.70)

λ1(1 + d10 sin θ + d12 cos θ) = 0. (5.71)

As both of ρ0, ρ1 lie on the XZ plane and due to the freedom of global unitary,
without loss of generality we can assume d01 = d11 = d21 = 0. Due to the positivity
constraint (Di ≥ 0) we have,
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d00
2 + d02

2 ≤ 1 (5.72)

d10
2 + d12

2 ≤ 1 (5.73)

d20
2 + d22

2 ≤ 1. (5.74)

Without any loss of generality we can assume that for the maximum value of Ω,
d00

2 + d02
2 = 1. So, we can parameterize d00, d02 as cosα, sinα (−2π ≤ α ≤ 2π). By

substituting d00 = cosα, d02 = sinα in equation 5.70 we get,

1− cosα sin θ + sinα cos θ = 0.

This implies,

sin(θ − α) = 1 = sin
π

2
.

As −2π ≤ α ≤ 2π, so sin(θ − α) = 1 implies,

θ − α =
π

2
and,

α =
(
θ − π

2

)
. (5.75)

From the equation 5.75 we get,

~d0 = [sin θ, 0,− cos θ]. (5.76)

Similarly, for maximum value of Ω, d10
2 + d12

2 = 1. So, we can parameterize
d10, d12 as cosα, sinα (−2π ≤ α ≤ 2π). By substituting d10 = cosα, d12 = sinα in
equation 5.71 we get,

1 + cosα sin θ + sinα cos θ = 0.

This implies,

sin(θ + α) = −1 = sin
3π

2
.

As −2π ≤ α ≤ 2π, so sin(θ + α) = −1 implies,

θ + α =
3π

2
and,

α =

(
3π

2
− θ
)
. (5.77)
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From the equation 5.77 we get,

~d1 = [− sin θ, 0,− cos θ]. (5.78)

By substituting the expression of ~d0, ~d1 in equation 5.69 we get,

Ω ≤ (λ0 + λ1)(1− cos 2θ). (5.79)

Now again substituting the values of ~d0, ~d1 in equation 5.64 we get,

λ0 sin θ − λ1 sin θ + λ2d20 = 0 (5.80)

−λ0 cos θ − λ1 cos θ + λ2d22 = 0. (5.81)

Due to the constraint equation 5.74, similar to ~d0 and ~d1, here also we parameterize
the expression of d20, d22 as sin β, cos β respectively. By substituting d20 = sin β and
d22 = cos β in the equations 5.80 and 5.81 we get,

λ0 sin θ − λ1 sin θ + λ2 sin β = 0 (5.82)

−λ0 cos θ − λ1 cos θ + λ2 cos β = 0. (5.83)

By solving equation 5.82 and equation 5.83 together with equation 5.63 we get,

λ0 =
sin (θ − β)

[sin (θ + β) + sin (θ − β) + sin 2θ]
(5.84)

λ1 =
sin (θ + β)

[sin (θ + β) + sin (θ − β) + sin 2θ]
. (5.85)

Hence,

λ0 + λ1 =
sin (θ + β) + sin (θ − β)

[sin (θ + β) + sin (θ − β) + sin 2θ]
(5.86)

=
cos β

(cos β + cos θ)
. (5.87)

According to equation 5.79, for getting a tight upper bound on Ω we need to
maximize (λ0 + λ1). By equating d(λ0+λ1)

dβ
= 0 in equation 5.87 we get,

− sin β cos θ

(cos β + cos θ)2
= 0. (5.88)

This implies,

β = 0. (5.89)
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It is also easy to check that for β = 0, the expression d2(λ0+λ1)
dβ2 < 0. Hence,

the expression λ0 + λ1 maximizes at the point β = 0. Substituting this relation in
equations 5.84 and 5.85 we get,

λ0 = λ1 =
1

2(1 + cos θ)
. (5.90)

By substituting the values of λ0 + λ1 in equation 5.63 we get,

λ2 =
cos θ

1 + cos θ
. (5.91)

Hence, we get,

Ω ≤ 2 sin2 θ

(1 + cos θ)
, (5.92)

and

D0 =
1

2(1 + cos θ)
(I + sin θσX − cos θσZ) (5.93)

D1 =
1

2(1 + cos θ)
(I− sin θσX − cos θσZ) (5.94)

D2 =
cos θ

1 + cos θ
(I + σZ). (5.95)

We can rewrite the above expressions as follows,

D0 =
1

(1 + cos θ)
(|φ⊥1 〉

〈
φ⊥1
∣∣)

D1 =
1

(1 + cos θ)
(|φ⊥0 〉

〈
φ⊥0
∣∣)

D2 = I−D0 −D1,

where |φ⊥1 〉 =
(
sin θ

2
|0〉+ cos θ

2
|1〉
)

and |φ⊥0 〉 =
(
sin θ

2
|0〉 − cos θ

2
|1〉
)
.

This implies that whenever the measurement devices at Alice’s side achieve Ω =
2 sin2 θ

(1+cos θ)
, then it certifies that the measurement operators at Alice’s side are the in-

tended POVM devices. In our modified DI proposal, whenever the devices involved
in POVMtestAlice do not achieve the value Ω = 2 sin2 θ

(1+cos θ)
, the protocol aborts. This

concludes the proof.
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6
Finite Sample Analysis in Device Independent QPQ

In recent times, most of the quantum protocols involve sharing of entangled states.
In case these are generated by a third party, it is almost mandatory to measure
the quantum states used for the protocol to check whether those are actually in the
intended form or not. If an entangled state is not what is expected, the adversary may
obtain certain extra information, thereby violating the security of the cryptographic
scheme. This leads to the development of the idea towards testing the states generated
by third party devices before proceeding for the actual protocol. Mayers and Yao first
proposed the idea of self testing of quantum devices [81]. For quantum cryptographic
protocols, such self testing is defined in DI paradigm that guarantees security under
certain assumptions.

Generally the quantum protocols involve sharing of the Bell states or some other
two qubit entangled states. For this reason, violation of CHSH inequality [39] or
CHSH test [40] is exploited in most of the device independent quantum cryptographic
protocols (e.g., [77], [12], [57]). The security analysis generally considers infinite
number of samples and asymptotic treatment. However, for all practical purposes,
we have finite number of samples and thus we would always like to minimize the
amount of samples required. In this direction, we study the very recently proposed
DI QPQ [77] (a modification of [117] to obtain device independence) as a framework
in comparing the number of samples using different games. Thus, here we consider
how to use quantum multi party pseudo telepathy game [28] in such scenario and
compare its performance with CHSH game in terms of number of samples.

While investigating the performance of CHSH as well as three party pseudo telepa-
thy games for DI-QPQ, it is noted that for a significant range of parameters, the
success probability of the pseudo telepathy game is higher than CHSH. The relation
between the required sample size and corresponding success probability for testing
DI is well known [16] where one can see that the sample size is inversely proportional
with the success probability of DI testing. Thus, for a considerable range of param-
eters, where the success probability of three party pseudo telepathy game is higher
compared to CHSH, one can use the first one instead of the second to obtain better
efficiency. With this understanding, we propose a certain strategies for testing device
independence to minimize the overall sample size.
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In Section 6.1, we provide a brief background related to our work before delving
into the detailed explanation of our contributions in Section 6.2. Next in Section 6.3,
we present our first strategy for certifying the states used in [117]. This strategy
involves the server applying a simple unitary operation (CNOT) on the qubits to
transform the states into a unitary equivalent of EPR pairs, thereby reducing the
required sample size for testing. Furthermore, in Section 6.4, we introduce another
strategy where the server transforms the original states from [117] into three-qubit
entangled states and certifies them using a three-party pseudo-telepathy game. This
alternative approach aims to further minimize the overall sample size required for
testing in finite sample scenarios.

6.1 Background

In this section we present several related backgrounds.

6.1.1 CHSH and Parity Game

The CHSH game [40] is played by two players, Alice and Bob (in the same team) are
not allowed to communicate in any manner after the initial setup where they may
share an entangled state. The referee provides one random bit x to Alice and one
random bit y to Bob. Alice has to provide the referee a bit a and Bob has to send
b. The referee declares Alice and Bob the winner if a⊕ b = x ∧ y; otherwise they are
considered defeated.

When Alice and Bob participate in classical set-up, the maximum success proba-
bility they can achieve is 0.75. However, when they share each particle of a maximally
entangled state and follow some specific kind of measurement strategy, they can win
the game with the probability cos2(π

8
). Instead of exploiting the maximally entangled

state 1√
2
(|00〉 + |11〉), if Alice and Bob share any (non-maximally entangled) state

then the success probability reduces. Such states have been exploited in [77].

In the parity (also known as multi-party pseudo telepathy) game [28], each player
Ai is given an input bit xi and must generate an output bit yi. The players are
guaranteed that the total number of 1’s in their inputs is even. Without communi-
cation after receiving their inputs, the players are tasked with producing a collective
output that contains an even number of 1’s if and only if the input contains a mul-
tiple of 4 number of 1’s. More formally, it requires that

∑n
i yi ≡

1
2

∑n
i xi(mod 2),

provided
∑n

i xi ≡ 0( mod 2). If we consider the game for three parties, then the max-
imum success probability achieved in classical case equals to 0.75. However, if the
three parties share GHZ state and perform some particular measurements, they can
achieve success with certainty (probability 1) in the quantum case. To match it with
the ideas in [77], instead of the GHZ state 1√

2
(|000〉 + |111〉), if three parties share

any other entangled state, the maximum success probability decreases. However, still
this will be significantly better for certain range of parameters than that of [77]. This
is explained in Section 6.4.
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6.1.2 Estimation of Sample Size For Finite Sample Scenario

Generally if we like to distinguish one event having probability p and another having
probability p(1+ε), where ε is small, then the approximate number of samples required
is O( 1

pε2
). Informally speaking, one may have a confidence of more than 99% in

distinguishing two events with 64
pε2

samples. A more involved expression related to

sample size in finite sample scenario can be obtained using Chernoff-Hoeffding [59]
bound which is already mentioned in Chapter 4 Proposition 1.

