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Chapter 1

Introduction

This thesis consists of three essays on bilateral trading and partnership with loss averse

agents. All the three essays consider the same model where two loss averse agents (Tversky

and Kahneman (1991), Köszegi and Rabin (2006)) hold some shares of an asset and now

wants to dissolve the partnership.

The prospect theory (Kahneman and Tversky (1979)) laid the foundational stone for

the behavioral economics in which the shortcomings of the expected utility theory were

addressed. According to the prospect theory, gains and losses are evaluated differently by

the economic agents. Thaler (1980) described the experimental findings through endowment

effect in which the agents who owns the object (which is an endowment) values it more as

compared to those who do not have the object. Meanwhile, new behavioral theories have also

started to come up. To name a few are Gilboa and Schmeidler (1989), Klibanoff et al. (2005)

and Borah and Kops (2016). We consider a particular type of preferences known as loss

averse preferences in which the outcomes are evaluated in an absolute way as well as relative

to a reference point and the sensitivity associated with the losses (relative to reference point)

is higher as compared to the gains.

The first chapter shows the impossibility result for loss averse agents i.e. there does

not exist a feasible, incentive compatible and individually rational mechanism which can

implement an efficient outcome. The second chapter talks about the dissolution mechanism

intermediated by a broker which is optimum in a sense different than ex-post efficiency.

Set of all optimal mechanisms are characterised for the bilateral trade as well as partner-

ship model. The third chapter shows non-existence of a dissolution mechanism which is

incentive-compatible, interim individually rational, budget-balanced and efficient for equal

share partnership when the degree of loss aversion exceeds a cut off, which is in contrast to

Cramton et al. (1987) result.

A brief description of each chapter is provided below.
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1.1 Dissolving a Bilateral Partnership

In this chapter, we are looking for a dominant strategy incentive compatible, individually

rational, feasible and efficient mechanism to dissolve a partnership between two loss averse

agents. We consider a model where partnership between two loss averse agents, each hold-

ing some share (endowment) of the asset, has to be dissolved. The framework is similar

to Cramton et al. (1987) except that we only look at the two agent model (bilateral part-

nership), consider dominant strategy incentive compatible mechanisms instead of Bayesian

incentive compatible mechanisms and our agents have loss averse preferences as modeled

in Köszegi and Rabin (2006, 2007) and Tversky and Kahneman (1991). Apart from the

standard utility from the ownership of the good and money, called as “material utility”,

“gain-loss utility” with respect to ownership of the good is introduced. The reference point,

relative to which agents evaluate an outcome, is the initial share of the asset. Cramton et al.

(1987) is a generalised version of the bilateral trading problem considered by Myerson and

Satterthwaite (1983) where one agent (seller) has the full ownership of the asset. Myer-

son and Satterthwaite (1983) showed that in the bilateral trading problem, there exists no

mechanism which is Bayesian incentive compatible, interim individually rational, efficient

and budget balanced. Cramton et al. (1987), on the other hand, finds that efficient trade

is possible with a Bayesian incentive compatible, interim individually rational and a budget

balanced mechanism if partners have equal shares. The model specified by Cramton et al.

(1987) can be used to study the problems of economic resources. For example, Chaturvedi

(2020) modeled the problem of ownership of land being shared by various landholders and a

buyer who wants the entire land as a multilateral trading problem. The question that we ask

is if there exists an efficient, dominant strategy incentive compatible, and budget-balanced

mechanism when agents are loss averse. Green and Laffont (1979) showed that there is no

efficient, dominant strategy incentive compatible, and budget-balanced mechanism, if prefer-

ences are quasi-linear. Lahkar and Mukherjee (2020) considers a model of public goods with

large population and constructs a mechanism which is strictly dominant strategy incentive

compatible, satisfies individual rationality and strong budget balance condition. We are in-

terested to see whether the impossibility proved by Green and Laffont (1979) continues to

hold in our model with loss averse preferences.

Recent papers on mechanism design with loss averse agents have considered the case where

reference points are formed endogenously using rational expectations as mentioned in Köszegi

and Rabin (2006, 2007). Lange and Ratan (2010), Eisenhuth and Grunewald (2018), Eisen-

huth (2018) focus on auction setting with the loss averse traders in two-dimensional model

where gain-loss utility is separable across good dimension and money dimension (known as

narrowly bracketing) and one-dimensional model where gain-loss utility is defined over en-
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tire risk neutral payoff (known as widely bracketing). Benkert (2023) builds on the model of

Eisenhuth (2018) in the bilateral trade setting. Our paper is the first to study the partner-

ship model with loss averse agents with exogenous reference point and study the impact of

endowment effect on the trade.

We first characterise the incentive compatible mechanisms for loss averse agents. The

characterization of incentive compatible mechanisms is a generalization of Cramton et al.

(1987) and Myerson and Satterthwaite (1983) without loss aversion. Because of the gain-

loss utility terms, the application of envelope theorem gives a piecewise utility function which

depends on whether the agent is losing his share or gaining additional share.

Next, we look into the problem of efficiency. Benkert (2023) also studies the efficiency

problem but it defines an efficient allocation rule as the one which maximizes “material

valuations” of the traders. In our paper, efficient allocation is the one which maximizes the

valuations of the partners (including the gain-loss utilities in ownership). In the absence of

loss aversion, the allocation in which the agent with highest valuation gets the full ownership

of the object is efficient. But with loss averse preferences, the object may not be allocated

to an agent even if he has the highest valuation due to higher loss sensitivity associated with

an allocation less than the endowment. As a result, loss averse preferences inhibit the trade

as the set of valuations where trade takes place is reduced.

We find that, with loss averse agents, the bilateral partnership cannot be dissolved by a

dominant strategy incentive compatible, individually rational, efficient and feasible mecha-

nism, irrespective of the initial shares or endowments. The impossibility could be due to the

way efficiency is defined in our model. The set of values at which trade should take place

shrinks because of the higher sensitivity of loss associated with losing the share after the

trade. The other reason is different payment functions of the agents depending on whether

the final allocation is more or less than initial share, leading to violation of budget balance

condition. When a partnership is dissolved, one agent receives the full ownership of the com-

pany and pay the other agent who has lost his share. The partners evaluate the gain (loss)

terms of share and with loss aversion, losses loom larger than gains, inhibiting the trade.

The partner who has lost his share suffers more loss in utility than the gain experienced by

the partner who gets the full ownership. To compensate the loss, the agent losing his share

has to be paid much more than the amount paid by the the agent gaining the ownership if

he is to participate in the trade. But then differences in the transfer (payments) received

(paid) by the agents violate the condition of transfer rule to be budget balanced.

1.2 Optimal Dissolution Mechanisms

Myerson and Satterthwaite (1983) showed that, when entire ownership of the object belongs
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to one person, trade between two agents (who have incomplete information about each other

types’) cannot be efficient. Since then, a long line of literature explores the limit of this

impossibility. Because one agent owns the entire object, the worst off type of both the

agents is known ex-ante.

In this paper, we try to design a mechanism in order to dissolve partnership between two

agents who have some share of the object and have per unit valuation for the object which is

private information. The agents are loss averse with respect to the initial share (endowment)

(Köszegi and Rabin (2006, 2007); Tversky and Kahneman (1991)). The agent’s role as a seller

or a buyer depends on the the realized valuation of the object which cannot be determined

prior to dissolution.

This paper focuses on the mechanisms that are optimal, where optimality is defined as

maximising a weighted average of expected gains from dissolution and expected revenue

generated from dissolution. We give a characterisation result for the ex-ante efficient mech-

anisms and the revenue-maximizing mechanisms. In this case, the efficient mechanism is

the one that maximizes the material utility as well as the gain-loss utility associated with

endowment. In the standard bilateral trade model discussed by Myerson and Satterthwaite

(1983), the minimum utility in an incentive-compatible and individually rational mechanism

is always achieved by the lowest valuation for the buyer and the highest valuation for the

seller. So, the agent’s virtual valuation functions are known ex-ante and, therefore, are in-

dependent of the mechanism. Individual rationality constraints are reduced to the worst-off

valuation, which is the highest and lowest valuation, depending on the role of the agent, and

is binding at the optimum. Assuming that the distribution of valuations satisfy regularity,

i.e., hazard rates are increasing, the monotonicity of the allocations is satisfied, and opti-

mal allocations are given by point-wise solutions. We follow this methodology for bilateral

trade with loss-averse agents. The only difference is that optimal allocations compare the

effective virtual valuation (i.e., inclusive of additional gain-loss effects with respect to the

endowment). However, when both agents have some ownership in the object, it is no longer

clear which agent is playing the role of seller and which agent is playing the role of buyer.

We adapt the multilateral trade setting of Lu and Robert (2001) and Loertscher and Wasser

(2019) in the partnership setting for loss-averse agents. When both agents have some shares

in the object, it is no longer clear who will sell his shares (acting as a seller) and who will

get the additional shares, making him the owner of the object (acting as a buyer), before the

revelation of valuations. So, the agent with a high valuation expects to get full ownership of

the object, and the low type expects to lose his shares. The minimum utility valuations for

the agents whose role is ex-ante unidentified are in the middle, where on average he neither

wants to be a buyer nor a seller and usually depends on the dissolution mechanism. Also,

despite the regularity of the distribution of valuation, the virtual valuation function does
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not satisfy monotonicity. As a result, optimal dissolution mechanisms are characterised by

ironed virtual valuations in which the object is transferred to the highest effective ironed

virtual valuation (which takes into account the loss aversion parameters).

Because of ironing, there is bunching phenomena due to which ties occur with positive

probability. So, the optimal allocation rule consists of a randomizing rule to break the ties in

Loertscher and Wasser (2019) and Lu and Robert (2001). Ties cannot be broken arbitrarily

because bunching is not because of the irregularity of the distributions. The tie breaking

rule has to be such that the agents who have the valuations in the middle expects to be

neither a buyer nor a seller. However in this paper, whenever the virtual valuations are

same, according to the optimal allocation rule, the agents will keep their shares. Despite the

positive probability of ties within the common bunching range, there is no requirement of

tie breaking rule because whenever virtual valuations tie is in the common bunching range,

optimality requires the agents to keep their initial shares i.e. no trade in the bunching range.

1.3 Efficient Dissolution Mechanisms

The classical work of Myerson and Satterthwaite (1983) laid the foundation for the bargain-

ing models and showed that under extreme ownership shares where one agent has all the

shares of the object (seller) and the other agent has none (buyer), efficient outcome can be

implemented by an incentive compatible and individually rational mechanism if and only if

an outside party provides a subsidy. Cramton et al. (1987) showed that efficient outcome is

possible if the ownership structure is symmetric. Since then, literature has explored the pos-

sibility (impossibility) of reallocation of object to achieve ex-post efficiency by analyzing the

conditions on the initial ownership shares (Makowski and Mezzetti (1993), McAfee (1991)).

In chapters 1 and 2, we have explored the literature on loss-averse preferences, and the

evidence shows that the possibility of trade or dissolution is reduced due to the higher loss

sensitivity associated with losing the share compared to the gains. We try to answer the

following question: We try to answer the following question: Does the Cramton et al. (1987)

possibility result hold with loss-averse agents? i.e., with an equal-share partnership, is it

still possible to dissolve the partnership with an efficient, Bayesian incentive compatible

and interim individually rational mechanism, or does it depend on the values of the loss

aversion parameters? We find that with loss-averse agents, it is not always possible to

dissolve an equal-share partnership efficiently. There exists a cut-off point for the loss aversion

parameters such that the partnership cannot be dissolved by a Bayesian incentive compatible,

individually rational, and efficient mechanism, even when the agents have equal shares, for

any distribution. However, we cannot say that for parameter values less than the cutoff

point, an equal share partnership is dissolvable by a Bayesian incentive compatible, interim
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individually rational, budget balanced and efficient mechanism. The particular values of loss

aversion parameters such that the equal share partnership can be dissolved efficiently depend

on the specific distribution. Therefore, without knowledge of the loss aversion parameters

and distribution functions, it is not possible to decide whether efficient trade can take place.

This is in contrast to Cramton et al. (1987) and our result generalises the result of Cramton

et al. (1987) (when there is no loss aversion). The reason the possibility result breaks down

is the following: As sensitivity to losses increases, the set of values at which trade could be

implemented is reduced. This leads to a shrinking of the set of values at which dissolution

takes place. A higher sensitivity to losses means it is less efficient to dissolve the partnership.

Using the example of a unit interval uniform distribution, we provide a range for the loss

aversion parameters at which the dissolution of a partnership is efficient.

We also consider a one owner partnership model (bilateral trade) and show that the

impossibility result of Myerson and Satterthwaite (1983) still persists. The result is quite

intuitive since the agents are less willing to participate in the trade due to the loss aversion

with respect to losing the initial share. However, we find that the minimal subsidy required

to implement the efficient outcome decreases as the loss sensitivity of agents increases. The

possible reason for this is could be the following: As sensitivity to the losses increase, the set

of values at which trade could be conducted is reduced. With less possibility of trade, the

requirement for minimal subsidy also reduces. There could occur a possibility that the loss

aversion parameters are so high that the agents do not participate in the trade and therefore,

the minimal subsidy would be 0.

There are few papers in the literature that talk about the departure from quasi-linear

preferences in the bilateral trade setting. Chatterjee and Samuelson (1983) showed that

as agents become infinitely risk-averse, double auctions are efficient asymptotically. Garratt

and Pycia (2023) relaxed the assumption that agents have quasilinear preferences in Myerson

and Satterthwaite (1983) model. They showed that if the agents are risk-averse or the utility

of the agents from the object is dependent on wealth, then there is a possibility that the

trade among the agents is ex-post efficient. Under risk aversion or wealth effects, they give

conditions to realize all gains from trade. Their results show that the impossibility of bilateral

trade is due to the assumption of quasilinear preferences. Under quasilinear preferences,

the reason for the impossibility is that the gains from trade are not sufficient to cover the

information rents (due to private information) of the agents. On the other hand, additional

efficiency gains are generated from risk aversion. Wolitzky (2016) examines efficiency within

a bilateral trade model where both the buyer and seller know the expected valuation of each

other. He demonstrates that efficient trade is feasible under certain parameter conditions

and gives an exact characterization of that.

