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Abstract
Some Contributions to Multiple Hypotheses Testing under Dependence

Monitirtha Dey

The field of simultaneous statistical inference has attracted several statisticians for

decades for its interesting theory and paramount applications. A potpourri of different

methodologies exists to control various error rates, e.g., the false discovery rate (FDR)

or the family-wise error rate (FWER). Most of these classical procedures were proposed

under independence or some form of weak dependence among the concerned variables.

However, large-scale multiple testing problems in various scientific disciplines often study

correlated variables simultaneously. For example, in microRNA expression data, several

genes may cluster into groups through their transcription processes and possess high

correlations. The data observed from different locations and periods in public health

studies are generally spatially or serially correlated. fMRI studies and multistage clinical

trials also involve variables with complex and unknown dependencies. Consequently, the

study of the effect of correlation on dependent test statistics in simultaneous inference

problems has attracted considerable attention recently.

However, the existing literature lacks the study of the performances of FWER or

generalized FWER controlling procedures under dependent setups. For these reasons,

this thesis concentrates mainly on FWER and generalized FWER controlling procedures.

We consider the correlated Gaussian sequence model as our underlying framework.

FWER has been a prominent error criterion in simultaneous inference for decades.

The Bonferroni method is the earliest and one of the most popular methods for con-

trolling FWER. However, we find little literature that illustrates the magnitude of the

conservativeness of Bonferroni’s procedure in the correlated framework with small or

moderate dimensions. We address this research gap in a unified manner by establishing

upper bounds on Bonferroni FWER in equicorrelated and non-negatively correlated non-

asymptotic Gaussian sequence model setups.

We also derive similar upper bounds for the generalized FWERs and propose an

improved k-FWER controlling procedure. Towards this, we establish an inequality related

to the probability that at least k among n events occur, which extends and sharpens

the classical ones. The computation of this probability arises in various contexts, e.g.,

vii
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in reliability problems of communication networks. Our probabilistic results might be

insightful in those areas, too.

We also study the limiting behavior of Bonferroni FWER as the number of hypotheses

approaches infinity. We prove that in the equicorrelated Gaussian setup with positive

equicorrelation, Bonferroni FWER tends to zero asymptotically. These results eluci-

date that Bonferroni’s procedure becomes extremely conservative for large-scale multiple-

testing problems under correlated frameworks. We extend this result for generalized

FWERs and to non-negatively correlated Normal frameworks where the limiting infimum

of the correlations is strictly positive. Our proposed approximation of FWER also provides

an estimate of the c.d.f of the failure time of the parallel systems.

We then move to the general class of stepwise multiple testing procedures (MTPs).

The role of correlation on the limiting behavior of the FWER for stepwise procedures is

less studied. Also, the existing literature lacks theoretical justifications for why FWER

methods fail in large-scale problems. We address this problem by theoretically investi-

gating the limiting FWER values of general step-down procedures under the correlated

Gaussian setup. These results provide new insights into the behavior of step-down decision

procedures. By establishing the limiting performances of commonly used step-up methods,

e.g., the Benjamini-Hochberg (BH) and the Hochberg method, we have elucidated that

the class of step-up procedures does not possess a similar universal asymptotic zero result

as obtained in the case of step-down procedures. It is also noteworthy that most of our

results are very general since they accommodate any combination of true and false null

hypotheses. We have also obtained the limiting powers of the stepwise procedures.

Our results elucidate that, at least under the correlated Gaussian sequence model with

many hypotheses, Holm’s MTP and Hochberg’s MTP do not have significantly different

performances since they both asymptotically have zero FWER and zero power. It is also

astonishing to note that, among all the procedures studied in this thesis, the BH method

is the only one which can hold the FWER at a strictly positive level asymptotically under

the equicorrelated Gaussian setup.

Finally, we consider the simultaneous inference problem in a sequential framework in

Chapter 6. The mainstream sequential simultaneous inference literature has traditionally

focused on the independent setup. However, there is little work studying the multiple

inference problem in a sequential framework where the observations corresponding to

the various streams are dependent. We consider the classical means-testing problem in an

equicorrelated Gaussian and sequential framework. We focus on sequential test procedures

that control the type I and type II familywise error probabilities at pre-specified levels.

We establish that our proposed MTPs have the optimal average sample numbers under
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every possible signal configuration asymptotically, as the two types of familywise error

probabilities approach zero at arbitrary rates. Towards this, we elucidate that the ratio

of the expected sample size of our proposed rule and that of the classical SPRT goes to

one asymptotically, thus illustrating their connection. Generalizing this, we show that

our proposed procedures, with suitably modified cutoffs, are asymptotically optimal for

controlling any multiple testing error criteria lying between multiples of FWER in a

certain sense. This class of criteria includes FDR/FNR and pFDR/pFNR among others.

The results in this thesis illuminate that dependence might be a blessing or a curse,

subject to the type of dependence or the underlying paradigm. Several popular and

widely used procedures fail to hold the FWER at a positive level asymptotically under

positively correlated Gaussian frameworks. On the contrary, the expected sample size of

the asymptotically optimal sequential multiple testing rule is a decreasing function in the

common correlation under the equicorrelated framework. Thus, correlation plays a dual

role in the classical fixed-sample size and the sequential paradigms.
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Chapter 1

Introduction

1.1 Background

The more questions one asks, the more wrong answers one receives on average - even if the

source of every single of them is genuinely authentic. We can often formalize the relevant

questions in many scientific disciplines by statistical hypothesis tests. In that case, the

data-driven information provides the answers. This topic is known as multiple hypotheses

testing or, in more generality, simultaneous statistical inference.

However, this modern paradigm of simultaneous inference fundamentally differs from

the classical inference theory built by Pearson, Fisher, Neyman, and others. The classical

approach to statistics starts with forming a question or hypothesis and then conducting

relevant experiments to collect data. Modern science uses the reverse order - the questions

are asked after the data collection, thanks to the ever-evolving computational power

and improving technologies that allow us to obtain, store, and analyze massive datasets

cheaply and efficiently. To quote Efron (2010a),

“...now the flood of data is accompanied by a deluge of questions, perhaps thousands

of estimates or hypothesis tests that the statistician is charged with answering together;

not at all what the classical masters had in mind.”

The scientific community’s response to this foray into data has witnessed an extreme

explosion of statistical theory, methodologies, and applications. Many of these new-era

concepts have been sophisticated theories while many others are application-specific and

tailored for solving simultaneous inference problems in changed circumstances. Before

going into the formalism of theoretical discussion, we consider a few specific contexts

involving multiple testing problems.

1



2 Chapter 1, Section 1.1

(a) Differential Gene expression studies through DNA microarrays.

Large-scale genomic studies are most effectively carried out through DNA microar-

ray methodologies (Trevino et al., 2007). Microarrays or sequencing experiments

assess the gene expression levels of the cancer patients and the normals. Perhaps the

foremost question here is: which genes have significantly different mean expression

levels in these two populations ? Identifying these interesting genes is also the

principal goal of differential gene expression studies in oncology. One way to discover

this set is to test equality of means for each gene and note those that pass some

significance cutoff. Naturally, a multiple-testing situation comes in!

(b) Recommending the best drug in confirmatory clinical trials.

The regulatory agencies require the pharmaceutical companies to provide conclu-

sive evidence that the proposed treatment is better than the existing drug (con-

trol). Confirmatory clinical trials test several candidate drugs against the control

(Dmitrienko et al., 2010). A type I error in any of these comparisons results in the

wrong recommendation of an inferior drug. With an increasing number of new drugs

in the research, the probability of wrong recommendations also increases. Thus, the

company should control the chance of making at least one type I error to monitor

the occurrence of the wrong recommendations.

(c) Detecting outperforming stocks in the market.

Consider the top 200 companies in Nifty500. Suppose one is interested in detecting

which of them, if any, outperformed the market in a certain period. One can

perform 200 separate t-tests to compare the differences between these 200 stocks’

mean returns and the mean return of the market index, each at a pre-specified

precision level α (say .05). Such multiple t-tests are used quite frequently in practice.

However, this method does not address the multiplicity effect arising from several

hypotheses. Note that even if no company actually outperforms the market index,

about 5% or ten companies might have an outstanding performance by chance. In

words of Grinold and Kahn (2000),

“The fundamental goal of performance analysis is to separate skill from luck. But,

how do you tell them apart? In a population of 1000 investment managers, about 5

percent, or 50, should have exceptional performance by chance alone. None of the

successful managers will admit to being lucky; all of the unsuccessful managers will

cite bad luck.”

Gauriot and Page (2019) raised a similar concern using a dataset on the performance

of individual football players. They also investigated specific situations where luck

may be overrewarded in performance evaluation.
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These examples elucidate simultaneous inference problems frequently arise in many

scientific avenues and also illustrate that these problems can not be addressed by simply

applying the classical methods separately. They need new statistical approaches which

address the multiplicity effect also. These multiple testing procedures are the basic

premise of this thesis.

1.2 Family of Comparisons

Intuitively, it is much more efficient, statistically and economically, to have one large

experiment to address many related questions rather than having individual experiments

for them. The previous section also illustrates that testing many hypotheses separately

often fails because it leads to too many false discoveries.

Tukey (1953) introduced the term “family”. Hochberg and Tamhane (1987) remark

that a family is “a collection of inferences for which it is meaningful to take into account

some combined measure of errors”. A concise review of the principles and issues in family

selection is in Saunders (2014). In the microarrays example, the genes and, in the second

example, all new drugs tested against the control constitute the family. In the stock

market example, the 200 companies build the family.

A family of hypotheses is called hierarchical (Rom and Holland, 1995; Guo, 2007) if

there are at least two hypotheses such that one implies the other. Otherwise, the family

is called non-hierarchical. We consider non-hierarchical families in this thesis.

The following section introduces the existing error rates in simultaneous inference

while its subsequent section reviews the popular multiple testing procedures.

1.3 Error Rates

In the classical multiple testing framework, the problem is to test the n hypotheses

H0i vs H1i, i ∈ I := {1, . . . , n},

based on some dataset. Here the i-th testing problem concerns testing the i’th null H0i

against the i’th alternative H1i. The intersection null hypothesis (also called the global

null) H0 =
⋂n

i=1H0i states that each H0i is true. Let A be the set of true nulls. So, under

the global null, A is I.
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1.3.1 True and False Discoveries

The simultaneous testing of H01, H02, . . . , H0n is implemented though some decision rule

D that, for each of the n tests, accepts or rejects it. Such decision rules are called multiple

testing procedures, which reject some of the hypotheses based on the observations. The

general decision pattern of a multiple testing procedure (MTP, henceforth) for n tests is

outlined in Table 1.1.

Table 1.1: Classification of the n hypotheses by a MTP D

Null not rejected Null Rejected Total
Actual Null Un Vn n0

Actual Non-null Tn Sn n1

Total n−Rn Rn n

In Table 1.1 and throughout this dissertation, Vn denotes the number of type I errors

(i.e, false discoveries). Likewise, Tn denotes the number of type II errors (i.e, false non-

discoveries). Rn is the total number of hypotheses rejected. Here, n is fixed and known.

Each of the quantities Un, Vn, Tn, Sn, Rn is a random variable. However, among these,

we can only observe the value of Rn. The quantities Un, Vn, Tn, Sn all are unobservable.

Hence, the row marginals n0 and n1 re unknown parameters. Thus, in a sense, Table 1.1

portrays a hypothetical classification of D’s performance based on an omniscient oracle:

n0 cases were true null, n1 were actually non-null, out of the actual nulls D had Vn

incorrect decisions while out of the non-nulls, D made Tn incorrect decisions.

1.3.2 Type I Error Rates and their Control

Several different definitions (or metrics) for the type I error rate based on Vn and Rn

have been proposed in the simultaneous inference literature. In the following, T denotes

a MTP.

• Family-wise error rate (FWER).

This is the most classic notion of type-I error in simultaneous statistical inference.

This is the probability of making at least one type I error, i.e.,

FWERT := P(Vn(T ) ≥ 1).

FWER is a widely considered frequentist approach in multiple testing. Controlling FWER

has been a traditional concern in many multiple testing problems. This tradition is

reflected in the books by Hochberg and Tamhane (1987), Hsu (1996), Miller (1981),

Westfall and Young (1993), and the review by Tamhane (1996). Although a large por-
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tion of this thesis focuses on studying the finite-sample and asymptotic performances of

various FWER controlling procedures, we mention some other type I error criteria for

completeness.

• Per-comparison error rate (PCER).

It is the expected value of the proportion of false positives among the n tests, i.e.,

PCERT :=
E[Vn(T )]

n
.

• Per-family error rate (PFER).

It is the expected number of false positives, i.e.,

PFERT := E[Vn(T )].

• False discovery proportion (FDP).

Instead of focusing on Vn, one might be interested in the proportion of false discoveries

among total discoveries:

FDPT :=
Vn(T )

max{Rn(T ), 1}
.

• False discovery rate (FDR).

Dickhaus (2014) remarks that multiple testing witnessed the start of a new era when

Benjamini and Hochberg (1995) introduced the FDR:

FDRT := E(FDPT ) = E
[
Vn(T )

Rn(T )
| Rn(T ) > 0

]
· P(Rn(T ) > 0).

Since its inception in their pioneering work, FDR has enjoyed considerable attention

in mainstream statistical research, and appears to have gained “accepted methodology”

stature in scientific journals (Efron, 2010a).

• Positive False discovery rate (pFDR).

Storey (2002, 2003) introduced the notion of pFDR:

pFDRT := E
[
Vn(T )

Rn(T )
| Rn(T ) > 0

]
.

The term positive stands for the conditioning on at least one positive finding (i.e, discov-

eries). Storey (2003) showed that when the test statistics have a mixture distribution,

then the pFDR may be represented as a Bayesian posterior probability.

• Marginal False discovery rate (mFDR).
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Another closely related type-I error rate criterion to FDR is the following:

mFDRT :=
E[Vn(T )]
E[Rn(T )]

.

It is also called proportion of expected false positives (PEFP) (Dudoit and Laan, 2008).

• Generalized family-wise error rate (k-FWER).

Lehmann and Romano (2005) generalized the classical FWER to the following:

k-FWERT := P(Vn(T ) ≥ k).

Here k ∈ I is pre-specified or user-supplied. Putting k = 1 gives the FWER. Larger

values of k give less conservative results.

• Generalized false discovery rate (k-FDR).

Sarkar (2007) introduced k-FDR = E(k-FDP ) where

k-FDP =

{
V
R

if V ≥ k

0 if V < k.

k = 1 gives FDR.

Measures like FDR, k-FWER and k-FDR are often considered as less stringent ap-

proaches than the FWER for finding the significant few from the insignificant many effects

tested. However, the various error criteria are suitable in different situations. The FDR,

being a more liberal criteria, is appropriate in exploratory studies. The FWER or k-

FWER are more often used in confirmatory studies or cases where a type I error incurs a

huge loss, e.g., confirmatory clinical trials (Dmitrienko et al., 2010; Ren, 2021).

1.3.3 Strong and Weak Control

Let e(Vn, Rn) be a general type-I error rate. A MTP T controls this error rate weakly at

level α ∈ (0, 1) if e(Vn, Rn)T ≤ α under the global null hypothesis.

Alternatively, we say that T controls e(Vn, Rn) strongly at level α ∈ (0, 1) if e(Vn, Rn)T ≤
α under any configuration of true and false null hypotheses.

In general, controlling an error rate strongly is desirable, since the configuration of

null hypotheses is usually unknown.



1.3 Error Rates 7

1.3.4 Relations among type I error rates

From the earlier definitions, we note that the following inequalities hold for any MTP T

and any configuration of true and false null hypotheses:

PCERT ≤ FDRT ≤ FWERT ≤ PFERT ,

k-FDRT ≤ FDRT ≤ pFDRT ,

k-FDRT ≤ k-FWERT ≤ FWERT ,

PCERT ≤ mFDRT ,

k-FWERT ≤ PFERT

k
.

The above inequalities present the relative conservativeness of different criteria. For

example, any FWER controlling procedure also controls FDR and k-FWER for k > 1.

The smaller error criteria typically induce less stringent methods in the sense of allowing

more rejections. Also, under the global null hypothesis, FDR and FWER are same. So,

any FDR controlling procedure also controls FWER weakly.

1.3.5 Type II Error Rates

One often wishes to compare MTPs which control the same type I error criteria at level

α. For this, we additionally need a concept of type II error rate, or equivalently, power.

A few commonly used notions of power (Dudoit and Laan, 2008; Grandhi, 2015; Ramsey,

1978) are:

• Disjunctive power (AnyPwr).

This is the probability of rejecting at least one false null:

AnyPwrT := P(Sn(T ) ≥ 1).

This is appropriate in studies aiming to identify at least one existing effect, e.g. in union

intersection settings (Bretz et al., 2011).

• Conjunctive power (AllPwr).

This is the probability of rejecting all false null hypotheses:

AllPwrT := P(Sn(T ) = n1).

This is appropriate in studies aiming to identify all existing effects, e.g. in intersection

union settings (Bretz et al., 2011).

• Average power (AvgPwr).
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It is defined as

AvgPwrT :=
E[Sn(T )]

n1

, when n1 > 0.

These three notions of power have also been termed minimal power, complete power,

and proportional power, respectively (Westfall et al., 1999). We also note that, for any

MTP T ,

AllPwrT ≤ AnyPwrT and AllPwrT ≤ AvgPwrT .

• True discovery rate (TDR).

It is the expected value of the proportion of true discoveries among total discoveries.

TDRT := E
[
Sn(T )

Rn(T )
| Rn(T ) > 0

]
· P(Rn(T ) > 0) = P (Rn(T ) > 0)− FDRT .

In a sense, TDR is a power analogue of the FDR.

• False non-discovery rate (FNR).

Genovese and Wasserman (2002) considered the expected value of the proportion of

non-discoveries among total non-discoveries,

FNRT := E
[

Tn(T )

n−Rn(T )
| Rn(T ) < n

]
· P(Rn(T ) < n).

They studied new MTPs that incorporate both FDR and FNR. Sarkar (2004) referred to

this as the false negatives rate.

Storey (2003) proposed positive false non-discovery rate (pFNR). This is the condi-

tional expectation E
[

Tn(T )
n−Rn(T )

| Rn(T ) < n

]
. He established a connection between multiple

testing and classification theory in terms of a combination of pFDR and pFNR.

Sun and Cai (2007) considered minimization of the following quantity:

mFNRT :=
E[Tn(T )]

E[n−Rn(T )]
,

subject to controlling mFDR at a given level.

1.4 Multiple Testing Procedures

A MTP for the simultaneous testing of n hypotheses is a decision rule providing rejection

regions for each of the n hypotheses. So, for each of the n tests, a MTP gives a set of

values (i.e, the critical region for the corresponding null).
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1.4.1 Types of Multiple Testing Procedures

The literature on MTPs is ever-increasing. However, we can still classify the proposed

methods based on some general considerations. For example, MTPs can be classified

based on their different approaches in defining rejection regions. Some MTPs are built

based on the marginal distributions of the statistics while some others also consider their

dependence. These are respectively Margin-based MTPs and Multivariate MTPs :

(a) Margin-based (or Marginal) MTPs.

This class involves modelling the marginal distributions of the n test statistics.

(Dickhaus, 2014).

(b) Multivariate (or Joint) MTPs.

This class considers the joint distribution of all the statistics. Their decision rules

(i.e, the rejection regions) involve exact or approximate calculations of the quan-

tiles of this joint distribution, obtained through multivariate CLTs or resampling

(Dickhaus, 2014).

This thesis focuses on the class of marginal MTPs, which include single-step and

step-wise procedures.

1.4.2 Single-step Procedures

Single-step MTPs test individual null hypothesis at (local) level α∗, where α∗ ≤ α is

due to a multiplicity correction of α. These procedures are extremely easy to implement:

we just need to calculate marginal p-values P1, . . . , Pn and we reject H0i if and only if

Pi < α∗.

• The Bonferroni Procedure.

This is one of the most widely used FWER-controlling method. This method uses

α∗ = α/n:

FWERBon = P

(⋃
i∈A

{Pi ≤ α/n}

)
.

The Bonferroni method controls the FWER under any dependency structure among the

n p-values. This simple procedure requires no distributional assumption. However, it has

the disadvantage that α/n is very small for large n.

• The Sidak Procedure (Šidák, 1967).

This method uses α∗ = 1− (1− α)1/n:

FWERSidak = P

(⋃
i∈A

{Pi ≤ 1− (1− α)1/n}

)
.
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It controls FWER under independence.

1.4.3 Stepwise Procedures

Single-step MTPs compare the individual test statistics to the corresponding cut-offs

simultaneously, and they stop after performing this simultaneous ‘joint’ comparison.

Often stepwise methods (Holm, 1979; Rom, 1990) possess greater power than the single-

step procedures, while still controlling FWER (or, in general, the error rate under con-

sideration) at the desired level.

Consider the set

Sn = {t = (t1, . . . , tn) ∈ Rn : 0 ≤ t1 ≤ . . . ≤ tn ≤ 1} .

A p-value based step-down MTP uses a vector of cutoffs u = (u1, . . . , un) ∈ Sn, and

works as follows. The step-down MTP compares the most significant p-value P(1) with

the smallest u-value u1 at first and so on. More formally, letm1 = max
{
i : P(j) ≤ uj for all

j = 1, . . . , i}. Then the step-downMTP based on critical values u rejectsH0(1), . . . , H0(m1).

Example 1. The Bonferroni method is a step-down MTP with ui = α/n, i ∈ I.

Example 2. The Sidak method is a step-down MTP with ui = 1− (1− α)1/n, i ∈ I.

Example 3. Holm (1979) proposed a popular step-down MTP with ui = α/(n−i+1), i ∈
I. This method strongly controls FWER at α under arbitrary dependence.

Example 4. Benjamini and Liu (1999a) introduced a step-down MTP with

ui = min

(
1,

nα

(n− i+ 1)2

)
, i ∈ I.

Example 5. Benjamini and Liu (1999b) studied another step-down MTP with

ui = 1−

[
1−min

(
1,

nα

n− i+ 1

)]1/(n−i+1)

, i ∈ I.

Example 6. Benjamini and Liu (1999b) mentioned a Holm-type procedure with critical

values

ui = 1− (1− α)1/(n−i+1), i ∈ I.

The step-up MTP also utilizes set of critical values, say u = (u1, . . . , un) ∈ Sn.

But the step-up method is inherently different from the step-down method because it

starts by comparing the least significant p-value P(n) with the largest u-value un and

so on. Formally, the step-up MTP based on critical values u rejects the hypotheses
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H0(1), . . . , H0(m2), where m2 = max
{
i : P(i) ≤ ui

}
. If such a m2 does not exist, then the

MTP accepts each null hypothesis.

We make a remark on the nomenclature of the step-down and step-up MTPs. The

direction ‘up’ or ‘down’ refers to the order of the significance of the p-values in which the

method proceeds. The step-down MTP steps toward the less significant p-values (i.e, it

‘steps down’), while the step-up MTP steps toward more significant p-values (i.e, it ‘steps

up’).

Example 7. The Bonferroni correction is also a step-up MTP, where ui = α/n, i ∈ I.

Example 8. The Sidak method is a step-up procedure with ui = 1− (1− α)1/n, i ∈ I.

Example 9. Hochberg (1988) proposed a popular step-up MTP which uses the same

cut-offs as Holm MTP (i.e, ui = α/(n− i+1)). This strongly controls FWER at α under

independence or positive regression dependence.

Example 10. The classic Benjamini-Hochberg method (Benjamini and Hochberg, 1995)

is a step-up MTP with ui = iα/n. Benjamini and Hochberg (1995) originally showed a

conservative control of the FDR of their procedure at n0α/n under independence of the

underlying test statistics. The exact control was shown later in Benjamini and Yekutieli

(2001); Finner and Roters (2001b); Sarkar (2002).

Example 11. Benjamini and Yekutieli (2001) proved that the step-up MTP with

ui =
iα

n
· 1

D
, D =

n∑
i=1

1

i
,

controls FDR at level α under arbitrarily dependent test statistics.