In our case, if the test succeeds, we set Xi = 1; otherwise Xi = 0. Let us consider
E[X] = E[Xi] = p and let the variable X denotes the actual success probability
p′. Now the question is how large should “the number of samples” be so that we
get a good “accuracy” with high “confidence”? More precisely, suppose we want to
estimate the success probability p within an error margin of εp and confidence 1− γ,
that is,

Pr[|p′ − p| ≤ εp] ≥ 1− γ, (6.1)

where p′ and p are the estimated and the expected values respectively. Comparing
Equation (6.1) with Proposition 1, and given ε, p and γ, we obtain exp(−2ε2p2m) ≤ γ,
i.e., m ≥ 1

2ε2p2
ln 1

γ
. This implies that as the value of the success probability increases,

the required sample size decreases. Denoting the maximum success probability for a
specific θ by pmax, one can write,

mopt =
1

2ε2p2
max

ln
1

γ
. (6.2)

This mopt gives the optimal value of the sample size required to certify a given
state where the value of θ corresponding to this state is already known.

6.1.3 Device Independence in QPQ

Here we are interested in investigating how the number of samples towards testing
an entangled state can be reduced. Thus, instead of getting into tedious security
proofs based on several complicated assumptions, we like to present our assumptions
related to device independence. We consider that the required qubits, the quantum
gates (unitary operations) and the measurement devices will be provided by the third
party. That is, in the DI setting, the security of the protocol can be guaranteed even
after removing this trustful assumption over the source, circuits and measurement
devices. In the DI-QPQ protocol, the server asks for non-optimally entangled states
from a third party and also the measurement devices are purchased from outside.
The claimed idea of [77] is as follows.

The two-qubit entangled state involved in Quantum Private Query (QPQ) proto-
col is of the form

|ψQPQ〉 =
1√
2

(|0〉B|φ0〉A + |1〉B|φ1〉A), (6.3)

where |φ0〉A = cos ( θ
2
)|0〉 + sin ( θ

2
)|1〉 and |φ1〉A = cos ( θ

2
)|0〉 − sin ( θ

2
)|1〉. The success

probability of this version of CHSH game (this is not exactly the CHSH game with
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maximally entangled state) for this state |ψQPQ〉 will be 1
8
(sin θ(sinψ1 + sinψ2) +

cosψ1 − cosψ2) + 1
2

where |ψ1〉 and |ψ2〉 are the chosen measurement basis and this
success probability value can be maximized by choosing appropriate measurement
basis |ψ1〉 and |ψ2〉 for a particular θ.

From the expression derived in section 6.1.2, it is clear that the expected sample
size is inversely proportional with the success probability. So, when we consider the
finite sample device independent QPQ protocol, we have to maximize the success
probability corresponding to a particular state (i.e., for a particular value of θ) to
optimize the overall sample size. This is done by properly choosing the values of
ψ1, ψ2. Note that this optimal choice of ψ1 and ψ2 is only valid for the purpose of DI
testing as this ψ1 and ψ2 is not involved in the actual execution of QPQ protocol [77].
However for testing purposes, it is better to use the optimized basis for lesser number
of samples.

In the DI-QPQ protocol [77], Bob and Alice share entangled states of the form
1√
2
(|0〉B|φ0〉A+|1〉B|φ1〉A), where |φ0〉A = cos ( θ

2
)|0〉+sin ( θ

2
)|1〉 and |φ1〉A = cos ( θ

2
)|0〉−

sin ( θ
2
)|1〉. The value of θ is known to all. Bob chooses two measurement bases

namely {|ψ1〉, |ψ⊥1 〉} and {|ψ2〉, |ψ⊥2 〉}, to play the CHSH game locally. Here, |ψ1〉 =
cos ψ1

2
|0〉+ sin ψ1

2
|1〉 and |ψ2〉 = cos ψ2

2
|0〉+ sin ψ2

2
|1〉.

Thus, Bob gets the success probability in terms of θ, ψ1 and ψ2 which is equal to
1
8
(sin θ(sinψ1 + sinψ2) + cosψ1 − cosψ2) + 1

2
. To maximize the quantity, we have to

maximize sin θ(sinψ1 + sinψ2) + cosψ1 − cosψ2. Calculation shows that the optimal
value of ψ1, ψ2 corresponding to a particular θ will be ψ1 = (π

2
− tan−1(cosec θ))

and ψ2 = (π
2

+ tan−1(cosec θ)). So, the optimal sample size required to test the
source device in two party scenario can be found by the expression 6.2 where the
value of ψ1, ψ2 corresponding to the value pmax will be ψ1 = (π

2
− tan−1(cosec θ)) and

ψ2 = (π
2

+ tan−1(cosec θ)). While evaluating with our new proposal, we will compare
with this optimized data and show when we can obtain better results.

A Caveat on Device Independence and Security Proofs

Now it is important to describe what provides the Device Independence in [77]. The
proof of device independence is varied and not streamlined. In [77], the claim of
device independence comes from the following.

• The server (Bob) asks for entangled states of the form 1√
2
(|0〉B|φ0〉A+|1〉B|φ1〉A)

from the third party as described before. This is basically dependent on θ, i.e.,
the server provides the value of θ to the third party and the third party provides
the required (non-maximal) entangled states.

• The server obtains the measurement devices from the third party too, that
will be able to measure in certain measurement basis. These measurement de-
vices are memoryless, and thus each measurement will be independent. Further
during the run time, it is assumed that the measurement devices cannot com-
municate to anybody other than Bob i.e., no information is leaked from the
devices.

142



Based on these assumptions, it is claimed that by performing the CHSH test Bob
should obtain certain results related to success probability which he already knows.
In case the experimental data closely matches with what he expects, then he will
believe on the entangled states obtained as well as the measurement devices which
were provided by the third party.

We would like to add the following point here. When the server (Bob) receives
an entangled state as above, he may keep one particle with him and communicate
the other one to the client (Alice). This is because the idea of Device Independence
exploits non-locality. With one measurement device at Bob’s side and another at
Alices’s, the security notions should work if they play the game and then publicly
announce the classical outcome. Then Bob and Alice will get to know each other’s
input as well as outcome after completion of the game and consequently together can
estimate whether the correct state is supplied. On the other hand there could be an
argument that Alice may be colluding with the third party and possibly that is the
reason the complete game was played in the server side for checking the states in [77].
However, the exact security issues here are not clear. On the other hand, this does
not affect the work in this initiative as we are primarily interested about studying the
number of samples and not the security issues.

We conclude this discussion with some issues related to security proofs. In the
domain of cryptology, there are two directions.

• One may provide certain schemes with design details as well as certain justifica-
tions towards security and then wait for the cryptanalytic results. This mostly
happens in the actual implementations that are in the application domain. The
cryptanalytic efforts continue and once a system is attacked, necessary counter-
measures are taken. However, no specific formal security proof is provided. For
example, design of commercial stream or block ciphers still follow this line. This
was the scenario when BB84 protocol [21] was first proposed as, at that time,
the security claims were justified from certain laws of Physics.

• Providing schemes with complete security proofs. In this case certain basic
assumptions are considered and based on that there are formal-looking security
proofs. These are mostly popular in theoretical world. However, certain systems
are arriving in market where security proofs are advertised. The main problem
in this domain is that in certain cases flaws are identified in many security
proofs. In fact, larger the proof, lesser the confidence as many of the long
proofs require more serious attention. However, in the positive direction we
must appreciate that after the publication of the BB84 protocol, in last three
decades researchers have noted many important theoretical proofs justifying
several security aspects of BB84 and its variants.

This is an age-old philosophical debate. In this chapter, the DI idea that we
mention (towards reducing the number of samples) using Pseudo-Telepathy is not
supported by rigorous proof. However, one may refer to [78, 89] and the references
therein to get a view of how pseudo-telepathy games may yield device-independent
certification given an entangled state.

143



6.2 Contribution of this chapter

In this chapter, we propose various strategies to certify the entangled states utilized
in the protocol presented in [117] with the aim of reducing the required sample size
compared to the test described in [77] for finite sample scenario. Our research in this
direction yields two key results, which can be summarized as follows.

• In Section 6.3, we note that the test for device independence should be applied
on a slightly modified state than the state being used as in [77]. This provides
a much better probability compared to that has been achieved in [77], with the
expense of one additional CNOT gate only. In fact this shows that how even
without considering the maximally entangled state, one can simulate the CHSH
game like behaviour by changing the measurement basis in one measurement
device.

• In Section 6.4, we exploit the three-party Pseudo Telepathy game for a trans-
formed three-qubit non maximally entangled state and show how it provides
even better probability.

6.3 Analysis of CHSH game with modified two-

qubit entangled states

In this section, we analyze case by case situation of the CHSH test for a modified
two-qubit entangled state of the form

1√
2

(cos
θ

2
|00〉+ sin

θ

2
|01〉+ cos

θ

2
|11〉 − sin

θ

2
|10〉). (6.4)

The motivation here is as follows. In the QPQ protocol [117], generally the client
learns only a few bits of the shared secret key, while the server learns it all. This is
done by certain modification of a quantum key distribution protocol. The entangled
state of equation (6.3), used in [117], could provide expected 1

2
sin2 θ proportion of

shared secret key bits to the client. Generally, the client will try to learn only a few
bits and thus the value of θ will be very small. The method presented in [77] requires
lower probability (more samples) for small θ. We show that with proper choice of
the entangled state this can be improved a lot. In fact, one may keep the DI-QPQ
protocol [77] exactly the same, but use our strategy only for testing DI.

6.3.1 Success probability calculation

In this case, Bob performs CNOT operation over the original two qubit state shared
in DI-QPQ protocol [77] by considering the first qubit of the state as a control bit
and second qubit as a target bit. The resulting state after performing this operation
will be of the form as mentioned in equation 6.4. We have already mentioned the
details of the game in Section 6.1.1.
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1. For input xy = 00: Bob’s first quantum device measures the first qubit of
the modified state in {|0〉, |1〉} basis and the second quantum device measures
the second qubit of the modified state in {|ψ1〉, |ψ⊥1 〉} basis. In this case, the
probability of obtaining each of 00 and 11 from the two quantum devices (as
output) is 1

2
cos2( θ−ψ1

2
) and 1

2
cos2( θ−ψ1

2
) respectively. So, the total winning

probability in this case is cos2( θ−ψ1

2
).