Benkert (2023) introduced loss aversion in the bilateral trade setting of Myerson and
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Satterthwaite (1983). He applies expectation-based loss averse preferences (Köszegi and

Rabin (2006, 2007)) by adapting the narrow bracketing model of Eisenhuth (2018). Eisenhuth

(2018) considers the problem of designing optimal auction for loss averse agents and he used

two forms of utility functions: (a), gains and losses are evaluated in the good dimension and

in the money dimension separately known as narrow bracketing and (b), gains and losses

are evaluated over the entire risk neutral utility, known as wide bracketing. Benkert (2023)

discusses that loss aversion decreases the buyer’s information rent due to which there is a

possibility that the gains from trade (which are also decreased due to reduction in agent’s

expected utility) can cover the information rent, depending on the parameters of loss aversion.

Note that Benkert (2023) talks about implementing the materially efficient outcome. Our

paper is different because of two reasons: 1) We consider a fixed reference point which is the

initial share/endowment. 2) Benkert (2023) considers loss aversion with respect to transfers

as well. Benkert (2023) also showed that a lower subsidy would be required to implement

the efficient outcome.

Literature on the partnership dissolution focuses on the ownership structure that will

implement efficient outcome. Fieseler et al. (2003) with positive interdependent valuation,

showed that it may not be possible to achieve ex-post efficiency even with equal ownership.

It is impossible to decide whether ex-post efficient reallocation can take place or not without

the knowledge of distribution of private values. Schweizer (2006) showed that the possibility

result holds for all prior distributions if the ex-post efficient surplus is sufficient to cover

ex-post information rents and the value of outside option at the critical valuation for all

type profiles. The impossibility result is true if the ex-post efficient surplus is lower than

the ex-post information rents and the value of outside option at the critical valuation for all

type profiles, irrespective of prior distribution. For the rest of the cases, the possibility or

impossibility result depends on the prior distribution. In a partnership setting where agent’s

type is private information and types are drawn from different distributions, Figueroa and

Skreta (2012) try to find the ownership structure to dissolve the partnership efficiently. They

showed that if the agents’ critical types (types at which the gains from trade are lowest)

are equal, partnership can be dissolved efficiently. When types are drawn from symmetric

distribution, equal property rights guarantee equal critical valuations for agents. In the

case of asymmetric distributions, equal critical types hold for extremely unequal property

rights. They also show that the agents with highest valuation must have a larger share of

the object in the partnership. We could not find any paper in the literature that talks about

departure from quasi-linear preferences in the partnership dissolution and hence ours is the

first paper to study dissolution of partnership for the efficient outcome when preferences are

non-standard.
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Chapter 2

Dissolving a Bilateral Partnership

2.1 Introduction

A partnership is defined as ownership of an indivisible asset by at least two individuals. There

are scenarios where the partners do not wish to share the ownership of the asset together

any longer due to various reasons like disputes, completion of the partnership contract or

bankruptcy. As a result, the partnership is dissolved i.e., reallocation of the asset takes

place through buying and selling of the shares of the asset within the partners. There are

many economic problems that fit into this framework such as termination of joint-ventures,

inheritance, divorce, privatizations. In these cases, the partners/agents start with some

share of the asset which can be treated as an endowment and in the process of dissolution of

partnership, the agents either lose their endowment or gain shares over and above endowment.

In standard preferences theory, individual’s current endowment does not affect the pref-

erences over different commodity bundles. But evidence suggests that preferences depend on

endowment, which act as a reference point. (Knetsch (1992); Tversky and Kahneman (1991))

observe that disutility from losing commodities is more than the utility from gaining them.

This started the study of reference dependent preferences. The fundamental intuition behind

reference dependent preferences is that outcomes are not evaluated on an absolute scale, but

rather evaluated relative to some point of reference and losses relative to the reference point

have more weightage than commensurate gains. The most well defined general theory of this

kind is explained by reference-dependence model of Tversky and Kahneman (1991), which

builds on Prospect Theory of Kahneman and Tversky (1979). The “loss aversion” (people

dislike losses more than they like gains compared to a reference point) assertion was shown

to provide an elegant explanation for a wide variety of behavioral phenomena.

We consider a model where partnership between two loss averse agents, each holding some

share (endowment) of the asset, has to be dissolved. The framework is similar to Cramton
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et al. (1987) except that we only look at the two agent model (bilateral partnership), consider

dominant strategy incentive compatible mechanisms instead of Bayesian incentive compati-

ble mechanisms and our agents have loss averse preferences as modeled in Köszegi and Rabin

(2006, 2007) and Tversky and Kahneman (1991). Apart from the standard utility from the

ownership of the good and money, called as “material utility”, “gain-loss utility”with respect

to ownership of the good is introduced. The reference point, relative to which agents eval-

uate an outcome, is the initial share of the asset. Cramton et al. (1987) is a generalised

version of the bilateral trading problem considered by Myerson and Satterthwaite (1983)

where one agent (seller) has the full ownership of the asset. Myerson and Satterthwaite

(1983) showed that in the bilateral trading problem, there exists no mechanism which is

Bayesian incentive compatible, interim individually rational, efficient and budget balanced.

Cramton et al. (1987), on the other hand, finds that efficient trade is possible with a Bayesian

incentive compatible, interim individually rational and a budget balanced mechanism if part-

ners have equal shares. The model specified by Cramton et al. (1987) can be used to study

the problems of economic resources. For example, Chaturvedi (2020) modeled the problem

of ownership of land being shared by various landholders and a buyer who wants the entire

land as a multilateral trading problem. The question that we ask is if there exists an effi-

cient, dominant strategy incentive compatible, and budget-balanced mechanism when agents

are loss averse. Green and Laffont (1979) showed that there is no efficient, dominant strat-

egy incentive compatible, and budget-balanced mechanism, if preferences are quasi-linear.

Lahkar and Mukherjee (2020) considers a model of public goods with large population and

constructs a mechanism which is strictly dominant strategy incentive compatible, satisfies

individual rationality and strong budget balance condition. We are interested to see whether

the impossibility proved by Green and Laffont (1979) continues to hold in our model with

loss averse preferences.

Recent papers on mechanism design with loss averse agents have considered the case where

reference points are formed endogenously using rational expectations as mentioned in Köszegi

and Rabin (2006, 2007). Lange and Ratan (2010), Eisenhuth and Grunewald (2018), Eisen-

huth (2018) focus on auction setting with the loss averse traders in two-dimensional model

where gain-loss utility is separable across good dimension and money dimension (known as

narrowly bracketing) and one-dimensional model where gain-loss utility is defined over en-

tire risk neutral payoff (known as widely bracketing). Benkert (2023) builds on the model of

Eisenhuth (2018) in the bilateral trade setting. Our paper is the first to study the partner-

ship model with loss averse agents with exogenous reference point and study the impact of

endowment effect on the trade.

We first characterise the incentive compatible mechanisms for loss averse agents. The

characterization of incentive compatible mechanisms is a generalization of Cramton et al.
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(1987) and Myerson and Satterthwaite (1983) without loss aversion. Because of the gain-

loss utility terms, the application of envelope theorem gives a piecewise utility function which

depends on whether the agent is losing his share or gaining additional share.

Next, we look into the problem of efficiency. Benkert (2023) also studies the efficiency

problem but it defines an efficient allocation rule as the one which maximizes “material

valuations” of the traders. In our paper, efficient allocation is the one which maximizes the

valuations of the partners (including the gain-loss utilities in ownership). In the absence of

loss aversion, the allocation in which the agent with highest valuation gets the full ownership

of the object is efficient. But with loss averse preferences, the object may not be allocated

to an agent even if he has the highest valuation due to higher loss sensitivity associated with

an allocation less than the endowment. As a result, loss averse preferences inhibit the trade

as the set of valuations where trade takes place is reduced.

We find that, with loss averse agents, the bilateral partnership cannot be dissolved by a

dominant strategy incentive compatible, individually rational, efficient and feasible mecha-

nism, irrespective of the initial shares or endowments. The impossibility could be due to the

way efficiency is defined in our model. The set of values at which trade should take place

shrinks because of the higher sensitivity of loss associated with losing the share after the

trade. The other reason is different payment functions of the agents depending on whether

the final allocation is more or less than initial share, leading to violation of budget balance

condition. When a partnership is dissolved, one agent receives the full ownership of the com-

pany and pay the other agent who has lost his share. The partners evaluate the gain (loss)

terms of share and with loss aversion, losses loom larger than gains, inhibiting the trade.

The partner who has lost his share suffers more loss in utility than the gain experienced by

the partner who gets the full ownership. To compensate the loss, the agent losing his share

has to be paid much more than the amount paid by the the agent gaining the ownership if

he is to participate in the trade. But then differences in the transfer (payments) received

(paid) by the agents violate the condition of transfer rule to be budget balanced.

The remainder of the paper is structured as follows. Section 2.2 explains the formal

framework in detail. Section 2.3 states the main result. Section 2.4 presents the literature

review while section 2.5 concludes. All proofs are relegated to an appendix 2.6 at the end.

2.2 Model

2.2.1 Types, Information and Preferences

Two agents, denoted by i ∈ {1, 2}, hold the shares of an indivisible asset. Agent 1 owns a

share r1 of the asset and agent 2 owns r2 where r1+ r2 = 1. Valuation for the entire asset by
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agent i is vi which is private information, where vi ∈ [v, v]. We assume that v > 0. Agents

have loss averse preferences with respect to the share ri which is acting as an endowment in

this case.

Following Köszegi and Rabin (2006), preferences of the loss averse agent are represented

using the following utility function.

ûi(si, ti|vi, ri) = sivi + ti︸ ︷︷ ︸
material utility

+ ηµi

(
sivi − rivi

)
︸ ︷︷ ︸

gain-loss utility in ownership

where

µi =

1 if si ≥ ri,

λ > 1 if si < ri
.

si ∈ [0, 1] is the actual consumption, ri ∈ [0, 1] is the reference level of endowment and

ti ∈ R is transfer (payment). Per unit valuation of the asset vi is the private information

of the agent, sivi is the intrinsic utility of the object and rivi is the reference utility. The

term sivi + ti is the material utility that incorporates the transfers. Gain-loss utilities are

considered with respect to the loss in the reference utility. The loss aversion parameters

are η and λ where η > 0 captures the importance of gain-loss utility relative to intrinsic

utility, and λ > 1 captures the degree of loss aversion. We assume that both the agents have

identical loss aversion parameters.

Note that µi is an indicator function: If si ≥ ri, then there is gain of endowment and if

si < ri, then there is loss. Greater weight to loss is reflected by the fact that λ > 1.

Value of µi can vary across the agents as it depends on the difference between allocation

received and initial endowment, even though λ is same for all agents.

2.2.2 Efficiency

An allocation rule is ex-post efficient if it maximises the sum of the valuations of the traders.

In the absence of loss aversion, an allocation is efficient if the agent with the highest valuation

gets the entire object. With loss averse preferences, we define the efficient allocation in the

following way

For a given (v1, v2), an allocation (s1, s2) ∈ [0, 1]2 is efficient if for every (ŝ1, ŝ2) ∈ [0, 1]2∑
i∈{1,2}

(
si(vi, vj) + ηµi(si(vi, vj)− ri)

)
vi ≥

∑
i∈{1,2}

(
ŝi(vi, vj) + ηµi(ŝi(vi, vj)− ri)

)
vi

Benkert (2023) also studies the efficiency problem but he defines an ex-post effi-

cient allocation rule as the one which maximizes “material valuations” of the traders i.e.
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∑
i∈{1,2} si(vi, vj)vi. We incorporate gain-loss utility terms in the material utility in our

definition of efficiency.

For a given η > 0, λ = 1 implies that agents are not loss averse and the allocation in

which the agent with highest valuation gets the full ownership of the object is efficient i.e.

se(v) ∈ argmaxs
∑

i∈{1,2}
(
si(vi, vj) + η(si(vi, vj) − ri)

)
vi. But with loss averse preferences,

the object may not be allocated to an agent even if he has the highest valuation. We describe

the intuition behind this below.

Maximising
∑

i∈{1,2}

(
si(vi, vj) + ηµi(si(vi, vj) − ri)

)
vi is equivalent to maximizing∑

i∈{1,2}

(
(1 + ηµi)si(vi, vj) − ri

)
vi because ri is a constant and just have a scalar effect.

Suppose the object is transferred to agent 1 after the trade. His valuation for the object is

(1 + η)r2v1. Agent 2 has lost his share r2 after the trade, generating a negative valuation

of (1 + ηλ)r2v2. This allocation generates pareto efficient outcome if the positive valuation

generated from the object to agent 1 dominates the negative valuation of agent 2. Similarly,

agent 1 is not allocated the object (or loses his share) if the negative valuation associated

with the loss of his share (1 + ηλ)r1v1 is less than the valuation of agent 2 after gaining

full ownership of the object (1 + η)r1v2. If, due to transfer of full ownership, the valuation

associated with gaining additional share is not sufficient enough to make up for the negative

valuation of the other agent associated with losing own share, then each agent will keep

his/her respective share i.e. there will be no re-allocation of the shares. With loss aversion,

we are comparing the effective valuation associated with the object/shares.

Proposition 2.1 The ex-post efficient allocation rule se, for all i, for all vi, for all vj is

sei (vi, vj) =



1 if vi ≥
(
1 + ηλ

1 + η

)
vj,

ri if

(
1 + η

1 + ηλ

)
vj < vi <

(
1 + ηλ

1 + η

)
vj,

0 if vi ≤
(

1 + η

1 + ηλ

)
vj.

Note that as η → 0, the loss aversion parameters disappear and we have the standard

definition of efficiency i.e. the agent with the highest material valuation will be allocated the

object.

To compare the efficient allocation in the case of loss averse preferences and standard

preferences, consider the following example.