1.5 Dependence and Our Multiple Testing Frame-

work

Several authors have proposed a plethora of different methodologies to control various

types of error rates. Most of these classical procedures for controlling FDR or FWER were

introduced under independence or some form of weak dependence among the concerned

variables. However, large-scale multiple testing problems arising in various scientific

disciplines often study correlated variables simultaneously. For example, in microRNA

expression data, several genes may cluster into groups through their transcription pro-

cesses and possess high correlations. The data observed from different locations and

time periods in public health studies are generally spatially or serially correlated. fMRI

studies and multistage clinical trials also involve variables with complex and unknown
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dependencies. Consequently, the study of the effect of correlation on dependent test

statistics in simultaneous inference problems has attracted considerable attention recently.

1.5.1 Existing Approaches towards Dependence

Benjamini and Yekutieli (2001) introduced a special dependency property positive regres-

sion dependency on a subset (PRDS). The notion of PRDS involves increasing sets.

Definition 1. We call D ⊂ Rk to be an increasing set if a ∈ D and b ≥ a imply that

b ∈ D.

Definition 2. Let X = (X1, X2, . . . , Xn) be the vector of test statistics. We say that the

PRDS property holds on A if for any increasing set D, and for each i ∈ A,

P {X ∈ D | Xi = x}

is nondecreasing in x.

Benjamini and Yekutieli (2001) established that the BH method controls FDR under

the PRDS property. Let ψ : [0, 1]n → R be any coordinate-wise non-decreasing function.

Then the PRDS property holds if

E [ψ (p1, . . . , pm) | pi = u] is non-decreasing in u ∀i ∈ A.

Sarkar (2008) gave a slightly more relaxed condition, termed as positive dependence, which

holds if

E [ψ (p1, . . . , pm) | pi ≤ u] is non-decreasing in u ∀i ∈ A.

He showed that BH method also controls the FDR under positive dependence. Sarkar

(2002) established some general results on FDR control under dependence.

Storey and Tibshirani (2003) studied the estimation of FDR under dependence. Blan-

chard and Roquain (2009) proposed FDR-controlling adaptive step-up methods under

positive dependence and unspecified dependence. Finner and Roters (2001a) studied the

expected type I errors of single-step MTPs based on exchangeable test statistics. Fan

et al. (2012) introduced a method of tackling dependent test statistics with a known

dependence structure. Fan and Han (2016) extended this to unknown dependence struc-

tures. Qiu et al. (2005) demonstrated that many FDR controlling procedures lose power

significantly under dependence. Leek and Storey (2008) developed a framework for large-

scale simultaneous inference under dependence.
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1.5.2 Motivation and a Brief Overview of Our Work

Controlling FDR is appropriate in many scenarios, e.g., in “preliminary studies where

it is acceptable for a certain proportion of discoveries to be false in exchange for an

increase in overall discoveries as compared to FWER controlling methods” (Saunders,

2014). FWER, on the contrary, has a confirmatory nature (Hochberg and Tamhane,

1987). Also, the existing literature lacks the study of the performances of FWER or

generalized FWER controlling procedures under dependent setups. For these reasons,

this thesis concentrates mainly on FWER and generalized FWER controlling procedures.

However, in the subsequent chapters, we shall see that similar asymptotic results also

hold for FDR.

Guo and Sarkar (2020) presented adaptive versions of the BH and the Bonferroni MTP

in a block dependence structure which control the FDR and FWER, respectively. They

elucidated that their proposed methods can handle the underlying covariance structure

more efficiently than the corresponding traditional adaptive method.

Proschan and Shaw (2011) studied the asymptotics of Bonferroni procedure for equicor-

related normal test statistics, where the correlation ρn approaches 0 as n approaches

infinity. Das and Bhandari (2021) have established that the Bonferroni FWER is asymp-

totically convex in correlation ρ under the equicorrelated Gaussian framework (discussed

in the following subsection). Consequently, they show that the Bonferroni FWER is

bounded above by α(1 − ρ), α being the target level. However, this bound fails in

equicorrelated setups with small and moderate dimensions. There is little literature

that elucidates the magnitude of the conservativeness of Bonferroni’s method in those

scenarios. In Chapter 2 , we address this research gap in a unified manner by establishing

upper bounds on Bonferroni FWER in non-negatively correlated non-asymptotic setups.

In Chapter 3 , We derive similar upper bounds for the generalized FWERs and propose

an improved k-FWER controlling procedure. Towards this, we establish an inequality

related to the probability that at least k among n events occur, which extends and

sharpens the classical ones. The computation of this probability arises in various contexts,

e.g., in reliability problems of communication networks. Our results might be insightful

in those areas, too.

In Chapter 4 , we improve the main result of Das and Bhandari (2021) by showing that

the Bonferroni FWER asymptotically goes to zero for any strictly positive ρ. We also

extend this to arbitrarily correlated setups where the limiting infimum of the correlations

is strictly positive. These results elucidate that Bonferroni’s procedure becomes extremely

conservative for large-scale multiple-testing problems under dependence.

Huang and Hsu (2007) remark that stepwise decision rules based on modeling of the
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dependence structure are in general superior to their counterparts that do not consider the

correlation. Finner and Roters (2002) studied the number of falsely rejected hypotheses

in single-step, step-down and step-up methods under independence. However, the role of

correlation on the limiting behavior of the FWER for stepwise procedures is less studied.

Also, the existing literature lacks theoretical justifications for why FWER methods fail in

large-scale problems. Chapter 5 addresses this problem by theoretically investigating the

limiting FWER values of general step-down procedures under the correlated normal setup.

These results provide new insights into the behavior of step-down decision procedures. By

establishing the limiting performances of commonly used step-up methods, e.g., the BH

MTP and the Hochberg MTP, we have elucidated that the class of step-up procedures

does not possess a similar universal asymptotic zero result as obtained in the case of

step-down procedures. It is also noteworthy that most of our results are very general

since they accommodate any combination of false and true null hypotheses. We have also

obtained the limiting powers of the stepwise procedures.

Finally, we consider the simultaneous inference problem in a sequential framework in

Chapter 6 . The mainstream sequential simultaneous inference literature has traditionally

focused on the independent setup. However, there is little work studying the multiple

inference problem in a sequential framework where the observations corresponding to

the various streams are dependent. We consider the classical means-testing problem

in an equicorrelated Gaussian and sequential framework. We focus on sequential test

procedures that control the type I and type II familywise error probabilities at pre-

specified levels. We establish that our proposed MTPs have the optimal average sample

numbers asymptotically, as the two types of familywise error probabilities approach zero at

arbitrary rates. Towards this, we elucidate that the ratio of the average sample number

of the proposed rule and that of the classical SPRT goes to one asymptotically, thus

illustrating their connection.

1.5.3 Correlated Gaussian sequence model

This thesis views the simultaneous inference problem through a Gaussian sequence model

framework (Das and Bhandari, 2021; Delattre and Roquain, 2011; Finner et al., 2007,

2009; Proschan and Shaw, 2011). Suppose we have n observations

Xi ∼ N (µi, 1) , i ∈ I := {1, . . . , n},

where theXi ’s are dependent. The variances are considered to be unity since the literature

on the multiple testing theory often assumes that the variances are known (see, e.g.,

Abramovich et al. (2006); Bogdan et al. (2011); Das and Bhandari (2021, 2023); Delattre

and Roquain (2011); Donoho and Jin (2004); Proschan and Shaw (2011)).
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We wish to test:

H0i : µi = 0 vs H1i : µi > 0, i ∈ I.

The global null H0 =
⋂n

i=1H0i states that each µi is zero. This thesis studies the finite-

sample and asymptotic properties of a broad class of MTPs under two dependent setups:

(a) The equicorrelated setup:

Corr (Xi, Xj) = ρ ∀i ̸= j (ρ ≥ 0).

(b) The non-negatively correlated setup:

Corr (Xi, Xj) = ρij ∀i ̸= j (ρij ≥ 0).

The equicorrelated setup (Cohen et al., 2009; Das and Bhandari, 2020, 2021; Delattre

and Roquain, 2011; Dickhaus, 2008; Finner and Roters, 2001a; Finner et al., 2007, 2009;

Proschan and Shaw, 2011; Roy and Bhandari, 2024; Sarkar, 2007) is the intraclass co-

variance matrix model, characterizing the exchangeable situation. Simultaneous testing

of normal means under equicorrelated frameworks has witnessed considerable attention

in recent years. Although the equicorrelated setup is a special case of the non-negatively

correlated case, we are mentioning them separately since, often the proof of a result in

the general case is based on the corresponding results in the equicorrelated case.

The equicorrelated setup also encompasses the problem of comparing a control against

several treatments. To see this, let Ȳi ∼ N (γi, σ
2/ai) , i = 0, . . . , n, be independent sample

means with known variance σ2 > 0, a1 = · · · = an and γi ≥ γ0 for i = 1, . . . , n. Suppose

we wish to test

H̃i : γi = γ0 vs K̃i : γi > γ0 for i = 1, . . . , n

based on the test statistics

Ti =

[
1

a0
+

1

a1

]−1/2
(
Ȳi − Ȳ0

)
σ

, i = 1, . . . , n.

Then,

E(Ti) =
[
1

a0
+

1

a1

]−1/2
(γi − γ0)

σ
= µi (say).

Also, Var [Ti] = 1 and

Cov (Ti, Tj) = a1/ (a1 + a0) = ρ (say).

However, many scientific disciplines involve variables with more complex dependence

structure (e.g., fMRI studies). These complex dependence scenarios need to be tackled
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with more general covariance matrices. The arbitrarily correlated setup also includes

the successive correlation covariance matrix, which covers change point problems (Cohen

et al., 2009).

Throughout this thesis, Mn(ρ) denotes the n × n matrix having each diagonal entry

1 and each off-diagonal entry ρ ∈ [0, 1]. Also, Σn denotes the n × n correlation matrix

with (i, j)’th entry equal to ρij ∈ [0, 1], i ̸= j. We denote the pdf and the cdf of N(0, 1)

by ϕ(·) and Φ(·) respectively. The desired significance level is denoted by α ∈ (0, 1).



Chapter 2

Non-asymptotic Behaviors of FWER

in Correlated Normal Distributions
1

2.1 Introduction

This chapter considers the equicorrelated normal distribution with positive correlation ρ

at first. Das and Bhandari (2021) have found that under this setup, FWER(ρ) is convex

in ρ as the number of hypotheses approaches infinity. Consequently, they show that the

Bonferroni FWER is bounded above by α(1 − ρ), α being the desired level. In Chapter

4, we shall show that the Bonferroni FWER(ρ) approaches zero asymptotically for any

positive ρ. These works explicate the fact that Bonferroni’s procedure becomes very

conservative for large-scale multiple testing problems under correlated setups. However,

the convergence of FWER to zero is extremely slow and we find little literature which

elucidates the magnitude of the conservativeness of Bonferroni’s method in a dependent

setup with small or moderate dimensions. In this chapter, we bridge this research gap in a

unified manner by establishing upper bounds on Bonferroni FWER in the equicorrelated

and non-negatively correlated non-asymptotic setups.

Order statistics for exchangeable normal random variables have applications in biomet-

rics (Olkin and Viana, 1995; Viana, 1998). Also, the maximum of exchangeable normal

random vector can be used to model the lifetime of parallel systems conveniently. The

non-asymptotic bounds on FWER proposed in this chapter provide lower bounds on the

cdf of the failure time of parallel systems. It is known that the maximum of n observations

from equicorrelated normal distribution has a (n−1) dimensional skew normal distribution

1This chapter is based on the publication M. Dey (2024) Behavior of FWER in Normal
Distributions, Communications in Statistics - Theory and Methods, 53(9), 3211-3225, DOI:
10.1080/03610926.2022.2150826.
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(Loperfido et al., 2007). Although finding the cdf of multivariate skew normal distribution

is difficult, non-asymptotic bounds on the cdf may be obtained from the results derived

in this chapter.

In Section 2.2, we set up the framework and introduce the necessary notation. Section

2.3 contains theoretical results about the bounds on FWER in equicorrelated normal

setup. Section 2.4 extends these results to non-negatively dependent setups. We also

propose an improved multiple testing procedure utilizing those bounds in Section 2.5.

Section 2.6 presents simulation findings. We end this chapter with a brief conclusion in

Section 2.7.

2.2 Preliminaries

We consider the Gaussian sequence model introduced in Section 1.5.3:

Xi∼N(µi, 1), i ∈ I.

The global null H0 =
⋂n

i=1H0i states that each µi is zero, while under the global

alternative, at least one µi is positive. We reject H0i for large values of Xi (say Xi > c

for some cut-off c). Under the global null,

FWER = PH0

( n⋃
i=1

{Xi > c}
)
.

We have considered equicorrelated setup at first (in Section 2.3) whereas in Section 2.4, we

have dealt with non-negatively correlated setup. In our one-sided setting, the Bonferroni

method rejects H0i if Xi > Φ−1(1 − α/n)(= cα,n, say). So, under the global null, the

Bonferroni FWER (for the covariance matrix Σn) is defined by

FWERBon(n, α,Σn) = PΣn (Xi > cα,n for some i | H0) = PΣn

( n⋃
i=1

{Xi > cα,n | H0}
)
.

For ρ ∈ [0, 1], We denote FWERBon(n, α,Mn(ρ)) as FWERBon(n, α, ρ) for simpler

notation. Das and Bhandari (2021) show the following under the equicorrelated setup:

Theorem 2.2.1. Suppose we test each H0i at size αn. Suppose lim
n→∞

nαn = α ∈ (0, 1).

Then, FWERBon(n, α, ρ) asymptotically is a convex function in ρ ∈ [0, 1].

For Bonferroni’s procedure, αn = α/n and thus Theorem 2.2.1 also applies for Bon-

ferroni’s method. Moreover, Theorem 2.2.1 results in the following corollary.
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Corollary 2.2.1. Given any α ∈ (0, 1) and ρ ∈ [0, 1], FWERBon(n, α, ρ) is asymptoti-

cally bounded by α(1− ρ).

Corollary 2.2.1 shows that Bonferroni procedure controls FWER at a much smaller

level than α, when n is very large. We shall later prove a much stronger result than

Corollary 2.2.1 (Theorem 4.3.3) in Chapter 4.

Corollary 2.2.1 highlights the fundamental drawback of Bonferroni MTP. We shall call

the setup with very large number of hypotheses an asymptotic setup while setups with

small or moderate number of hypotheses will be referred to as non-asymptotic setups.

We summarize known and new results on FWER of Bonferroni’s MTP under various

dependent normal setups in Table 2.1.

Table 2.1: Results on Bonferroni FWER

Dependent Setup Results on FWER
Equicorrelated Asymptotic Corollary 2.2.1 (Das and Bhandari 2021),

Theorem 4.3.1, Theorem 4.3.3
General Asymptotic Theorem 4.3.4
Equicorrelated Non-asymptotic Theorem 2.3.1,2.3.3,2.3.4,2.3.5,2.3.6 and Corollary 2.3.2
General Non-asymptotic Theorem 2.4.1,2.4.2,2.4.3,2.4.4 and Corollary 2.4.2

2.3 Bounds on FWER in Equicorrelated

Non-asymptotic Setup

The α(1 − ρ) bound fails in equicorrelated setups with small and moderate dimensions,

(we shall see this in detail in Section 2.6). We need large number of hypotheses, e.g

100 million to get values of FWER close to zero. Hence, establishing upper bounds on

FWER in problems with small and moderate number of hypotheses become relevant. The

following result will be crucial towards this.

Theorem 2.3.1. Under the equicorrelated normal set-up,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

2π

∫ ρ

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz.

It is noteworthy that this bound holds for any choice of (n, α) and any ρ ≥ 0. We need

two results to establish this theorem.
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Lemma 2.3.1. (Kwerel, 1975) Let A1, A2, . . . , An be n events. Let S1 =
n∑

i=1

P(Ai) and

S2 =
∑

1≤i<j≤n

P(Ai ∩ Aj). Then, P

(
n⋃

i=1

Ai

)
≤ S1 −

2

n
S2.

This bound on the union of n events is also called the Sobel-Uppuluri upper bound and

is the optimal linear bound in S1 and S2 (Chen, 2015). The second lemma is regarding

the joint distribution function of a bivariate normal distribution:

Lemma 2.3.2 (Monhor (2013)). Suppose (X, Y ) ∼ Bivariate Normal(0, 0, 1, 1, ρ) with

ρ ≥ 0. Then, for all x > 0,

P(X ≤ x, Y ≤ x) = [Φ(x)]2 +
1

2π

∫ ρ

0

1√
1− z2

e
−x2

1+z dz.

Proof of Theorem 2.3.1. For i = 1, . . . , n, we define the event Ai = {Xi > Φ−1(1 −
α/n)|H0}. So, P(Ai) = PH0 [Xi > Φ−1(1− α/n)] = α/n. This gives S1 =

∑n
i=1 P(Ai) =

n · α/n = α. Now,

P(Ai ∩ Aj)

= 1− P(Ac
i)− P(Ac

j) + P(Ac
i ∩ Ac

j)

= 1− (1− α/n)− (1− α/n) + PH0

(
Xi ≤ Φ−1(1− α/n), Xj ≤ Φ−1(1− α/n)

)
=

2α

n
− 1 + (1− α/n)2 +

1

2π

∫ ρ

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz (using Lemma 2.3.2)

=
α2

n2
+

1

2π

∫ ρ

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz

This gives

S2 =

(
n

2

)
·
[
α2

n2
+

1

2π

∫ ρ

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz

]
.

The rest is obvious from Lemma 2.3.1 since FWERBon(n, α, ρ) = P(
⋃n

i=1Ai). □

Remark 1. Yang et al. (2016) established the following two upper bounds on the union

of n events, for any c = (c1, . . . , cn) with
∑n

i=1 ci = 1 and ci > 0 for each i:

P

(
n⋃

i=1

Ai

)
≤
(

1

minj cj
+ 1

) n∑
i=1

ciP (Ai)−
1

minj cj

n∑
i=1

n∑
j=1

cicjP (Ai ∩ Aj) .

P

(
n⋃

i=1

Ai

)
≤min

i

{∑
j cjP (Ai ∩ Aj)− (minj cj)P (Ai)

1−minj cj

}
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− 1

(minj cj) (1−minj cj)

[
n∑

i=1

ciP (Ai)−
n∑

i=1

n∑
j=1

cicjP (Ai ∩ Aj)

]
.

They conjectured that the optimal upper bounds in the above two classes are achieved at

c = 1
n
1. In the proof of Lemma 2.3.2 we have seen that P(Ai) is same for each i and

P(Ai ∩ Aj) is same for each pair (i, j), i ̸= j in the equicorrelated setup. In this case the

above two upper bounds by Yang et al. become identical and reduce to the quantity

P(Ai) +
P(Ai)− P (Ai ∩ Aj)

minj cj
(2.1)

which is a decreasing function in minj cj. Therefore, their conjecture is proved affirma-

tively when P(Ai) is same for each i and P(Ai ∩Aj) is same for each pair (i, j), i ̸= j. It

is also noteworthy that the quantity in (2.1) is same as the upper bound given by Lemma

2.3.1 in this case.

Corollary 2.3.1. Under the equicorrelated normal set-up, if ρ ≤ α/n,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· αρ.

Hence, throughout this chapter, we assume that ρ ≥ α/n. We observe that the bound

mentioned in Theorem 2.3.1 involves a definite integral which is very difficult to evaluate

analytically. As we are interested in obtaining upper bounds for FWER, it is enough if

we can find a lower bound to the integral. Towards this, we show the following theorem

which will be crucial to obtain a lower bound to the integral mentioned in Theorem 2.3.1.

Theorem 2.3.2. Suppose (X, Y ) ∼ Bivariate Normal(0, 0, 1, 1, ρ) with ρ ≥ 0. Then, for

all x ≥ 2,

P(X ≤ x, Y ≤ x) ≥ [Φ(x)]2 +
1

2π
· sin−1 ρ · e

− x2

1+
ρ
2 .

We use two well-known inequalities to prove this theorem.

Lemma 2.3.3 (Chebyshev Integral Inequality). Let f and g be two nonnegative integrable

functions and synchronous on a bounded interval [a, b], i.e

∀x, y ∈ [a, b], [f(x)− f(y)] · [g(x)− g(y)] ≥ 0.

Then,

(b− a) ·
∫ b

a

f(x)g(x)dx ≥
∫ b

a

f(x)dx ·
∫ b

a

g(x)dx.
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Lemma 2.3.4 (Hermite-Hadamard Integral Inequality). Let f : [a, b] → R be a convex

function. Then, ∫ b

a

f(x)dx ≥ (b− a) · f
(
a+ b

2

)
.

Proof of Theorem 2.3.2. Suppose (X, Y ) ∼ Bivariate Normal(0, 0, 1, 1, ρ) with ρ ≥ 0.

Then, from Lemma 2.3.2,

∀x > 0 P(X ≤ x, Y ≤ x) = [Φ(x)]2 +
1

2π

∫ ρ

0

1√
1− z2

e
−x2

1+z dz.

It can be easily shown that the functions
1√

1− z2
and e

−x2

1+z have same monotony in

z ∈ [0, 1], i.e are synchronous on [0, 1]. Using lemma 2.3.3, we obtain∫ ρ

0

1√
1− z2

e
−x2

1+z dz ≥ 1

ρ

∫ ρ

0

1√
1− z2

dz ·
∫ ρ

0

e
−x2

1+z dz =
sin−1 ρ

ρ
·
∫ ρ

0

e
−x2

1+z dz. (*)

The function e
−x2

1+z is convex in z if z ≤ x2

2
− 1. Now, 0 ≤ z ≤ ρ ≤ 1. So, z ≤ x2

2
− 1

holds if x ≥ 2. Hence, e
−x2

1+z is convex in z ∈ [0, 1] for x ≥ 2. Applying Lemma 2.3.4 on

this function, we get,

∀x ≥ 2,

∫ ρ

0

e
−x2

1+z dz ≥ ρ · e
− x2

1+
ρ
2 .

Combining this with (*), we get, for x ≥ 2,∫ ρ

0

1√
1− z2

e
−x2

1+z dz ≥ sin−1 ρ · e
− x2

1+
ρ
2 .

The rest is obvious from Lemma 2.3.2. □

Remark 2. Monhor (2013) obtained the following inequality for positively correlated

bivariate normal distribution function using Lemma 2.3.2.

P(X ≤ x, Y ≤ x) ≥ [Φ(x)]2 +
1

2π
· sin−1 ρ · e−x2 ∀x > 0.

Theorem 2.3.2 provides a sharper inequality for x ≥ 2.

Theorem 2.3.2 can be used to establish the following.

Corollary 2.3.2. Under the equicorrelated normal set-up, if x = Φ−1(1− α
n
) ≥ 2,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

2π
· sin−1 ρ · e

− x2

1+
ρ
2 .
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We shall write x for Φ−1(1 − α/n) from now on. We observe from simulation study

that, the upper bound α(1−ρ) given by Corollary 2.2.1 holds for any nonnegative value of

ρ when n ≥ 10000 and α ≥ 0.01. When n = 10000 and α = 0.01, we have x = 4.42. This,

along with the findings from our simulations suggest that the bound holds for x ≥ 4.42.

Therefore, here we restrict ourselves to the case x ≤ 4.42.

We also observe that, when ρ ≥ 0.5, the bound α(1 − ρ) works when n ≥ 900 and

α ≥ 0.01. When n = 900 and α = 0.01, we have x = 4.23. This, along with the findings

from our simulations suggest that, when ρ ≥ .5, the bound works for x ≥ 4.23. Therefore,

when ρ ≥ .5, we restrict ourselves to the case x ≤ 4.23.