2. For input xy = 01: Bob’s first quantum device measures the first qubit of
the modified state in {|0〉, |1〉} basis and the second quantum device measures
the second qubit of the modified state in {|ψ2〉, |ψ⊥2 〉} basis. In this case, the
probability of obtaining each of 00 and 11 from the two quantum devices (as
output) is 1

2
cos2( θ−ψ2

2
) and 1

2
cos2( θ−ψ2

2
) respectively. So, the total winning

probability in this case is cos2( θ−ψ2

2
).

3. For input xy = 10: Bob’s first quantum device measures the first qubit of
the modified state in {|+〉, |−〉} basis and the second quantum device measures
the second qubit of the modified state in {|ψ1〉, |ψ⊥1 〉} basis. In this case, the
probability of obtaining each of 00 and 11 from the two quantum devices (as
output) is 1

4
[cos( θ−ψ1

2
) − sin( θ−ψ1

2
)]2 and 1

4
[cos( θ−ψ1

2
) − sin( θ−ψ1

2
)]2 respectively.

So, the total winning probability in this case is 1
2
[cos( θ−ψ1

2
)− sin( θ−ψ1

2
)]2.

4. For input xy = 11: Bob’s first quantum device measures the first qubit of
the modified state in {|+〉, |−〉} basis and the second quantum device measures
the second qubit of the modified state in {|ψ2〉, |ψ⊥2 〉} basis. In this case, the
probability of obtaining each of 01 and 10 from the two quantum devices (as
output) is 1

4
[cos( θ−ψ2

2
) + sin( θ−ψ2

2
)]2 and 1

4
[cos( θ−ψ2

2
) + sin( θ−ψ2

2
)]2 respectively.

So, the total winning probability in this case is 1
2
[cos( θ−ψ2

2
) + sin( θ−ψ2

2
)]2.

As all the cases can happen with equal probability (for random choice of inputs), the
overall probability of winning the CHSH game with this modified two-qubit entangled
state is

1

2
+

1

8
[cos(θ − ψ1) + cos(θ − ψ2)− sin(θ − ψ1) + sin(θ − ψ2)].

6.3.2 Appropriate choice of measurement basis

From the discussion of the previous subsection, we can see that for the modified two-
qubit entangled state, Bob gets the success probability in terms of θ, ψ1 and ψ2 which
is equal to 1

2
+ 1

8
[cos(θ−ψ1)+cos(θ−ψ2)−sin(θ−ψ1)+sin(θ−ψ2)]. To maximize the

quantity, we have to maximize cos(θ − ψ1) + cos(θ − ψ2)− sin(θ − ψ1) + sin(θ − ψ2).
Now, we can write,

[cos(θ − ψ1)− sin(θ − ψ1)] + [cos(θ − ψ2) + sin(θ − ψ2)]

Setting θ − ψ1 = A, θ − ψ2 = B, 1 = r1 sinφ1 = r1 cosφ1 (for the first half of the
expression) and 1 = r2 sinφ2 = r2 cosφ2 (for the second half of the expression), we
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get

(r1 sinφ1 cosA− r1 cosφ1 sinA)

+(r2 sinφ2 cosB + r2 cosφ2 sinB)

= r1 sin(φ1 − A) + r2 sin(φ2 +B),

where r2
1 = r2

2 = 2 and tanφ1 = tanφ2 = 1 i.e., φ1 = φ2 = tan−1(1) = π
4
.

Again, the value r1 sin(φ1 − A) + r2 sin(φ2 + B) will be maximum when both
sin(φ1−A) = 1 and sin(φ2 +B) = 1 i.e., when (φ1−A) = π

2
and (φ2 +B) = π

2
. From

that, after putting the value of A and B we get, ψ1 = (π
4

+ θ) and ψ2 = (θ − π
4
).

From the discussion, it is clear that the optimal value of |ψ1〉 and |ψ2〉 corre-
sponding to a particular θ will be ψ1 = (π

4
+ θ) and ψ2 = (θ − π

4
). So, the success

probability corresponding to each theta will be maximum for this particular choice of
measurement basis. By putting this value into the success probability expression of
the modified state (as derived in previous subsection), we can see that for this partic-
ular choice of measurement basis, the success probability value of CHSH game with
this modified state for different values of θ is constant and this success probability
value is the maximum success probability that we can get for two-qubit entangled
states in CHSH game. This is indeed natural as we are making local transformation
at one side and then accordingly modifying the measurement basis.

We like to refer that this success probability is significantly greater than what
could be obtained in [77] for θ 6 π

2
that is presented in Figure 6-2.

6.4 Analysis of three-party quantum pseudo telepa-

thy with transformed three-qubit entangled states

In this section, we analyze case by case situation of the proposed multi party pseudo
telepathy (parity) test for a three-qubit entangled states of the form

1√
2

(cos
θ

2
|000〉+ sin

θ

2
|010〉+ cos

θ

2
|111〉 − sin

θ

2
|100〉).

We have already mentioned the details of the game in Section 6.1.1.

1. For input x1x2x3 = 000: The quantum devices perform Hadamard operation
over individual qubits and measure each qubit in {|0〉, |1〉} basis. In this case,
probability of obtaining each of 000, 110, 011, 101 from the three quantum
devices (as output) are 1

4
cos2( θ

2
), 1

4
cos2( θ

2
), 1

4
(cos θ

2
−sin θ

2
)2 and 1

4
(cos θ

2
+sin θ

2
)2

respectively. So, the total winning probability in this case is 1
4
(3 + cos θ).

2. For input x1x2x3 = 110: Each of the first two quantum devices perform the
unitary operator S (as described in [28]) over the first two particles. Then all the
devices performs Hadamard operation over the individual qubits and measure
each qubit in {|0〉, |1〉} basis. In this case, probability of getting each of 100,
010, 001, 111 from the three quantum devices (as output) are 1

4
, 1

4
, 1

4
cos2( θ

2
) and
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1
4

cos2( θ
2
) respectively. Thus, the total winning probability in this case becomes

1
4
(3 + cos θ).

3. For input x1x2x3 = 011: The devices first perform S over the last two qubits
and then all the devices apply Hadamard operation over the individual qubits
and then measure each qubit in {|0〉, |1〉} basis. In this case, probability of
getting each of 100, 010, 001, 111 from the three quantum devices (as output)
are 1

16
[3 + cos θ+ 2 sin θ], 1

16
[3 + cos θ− 2 sin θ], 1

16
[3 + cos θ− 2 sin θ] and 1

16
[3 +

cos θ+ 2 sin θ] respectively. Hence, here we obtain the total winning probability
as 1

4
(3 + cos θ).

4. For input x1x2x3 = 101: The devices first perform S over the first and third
qubits and then all the devices perform Hadamard operation over individual
qubits and measure each qubit in {|0〉, |1〉} basis. In this case, probability of
getting each of 100, 010, 001, 111 from the three quantum devices (as output)
are 1

16
[3 + cos θ+ 2 sin θ], 1

16
[3 + cos θ− 2 sin θ], 1

16
[3 + cos θ+ 2 sin θ] and 1

16
[3 +

cos θ− 2 sin θ] respectively. Thus the winning probability becomes 1
4
(3 + cos θ).

As all the cases can happen with equal probability (for random choice of inputs from
the set {000, 110, 011, 101}), the overall probability of winning the multi party pseudo
telepathy game with this specified form of three qubit entangled state is

4× 1

4
× 1

4
(3 + cos θ) =

1

4
(3 + cos θ)

which is equal to 1 (i.e., maximum) when θ = 0, i.e., the success probability will be
maximum for three qubit maximally entangled (GHZ) states. We like to refer that
this success probability is greater than what could be obtained in [77] for certain
ranges of θ that is presented in Figure 6-2.

6.4.1 Transformation of two-qubit state into three-qubit

In the DI-QPQ [77] set-up, Bob holds the initial two qubit entangled state, and say,
that it can perform either CHSH test or parity test locally before proceeding for the
actual QPQ protocol. When Bob performs the parity test locally, he has to first
transform the initial two qubit entangled state |ψQPQ〉 into three qubit entangled
state |ψ3QPQ〉 as follows.

• Bob first performs the CNOT operation over the initial two qubit entangled
state by considering first qubit as a control bit and second qubit as a target bit.

• After performing the CNOT operation, Bob will add an ancilla qubit |0〉 in his
end and perform Toffoli operation by considering the two qubits of the modified
entangled state as control bit and the ancilla qubit as a target bit.

• After performing these operations, the resulting state will be of the form

1√
2

(cos
θ

2
|000〉+ sin

θ

2
|010〉+ cos

θ

2
|111〉 − sin

θ

2
|100〉)
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The circuit diagram corresponding to this transformation is shown in figure 6-1.

• Bob will perform multiparty pseudo telepathy (parity) game [28] with this trans-
formed state.

Now the success probability of the parity game with this transformed three qubit
state will be 1

4
(3 + cos θ) which equals 1 for θ = 0.

Figure 6-1: Circuit diagram for transformed state

6.4.2 Comparative study

Let us consider the actual two-qubit entangled state shared in QPQ protocol which is
of the form 1√

2
(cos θ

2
|00〉+sin θ

2
|01〉+cos θ

2
|10〉−sin θ

2
|11〉), then the success probability

of CHSH game (maximum success probability corresponding to each θ) for this state
equals to 1

8
(sin θ(sinψ1 +sinψ2)+cosψ1−cosψ2)+ 1

2
where ψ1 = (π

2
−tan−1(cosec θ))

and ψ2 = (π
2

+ tan−1(cosec θ)).
Instead of the actual state, if we consider the modified two-qubit entangled state

of the form 1√
2
(cos θ

2
|00〉 + sin θ

2
|01〉 + cos θ

2
|11〉 − sin θ

2
|10〉), then according to the

discussion in section 6.3, the success probability of CHSH game (maximum success
probability corresponding to each θ) for this state equals to 1

2
+ 1

8
[cos(θ−ψ1)+cos(θ−

ψ2) − sin(θ − ψ1) + sin(θ − ψ2)] where ψ1 = (θ + π
4
) and ψ2 = (θ − π

4
). With this

particular choice of basis the actual success probability is further improved and it
provides the same result as obtained in the CHSH game with maximally entangled
state.