Example 2.1 There are two agents with v1 = 1, v2 = 0.8 and have equal shares of the object

i.e. r1 = r2 = 0.5. Suppose the agents are loss averse with parameters given as η = 0.5,
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λ = 3. The sum of valuations of agents if (s1, s2) = (1, 0) is

(1 + 0.5(1− 0.5)) + (0 + 0.5 · 3(0− 0.5))0.8 = 0.65

The sum of valuations of agents if (s1, s2) = (0.5, 0.5) is

(0.5 + 0.5(0.5− 0.5)) + (0.5 + 0.5(0.5− 0.5))0.8 = 0.9

In (s1, s2) = (1, 0), agent 1 gets the entire object implying that µ1 = 1 because he is gaining

more than his endowment whereas µ2 = λ = 3 as agent 2 is losing his initial share. On the

other hand, (s1, s2) = (0.5, 0.5) means that trade does not take place and µ1 = µ2 = 1 as

both agents will continue to hold their initial shares. This shows that no trade is better than

in terms of efficiency.

Example 2.2 The same environment described in Example 2.1 but the loss aversion param-

eters are η = 0.2 and λ = 2. The sum of valuations of agents if (s1, s2) = (1, 0) is

(1 + 0.2(1− 0.5)) + (0 + 0.2 · 2(0− 0.5))0.8 = 0.94

The sum of valuations of agents if (s1, s2) = (0.5, 0.5) is

(0.5 + 0.2(0, 5− 0.5)) + (0.5 + 0.2(0.5− 0.5))0.8 = 0.9

In this case, trading between the agents is an efficient outcome.

Had there been no loss aversion, agent 1 would have got the object as he has the highest

valuation. But due to loss aversion, the trade does not take place in the first example (agents

keep their shares r1 and r2) despite the fact that agent 1 values the object more than agent

2. The second example shows that the changing the values of the parameters of loss aversion

while keeping the valuations and shares of the agents same as given in Example 2.1, changes

the outcome from no trade to trade where agent 1 gets the entire object.
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The graph depicts the efficient allocation for agent i as a function of vi for a given value of

vj. The efficient allocation in case of loss averse agents is shown in blue. For comparison, the

efficient allocation in case of standard preferences is also shown (depicted in red). One can see

from the graph that the region of the trade is reduced. For vi ∈

[(
1 + η

1 + ηλ

)
vj,

(
1 + ηλ

1 + η

)
vj

]
,

there is no trade as agents keep their respective shares. Therefore, trade with loss averse

agents is restricted in comparison to the standard case.

The conditions for the efficient allocation is similar to the one mentioned in Tversky and

Kahneman (1991). If ν1 and ν2 denote the intrinsic valuation for the two goods, namely good

1 and good 2, then people endowed with good 1 will trade for good 2 if ν2 >

(
1 + ηλ

1 + η

)
ν1.

On the other people endowed with good 2 (no endowment for good 1) will trade for good 1

if ν2 >

(
1 + η

1 + ηλ

)
ν1. Loss aversion implies that the agent, who has to give up his share, has

the highest cutoff and therefore, is least likely to trade. On the other hand, the agent who

will gain the additional share has the lowest cutoff and is most likely to trade.

2.2.3 Mechanism

A direct revelation mechanism consists of four maps (s1, s2, t1, t2) where, si : [v, v]
2 −→ [0, 1]

with s1(v1, v2) + s2(v1, v2) ≤ 1, ∀v ∈ [v, v]2 and ti : [v, v]
2 −→ R. The term si(vi, vj) is

the allocation share of agent i and ti is the transfer (payment) received (paid) by agent i.

The agents directly report their valuations for the object, and then receive the share of the

ownership si(vi, vj) and the transfers ti(vi, vj).

15



Utility function of agent i from the mechanism when other agent reports vj is

ûi(vi, vj) = sivi + ti + ηµi

(
si(vi, vj)vi − rivi

)
∀vi ∈ [v, v]

Define srefi (vi, vj) as the modified allocation where

srefi (vi, vj) = si(vi, vj) + ηµi

(
si(vi, vj)− ri

)
This allows us to compactly write ûi(vi, vj) = srefi (vi, vj)vi + ti(vi, vj). Net payoff from the

mechanism, denoted as ui(vi, vj), is defined as the difference between the utility from the

trade ûi(vi, vj) and the reference utility rivi. This net utility is useful for the analysis.

ui(vi, vj) =

(
srefi (vi, vj)− ri

)
vi + ti(vi, vj)

Following are the required properties of the mechanism.

Definition 2.1 The mechanism (s1, s2, t1, t2) is dominant strategy incentive compat-

ible (DSIC) if for all i and for every vi, v̂i ∈ [v, v],

ui(vi, vj) ≥
(
srefi (v̂i, vj)− ri

)
vi + ti(v̂i, vj) ∀vj ∈ [v, v]

This condition ensures that the agents report their valuations for the asset truthfully.

Definition 2.2 The mechanism (s1, s2, t1, t2) is ex-post individually rational if for all

i and for all vi ∈ [v, v],

ui(vi, vj) ≥ 0 ∀vj ∈ [v, v]

Definition 2.3 A payment rule (t1, t2) is feasible if

t1(v1, v2) + tj(v1, v2) ≤ 0 ∀v1, v2 ∈ [v, v]

.

The following lemma develops a necessary and sufficient condition for a mechanism to be

DSIC.

Lemma 2.1 A mechanism (s1, s2, t1, t2) is DSIC if and only if for each i

1. (1 + η)(si(vi, vj)− ri) is non-decreasing in vi,

2. (1 + ηλ)(ri − si(vi, vj)) is non-increasing in vi and
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3. for i and j, for all vj ∈ [v, v], and for all vi ∈ [v, v]

ui(vi, vj) =

{
ui(v

∗
i , vj) +

∫ vi
v∗i
(1 + η)(si(xi, vj)− ri)dxi if vi ∈ [v∗i , v],

ui(v
∗
i , vj) +

∫ vi
v∗i
(1 + ηλ)(si(xi, vj)− ri)dxi if vi ∈ [v, v∗i ].

(2.1)

where v∗i solves srefi (v∗i , vj)− ri = 0

For any allocation (s1, s2) such that srefi (vi, vj) is non-decreasing for all i, v∗i is called the

worst-off types of agent i. Equation (2.1) implies that net utility ui(vi, vj) is continuous

and convex in vi and is minimized at v∗i . At v∗i , si(vi, vj) − ri = 0 which means that v∗i is

the valuation at which the agent i will not trade and will keep his own share of the asset.

A worst-off type is neither a buyer nor a seller of the good. For a given η > 0, λ = 1

indicates there is no loss aversion and srefi (vi, vj)−ri = (1+η)(si(vi, vj)−ri). Application of

envelope theorem (Milgrom and Segal (2002)) for λ = 1 results in the characterization similar

to Cramton et al. (1987) with derivative of the utility function equal to srefi (vi, vj) − ri =

(1 + η)(si(vi, vj)− ri) almost everywhere. If r1 = 0 and r2 = 1, then the model is the same

as standard bilateral trade setting considered by Myerson and Satterthwaite (1983) where

agent 1 is buyer with v∗1 = v and agent 2 is seller with v∗2 = v. When λ > 1, derivative of the

utility function depends on the worst off type. For vi > v∗i , slope of utility function of agent

i will be (1 + η)(si(vi, vj) − ri) whereas for vi < v∗i , slope will be (1 + ηλ)(si(vi, vj) − ri).

Applying envelope theorem gives a piecewise-defined functional form for utility. Note that

Cramton et al. (1987) characterize the set of Bayesian incentive compatible mechanisms.

Eisenhuth (2018) and Benkert (2023) consider endogenous reference points formed using

rational expectations. The characterization of the incentive compatible mechanisms is similar

to Myerson and Satterthwaite (1983) except that the expected allocation in these papers

incorporate gain-loss sensitivity terms. Note that as η → 0, srefi (vi, vj) approaches si(vi, vj)

and the characterization result defined in lemma 2.1 approaches the characterization result

of Cramton et al. (1987).

Using Lemma 2.1, a transfer function that implements the efficient allocation is as follows:

ti(vi, vj) =


−rj(1 + ηλ)vj if i wins the object,

0 if i gets his original share ri,

ri(1 + η)vj if agents i gets nothing.

for all i, for all vi and for all vj.

This is a generalized transfer function which incorporates the case of standard preferences.

For η > 0 if the agents are not loss averse (λ = 1), efficiency requires that the person who

gets the object needs to pay the other agent his reservation utility. Specifically, if agent

1 wins the object, he needs to pay agent 2 his utility he was getting before the trade i.e.
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r2(1 + η)v2 to compensate for the loss. If one agent has the entire ownership, for example,

r1 = 0 and r2 = 1, then then we have the case of standard bilateral trade problem where, if

the object is transferred to agent 1, he needs to pay agent 2 his reservation utility which is

(1 + η)vj, which is equivalent to payment rule of the second-price auction.

We are now prepared to answer the central question of this paper: What partnerships

can be dissolved with an DSIC, individually rational and feasible mechanism?

2.3 Impossibility Result

The main negative result of this paper is as follows: If agents are loss averse, then partnership

cannot be dissolved by a DSIC, ex-post efficient, ex-post individually rational and feasible

mechanism.

Theorem 2.1 There exists no mechanism (irrespective of initial shares) satisfying, DSIC,

efficiency, individual rationality and feasibility.

The impossibility result is true for any shares (endowments) of the agents. This contrasts

with the Cramton et al. (1987) result that the equal shares (r1 = r2 = 0.5) partnership can

be dissolved by a budget-balanced, Bayesian incentive compatible and interim individually

rational mechanism. Note that for η small and λ equal to 1, the ex-post efficient allocation in

our model is the same as defined in Cramton et al. (1987) and we are close to the possibility

result of Cramton et al. (1987).

The impossibility is due to the way efficiency is defined in our model. We are trying

to implement an allocation which maximizes the overall valuations of the agents (including

gain-loss terms). This reduces the set of values at which trade should take place. The

presence of loss aversion parameters restrict the trade because of the higher sensitivity of

loss associated with losing the share after the trade.

The other reason is different payment functions of the agents depending on whether the

final allocation is more or less than initial share, leading to violation of feasibility. When a

partnership is dissolved, one agent receives the full ownership of the company and pay the

other agent who has lost his share. The partners evaluate the gain (loss) terms of share and

with loss aversion, losses loom larger than gains, inhibiting the trade. The partner who has

lost his share suffers more loss in utility than the gain experienced by the partner who gets

the full ownership. To compensate the loss, the agent losing his share has to be paid much

more than the amount paid by the the agent gaining the ownership if he is to participate

in the trade. But then differences in the transfer (payments) received (paid) by the agents

violate the condition of payment rule to be budget balanced. As the loss sensitivity increases
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(λ increases), the disparity in the transfers between the agents keep on increasing, thereby

restricting the trade.

2.4 Literature Review

2.4.1 Literature on loss averse preferences

There has been a growing literature on how loss aversion makes economic agents behave dif-

ferently. Endowment effect was one of the early examples of loss aversion, frequently observed

in both experimental and survey research. Thaler (1980) came up with the phenomena of

endowment effect, based on the observation that buyers are willing to pay less to buy goods

compared to the price at which the owners are willing to sell. The reason for the disparity

is explained by loss aversion. Since owners are losing the object, the disutility due to loss

in the endowment is more than the gain buyers experience. As a result, the sellers needs

to be compensated by an amount which is larger than what the buyers are willing to pay.

Experimental evidence of endowment effect were also shown in Knetsch (1989), Kahneman

et al. (1990) and Tversky and Kahneman (1992). Other candidates for the reference point

has been mentioned by the researchers e.g. expectations. Köszegi and Rabin (2006, 2007)

assumed that the reference point is determined endogenously using rational expectations

The phenomena of loss aversion has been used to explain real-world phenomenon.

Camerer et al. (1997) observed negative wage elasticity in the study of New York cab drivers.

The explanation is that the cab drivers are “loss-averse” around an income target. The well

known “equity premium puzzle” (the huge disparity between equity and bond return) can be

potentially explained by reference dependent loss aversion (Benartzi and Thaler (1995)). Be-

nartzi and Thaler (1995) propose that individuals experience utility from financial-portfolio

statement compared to the prior statement. If the intensity of losses is high compared to the

gains, then individuals will display increased risk-aversion in portfolio choice. Odean (1998)

studied a sample of retail investors and observed that sellers tend to sell assets whose valu-

ation has increased and keep the assets whose valuation has decreased (disposition effect).

As a result, there has been a growing interest in the application of loss averse preferences in

the mechanism design.

2.4.2 Literature on Mechanism Design with loss averse preferences

There is a small literature on incorporation of loss averse preferences in the study of mecha-

nism design. Lange and Ratan (2010) compares the first price auction with the second price

auction when agents are loss averse and finds that the expected revenue was higher under
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the first price auction as compared to the second price auction. Shunda (2009) considered a

different notion of reference dependence and showed that expected revenue can be increased

using buy-now price. Eisenhuth (2018) considers the problem of designing optimal auction

for loss averse agents and he used two forms of utility functions: (a), gains and losses are

evaluated in the good dimension and in the money dimension separately and (b), gains and

losses are evaluated over the entire risk neutral utility. In the first case, an all pay auction

with a minimum bid is an optimal auction and in the second one, first price auction with

minimum bid is an optimal auction.

Our paper also contributes on the literature on bilateral trade with loss averse agents.

A long line of literature has focused on the ex-post efficiency of the mechanism in the bi-

lateral trade and partnership setting. While Myerson and Satterthwaite (1983) showed the

impossibility to implement an efficient outcome through a Bayesian incentive compatible

and interim individually rational mechanism without a deficit. Cramton et al. (1987), on

the other hand, showed the possibility result if the agents have symmetric property rights.

A shortcoming of the approach used in these papers is the assumption that all agents have

priors over the possible valuation of the object and the priors are a common knowledge.

Hagerty and Rogerson (1987) characterises the class of mechanisms considered in Myerson

and Satterthwaite (1983) which are DSIC, individually rational and budget balance and they

find that the posted price mechanism is the only mechanism which satisfies all the above

mentioned properties. Loss aversion in the bilateral trade model is introduced by Benkert

(2023) by adapting the framework of Eisenhuth (2018) in Myerson and Satterthwaite (1983)

setting and studies the impact of endowment effect and attachment effect (the agent who

does not have the object can get attached to it which increases his valuation for the asset) on

the agents’ information rents. The impossibility result still persists although impossibility is

less severe due to buyer’s loss aversion.