We also assume ρ ≥ 0.01 for the rest of this chapter. We shall derive upper bounds

on FWERBon(n, α, ρ) in each of the following four cases separately:

1. 4.23 ≥ x ≥ 2, ρ ≥ .5

2. 4.42 ≥ x ≥ 2, .01 ≤ ρ < .5

3. x ≤ 2, ρ ≥ .5

4. x ≤ 2, ρ < .5

Case 1. 4.23 ≥ x ≥ 2, ρ ≥ .5

Theorem 2.3.3. Let 4.23 ≥ x ≥ 2 and ρ ≥ .5. Then,

∀x ∈ [xl, xl+1], FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· αρ
6

· Cxl

where xl’s and Cxl
’s are as follows:

l 1 2 3 4 5 6 7

xl 2 2.56 3.06 3.33 3.71 3.93 4.23

Cxl
1 1

2
1
π

1
2π

1
π2

1
6π

-

Proof of Theorem 2.3.3. We have from Corollary 2.3.2, for each x ≥ 2,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

2π
· sin−1 ρ · e

− x2

1+
ρ
2

≤ α− n− 1

n
· α

2

n
− n− 1

2π
· 2πρ

6
· e−

x2

1+.25 .

The last step follows since ρ ≥ .5 implies sin−1 ρ
ρ

≥ π
3
. Hence it is enough to show that

∀x ∈ [xl, xl+1] e−
x2

1.25 ≥ α

n
· Cxl

(n).
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Now, α
n

= 1 − Φ(x). Let, M(x) = e−
x2

1.25

1−Φ(x)
. Using computational tools, we get that

∀x ∈ [xl, xl+1], M(x) ≥ Cxl
(n) and the proof is completed. □

Case 2. 4.42 ≥ x ≥ 2, .01 ≤ ρ < .5

Theorem 2.3.4. Let 4.42 ≥ x ≥ 2 and .01 ≤ ρ < .5. Let I1 = [1
3
, .5), I2 = [ 1

2π
, 1
3
) and

I3 = [0.01, 1
2π
). Then, for ρ ∈ Ii with i = 1, 2, 3 and for x ∈ [xm(i), xm+1(i)],

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· αρ
2π

·Dxm

where xm’s and Dxm’s are as follows:

m 1 2 3 4 5 6 7 8 9

Dxm 1 1
2

1
π

1
2π

1
π2

1
π3

1
π4

1
4π4

1
16π4

xm(1) 2 2.3 2.76 3 3.36 3.56 4 4.42

xm(2) 2 2.49 2.72 3.04 3.23 3.66 4.03 4.42

xm(3) 2 2.28 2.5 2.8 2.97 3.37 3.72 4.1 4.42

Its proof is identical to the preceding proof and hence omitted.

Case 3. x ≤ 2, ρ ≥ .5

Theorem 2.3.5. Let x ≤ 2 and ρ ≥ .5. Then,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· αρ
6
.

Proof of Theorem 2.3.5. We have, from Theorem 2.3.1,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

2π

∫ ρ

0

1√
1− z2

e
−x2

1+z dz.

Now,

n− 1

2π

∫ ρ

0

1√
1− z2

e
−x2

1+z dz

≥ n− 1

2π
· 1
ρ

∫ ρ

0

1√
1− z2

dz ·
∫ ρ

0

e
−x2

1+z dz (using Lemma 2.3.3)

=
n− 1

2π
· sin

−1 ρ

ρ
·
[ ∫ ρ/2

0

e
−x2

1+z dz +

∫ ρ

ρ/2

e
−x2

1+z dz

]
≥ n− 1

2π
· sin

−1 ρ

ρ
· ρ
2

[
e−x2

+ e−
x2

1+ρ/2

]
(since e

−x2

1+z is increasing in z)

=
sin−1 ρ

2π
· (n− 1) ·

[
e−x2

+ e−
x2

1+ρ/2

2

]
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≥ sin−1 ρ

2π
· (n− 1) ·

[
e−x2

+ e−
x2

1+.25

2

]
(since ρ ≥ .5)

=
sin−1 ρ

2π
· (n− 1) ·G(x) (suppose)

Now, we have sin−1 ρ
2π

≥ ρ
6
since ρ ≥ .5. Also, G(x) ≥ 1− Φ(x) = α

n
for x ≤ 2.2. The rest

follows from Theorem 2.3.1. □

Case 4. x ≤ 2, ρ < .5

Theorem 2.3.6. Let x = Φ−1(1− α
n
) ≤ 2. Then,

FWERBon(n, α, ρ) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· 2αρ
5π

.

It is mention-worthy that Theorem 2.3.6 is valid for any non-negative ρ.

Proof of Theorem 2.3.6. Φ−1(1− α
n
) ≤ 2 implies α

n
≥ 1− Φ(2) = 0.02275. Therefore,

ρ ≥ 0.02275. Now, along the same lines of the preceding proof, we have,

n− 1

2π

∫ ρ

0

1√
1− z2

e
−x2

1+z dz

≥ sin−1 ρ

2π
· (n− 1) ·

[
e−x2

+ e−
x2

1+ρ/2

2

]
≥ ρ

2π
· (n− 1) ·

[
e−x2

+ e−
x2

1+.011375

2

]
(since ρ ≥ .02275)

=
ρ

2π
· (n− 1) ·H(x) (suppose)

Now, H(x) ≥ 4
5
(1− Φ(x)) = 4α

5n
for x ≤ 2. The rest is obvious from Theorem 2.3.1. □

2.4 Bounds on FWER in General Non-asymptotic

Setup

We have considered an equicorrelated dependence structure so far. However, problems

involving variables with more general dependence structure need to be tackled with more

general correlation matrices. Hence, the study of the behavior of FWER in arbitrarily

correlated normal setups becomes crucial. Towards this, we consider the same Gaussian

sequence model as in Section 2, but now we assume Corr (Xi, Xj) = ρij for i ̸= j with
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ρij ≥ 0. We recall the definition of FWER for this setup:

FWERBon(n, α,Σn) = PΣn

( n⋃
i=1

{Xi > cα,n | H0}
)

= PΣn

(
n⋃

i=1

Ai

)
.

where Ai = {Xi > Φ−1(1− α
n
)|H0} for i ∈ I.

In the equicorrelated setup, we use Kwerel’s inequality (Lemma 2.3.1) to find an upper

bound to FWER:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai)−
2

n

∑
1≤i<j≤n

P(Ai ∩ Aj).

That approach can be used to obtain bounds on FWER in the non-negatively corre-

lated setup also. However, one observes that the above inequality gives equal importance

to all the intersections. Therefore, it might be advantageous to use some other probability

inequality which involves the intersections with higher probabilities only. We mention such

an inequality below:

Lemma 2.4.1 (Kounias (1968)). Let A1, A2, . . . , An be n events. Then,

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai)− max
1≤i≤n

n∑
j=1,j ̸=i

P(Ai ∩ Aj).

Evidently Kounias’s inequality is sharper than Kwerel’s inequality and they are equiv-

alent when P(Ai ∩ Aj) is same for all i ̸= j. We state a generalization of Theorem 2.3.1:

Theorem 2.4.1. Consider the non-negatively correlated normal set-up with covariance

matrix Σn. Then,

FWERBon(n, α,Σn) ≤ α− n− 1

n
· α

2

n
− 1

2π

n∑
j=1,j ̸=i∗

∫ ρi∗j

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz

where i∗ = argmax
i

n∑
j=1,j ̸=i

ρij.

We observe that Theorem 2.4.1 reduces to Theorem 2.3.1 when ρij = ρ for all i ̸= j.

Proof of Theorem 2.4.1. We have P(Ai) =
α
n
where Ai = {Xi > Φ−1(1 − α

n
)|H0}, for

i = 1, . . . , n. One can show, along the similar lines of the proof of Theorem 2.3.1, the

following:



2.4 Bounds on FWER in General Non-asymptotic Setup 27

PΣn(Ai ∩ Aj) =
α2

n2
+

1

2π

∫ ρij

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz ∀ i ̸= j.

Hence, PΣn(Ai ∩ Aj) is an increasing function of ρij. Therefore,

argmax
i

n∑
j=1,j ̸=i

PΣn(Ai ∩ Aj) = argmax
i

n∑
j=1,j ̸=i

ρij = i∗ (say).

Hence, applying Lemma 2.4.1, we get

FWERBon = PΣn

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai)− max
1≤i≤n

n∑
j=1,j ̸=i

PΣn(Ai ∩ Aj)

= α− n− 1

n
· α

2

n
− 1

2π

n∑
j=1,j ̸=i∗

∫ ρi∗j

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz

, completing the proof. □

Corollary 2.4.1. Consider the non-negatively correlated normal setup with covariance

matrix Σn. Let i∗ = argmaxi
∑n

j=1,j ̸=i ρij and j∗ = argminj ρi∗j. Then, if ρi∗j∗ ≤ α
n
,

FWERBon(n, α,Σn) ≤ α− n− 1

n
· αρi∗j∗ .

Hence, we assume ρi∗j∗ >
α
n
from now on. Suppose ρ̄i∗ =

1

n− 1

n∑
j=1,j ̸=i∗

ρi∗j. We have

the following two generalizations of Theorem 2.3.5 and Theorem 2.3.6 respectively:

Theorem 2.4.2. Consider the non-negatively correlated normal setup with covariance

matrix Σn. Let Φ
−1(1− α

n
) ≤ 2, ρi∗j∗ ≥ .5. Then,

FWERBon(n, α,Σn) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· αρ̄i

∗

6
.

Theorem 2.4.3. Consider the non-negatively correlated normal setup with covariance

matrix Σn. Let Φ
−1(1− α

n
) ≤ 2. Then,

FWERBon(n, α,Σn) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· 2αρ̄i

∗

5π
.

Proof of Theorem 2.4.2. For any j ∈ I \ {i},

1

2π

∫ ρi∗j

0

1√
1− z2

e
−x2

1+z dz

≥ 1

2π
· 1

ρi∗j

∫ ρi∗j

0

1√
1− z2

dz ·
∫ ρi∗j

0

e
−x2

1+z dz (using Lemma 2.3.3)
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=
1

2π
· sin

−1 ρi∗j
ρi∗j

·
[ ∫ ρi∗j/2

0

e
−x2

1+z dz +

∫ ρi∗j

ρi∗j/2

e
−x2

1+z dz

]
≥ 1

2π
· sin

−1 ρi∗j
ρi∗j

· ρi
∗j

2

[
e−x2

+ e
− x2

1+ρi∗j/2

]
(since e

−x2

1+z is increasing in z)

=
sin−1 ρi∗j

2π
·
[
e−x2

+ e
− x2

1+ρi∗j/2

2

]
≥ sin−1 ρi∗j

2π
·
[
e−x2

+ e−
x2

1+.25

2

]
(since ρi∗j ≥ .5)

=
sin−1 ρi∗j

2π
·G(x) (suppose)

≥ ρi∗j
6

· α
n

(since ρi∗j ≥ .5 and G(x) ≥ α/n for x ≤ 2.2)

Summing over j, we obtain,

1

2π

n∑
j=1,j ̸=i∗

∫ ρi∗j

0

1√
1− z2

e
−Φ−1(1−α

n )
2

1+z dz ≥ n− 1

n
· αρ̄i

∗

6
.

The rest follows from Theorem 2.4.1. □

Proof of Theorem 2.4.3. Φ−1(1− α
n
) ≤ 2 implies α

n
≥ 1− Φ(2) = 0.02275. Therefore,

ρ ≥ 0.02275. Now, along the same lines of the preceding proof, we have,

n− 1

2π

∫ ρ

0

1√
1− z2

e
−x2

1+z dz

≥ sin−1 ρ

2π
· (n− 1) ·

[
e−x2

+ e−
x2

1+ρ/2

2

]
≥ ρ

2π
· (n− 1) ·

[
e−x2

+ e−
x2

1+.011375

2

]
(since ρ ≥ .02275)

=
ρ

2π
· (n− 1) ·H(x) (suppose)

Now, H(x) ≥ 4
5
(1− Φ(x)) = 4α

5n
for x ≤ 2. The rest is obvious from Theorem 2.3.1. □

In the proof of Theorem 2.3.2, we show that, for any ρ ≥ 0,

∀x ≥ 2,

∫ ρ

0

1√
1− z2

e
−x2

1+z dz ≥ sin−1 ρ · e
− x2

1+
ρ
2 .

This inequality leads to the following.
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Corollary 2.4.2. Consider the non-negatively correlated normal setup with covariance

matrix Σn. Let x = Φ−1(1− α
n
) ≥ 2. Then,

FWERBon(n, α,Σn) ≤ α− n− 1

n
· α

2

n
− 1

2π

n∑
j=1,j ̸=i∗

sin−1 ρi∗j · e
− x2

1+
ρi∗j
2

where i∗ = argmaxi
∑n

j=1,j ̸=i ρij.

One can derive results similar to Theorem 2.3.3 or Theorem 2.3.4 using the above corollary

by imposing certain conditions on the values of the correlations in the i∗-th row of R. For

example, we have the following if we assume that ρi∗j∗ ≥ .5:

Theorem 2.4.4. Consider the non-negatively correlated normal setup with covariance

matrix Σn. Let 4.23 ≥ x ≥ 2 and ρi∗j∗ ≥ .5. Then,

∀x ∈ [xl, xl+1] FWER(n, α,Σn) ≤ α− n− 1

n
· α

2

n
− n− 1

n
· αρ̄i

∗

6
· Cxl

(n)

where xl’s and Cxl
(n)’s are as follows:

l 1 2 3 4 5 6 7

xl 2 2.56 3.06 3.33 3.71 3.93 4.23

Cxl
(n) 1 1

2
1
π

1
2π

1
π2

1
6π

-

This can be established along the same lines of the proof of Theorem 2.3.3.

2.5 An Improved Multiple Testing Procedure

In the preceding section we have obtained the following upper bound on Bonferroni

FWER in the the non-negatively correlated normal set-up with covariance matrix Σn

(Theorem 2.4.1):

FWERBon(n, α,Σn) ≤ α− n− 1

n
· α

2

n
− 1

2π

n∑
j=1,j ̸=i∗

∫ ρi∗j

0

1√
1− z2

e
−{Φ−1(1−α

n )}2

1+z dz

= fn,Σn(α) (say)

where i∗ = argmax
i

n∑
j=1,j ̸=i

ρij. This upper bound can be used to adjust the critical points

in the targeted multiple test problem. This enables us to obtain a more powerful test
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than the existing ones, e.g., the Bonferroni procedure. Towards this, let

α⋆ := argmax
β∈(0,1)

{
fn,Σn(β) ≤ α

}
.

Evidently α⋆ ≥ α. Then, we can decrease the Bonferroni cutoff Φ−1(1−α/n) to Φ−1(1−
α⋆/n) and thus significantly improve the ability to detect false hypotheses. In other words,

for our modified method, under the global null,

FWERmodified(n, α,Σn) = PΣn

(
Xi > Φ−1(1− α⋆/n) | H0

)
.

The definition of α⋆ itself ensures that FWERmodified(n, α,Σn) is indeed controlled at level

α. We note that this proposed method controls FWER under any covariance matrix with

non-negative entries. We present the values of α⋆ for some combinations of (n, α = .05, ρ)

in Table 2.2. We observe that α⋆ is much larger than α for larger values of ρ. Hence

the proposed method will have more rejection at the same FWER level and make better

inference.

Table 2.2: Values of α⋆ for different choices of (n, α = .05, ρ)

(n, α) x = Φ−1(1− α/n) Correlation (ρ) 0.1 0.3 0.5 0.7 0.9

(10, 0.05) 2.5758 α⋆ 0.05 .0515 .0550 .0636 .0970
(100, 0.05) 3.2905 α⋆ 0.05 .0505 .0520 .0581 .0879

2.6 Simulation Study

The bound by Das and Bhandari (2021) provides a significant gain in power for Bonferroni

method for large number of hypotheses. However, for equicorrelated setups with small

or moderate dimensions, their bound fails as mentioned earlier. We verify this through

simulations. Our simulation scheme, for fixed (n, α) is as follows:

(a) For each ρ ∈ {0, .025, .050, .075, . . . , 1}, we generate 10000 n-variate equicorrelated

multivariate normal observations (each with mean 0 and variance 1; common cor-

relation coefficient being ρ).

(b) For each ρ,

• in each of the 10000 replications, we note whether or not any of the generated

n components exceeds the cutoff Φ−1(1− α/n).
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• the estimated FWER (for that ρ) is obtained accordingly from the 10000

replications.

The plots after running these simulations for (n, α) = (100, .01) and (500, .05) are

given in Figure 2.2 (the blue line represents the straight line α(1− ρ)).

Figure 2.3: FWER Plots for (n, α)=(100,.01) and (500,.05)

We can see that the α(1 − ρ) bound fails in these cases. Also, FWER is not a convex

function of ρ in these cases. We present the simulation results for some choices of (n, α, ρ)

along with our proposed bounds in Table 2.4. It is mention worthy that in each case the

estimated FWER is smaller than our proposed bounds.

One can see that our bounds give good results for small values of equicorrelation ρ and

tend to become weak for large values of ρ. This is in contrast to the method of Das and

Bhandari (2021) whose bound works in the large ρ case. Therefore, in a way, our bounds

and the α(1 − ρ) bound are complementary to each other in depicting the behaviour of

FWER in equicorrelated normal setups.

2.7 Concluding Remarks

This work is probably the first attempt in studying the effect of correlation on FWER for

small and moderate number of hypotheses.

Table 2.4: Estimates of FWER(n, α, ρ)

(n, α) x Correlation (ρ) 0.1 0.3 0.5 0.7 0.9

(10, 0.3) 1.8808 F̂WER(n, α, ρ) .2132 .2053 .1688 .1242 .0733
Bound .2885 .2816 .2747 .2678 .2610

(100, 0.05) 3.2905 F̂WER(n, α, ρ) .0456 .0355 .0265 .0153 .0005
Bound .0499 .0495 .0479 .0432 .0294

(500, 0.05) 3.7190 F̂WER(n, α, ρ) .0451 .0319 .0198 .0081 .0028
Bound .0499 .0498 .0488 .0451 .0318
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The proofs of our results heavily use the fact that FWER can be regarded as P(∪n
i=1Ai)

for suitably defined events Ai, 1 ≤ i ≤ n. Accurate computation of this probability is

difficult because, in practice (as in multiple testing), the complete dependence between the

events (A1, . . . , An) is often unknown or unavailable (in our case ρ is unknown and we have

only some idea about ρ), unless the events Aj are independent. The available information

is often the marginal probabilities and joint probabilities up to level m(m << n). In these

situations, one aims to compute a bound using only a limited amount of information.

We concentrated on individual and pairwise intersection probabilities. From dependence

analysis standpoint, pairwise intersection probabilities convey important information.

Hence, the second order Bonferroni inequalities are most adequate general tool. On the

other hand, taking specific bounds developed for concrete distributions into account leads

to more concrete and better results. With this attitude in mind, for low dimensional

normal distributions, by the refining and applying of Monhor’s representation formula

(Lemma 2.3.2) and inequality for correlated bivariate normal distribution, the role of

correlation coefficient, hence, of dependence expressed in probability content becomes

more explicit. In general, the correlated bivariate normal distribution is key distribution

for probabilistic analysis of dependence. Our refinement to Monhor’s inequality improves

the tightness of the bound for some areas of arguments of distribution function. In

various stochastic modelling the univariate and multivariate normal distributions are

most frequent (Hutchinson and Lai, 1990; Monhor, 2011). The probabilistic results in

this chapter may be useful not only in FWER questions, but other areas, too.

Throughout this chapter, we have considered multivariate normal setup. In various

areas of stochastic modeling, the multivariate normal distribution is frequent (Hutchinson

and Lai, 1990; Olkin and Viana, 1995; Monhor, 2011). However, one interesting extension

would be to study the behavior of k-FWER under more general distributional setups.



Chapter 3

Non-asymptotic Behaviors of

Generalized FWERs in Correlated

Normal Distributions
1

3.1 Introduction

The preceding chapter focused on establishing bounds on FWER under correlated normal

setups (Theorem 2.3.1, Theorem 2.4.1). However, in many scientific avenues where the

number of hypotheses n is moderately large, FWER control is stringent. So the deviations

from null have little chance of being identified. For this reason, other error criteria are

proposed in the literature.

Lehmann and Romano (2005) consider the k-FWER (or gFWER), the probability

of rejecting at least k true null hypotheses in a simultaneous testing problem. This is

pertinent in settings where several type I errors are allowed, provided the number of type

I errors is controlled. Thus k-FWER controls false rejections less severely, but in doing so

detects false null hypotheses better and consequently provides better power. k-FWER is

especially relevant in those areas where the number of hypotheses is large e.g microarray

data analysis.

The usual Bonferroni procedure uses the cutoff Φ−1(1−α/n) to control FWER at level

α. Lehmann and Romano (2005) remark that controlling k-FWER allows one to decrease

this cutoff to Φ−1(1 − kα/n), and thus significantly increase the ability to identify false

1This chapter is based on the publication M. Dey and S. K. Bhandari (2023) Bounds on generalized
family-wise error rates for normal distributions, Statistical Papers, DOI: https://doi.org/10.1007/s00362-
023-01487-0.

33

https://doi.org/10.1007/s00362-023-01487-0
https://doi.org/10.1007/s00362-023-01487-0
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hypotheses. Thus, for their Bonferroni-type procedure, under the global null,

k-FWER(n, α,Σn) = PΣn

(
Xi > Φ−1(1− kα/n) for at least k i’s | H0

)
.

Evidently, when k = 1, Lehmann-Romano procedure simplifies to the Bonferroni method

and k-FWER reduces to the usual FWER.

The existing literature lacks a theory on the extent of the conservativeness of gFWER

controlling procedures under dependent frameworks with a moderate number of hypothe-

ses. This chapter tackles this problem in a unified manner by theoretically establish-

ing upper bounds on the gFWER of the Lehmann-Romano procedure under correlated

Gaussian setups. Towards this, we derive a new and quite general probability inequality

which, in turn, extends a classical inequality. Our results also generalize the results (e.g.

Theorem 2.4.1) of the preceding chapter.

We first formally introduce the framework with relevant notations. We derive some

inequalities on the probability of occurrence of at least k among n events in Section 3.3.

We also propose an improved multiple testing procedure utilizing those inequalities. We

analyze the performance of our proposed k-FWER controlling procedure in a real dataset

in Section 3.4. Simulation studies are presented in Section 3.5. We conclude with a brief

discussion in Section 3.6.

3.2 Preliminaries

We address the multiple testing problem through a Gaussian sequence model :

Xi∼N(µi, 1), i ∈ {1, . . . , n}

where Corr (Xi, Xj) = ρij for each i ̸= j (ρij ≥ 0). We wish to test:

H0i : µi = 0 vs H1i : µi > 0, 1 ≤ i ≤ n.

The global null H0 =
⋂n

i=1H0i hypothesizes that each mean is zero.

3.2.1 Inequalities on Probabilities of Events

Probability bounding has been a traditional problem in probability theory and has wit-

nessed numerous applications in statistics, reliability theory, and stochastic programming.

Before we delve into the proofs of our proposed inequalities and multiple testing procedure,
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we review two classical probability inequalities. We also utilized these inequalities to

obtain upper bounds on FWER in the preceding chapter.

Towards this, let A1, . . . , An denote n events. Suppose S1 =
∑n

i=1 P(Ai) and S2 =∑
1≤i<j<n P(Ai ∩Aj) respectively denote the sum of individual probabilities and the sum

of probabilities of pairwise intersections. Moreover, let

S ′
2 = max

1≤i≤n

n∑
j=1,j ̸=i

P(Ai ∩ Aj).

Kwerel (1975) (Lemma 2.3.1) obtained the following:

P

(
n⋃

i=1

Ai

)
≤ S1 −

2

n
S2.

We utilized the following main technical tool in the proof of Theorem 2.4.1 (Kounias,

1968) (Lemma 2.4.1):

P

(
n⋃

i=1

Ai

)
≤ S1 − S ′

2.

Evidently, S ′
2 ≥ 2

n
S2 and therefore Kounias’s inequality is stronger than Kwerel’s inequal-

ity.