Further, if we consider the transformed three-qubit entangled state of the form
1√
2
(cos θ

2
|000〉+sin θ

2
|010〉+cos θ

2
|111〉−sin θ

2
|100〉), then according to the discussion in

section 6.4, the success probability of parity game for this state equals to 1
4
(3 + cos θ)

The comparative study between the success probability values of two games (for
different forms of states) corresponding to different values of θ from 0 to π

2
is shown

in figure 6-2.
From the graph, it is clear that for CHSH game, the value of success probability

varies between 0.75 to cos2 π
8

for the actual state shared in QPQ protocol and the
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Figure 6-2: Comparative study of success probabilities between CHSH and parity
game for DI-QPQ protocol

success probability of the two qubit modified entangled state (as discussed in section
6.4) remains constant i.e., cos2 π

8
irrespective of the value of θ. For the parity game,

the value of the success probability for the transformed three qubit entangled state
(as discussed in section 6.4) varies between 1 to 0.75. From the graph (as well as
from calculation), it is clear that at θ ≈ 1.14, the success probability of parity game
and the success probability of CHSH game for the modified two qubit state becomes
equal. Thus, for all the values of θ < 1.14, the success probability of parity game for
transformed three qubit state is higher compared to the success probability of CHSH
game for the modified two qubit state. On the other hand, for θ ≥ 1.14, the success
probability of CHSH game for modified two qubit state is higher compared to the
success probability of parity game for transformed three qubit state.

Similarly, for the value of θ ≈ 1.2, the success probability of parity game and the
success probability of CHSH game for the actual two qubit state becomes equal and
beyond that point, the success probability of CHSH game for actual two qubit state
is higher compared to the success probability of parity game for transformed three
qubit state. However, the success probability value of CHSH game for the modified
two qubit state is always higher as compared to the success probability value for the
actual two qubit state and the two become equal for θ = 1.57.

In case we are interested for small values of θ, the parity game as in Section 6.4
will be the best suited for testing DI. Thus [77, Algorithm 1] should be parame-
terised based on the value of θ. Further parity game does not require modifying the
measurement bases as it is required for the CHSH test as described in Section 6.3.
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6.4.3 Towards security analysis for finite samples

As we consider finite number of samples in our modified testing mechanism, in testing
phase, we need to check whether the success probability value lies within the interval
[pQPQ − εpQPQ, pQPQ + εpQPQ], where pQPQ is the intended success probability corre-
sponding to a particular form of state (i.e., for a particular value of θ) and ε is the
accuracy parameter chosen by the server (Bob). When the states successfully pass
this test, Bob proceeds further for the actual QPQ protocol, otherwise he aborts.

In [77], the authors outlined an attack strategy over the QPQ protocol where they
have shown that if there is εA amount of bias in the choice of measurement basis
by the client (i.e., Alice), then she can extract (1

2
+ 2ε2A) sin2 θ fraction of entire key

stream, where the amount of extra information leaked is 2ε2A sin2 θ. Towards resisting
such leakage (which arises due to the finite sample size), Bob must bound the value of
εA so that the additional information which is leaked to Alice should be infinitesimally
small. In this direction, one may quantify the security of a protocol in the following
manner.

The additional information leaked to the adversary (client) for our optimal sample
protocol due to the biased choice of the client’s measurement basis will be proportional
to the value of ε, where ε is the accuracy parameter chosen by the server. This can be
justified as follows. Let, instead of the correct states, Bob is provided with the states
of the form (α|0〉B|φ0〉A + β|1〉B|φ1〉A) where |α|2 = (1

2
+ εA) and |β|2 = (1

2
− εA).

When Bob performs the CHSH test, the success probability for the modified states

become p′ = 1
2
+ 1

8
sin θ(sinψ1+sinψ2)+ 1

4

√
1
4
− ε2A(cosψ1−cosψ2)+ 1

4
εA cos θ(cosψ1+

cosψ2). Now p′ must lie within the interval [pQPQ − εpQPQ, pQPQ + εpQPQ], where
pQPQ is the intended success probability of the modified state and ε is the accuracy
parameter chosen by Bob.

Thus from the lower and upper bounds, we get ε2A ≥ −
2εpQPQ
cosψ1

and ε2A ≤
2εpQPQ
cosψ1

respectively. Since negative εA is not meaningful, we have the solution as

εA ≤
√

2εpQPQ
cosψ1

. (6.5)

Thus, to deceive Bob, the states should be prepared in such a way that the value

of εA must satisfy the condition εA ≤
√

2εpQPQ
cosψ1

. Otherwise, the value of p′ will not

lie within the specified interval and Bob has to abort the protocol. As for a given
θ, the values of pQPQ, ψ1 and ψ2 are constant, we can write εA ≤ k

√
ε, where k is a

constant.

Similarly, for the given erroneous state (α|0〉B|φ0〉A + β|1〉B|φ1〉A), when Bob per-
forms the parity test, the success probability of parity test for the transformed states

becomes p′′ = 1
4
[1 + cos θ+ 2

√
1
4
− ε2A(1 + cos θ)]. This value of p′′ must lie within the

interval [pQPQ−εpQPQ, pQPQ+εpQPQ], where pQPQ is the intended success probability
of the transformed state.

Now from the left and right inequalities, we get ε2A ≥ −ε and ε2A ≤ ε respectively.
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Since negative εA is not meaningful, we have the solution as

εA ≤
√
ε. (6.6)

Analyzing both the relation between εA and ε for CHSH test and parity test in
equations (6.5) and (6.6) respectively, one may conclude that the maximum value
of εA is related to the square root of the value of chosen accuracy parameter (i.e.,
ε). Form the discussion in [77], the additional information leaked to Alice equals
to 2ε2A sin2 θ. As the value of εA is proportional with the square root of the chosen
accuracy parameter ε, the maximum information leaked to Alice will be proportional
with the value of the chosen accuracy parameter ε.

6.5 Discussion and Conclusion

In this chapter, we propose several strategies to improve the test of device inde-
pendence in the Device Independent Quantum Private Query Proposal [77]. Our
motivation comes from the analysis in finite sample scenario, which is mandatory for
actual implementation of the protocol. We derive the relation between the required
sample size and corresponding success probability and propose optimal testing mech-
anisms for DI-QPQ protocol. CHSH tests on different versions of the entangled states
are studied. Further, we also consider the three-party Pseudo Telepathy as a tool for
testing DI and show that it provides significantly better results for practical purposes.
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7
Proposal For Multi-User Semi Device Independent

QPQ

Although the development in the field of QPQ is evident from the significant number
of recent proposals, they mostly consider the single-user, single-server scenario. For
a more practical multi-user scenario, these single-user schemes need to be executed
multiple times between the server and each user, which is inefficient. To overcome
this inefficiency, some multi-user schemes have been proposed recently [116, 119, 110].
Ye et al. [119] basically implemented the QPQ scheme [52] repeatedly for each user,
which has already been cryptanalyzed in [121]. The other two proposals [116, 110]
consider the existence of a semi-trusted server to generate an oblivious key between
the users so that they can jointly retrieve items of common interest. However, neither
of these solutions is practical because users typically want to retrieve different items
from the database without revealing their choices to others (for privacy). For items
of common interest, one user may simply retrieve the intended bits from the database
and share those bit values with other users using a QKD scheme. This implies that
the solutions proposed in [116, 110] are not practical. Additionally, the assumption
of a semi-honest party is not realistic in a distrustful scheme.

Here in this chapter, we propose a new multi-user QPQ scheme that overcomes
the limitations of the existing schemes. Our proposal allows each user to indepen-
dently retrieve different data bits without revealing their items of interest. In our
proposal, each of the users can retrieve an optimal number of raw key bits during
the oblivious key generation phase. Additionally, our scheme offers semi-device inde-
pendent security by certifying the input states and the measurement devices at each
of the client’s sides and by putting trustful assumptions over the functionality of the
other devices. In contrast to other multi-user proposals that discuss security under
certain eavesdropping strategies, here we perform a formal evaluation of the security
concerns and are able to determine the maximum likelihood of cheating for both the
server and users.

Before explaining our exact contributions in detail in Section 7.2, we briefly dis-
cuss the limitations of the existing multi-user QPQ schemes in Section 7.1. Then,
we describe our semi-DI proposal for multi-user QPQ in Section 7.3, where we try
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to overcome the limitations of the existing multi-user QPQ schemes. Finally, in Sec-
tion 7.4, we formally evaluate the security concerns of our proposal and determine
the maximum likelihood of cheating for both the server and users.

7.1 Limitations of the existing multi-user QPQ pro-

posals

Although the developments in the QPQ domain are evident from the several single-
user single-server protocols, when considering the multi-user scenario, existing single-
user protocols may require multiple executions for each user, leading to increased
communication and resource overhead. Recent advancements have introduced multi-
user QPQ schemes [116, 119, 110] to reduce these overheads. The proposal by Ye
et al. [119] has already been cryptanalyzed in [121]. Here, we discuss the limitations
of [116] and [110] that can be summarized as follows.

• The proposals in [116, 110] assume that the users always have the same items of
interest, which they retrieve from the database by trusting each other. However,
in practice, different users usually want to retrieve different data bits without
revealing their choices to anyone for privacy. In such cases, the existing multi-
user schemes are not suitable.

• As assumed in [116, 110], if the users are honest with each other, a simpler
approach would be for one user to retrieve the intended bits using a single user
QPQ scheme (such as [15]), and then share those bits with other users using a
QKD scheme (such as [109]). This approach would then reduce the overhead
and quantum resources required.