2.5 Conclusion

This paper tries to find the existence of an incentive compatible and feasible mechanism to

dissolve a partnership between loss averse agents in an efficient way. First, we characterize the

set of all dominant strategy incentive compatible dissolution mechanisms for a partnership

model. We also showed how the parameters of loss aversion affect the efficient allocation.

Because of the loss averse preferences, there is a disparity in the transfer to be received by

selling his share and the transfer to be paid while getting the full ownership of the asset,

thereby inhibiting the trade. Hence, the impossibility result shown by Green and Laffont

(1979) continues to hold for loss averse agents.
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Cramton et al. (1987) showed the existence of a dissolution mechanism that is “Bayesian”

incentive compatible and budget balanced to implement an efficient allocation, if the part-

nership is centred around equal shares. It will be interesting to see if this result will hold

even in the case of loss averse preferences. Therefore, one possible extension of this paper is

to relax the condition of dominant strategy incentive compatible and look for the possibility

of trade in the class of Bayesian incentive compatible mechanisms.

2.6 Appendix

Proof of Lemma 2.1

Proof : Necessity: Suppose that the mechanism (s1, s2, t1, t2) is DSIC. Then,

ui(vi, vj) ≥ ui(v̂i, vj) + (srefi (v̂i, vj)− ri)(vi − v̂i) (2.2)

which gives

ui(vi, vj)− ui(v̂i, vj) ≥ (srefi (v̂i, vj)− ri)(vi − v̂i)

Exchanging the roles of vi and v̂i

ui(v̂i, vj) ≥ ui(vi, vj) + (srefi (vi, vj)− ri)(v̂i − vi)

This implies

ui(vi, vj)− ui(v̂i, vj) ≤ (srefi (vi, vj)− ri)(vi − v̂i) (2.3)

(2.2) and (2.3) together imply that

(srefi (vi, vj)− ri)(vi − v̂i) ≥ ui(vi, vj)− ui(v̂i, vj) ≥ (srefi (v̂i, vj)− ri)(vi − v̂i) (2.4)

This shows that if vi > v̂i, s
ref
i (vi, vj) − ri ≥ srefi (v̂i, vj) − ri. Therefore, srefi (·, vj) − ri is

non-decreasing.

Claim 2.1 ui(·, vj) is Lipschitz continuous.

Proof : To prove that ui(·, vj) is Lipschitz continuous, we need to show that there exists

M > 0, such that

|ui(vi, vj)− ui(v̂i, vj)| ≤M |vi − v̂i|

If vi > v̂i,

ui(vi, vj)− ui(v̂i, vj) ≤ (srefi (vi, vj)− ri)(vi − v̂i) ≤ (1 + η)(1− ri)(vi − v̂i)
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If vi < v̂i,

ui(vi, vj)− ui(v̂i, vj) ≥ (srefi (v̂i)− ri)(vi − v̂i)

which can also be written as

−(ui(vi, vj)− ui(v̂i, vj)) ≤ −(srefi (v̂i, vj)− ri)(vi − v̂i)

≤ −(srefi (vi, vj)− ri)(vi − v̂i)

Therefore,

|ui(vi, vj)− ui(v̂i, vj)| ≤ (srefi (vi, vj)− ri)|(vi − v̂i)|
≤ (1 + η)(1− ri)|(vi − v̂i)|

For M = (1 + η)(1 − ri), we have proved that |ui(vi, vj) − ui(v̂i, vj)| ≤ M |vi − v̂i|. Hence,

ui(·, vj) is Lipschitz continuous. ■

This means that ui(·, vj) is differentiable almost everywhere. From equation (2.4), we

have

srefi (vi, vj)− ri ≥
ui(vi, vj)− ui(v̂i, vj)

vi − v̂i
≥ srefi (v̂i, vj)− ri

This implies
dui(vi, vj)

dvi
= srefi (vi, vj)− ri

and

ui(vi, vj) = ui(v
∗
i , vj) +

∫ vi

v∗i

(srefi (xi, vj)− ri)dxi, (2.5)

∀vi, v∗i ∈ [v, v], where v∗i satisfies srefi (v∗i , vj)− ri = 0.

Substituting the expression for ui(vi, vj) in the above equation gives

(srefi (vi, vj)− ri)vi + ti(vi, vj) = ui(v
∗
i , vj) +

∫ vi

v∗i

(srefi (xi, vj)− ri)dxi

which can be rewritten as

ti(vi, vj) = ui(v
∗
i , vj)− (srefi (·, vj)− ri)vi +

∫ vi

v∗i

(srefi (xi, vj)− ri)dxi

If (s1, s2, t1, t2) is DSIC, then, according to equation (2.5), i’s net utility function ui(vi, vj)

is increasing on vi ∈ [v∗i , v] and decreasing on vi ∈ [v, v∗i ]. This means that ui(vi, vj) is

minimized at v∗i . Because the worst off type of an agent is revealed once the true valuations

of all agents are known, the worst off type v∗i depends on vj i.e. valuation of the other agent.

As vj changes, the worst type of agent i changes. This means v∗i is a function of vj i.e.
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v∗i = g(vj) where g : [v, v] −→ [v, v] is a function which defines the worst off type of agent i

on vj.

Given the mechanism (s1, s2, t1, t2) is DSIC, the net utility of agent i is minimum if he

does not participate in the trade i.e. v∗i satisfy si(v
∗
i , vj) − ri = 0. This implies that he is

neither a buyer nor a seller. Also, si(v
∗
i , vj)− ri = 0 =⇒ srefi (v∗i , vj)− ri = 0.

This shows srefi (vi, vj) − ri = (1 + η)(si(vi, vj) − ri) ≥ 0 for vi ≥ v∗i and srefi (vi, vj) −
ri = (1 + ηλ)(si(vi, vj) − ri) ≤ 0 for vi ≤ v∗i . Therefore, The set of worst off types is

V ∗
i (vj) = {g(vj)|srefi (u, vj)− ri ≤ 0 ∀u ≤ g(vj); s

ref
i (u, vj)− ri ≥ 0 ∀u ≥ g(vj)}.

We showed that srefi (·, vj) − ri is non-decreasing. For vi ≥ v∗i , s
ref
i (vi, vj) − ri = (1 +

η)(si(vi, vj) − ri) ≥ 0 which is non-decreasing in vi. For vi ≤ v∗i , s
ref
i (vi, vj) − ri = (1 +

ηλ)(si(vi, vj)− ri) ≤ 0 which is non-increasing in vi.

Equation (2.5) can be re-written as

ui(vi, vj) =

{
ui(v

∗
i , vj) +

∫ vi
v∗i
(1 + η)(si(xi, vj)− ri)dxi ∀vi ∈ [v∗i , v],

ui(v
∗
i , vj) +

∫ v∗i
vi
(1 + ηλ)(ri − si(xi, vj))dxi ∀vi ∈ [v, v∗i ].

Sufficiency: Suppose that the mechanism (s1, s2, t1, t2) is such that (1 + η)(si(vi, vj)− ri) is

non-decreasing, (1 + ηλ)(ri − si(vi, vj)) in non-increasing and ui(vi, vj) satisfies (2.1).

Now, (1+ η)(si(vi, vj)− ri) is s
ref
i (vi, vj)− ri for vi ∈ [v∗i , v] and (1+ ηλ)(ri− si(vi, vj)) is

srefi (vi, vj)− ri for vi ∈ [v, v∗i ]. It is equivalent to say that srefi (vi, vj)− ri is non-decreasing

and (2.1) can be written as

ui(vi, vj) = ui(v
∗
i , vj) +

∫ vi

v∗i

(srefi (xi, vj)− ri)dxi,

∀vi, v∗i ∈ [v, v], where v∗i satisfies srefi (v∗i , vj)− ri = 0.

Note that,

ui(vi, vj)− ui(v
∗
i , vj) =

∫ vi

v∗i

(srefi (xi, vj)− ri)dxi ≥
∫ vi

v∗i

(srefi (v∗i , vj)− ri)dxi

= (srefi (v∗i , vj)− ri)(vi − v∗i )

Therefore,

ui(vi, vj) ≥ ui(v
∗
i , vj) + (srefi (v∗i , vj)− ri)(vi − v∗i )

Substituting the expression for ui(v
∗
i , vj) in the above equation gives

ui(vi, vj) ≥ (srefi (v∗i , vj)− ri)vi + ti(v
∗
i , vj)

Hence, (s1, s2, t1, t2) is DSIC. ■
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Proof of Proposition 2.1

Proof : The efficient allocation rule se is the one which maximizes the sum of valuations for

the object by the agents. In particular, for every v ∈ [v, v]2

se(v) ∈ argmax
∑

i∈{1,2}

(si(vi, vj) + ηµi(si(vi, vj)− ri))vi

Consider three allocation rules s = (s1, s2), s
∗ = (s∗1, s

∗
2) and s̃ = (s̃1, s̃2) where

• s1 > r1 in s

• s̃1 < r1 in s̃

• s∗1 = r1 in s∗

We look at each case and find out the sufficient condition for each case to be efficient.

Sum of the valuations is denoted by z.

z = (s1 + ηµ1(s1 − r1))v1 + (s2 + ηµ2(s2 − r2))v2

= s1v1(1 + ηµ1) + s2v2(1 + ηµ2)− ηµ1r1v1 − ηµ2r2v2

• If s1 > r1, then s2 < r2 since r1 + r2 = 1. So, µ1 = 1 and µ2 = λ. Hence,

z = s1v1(1 + η) + s2v2(1 + ηλ)− ηr1v1 − ηλr2v2

If v1(1 + η) > v2(1 + ηλ) or v1 >

(
1 + ηλ

1 + η

)
v2, then by point-wise maximization, set

the maximum value to s1 i.e. s1 = 1. If s1 = 1, then s2 = 0 because s1 + s2 cannot be

greater than 1.

Then,

z = v1(1 + η)− ηr1v1 − ηλr2v2

• If s̃1 < r1, then s2 > r2. So, µ1 = λ and µ2 = 1. Hence,

z̃ = s1v1(1 + ηλ) + s2v2(1 + η)− ηλr1v1 − ηr2v2

If v1(1 + ηλ) < v2(1 + η) or v1 <

(
1 + η

1 + ηλ

)
v2, then by point-wise maximization, set

the maximum value to s2 i.e. s2 = 1. If s2 = 1, then s1 = 0 because s1 + s2 cannot be

greater than 1.

Therefore,

z̃ = v2(1 + η)− ηλr1v1 − ηr2v2
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• If s∗1 = r1, then s2 = r2 since r1 + r2 = 1. So, µ1 = 1 and µ2 = 1. Hence,

z∗ = s1v1(1 + η) + s2v2(1 + η)− ηr1v1 − ηr2v2

= r1v1 + r2v2

Now, compare z, z̃ and z∗ with one another to find the sufficiency condition for each case to

be efficient.

• Finding the case when s1 > r1 or s1 = 1 is efficient

Compare z and z̃

z − z̃ = v1(1 + η)− ηr1v1 − ηλr2v2 − v2(1 + η) + ηλr1v1 + ηr2v2

Adding and subtracting v2(1 + ηλ)

z − z̃ = v1(1 + η)− v2(1 + ηλ) + v2(1 + ηλ)− ηr1v1 − ηλr2v2 − v2(1 + η) + ηλr1v1 + ηr2v2

= v1(1 + η)− v2(1 + ηλ) + v2(1 + ηλ)− v2(1 + η)− ηr1v1 + ηλr1v1 + ηr2v2 − ηλr2v2

= v1(1 + η)− v2(1 + ηλ) + v2η(λ− 1) + ηr1v1(λ− 1)− ηr2v2(λ− 1)

Use r1 + r2 = 1

z − z̃ = v1(1 + η)− v2(1 + ηλ) + v2r1η(λ− 1) + ηr1v1(λ− 1)

z > z̃ if v1(1 + η) > v2(1 + ηλ) or v1 >

(
1 + ηλ

1 + η

)
v2.

Compare z and z∗

z − z∗ = v1(1 + η)− ηr1v1 − ηλr2v2 − r1v1 − r2v2

= v1(1 + η)− r1v1(1 + η)− r2v2(1 + ηλ)

= (1− r1)v1(1 + η)− r2v2(1 + ηλ)

= r2v1(1 + η)− r2v2(1 + ηλ)

= r2(v1(1 + η)− v2(1 + ηλ))

z > z∗ if v1(1 + η) > v2(1 + ηλ) or v1 >

(
1 + ηλ

1 + η

)
v2.

Hence, s1 = 1 and s2 = 0 is efficient if v1 >

(
1 + ηλ

1 + η

)
v2.

• Finding the case when s̃1 < r1 or s1 = 0 maximizes the sum of the valuations.

Compare z̃ and z

z̃ − z = v2(1 + η)− ηλr1v1 − ηr2v2 − v1(1 + η) + ηr1v1 + ηλr2v2
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Adding and subtracting v1(1 + ηλ)

z̃ − z = v2(1 + η)− v1(1 + ηλ) + v1(1 + ηλ)− ηλr1v1 − ηr2v2 − v1(1 + η) + ηr1v1 + ηλr2v2

= v2(1 + η)− v1(1 + ηλ) + v1η(λ− 1)− r1v1η(λ− 1) + ηr2v2(λ− 1)

= v2(1 + η)− v1(1 + ηλ) + (1− r1)η(λ− 1)v1 + ηr2v2(λ− 1)

= v2(1 + η)− v1(1 + ηλ) + r2η(λ− 1)v1 + ηr2v2(λ− 1)

z̃ > z if v1(1 + ηλ) < v2(1 + η) or v1 <

(
1 + η

1 + ηλ

)
v2.

Compare z̃ and z∗

z̃ − z∗ = v2(1 + η)− ηλr1v1 − ηr2v2 − r1v1 − r2v2

= v2(1 + η)− r1v1(1 + ηλ)− r2v2(1 + ηλ)

= (1− r1)v2(1 + η)− r2v2(1 + ηλ)

= r2(v2(1 + η)− v2(1 + ηλ))

z̃ > z∗ if v1(1 + ηλ) < v2(1 + η) or v1 <

(
1 + η

1 + ηλ

)
v2.