3.3 Main Results

3.3.1 Some New Inequalities

In Chapter 2, we had remarked that the derivation of upper bounds on FWER heavily uses

the fact that FWER is the probability of the union of some suitably defined events. We

have also previously seen that k-FWER is P(at least k out of n Ai’s occur) for suitably

defined events Ai, 1 ≤ i ≤ n. It thus seems natural that a similar upper bound on k-

FWER can be derived if we have an extension of Kounias’s inequality for probabilities

of the form P(at least k out of n Ai’s occur). Accurate computation of this probability

requires knowing the complete dependence between the events (A1, . . . , An), which we

typically do not know unless they are independent. As mentioned in Chapter 2, the

available information is often the marginal probabilities and joint probabilities up to level

m(m << n). In those situations, one aims to compute upper bounds which require only

the marginal and pairwise probabilities, as in Kounias’s inequality. Towards finding such
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an easily computable upper bound on the probability that at least k among n events

occur, we generalize Kounias’s inequality in the following:

Lemma 3.3.1. Let A1, A2, . . . , An be n events. Then,

P(at least k out of n Ai’s occur) ≤
S1 − S ′

2

k
+
k − 1

k
· max
1≤i≤n

P(Ai).

Proof of Lemma 3.3.1. Let Ii(w) be the indicator random variable of the event Ai for

1 ≤ i ≤ n. Then the random variable max Ii1(w) · · · Iik(w) is the indicator of the event

that at least k among n Ai’s occur. Here the maximum is taken over all tuples (i1, . . . , ik)

with i1, . . . , ik ∈ {1, . . . , n}, i1 < . . . < ik. Now, for any i = 1, . . . , n,

max Ii1(w) · · · Iik(w) ≤
1

k
[1− Ii(w)]

n∑
j=1

Ij(w) + Ii(w).

Taking expectations in above, we obtain

P(at least k out of n Ai’s occur) ≤
1

k
·

n∑
j=1

P(Aj)−
1

k
·

n∑
j=1,j ̸=i

P(Ai ∩Aj) + P(Ai) ·
k − 1

k
.

The rest follows by observing that the above holds for any i = 1, . . . , n. □

Note that Lemma 3.3.1 reduces to Lemma 2.4.1 for k = 1. We propose now another

inequality:

Lemma 3.3.2. Let A1, A2, . . . , An be n events. Then, for each k ≥ 2,

P(at least k out of n Ai’s occur) ≤
2S2

k(k − 1)
.

Proof of Lemma 3.3.2. Let Qm, 0 ≤ m ≤ n, denote the probability that exactly m

among n events occur. Then,

P(at least k out of n Ai’s occur) =
n∑

m=k

Qm ≤
n∑

m=k

(
m
2

)(
k
2

)Qm

≤ 2

k(k − 1)

n∑
m=2

(
m

2

)
Qm

≤ 2

k(k − 1)
E
[(
Tn
2

)]
where, in the last step, Tn denotes the number of events occurring. Now,

E
[(
Tn
2

)]
= E

[ ∑
1≤i<j≤n

Ii(w)Ij(w)

]
=

∑
1≤i<j≤n

P(Ai ∩ Aj) = S2,
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completing the proof. □

The following result follows directly from the preceding two lemmas and is crucial in

establishing an upper bound on k-FWER.

Corollary 3.3.1. Let A1, A2, . . . , An be n events. Then, for each k ≥ 2,

P(at least k among n Ai’s occur) ≤ min

{
S1 − S ′

2

k
+
k − 1

k
· max
1≤i≤n

P(Ai),
2S2

k(k − 1)

}
.

Lemma 3.3.3. Let A1, A2, . . . , An be n events such that P(Ai) = c ∈ (0, 1) for each i.

Then,

min

{
S1 − S ′

2

k
+
k − 1

k
· max
1≤i≤n

P(Ai),
2S2

k(k − 1)

}
≤ S1

k
.

Proof of Lemma 3.3.3. If the first term in the above parentheses is less than or equal

to S1/k then we have nothing left to prove. If the first term is strictly greater than S1/k

then we show that the second term must be less than S1/k. Now,

S1 − S ′
2

k
+
k − 1

k
· max
1≤i≤n

P(Ai) ≥
S1

k

=⇒ k − 1

k
· c ≥ S ′

2

k

=⇒ k − 1

k
· c ≥ 2S2

nk

=⇒ S1

k
≥ 2S2

k(k − 1)
(since, S1 = nc).

This completes the proof. □

3.3.2 Bounds on k-FWER

We suppose now that (X1, X2, . . . , Xn) have covariance matrix Σn = ((ρij)) with ρij ≥ 0

for all i ̸= j. We define Ai = {Xi > Φ−1(1− kα/n)} for 1 ≤ i ≤ n. This implies

k-FWER(n, α,Σn) = PΣn (at least k Ai’s occur | H0) .

Now,

PH0(Ai) = PH0

[
Xi > Φ−1(1− kα/n)

]
= 1− PH0

[
Xi ≤ Φ−1(1− kα/n)

]
= kα/n.
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So, S1 = kα. To apply Corollary 3.3.1, we need to find an expression on P(Ai∩Aj), which

is given in the representation theorem by Monhor (2013) (Lemma 2.3.2). Now,

PH0(Ai ∩ Aj)

= 1− PH0(A
c
i)− PH0(A

c
j) + PH0(A

c
i ∩ Ac

j)

= 1− (1− kα/n)− (1− kα/n) + PH0

(
Xi ≤ Φ−1(1− kα/n), Xj ≤ Φ−1(1− kα/n)

)
=

2kα

n
− 1 + (1− kα/n)2 +

1

2π

∫ ρij

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz (using Lemma 2.3.2)

=
k2α2

n2
+

1

2π

∫ ρij

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz.

So,

S2 =
∑

1≤i<j≤n

PH0(Ai ∩ Aj) =
∑

1≤i<j≤n

[
k2α2

n2
+

1

2π

∫ ρij

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz

]
.

Thus,

2S2

k(k − 1)
=

(n− 1)k

n(k − 1)
· α2 +

1

πk(k − 1)

∑
1≤i<j<n

∫ ρij

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz.

= fn,k,Σn(α) (say).

We note that f is undefined for k = 1. Since we are interested in deriving upper bounds

of a probability, we define fn,1,Σn(α) = 1. We also note that, PH0(Ai∩Aj) is an increasing

function of ρij. Therefore,

argmax
i

n∑
j=1,j ̸=i

PH0(Ai ∩ Aj) = argmax
i

n∑
j=1,j ̸=i

ρij = i∗ (say).

So,

S ′
2 =

n− 1

n
· k

2α2

n
+

1

2π

n∑
j=1,j ̸=i∗

∫ ρi∗j

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz.

Hence, Lemma 3.3.1 gives that k-FWER(n, α,Σn) is bounded above by g where

gn,k,Σn(α) =
S1 − S ′

2

k
+
k − 1

k
· max
1≤i≤n

PH0(Ai)

= α · n+ k − 1

n
− n− 1

n
· kα

2

n
− 1

2πk

n∑
j=1,j ̸=i∗

∫ ρi∗j

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz.
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We apply Corollary 3.3.1 to obtain an extension of Theorem 2.4.1:

Theorem 3.3.1. Let Σn be the correlation matrix of X1, . . . , Xn with (i, j)’th entry ρij.

Suppose ρij ≥ 0 for all i ̸= j. Then, for each k > 1,

k-FWER(n, α,Σn) ≤ min{fn,k,Σn(α), gn,k,Σn(α)}.

Remark 1. We note that PH0(Ai) = kα/n for each i, where Ai = {Xi > Φ−1(1−kα/n)}.
Lemma 3.3.3 gives us the following:

min{fn,k,Σn(α), gn,k,Σn(α)} ≤ α.

This implies that our upper bound is indeed sharper than the existing ones and the Lehmann-

Romano procedure controls k-FWER at a level smaller than α.

It is mention-worthy that Theorem 3.3.1 is a quite general result in the non-asymptotic

setup, because it tackles both more than one false rejections and general correlation ma-

trices simultaneously. We have the following immediate corollary under the equicorrelated

setup, i.e when ρij = ρ for all i ̸= j:

Corollary 3.3.2. Consider the equicorrelated normal set-up with correlation ρ ≥ 0. Then,

k-FWER(n, α, ρ) ≤min

{
(n− 1)k

n(k − 1)
· α2 +

n

k − 1
· n− 1

2πk

∫ ρ

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz,

α · n+ k − 1

n
− n− 1

n
· kα

2

n
− n− 1

2πk

∫ ρ

0

1√
1− z2

e
−{Φ−1(1− kα

n )}2

1+z dz

}
.

One can establish case-specific upper bounds on k-FWER depending on the values of

Φ−1(1−kα/n) and ρij’s in general and equicorrelated normal setups using Theorem 3.3.1

and Corollary 3.3.2 respectively, in the same way as in Chapter 2.

3.3.3 An Improved Multiple Testing Procedure

The upper bound on k-FWER obtained in the preceding section can be used to adjust

the critical points in the targeted multiple test problem. This enables us to obtain a more

powerful test than the existing ones, e.g., the Lehmann-Romano procedure. Towards this,

let

α⋆ := argmax
β∈(0,1)

{
min{fn,k,Σn(β), gn,k,Σn(β)} ≤ α

}
.

Remark 1 gives α⋆ ≥ α. Then, we can decrease the Lehmann-Romano cutoff Φ−1(1 −
kα/n) to Φ−1(1 − kα⋆/n) and thus significantly improve the ability to detect false hy-
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potheses. In other words, for our modified method, under the global null,

k-FWERmodified(n, α,Σn) = PΣn

(
Xi > Φ−1(1− kα⋆/n) for at least k i’s | H0

)
.

The definition of α⋆ itself ensures that k-FWERmodified(n, α,Σn) is indeed controlled at

level α. We note that this proposed method controls k-FWER under any covariance

matrix with non-negative entries.

When the test statistics are independent, we have a nice relationship between α and

α⋆, as provided in the following result:

Lemma 3.3.4. Let k > 1. Suppose X1, . . . , Xn are independent. Moreover, let α ≤ n(k−1)
(n−1)k

.

Then, α⋆ =
√

n(k−1)α
(n−1)k

.

Proof of Lemma 3.3.4. Under independence, we have

fn,k,In(α) =
(n− 1)k

n(k − 1)
· α2,

gn,k,In(α) = α · n+ k − 1

n
− n− 1

n
· kα

2

n
.

Simple algebraic manipulations yield that

fn,k,In(α) ≤ gn,k,In(α) ⇐⇒ α ≤ n(k − 1)

(n− 1)k
.

Thus, under the conditions of this theorem,

α⋆ = argmax
0<β<1

{
(n− 1)k

n(k − 1)
· β2 ≤ α

}
=

√
n(k − 1)α

(n− 1)k
.

This completes the proof. □

Lemma 3.3.4 implies that, under independence of the test statistics, α⋆ can be taken

close to
√
α. This actually greatly increases the ability to reject false null hypotheses as

we shall in Table 3.1.

3.4 Applications

Our proposed upper bound on the probability of occurrence of at least k among n events

may be used in reliability. Subasi et al. (2017) remarks
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“The typical application is to estimate the reliability evaluations of k-out-of-n systems

such as multistate networks (oil and gas supply systems, communication networks, power

generation and transmission systems, etc.) and fault tolerant systems (multidisplay system

in a cockpit, multiengine system in an airplane, and multipump system in a hydraulic

control system, etc.).”

We now discuss the practical relevance of our proposed multiple testing procedure

through a real dataset, called the prostate cancer dataset (Singh et al., 2002). This dataset

contains gene expression measurements of of n = 6033 genes for N = 102 individuals: 52

prostate cancer patients and 50 healthy persons.

Suppose yij denotes the expression level for gene i on individual j, 1 ≤ i ≤ n, 1 ≤ j ≤
N . Then the prostate cancer data is a n×N matrix Y with 1 ≤ j ≤ 50 for the healthy

persons and 51 ≤ j ≤ 102 for the cancer patients. Let ȳi(1) and ȳi(2) be the averages of

yij for these two groups respectively. It is important to identify genes whose levels vary

between the cancer patients and healthy individuals (Efron, 2010a). This leads to testing

H0i : yij follows the same distribution for the two groups of patients.

One might use the usual t statistic ti =
ȳi(2)−ȳi(1)

si
to test H0i. Here,

s2i =

50∑
j=1

(yij − ȳi(1))
2 +

102∑
j=51

(yij − ȳi(2))
2

100
·
(

1

50
+

1

52

)
.

We would reject H0i at α = .05 (based on usual normality assumptions) if |ti| exceeds
1.98, i.e, the two-tailed 5% point for a Student-t random variable with 100 d.f. Since we

have viewed the multiple testing problem from a Gaussian sequence model framework in

this thesis, we transform the t values to X values:

Xi = Φ−1 (F (ti)) ,

where F denotes the cdf of t100 distribution. We have,

H0i : Xi ∼ N(0, 1).

We have n = 6033 genes to test. For a given k, the Lehmann-Romano procedure at

level α = .05 rejects any test having X value greater than Φ−1(1− kα/n). Our proposed

procedure rejects any test havingX value greater than Φ−1(1−kα⋆/n). The observed value

of the usual estimate of the correlation coefficient between the 6033 X values is less than
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.001. For this reason and for technical simplicity, we take ρ = 0 in our computations. The

number of rejected hypotheses for different values of k by Lehmann-Romano procedure

and our proposed procedure is given in Table 3.1.

Table 3.1: Number of rejected hypotheses for different values of k

k 2 4 6 8 10 12 14 16 18 20
Lehmann-Romano Method 6 9 12 13 13 13 14 15 16 17

Proposed Method 12 15 19 22 26 27 27 28 31 34

We observe that our proposed method rejects significantly more number of hypotheses

than the Lehmann-Romano method for each value of k. This also elucidates the signif-

icance of our proposed bound on the probability of occurrence of at least k among n

events.

3.5 Simulations and Discussion

We adopt the following simulation scheme for fixed values of (n, k, α):

(a) For each ρ ∈ {.1, .3, .5, .7, .9}, we generate 10000 n-variate equicorrelated multivari-

ate normal observations (each of the n components having zero mean, unit variance

and each pair of components having common correlation ρ).

(b) For each ρ ∈ {.1, .3, .5, .7, .9},

• in each of the 10000 replications, we note whether at least k many of the

generated n components exceeds the cutoff Φ−1(1− kα/n).

• The k-FWER for that ρ is estimated as the number of times at least k many

exceeds the cutoff, divided by 10000.

We present the simulation results for k-FWER for different values of k and (n =

100, α = .05) along with our proposed bounds (given by Corollary 3.3.2) in Table 3.2.

Simulation results for k-FWER for various values of k and (n = 500, α = .05) along

with our proposed bounds (given by Corollary 3.3.2) are presented in Table 3.3.

It is mentionworthy from the two tables that in each case our proposed bounds are

significantly smaller than α = .05, even for small values of ρ. Also, the estimated k-FWER

is smaller than our proposed bounds. We also note that the estimated values of k-FWER

decrease in k for small values of ρ, whereas increase in k for large values of ρ.
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Table 3.2: Estimates of k-FWER(n = 100, α = .05, ρ)

k ρ 0.1 0.3 0.5 0.7 0.9

2 ˆk-FWER(ρ) .0104 .0177 .0172 .0137 .0069
Bound .0140 .0498 .0478 .0426 .0287

4 ˆk-FWER(ρ) .0015 .0090 .0132 .0135 .0089
Bound .0083 .0365 .048 .0423 .0283

8 ˆk-FWER(ρ) .0001 .0052 .0122 .0145 .0115
Bound .0063 .0232 .049 .0428 .0289

Table 3.3: Estimates of k-FWER(n = 500, α = .05, ρ)

k ρ 0.1 0.3 0.5 0.7 0.9

2 ˆk-FWER(ρ) .0121 .0169 .0127 .0082 .0027
Bound .0186 .0498 .0486 .0446 .0309

4 ˆk-FWER(ρ) .0027 .0117 .0110 .0090 .0038
Bound .0110 .0498 .0484 .0438 .0299

8 ˆk-FWER(ρ) .0003 .0086 .0105 .0097 .0051
Bound .0084 .0468 .0482 .0431 .0291

3.6 Concluding Remarks

Finner et al. (2007) remark that false discoveries are challenging to tackle in models

with complex dependence structures, e.g., arbitrarily correlated normal models. This

chapter proposes new bounds on the k-FWER of the Lehmann-Romano method in general

dependent Gaussian scenarios. Towards this, we establish an inequality related to the

probability that at least k among n events occur. This arises in various contexts, e.g., in

transportation and communication networks. Our probabilistic results might be insightful

in those areas, too.

Throughout the chapter, we have considered multivariate normal setup. In various

areas of stochastic modeling, the multivariate normal distribution is frequent (Hutchinson

and Lai, 1990; Olkin and Viana, 1995; Monhor, 2011). However, one interesting extension

would be to study the behavior of k-FWER under more general distributional setups.

We investigate the limiting behaviors of step-wise multiple testing procedures under

correlated normal setups in Chapter 5. It would be interesting to derive similar upper

bounds for the FWER of step-wise decision rules under dependent normal frameworks.





Chapter 4

Asymptotic Behaviors of FWER and

Generalized FWERs in Correlated

Normal Distributions
1

4.1 Introduction

In the preceding two chapters, we have studied the behaviors of FWER and generalized

FWERs in a non-asymptotic correlated Gaussian sequence model setup. In this chapter,

we consider the same under the asymptotic framework.

Das and Bhandari (2021) have shown that under the equicorrelated normal setup

with non-negative correlation ρ , FWER(ρ) is a convex in ρ as the number of hypotheses

approaches infinity. Consequently, they prove that the Bonferroni FWER is bounded

above by α(1 − ρ) where α is the target level. Here we establish that the Bonferroni

FWER(ρ) approaches zero asymptotically for any positive ρ. This, combined with the

well-known fact that for ρ = 0, FWER goes to 1−e−α asymptotically implies that limiting

Bonferroni FWER is a convex function in ρ, though discontinuous at 0. Thus, the main

result of Das and Bhandari (2021) follows from our result.

This chapter is organized as follows. Section 4.2 introduces the framework formally.

Section 4.3 contains theoretical results about the limiting behavior of the FWER in

equicorrelated and non-negatively correlated normal setups. Section 4.4 presents an

extension of our main contribution to generalized FWERs. We study the asymptotic

power of Bonferroni’s procedure in Section 4.5. Section 4.6 includes simulation findings

1This chapter is based on the publication M. Dey, S. K. Bhandari (2023) FWER
goes to zero for correlated normal, Statistics & Probability Letters, 193:109700, DOI:
https://doi.org/10.1016/j.spl.2022.109700.
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that empirically demonstrate our results. We end the chapter with a brief discussion in

Section 4.7.

4.2 Preliminaries

We consider the correlated Gaussian sequence model discussed in Section 1.5.3. The

FWER of a MTP T is defined as

FWERT = P(Vn(T ) ≥ 1). (4.1)

where Vn(T ) denotes the number of false rejections made by T . It is mention-worthy

that FWER is not the probability of making any false rejections under the global null.

To control FWER at α, we need to ensure the probability of making any false rejection

be less than α under any configuration of the n null hypotheses. However, for technical

simplicity we shall compute the probability in r.h.s of Equation (4.1) under the global

null H0 at first (and consider that as the definition of FWER) and then extend the results

obtained in this case to arbitrary configurations of the n hypotheses.

The Bonferroni FWER for the equicorrelated normal setup under the global null is

given by

FWERBon(n, α, ρ) = PH0

( n⋃
i=1

{Xi > cα,n}
)
. (4.2)

Das and Bhandari (2021) have shown that, FWERBon(n, α, ρ) is a convex function in ρ

as n→ ∞ (Theorem 2.2.1). Consequently, they prove that FWERBon(n, α, ρ) is bounded

above by α(1− ρ) asymptotically where α is the target level (Corollary 2.2.1).

To prove Theorem 2.2.1, Das and Bhandari (2021) consider the function

Hn(ρ) = 1− FWERBon(n, α, ρ).

The sequence {Xr}r≥1 is exchangeable under H0 for the equicorrelated set-up. For each

i ≥ 1, Xi = θ + Zi where θ ∼ N(0, ·) is independent of {Zn}n≥1 and Zi ∼ N(0, ·). The

equicorrelation structure gives Var(θ) = ρ. This implies θ ∼ N(0, ρ) and Zi
iid∼ N(0, 1−ρ)

for each i ≥ 1. Thus,

Hn(ρ) = P (θ + Zi ≤ cα,n ∀i = 1, 2, . . . , n | H0)

= Eθ

[
Φ

(
cα,n − θ√
1− ρ

)n]
(4.3)

= E
[
Φ

(
cα,n +

√
ρZ

√
1− ρ

)n]
(where Z ∼ N(0, 1)).
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Thus,

FWERBon(n, α, ρ) = 1− EZ

[
Φ

(
cα,n +

√
ρZ

√
1− ρ

)n]
(where Z ∼ N(0, 1)). (4.4)

Remark 3. An anonymous reviewer pointed out that one can generalize (4.4) to unequal

correlations having a product structure: ρij = λiλj where λi ≥ 0 for each i. This corre-

lation structure arises, e.g., in one-way ANOVA with n + 1 groups with a0 observations

on the control group (i = 0) and ai observations on the i-th test group (i = 1, . . . , n).

To see this, let Ȳi ∼ N (γi, σ
2/ai) , i = 0, . . . , n, be independent sample means with known

variance σ2 > 0 and γi ≥ γ0 for i = 1, . . . , n. Note that this problem is an extension of

the ANOVA example considered in Section 1.5.3.

Suppose we wish to test

H̃i : γi = γ0 vs K̃i : γi > γ0 for i = 1, . . . , n

based on the test statistics

Ti =

[
1

a0
+

1

ai

]−1/2
(
Ȳi − Ȳ0

)
σ

, i = 1, . . . , n.

These control vs. test group contrasts have product correlation structure

Cor (Ti, Tj) = ρij =

√
aiaj

(a0 + ai) (a0 + aj)
.

This implies

λi =

√
ai

a0 + ai
, i = 1, . . . , n.

In this case it is easy to show that the Bonferroni FWER can be represented as

1− EZ

[
n∏

i=1

Φ

(
cα,n + λiZ√

1− λ2i

)]
(where Z ∼ N(0, 1)). (4.5)

This essentially expresses the exact value of the Bonferroni FWER for a more general

class of covariance matrices but in a very restrictive set-up.

We study the limiting behavior of Hn(ρ) as n→ ∞ in the next section.

4.3 Asymptotic Behavior of FWER

Firstly, we state the foremost theoretical result of this chapter.
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Theorem 4.3.1. limn→∞ FWERBon(n, α, ρ) = 0 for all α ∈ (0, 1) and ρ ∈ (0, 1].

Theorem 4.3.1, a much stronger result than Corollary 2.2.1, highlights the fundamental

problem of Bonferroni method as a MTP.

Remark 4. One observes from the definition of Hn(ρ) that Hn(0) = (1 − α/n)n → e−α

as n approaches infinity. So, limn→∞ FWER(n, α, 0) = 1 − e−α. Combining this with

Theorem 4.3.1, we obtain that the limiting Bonferroni FWER is convex in ρ, though

discontinuous at 0. Thus, Theorem 4.3.1 implies Theorem 2.2.1 established in Das and

Bhandari (2021).

We note that proving Theorem 4.3.1 is equivalent to showing limn→∞Hn(ρ) = 1. We

establish this in the following steps:

(a) Finding an approximation for cα,n for large n.

(b) With the help of the approximation, showing for each α and ρ in (0, 1),

lim
n→∞

[
Φ

(
cα,n√
1− ρ

)]n
= 1.

(c) Showing that for any fixed real number t and for each α, ρ in (0, 1),

lim
n→∞

[
Φ

(
cα,n + t√
1− ρ

)]n
= 1.

We explicate the steps in three lemmas.

Lemma 4.3.1. Given any α ∈ (0, 1), cα,n ≤
√

2 ln(n) for all sufficiently large n. Also,
cα,n√
2 ln(n)

−→ 1 as n→ ∞.