• The proposals in [116, 110] assume the existence of a semi-trusted third-party
quantum server. However, for distrustful primitives like QPQ, the assumption
about the honest behavior of any involved party (including a third party) is
impractical.

• The proposals presented in [116, 110] generate fixed-length raw key bits at each
of the client’s sides. However, in the ideal scenario, the server should have the
freedom to choose how many key bits each client can know.

• In [116, 110], the security concerns are examined by analyzing certain eaves-
dropping strategies that can be employed by a dishonest user or server instead
of providing a formal analysis.

7.2 Contribution of this chapter

This chapter focuses on the QPQ distrustful primitive in multi-user scenarios. Our
main contributions in this chapter can be summarized as follows.

154



1. In this proposal, we come up with a practical multi-client QPQ scheme using
GHZ states where different users may query simultaneously for different items
from the database. Our proposal removes the trustworthiness from the source
(input state generation) device and the devices that perform measurements at
the clients’ side exploiting the self-testing of GHZ states (following the pro-
cedures mentioned in [82] and [115]) and the self-testing of POVM operators
(following the strategy mentioned in [15]). To the best of our knowledge, this
proposal is the first of its kind in multi-user QPQ, where different clients can
simultaneously retrieve different items of interest from the database.

2. Like the proposal in [15], this scheme also utilizes optimal POVM measurements
(in distinguishing two non-orthogonal states) at the clients’ side, replacing the
traditional projective measurement. This ensures the retrieval of the maximum
amount of raw key bits (during the oblivious key generation phase) and, conse-
quently, the optimal number of data bits by the clients (in a single query).

3. Contrary to the existing multi-user QPQ proposals that only consider specific
eavesdropping strategies, our proposal undergoes a formal evaluation of its se-
curity performance considering the security definitions introduced in [15]. We
further determine the maximum likelihood of cheating for both the server and
clients in the dishonest scenario.

7.3 Our semi-DI-QPQ proposal

Depending on the functionality, our entire protocol is divided into six phases. Those
different phases are described below. Note that this proposal follows all the assump-
tions mentioned in Chapter 3 Section 3.6. Additionally, this proposal also assumes
the following.

• The identity operator I2 and the unitary operator U at the server’s and each
client’s side, as well as the projective measurement devices at the server’s side,
work as intended and are trusted.

Here, we have not incorporated the channel noise in this proposal. Therefore, all
the operations mentioned here are assumed to be flawless.

1. Entangled State Supply Phase:

(a) A third party provides K (where K is assumed to be asymptotically large)
number of (n+ 1)-qubit entangled states to the server.

2. Entangled State Sharing Phase:

(a) For every j-th state of these K samples received from the third party, the
server performs the following steps.
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• The server generates random bit rj ∈R {0, 1} for every j-th state
(essentially, these randomly generated bits serve as the initial raw key
bits for the server).

• If rj = 0, the server performs identity operator (I2) to all the qubits
of the j-th state. That means, for honest implementation of this case,
the j-th state is supposed to be of the form 1√

2

(
|0〉⊗(n+1) + |1〉⊗(n+1)

)
.

• If rj = 1, the server performs the unitary operator U to each qubit of
the j-th state where U is of the following form.

U =

[
cos θ sin θ
sin θ − cos θ

]
.

That means, for honest implementation of this case, the j-th state is
supposed to be of the form 1√

2

(
|0′〉⊗(n+1) + |1′〉⊗(n+1)

)
where |0′〉 =

(cos θ|0〉+ sin θ|1〉) and |1′〉 = (sin θ|0〉 − cos θ|1〉).
• After these operations, the server shares the j-th state with the n users

such that the i-th qubit of the state corresponds to the i-th user and
the (n+ 1)-th qubit corresponds to the server.

3. Entangled State Verification Phase:

In this phase, the server and the clients jointly verify the states the untrusted
third party provides in a decentralized way. A verification procedure for the
multi-particle GHZ states (provided by the untrusted third party) was demon-
strated in [82], which is known as θ-protocol. Here, we adopted a simplified
version of the θ-protocol mentioned in [115]. For this verification phase, each of
the (n + 1) participants (i.e., the n clients and the server) will act as a verifier
in different iterations, choose input bits for all the participants, get the corre-
sponding outcomes from them and checks whether these values match a certain
condition. The different steps of this phase can be outlined as follows.

(a) For every i ∈ (n + 1), the participant Pi (i.e., the i-th participant) does
the following.

• The participant Pi chooses γK
(n+1)

samples randomly from the rest of

shared states (that are not already chosen for the testing phase), de-
clares the instances publicly and constructs a set ΓiGHZ with these
chosen instances.

• For the instances in ΓiGHZ, the (n+ 1)-th participant (i.e., Pn+1 or the
server) declares his randomly chosen rj values publicly. For an instance
in ΓiGHZ, if the declared value rj = 0, every participant applies the uni-
tary operator I2 to their respective qubits of that instance. Otherwise
(i.e., for rj = 1), every participant applies the unitary operator U to
their respective qubits of that instance.
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• For the instances in ΓiGHZ, the participant Pi performs GHZtest(ΓiGHZ,
Pi) according to the procedure described in Algorithm 10.

• If the set ΓiGHZ passes this GHZtest(ΓiGHZ, Pi) then the scheme con-
tinues, otherwise the scheme terminates.

Algorithm 10: GHZtest(S, P)

• For every k ∈ S, P acts as a verifier and does the following.

(a) P selects a random (n+ 1)-bit string such that the string contains even
number of 1’s and sends the j-th bit of the string to the j-th participant.

(b) If the j-th participant receives the input bit 1, he measures his
corresponding particle of the k-th shared state in{

1√
2

(
|0〉+ eiθkj |1〉

)
, 1√

2

(
|0〉 − eiθkj |1〉

)}
basis for θkj = π

2
(i.e., the

measurement basis in this case is { 1√
2

(|0〉+ i|1〉) , 1√
2

(|0〉 − i|1〉)}). If the

measurement outcome is 1√
2

(|0〉+ i|1〉), the j-th participant sends Ykj = 0

to P , otherwise he sends Ykj = 1 to P (here θkj denotes the measurement
angle for the j-th participant corresponding to the k-th shared state and
Ykj denotes the measurement outcome of the j-th participant
corresponding to the k-th state).

(c) Similarly, if the j-th participant receives the input bit 0, he measures his
corresponding particle of the k-th shared state in{

1√
2

(
|0〉+ eiθkj |1〉

)
, 1√

2

(
|0〉 − eiθkj |1〉

)}
basis for θkj = 0 (i.e., the

measurement basis in this case is { 1√
2

(|0〉+ |1〉) , 1√
2

(|0〉 − |1〉)}). If the

measurement outcome is 1√
2

(|0〉+ |1〉), the j-th participant sends Ykj = 0
to P , otherwise the j-th participant sends Ykj = 1 to P .

(d) From the known chosen measurement angles θkj and the corresponding
outcomes Ykj , P calculates the values of ⊕jYkj and 1

π

∑
j θkj for the k-th

state.

(e) If ⊕jYkj = 1
π

∑
j θkj(mod 2) for the k-th state then the scheme continues,

otherwise the scheme terminates.

4. Client’s POVM Device Verification Phase:

(a) After entangled state verification phase, the server and the clients move on
to this phase with all the rest (K−γK) shared states, referred to as Γclient.

(b) For every j-th state in the set Γclient, the server performs the following.

• If rj = 0, the server measures his qubit (i.e., the (n + 1)-th qubit) of
the j-th state in {|0〉, |1〉} basis. Otherwise (i.e., for rj = 1) the server
measures his qubit in {|0′〉, |1′〉} basis.

157



• After the measurement, the server announces aj = 0 whenever the
outcome at his side for the j-th shared state is either |0〉 or |0′〉.

• The server announces aj = 1 whenever the outcome at his side is either
|1〉 or |1′〉.

(c) From the samples in Γclient, each of the clients then selects γ′

n
fraction of

samples randomly and declares those chosen instances publicly.

(d) Based on the declaration, the clients construct a set Γtest
client which contains

all the instances chosen by each of them.

(e) For the samples in Γtest
client, each of the clients does the following.

• A client first performs ClientKeyGen(Γtest
client) according to the proce-

dure described in Algorithm 11 for the set Γtest
client.

• The same client then performs ClientPOVMtest(Γtest
client) according to

the procedure described in Algorithm 12 for the same set Γtest
client.

Algorithm 11: ClientKeyGen(S)

• For every j ∈ S, the client performs the following steps.

(a) If the server declared aj = 0, the client uses the measurement device
P 0 = {P 0

0 , P
0
1 , P

0
2 } to measure her qubit of the j-th state.

(b) Similarly, if the server declared aj = 1, the client uses the measurement
device P 1 = {P 1

0 , P
1
1 , P

1
2 } to measure her qubit of the j-th state.

5. Shared Key Generation Phase:

(a) After client’s POVM device verification phase, the clients continue with
the remaining shared states (|Γclient|− |Γtest

client|), which they denote as ΓKey.

(b) For the set ΓKey, each of the clients first performs ClientKeyGen(ΓKey)
and then determines the original raw key bits based on her measurement
outcomes in the following way.

• For every j-th shared state with aj = 0, if the client gets P 0
0 (P 0

1 ), she
concludes the j-th raw key bit as 0(1). If she receives P 0

2 , she ignores
it.

• Similarly, for every j-th shared state with aj = 1, if the client obtains
P 1

0 (P 1
1 ), she concludes the j-th raw key bit as 0(1). If she receives P 1

2 ,
she ignores it.

(c) The server and the clients then advance to the private query phase with
the states in ΓKey. This set contains kN many states, where k > 1 and k
is exponentially smaller than N , the number of bits in the database.

(d) The server and the clients then conduct some classical post-processing in
the next phase using the kN raw key bits received from these shared states.
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Algorithm 12: ClientPOVMtest(S)

• The client first separates her instances having the declared value aj = 0 into
the set S0, and the rest (where the server declared aj = 1) into the set S1.