Therefore, s1 = 0 and s2 = 1 if v1 <

(
1 + η

1 + ηλ

)
v2.

• Finding the case when s∗ = r1 is efficient.

Compare z∗ and z

z − z∗ = r2(v1(1 + η)− v2(1 + ηλ))

z < z∗ if v1(1 + η) < v2(1 + ηλ) or v1 <

(
1 + ηλ

1 + η

)
v2.

Compare z∗ and z̃

z̃ − z∗ = r2(v2(1 + η)− v2(1 + ηλ))

z̃ < z∗ if v1(1 + ηλ) > v2(1 + η) or v1 >

(
1 + η

1 + ηλ

)
v2.

Hence, s1 = r1 and s2 = r2 if

(
1 + ηλ

1 + η

)
v2 > v1 >

(
1 + η

1 + ηλ

)
v2

■

Proof of Theorem 2.1

Proof : We will prove this by contradiction. Let M = (s, t) be any DSIC, feasible and effi-

cient mechanism. Lemma 2.1 implies that for any type profile (v1, v2) with v1 >

(
1 + ηλ

1 + η

)
v2,
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we have

t1(v1, v2) = u1(v
∗
1, v2)− (1 + η)(1− r1)v1 +

∫ vi

v∗1

(1 + η)(1− r1)dxi

= u1(v
∗
1, v2)− (1 + η)(1− r1)v1 + (1 + η)(1− r1)

(
v1 −

(
1 + ηλ

1 + η

)
v2

)
= u1(v

∗
1, v2)− r2(1 + ηλ)v2 ∵ r1 + r2 = 1

u1(v
∗
1, v2) = 0 for all values of v2 because agent 1 is at worst off type and hence, he will not

take part in the trade. Similarly,

t2(v1, v2) = u2(v1, v
∗
2)− (1 + ηλ)(0− r2)v2 +

∫ v∗2

v2

(1 + ηλ)(r2 − 0)dxi

= u2(v1, v
∗
2) + (1 + ηλ)r2v2 + (1 + ηλ)r2

((
1 + η

1 + ηλ

)
v1 − v2

)
= u2(v1, v

∗
2) + r2(1 + η)v1

and u2(v1, v
∗
2) = 0. Hence,

u1(v
∗
1, v2) + u2(v1, v

∗
2) = 0 (2.6)

Since the mechanism is feasible, t1(v1, v2) + t1(v1, v2) ≤ 0 This implies,

u1(v
∗
1, v2) + u2(v1, v

∗
2)− r2(1 + ηλ)v2 + r2(1 + η)v1 ≤ 0

which means

u1(v
∗
1, v2) + u2(v1, v

∗
2) + r2(1 + η)

(
v1 −

(
1 + ηλ

1 + η

)
v2

)
≤ 0

Rewriting the above equation

u1(v
∗
1, v2) + u2(v1, v

∗
2) ≤ −r2(1 + η)

(
v1 −

(
1 + ηλ

1 + η

)
v2

)

r2(1 + η)

(
v1 −

(
1 + ηλ

1 + η

)
v2

)
> 0 because v1 >

(
1 + ηλ

1 + η

)
v2 which means

u1(v
∗
1, v2) + u2(v1, v

∗
2) < 0

violating equation (2.6) ■
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Chapter 3

Optimal Dissolution Mechanisms

3.1 Introduction

Myerson and Satterthwaite (1983) showed that, when entire ownership of the object belongs

to one person, trade between two agents (who have incomplete information about each other

types’) cannot be efficient. Since then, a long line of literature explores the limit of this

impossibility. Because one agent owns the entire object, the worst off type of both the

agents is known ex-ante.

In this paper, we try to design a mechanism in order to dissolve partnership between two

agents who have some share of the object and have per unit valuation for the object which is

private information. The agents are loss averse with respect to the initial share (endowment)

(Köszegi and Rabin (2006, 2007); Tversky and Kahneman (1991)). The agent’s role as a seller

or a buyer depends on the the realized valuation of the object which cannot be determined

prior to dissolution.

This paper focuses on the mechanisms that are optimal, where optimality is defined as

maximising a weighted average of expected gains from dissolution and expected revenue

generated from dissolution. We give a characterisation result for the ex-ante efficient mech-

anisms and the revenue-maximizing mechanisms. In this case, the efficient mechanism is

the one that maximizes the material utility as well as the gain-loss utility associated with

endowment. In the standard bilateral trade model discussed by Myerson and Satterthwaite

(1983), the minimum utility in an incentive-compatible and individually rational mechanism

is always achieved by the lowest valuation for the buyer and the highest valuation for the

seller. So, the agent’s virtual valuation functions are known ex-ante and, therefore, are in-

dependent of the mechanism. Individual rationality constraints are reduced to the worst-off

valuation, which is the highest and lowest valuation, depending on the role of the agent, and

is binding at the optimum. Assuming that the distribution of valuations satisfy regularity,
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i.e., hazard rates are increasing, the monotonicity of the allocations is satisfied, and opti-

mal allocations are given by point-wise solutions. We follow this methodology for bilateral

trade with loss-averse agents. The only difference is that optimal allocations compare the

effective virtual valuation (i.e., inclusive of additional gain-loss effects with respect to the

endowment). However, when both agents have some ownership in the object, it is no longer

clear which agent is playing the role of seller and which agent is playing the role of buyer.

We adapt the multilateral trade setting of Lu and Robert (2001) and Loertscher and Wasser

(2019) in the partnership setting for loss-averse agents. When both agents have some shares

in the object, it is no longer clear who will sell his shares (acting as a seller) and who will

get the additional shares, making him the owner of the object (acting as a buyer), before the

revelation of valuations. So, the agent with a high valuation expects to get full ownership of

the object, and the low type expects to lose his shares. The minimum utility valuations for

the agents whose role is ex-ante unidentified are in the middle, where on average he neither

wants to be a buyer nor a seller and usually depends on the dissolution mechanism. Also,

despite the regularity of the distribution of valuation, the virtual valuation function does

not satisfy monotonicity. As a result, optimal dissolution mechanisms are characterised by

ironed virtual valuations in which the object is transferred to the highest effective ironed

virtual valuation (which takes into account the loss aversion parameters).

Because of ironing, there is bunching phenomena due to which ties occur with positive

probability. So, the optimal allocation rule consists of a randomizing rule to break the ties in

Loertscher and Wasser (2019) and Lu and Robert (2001). Ties cannot be broken arbitrarily

because bunching is not because of the irregularity of the distributions. The tie breaking

rule has to be such that the agents who have the valuations in the middle expects to be

neither a buyer nor a seller. However in this paper, whenever the virtual valuations are

same, according to the optimal allocation rule, the agents will keep their shares. Despite the

positive probability of ties within the common bunching range, there is no requirement of

tie breaking rule because whenever virtual valuations tie is in the common bunching range,

optimality requires the agents to keep their initial shares i.e. no trade in the bunching range.

The rest of the paper is structured as follows. Section 3.2 explains the formal framework in

detail. We characterize the set of all Bayesian incentive compatible and interim individually

rational mechanisms and construct mechanisms that maximizes the weighted average of

expected gains from dissolution and expected revenue to the broker in section 3.3. Section

3.4 presents the literature review and section 3.5 concludes. All the proofs are relegated to

the appendix 3.6 at the end.
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3.2 Model

3.2.1 Types, Information and preferences

Two agents, denoted by i ∈ {1, 2}, hold the shares of an asset. Agent 1 owns a share r1 of

the asset and agent 2 owns r2 where r1 + r2 = 1. Valuation for the entire asset by agent i is

vi which is a private information and vi ∼ F [v, v] with positive continuous density f where

v > 0. Agents have loss averse preferences with respect to the share ri, which acts as an

endowment in this case.

Following Köszegi and Rabin (2006), preferences of the loss averse agent are represented

using the following utility function.

ûi(si, ti|vi, ri) = sivi + ti︸ ︷︷ ︸
material utility

+ ηµi

(
sivi − rivi

)
︸ ︷︷ ︸

gain-loss utility in ownership

where

µi(si) =

1 if si ≥ ri,

λ > 1 if si < ri
.

si ∈ [0, 1] is the actual consumption, ri ∈ [0, 1] is the reference level of endowment and

ti ∈ R is transfer (payment). Per unit valuation of the asset vi is the private information

of the agent, sivi is the intrinsic utility of the object and rivi is the reference utility. The

term sivi + ti is the material utility that incorporates the transfers. Gain-loss utilities are

considered with respect to the loss in the reference utility. The loss aversion parameters

are η and λ where η > 0 captures the importance of gain-loss utility relative to intrinsic

utility, and λ > 1 captures the degree of loss aversion. We assume that both the agents have

identical loss aversion parameters.

Note that µi is an indicator function: If si ≥ ri, then there is gain of endowment and if

si < ri, then there is loss. Greater weight to loss is reflected by the fact that λ > 1.

Value of µ can vary across the agents as it depends on the difference between allocation

received and initial endowment, even though λ is same for all agents. Throughout the

analysis, we assume that kv <
v

k
where k =

1 + ηλ

1 + η
.

3.2.2 Mechanism

A direct revelation mechanism is (s, t) ≡ (s1, s2, t1, t2) where, si : [v, v]2 −→ [0, 1] with

s1(v1, v2) + s2(v1, v2) ≤ 1, ∀v ∈ [v, v]2 and ti : [v, v]
2 −→ R. The agents directly report

their valuations for the object, and then receive the share of the ownership si(vi, vj) and the

transfers ti(vi, vj).
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Utility function of agent i from the mechanism when the other agent reports vj is

ûi(vi, vj) = sivi + ti + ηµi

(
si(vi, vj)vi − rivi

)
∀vi ∈ [v, v]

Define srefi (vi, vj) as the modified allocation where

srefi (vi, vj) = si(vi, vj) + ηµi

(
si(vi, vj)− ri

)
This allows us to compactly write ûi(vi, vj) = srefi (vi, vj)vi + ti(vi, vj). Net payoff from the

mechanism, denoted as ui(vi, vj), is defined as the difference between the utility from the

trade ûi(vi, vj) and the reference utility i.e.

ui(vi, vj) =

(
srefi (vi, vj)− ri

)
vi + ti(vi, vj)

The expected modified share and expected money transfer for player i when he announces

vi are S
ref
i (vi) and Ti(vi) where

Sref
i (vi)− ri =

∫
vj

(si(vi, vj) + ηµi(si(vi, vj)− ri)− ri)f(vj)dvj

=

∫
vj :si≥ri

(si(vi, vj)− ri + η(si(vi, vj)− ri))f(vj)dvj

+

∫
vj :si<ri

(si(vi, vj)− ri + ηλ(si(vi, vj)− ri))f(vj)dvj

=

∫
vj

(1 + ηµi)(si(vi, vj)− ri)f(vj)dvj

and

Ti(vi) =

∫
vj

ti(vi, vj)f(vj)dvj

So the agent’s expected net payoff is

Ui(vi) = (Sref
i (vi)− ri)vi + Ti(vi) (3.1)

This model generalizes the bilateral trade setting considered by Myerson and Satterthwaite

(1983). If agent 1 does not have any share of the object (r1 = 0) and agent 2 has the entire

ownership of the good (r2 = 1), then the utility function of agent 1 is (1 + η)s1(v1, v2)v1 +

t1(v1, v2) where (1 + η)s1(v1, v2) is the gain utility in the share of the object and the utility

function of agent 2 is (1 + ηλ)(s2(v1, v2)− 1)v2 + t1(v1, v2) where (1 + ηλ)(s2(v1, v2)− 1) is

loss in the share of the object due to loss aversion.

We define incentive compatibility and individual rationality of the mechanism.
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Definition 3.1 The mechanism (s1, s2, t1, t2) is Bayesian incentive compatible if for

all i and for every vi, v̂i ∈ [v, v],

Ui(vi) ≥ (Sref
i (v̂i)− ri)vi + Ti(v̂i)

Definition 3.2 The mechanism (s1, s2, t1, t2) is interim individually rational if for all

i and for all vi ∈ [v, v],

(Sref
i (vi)− ri)vi + Ti(vi) ≥ 0

We now give a necessary and sufficient condition for a mechanism to be incentive incom-

patible.

Lemma 3.1 The mechanism (s1, s2, t1, t2) is incentive compatible if and only if for agent i

and j, Sref
i (vi) is non-decreasing and

Ui(vi) = Ui(v
∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi (3.2)

For a given monotone allocation rule, payoff equivalence pins down interim expected

payoffs Ui and payments Ti up to a constant. This characterization result is similar to

Myerson and Satterthwaite (1983) and Cramton et al. (1987) Equation (3.2) implies that

expected net utility Ui(vi) is continuous and convex in vi. The continuity of Ui(vi) implies

it has a minimum at some v∗i ∈ [v, v] where v∗i is defined in the following lemma.

Lemma 3.2 Given a Bayesian incentive-compatible mechanism (s, t), agent i’s net utility is

minimized at

v∗i ∈ Ω(Sref
i ) = {vi : Sref

i (z)− ri ≤ 0 ∀z < vi;S
ref
i (z)− ri ≥ 0 ∀z > vi} (3.3)

Note that Ω(Sref
i ) is non-empty because Sref

i (vi) is non-decreasing (Lemma 3.1)

Lemma 3.3 An incentive-compatible mechanism (s, t) is interim individually rational if and

only if for all i ∈ {1, 2}
Ui(v

∗
i ) ≥ 0 (3.4)

For any allocation (s1, s2) such that Sref
i (vi) is non-decreasing for all i ∈ {1, 2}, Ωi(S

ref ) is

well-defined in (3.3) and is called the set of worst off valuations. Equations (3.2) and (3.3)

implies that expected net utility Ui(vi) is continuous and convex in vi and is minimized at

v∗i ∈ Ω(Sref
i ). The modified expected share Sref

i (vi) is a continuous function with ri in its

range. The worst off valuation v∗i satisfies Sref
i (v∗i ) − ri = 0 i.e. the agent with worst-off

valuation expects to receive a share equal to his initial ownership share ri. As in Cramton
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et al. (1987) and Lu and Robert (2001), this means, on an average, the agents with worst-

off valuation expects to be neither a buyer nor a seller of the asset. Therefore, he has no

incentive to overstate or understate his valuation. Hence, he does not need to be compensated

in order to induce him to report his valuation truthfully. It is no longer clear who is selling

and who is buying prior to revelation of types, but on an average agent i is a buyer if his

type vi ≥ maxv∗i ∈Ω(Sref
i ) v

∗
i and a seller if his type vi ≤ minv∗i ∈Ω(Sref

i ) v
∗
i . The next lemma

(along with lemma 3.1) characterizes implementable allocations.