The lemma follows from utilizing the following well-known result by Gordon (1941)

once one replaces x by cα,n and observes that Φ(cα,n) = 1− α/n.

Theorem 4.3.2. (Gordon, 1941) For arbitrary positive number x > 0, the inequalities

xϕ(x)

1 + x2
< 1− Φ(x) <

ϕ(x)

x

hold. In particular,

lim
x→∞

x(1− Φ(x))

ϕ(x)
= 1.
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Lemma 4.3.2. For each α and ρ in (0, 1),

lim
n→∞

[
Φ

(
cα,n√
1− ρ

)]n
= 1. (4.6)

Proof of Lemma 4.3.2. Observe that

lim
n→∞

[
Φ

(√
2 lnn√
1− ρ

)]n
= lim

n→∞

[
Φ

(√
2 ln

(
n

1
1−ρ

))]n

= lim
n→∞

[[
Φ

(√
2 ln

(
n

1
1−ρ

))]n 1
1−ρ ]n −ρ

1−ρ

= lim
n→∞

[[
Φ(

√
2 lnm)

]m]n −ρ
1−ρ

(here m = n
1

1−ρ ). (4.7)

Invoking Lemma 4.3.1, we obtain from (4.7)

lim
n→∞

[
Φ

(√
2 lnn√
1− ρ

)]n
≥ lim

n→∞

[[
Φ(cα,m)

]m]n −ρ
1−ρ

= lim
n→∞

[
e−α
]n −ρ

1−ρ

, (4.8)

where the last step emanates from the definition of cα,n and the fact that (1− α/m)m →
e−α as m goes to infinity.

For ρ = 0, lim
n→∞

[
e−α
]n −ρ

1−ρ

= e−α and for ρ ∈ (0, 1), lim
n→∞

[
e−α
]n −ρ

1−ρ

= 1. Therefore,

lim
n→∞

[
Φ

(√
2 lnn√
1− ρ

)]n
= 1 for each ρ ∈ (0, 1). (4.9)

Lemma 4.3.1 enables us to choose ρ1 ∈ (0, ρ] such that[
Φ

(
cα,n√
1− ρ

)]n
≥

[
Φ

( √
2 lnn√
1− ρ1

)]n
for all sufficiently large n.

The rest follows from (4.9). □

We shall now prove the following generalization of Lemma 4.3.2:
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Lemma 4.3.3. For any fixed real number t, we have

lim
n→∞

[
Φ

(
cα,n + t√
1− ρ

)]n
= 1 ∀α ∈ (0, 1),∀ρ ∈ (0, 1). (4.10)

Proof of Lemma 4.3.3. For positive values of t, the result is immediate from Lemma

4.3.2 using the increasing property of Φ(·). For negative values of t, we choose ρ2 ∈ (0, ρ]

such that [
Φ

(
cα,n + t√
1− ρ

)]n
≥

[
Φ

(
cα,n√
1− ρ2

)]n
for all sufficiently large n.

Such a ρ2 can always be chosen because t is fixed and cα,n −→ ∞ as n → ∞ for any

α ∈ (0, 1). An application of Lemma 4.3.2 gives us (4.10). □

Now we establish Theorem 4.3.1.

Proof of Theorem 4.3.1. Let Z ∼ N(0, 1) and Φn(·) denote [Φ(·)]n. We obtain from

(4.9) and (4.10),

lim
n→∞

[
Φn

(
cα,n +

√
ρZ

√
1− ρ

)
− Φn

(
cα,n√
1− ρ

)]
= 0 almost everywhere in Z,

for each α and ρ in (0, 1). Since Φ(·) is a bounded function, an application of dominated

convergence theorem yields

lim
n→∞

[
E
[
Φn

(
cα,n +

√
ρZ

√
1− ρ

)]
− E

[
Φn

(
cα,n√
1− ρ

)]]
= 0.

Applying Lemma 4.3.2, we have limn→∞Hn(ρ) = 1 for each ρ ∈ (0, 1). Definition of Hn(ρ)

gives

lim
n→∞

FWERBon(n, α, ρ) = 0 ∀ρ ∈ (0, 1).

Thus, the only thing remaining to show is limn→∞ FWER(n, α, 1) = 0. For ρ = 1,

Xi = Xj almost surely ∀i ̸= j. Consequently, one rejection implies rejection of all null

hypotheses and Hn(ρ) = P(X1 ≤ cα,n) = 1− α/n. Hence, for ρ = 1 also, Hn(ρ) tends to

1 as n→ ∞, completing the proof. □

Remark 5. Proof of Theorem 4.3.1 provides us with the following approximation to

FWER of Bonferroni procedure for large n:

FWERBon(n, α, ρ) ≈ 1− e−α·n
−ρ
1−ρ

.



4.3 Asymptotic Behavior of FWER 51

We now mention an extension of Theorem 4.3.1 to general configurations of the null

hypotheses in the following theorem:

Theorem 4.3.3. Bonferroni FWER tends to zero asymptotically as n −→ ∞ under any

configuration of true and false null hypotheses.

Proof of Theorem 4.3.3. Without loss of generality, we may assume that the set of

true null hypotheses A is given by {1, . . . , n0}, where n0 is the number of true nulls.

Under the equicorrelated setup, for each i ∈ A, Xi = θ + Zi where θ ∼ N(0, ρ) is

independent of {Zn}n≥1 and Zi
iid∼ N(0, 1− ρ). Now,

1− FWERBon(n, α, ρ) =P (Xi ⩽ cα,n ∀i = 1, 2, . . . , n0)

=P (θ + Zi ⩽ cα,n ∀i = 1, . . . , n0)

=Eθ

[
Φn0

(
cα,n − θ√
1− ρ

)]
=E

[
Φn0

(
cα,n +

√
ρZ

√
1− ρ

)]
(Z ∼ N(0, 1))

⩾E
[
Φn

(
cα,n +

√
pZ

√
1− ρ

)]
(since 0 ⩽ Φ(·) ⩽ 1 and 1 ⩽ n0 ⩽ n)

=Hn(ρ) −→ 1 as n→ ∞.

The rest follows. □

We have considered an equicorrelated normal setup so far. However, problems in-

volving variables with a more general dependence structure need to be addressed with

more general correlation matrices. Hence, the study of the limiting behavior of FWER

in arbitrarily correlated normal setups becomes crucial. Towards this, we consider the

same Gaussian sequence model as in Section 4.2, but now we assume Corr (Xi, Xj) = ρij

for i ̸= j where ρij ∈ (0, 1]. Let Σn be the correlation matrix of X1, . . . , Xn and

FWER(n, α,Σn) denote the FWER of Bonferroni’s method under this setup. The

following result generalizes Theorem 4.3.1 for this setup.

Theorem 4.3.4. Suppose lim inf ρij = δ > 0. Then, for any α ∈ (0, 1),

lim
n→∞

FWERBon(n, α,Σn) = 0

under any configuration of true and false null hypotheses.

We establish this using a famous inequality due to Slepian (1962):
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Theorem 4.3.5. Let X follow Nk(0,Σ), where Σ is a k × k correlation matrix. Let

a = (a1, . . . , ak)
′ ∈ Rk be arbitrary. Consider the quadrant probability

g(k, a,Σ) = PΣ

[
k⋂

i=1

{Xi ⩽ ai}

]
.

Let R = (ρij) and T = (τij) be two correlation matrices. If ρij ⩾ τij holds for all i, j,

then g(k, a,R) ≥ g(k, a,T), i.e

PΣ=R

[
k⋂

i=1

{Xi ⩽ ai}

]
⩾ PΣ=T

[
k⋂

i=1

{Xi ⩽ ai}

]

holds for all a = (a1, . . . , ak)
′. Moreover, we have a strict inequality if R,T are positive

definite and if ρij > τij holds for some i, j.

Proof of Theorem 4.3.4. We prove this only under the global null hypothesis. The

proof under general configuration can be done similarly as the preceding proof. For fixed

n ∈ N, suppose

Mn :=

{
i ∈ {1, . . . , n} : ∀j ̸= i, ρij ≥ δ

}
.

Now,

FWERBon(n, α,Σn)

=PΣn

( n⋃
i=1

{Xi > cα,n}
)

=PΣn

( ⋃
i∈Mn

{Xi > cα,n}
⋃ ⋃

i/∈Mn

{Xi > cα,n}
)

≤P
( ⋃

i∈Mn

{Xi > cα,n}
)
+ P

( ⋃
i/∈Mn

{Xi > cα,n}
)

(using Boole’s inequality)

≤P
( ⋃

i∈Mn

{Xi > cα,n}
)
+ [n− |Mn|] ·

α

n
(using Boole’s inequality)

≤P
( ⋃

i∈Mn

{Xi > cα,|Mn|}
)
+ [n− |Mn|] ·

α

n
(since n ≥ |Mn|)

=1− g(|Mn|, a,ΣMn) + [n− |Mn|] ·
α

n

where g is as defined in Theorem 4.3.5, ΣMn is the covariance matrix of (Xi : i ∈ Mn),

and ai = Φ−1(1− α/|Mn|) for i ∈ Mn.
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Theorem 4.3.5 gives g(|Mn|, a,ΣMn) ≥ g(|Mn|, a,M|Mn|(δ)). So,

FWERBon(n, α,Σn) ≤ 1− g(|Mn|, a,M|Mn|(δ)) + [n− |Mn|] ·
α

n

= FWERBon(|Mn|, α, δ) + [n− |Mn|] ·
α

n
.

Since lim inf ρij = δ > 0, we also have n − |Mn| is finite. The rest follows from

Theorem 4.3.3 by taking n→ ∞. □

Remark 6. Slepian’s inequality is valid for any n. So it can be used to extend the

upper bounds established in Chapter 2 to non-negatively correlated set-ups by letting ρ∗ =

min
1≤i,j≤n

ρij as the common correlation. However the following example (given by an anony-

mous reviewer) illustrates the conservatism involved in replacing all the ρij by their min-

imum ρ∗. Consider a 4× 4 correlation matrix with the ρij having a product structure (as

in Remark 3) with λ1 = 0.1 and λ2 = λ3 = λ4 = 0.9. Then

ρ12 = ρ13 = ρ14 = 0.09 and ρ23 = ρ24 = ρ34 = 0.81 (4.11)

and ρ∗ = min
1≤i,j≤n

ρij = 0.09. If we choose c.05,4 = 2.24, which is approximately the 5%

critical point of the four-variate standard normal with common correlation = 0.10 then

we get the upper bound = 0.0498 calculated using (4.4). But the exact probability calculated

using (4.5) is 0.0385. So the upper bound is conservative by almost 30%.

4.4 Generalized familywise error rates

Consider the arbitrarily correlated setup described in Section 4.3. Let n0 be the cardinality

of the set of true null hypotheses. Without loss of generality, we may assume that the

true null hypotheses are given by H0i, 1 ≤ i ≤ n0. For the Lehmann and Romano (2005)

k-FWER controlling procedure,

k-FWER(n, α,Σn) = PΣn

(
Xi > Φ−1(1− kα/n) for at least k i’s, 1 ≤ i ≤ n0

)
.

We now extend Theorem 4.3.4 for generalized familywise error rates.

Corollary 4.4.1. Suppose lim inf ρij = δ > 0. Then, for any α ∈ (0, 1) and any positive

integer k satisfying kα < 1, limn→∞ k-FWER(n, α,Σn) = 0.

This follows from Theorem 4.3.4 once one observes that, for any natural number k

with kα < 1,

k-FWER(n, α,Σn) ≤ FWERBon(n, α
∗ = kα,Σn).
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We have assumed that the value of k is fixed so far. However, in many applications it

may be more practical to consider a setting where the k is a function of n. The following

theorem shows that Corollary 4.4.1 still holds under such settings.

Theorem 4.4.1. Suppose lim inf ρij = ρ > 0. Then, for any α ∈ (0, 1) and any positive

integer valued sequence {kn}n∈N satisfying kn = o(nρ),

lim
n→∞

kn-FWER(n, α,Σn) = 0.

Note that kn = o(nρ) implies knα/n < 1 for all sufficiently large n.

Proof of Theorem 4.4.1. We have

knFWER(n, α,Σn)

= PΣn

(
Xi > Φ−1(1− knα/n) for at least k i’s, 1 ≤ i ≤ n0

)
≤ PΣn

(
Xi > Φ−1 (1− knα/n) for at least one i, 1 ≤ i ≤ n0

)
≤ PΣn

(
Xi > Φ−1 (1− knα/n) for at least one i, 1 ≤ i ≤ n

)
≤ PMn(ρ)

(
Xi > Φ−1 (1− knα/n) for at least one i, 1 ≤ i ≤ n

)
(using Theorem 4.3.5)

= 1− E
[
Φn

(
cα,n/kn +

√
ρZ

√
1− ρ

)]
. (4.12)

We observe that

lim
n→∞

[
Φ

(√
2 ln (n/kn)

1− ρ

)]n
= lim

n→∞

[
Φ

(√
2 ln

(
n⋆

1
1−ρ

))]n
(where n⋆ = n/kn)

= lim
n→∞

[[
Φ

(√
2 ln

(
n⋆

1
1−ρ

))]n⋆
1

1−ρ ] n

n⋆
1

1−ρ

= lim
n→∞

[[
Φ(
√
2 ln p)

]p] n

n⋆
1

1−ρ

(here p = (n⋆)
1

1−ρ ).

Proceeding similarly as in Theorem 4.3.1, one can show that

lim
n→∞

E
[
Φn

(
cα,n/kn +

√
ρZ

√
1− ρ

)]
= 1 if

n

n⋆
1

1−ρ

→ 0.

Consequently, from (4.12) we have knFWER(n, α,Σn) goes to zero if

n

n⋆
1

1−ρ

→ 0 ⇐⇒ kn
1

1−ρ

n
ρ

1−ρ

→ 0 ⇐⇒ kn
nρ

→ 0 ⇐⇒ kn = o(nρ),



4.5 Power Analysis 55

completing the proof. □

4.5 Power Analysis

We discuss now the asymptotic power of Bonferroni’s procedure under the equicorrelated

normal setup. We consider the following notion of power for a MTP T described in Section

1.3.5:

AnyPwrT = P(Sn(T ) ≥ 1),

where Sn(T ) denotes the number of true positives in MTP T .

Without loss of generality, we assume Xi ∼ N(µi, 1) (µi > 0) for 1 ≤ i ≤ n1 and for

n1 < i ≤ n, Xi ∼ N(0, 1). The following two results describe the asymptotic power of

Bonferroni’s method.

Theorem 4.5.1. Consider the equicorrelated normal setup with equicorrelation ρ ∈ (0, 1).

Suppose supµi is finite. Then, for any α ∈ (0, 1), AnyPwrBon goes to zero as n→ ∞.

Proof of Theorem 4.5.1. We have,

1− AnyPwrBon =P(Sn(Bonferroni) = 0)

=P (Xi ⩽ cα,n ∀i = 1, 2, . . . , n1)

=P (Xi − µi ⩽ cα,n − µi ∀i = 1, 2, . . . , n1)

=P (θ + Zi ⩽ cα,n − µi ∀i = 1, . . . , n1)

where the last step utilizes the fact that, under our setup, for each 1 ≤ i ≤ n1, Xi − µi =

θ + Zi where θ ∼ N (0, ρ) is independent of {Zn}n≥1 and Zi
iid∼ N (0, 1− ρ). Thus,

1− AnyPwrBon =Eθ

[
n1∏
i=1

Φ

(
cα,n − θ − µi√

1− ρ

)]

=E

[
n1∏
i=1

Φ

(
cα,n +

√
ρZ − µi√

1− ρ

)]
(Z ∼ N(0, 1))

≥E
[
Φn1

(
cα,n +

√
ρZ − µ⋆

√
1− ρ

)]
(where µ⋆ = supµi <∞)

≥E
[
Φn

(
cα,n +

√
ρZ − µ⋆

√
1− ρ

)]
(since 0 ⩽ Φ(·) ⩽ 1 and 1 ⩽ n0 ⩽ n).
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Proceeding similarly as in Theorem 4.3.1, one obtains

lim
n→∞

E
[
Φn

(
cα,n +

√
ρZ − µ⋆

√
1− ρ

)]
= 1.

The rest is obvious. □

Theorem 4.5.2. Suppose n1 → ∞ and n1/n→ p1 ∈ (0, 1] as n→ ∞. Then, AnyPwrBon

goes to one as n→ ∞ if
√
2 logn1

µn1
−→ 0 as n1 → ∞.

Proof of Theorem 4.5.2. We have,

cα,n = Φ−1
(
1− α

n

)
= Φ−1

(
1− p1α

n1

· n1

np1

)
≈ Φ−1

(
1− p1α

n1

)
for sufficiently large n, since n1/n→ p1

= cp1α,n1 .

The proof of the preceding theorem gives,

1− AnyPwrBon =E

[
n1∏
i=1

Φ

(
cα,n +

√
ρZ − µi√

1− ρ

)]
(Z ∼ N(0, 1))

≤E
[
Φ

(
cα,n +

√
ρZ − µn1√

1− ρ

)]
(since 0 ⩽ Φ(·) ⩽ 1)

≈E
[
Φ

(
cp1α,n1 +

√
ρZ − µn1√

1− ρ

)]
−→0 as n1 → ∞ (since cp1α,n1 − µn1 → −∞ as n1 → ∞).

The rest follows. □

4.6 Simulation Study

We have mentioned in Section 4.2 that under H0, Xi = θ + Zi where θ ∼ N(0, ρ),

independent of {Zn}n≥1 and Zi
iid∼ N(0, 1− ρ). Equation (4.2) gives us

FWERBon(n, α, ρ) = PH0

( n⋃
i=1

{Zi + θ > cα,n}
)

= PH0

(
max
1≤i≤n

Zi > cα,n − θ

)
= PH0

(
max
1≤i≤n

Wi >
cα,n −

√
ρβ

√
1− ρ

)
(where Wi = Zi/

√
1− ρ, θ =

√
ρβ)
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= Eβ

[
I
{

max
1≤i≤n

Wi > Cβ,ρ

}]
(4.13)

where I{A} is the indicator variable of event A and Cβ,ρ is the quantity it is replacing.

Note that β ∼ N(0, 1) independent of Wi ∼ N(0, 1) under H0.

Equation (4.13) illustrates an elegant and computationally less expensive simulation

scheme of estimating FWER given (n, α, ρ). Firstly, we generate 100000 independent

observations from N(0, 1) (these are the β variables, i.e the repetitions). Given ρ, we

compute the cutoff Cβi,ρ for each of the simulated βi’s, 1 ≤ i ≤ 100000. Given n, for

each βi, we generate n independent observations from N(0, 1) (these are the Wi’s) and

compute the maximum of these n observations. We note for how many i’s, the maximum

(obtained from i’th sample of n independent standard normals) exceeds the cutoff Cβi,ρ.

An estimate of FWER(n, α, ρ) is obtained accordingly from the 100000 repetitions.

Table 4.1: Estimates of FWERBon(n, α = .05, ρ)

Correlation Number of hypotheses (n)
(ρ) 100 1000 10000 100000 1 Million 10 Million

0 .04878247 .04877176 .04877069 .04877059 .04877058 .04877058
0.1 .04697 .04601 .0431 .04295 .03965 .03893
0.2 .04285 .039 .03473 .03166 .02703 .02496
0.3 .03749 .03116 .0252 .02146 .01601 .01445
0.4 .03149 .02332 .01741 .01314 .00915 .00748
0.5 .02532 .01656 .01113 .00716 .00464 .00341
0.6 .01982 .01145 .00653 .00374 .00206 .00142
0.7 .01435 .00678 .0034 .0016 .00078 .00049
0.8 .00904 .00356 .00139 .00052 .00029 .00001
0.9 .00448 .00132 .0004 .00006 .00003 0

Table 4.1 presents the estimated FWERs under the equicorrelated normal setup for

α = .05 and some values of n. It also gives the exact values of FWERBon(·, ·, 0). We

observe that, for each positive ρ, FWER values decrease as n grows while for each n, the

values decrease as ρ increases. Also, the rate of decay is much faster for higher values of

ρ.

Let

Bn(ρ1, ρ2, ρ3) =

 Mn(ρ1) 0n 0n

0n Mn(ρ2) 0n

0n 0n Mn(ρ3)


where 0n denotes the n×nmatrix of all zeroes. Table 4.2 presents the FWER values under

the Bn(ρ1, ρ2, ρ3) for different combinations of (ρ1, ρ2, ρ3) for α = .05 and for different
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Table 4.2: Estimates of FWERBon(Bn(ρ1, ρ2, ρ3))

Block Correlation Values Number of hypotheses (3n)
(ρ1, ρ2, ρ3) 900 9000 90000 900000 9 Million
(.1, .1, .1) .04672 .04606 .04606 .04542 .04345
(.1, .1, .5) .03982 .03682 .03484 .03237 .03113
(.1, .1, .9) .03246 .03093 .03082 .02982 .02922
(.1, .5, .5) .03269 .02754 .02350 .02056 .01863
(.1, .5, .9) .02528 .02160 .01943 .01799 .01670
(.1, .9, .9) .01822 .01608 .01533 .01517 .01497
(.5, .5, .5) .02519 .01801 .01250 .00823 .00553
(.5, .5, .9) .01772 .01201 .00838 .00562 .00358
(.5, .9, .9) .01061 .00643 .00423 .00277 .00182
(.9, .9, .9) .00310 .00098 .00024 .00009 .00001

choices of n. One observes that for each (ρ1, ρ2, ρ3), FWER values decrease as n grows.

The simulation scheme for the block-equicorrelated setup is similar to the equicorrelated

setup and hence omitted.

4.7 Concluding Remarks

FWER and k-FWER are widely used in DNA microarray analyses. It is well-known

that Bonferroni’s method becomes very stringent for large-scale multiple testing problems

under the classical i.i.d framework. However, there is very little literature which elucidates

the extent of conservativeness of Bonferroni’s method under dependence. Our results

address this gap in a unified manner. Even more importantly, by considering k-FWER

instead of FWER, we encompass a much broader class of error rates.



Chapter 5

Asymptotic Behaviors of Stepwise

Multiple Testing Procedures

5.1 Introduction

In chapters 2 and 3, we have obtained upper bounds on the Bonferroni FWER and the

generalized FWERs (of Lehmann-Romano procedure) in the equicorrelated and general

Gaussian setups with small and moderate dimensions. In Chapter 4, we have improved

this result by showing that the Bonferroni FWER and the Lehmann-Romano gFWER

asymptotically go to zero for any strictly positive ρ. We have also extended this to

arbitrarily correlated setups where the limiting infimum of the correlations is positive.

We have focused on Bonferroni-type single-step procedures so far. Stepwise methods

constitute one of the most successful approaches to FWER control (Efron, 2010a). Finner

and Roters (2002) studied the number of false rejections in single-step, step-down and step-

up methods under independence. However, the role of correlation on the limiting behavior

of the FWER for stepwise procedures is little-known. Also, the existing literature lacks

theoretical justifications for why FWER methods fail in large-scale problems.

The chapter addresses this problem by theoretically investigating the limiting FWER

values of general step-down procedures under the correlated Gaussian setup. These

results provide new insights into the behavior of step-down decision procedures. By

establishing the limiting performances of commonly used step-up methods, e.g., the

Benjamini-Hochberg method and the Hochberg method, we have elucidated that the

class of step-up procedures does not possess a similar universal asymptotic zero result

as obtained in the case of step-down procedures. It is also noteworthy that most of our

results are pretty general since they accommodate any combination of the null hypotheses.

59
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We have also obtained the limiting powers of the stepwise procedures.

This chapter is structured as follows. We first formally introduce the framework with

relevant notations in the next section. Section 5.3 presents the limiting behaviors of the

FWER of step-down procedures in equicorrelated and non-negatively correlated Normal

setups. Section 5.4 discusses similar results on Hochberg’s and Benjamini-Hochberg’s pro-

cedures. Hommel’s stepwise MTP is studied in Section 5.5. We outline our contributions

and discuss related problems briefly in Section 5.6.