• The client assumes that for each set Saj (for the declared aj values by the
server), the states at her side are either ρ

aj
rj or ρ

aj
rj⊕1 (for the j-th raw key bit rj

chosen by the server).

• For each set, the client calculates the parameter Ωaj as

Ωaj =
∑

b,aj∈{0,1}

(−1)b⊕ajTr[P
aj
b ρ

aj
rj

],

where P
aj
b is the measurement outcome at the client’s side in ClientKeyGen().

• If for every Saj (aj ∈ {0, 1}),

Ωaj =
2 sin2 θ

(1 + cos θ)

then the client continues with the scheme, otherwise she aborts the scheme.

6. Private Query Phase:

(a) The server first divides the entire raw key into N partitions, each with k
bits, and announces the positions. Each of them then XOR each of their
substrings bitwise to generate N bits long final key. If any of the clients
are unaware of the final key bits, they will again be involved in this shared
key generation process with another set of clients.

(b) If none of the clients know any of the final key bits, repeat the scheme.

(c) The client, who recognizes only the j-th bit of the server’s final key F ,
requests the k-th bit of the database mk by announcing a permutation
PA that moves the j-th final key bit to the k-th position. The server
then applies PA on his final key F , uses it to encrypt the database using
a one-time pad, and sends the encrypted database to the corresponding
client, who decrypts and recovers mk. This way, a client must announce
the permutation l times to retrieve l many data bits.

(d) If a client knows multiple final key bits, she can retrieve multiple intended
database bits in a query by announcing the permutation PA accordingly.

An Example (For Two Users) Considering Honest Implementation

• Suppose for a N -bit database, the server receives 2N number of 3-qubit
GHZ states of the form 1√

2
(|000〉+ |111〉) from a third party.
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• For every i-th state, the server and the two users do the following.

– The server randomly chooses ri, the raw key bit corresponding to
the i-th instance (i.e., ri ∈R {0, 1}).

– If ri = 0, the server applies the identity operator I2 to every qubit of
the i-th state, and if ri = 1, the server applies the unitary operator
U (as mentioned in entangled state sharing phase of our proposal)
to every qubit of the i-th state.

– After these operations, the server shares the i-th state with the two
users such that the first two qubits of the state belong to the two
users and the 3rd qubit belongs to the server.

(i.e., for ri = 0, the server and the two users share the states of
the form 1√

2
(|000〉+ |111〉) and for ri = 1, they share the states of

the form 1√
2

(|0′0′0′〉+ |1′1′1′〉) where |0′〉 = cos θ|0〉 + sin θ|1〉 and

|1′〉 = sin θ|0〉 − cos θ|1〉)
– For ri = 0, the server measures his qubit (i.e., the third qubit) of the
i-th state in {|0〉, |1〉} basis and for ri = 1, he measures his qubit of
the i-th state in {|0′〉, |1′〉} basis.

– For the i-th state, the server declares a bit ai = 0(ai = 1) whenever
his measurement outcome is either |0〉(|1〉) or |0′〉(|1′〉).

– For ai = 0, each of the two users measures their respective qubits of
the i-th shared state using the POVM P 0 = {P 0

0 , P
0
1 , P

0
2 } where

P 0
0 ≡ (sin θ|0〉 − cos θ|1〉)(sin θ 〈0| − cos θ 〈1|)

1 + cos θ

P 0
1 ≡ 1

1 + cos θ
|1〉 〈1|

P 0
2 ≡ I −M0

0 −M0
1

– For ai = 1, each of the two users measures their respective qubits of
the i-th shared state using the POVM P 1 = {P 1

0 , P
1
1 , P

1
2 } where

P 1
0 ≡ (cos θ|0〉+ sin θ|1〉)(cos θ 〈0|+ sin θ 〈1|)

1 + cos θ

P 1
1 ≡ 1

1 + cos θ
|0〉 〈0|

P 1
2 ≡ I −M1

0 −M1
1

– If an user gets P 0
0 (P 0

1 ) for ai = 0, he guesses the original i-th raw key
bit as 0(1). Whenever he gets P 0

2 , his guess remains inconclusive.

– Similarly, if an user obtains P 1
0 (P 1

1 ) for ai = 1, he guesses the original
i-th raw key bit as 0(1). If he gets P 1

2 , his guess remains inconclusive.
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• Suppose for N = 3, after the key generation phase, the raw key bits
generated at the server’s side is 0 1 1 0 1 1 and at any one of the user’s
side is ? ? 1 0 ? ? (here ? denotes unknown bits).

• If the server and the user XOR every two consecutive raw key bits to
generate a final key of length 3 bits, then the final key at the server’s side
will be 1 1 0 and the user’s side will be ? 1 ?.

• If the user wants to retrieve (say) the 3rd database bit, she announces
a 1-bit right shift to the server. The server then encrypts the database
with the shifted key and sends the encrypted database to the user, from
which the user can retrieve the intended bit.

Figure 7-1: Schematic diagram of different phases of our multi-client Semi-DI QPQ
scheme

7.4 Analysis of our proposal

Here, we discuss about the performance of our proposal. First, we look into the
correctness issue of this scheme, and then we dive into the security aspects of this
proposal.

7.4.1 Correctness of the scheme

Here, we demonstrate the accuracy of the protocol.
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Theorem 15. If this multi-user QPQ proposal is implemented honestly, then after the
shared key generation phase, every client can accurately retrieve (on average) around
(1− cos θ) fraction of bits from the actual raw key R (held by the server).

Proof. After the shared key generation phase, the server and the clients share a kN -
bit raw key such that the server knows all the bits and each of the clients knows only
some of the bits. According to the protocol, these raw key bits generation can be
redefined as follows.

The server first generates a kN bit random string R = r1 . . . rkN (which is the raw
key at the server’s side, i.e., Rj = rj). For rj = 0, the server performs an identity
operator I2 to each qubits of the j-th (n+1)-qubit GHZ state. Otherwise (i.e., for rj =
1), the server performs an unitary operator U to each qubits of the j-th (n+ 1)-qubit
GHZ state which transforms |0〉 to |0′〉 and |1〉 to |1′〉 where |0′〉 = (cos θ|0〉+sin θ|1〉)
and |1′〉 = (sin θ|0〉 − cos θ|1〉).

After these operations, the server shares the states with the n-clients such that
the j-th client receives the j-th qubit of the shared state, and the server holds the
(n + 1)-th qubit of each shared state. After sharing the states, the server measures
all his qubits having rj = 0 in {|0〉, |1〉} basis and the rest of the qubits (for which
rj = 1) in {|0′〉, |1′〉} basis. After measuring his share of the j-th state, if he gets |0〉
or |0′〉 at his side, he announces aj = 0, otherwise (if he gets |1〉 or |1′〉), he announces
aj = 1. Now, the client’s job is to guess the value of each rj.

Whenever the server declares aj = 0, all the clients can understand that the server
gets either |0〉 or |0′〉 and their qubits for the j-th shared state also collapses to |0〉
or |0′〉 respectively. However, to obtain the exact value of the corresponding raw key
bit, each client must distinguish these two states with certainty. As |0〉 and |0′〉 are
non-orthogonal states (when θ 6= π

2
), the clients cannot distinguish these two states

with certainty for all the instances.

According to the procedure described in our proposal, whenever the server declares
aj = 0, each client chooses the POVM {P 0

0 , P
0
1 , P

0
2 }. After measurement, if a client

gets the outcome P 0
0 (P 0

1 ), she concludes that the outcome at the server’s side is |0〉
(|0′〉) for the j-th shared instance and the corresponding raw key bit at the server’s
side is rj = 0 (rj = 1). However, if a client receives the outcome P 0

2 , she remains
uncertain about the value of the raw key bit corresponding to the j-th instance at
the server’s side. In this similar way, the clients can also conclude about the raw key
bits at the server’s side for aj = 1.

Now, we calculate the success probabilities of getting different outcomes for the
instances having aj = 0 (i.e., for the input states |0〉 and |0′〉).

For input state |0〉, the success probabilities of getting different outcomes will be,
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Pr(P 0
0 ||0〉) = 〈0|P 0

0 |0〉
= (1− cos θ)

Pr(P 0
1 ||0〉) = 〈0|P 0

1 |0〉
= 0

Pr(P 0
2 ||0〉) = 〈0|P 0

2 |0〉
= cos θ

Similarly, for the state |0′〉, the success probabilities will be

Pr(P 0
0 ||0′〉) = 〈0′|P 0

0 |0′〉
= 0

Pr(P 0
1 ||0′〉) = 〈0′|P 0

1 |0′〉
= (1− cos θ)

Pr(P 0
2 ||0′〉) = 〈0′|P 0

2 |0′〉
= cos θ

Whenever the server declares aj = 1, every client chooses the POVM {P 1
0 , P

1
1 , P

1
2 }.

For these instances, in a similar way as discussed earlier, we can calculate the cor-
responding success probabilities of getting different outcomes. We formalize all the
conditional probabilities in the following table.

Conditional Probability of any i-th Client

aj Server
Client

Ci = P 0
0 /P

1
0 Ci = P 0

1 /P
1
1 Ci = P 0

2 /P
1
2

0 S = |0〉 1− cos θ 0 cos θ

0 S = |0′〉 0 1− cos θ cos θ

1 S = |1〉 1− cos θ 0 cos θ

1 S = |1′〉 0 1− cos θ cos θ

According to the protocol, if aj = 0 and the i-th client gets P 0
0 (P 0

1 ), she considers
Ri
Cj = 0(1). When aj = 1 and the i-th client gets P 1

0 (P 1
1 ), she considers Ri

Cj = 0(1).
Thus, the success probability of any i-th client to guess the j-th raw key bit Rj (where
Rj = rj) of the server can be written as

Pr(Ri
Cj = Rj)

= Pr(Ri
Cj = 0, Rj = 0) + Pr(Ri

Cj = 1, Rj = 1)

= (1− cos θ).