Lemma 3.4 For any allocation s such that Sref
i (vi) is non-decreasing for all i ∈ {1, 2}, there

exists a payment function t such that (s, t) is Bayesian incentive compatible and interim

individually rational.

3.3 Optimal Dissolution Mechanisms

Consider a situation where dissolution is intermediated by a broker, to whom the agents

simultaneously reports their valuations. The broker, then, determines who is allocated the

asset and what will be the payment or transfer. The broker himself cannot own the object.

He can either subsidize or exploit the agents. We seek a mechanism that maximizes weighted

average of expected gains from dissolution and expected revenues to the broker subject to

the incentive compatibility and individual rationality constraints for traders. For that, we

first define, for any α ≥ 0 and vi ∈ [v, v],

ωB
i (vi|α) = vi − α

(1− F (vi))

f(vi)
and ωS

i (vi|α) = vi + α
F (vi)

f(vi)
(3.5)

where ωB
i (vi|α) and ωS

i (vi|α) are referred to as the α-virtual valuation of agents buyer-

type and seller-type respectively (Lu and Robert (2001); Loertscher and Wasser (2019)).

We will impose the regularity assumption that each agent’s α-weighted valuation is strictly

increasing, i.e.,
d

dv
ωB
i (v|α) ≥ 0 and

d

dv
ωS
i (v|α) ≥ 0 ∀v ∈ [v, v]

Before defining the objective function, we give functional form of the expected revenue from

an incentive compatible mechanism.

Lemma 3.5 The expected revenue from an incentive compatible mechanism with allocation s

is

R(s) =
2∑

i=1

(∫ v

v

∫ v

v

ωi(vi|v∗i , 1)
{
(1 + ηµ)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj −Ui(v

∗
i )

)
(3.6)
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where

ωi(vi|v∗i , 1) =


ωB
i (vi|1) if vi > v∗i ,

v∗i if vi = v∗i ,

ωS
i (vi|1) if vi < v∗i .

Now, we define the objective function. For any α ∈ [0, 1], let

Wα(s) = (1− α)

∫ v

v

∫ v

v

∑
i={1,2}

(
srefi (vi, vj)vi

)
f(vi)f(vj)dvidvj + αR(s)

where R(s) is the revenue generated from the mechanism.

We are looking for a mechanism that maximizes Wα(s) among all incentive compatible

and individually rational mechanisms. Next, we characterise the optimal mechanisms.

Theorem 3.1 For any incentive-compatible mechanism with broker, Sref
i (vi) is non-

decreasing in vi for all i and

Wα(s) =
2∑

i=1

(∫ v

v

∫ v

v

ωi(vi|v∗i , α)
{
(1 + ηµi)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj − αUi(v

∗
i )

)
where

ωi(vi|v∗i , α) =


ωB
i (vi|α) if vi > v∗i ,

v∗i if vi = v∗i ,

ωS
i (vi|α) if vi < v∗i .

If ri = 0, then v ∈ Ω(Sref ) for all implementable allocations s. For v∗i = v, ωi(vi|v, α) =

vi − α
(1− F (vi))

f(vi)
= ωB

i (vi|α) ∀vi > v implying agent i has buyer-type virtual valuations.

If ri = 1, then v ∈ Ω(Sref ) for all implementable allocations s. For v∗i = v, ωi(vi|v, α) =

vi + α
F (vi)

f(vi)
= ωS

i (vi|α) ∀vi < v implying agent i has seller-type virtual valuations. For

ri ∈ (0, 1), v∗i is between v and v which means that agent i has virtual valuations of both,

buyer-type and seller-type.

Note that, when α = 1, the above problem is equivalent to maximizing the expected

revenue to the broker subject to the constraints. When α = 0, the above problem is equivalent

to maximizing expected gains from dissolution subject to the constraints.

3.3.1 Optimal Mechanism Under Bilateral Trade

We first solve the maximization problem under bilateral trade setting i.e. one agent has an

entire ownership of the object. With extreme shares of partnership, the worst off value is
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independent of the mechanism. The role of agents (buyer-type or seller-type) is identified

prior to the revelation of type. The corollary below characterises the optimal mechanisms

for r1 = 0 and r2 = 1.

Corollary 3.1 If r1 = 0 and r2 = 1, then for any incentive-compatible mechanism with a

broker, S1(v1) is non-decreasing in v1, 1− S2(v2) is decreasing in v2 and

Wα(s) =

∫ v

v

∫ v

v

(
(1 + η)s1(v1, v2)ω

B
1 (v1|α) + (1 + ηλ)(s2(v1, v2)− 1)ωS

2 (v2|α)

− αU1(v)− αU2(v)

)
f(v1)f(v2)dv1dv2

The optimal mechanism in this case is given below.

Theorem 3.2 For r1 = 0 and r2 = 1, the objective function Wα(s) is maximized by an

incentive-compatible and individually-rational mechanism in which the object is transferred

to the agent 1 if and only if ωB
1 (v1|α) ≥ kωS

2 (v2|α) where k =
1 + ηλ

1 + η
, otherwise agent 2

keeps the object.

Myerson and Satterthwaite (1983) showed that the agent who has the highest virtual value

for the object is allocated the object. Specifically, agent 1 is allocated the object if ωB
1 (v1|α) >

ωS
2 (v2|α) otherwise, agent 2 keeps the object himself. With loss averse preferences, the

allocation rule suggested by Myerson and Satterthwaite (1983) is not optimal. Since agent

1 is a buyer if he is allocated the object, it is a gain in the material valuation of the object

(over and above his endowment, which is 0). So effective virtual valuation for agent 1 is

(1 + η)ωB
1 (v1|α). Similarly, if agent 2 loses ownership of the object, he becomes the seller.

This results in additional losses (relative to his endowment), generating a negative effective

virtual valuation for agent 2 as (1 + ηλ)ωS
2 (v2|α) (since virtual valuation is negative, we can

refer to this as effective virtual cost). Allocating the object to the buyer is optimal if and

only if the effective virtual valuation of the buyer is greater than the effective virtual cost of

the seller. Otherwise, the seller keeps the object. Instead of comparing the virtual valuation

and virtual cost, effective virtual valuation is compared with effective virtual cost, and this

reduces the region of the trade compared to the case when there is no loss aversion.

The example below shows how loss aversion reduces the set of values at which trade takes

place when the broker is maximizing the revenue.

Example 3.1 Agent 1 is a buyer with v1 as the valuation for the object and agent 2 is the

seller with valuation v2 where v1 and v2 are uniform random variables on [1, 2]. Both the

agents are loss averse with identical parameters η and λ. The virtual valuations of the agents
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when α = 1 are ω1(v1|1) = v1− (1− (v1− 1)) = 2v1− 2 and ω2(v2|1) = v2+ v2− 1 = 2v2− 1.

The broker’s optimal mechanism transfers the object if and only if

ω1(v1|1) = 2v1 − 2 ≥ k(2v2 − 1) = ω2(v2|1) or v1 ≥ kv2 + 1− k

2

For k = 1, there is no loss aversion, and we have Myerson and Satterthwaite (1983)

result. For 1 < k ≤ 2 as k increases, the gap between v1 and v2 will keep on increasing in

order to transfer the object, thereby restricting the trade.

The next example shows the decrease in the expected revenue due to loss aversion which

occurs because the set of values at which trade takes place is reduced.

Example 3.2 Consider example 1 again where v1 and v2 follows U [1, 2]. When k = 1, there

is no loss aversion and the expected revenue from the mechanism is

R =

∫ 2

1

∫ 2

1

((2v1 − 2)s1(v1, v2))− (2v2 − 1)(1− s2(v1, v2)))dv2dv1

=

∫ 2

1.5

∫ v1−0.5

1

((2v1 − 2)− (2v2 − 1))dv2dv1

= 0.04167

On the other hand with loss averse preferences, the expected revenue in the same envi-
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ronment will be

R =

∫ 2

1

∫ 2

1

((1 + η)(2v1 − 2)s1(v1, v2))− (1 + ηλ)(2v2 − 1)(1− s2(v1, v2)))dv2dv1

=

∫ 2

1+k/2

∫ 0.5+(v1−1)/k

1

((1 + η)(2v1 − 2)− (1 + ηλ)(2v2 − 1))dv2dv1

= (1 + η)

∫ 2

1+k/2

∫ 0.5+(v1−1)/k

1

((2v1 − 2)− (2v2 − 1)k)dv2dv1

= (1 + η)

∫ 2

1+k/2

(v21 − v1(2 + k) + (0.5k + 1)2)dv1

= −(1 + η)
(k − 2)3

24

In the above example, for a given η > 0, it is straightforward to check that as k increases,

expected revenue decreases. Note that because of the restriction on k, 1 < k <
√
2.

3.3.2 Optimal Mechanism Under Partnership

Problem arises when 0 < ri < 1 for i ∈ {1, 2} because the worst off valuation for each agent is

unknown. For α > 0, agent’s virtual valuation has upward distortion above his true valuation

when he expects to be a seller. Similarly, agent’s virtual valuations has downward distortion

below his true valuation when he expects to be a buyer. Also, ωi(vi|v∗i , α) is discontinuous
at vi = v∗i since ωB

i (vi|α) < vi < ωS
i (vi|α) for α > 0 and does not satisfy monotonicity in vi

over [v, v] for all distributions of valuations.

We define an ironed virtual value function ωi(vi|xi, α) that is monotonic and then find

the optimal allocation based on ironed virtual value. Define the ironed virtual value as:

ωi(vi|xi, α) =


ωS
i (vi|α) if ωS

i (vi|α) < xi,

xi if ωB
i (vi|α) ≤ xi ≤ ωS

i (vi|α),
ωB
i (vi|α) if ωB

i (vi|α) > xi.

where xi ∈ [ωB
i (v

∗
i |α), ωS

i (v
∗
i |α)] is the ironing parameter. The figure below illustrates the

ironed virtual valuation function. Agent i’s ironed virtual valuation ωi(vi|xi, α) is constant
and equal to xi for an interval of valuations that contains the worst off type v∗i , and it is

strictly increasing otherwise.
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v∗i

ωS
i (vi|xi, α)

ωB
i (vi|xi, α)

x∗i

(
ωS
i

)−1
(xi)

(
ωB
i

)−1
(xi)v v

vi

ωi(vi|xi, α)

ωS
i (v∗i , α)

ωB
i (v∗i , α)

Consider the modified optimization problem below:

max
s

Wα(s) =
2∑

i=1

(∫ v

v

∫ v

v

ωi(vi|xi, α)
{
(1 + ηµ)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj

)
s.t. s1(v1, v2) + s1(v1, v2) = 1

We first show that the allocation s∗ as defined below solves the modified optimization prob-

lem.

s∗i (vi, vj) =


1 if ωi(vi|x∗i , α) > kωj(vj|x∗j , α),

ri if
ωj(vj|x∗j , α)

k
< ωi(vi|x∗i , α) < kωj(vj|x∗j , α),

0 if ωi(vi|x∗i , α) <
ωj(vj|x∗j , α)

k
.

(3.7)

Proposition 3.1 Among all incentive-compatible, individually-rational mechanisms, the ex-

pected ironed virtual value function is maximized by a mechanism with allocation s∗ as defined

in (3.7).

Then, we show the existence of xi such that s∗ as defined in (3.7) solves the original

maximization problem if s∗ satisfies Sref
i (vi)− ri = 0.

Next, we prove that the allocation rule that maximizes the modified problem also solves

the original problem.
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Theorem 3.3 There exists an x∗ = (x∗1, x
∗
2) ∈ [ωB

i (v
∗
i |α), ωS

i (v
∗
i |α)] such that the

allocation s∗ = (s∗1, s
∗
2) defined in (3.7) satisfies Sref

i (vi) − ri = 0 for vi ∈[
(ωS

i )
−1(x∗i ), (ω

B
i )

−1(x∗i )
]

∀i ∈ {1, 2}. Then the allocation s∗ satisfies the original maxi-

mization problem.

According to Loertscher and Wasser (2019) and Lu and Robert (2001), when agents have

risk-neutral preferences, the optimal allocation rule allocates the object to the agent with the

highest ironed virtual valuation. On the other hand, in the case of loss-averse preferences,

the object is allocated to the agent with the highest effective ironed virtual valuation in the

optimal allocation rule. Effective ironed virtual valuation includes gain-loss terms associated

with the gain or loss of the object. Because of ironing, there is bunching phenomenon, due

to which ties occur with positive probability. So, the optimal allocation rule consists of

a randomizing rule to break the ties in Loertscher and Wasser (2019) and Lu and Robert

(2001). Ties cannot be broken arbitrarily because of the irregularity of the distributions.

The tie-breaking rule has to be such that the agent who has the valuation in the middle

expects to be neither a buyer nor a seller, that is, Sref
i (vi)− ri = 0. However, in this model,

whenever the virtual valuations are same, according to the optimal allocation rule, the agents

will keep their shares. Despite the positive probability of ties within the common bunching

range, there is no requirement of a tie-breaking rule because whenever virtual valuations tie

in the common bunching range, optimality requires the agents to keep their initial shares,

i.e., no trade in the bunching range.

We will show the example of ironing for uniform distribution below.

Example 3.3 Consider the setup of example 1 where v1 and v2 follows U [1, 2]. α-virtual

valuation of seller is ωS
i (vi|α) = (1 + α)vi − α and of buyer is ωB

i (vi|α) = (1 + α)vi − 2α.