5.2 Preliminaries

We discuss the simultaneous inference problem through a Gaussian sequence model :

Xi∼N(µi, 1), i ∈ {1, . . . , n}

where (X1, . . . , Xn) have covariance matrix Σn. Suppose

H0i : µi = 0 vs H1i : µi > 0, 1 ≤ i ≤ n.

The FWER of a MTP T is defined as

FWERT (n, α,Σn) = PΣn(Vn(T ) ≥ 1) (5.1)

where Vn(T ) denotes the number of false rejections made by T . For simplicity, we write

FWERT (n, α,Mn(ρ)) as FWERT (n, α, ρ). As in the previous chapter, we shall consider

the probability in the r.h.s of (5.1) under the intersection null H0 at first (and take that

as the definition of FWER) for technical simplicity. Then we shall extend the results

obtained in this case to any combination of false and true null hypotheses.

In Chapter 4, we have shown in Theorem 4.3.1 that the Bonferroni FWER asymptot-

ically approaches zero for any strictly positive ρ. The proof of Theorem 4.3.1 utilizes the

exchangeability of the sequence {Xr}r≥1 under H0 for the equicorrelated set-up. For each

i ≥ 1, Xi
d
= θ + Zi where θ ∼ N(0, ρ) is independent of {Zn}n≥1 and Zi

i.i.d∼ N(0, 1 − ρ).

This representation of Xi as the sum of two independent components θ and Zi would be

repeatedly applied in the proofs of the results of this chapter also.

Throughout this chapter, Pi denotes the p-value for H0i, 1 ≤ i ≤ n. Also, let P(1) ⩽

. . . ⩽ P(n) be the ordered p-values. We denote the null hypothesis corresponding to the

p-value P(i) as H0(i), 1 ≤ i ≤ n.
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5.3 Limiting FWER and Power of Step-down MTPs

Holm’s method (Holm, 1979), one of the earliest example of a step-down procedure, uses

modified critical values and utilizes the Bonferroni inequality. It rejects H0(i) if

∀j ∈ {1, . . . i}, P(j) ≤
α

n− j + 1
.

Holm’s step-down procedure controls FWER under any dependence. We have the fol-

lowing result on the limiting FWER of Holm’s method under the equicorrelated normal

framework:

Theorem 5.3.1. Suppose µ⋆ = supµi < ∞. Then, under any configuration of false and

true null hypotheses, we have

lim
n→∞

FWERHolm(n, α, ρ) = 0 for all α ∈ (0, 1) and ρ ∈ (0, 1].

Proof of Theorem 5.3.1. We have,

FWERHolm(n, α, ρ) =PMn(ρ)(Vn(Holm) ≥ 1)

≤PMn(ρ)(Rn(Holm) ≥ 1)

=PMn(ρ)(P(1) ≤ α/n)

=PMn(ρ)(X(n) ≥ cα,n)

=1− PMn(ρ) (Xi ⩽ cα,n ∀i = 1, 2, . . . , n) .

Without loss of generality, we assume (in this and the next proof) Xi ∼ N(µi, 1) (µi > 0)

for 1 ≤ i ≤ n1 and for n1 < i ≤ n, Xi ∼ N(0, 1). This gives,

FWERHolm(n, α, ρ) ≤1− P

[
n1⋂
i=1

{θ + Zi + µi ⩽ cα,n}
⋂ n⋂

i=n1+1

{θ + Zi ⩽ cα,n}

]

=1− Eθ

[
n1∏
i=1

Φ

(
cα,n − θ − µi√

1− ρ

)
Φn−n1

(
cα,n − θ√
1− ρ

)]

≤1− Eθ

[
Φn

(
cα,n − θ − µ⋆

√
1− ρ

)]
−→1− 1 = 0 as n→ ∞ (since µ⋆ <∞).

□

We now extend this result to arbitrary correlated normal setups:
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Theorem 5.3.2. Let Σn be the correlation matrix of X1, . . . , Xn with (i, j)’th entry ρij

such that lim inf ρij = δ > 0. Suppose µ⋆ = supµi <∞. Then, for any α ∈ (0, 1),

lim
n→∞

PΣn(Rn(Holm) ≥ 1) = lim
n→∞

PΣn(P(1) ≤ α/n) = 0

under any configuration of false and true null hypotheses. Consequently,

lim
n→∞

FWERHolm(n, α,Σn) = 0 and lim
n→∞

AnyPwrHolm(n, α,Σn) = 0.

Proof of Theorem 5.3.2. We have,

PΣn(Rn(Holm) ≥ 1)

=PΣn(P(1) ≤ α/n)

=PΣn(X(n) ≥ cα,n)

≤PMn(ρ)(X(n) ≥ cα,n) (using Theorem 4.3.5)

=1− PMn(ρ) (Xi ⩽ cα,n ∀i = 1, 2, . . . , n)

=1− PMn(ρ)

[
n1⋂
i=1

{θ + Zi + µi ⩽ cα,n}
⋂ n⋂

i=n1+1

{θ + Zi ⩽ cα,n}

]

=1− Eθ

[{ n1∏
i=1

Φ

(
cα,n − θ − µi√

1− ρ

)}
· Φn−n1

(
cα,n − θ√
1− ρ

)]

≤1− Eθ

[
Φn

(
cα,n − θ − µ⋆

√
1− ρ

)]
.

The last quantity above tends to zero asymptotically since µ⋆ < ∞. The rest follows by

noting that Rn(Holm) ≥ max{Vn(Holm), Sn(Holm)}. □

We extend Theorem 5.3.2 to any step-down MTP below:

Theorem 5.3.3. Let Σn be the correlation matrix of X1, . . . , Xn with (i, j)’th entry ρij

such that lim inf ρij = δ > 0. Suppose supµi is finite and T is any step-down MTP

controlling FWER at α ∈ (0, 1). Then, for any α ∈ (0, 1),

lim
n→∞

PΣn

(
Rn(T ) ≥ 1

)
= 0

under any configuration of false and true null hypotheses. Consequently,

lim
n→∞

FWERT (n, α,Σn) = 0 and lim
n→∞

AnyPwrT (n, α,Σn) = 0.

We establish Theorem 5.3.3 using the following result due to Gordon and Salzman (Gordon

and Salzman, 2008).
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Theorem 5.3.4. Let T be a step-down MTP based on the set of cut-offs u ∈ Sn. If

FWERT ≤ α < 1, then ui ≤ α/(n− i+ 1), i = 1, . . . , n.

Proof of Theorem 5.3.3. We have,

FWERT (n, α,Σn) = PΣn(Vn(T ) ≥ 1) ≤ PΣn(Rn(T ) ≥ 1) =PΣn(P(1) ≤ u1)

≤PΣn(P(1) ≤ α/n).

The last step above follows since we have u1 ≤ α/n from Theorem 5.3.4. The rest is

obvious from Theorem 5.3.2. □

Theorem 5.3.3 can be viewed as a universal asymptotic zero result since it encompasses

all step-down FWER controlling MTPs and also accommodates any configuration of the

nulls.

5.4 Limiting FWER of Some Step-up MTPs

Let us consider a step-down MTP T1 and a step-up MTP T2 having the identical vector

of cutoffs u = (u1, . . . , un) ∈ Sn. We always have m1(T1) ≤ m2(T2) where m1(T1) =

max
{
i : P(j) ≤ uj for all j = 1, . . . , i} and m2(T2) = max

{
i : P(i) ≤ ui

}
. This implies

that the step-up MTP is at least as rejective as the step-down MTP (which uses the same

cutoffs). This observation steers that we might not get a similar universal asymptotic zero

result for the class of step-up MTPs as obtained for step-down MTPs (Theorem 5.3.3).

This is indeed the case as we shall show in the next two subsections the following:

(a) Under the equicorrelated Gaussian sequence model, the FWER of Hochberg MTP

(Hochberg, 1988) asymptotically approaches zero as the number of tests becomes

arbitrarily large.

(b) Under the equicorrelated Gaussian sequence model and under H0, the BH method

(Benjamini and Hochberg, 1995) with a pre-specified FDR level controls FDR at

some strictly positive quantity which is a function of the chosen FDR level and the

common correlation, even when the number of tests approaches infinity.

We have considered Hochberg’s MTP in particular because it uses the same vector of

cutoffs as Holm’s MTP (note that Holm’s MTP has the ‘optimal’ critical values in the class

of step-down procedures). Benjamini-Hochberg method, on the other hand, has been one

of the most eminent MTPs proposed in the literature and also possesses some optimality
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properties both in frequentist and Bayesian paradigms of simultaneous inference (see

Bogdan et al. (2011); Guo and Rao (2008)).

5.4.1 Hochberg’s Procedure

Hochberg’s (Hochberg, 1988) MTP and Holm’s sequentially rejective procedure use the

same set of cutoffs; and hence, as mentioned earlier, Hochberg’s MTP is sharper than

Holm’s MTP. The following result depicts the limiting behavior of the FWER of Hochberg’s

method under the correlated Gaussian sequence model:

Theorem 5.4.1. Consider the correlated normal setup with common correlation ρ ∈
[0, 1). Then,

(a) When ρ = 0 (i.e., the independent normal setup), we have

lim
n→∞

FWERHochberg(n, α, 0) ∈ [1− e−α, α]

under the global null.

(b) When ρ ∈ (0, 1), we have

lim
n→∞

FWERHochberg(n, α, ρ) = 0

for any α ∈ (0, 1/2), under the global null hypothesis.

Proof of Theorem 5.4.1. We have, under the global null,

FWERHochberg(n, α, 0) = PIn

[
n⋃

i=1

{
P(i) ⩽

α

n− i+ 1

}]
⩾PIn

[
P(1) ⩽

α

n

]
−→
n→∞

1− e−α.

Also, Hochberg’s procedure controls FWER at level α (Hochberg, 1988). So,

1− e−α ⩽ lim
n→∞

FWERHochberg(0) ⩽ α.

Also, limα→0
1−e−α

α
= 1. thus, we have, as α → 0, limn→∞

FWERHochberg(0)

α
= 1. This

completes the proof of the first part.
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When ρ ∈ (0, 1), we have,

P(i) ⩽
α

n− i+ 1

⇐⇒1− α

n− i+ 1
≤ Φ

(
X(n−i+1)

)
⇐⇒Φ−1

(
1− α

n− i+ 1

)
⩽ U + Z(n−i+1)

⇐⇒Φ−1

(
1− α

n− i+ 1

)
⩽ U +

√
1− ρ · Φ−1

(
1− i

n

)
(for all sufficiently large n).

Therefore, for all sufficiently large values of n, we have

P(i) ⩽
α

n− i+ 1

⇐⇒− U −
√

1− ρ · Φ−1

(
1− i

n

)
⩽ −Φ−1

(
1− α

n− i+ 1

)
⇐⇒− U +

√
1− ρ · Φ−1

(
i

n

)
⩽ Φ−1

(
α

n− i+ 1

)
⇐⇒ −U

Φ−1
(

α
n−i+1

) + √
1− ρ · Φ−1

(
i
n

)
Φ−1

(
α

n−i+1

) ⩾ 1 (since α ∈ (0, 1/2))

⇐⇒ lim
n→∞

Φ−1
(
i
n

)
Φ−1

(
α

n−i+1

) ≥ 1√
1− ρ

.

Thus, we have i/n < 1/2, because otherwise the limiting ratio of Φ−1
(
i
n

)
and Φ−1

(
α

n−i+1

)
can not be positive. So, we have

i

n
<

α

n− i+ 1
< 1/2.

This implies i(n − i + 1) < α · n. But this is not valid for any value of i in {1, . . . , n}.
Consequently, the limiting FWER is zero. □

Theorem 5.4.2. Consider the multiple testing problem under the equicorrelated normal

setup with equicorrelation ρ ∈ (0, 1). Suppose supµi is finite. Then,

lim
n→∞

PMn(ρ)

(
Rn(Hochberg) ≥ 1

)
= 0

for any α ∈ (0, 1/2). Consequently, for any α ∈ (0, 1/2),

lim
n→∞

FWERHochberg(n, α,Mn(ρ)) = lim
n→∞

AnyPwrHochberg(n, α,Mn(ρ)) = 0.

Proof of Theorem 5.4.2. This proof is similar to the preceding proof. Here, we have

Xi = U+Wi for each i ≥ 1. Here U ∼ N(0, ρ) is independent of {Wn}n≥1 andWi = µi+Vi.
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Here Vi’s are i.i.d N(0, 1−ρ) and µi is zero if i ∈ A and positive otherwise. So, Wi always

lies in [Vi, Vi + supµi]. This implies, for all i ∈ {1, . . . , n},

W(n−i+1) ≤ V(n−i+1) + supµi.

We have,

PMn(ρ)

(
Rn(Hochberg) ≥ 1

)
=PMn(ρ)

[
n⋃

i=1

{
P(i) ⩽

α

n− i+ 1

}]

=PMn(ρ)

[
n⋃

i=1

{
Φ−1

(
1− α

n− i+ 1

)
≤ U +W(n−i+1)

}]

≤PMn(ρ)

[
n⋃

i=1

{
Φ−1

(
1− α

n− i+ 1

)
≤ U + V(n−i+1) + supµi

}]
.

Therefore, for all sufficiently large values of n, we have

P(i) ⩽
α

n− i+ 1

=⇒ − U −
√

1− ρ · Φ−1

(
1− i

n

)
− supµi ⩽ −Φ−1

(
1− α

n− i+ 1

)
⇐⇒− U +

√
1− ρ · Φ−1

(
i

n

)
− supµi ⩽ Φ−1

(
α

n− i+ 1

)
⇐⇒ −U

Φ−1
(

α
n−i+1

) + √
1− ρ · Φ−1

(
i
n

)
Φ−1

(
α

n−i+1

) − supµi

Φ−1
(

α
n−i+1

) ⩾ 1 (since α ∈ (0, 1/2))

⇐⇒ lim
n→∞

Φ−1
(
i
n

)
Φ−1

(
α

n−i+1

) ≥ 1√
1− ρ

.

Proceeding exactly in the same way as in the earlier proof, one obtains that the probability

of rejecting any null hypothesis approaches zero. □

5.4.2 Benjamini-Hochberg Procedure

The BH MTP is the first FDR controlling method (Finner et al., 2007). Let imax be the

largest such i for which p(i) ⩽ iα/n. The BH procedure rejects H0(i) if i ⩽ imax and accepts

H0(i) otherwise. The following result evaluates the limiting FDR of Benjamini-Hochberg

method:

Theorem 5.4.3. Consider the multiple testing problem under the equicorrelated normal

setup with correlation ρ. Then, under the global null, for all α ∈ (0, 1) and for all
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ρ ∈ (0, 1),

lim
n→∞

FDRBH(n, α, ρ) = 1− Φ

[
inf

t∈(0,1)

Φ−1 (1− tα)−
√
1− ρ · Φ−1(1− t)

√
ρ

]
> 0.

Also, limn→∞ FDRBH(n, α, 0) = limn→∞ FDRBH(n, α, 1) = α.

Proof of Theorem 5.4.3. We have

FDRBH = E
[

Vn(BH)

max {Rn(BH), 1}

]
= E

[
Vn(BH)

Rn(BH)
| Vn(BH) > 0

]
P (Vn(BH) > 0) .

Under the global null H0, each rejection is a false rejection and FDR equals FWER. We

shall work with FWER for the rest of this proof.

Suppose exactly n0 null hypotheses are true. Then, it is a well-known fact (Benjamini

and Hochberg, 1995; Efron, 2010a; Sarkar, 2002) that, under the independent setup,

FDRBH(n, α, ρ) =
n0

n
α.

So, under the global null, FDRBH(n, α, 0) = FWERBH(n, α, 0) = α. Now,

p(i) ⩽
iα

n
⇐⇒1− Φ

(
X(n−i+1)

)
⩽
iα

n

⇐⇒1− iα

n
⩽ Φ

(
X(n−i+1)

)
⇐⇒X(n−i+1) ⩾ Φ−1

(
1− iα

n

)
.

Consequently,

FWERBH(ρ) =PMn(ρ)

[
n⋃

i=1

{
P(i) <

iα

n

}]

=PMn(ρ)

[
n⋃

i=1

{
X(n−i+1) ⩾ Φ−1

(
1− iα

n

)}]
.

When ρ = 1, Xi = Xj w.p 1. This implies

FWERBH(ρ) = P

[
n⋃

i=1

{
X ⩾ Φ−1

(
1− iα

n

)}]
=P
[
X ⩾ Φ−1 (1− α)

]
= α,

where X ∼ N(0, 1).

Consider the case 0 < ρ < 1 now. Then, Xi = Uρ+Zi where Uρ ∼ N(0, ρ) is independent
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of Zi ∼ N(0, 1− ρ). Here Zi’s are i.i.d. So, under the global null,

FWERBH(ρ) =PMn(ρ)

[
n⋃

i=1

{
X(n−i+1) ⩾ Φ−1

(
1− iα

n

)}]

=PMn(ρ)

[
n⋃

i=1

{
Uρ + Z(n−i+1) ⩾ Φ−1

(
1− iα

n

)}]

=PMn(ρ)

[
n⋃

i=1

{
Uρ > Φ−1 (1− tiα)− Z(n−nti+1)

}]
where ti = i/n.

=PMn(ρ)

[
n⋃

i=1

{
M >

Φ−1 (1− tiα)− Z(n−nti+1)√
ρ

}]
,

where in the last step above, M = Uρ/
√
ρ ∼ N(0, 1). For t ∈ (0, 1), Z(n−nt+1) =

Z(n(1−t+ 1
n))

converges in probability to (1 − t)’th quantile of the distribution of Zi (i.e.√
1− ρ · Φ−1(1− t)) as n→ ∞. So,

lim
n→∞

FWERBH(ρ) = P

 ⋃
t∈(0,1)

{
M >

Φ−1 (1− tα)−
√
1− ρ · Φ−1(1− t)

√
ρ

}
= P

 ⋃
t∈(0,1)

{M > s(t)}

 (say)

= P
[
M > inf

t∈(0,1)
s(t)

]
= 1− Φ

[
inf

t∈(0,1)
s(t)

]
.

Now, inf
t∈(0,1)

s(t) ≤ s(.5) < ∞. So, Φ

[
inf

t∈(0,1)
s(t)

]
< 1. Thus, lim

n→∞
FWERBH(ρ) > 0 for

ρ ∈ (0, 1). □

Remark 7. Since we are considering the infimum of the function s(·) and since s(0) =

∞ = s(1), the previous result still holds good if one considers the closed interval [0, 1] in

place of the open interval (0, 1).

Remark 8. Finner et al. (2007) studied the (limiting) empirical distribution function

of the p-values and used those to study limiting behaviors of FDR. Their results are

derived under general distributional setups and different values of ξn where ξn denotes

the proportion of the true nulls. Our elementary proof, in contrast, uses standard analytic

tools and provides a simple closed-form expression for the limiting FDR under the global

null.
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5.4.3 Other Step-up MTPs

We have discussed the limiting FWER values of two step-up procedures so far. In this

subsection, we shall provide an upper bound on the limiting FWER of any step-up method

satisfying some properties. Towards this, we consider a special dependency property of

test statistics introduced by Benjamini and Yekutieli (2001) (see Section 1.5.1, Definition

2).

Guo and Rao (2008) showed the following.

Lemma 5.4.1. Let T be any step-up MTP having vector of critical values αT ∈ Sn. Then

we have the following inequality under the PRDS property:

n∑
k=1

P (Rn(T ) = k | Pi ≤ αk) ≤ 1, for i ∈ A. (5.2)

Moreover, this inequality becomes an equality under the independence of the test statistics.

They also constructed an example of joint distribution of the p-values, under which

the PRDS property fails to hold although the inequality (5.2) holds. Thus, it turns out

(5.2) is a relaxed condition than PRDS. Guo and Rao (2008) further showed the following

optimality property of the BH method:

Theorem 5.4.4. Let T be the class of all step-up procedures with vector of cutoffs

belonging to Sn and satisfying the inequality (5.2). Then, the BH method is optimal

in the class T . In other words, for any step-up method T ∈ T with vector of cutoffs

αT ∈ Sn, which controls FDR at α, then αk ≤ kα/n for each k ∈ {1, . . . , n}.

Theorem 5.4.3 and Theorem 5.4.4 result in the following:

Theorem 5.4.5. Let T be the class of all step-up procedures with vector of cutoffs

belonging to Sn and satisfying the inequality (5.2). Let T ∈ T be such that it controls the

FDR at α ∈ (0, 1). Consider the equicorrelated normal setup with correlation ρ. Then,

under the global null, for all α ∈ (0, 1) and for all ρ ∈ (0, 1),

lim
n→∞

FDRT (n, α, ρ) ≤ 1− Φ

[
inf

t∈(0,1)

Φ−1 (1− tα)−
√
1− ρ · Φ−1(1− t)

√
ρ

]
.

5.5 Hommel’s Procedure

We have focused on step-down and step-up procedures so far. However, many powerful

MTPs proposed in the literature do not belong to the step-down or step-up categories.
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The Hommel (Hommel, 1988) procedure is such a p-value based MTP that controls the

FWER:

Step 1. Compute j = max
{
i ∈ {1, . . . , n} : P(n−i+k) > kα/i for k = 1, . . . , i}.

Step 2. If the maximum does not exist in Step 1, reject each null hypothesis.

Otherwise, reject all Hi with Pi ⩽ α/j.

Hommel’s MTP is uniformly more powerful than the Bonferroni, Holm, and Hochberg

methods (Gou et al., 2014). The following two results depict the limiting behavior of

the FWER of Hommel’s procedure under the independent normal setup and under the

positively equicorrelated normal setup, respectively.

Theorem 5.5.1. Consider the multiple testing problem under the independent normal

setup. Under the global null, we have

lim
n→∞

FWERHommel(n, α, 0) = 1− e−α.

Theorem 5.5.2. Consider the multiple testing problem under the equicorrelated normal

framework with correlation ρ ∈ (0, 1). Then, for any α ∈ (0, 1),

lim
n→∞

FWERHommel(n, α, ρ) = 0

with probability one under the global null hypothesis.

Theorem 5.5.3. Consider the equicorrelated normal setup with equicorrelation ρ ∈ (0, 1).

Suppose supµi is finite. Then, for any α ∈ (0, 1),

lim
n→∞

PMn(ρ)

(
Rn(Hommel) ≥ 1

)
= 0

with probability one under any configuration of false and true null hypotheses. Conse-

quently, FWERHommel(n, α, ρ) and AnyPwrHommel(n, α,Mn(ρ)) tend to zero with proba-

bility one as n→ ∞.

Proof of Theorem 5.5.1. Note that P(i) = 1 − Φ
(
X(n−i+1)

)
. Putting i = n − j + k

(here 1 ≤ j ≤ n and 1 ≤ k ≤ j) gives P(n−j+k) = 1− Φ
(
X(j−k+1)

)
, k ⩽ j. Now,

P(n−j+k) >
kα

j
⇐⇒ 1− Φ

(
X(j−k+1)

)
>
kα

j

⇐⇒ Φ−1

(
1− kα

j

)
> X(j−k+1)

⇐⇒ Φ−1
(
1− sα

t

)
> X(n(t−s)+1) where s = k/n and t = j/n.
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For any r ∈ (0, 1), X(nr) converges in probability to r’th quantile of the distribution of

X1 as n→ ∞. This implies, X(n(t−s)+1) converges in probability to Φ−1(t− s) as n→ ∞.

Thus, as n→ ∞,

P(n−j+k) >
kα

j
⇐⇒ Φ−1

(
1− sα

t

)
> Φ−1(t− s)

⇐⇒ 1− sα

t
> t− s

⇐⇒ t− sα > t(t− s)

⇐⇒ t(1− t) > s(α− t).

We have t ≥ s and 1 > α. So, t(1− t) > s(α − t) always holds. This means that the

largest t for which t(1 − t) > s(α − t) holds for each s ∈ (0, t] is 1. This in turn implies

that, as n → ∞, the largest integer j ≤ n satisfying P(n−j+k) >
kα
j

for k ∈ {1, . . . , j} is

n with probability one. Thus, the Hommel’s MTP is same as the Bonferroni’s MTP as

n→ ∞. Hence,

lim
n→∞

FWERHommel(n, α, 0) = 1− e−α.