That means in this proposal, the overall success probability for each of the clients
in guessing a raw key bit is equal to (1 − cos θ). So, at the end of the shared key
generation phase, each of the clients can successfully retrieve (on average) around
(1− cos θ) fraction of bits from the actual raw key with certainty.
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7.4.2 Estimation of parameters for private query phase

In this subsection, we will derive the parameter values for an honest implementation
of this multi-client proposal while ensuring that both the privacy of the clients and
the privacy of the server are preserved.

Estimation of the security parameter θ:

Like the recent full DI-QPQ proposal in [15], here also, the server wants each of
the clients to know at least one and always less than two final key bits for database
security. The result in Theorem 15 shows that under the proposed method, each
client has a probability of approximately (1− cos θ) of correctly guessing a raw key
bit. In generating the final key, each client XORs k raw key bits. So, the probability
of every client correctly guessing a final key bit is approximately (1− cos θ)k.

If we consider that fCi denotes the i-th client’s known final key bits then, then the
expected value of fCi will be,

E[fCi ] ≈ (1− cos θ)kN. (7.1)

For security purposes, the server wants each of the clients to know between one
to two final key bits. That means for any i-th client, the following condition must be
satisfied.

1 ≤ E[fCi ] < 2.

This implies that,

1 ≤ (1− cos θ)kN < 2

1

N
≤ (1− cos θ)k <

2

N
. (7.2)

Based on the results presented above, the following conclusion can be drawn.

Corollary 14. To ensure that every client knows at least one but less than two final
key bits, the server must select the value of θ such that,

1

N
≤ (1− cos θ)k <

2

N
.

Estimation of Pa and Pc for security purpose:

From the correctness result in theorem 15, we can conclude that the probability
of each client not guessing any final key bit correctly will be,

164



Pr(no final key bit for a client) ≈ [1− (1− cos θ)k]N

≈ e−(1−cos θ)kN . (7.3)

As we assume a total of n number of clients in our multi-client proposal, the
probability that none of the clients know any final key bits is equal to,

Pr(no final key bit for all n clients) ≈ e−(1−cos θ)knN . (7.4)

For this multi-client proposal, we assume that the scheme aborts whenever none
of the clients know any of the final key bits. So, from the definition 2, we can conclude
that the parameter Pa will be upper bounded by,

Pa ≤ e−(1−cos θ)knN . (7.5)

If we substitute (1− cos θ)k in this relation from equation 7.2, assuming that the
server chooses θ such that (1− cos θ)k = 1

N
, then from equation 7.5, we get,

Pa ≤ e−n. (7.6)

This suggests that the value of Pa is small for this multi-client proposal (as n > 1).
So, the probability that this multi-client scheme does not terminate in the honest
scenario is equal to,

Pr(scheme doesn’t terminate in honest scenario)

≥ (1− e−n). (7.7)

Hence, for this multi-client proposal, the likelihood of the scheme not terminating
is high.

Now, to derive a bound on the security parameter Pc, we first refer to the Chernoff-
Hoeffding inequality [59], which is already mentioned in Chapter 4 Proposition 1.

For any i-th client in our proposal, we define X i
j = 1 if the j-th final key bit is

known to the client (i.e., she gets conclusive POVM outcome for the j-th instance),
and X i

j = 0 otherwise. We can define the random variable X i for any i-th client as
the sum of the X i

j values, where j ranges from 1 to the total number of final key bits,
which is N . From the correctness result in theorem 15, we can say that in the honest
scenario, the expected number of final key bits that any i-th client should know is
Y i = (1− cos θ)kN .

For this proposal, the collapsed states at each of the client’s sides are indepen-
dent, and we assume that the clients also apply their measurement devices inde-
pendently for each qubit. So, to ensure the value X i to lie within the deviation of
δt = ε (1− cos θ)kN for any i-th client from the expected value, here we can use the

165



Chernoff-Hoeffding inequality. The value of each X i and the corresponding Y i are
calculated here under the assumption that the scheme does not terminate. So, using
the expression for the Chernoff-Hoeffding bound from Proposition 1, it is clear that
for every i-th client,

Pr
[
|X i − Y i| < δt ∧ scheme doesn’t terminate

]
≥ 1− exp(−2δ2

tm). (7.8)

The shared key generation phase results in N final key bits shared by the server
and each of the clients. Among those N bits, the server aims the total final key bits
known to every i-th client fall within [p − εp, p + εp], where p = (1− cos θ)kN and
the allowed deviation is δt = ε (1− cos θ)kN . Using this relation in equation 7.8 with
δt and m values, one can get,

Pr
[
|X i − Y i| < δt ∧ scheme doesn’t terminate

]
≥ 1− exp(−2δ2

tN)

where δt = ε (1− cos θ)kN.

(7.9)

From equation 7.2, it is clear that for this multi-client proposal, the server selects
the parameters θ and k such that 1

N
≤ (1− cos θ)k < 2

N
. If the server chooses θ and

k for which (1 − cos θ)k = 1
N

, then substituting this relation into equation 7.9 will
yield,

Pr
[
|X i − Y i| < ε ∧ scheme doesn’t terminate

]
≥ 1− exp(−2ε2N).

(7.10)

In our proposed method, to encrypt the database, the server utilizes a bitwise
XOR operation with the final key. Therefore, if a client correctly guesses a final key
bit, it implies the correct guess of the corresponding database bit. So, as per definition
1, it can be concluded that when the server and every i-th client are honest, the lower
bound of the parameter Pc in our proposal is determined by,

Pc ≥ [1− exp(−2ε2N)]. (7.11)

That means the likelihood of every i-th client knowing the expected number of
data bits while the scheme not terminating is high in the honest scenario of our
proposal, as N is large in practice.

The server chooses θ and k so that every client knows between one to two final
key bits. So, the deviation, δt, has the following bound according to equation 7.2.

ε ≤ δt < 2ε. (7.12)

That means the upper bound on ε can be derived from 2ε ≤ 1, yielding ε ≤ 1
2
.

We now address the security concerns regarding this proposed multi-user QPQ
scheme.
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7.4.3 Security issues of the scheme

The security issues of this proposal can be divided into three phases, namely secu-
rity in (semi)-device independent scenario, security of the database against dishonest
clients, and security of the clients against dishonest servers. The security of this pro-
posal mainly follows from the results mentioned in [82] and [15]. Here, we point out
those exact results and discuss how they guarantee the security of this proposal.

Security in (semi)-device independent scenario

In this scheme, the device certification has been done in two phases, namely entangled
state verification phase and client’s POVM device verification phase.

In the GHZtest() of entangled state verification phase, each of the participants acts
as a verifier in subsequent iterations to certify the states provided by the third party.
The participant who acts as a verifier in a particular iteration first selects some of the
states randomly from their shared instances. After that, the server declares his chosen
rj values for each of those selected instances so that each of the participants can apply
the corresponding unitaries in their respective qubits (that were applied by the server
before the entangled state supply phase) to get back the actual states supplied by the
third party. The verifier then chooses a random (n + 1)-bit input string for each of
his chosen states, declares those input bits for the other participants so that each
participant can measure their corresponding qubits on a specified basis, and sends
the corresponding outcomes to the verifier. The verifier then checks whether their
measurement angles and the corresponding outputs satisfy a predefined relation. In
this phase, all the participants (i.e., the server and the clients) want to certify the
states provided by the third party. So, all of them must act honestly (according to
assumption 5) in this phase.

The results mentioned in [82] and [115] lead us to the following conclusion.

Corollary 15 (Verification of the input states). The GHZtest in entangled state
verification phase either certifies that the inputs and the outputs corresponding to the
chosen states satisfy the relation mentioned in this test, meaning the given states are
(n+ 1)-qubit GHZ states (or the unitary equivalent of them), or the scheme is likely
to abort in the long run.

In the next device certification phase (i.e., in client’s POVM device verification
phase), the clients check the functionality of their measurement devices. After the
entangled state supply phase, each of the client’s goals is to distinguish between two
non-orthogonal states (either between |0〉 and |0′〉 or between |1〉 and |1′〉) with as
much probability as possible. For this reason, each client chooses between one of the
two unknown devices (depending on the mentioned ai values) and verifies whether
these devices attain the expected values of Ω0 and Ω1. One may check that this
distinction procedure (at the client’s side) is the same as the procedure followed by
the client in [15]. For this reason, from the results mentioned in [15, theorem 3 and
theorem 4], we can conclude the following for this proposal.
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Corollary 16 (Verification of the client’s devices). The ClientPOVMtest in client’s
POVM device verification phase either certifies that each of the client’s measurement
devices attains the intended values of Ω0 and Ω1, i.e., the devices at each of the client’s
side are of the specified form (up to a local unitary), or the scheme is likely to abort
in the long run.

The results mentioned in corollary 15 and corollary 16 boil down to the following
conclusion.

Corollary 17. Our semi-DI proposal either terminates with a high likelihood in the
asymptotic limit or confirms that the devices in the GHZtest and the ClientPOVMtest
achieve the intended values of the parameters in the respective testing phases.

Note that our proposal doesn’t certify the devices that perform certain unitary
operations (one device performs identity operation, and the other device performs θ
rotation over the qubits) at the server’s and each of the client’s side. Additionally,
the scheme also doesn’t certify the projective measurement devices on the server’s
side. For this reason, our proposed scheme is semi-device independent. However,
to ensure full device independence, one may use a process tomography technique to
certify the unknown unitary devices at the server’s and clients’ side and can adopt
the measurement device certification technique mentioned in [15] that follows the
approach of [65] for certifying non-maximally incompatible observables.

Security of the database against dishonest clients

In this subsection, we mention the number of raw key bits that each of the dishonest
clients can guess in the shared key generation phase of this proposal. As the raw key
bit generation procedure at the client’s side is the same here as the client’s raw key
generation procedure in the QPQ scheme [15], the results related to the cheating of
the dishonest client in [15] will exactly follow here.

Corollary 18. In the absence of ClientPOVMtest in our proposal, each of the clients
can inconclusively retrieve atmost

(
1
2

+ 1
2

sin θ
)

fraction of bits from the server’s raw
key during the shared key generation phase.

Similar to the proposal in [15], here also we introduce a testing phase for the
clients’ measurement devices before the shared key generation phase. So, from the
result in [15, Lemma 1], here we can conclude the following.