(1 + α)vi − α =
x∗

k

This gives (ωS
i )

−1

(
x∗

k

)
=

x∗ + kα

k(1 + α)

(1 + α)vi − 2α = kx∗

This gives (ωB
i )

−1(kx∗) =
kx∗ + 2α

1 + α
Using Sref

i (vi)− ri = 0, we get

F

(
x∗ + kα

k(1 + α)

)
+ kF

(
kx∗ + 2α

1 + α

)
= k

This implies
x∗ + kα

k(1 + α)
− 1 + k

(
kx∗ + 2α

1 + α
− 1

)
= k
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Solving the above equation gives

x∗ =
2k2 + k

1 + k3

Observe that k = kv < x∗ <
v

k
=

2

k
. To calculate (ωS

i )
−1(x∗), we use (1 + α)vi − α = x∗.

This gives (ωS
i )

−1(x∗) =
2k2 + k + α + αk3

(1 + k3)(1 + α)
. Similarly, to calculate (ωB

i )
−1(x∗), we use

(1 + α)vi − 2α = x∗. This gives (ωB
i )

−1(x∗) =
2k2 + k + α + αk3

(1 + k3)(1 + α)
.

3.4 Literature

Our paper contributes to the literature on mechanism designs with loss averse agents. In the

literature, loss averse preferences in mechanism design problems are based on Köszegi and

Rabin (2006, 2007). Lange and Ratan (2010) discussed how bidding behaviour is affected

due to loss aversion in first-price and second-price auctions where reference point is endoge-

nous. They showed that expected revenue is higher under first price auction as compared

to second price auction. Eisenhuth and Grunewald (2018), on the other hand, derived the

equilibrium bidding strategy in the case of first price auction and all pay auctions under two

specifications: (a) gains and losses are evaluated in the good dimension and in the money

dimension separately (narrow bracketing) and (b), gains and losses are evaluated over the

entire risk neutral utility (wide bracketing). They showed that under narrow bracketing, ex-

pected revenue is higher in the case of all pay auction in comparison to first price auction and

under wide bracketing, the revenue ranking is opposite. Eisenhuth and Grunewald (2018)

also put their theoretical findings into test through laboratory experiments. Their results

were consistent with the experimental results in the case of wide bracketing but inconsistent

in the case of narrow bracketing.

Eisenhuth (2018) considers the problem of designing the revenue maximizing mechanisms

where the seller of the object is risk neutral and the buyers are loss averse under wide

bracketing and narrow bracketing of the pay off function. In case of narrow bracketing, all

pay auction with minimum bid is an optimal auction and in case of wide bracketing, first

price auction with minimum bid is an optimal auction. Agents with loss averse preferences as

described by Köszegi and Rabin (2006, 2007) do not like variation in ex-post utility. Under

narrow bracketing of payoff function, the amount that can be extracted by the seller from

the agents is reduced due to uncertainty in the ex-post transfers, making all pay auction

optimal. Similarly under wide bracketing, the variation in the ex-post utility can be reduced

by first price auction.

Benkert (2023) introduced loss aversion in the preferences of the seller as well as the

buyer in the bilateral trade setting of Myerson and Satterthwaite (1983) using the narrow
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bracketing framework of Eisenhuth (2018). Benkert (2023) also addressed the question of

designing the revenue maximizing mechanisms, where the designer is an intermediator who

provides a platform to trade. He showed that with loss averse agents, mechanisms that

maximize revenue involves interim-deterministic transfers i.e. transfers of an agent are not

dependent on other agent’s reported valuation of the object. This provides full insurance to

the agents, by reducing the fluctuation in ex-post utility. Results in our paper are different

because revenue maximizing mechanisms in our setup allocates on the basis of effective ironed

virtual valuation.

Our paper also contributes to the literature related to partnership dissolution. There is

a long line of literature that focuses on ex-post efficiency and property rights which lead

to efficient outcome, subject to individual rationality, incentive compatibility and budget

balanced. Cramton et al. (1987) showed the existence of ex-post efficient outcome with

equal partnership. On the other hand, Fieseler et al. (2003) showed that with positive

interdependent valuation, it may not be possible to achieve ex-post efficiency even with

equal ownership. It is impossible to decide whether ex-post efficient reallocation can take

place or not without the knowledge of distribution of private values. Loertscher and Wasser

(2019) addresses the question of identifying optimal ownership structure for independent

private value and general distribution functions, where optimality is defined as a weighted

average of revenue and gains from dissolution. In case of identical distribution, equal share

ownership always lies in the set of optimal ownership structure, irrespective of the weight on

the revenue. Also, increasing the weight on the revenue expands the set of optimal ownership

structures. On the other hand if distributions are not identical, optimal ownership structures

are asymmetric and depends on the weight put on the revenue.

3.5 Conclusion

We give a full characterization of the optimal dissolution mechanisms for both, bilateral

model and general bilateral partnership model in the case of loss averse preferences. For

bilateral trade model, the optimal mechanisms allocate on the basis of virtual valuations

which is independent of the mechanism. For bilateral partnership, the optimal mechanisms

allocate on the basis of ironed virtual valuations functions, which is a constant over a range

of values for each agent and the corresponding seller (buyer)type virtual valuation for lower

(higher) valuations. We are capturing the loss aversion with respect to fixed endowment,

thereby contributing to the literature on mechanism design and loss aversion.

One possible extension is to introduce the expectations based loss aversion (Köszegi and

Rabin (2006), Köszegi and Rabin (2007)) in the general partnership model and characterise

the optimal dissolution mechanisms. With the expectations based loss aversion, the definition
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of efficiency might be different compared to the one used in this paper. It will be interesting

to see how the results change with a different notion of reference point. Also, throughout

the analysis we have assumed that the parameters of loss aversion are commonly known.

Another take would be to drop the assumption that the loss aversion parameters are common

knowledge. Assuming that the parameters have private information will lead to a multi-

dimensional mechanism design problem.

3.6 Appendix

Proof of Lemma 3.1

Proof : Necessity: Suppose that the mechanism (s, t) is Bayesian incentive compatible.

Then,

Ui(vi) ≥ Ui(v̂i) + (Sref
i (v̂i)− ri)(vi − v̂i) (3.8)

which gives

Ui(vi)− Ui(v̂i) ≥ (Sref
i (v̂i)− ri)(vi − v̂i)

Exchanging the roles of vi and v̂i

Ui(v̂i) ≥ Ui(vi) + (Sref
i (vi)− ri)(v̂i − vi)

This implies

Ui(vi)− Ui(v̂i) ≤ (Sref
i (vi)− ri)(vi − v̂i) (3.9)

(3.8) and (3.9) together imply that

(Sref
i (vi)− ri)(vi − v̂i) ≥ Ui(vi)− Ui(v̂i) ≥ (Sref

i (v̂i)− ri)(vi − v̂i) (3.10)

This shows that if vi > v̂i, S
ref
i (vi) ≥ Sref

i (v̂i). Therefore, S
ref
i (·) is non-decreasing.

Claim 3.1 Ui(·) is Lipschitz continuous.

Proof : Show that there exists M > 0, such that

|Ui(vi)− Ui(v̂i)| ≤M |vi − v̂i|

If vi > v̂i,

Ui(vi)− Ui(v̂i) ≤ (Sref
i (vi)− ri)(vi − v̂i) ≤ (1 + η)(1− ri)(vi − v̂i)

If vi < v̂i,

Ui(vi)− Ui(v̂i) ≥ (Sref
i (v̂i)− ri)(vi − v̂i)
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which can also be written as

−(Ui(vi)− Ui(v̂i)) ≤ −(Sref
i (v̂i)− ri)(vi − v̂i)

≤ −(Sref
i (vi)− ri)(vi − v̂i)

Therefore,

|Ui(vi)− Ui(v̂i)| ≤ (Sref
i (vi)− ri)|(vi − v̂i)|

≤ (1 + η)(1− ri)|(vi − v̂i)|

For M = (1 + η)(1 − ri), we have proved that |Ui(vi) − Ui(v̂i)| ≤ M |(vi − v̂i)|. Therefore,

Ui(·) is Lipschitz continuous. ■

This means that Ui(·) is differentiable almost everywhere. From equation (3.10), we have

Sref
i (vi)− ri ≥

Ui(vi)− Ui(v̂i)

vi − v̂i
≥ Sref

i (v̂i)− ri

This implies
dUi(vi)

dvi
= Sref

i (vi)− ri

and

Ui(vi) = Ui(v
∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi (3.11)

∀vi, v∗i ∈ [v, v].

Substituting the expression for Ui(vi) in the above equation gives

(Sref
i (vi)− ri)vi + Ti(vi) = Ui(v

∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

which can be rewritten as

Ti(vi) = Ui(v
∗
i )− (Sref

i (vi)− ri)vi ++

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

Sufficiency: Suppose that the mechanism (s, t) is such that Sref
i (vi) is non-decreasing and

Ui(vi) satisfies (3.2)

Ui(vi)− Ui(v
∗
i ) =

∫ vi

v∗i

(Sref
i (u)− ri)du ≥

∫ vi

v∗i

(Sref
i (v∗i )− ri)du

= (Sref
i (v∗i )− ri)(vi − v∗i )

Therefore,

Ui(vi) ≥ Ui(v
∗
i ) + (Sref

i (v∗i )− ri)(vi − v∗i )
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Substituting the expression for Ui(v
∗
i ) in the above equation gives

Ui(vi) ≥ (Sref
i (v∗i )− ri)vi + Ti(v

∗
i )

Hence, (s, t) is Bayesian incentive compatible.

■

Proof of Lemma 3.2

Proof : By Lemma 3.1, the net utility function of trader i with valuation vi is continuous

and convex in vi. Hence, Ui(vi) is minimized at the point where the derivative of net utility

function is 0. Derivative of Ui(vi) is S
ref
i (vi)−ri almost everywhere with Sref

i (vi) is increasing

in vi. If Sref
i (vi) − ri > 0 ∀vi ∈ [v, v], then Ui(vi) is minimized at v∗i = v. Similarly, if

Sref
i (vi) − ri < 0 ∀vi ∈ [v, v], then Ui(vi) is minimized at v∗i = v. On the other hand, if

there exists p and q such that Sref
i (p)− ri ≤ 0 and Sref

i (q)− ri ≥ 0, then Ui(vi) is minimized

at v∗i where Sref
i (v∗i )− ri = 0. The set of valuations at which Sref

i (vi)− ri = 0 is denoted by

Ωi(S
ref
i ) = {vi : Sref

i (z)− ri ≤ 0 ∀z < vi;S
ref
i (z)− ri ≥ 0 ∀z > vi}.

■

Proof of Lemma 3.3

Proof : A mechanism is interim individually rational if

Ui(vi) ≥ 0 ∀vi ∈ [v, v]

Because of Lemma ??, Ui(·) is increasing. Therefore, we need to check individual rationality

at the valuation v∗i only.

Ui(v
∗
i ) ≥ 0

■

Proof of Lemma 3.4

Proof : We need to construct a transfer function t(v1, v2) such that (s, t) is incentive com-

patible and individually rational. There are many such functions which could be used, we
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will consider the following function.

ti(vi, vj) =

{
−(1 + η)(si(vi, vj)− ri)vi +

∫ vi
v∗i
(1 + η)(si(xi, vj)− ri)dxi if si(vi, vj) ≥ ri,

−(1 + ηλ)(si(vi, vj)− ri)vi +
∫ vi
v∗i
(1 + ηλ)(si(xi, vj)− ri)dxi if si(vi, vj) < ri.

where v∗i ∈ Ωi(S
ref
i ). This transfer function gives

Ti(vi) = −(Sref
i (vi)− ri)vi +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

or

Ui(vi) =

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

with Ui(v
∗
i ) = 0. From lemma 3.1 and 3.3, the mechanism (s, t) is incentive compatible and

individually rational. ■

Proof of Lemma 3.5

Proof : First, we define the modified virtual value function:

ωi(vi|v∗i , 1) =


ωB
i (vi|1) if vi > v∗i ,

v∗i if vi = v∗i ,

ωS
i (vi|1) if vi < v∗i .

The expected revenue of the mechanism is

R(s) = −
∫ v

v

∫ v

v

(
t1(v1, v2) + t1(v1, v2)

)
f(v2)f(v1)dv2dv1

= −
(∫ v

v

T1(v1)f(v1)dv1 +

∫ v

v

T2(v2)f(v2)dv2

)
From Lemma 1, we know that

U1(v1) = U1(v
∗
i ) +

∫ vi

v∗i

(Sref
i (x1)− ri)dxi

This gives,

Ti(vi) = Ui(v
∗
i )− (Sref

i (vi)− ri)vi +

∫ vi

v∗i

(Sref
i (x1)− ri)dxi

46



Taking expectation of Ti(vi) over vi, we get∫ v

v

Ti(vi)f(vi)dvi =

∫ v

v

(
Ui(v

∗
i )− (Sref

i (vi)− ri)vi +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

)
f(vi)dvi

= Ui(v
∗
i )−

∫ v

v

(Sref
i (vi)− ri)vif(vi)dvi +

∫ v

v

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

)
f(vi)dvi

= Ui(v
∗
i )−

∫ v

v

(Sref
i (vi)− ri)vif(vi)dvi +

∫ v

v∗i

[1− F (xi)](S
ref
i (xi)− ri)dxi

−
∫ v∗i

v

F (xi)(S
ref
i (xi)− ri)dxi

= Ui(v
∗
i )−

∫ v∗i

v

(Sref
i (vi)− ri)vif(vi)dvi −

∫ v∗i

v

F (xi)(S
ref
i (xi)− ri)dxi

−
∫ v

v∗i

(Sref
i (vi)− ri)vif(vi)dvi +

∫ v

v∗i

[1− F (xi)](S
ref
i (xi)− ri)dxi

= Ui(v
∗
i )−

∫ v

v∗i

(Sref
i (vi)− ri)

(
vi −

(1− F (vi))

f(vi)

)
f(vi)dvi

−
∫ v∗i

v

(Sref
i (vi)− ri)

(
vi +

F (vi)

f(vi)

)
f(vi)dvi

= Ui(v
∗
i )−

∫ v

v

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi

= Ui(v
∗
i )−

∫ v

v

∫ v

v

ωi(vi|v∗i , 1)
{
(1 + ηµ)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj

Substituting the expression of
∫ v

v
Ti(vi)f(vi)dvi in the revenue function gives

R(s) =
2∑

i=1

(∫ v

v

∫ v

v

ω(vi|v∗i , 1)
{
(1 + ηµ)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj − Ui(v

∗
i )

)
■

Proof of Theorem 3.1

Proof : First, we define the modified virtual value function:

ωi(vi|v∗i , α) =


ωB
i (vi|α) if vi > v∗i ,

v∗i if vi = v∗i ,

ωS
i (vi|α) if vi < v∗i .
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The objective function is

Wα(s) = (1− α)
2∑

i=1

(∫ v

v

∫ v

v

(
(1 + ηµi)si(vi.vj)vi

)
f(vi)f(vj)dvidvj

)
+ αR(s)

Now, we substitute the revenue function from lemma 3.5 in the above equation.