□

Proof of Theorem 5.5.2. Consider the equicorrelated normal framework with correla-

tion ρ ∈ (0, 1). Under the global null, we have Xi = U + Zi for each i ≥ 1. Here

U ∼ N(0, ρ) is independent of {Zn}n≥1 and Zi
iid∼ N(0, 1− ρ).

We establish Theorem 5.5.2 in the following steps:

(a) Showing that as n→ ∞,

P(n−j+k) >
kα

j
for all k = 1, . . . , j ⇐⇒ U < min

0<s<t
f(s)

where f(s) = Φ−1 (1− sα/t)−
√
1− ρ · Φ−1(t− s).

(b) Showing that

Φ

(
−U − Φ−1(α)√

1− p

)
> t implies U < min

0<s<t
f(s).

(c) Showing that, for each positive integer m,

FWERHommel(n, α, ρ) ≤ P
[
P(1) ⩽

1

t0
· α
n

]
+ P(U ≥ m)

where t0 = maxt {t ∈ (0, 1) : min0<s<t f(s) > U}.
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We explicate the steps now. Similar to the previous proof, we have

P(n−j+k) >
kα

j
⇐⇒ 1− Φ

(
X(j−k+1)

)
>
kα

j

⇐⇒ Φ−1

(
1− kα

j

)
> X(j−k+1)

⇐⇒ Φ−1

(
1− kα

j

)
> U + Z(j−k+1)

⇐⇒ Φ−1
(
1− sα

t

)
> U + Z(n(t−s)+1) where s = k/n, t = j/n.

For any r ∈ (0, 1), Z(nr) converges in probability to r’th quantile of the distribution of

Z1 as n→ ∞. This implies, Z(n(t−s)+1) converges in probability to
√
1− ρ ·Φ−1(t− s) as

n→ ∞. Thus, as n→ ∞,

P(n−j+k) >
kα

j
⇐⇒ U < Φ−1

(
1− sα

t

)
−
√

1− ρ · Φ−1(t− s).

This means, as n→ ∞,

P(n−j+k) >
kα

j
for all k = 1, . . . , j ⇐⇒ U < min

0<s<t
f(s) (5.3)

completing the proof of step 1.

Now, t > t− s as s > 0. This implies Φ−1(t) > Φ−1(t− s). Consequently, for each s > 0,

f(s) > g(s) where g(s) = Φ−1
(
1− sα

t

)
− Φ−1(t). Thus,

g(s) > U =⇒ f(s) > U.

Now,

g(s) > U ⇐⇒ Φ−1
(
1− sα

t

)
−
√

1− ρ · Φ−1(t) > U

⇐⇒ Φ−1
(
1− sα

t

)
> U +

√
1− ρ · Φ−1(t)

⇐⇒ 1− sα

t
> Φ

(
U +

√
1− ρ · Φ−1(t)

)
⇐⇒

Φ
(
−U −

√
1− ρ · Φ−1(t)

)
α

>
s

t
.

Therefore, if
Φ(−U−

√
1−ρ·Φ−1(t))
α

> 1 then ∀s ∈ (0, t), g(s) > U . Hence,

Φ
(
−U −

√
1− ρ · Φ−1(t)

)
/α > 1 implies f(s) > U for all s ∈ (0, t).
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Now,

Φ
(
−U −

√
1− ρ · Φ−1(t)

)
α

> 1 ⇐⇒ − U −
√

1− ρ · Φ−1(t) > Φ−1(α)

⇐⇒ Φ

(
−U − Φ−1(α)√

1− ρ

)
> t.

Therefore, we have established the following:

Φ

(
−U − Φ−1(α)√

1− p

)
> t implies U < min

0<s<t
f(s), (5.4)

completing step 2.

Thus,

t0 := max
t

{
t ∈ (0, 1) : min

0<s<t
f(s) ⩾ U

}
⩾ max

t∈(0,1)

{
Φ

(
−U − Φ−1(α)√

1− ρ

)
> t

}
.

Now, U < r implies t0 ⩾ εr where

εr = Φ

(
−r − Φ−1(α)√

1− p

)
.

So, for every m ∈ N, there exists εm > 0 such that t0 > εm if U < m. In other words,

there is εm such that t0 > εm > 0 with probability at least P(U < m). This implies, t0 is

bounded away from zero with probability one. Now, let

j0 = max
1⩽j⩽n

{
P(n−j+k) >

kα

j
for k = 1, . . . , j

}
.

Evidently, j0 ⩾ nt0. Consequently, under the global null,

FWERHommel(n, α, ρ) =P

[
n⋃

i=1

{
Pi ⩽

α

j0

}]

⩽P

[
n⋃

i=1

{
Pi ⩽

α

nt0

}]
+ P(U ⩾ m)

=P
[
P(1) ⩽

1

t0
· α
n

]
+ P(U ⩾ m).

This completes the proof of Step 3. Now, P(U ≥ m) ≤ ϵ for all ϵ > 0 as m → ∞. We

claim now that

P
[
P(1) ⩽

1

t0
· α
n

]
−→ 0 as n→ ∞.

Its proof is precisely the same as the proof of Theorem 4.3.1 and we therefore omit it.
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The rest is obvious. □

Remark 9. Suppose a > 0. The proof of Theorem 4.3.1 also culminates in the following:

PMn(ρ)

[
P(1) ⩽ a · α

n

]
−→ 0 as n→ ∞

for each ρ ∈ (0, 1). Then, invoking Slepian’s inequality, we have the following: Let Σn

be the correlation matrix of X1, . . . , Xn having (i, j)’th entry ρij with lim inf ρij = δ > 0.

Suppose µ⋆ = supµi <∞. Then, for any α ∈ (0, 1),

PΣn

[
P(1) ⩽ a · α

n

]
−→ 0 as n→ ∞.

Note that this is a much stronger result than Theorem 5.3.2.

Proof of Theorem 5.5.3. This proof is similar to the earlier proof. We consider the

equicorrelated normal framework with correlation ρ ∈ (0, 1). We have Xi = U +Wi for

each i ≥ 1. Here U ∼ N(0, ρ) is independent of {Wn}n≥1 and Wi = µi + Vi. Here Vi’s are

i.i.d N(0, 1− ρ) and µi is 0 if i ∈ A and positive otherwise.

We establish Theorem 5.5.3 in the following steps:

(a) Showing that as n→ ∞,

P(n−j+k) >
kα

j
for all k = 1, . . . , j ⇐= U < min

0<s<t
f2(s)

where f2(s) = Φ−1 (1− sα/t)−
√
1− ρ · Φ−1(t− s)− µ∗, µ∗ := supµi.

(b) Showing that

Φ

(
−U − Φ−1(α)− µ∗

√
1− p

)
> t implies U < min

0<s<t
f2(s).

(c) Showing that, for each positive integer m,

FWERHommel(n, α, ρ) ≤ P
[
P(1) ⩽

1

t1
· α
n

]
+ P(U ≥ m)

where t1 = maxt {t ∈ (0, 1) : min0<s<t f2(s) > U}.

We explicate the steps now.
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Similar to the preceding proof, we have

P(n−j+k) >
kα

j
⇐⇒ 1− Φ

(
X(j−k+1)

)
>
kα

j

⇐⇒ Φ−1

(
1− kα

j

)
> X(j−k+1)

⇐= Φ−1

(
1− kα

j

)
> U + V(j−k+1) + µ∗

⇐⇒ Φ−1
(
1− sα

t

)
> U + V(n(t−s)+1) + µ∗ where s = k/n, t = j/n.

For any r ∈ (0, 1), V(nr) converges in probability to r’th quantile of the distribution of

V1 as n → ∞. This implies, V(n(t−s)+1) converges in probability to
√
1− ρ · Φ−1(t− s) as

n→ ∞. Thus, as n→ ∞,

P(n−j+k) >
kα

j
⇐= U < Φ−1

(
1− sα

t

)
−
√

1− ρ · Φ−1(t− s)− µ∗.

This means, as n→ ∞,

P(n−j+k) >
kα

j
for all k = 1, . . . , j ⇐= U < min

0<s<t
f2(s) (5.5)

completing the proof of step 1.

Now, t > t− s as s > 0. This implies Φ−1(t) > Φ−1(t− s). Consequently, for each s > 0,

f2(s) > g2(s) where g2(s) = Φ−1
(
1− sα

t

)
− Φ−1(t)− µ∗. Thus,

g2(s) > U =⇒ f2(s) > U.

Now,

g2(s) > U ⇐⇒ Φ−1
(
1− sα

t

)
−
√

1− ρ · Φ−1(t)− µ∗ > U

⇐⇒ Φ−1
(
1− sα

t

)
> U +

√
1− ρ · Φ−1(t) + µ∗

⇐⇒ 1− sα

t
> Φ

(
U +

√
1− ρ · Φ−1(t) + µ∗

)
⇐⇒

Φ
(
−U −

√
1− ρ · Φ−1(t)− µ∗)

α
>
s

t
.

Therefore, if
Φ(−U−

√
1−ρ·Φ−1(t)−µ∗)

α
> 1 then ∀s ∈ (0, t), g(s) > U . Hence,
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Φ
(
−U −

√
1− ρ · Φ−1(t)− µ∗) /α > 1 implies f(s) > U for all s ∈ (0, t). Now,

Φ
(
−U −

√
1− ρ · Φ−1(t)− µ∗)

α
> 1 ⇐⇒ − U −

√
1− ρ · Φ−1(t)− µ∗ > Φ−1(α)

⇐⇒ Φ

(
−U − Φ−1(α)− µ∗

√
1− ρ

)
> t.

Therefore, we have established the following:

Φ

(
−U − Φ−1(α)− µ∗

√
1− p

)
> t implies U < min

0<s<t
f2(s), (5.6)

completing step 2.

Thus,

t1 := max
t

{
t ∈ (0, 1) : min

0<s<t
f2(s) ⩾ U

}
⩾ max

t∈(0,1)

{
Φ

(
−U − Φ−1(α)− µ∗

√
1− ρ

)
> t

}
.

Now, U < r implies t1 ⩾ εr where

εr = Φ

(
−r − Φ−1(α)− µ∗

√
1− p

)
.

So, for every m ∈ N, there exists εm > 0 such that t0 > εm if U < m. In other words,

there is εm such that t1 > εm > 0 with probability at least P(U < m). This implies, t1 is

bounded away from zero with probability one.

Now, let

j1 = max
1⩽j⩽n

{
P(n−j+k) >

kα

j
for all k = 1, . . . , j

}
.

Evidently, j1 ⩾ nt1. Consequently,

PMn(ρ)

(
Rn(Hommel) ≥ 1

)
⩽P

[
n⋃

i=1

{
Pi ⩽

α

j1

}]

⩽P

[
n⋃

i=1

{
Pi ⩽

α

nt1

}]
+ P(U ⩾ m)

=P
[
P(1) ⩽

1

t1
· α
n

]
+ P(U ⩾ m).

This completes the proof of Step 3. Now, P(U ≥ m) ≤ ϵ for all ϵ > 0 as m → ∞. We

have earlier seen that

P
[
P(1) ⩽

1

t1
· α
n

]
−→ 0 as n→ ∞.

The rest is obvious. □
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5.6 Concluding Remarks

The preceding chapter sheds light on the extent of the conservativeness of the Bonferroni

method under dependent setups. However, there is little literature on the effect of

correlation on general step-down or step-up procedures. This chapter addresses this gap in

a unified manner by investigating the limiting behaviors of several testing rules under the

correlated Gaussian sequence model. We have proved asymptotic zero results for some

popular MTPs controlling FWER at a pre-specified level. Specifically, we have shown

that the limiting FWER approaches zero for any step-down rule provided the infimum of

the correlations is strictly positive.

Huang and Hsu (2007) elucidate that both Holm’s and Hochberg’s methods are special

cases of partition testing:

“while Holm’s method tests each partition hypothesis using the largest order statistic,

setting a critical value based on the Bonferroni inequality, Hochberg’s method tests each

partition hypothesis using all the order statistics, setting a series of critical values based

on Simes’ inequality.”

It is natural to expect partition testing utilizing the joint distribution is sharper than

partition testing based on probability inequalities. Our results elucidate that, at least

under the correlated Gaussian sequence model setup with many hypotheses, Holm’s MTP

and Hochberg’s MTP do not have significantly different performances in that they both

have asymptotic zero FWER and asymptotic zero power.

The Benjamini-Hochberg procedure has been one of the most studied MTP and has

several desirable optimality properties (Bogdan et al., 2011; Guo and Rao, 2008). It is

astonishing to note that, among all the methods studied in this chapter, the BH procedure

is the only one which can hold the FWER at a strictly positive level asymptotically under

the equicorrelated normal setup. An interesting problem would be to study the limiting

power of the Benjamini-Hochberg method.

Hommel’s method is more rejective than Hochberg’s MTP (and consequently, Holm’s

and Bonferroni’s methods) Gou et al. (2014). Yet, within our chosen asymptotic frame-

work, this has asymptotic zero FWER and asymptotic zero power.

Finally, there are possible scopes of interesting extensions in several directions. One

extension is to consider more general distributional setups. Another is to study the limit-

ing behaviors of Hochberg, Hommel, and Benjamini-Hochberg procedures under general

dependent normality. The primary tool in establishing universal asymptotic zero results

for the step-down MTPs is Slepian’s inequality which compares the quadrant probabilities

of two normal random vectors. However, for the step-up procedures, the FWERs become



78 Chapter 5, Section 5.6

functions of several order statistics. Hence we can not directly apply Slepian’s inequality

in these scenarios. Indeed, Finner et al. (2007) remark that it is challenging to deal with

false discoveries in models with complicated dependence structures, e.g., in a multivariate

Gaussian model with a general covariance matrix. It is also interesting to theoretically

investigate whether similar asymptotic results hold for other classes of MTPs, e.g., the

class of consonant procedures (Westfall et al., 1999).



Chapter 6

Asymptotically Optimal Sequential

Multiple Testing Procedures for

Correlated Normal

6.1 Introduction

Simultaneous inference has been a cornerstone in the statistics methodology literature,

particularly because of its fundamental theory and paramount applications. The main-

stream multiple testing literature has traditionally considered two frameworks:

(a) The sample size is deterministic, i.e., the full data is available while testing. The

classical Bonferroni method or the multiple testing procedures (MTPs henceforth)

proposed by Benjamini and Hochberg (1995), Holm (1979), Hochberg (1988), Hom-

mel (1988) - each of them is valid under the fixed sample size paradigm.

(b) The test statistics corresponding to the various tests are independent. For example,

the BH method was initially shown to control FDR under independence (Benjamini

and Hochberg, 1995). The Sidak’s procedure is valid under independence and for

test statistics with certain parametric distributions.

However, in many modern applications, these assumptions are routinely violated:

(a) Quite often, the data is streaming or arriving sequentially. In multiple-endpoint

clinical trials, patients are collected sequentially. At each interim step, the researcher

has to decide whether to collect more observations or stop. Of late, MTPs that can

handle these kinds of sequential data have been proposed and studied.

79
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When working in simultaneous inference problems in sequential setups, one might

consider the natural generalization of Wald’s sequential framework where all the

data streams are terminated simultaneously. This setup finds application in multi-

ple access wireless communication (Rappaport, 2002) and multisensor surveillance

platforms (Foresti et al., 2003). The last decade has witnessed significant progress

on this line of work: De and Baron (2012a,b, 2015), Song and Fellouris (2017, 2019),

Song (2019), He and Bartroff (2021), Roy et al. (2023).

(b) Simultaneous inference problems arising in many disciplines often involve correlated

observations. For example, in microRNA expression data, several genes may cluster

into groups through their transcription processes and exhibit high correlations.

Functional magnetic resonance imaging (fMRI) studies and multistage clinical trials

also concern dependent observations. Simultaneous testing methods under depen-

dence have been studied by Efron (2007, 2010b), Liu et al. (2016), Sun and Cai

(2009), Xie et al. (2011), among others. Fan et al. (2012) proposed a novel approach

of tackling dependent test statistics with a known correlation structure. They

capture the association between correlated statistics using the principal eigenvalues

of the covariance matrix. Fan and Han (2016) extended this work to unknown

covariance structures. Qiu et al. (2005) demonstrated that many FDR controlling

procedures lose power significantly under dependence. Huang and Hsu (2007)

mention that stepwise decision rules based on modeling of the dependence structure

are generally superior to their counterparts that do not consider the correlation.

However, we find little literature which studies the multiple testing problem in a

sequential framework where the test statistics corresponding to the various streams are

dependent. This chapter fills this gap in a unified way by considering the classical means-

testing problem in a equicorrelated Gaussian and sequential framework.

We organize the chapter as follows. The next section introduces the framework with

necessary notations and mentions some existing results on the sequential test rules. We

discuss the asymptotic expansion of average sample number required by the sequential

probability ratio test in Section 6.3. We propose feasible sequential rules and establish

their asymptotic optimality in Section 6.4. Section 6.5 extends our asymptotic results to

a wide class of error rates. We end the chapter with a brief discussion in Section 6.6.

As we shall discuss several hypothesis testing problems (HTPs henceforth) in this

chapter, we shall name each problem for notational convenience.
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6.2 Preliminaries

6.2.1 The Testing Framework

We consider K ≥ 2 data streams:

X11, X12, . . . , X1n, . . .

X21, X22, . . . , X2n, . . .

...

XK1, XK2, . . . , XKn, . . . .

Here Xij denotes the j’th observation of i’th data stream, i ∈ [K] := {1, . . . , K}. We

assume throughout this chapter that the elements of a given stream are i.i.d but not

necessarily the streams are independent of each other. For each i ∈ [K], we consider two

simple hypotheses:

HTP 1. H0i : Xij ∼ N(0, 1) for each j ∈ N vs H1i : Xij ∼ N(µ, 1) for each j ∈ N

where µ > 0.

We assume that for each j ∈ N, (X1j, . . . , XKj) follows a multivariate normal distribu-

tion with variance covariance matrix MK(ρ) for some ρ ≥ 0. We say that there is “noise”

in ith stream if H0i is true and there is “signal” in the ith stream otherwise.

For n ∈ N, let S i
n denote the σ-field generated by the first n observations of the

i th data stream, i.e., σ(Xi1, . . . , Xin). Let Sn be the σ-field generated by the first n

observations in all streams, that is, σ(S i
n, i ∈ [K]). The data in all streams are observed

sequentially. We wish to solve the K decision problems by terminating sampling as soon

as possible, subject to controlling relevant error criteria.

We define a sequential MTP as a pair (T, d) where T is an {Sn}-stopping time at

which we stop sampling in each stream, and d an ST -measurable vector of Bernoulli

random variables, (d1, . . . , dK). di = 1 corresponds to selecting H1i over H0i, and di = 0

means selecting H0i over H1i. So D := {i ∈ [K] : di = 1} is the collection of streams

in which we reject the null. Suppose A is the true subset of indices for which the null

hypothesis is true. For any sequential MTP (T, d), one has

{(D\Ac) ̸= ∅} =
⋃
j /∈Ac

{dj = 1} , and {(Ac\D) ̸= ∅} =
⋃
k∈Ac

{dk = 0} .

For any subset B ⊂ [K] let PB be defined as the distribution of {Xn, n ∈ N} when B is
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the true subset of nulls. Thus, the two types of familywise error rates are given by

FWERI,A(T, d) = PA((D\Ac) ̸= ∅) = PA((T, d) makes at least one false rejection),

FWERII,A(T, d) = PA((Ac\D) ̸= ∅) = PA((T, d) makes at least one false acceptance).

We write FWERi,A(T, d) as FWERi(T, d) for i = I, II. For pre-specified precision levels

α ∈ (0, 1) and β ∈ (0, 1), we are here concerned with sequential MTPs (T, d) satisfying

FWERI(T, d) ≤ α and FWERII(T, d) ≤ β for every A.

Note that incorporating a prior information about the true subset of signals is same as

assuming that A belongs to a class P of subsets of [K]. We consider the class

∆FWER
α,β (P) := {(T, d) : FWERI(T, d) ≤ α and FWERII(T, d) ≤ β ∀A ∈ P} .

In this chapter, two classes P will be considered. In the first case, we know beforehand

that Ac has exactly m members, where 1 ≤ m ≤ K − 1. In the second case, although the

exact number of signals might not be known, strict lower and upper bounds for the same

are available. These two cases respectively correspond to the classes

Pm := {A ⊂ [K] : |Ac| = m, 0 < m < K}, Pℓ,u := {A ⊂ [K] : 0 < ℓ < |Ac| < u < K}.

6.2.2 Asymptotic Optimality for controlling FWER

We are interested in finding sequential MTPs belonging to ∆FWER
α,β (Pm) or ∆

FWER
α,β (Pℓ,u)

which are optimal in the natural sense of Wald’s sequential framework, i.e., which achieve

the least average sample number under each possible signal configuration.

Definition 3. (Song and Fellouris, 2017; Song, 2019) Let P be a given class of subsets

and let (T ∗, d∗) be a sequential MTP belonging to ∆FWER
α,β (P) for any given α, β ∈ (0, 1).

(T ∗, d∗) is called asymptotically optimal in the class P for controlling FWER, if for every

A ∈ P we have,

lim
α,β→0

EA [T ∗]

inf
(T,d)∈∆FWER

α,β (P)
EA[T ]

= 1

where EA denotes the expectation under PA.

We shall often write x ∼ y to mean x/y → 1. In this chapter, we shall discuss

sequential MTPs that are asymptotically optimal in the classes Pm and Pℓ,u.



6.2 Preliminaries 83

6.2.3 Existing Results under Independent Setup

Song and Fellouris (2017) consider, for each i ∈ [K], the following simple vs simple testing

problem:

HTP 2. H0i : Xij ∼ P0i for each j ∈ N vs H1i : Xij ∼ P1i for each j ∈ N,

where P0i and P1i are distinct probability measures. Note that HTP 1 can be thought of

as a special case of HTP 2. They suppose that, for each stream i ∈ [K], the observations

{Xij, j ∈ N} follow, independently of each other, common density f0i and f1i w.r.t a

σ-finite measure µi under P0i and P1i respectively. They consider Kullback Leibler

information numbers

D0i :=

∫
log

(
f0i
f1i

)
f0idµi, D1i :=

∫
log

(
f1i
f0i

)
f1idµi.

For each subset B ⊂ [K], let

ηB1 := min
i∈B

D1i, ηB0 := min
i/∈B

D0i.

Let λi(n) be the cumulative log-likelihood ratio corresponding to the first n observa-

tions in i’th data stream. These, when ordered, are denoted as

λ(1)(n) ≥ · · · ≥ λ(K)(n).

Following Song and Fellouris (2017), we denote the corresponding stream indices by

i1(n), ..., iK(n), i.e.,

λ(k)(n) = λik(n)(n), ∀k ∈ [K].

We denote cardinality by | · | and, for x, y ∈ R, we write x ∧ y = min{x, y} and x ∨ y =

max{x, y}.

6.2.3.1 Prior information on number of signals

Suppose that it is known that the cardinality of Ac is exactly m, 1 ≤ m ≤ K − 1. So,

P = Pm. We observe that for any A ∈ Pm and (T, d) such that |D| = m, we have

FWERI(T, d) = FWERII(T, d) = PA{D ≠ Ac}.

PA{D ≠ Ac} is simply the probability that the sequential test rule (T, d) commits an

incorrect selection, and therefore will alternatively be denoted as PICS(T, d). Hence, the
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class of feasible sequential tests is given by

∆FWER
α,β (Pm) = {(T, d) : PICSA(T, d) ≤ α ∧ β for every A ∈ Pm} .

Song and Fellouris (2017) propose the following sequential decision rule (which is com-

monly referred to as the gap rule) in this setup. The stopping time of their rule is

TGap(m, c) := inf
{
n ≥ 1 : λ(m)(n)− λ(m+1)(n) ≥ c

}
.

The procedure rejects the nulls having the highestm log-likelihood ratios at time TGap(m, c).