Corollary 19. For this QPQ proposal, either the scheme terminates with a high
likelihood (as the limit approaches infinity) or each of the dishonest clients can retrieve
(on average) at most (1−cos θ) fraction of bits from the entire raw key (at the server’s
side) in the shared key generation phase.

In the private query phase , k raw key bits are XOR-ed to construct every bit of
the final key. As the guessing probability of a dishonest client about a raw key bit is
at most (1− cos θ) (according to the result in Corollary 19) and the dishonest clients
also process each of the raw key bits independently (as mentioned in assumption 4),
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the maximum guessing probability of a dishonest client for a final key bit will be
(1− cos θ)k. So, from the definition 3, we can say that the fraction τ of the data bits
that each of the clients can guess correctly in a single query to the database will be,

τ ≤ (1− cos θ)k . (7.13)

Now, substituting (1− cos θ)k using the upper limit achieved in the equation 7.2,
the following bound can be obtained on τ .

τ <
2

N
. (7.14)

It implies that τ is significantly smaller than N for this multi-client proposal.

Security of the clients against dishonest server

In this subsection, we estimate the number of indices that the dishonest server can
guess from a particular client’s query indices (this result will follow for all the clients).
Here also, like the QPQ proposal [15], none of the clients have declared anything
regarding their measurement outcomes and, consequently, their known raw key (or
final key) bits. So, similar to the result in [15, Lemma 2], here we can conclude the
following.

Corollary 20. If a client retrieves l many data bits from the N-bit database using
lq many queries, then the server can predict whether a particular data bit is retrieved
by the client with likelihood around l

N
.

This result implies that if the server desires to obtain a client’s query indices with
greater certainty, the server must permit the client to retrieve more than l data bits
in lq queries, which contradicts our assumption (specifically, assumption 5).

The result in corollary 20 implies that in l many guesses, the expected number
of indices that dishonest server (S∗) can predict correctly from a client’s query index
set is,

E[IS∗ ] = Pr(Server predicts an index correctly in a single guess).l

≈ l2

N
. (7.15)

From the relation in equation 7.15 and from the definition 4, we can argue that
for every client, the value of δ will be,

δ ≤
(
l

N

)
. (7.16)

In practice, the database size, N , is significantly larger than the size l of a client’s
query index set, with N approximately equal to ln for some positive integer n. From
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this information and the relation in equation 7.16, the upper limit on δ can be written
as,

δ ≤ 1

l(n−1)
. (7.17)

That means the value of δ is significantly smaller than l in our multi-client pro-
posal.

7.5 Discussion and Conclusion

Most existing QPQ proposals are limited to the single-user scenario, which is in-
efficient when multiple users are involved. Recent multi-user proposals rely on a
semi-trusted server and only consider the retrieval of items of common interest, mak-
ing them impractical. To overcome these limitations, in this chapter, we propose a
semi-device independent multi-user QPQ scheme where each user can retrieve dif-
ferent items simultaneously without revealing their choices to others or relying on a
semi-trusted server. Our scheme allows each user to retrieve optimal raw key bits
during the oblivious key generation phase. Unlike existing proposals that only con-
sider certain eavesdropping strategies, we formally evaluate the security issues and
derive upper limits on the likelihood of cheating for both the server and users.
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8
Conclusion

“I may not have gone where I intended to go, but I think I have ended up where I
needed to be..”

— Douglas Adams, The Long Dark Tea-Time of the Soul.

In this concluding chapter, we take a comprehensive look at the previous chapters,
summarizing and drawing conclusions from the various aspects explored in this thesis.
The primary focus of this research has been on the QPQ primitive in the DI scenario.
Here, we highlight our key contributions, improvements, and extensions to existing
methods. Furthermore, we delve into the potential directions for future research and
identify the open problems that lie ahead in the field of QPQ.

8.1 Summary of technical results

Chapter 1 served as the thesis introduction, while Chapter 2 provided a foundational
understanding of quantum information and computation, laying the groundwork for
readers to read the thesis comfortably. In Chapter 3, an overview of the QPQ primi-
tive was presented, encompassing its evolution and its relationship with other related
primitives. This chapter also delved into the crucial aspects of security definitions
and the necessary assumptions for analyzing the proposals related to this thesis. The
primary technical outcomes of the thesis were then explored in Chapters 4, 5, 6 and 7,
and the highlights of these chapters are as follows.

Like most initial quantum cryptography schemes, the security of the initial QPQ
schemes also relies on the functionality of the involved devices. Later, it was shown
that if those devices do not work accordingly, some information may leak to the adver-
sary. Maitra et al. [77] first introduced DI in the QPQ domain by proposing a semi-DI
version of the QPQ scheme [117] to address these assumptions. In Chapter 4, we move
one step further and propose a novel fully DI-certified QPQ scheme using maximally
entangled states for improved robustness. Our scheme achieves the optimal number
of raw key bits (exploiting the optimal POVM measurement for distinguishing two
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non-orthogonal states) for the client Alice in the oblivious key generation phase. We
analyze security issues formally against all attacks, preserving the correctness condi-
tion. We provide upper bounds on the cheating probabilities for both the dishonest
client and server. This new QPQ scheme, incorporating QKD, can potentially become
a crucial near-term application of the quantum internet.

Maitra et al. [77] first identified that the security of the existing QPQ schemes (up
until that time) relies on the functionality of the devices. As an example, they con-
sidered the QPQ scheme [117] and suggested a tilted version of the actual CHSH test
locally (at the server side) on top of the QPQ scheme [117] to certify the functionality
of the devices. However, their proposal is semi-DI as the local test on the server side
does not certify the functionality of the client’s measurement device. This issue is
already discussed in Chapter 4. In Chapter 5, we exploit the proper self-testing mech-
anism of observables along with the local version of the tiltedCHSH test to certify the
functionality of all the devices involved in the QPQ scheme [117]. We compare the
performance of this full DI proposal of the QPQ scheme [117] with the performance of
our full DI-QPQ proposal in Chapter 4 and discuss relative advantages of both these
schemes. Inspired by the proposal in Chapter 4, in this chapter, we further propose a
DI scheme for a modification of [117] where the client can retrieve the maximum con-
clusive raw key bits. In summary, based on the assumptions discussed in Chapter 3,
in this chapter, we have strengthened the security of the QPQ scheme [117] and also
enhanced the performance (in the modified proposal).

Chapter 6 deals with several strategies to reduce the overall sample size required
(in finite sample scenario) for the DI testing phase in [77]. In this chapter, we derive
the relation between the required sample size and corresponding success probability
and propose optimal testing mechanisms for DI-QPQ proposal [77]. CHSH tests on
different versions of the entangled states are studied. Further, we consider the three-
party Pseudo Telepathy as a tool for testing DI and show that it provides significantly
better results for practical purposes.

Chapter 7 deals with the scenario where multiple users are involved in a QPQ
scheme. Most of the existing QPQ proposals are limited to the single-user scenario,
which is inefficient when multiple users are involved. Recent multi-user proposals
rely on a semi-trusted server and only consider the retrieval of items of common
interest, making them impractical. To overcome these limitations, in this chapter,
we propose a semi-device independent multi-user QPQ scheme where each user can
retrieve different items simultaneously without revealing their choices to others or
relying on a semi-trusted server. Our scheme allows each user to retrieve optimal raw
key bits during the oblivious key generation phase. Unlike the existing multi-user
proposals that only consider certain eavesdropping strategies, we formally evaluate
the security issues and derive upper limits on the likelihood of cheating for both the
server and users.

8.2 Possible future works

Here, we list some open problems and possible future works in the domain of QPQ.
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• Reduction of classical communication complexity : The main limitations
in all the existing QPQ proposals are that they have a huge classical communi-
cation complexity as the server requires sending the entire encrypted database
to each client for every single query. Reducing this classical communication
complexity will be an interesting future work in this direction.

• Consideration of non-i.i.d. scenario : All the schemes mentioned in this
thesis consider the assumption that the devices involved in the proposals follow
the i.i.d assumption, which is not very practical. Recently, there are some results
for multi-round protocols on bit commitment [12], oblivious transfer and bit
commitment [43], weak string erasure [66] etc. without the i.i.d. assumption.
Although in [43] and [66], there are bounded/noisy storage assumptions. There
are also some results in the single-shot setting (where the i.i.d. assumption is
irrelevant) on bit commitment and coin flipping [104], weak coin flipping [11],
XOR oblivious transfer [73] etc. However, to the best of our knowledge, there
is still no result on the DI scenario of the distrustful primitive QPQ without
the i.i.d assumption. So, analysis of the full DI schemes proposed in this thesis
without considering the i.i.d. assumption will be an interesting research problem
in the domain of QPQ.

• Consideration of noise parameter : The schemes proposed in this thesis
consider the asymptotic scenario where no channel noise exists. However, in
practice, these protocols will be executed in a noisy environment considering
some finite number of samples. So, for the practical scenario, the analysis of
these schemes considering channel noise and a finite number of samples can be
a possible future work in this direction.
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[17] Á. Baumeler and A. Broadbent. Quantum private information retrieval has
linear communication complexity. J. Cryptol., 28:161–175, 2015.

[18] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interac-
tive proofs: How to remove intractability assumptions. In In Proceedings of the
twentieth annual ACM symposium on Theory of computing, STOC 1988, pages
113–131, 1988.

[19] C. H. Bennett. Quantum cryptography using any two nonorthogonal states.
Phys. Rev. Lett., 68 (21):3121–3124, 1992.

[20] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin. Experimental
quantum cryptography. J. Cryptology, 5(1):3–28, 1992.

[21] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribu-
tion and coin tossing. In In Proceedings of IEEE International Conference on
Computers, Systems and Signal Processing, pages 175–179, 1984.

[22] C. H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner. Quantum cryptog-
raphy, or unforgeable subway tokens. In In Advances in Cryptology-CRYPTO
1983, page 267–275, 1983.

[23] C. H. Bennett, G. Brassard, C. Crépeau, and M. H. Skubiszewska. Practical
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