We write TGap(m, c) as TGap for simpler notation. Song and Fellouris (2017) establish the

following:

Theorem 6.2.1. Suppose A ∈ Pm. For each threshold c > 0, we have PA (TGap <∞) = 1

and

PICSA(TGap, dGap) ≤ m(K −m)e−c.

Consequently, (TGap, dGap) ∈ ∆FWER
α,β (Pm) when

c = | log(α ∧ β)|+ log(m(K −m)). (6.1)

Theorem 6.2.2. Suppose Ac ∈ Pm and the threshold c in the gap rule is chosen as in

(6.1). Then, we have as α, β → 0

EA [TGap] ∼
| log(α ∧ β)|
ηA

c

1 + ηA
c

0

∼ inf
(T,d)∈∆FWER

α,β (Pm)
EA[T ].

Song and Fellouris (2017) also derived asymptotically optimal sequential tests when

it is known that ℓ ≤ |Ac| ≤ u for some 0 ≤ ℓ < u ≤ K.

6.2.3.2 General Error Rate controlling Procedures

He and Bartroff (2021) showed that the procedures proposed by Song and Fellouris (2017),

with suitably modified cut-offs, are asymptotically optimal for controlling any multiple

testing error criterion that lies between multiples of FWER. We shall establish similar

optimality properties of our proposed procedures in section 6.5.



6.3 Asymptotic Expansion of Expected Sample Size of SPRT 85

6.3 Asymptotic Expansion of Expected Sample Size

of SPRT

This chapter aims to propose feasible sequential test procedures that require minimum

expected sample size in the classes Pm and Pℓ,u asymptotically as α, β −→ 0. We shall

establish this asymptotic optimality by comparing the ratios of the expected sample sizes

of our proposed procedure and Wald’s sequential probability ratio test (SPRT). Therefore,

we at first focus on the expected sample size (or average sample number) of SPRT.

Consider the following hypothesis testing problem:

HTP 3. H0 : Ui ∼ N(θ0, σ
2) vs H1 : Ui ∼ N(θ1, σ

2), θ0 < θ1.

Let γ and δ denote the desired levels of type I and type II error probabilities, respectively.

At the n-th stage, the SPRT with strength (γ, δ) for this testing problem is as follows:

(a) accept H0, if
n∑

i=1

Ui −
n (θ1 + θ0)

2
⩽

bσ2

θ1 − θ0
.

(b) reject H0, if
n∑

i=1

Ui −
n (θ1 + θ0)

2
⩾

aσ2

θ1 − θ0
.

(c) continue sampling otherwise,

where a = log[(1− δ)/γ] and b = log[δ/(1− γ)].

The following result depicts the optimality of SPRT among all fixed-sample-size or

sequential tests:

Theorem 6.3.1. (see, e.g., Theorem 3.3.1 of Mukhopadhyay and Silva (2019)) Consider

the class of all fixed-sample-size or sequential tests for which the type I and type II error

probabilities are less than γ and δ respectively, and for which E(T ) (T denotes the stopping

time) is finite both under the null and under the alternative. The classical SPRT with error

probabilities γ and δ minimizes E(T ) both under the null and under the alternative in this

class when γ + δ < 1.

We denote the SPRT for the above hypothesis testing problem as SPRT(γ,δ)(θ0, θ1, σ
2).

Theorem 6.3.2. (see, e.g., Rao (1973) or Mukhopadhyay and Silva (2019)) The ap-

proximate expressions for the ASN of SPRT(γ,δ)(θ0, θ1, σ
2) under H0 and H1 are given
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by

EH0(TSPRT ) ∼
(1− γ) log

(
δ

1−γ

)
+ γ log

(
1−δ
γ

)
−(θ1−θ0)2

2σ2

,

EH1(TSPRT ) ∼
δ log

(
δ

1−γ

)
+ (1− δ) log

(
1−δ
γ

)
(θ1−θ0)2

2σ2

,

respectively. Here x ∼ y implies x/y → 1 as γ, δ → 0.

Let, L = (θ1−θ0)2

2σ2 . Then,

0 <
EH0(TSPRT )

− log(γ)
=

1

L
·
[
(1− γ)

log(δ)

log(γ)
− γ
]
≤ 1

L
· (1− γ)

=⇒ 0 ≤ lim
γ→0

EH0(TSPRT )

− log(γ)
≤ 1

L
.

Without loss of generality, we may assume γ ≤ δ. This gives,

1

L
· (1− 2δ) ≤ EH1(TSPRT )

− log(γ)
≤ 1

L
· (1− δ).

=⇒ lim
δ→0

EH1(TSPRT )

− log(γ)
=

1

L
.

Therefore, we obtain

lim
γ,δ→0

max{EH0(TSPRT ),EH1(TSPRT )}
− log(γ)

=
1

L

=⇒ lim
γ,δ→0

E(TSPRT )

− log(γ)
=

1

L

where E(TSPRT ) = max{EH0(TSPRT ),EH1(TSPRT )} is the ASN of SPRTγ,δ(θ0, θ1, σ
2).

Thus, we establish the following:

Theorem 6.3.3. The approximate expression for the ASN of SPRT(γ,δ)(θ0, θ1, σ
2) when

γ, δ → 0 is

E(TSPRT ) ∼
2σ2

(θ1 − θ0)2
· | log(γ ∧ δ)|.

Remark 10. Theorem 6.3.1 concerns both-sided SPRTs. However in many scenarios,

one faces the hypothesis testing problem

HTP 4. H0 : Ui ∼ N(θ0, σ
2) vs H1 : Ui ∼ N(θ1, σ

2), θ0 < θ1,

where sampling should be terminated as soon as possible if there is enough evidence against

H0 and in favor of H1. A feasible solution to this sequential hypothesis testing problem is
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the one-sided SPRT:

TSPRT = inf{n ≥ 1 : λ(n) ≥ A}, inf{ϕ} = ∞,

where A > 1 is a fixed threshold and {λ(n)} is the corresponding likelihood-ratio process.

In these problems, δ = 0. Along the same lines of the preceding proof, we obtain:

Theorem 6.3.4. The approximate expression for the ASN of SPRT(γ,0)(θ0, θ1, σ
2) when

γ → 0 is

E(TSPRT ) ∼
2σ2

(θ1 − θ0)2
· | log(γ)|.

6.4 Main Results for FWER Controlling Tests

6.4.1 A distributionally equivalent representation of the vector

observations

Let Xn = (X1n, . . . , Xkn) denote the K-dimensional vector storing all the observations

collected at time n. Suppose µ = (µ1, . . . , µK)
′ where

µi =

{
0, if i ∈ A
µ, if i /∈ A

.

Then, for each n ≥ 1, we have

Xn ∼MVNK(µ,MK(ρ)).

This implies,

Xn
d
= Zn + Vn · 1K

where Zn = (Z1n, . . . , Zkn) ∼ MVNK(µ, (1− ρ) · IK) and Vn ∼ N(0, ρ) are independent.

Here 1K denotes the K dimensional vector of all ones. Thus, for each i ∈ [K] and for

each j ≥ 1,

Xij
d
= Zij + Vj.

This gives,

n∑
j=1

Xij
d
=

n∑
j=1

Zij +
n∑

j=1

Vj

=⇒ Si,n
d
= Ri,n +

n∑
j=1

Vj (say)
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=⇒ Si,n − Si′,n
d
= Ri,n −Ri′,n.

We write Si,n and Ri,n as Si and Ri respectively for simpler notation. We also note that

S(m) − S(m+1)
d
= R(m) −R(m+1)

where S(1) ≥ · · · ≥ S(K) and R(1) ≥ · · · ≥ R(K). This implies, although we can not

directly observe Zij’s or Ri’s, we can observe the quantities Ri − Ri′ and R(m) − R(m+1).

The distributions of Vj or
∑

j Vj do not depend on µ. Therefore, inference on µ built on

Ri would disseminate the same amount of information as the inference built on Si would

have.

6.4.2 Log-likelihood ratio statistics

Consider the i’th hypothesis test for the Zij’s:

HTP 5. H⋆
0i : Zij ∼ N(0, 1−ρ) for each j ∈ N vs H⋆

1i : Zij ∼ N(µ, 1−ρ) for each j ∈ N

where µ > 0. The log-likelihood ratio statistic for this test is

λ⋆i (n) =
µ

1− ρ

[
Ri −

nµ

2

]
.

This gives, for i ̸= i′ ∈ [K], λ⋆i (n)− λ⋆i′(n) =
µ

1−ρ

[
Ri −Ri′

]
. Thus,

λ⋆(m)(n)− λ⋆(m+1)(n) =
µ

1− ρ

[
R(m) −R(m+1)

]
.

However, our original hypotheses tests are based on Xij’s and not on Zij’s. Also, Zij’s

are unobserved variables. Yet, from the previous subsection, we obtain

µ

1− ρ

[
S(m) − S(m+1)

]
d
= λ⋆(m)(n)− λ⋆(m+1)(n).

6.4.3 Proposed procedure for known number of signals

Mimicking the gap rule proposed by Song and Fellouris (2017), we propose the following

stopping time:

T ⋆
Gap(m, c) := inf

{
n ≥ 1 : S(m) − S(m+1) ≥

1− ρ

µ
· c
}
.
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where c is defined as in (6.1). Let G = (1 − ρ) · c/µ be the r.h.s of the above inequality.

Evidently, an incorrect selection happens at the stopping time (say, n) if there is some

j ∈ A and some i ∈ Ac such that Rj − Ri ≥ G. This is because in this case the gap rule

declares i ∈ A and j ∈ Ac.

The above discussion elucidates that the probability of incorrect selection (which is

same as FWERI and FWERII in this setup with known m) of our gap rule is given by

PICS(T ⋆
Gap, d

⋆
Gap) = PA

[ ⋃
j∈A,i∈Ac

{Rj −Ri ≥ G}

]
(|Ac| = m). (6.2)

We write PICS(T ⋆
Gap, d

⋆
Gap) as PICS(T

⋆
Gap) for simpler notation.

Consequently we obtain that the proposed gap rule makes an error if it declares Rj −
Ri ∼ N(nµ, 2(1 − ρ)n) when actually Rj − Ri ∼ N(−nµ, 2(1 − ρ)n). This observation

motivates us to study the following classical one-vs-one hypothesis testing problem in a

sequential framework:

HTP 6. H0 : T ∼ N(−µ, 2(1− ρ)) vs H1 : T ∼ N(µ, 2(1− ρ)), µ > 0.

Here we wish to terminate sampling as soon as possible if there is sufficient evidence

against H0 and in favor of H1. The desired level of type I error is given by α∧β
m(K−m)

. The

optimal test for this problem is SPRT α∧β
m(K−m)

,0(−µ, µ, 2(1 − ρ)) where α and β are the

target precision levels of type I and II error respectively. Theorem 6.3.4 implies

E
[
TSPRT α∧β

m(K−m)
,0
(−µ,µ,2(1−ρ))

]
∼ 1− ρ

µ2
· | log(α ∧ β)|. (6.3)

In other words,

log
(
PICS(SPRT )

)
= − µ2

1− ρ
· E(TSPRT ) + o(E(TSPRT )), (6.4)

We observe that SPRT α∧β
m(K−m)

,0(−µ, µ, 2(1 − ρ) also uses G as the critical point. We

have the following inequalities from (6.2)

PICS(SPRT( α∧β
m(K−m)

,0)) ≤ PICS(T ⋆
Gap) ≤ m(K −m)PICS(SPRT( α∧β

m(K−m)
,0)). (6.5)

Since m(K −m) <∞, this gives

log
(
PICS(T ⋆

Gap)
)
= − µ2

1− ρ
· E(TSPRT ) + o(E(TSPRT )). (6.6)

This establishes the following theorem:
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Theorem 6.4.1. Suppose A ∈ Pm. We have as α, β → 0

EA
[
T ⋆
Gap

]
∼ 1− ρ

µ2
· | log(α ∧ β)| ∼ inf

(T,d)∈∆FWER
α,β (Pm)

EA[T ].

6.4.4 Proposed procedure when upper and lower bounds on the

number of signals are available

Consider now the setup it is known beforehand that ℓ < |Ac| < u for some 0 < l ≤ u < K.

This corresponds to considering the class Pℓ,u. We propose the gap rule

T ⋆⋆
Gap(l, u, e) := inf

{
n ≥ 1 : max

ℓ<i<u

(
S(i) − S(i+1)

)
≥ e

}
where e is suitably defined. Let p be the index where the above maximum occurs at time

T ⋆⋆
Gap(l, u, e). The set of rejected nulls is given by

d⋆⋆Gap :=
{
i1(T

⋆⋆
Gap), . . . , ip(T

⋆⋆
Gap)

}
.

Now,

FWERI(T
⋆⋆
Gap, d

⋆⋆
Gap) =PA

(⋃
i∈A

{d⋆⋆Gap,i = 1}

)
≤
∑
i∈A

PA
(
d⋆⋆Gap,i = 1

)
≤(K − l)PA

(
d⋆⋆Gap,i = 1

)
(for any i ∈ A)

≤2(K − l)PA

( ⋃
j∈A,j ̸=i

{Si − Sj ≥ e}

)
≤2(K − l)(K − l − 1)PA(Si − Sj ≥ e) (for j ∈ A, j ̸= i)

=2(K − l)(K − l − 1)Φ

(
−e√

2(1− ρ)n

)

=2(K − l)(K − l − 1)PA

(
Si ≥

e√
2

)
.

Hence, the chosen e should satisfy

2(K − l)(K − l − 1)PA

(
Si ≥

e√
2

)
≤ α

=⇒ PA

(
Si ≥

e√
2

)
≤ α

2(K − l)(K − l − 1)
.
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Thus, we can choose e to be

e√
2
=

1− ρ

µ
· | log

(
α

2(K − l)(K − l − 1)

)
|+ nµ/2.

This is because this is the cutoff used by SPRT( α
2(K−l)(K−l−1)

,0)(0, µ, 1− ρ).

One can also show the following exactly as in the same way as above:

FWERII(T
⋆⋆
Gap, d

⋆⋆
Gap) ≤ 2u(u− 1)PA(Si − Sj ≥ e) (for i, j /∈ A, j ̸= i)

= 2u(u− 1)PA

(
Si ≥

e√
2

)
.

Hence, the chosen e should satisfy

PA

(
Si ≥

e√
2

)
≤ β

2u(u− 1)
.

This leads to the choice

e√
2
=

1− ρ

µ
· | log

(
β

2u(u− 1)

)
|+ nµ/2.

Therefore, we choose the following e:

e =
1− ρ

µ
·max

{
| log

(
α

2(K − l)(K − l − 1)

)
|, | log

(
β

2u(u− 1)

)
|
}
+ nµ/2.

The previous derivations result in the following:

FWERI(T
⋆⋆
Gap, d

⋆⋆
Gap) ≤ 2(K − l)(K − l − 1)PICS

[
SPRT( α

2(K−l)(K−l−1)
,0)(0, µ, (1− ρ)

]
,

FWERII(T
⋆⋆
Gap, d

⋆⋆
Gap) ≤ 2u(u− 1)PICS

[
SPRT( β

2u(u−1)
,0)(0, µ, (1− ρ)

]
.

However, those derivations also give the following inequalities:

FWERI(T
⋆⋆
Gap, d

⋆⋆
Gap) ≥ PICS

[
SPRT( α

2(K−l)(K−l−1)
,0)(0, µ, (1− ρ)

]
,

FWERII(T
⋆⋆
Gap, d

⋆⋆
Gap) ≥ PICS

[
SPRT( β

2u(u−1)
,0)(0, µ, (1− ρ)

]
.

Combining all these four inequalities, we obtain,

EA(T
⋆⋆
Gap) = max

{
E
(
TSPRT

( α
2(K−l)(K−l−1)

,0)
(0,µ,(1−ρ)

)
,E
(
TSPRT

( β
2u(u−1)

,0)
(0,µ,(1−ρ)

)}
.

This gives, as α, β → 0, and when logα ∼ log β,
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EA
[
T ⋆⋆
Gap

]
∼ 2(1− ρ)

µ2
· | log(α ∧ β)|.

Theorem 6.4.2. Suppose A ∈ Pℓ,u. We have as α, β → 0 and when logα ∼ log β,

EA
[
T ⋆⋆
Gap

]
∼ 2(1− ρ)

µ2
· | log(α ∧ β)| ∼ inf

(T,d)∈∆FWER
α,β (Pℓ,u)

EA[T ].

6.5 General Error Rate controlling Procedures

As mentioned earlier, He and Bartroff (2021) studied asymptotic optimality of general

multiple testing error metrics under the independent streams framework. In this section,

we focus on deriving similar results under dependence. Suppose

MTE = (MTE1,MTE2)

denotes a generic multiple testing error metric. In other words, MTE is a pair of functions

from the set of MTPs onto [0, 1]. The type I and type II familywise error probabilities

are given by

FWER1,A = PA(V ≥ 1), FWER2,A = PA(W ≥ 1)

where V and W respectively denote the number of type I errors and type II errors

respectively. For a generic metric MTE, let

∆MTE
α,β (P) = {(T, d) : MTE1,A(T, d) ≤ α and MTE2,A(T, d) ≤ β for all Ac ∈ P} .

We now mention a result on asymptotic optimality of general error metric controlling

procedures.

Theorem 6.5.1. Consider the equicorrelated streams setup with common correlation ρ >

0. Fix 1 ≤ m ≤ K − 1 and let
(
T ⋆
Gap(c), d

⋆
Gap(c)

)
denote our gap rule with number of

signals m and threshold c > 0. Suppose MTE is a multiple testing error metric satisfying:

(i) there is a constant C1 such that

MTEi,A
(
T ⋆
Gap(c), d

⋆
Gap(c)

)
≤ C1 · FWERi,A

(
T ⋆
Gap(c), d

⋆
Gap(c)

)
(6.7)

for i = 1 and 2 , for all A ∈ Pm, and for all c > 0, and

(ii) there is a constant C2 such that

MTEi,A(T, d) ≥ C2 · FWERi,A(T, d) (6.8)
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for i = 1 and 2 , for all A ∈ Pm, and for all procedures (T, d).

Given α, β ∈ (0, 1), let
(
T ′
Gap, d

′
Gap

)
be our proposed gap rule with number of signals

m and threshold

c = |log ((α/C1) ∧ (β/C1))|+ log(m(K −m)).

Then we have the following.

(1) The procedure
(
T ′
Gap, d

′
Gap

)
is admissible for MTE control. That is,

(
T ′
Gap, d

′
Gap

)
∈ ∆MTE

α,β (Pm). (6.9)

(2) The MTP
(
T ′
Gap, d

′
Gap

)
is asymptotically optimal for MTE control in class Pm. In

other words, for all A ∈ Pm, as α, β → 0,

EA
(
T ′
Gap

)
∼ 1− ρ

µ2
· | log(α ∧ β)| ∼ inf

(T,d)∈∆MTE
α,β (Pm)

EA(T ). (6.10)

Proof. For the first part, we fix arbitrary A ∈ Pm. We have

FWER1,A
(
T ′
Gap, d

′
Gap

)
≤ α/C1 and FWER2,A

(
T ′
Gap, d

′
Gap

)
≤ β/C1.

Applying (6.7) yields

MTE1,A
(
T ′
Gap, d

′
Gap

)
≤ α and MTE2,A

(
T ′
Gap, d

′
Gap

)
≤ β.

Hence (6.9) is established. For the second part, again we fix arbitrary A ∈ Pm. We have,

as α, β → 0,

EA
(
T ′
Gap

)
∼ 1− ρ

µ2
· | log(α ∧ β)|. (6.11)

It remains to show that the r.h.s in the above equation is also a lower bound for any MTP

in ∆MTE
α,β (Pm). (6.8) gives

∆MTE
α,β (Pm) ⊆ ∆FWER

α/C2,β/C2
(Pm).

This implies

inf
(T,d)∈∆MTE

α,β (Pm)
EA(T ) ≥ inf

(T,d)∈∆FWER
α/C2,β/C2

(Pm)
EA(T ).

The latter is of the order 1−ρ
µ2 · | log(α ∧ β)|. This, combined with (6.11) gives the desired

result. □

Remark 11. (FDR,FNR) and (pFDR, pFNR) satisfy the conditions mentioned in
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Theorem 6.5.1. This is because of the following inequalities (He and Bartroff, 2021):

1

K
· FWER1 ≤ FDR ≤ FWER1,

1

K
· FWER2 ≤ FNR ≤ FWER2,

1

K
· FWER1 ≤ pFDR,

1

K
· FWER2 ≤ pFNR,

pFDR(T ⋆
Gap) ≤ FWER1(T

⋆
Gap), pFNR(T ⋆

Gap) ≤ FWER2(T
⋆
Gap).

We also have the following similar asymptotic optimality result for general error

metrics in the case when lower and upper bounds for the number of signals is available:

Theorem 6.5.2. Consider the equicorrelated streams setup with common correlation ρ >

0. Fix integers 0 < ℓ < u < K and let T ⋆⋆
Gap(e) denote the gap-intersection rule with strict

bounds ℓ, u on the number of signals and threshold e. Let MTE be a multiple testing error

metric satisfying:

(i) there exists C1 ∈ R for which

MTEi,A
(
T ⋆⋆
Gap(e), d

⋆⋆
Gap(e)

)
≤ C1 · FWERi,A

(
T ⋆
Gap(e), d

⋆⋆
Gap(e)

)
(6.12)

for i = 1 and 2 , for all A ∈ Pℓ,u, and for all e > 0, and

(ii) there exists C2 ∈ R for which

MTEi,A(T, d) ≥ C2 · FWERi,A(T, d) (6.13)

for i = 1 and 2 , for all A ∈ Pℓ,u, and for all MTPs (T, d).

Given α, β ∈ (0, 1), let
(
T ′′
Gap, d

′′
Gap

)
be our proposed gap rule with bounds ℓ, u on the

number of signals and threshold

e =
1− ρ

µ
·max

{
| log

(
α/C1

2(K − ℓ)(K − ℓ− 1)

)
|, | log

(
β/C1

2u(u− 1)

)
|
}
+ nµ/2.

Then we have the following.

(1) The procedure
(
T ′′
Gap, d

′′
Gap

)
is admissible for MTE control. That is,

(
T ′′
Gap, d

′′
Gap

)
∈ ∆MTE

α,β (Pℓ,u). (6.14)

(2) The procedure
(
T ′′
Gap, d

′′
Gap

)
is asymptotically optimal for MTE control in class Pℓ,u.
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In other words, for all A ∈ Pℓ,u,

EA
(
T ′′
Gap

)
∼ 2(1− ρ)

µ2
· | log(α ∧ β)| ∼ inf

(T,d)∈∆MTE
α,β (Pℓ,u)

EA(T ) (6.15)

as α, β → 0.

The proof is identical to the preceding and hence omitted.

6.6 Concluding Remarks

Our results (e.g., Theorem 6.4.1 and Theorem 6.4.2) elucidate that the asymptotically

optimal average sample numbers are decreasing in the common correlation ρ. Large

values of ρ indicate that the streams are more positively correlated to each other and

hence one might expect that it should require less number of samples on average to detect

the signals. Our results illustrate this remarkable blessing of dependence. This result is

in contrast to the fixed sample size paradigm, as we have seen in the earlier chapters that

several popular and widely used procedures fail to hold the FWER at a positive level

asymptotically under positively correlated Gaussian frameworks. Thus, correlation plays

a dual role in the classical fixed-sample size and the sequential paradigms.

Finner et al. (2007) remark that false discoveries are challenging to tackle in mod-

els with complex dependence structures, e.g., arbitrarily correlated Gaussian models.

An interesting problem is to explore if there are connections between the SPRT and

the optimal sequential test rules under general dependencies. Throughout this chapter,

we have considered multivariate Gaussian setup, frequent in various areas of stochastic

modeling (Hutchinson and Lai, 1990; Olkin and Viana, 1995; Monhor, 2011). However,

one interesting extension would be to study the signal detection problem under general

distributions and to see whether similar connections with SPRT exist in those cases too.
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