Wα(s) = (1− α)
2∑

i=1

(∫ v

v

∫ v

v

(
(1 + ηµi)si(vi.vj)v1

)
f(vi)f(vj)dvidvj

+ α

2∑
i=1

(∫ v

v

∫ v

v

ωi(vi|v∗i , 1)
{
(1 + ηµi)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj − Ui(v

∗
i )

)

=
2∑

i=1

(∫ v

v

∫ v

v

ωi(vi|v∗i , α)
{
(1 + ηµi)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj − αUi(v

∗
i )

)
■

Proof of Theorem 3.2

Proof : The maximization problem can be written as

max
s

Wα(s) =

∫ v

v

∫ v

v

(
(1 + η)s1(v1, v2)ω

B
1 (v1|α) + (1 + ηλ)(s2(v1, v2)− 1)ωS

2 (v2|α)

− αU1(v)− αU2(v)

)
f(v1)f(v2)dv1dv2

s.t. s1(v1, v2) + s1(v1, v2) = 1

S1(v1) is non-decreasing in v1

S2(v2) is non-decreasing in v2

U1(v) ≥ 0

U2(v) ≥ 0

Individual rationality constraint is binding. So,

max
s

Wα(s) =

∫ v

v

∫ v

v

(
(1 + η)s1(v1.v2)ω

B
1 (v|α) + (1 + ηλ)(s2(v1, v2)− 1)ωS

2 (v|α)
)
f(v1)f(v2)dv1dv2

s.t. s1(v1, v2) + s1(v1, v2) = 1

S1(v1) is non-decreasing in v1

S2(v2) is non-decreasing in v2
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Because of the regularity of the distribution, we can use the point-wise maximization to find

the allocation (s1, s2) that solves the above maximization problem. Consider the following

allocation s = (s1, s2):

s1(v1, v2) =

{
1 if ωB

1 (v1|α) ≥ kωS
2 (v2|α),

0 if ωB
1 (v1|α) < kωS

2 (v2|α).
and s2(v1, v2) =


1 if ωS

2 (v2|α) ≥
ωB
1 (v1|α)
k

,

0 if ωS
2 (v2|α) <

ωB
1 (v1|α)
k

.

(3.12)

where k =
1 + ηλ

1 + η
.

First, we show that the allocation s satisfies the constraint. When ωB
1 (v1|α) ≥ kωS

2 (v2|α),
then s1(v1, v2) = 1 according to the mechanism. It is implicit from ωB

1 (v1|α) ≥ kωS
2 (v2|α)

that
ωB
1 (v1|α)
k

> ωS
2 (v2|α) and according to the mechanism s2(v1, v2) = 0. This gives

s1(v1, v2)+s2(v1, v2) = 1. Similarly, ωB
1 (v1|α) < kωS

2 (v2|α) implies that ωS
2 (v2|α) >

ωB
1 (v1|α)
k

and according to the mechanism s1(v1, v2) = 0 and s2(v1, v2) = 1 which gives s1(v1, v2) +

s2(v1, v2) = 1.

Next, we show that this allocation rule maximizes Wα(s). Since the allocation satisfies

s1(v1, v2) + s1(v1, v2) = 1,

Wα(s) =

∫ v

v

∫ v

v

(
(1 + η)s1(v1, v2)ω

B
1 (v1|α)− (1 + ηλ)s1(v1, v2)ω

S
2 (v2|α)

)
f(v1)f(v2)dv1dv2

=

∫ v

v

∫ v

v

(
(1 + η)ωB

1 (v1|α)− (1 + ηλ)ωS
2 (v2|α)

)
s1(v1, v2)f(v1)f(v2)dv1dv2

The function is maximized at s1(v1, v2) = 1 if (1 + η)ωB
1 (v1|α) > (1 + ηλ)ωS

2 (v2|α) or

ωB
1 (v1|α) > kωS

2 (v2|α). That means, s2(v1, v2) = 0 if ωB
1 (v1|α) > kωS

2 (v2|α) or ωS
2 (v2|α) <

ωB
1 (v1|α)
k

. On the other hand, if (1+η)ωB
1 (v1|α) < (1+ηλ)ωS

2 (v2|α) or ωB
1 (v1|α) < kωS

2 (v2|α),
thenWα(s) attains its maximum value (which is 0) at s1(v1, v2) = 0. That means, s2(v1, v2) =

1 if ωB
1 (v1|α) < kωS

2 (v2|α) or ωS
2 (v2|α) >

ωB
1 (v1|α)
k

.

3.6.1 Proof of Proposition 3.1

The optimization problem under consideration is

max
s

2∑
i=1

(∫ v

v

∫ v

v

ωi(vi|x∗i , α)
{
(1 + ηµi)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj

)
s.t. s1(v1, v2) + s2(v1, v2) = 1
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We prove that

s∗i (vi, vj) =


1 if ωi(vi|x∗i , α) > kωj(vj|x∗j , α),

ri if
ωj(vj|x∗j , α)

k
< ωi(vi|x∗i , α) < kωj(vj|x∗j , α),

0 if ωi(vi|x∗i , α) <
ωj(vj|x∗j , α)

k
.

solves the above maximization problem.

We first show that the allocation s∗ satisfies the constraint. When ωi(vi|x∗i , α) >

kωj(vj|x∗j , α), then s∗1 = 1 according to the mechanism. It is implicit from ωi(vi|x∗i , α) >

kωj(vj|x∗j , α) that
ωi(vi|x∗i , α)

k
> ωj(vj|x∗j , α) and according to the mechanism s∗j = 0.

This means s∗i (vi, vj) + s∗j(vi, vj) = 1. Similarly, ωi(vi|x∗i , α) <
ωj(vj|x∗j , α)

k
implies that

kωi(vi|x∗i , α) < ωj(vj|x∗j , α) and according to the mechanism s∗i = 0 and s∗j = 1 which gives

s∗i (vi, vj)+ s∗j(vi, vj) = 1. Whenever
ωj(vj|x∗j , α)

k
< ωi(vi|x∗i , α) < kωj(vj|x∗j , α), it is implicit

that
ωi(vi|x∗i , α)

k
< ωj(vj|x∗j , α) < kωi(vi|x∗i , α) and according to s∗, s∗1 = r1 and s∗2 = r2

which gives s∗1(v1, v2) + s∗2(v1, v2) = r1 + r2 = 1.

2∑
i=1

(∫ v

v

∫ v

v

ωi(vi|x∗i , α)
{
(1 + ηµi)(si(vi, vj)− ri)

}
f(vi)f(vj)dvidvj

)
=

∫ v

v

∫ v

v

(
ω1(v1|x∗1, α)

{
(1 + ηµ1)(s1(v1, v2)− r1)

}
+ ω2(v2|x∗2, α)

{
(1 + ηµ2)(s2(v1, v2)− r2)

})
f(v1)f(v2)dv1dv2

=

∫ v

v

∫ v

v

(
ω1(v1|x∗1, α)

{
(1 + ηµ1)(s1(v1, v2)− r1)

}
+ ω2(v2|x∗2, α)

{
(1 + ηµ2)(1− s1(v1, v2)− 1 + r1)

})
f(v1)f(v2)dv1dv2

=

∫ v

v

∫ v

v

(
ω1(v1|x∗1, α)

{
(1 + ηµ1)(s1(v1, v2)− r1)

}
− ω2(v2|x∗2, α)

{
(1 + ηµ2)(s1(v1, v2)− r1)

})
f(v1)f(v2)dv1dv2

=

∫ v

v

∫ v

v

({
(1 + ηµ1)ω1(v1|x∗1, α)− (1 + ηµ2)ω2(v2|x∗2, α)

}
(s1(v1, v2)− r1)

)
f(v1)f(v2)dv1dv2

There are three possible cases:

• Case 1: s1(v1, v2) > r1
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If s1(v1, v2) > r1, then s2(v1, v2) < r2 since r1 + r2 = 1. So, µ1 = 1 and µ2 = λ. Hence,

Wα(s) =

∫ v

v

∫ v

v

({
(1 + η)ω1(v1|x∗1, α)− (1 + ηλ)ω2(v2|x∗2, α)

}
(s1(v1, v2)− r1)

)
f(v1)f(v2)dv1dv2

If (1 + η)ω1(v1|x∗1, α) > (1 + ηλ)ω2(v2|x∗2, α) or ω1(v1|x∗1, α) > kω2(v2|x∗2, α), then by

point-wise maximization, set the maximum value to s1(v1, v2) i.e. s1(v1, v2) = 1. This

implies s2(v1, v2) = 0 and

Wα(1, 0) =

∫ v

v

∫ v

v

({
(1 + η)ω1(v1|x∗1, α)− (1 + ηλ)ω2(v2|x∗2, α)

}
(1− r1)

)
f(v1)f(v2)dv1dv2

• Case 2: s1(v1, v2) < r1

If s1(v1, v2) < r1, then s2(v1, v2) > r2 since r1 + r2 = 1. So, µ1 = λ and µ2 = 1. Hence,

Wα(s) =

∫ v

v

∫ v

v

({
(1 + ηλ)ω1(v1|x∗1, α)− (1 + η)ω2(v2|x∗2, α)

}
(s1(v1, v2)− r1)

)
f(v1)f(v2)dv1dv2

If (1 + ηλ)ω1(v1|x∗1, α) < (1 + η)ω2(v2|x∗2, α) or ω1(v1|x∗1, α) <
ω2(v2|x∗2, α)

k
, then by

point-wise maximization, set the lowest value to s1(v1, v2) i.e. s1(v1, v2) = 0.This

implies s2(v1, v2) = 1 and

Wα(0, 1) =

∫ v

v

∫ v

v

({
(1 + η)ω2(v2|x∗2, α)− (1 + ηλ)ω1(v1|x∗1, α)

}
(r1)

)
f(v1)f(v2)dv1dv2

• Case 3: s1(v1, v2) = r1

If s1(v1, v2) = r1, then s2(v1, v2) = r2 since r1 + r2 = 1. So, µ1 = µ2 = 1 and

Wα(r1, r2) = 0

Note that Wα(r1, r2) is optimal if Wα(r1, r2) > Wα(1, 0) and Wα(r1, r2) > Wα(0, 1).

It is straightforward to find thatWα(r1, r2) > Wα(1, 0) gives (1+η)ω1(v1|x∗1, α) < (1+

ηλ)ω2(v2|x∗2, α) or ω1(v1|x∗1, α) < kω2(v2|x∗2, α). Similarly, Wα(r1, r2) > Wα(0, 1) gives

(1 + ηλ)ω1(v1|x∗1, α) > (1 + η)ω2(v2|x∗2, α) or ω1(v1|x∗1, α) >
ω2(v2|x∗2, α)

k
. Therefore,

(r1, r2) is optimal for
ω2(v2|x∗2, α)

k
< ω1(v1|x∗1, α) < kω2(v2|x∗2, α)

■
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Proof of Theorem 3.3

Proof : Assuming the existence part is true, we first prove that if s∗ as defined in (3.7)

satisfies, then s∗ solves the original maximization problem. Assume that s∗ satisfies Sref
i (vi)−

ri = 0 for some xi ∈ [ωB
i (v

∗
i |α), ωS

i (v
∗
i |α)] then s∗ solves Wα.

From (3.7), s∗(v) satisfies

s∗i (vi, vj) =


1 if ωi(vi|x∗i , α) > kωj(vj|x∗j , α),

ri if
ωj(vj|x∗j , α)

k
< ωi(vi|x∗i , α) < kωj(vj|x∗j , α),

0 if ωi(vi|x∗i , α) <
ωj(vj|x∗j , α)

k
.

We have assumed that s∗ satisfies Sref
i (vi) − ri = 0 for vi ∈

[
(ωS

i )
−1(xi), (ω

B
i )

−1(xi)
]
. This

implies that Ωi(S
ref ) =

[
(ωS

i )
−1(xi), (ω

B
i )

−1(xi)
]
for all i ∈ {1, 2}. So s∗ satisfies all con-

straints in the original problem. Now consider any alternative implementable allocation ŝ.

For any v∗i ∈ Ωi(S
ref
i ) and v̂i ∈ Ωi(Ŝ

ref
i ), we have:

2∑
i=1

(∫ v

v

ω(vi|v∗i , α)
{
Sref
i (vi, vj)− ri)

}
f(vi)dvi

)
(3.13)

=
2∑

i=1

(∫ v

v

ω(vi|x∗i , α)
{
Sref
i (vi, vj)− ri

}
f(vi)dvi

)
(3.14)

This equality is because ω(vi|x∗i , α) = ω(vi|v∗i , α) for vi /∈ [(ωS
i )

−1
(
x∗i
)
, (ωB

i )
−1(x∗i )] and from

second condition of s∗. Because s∗ is the optimal allocation, we have

2∑
i=1

(∫ v

v

ω(vi|x∗i , α)
{
Sref
i (vi, vj)− ri

}
f(vi)dvi

)
(3.15)

≥
2∑

1=1

(∫ v

v

ω(vi|x∗i , α)
{
Ŝref
i (vi, vj)− ri

}
f(vi)dvi

)
(3.16)

Combining equations (3.13) to (3.16) give

2∑
i=1

(∫ v

v

ω(vi|v∗i , α)
{
Sref
i (vi, vj)− ri

}
f(vi)dvi

)

≥
2∑

1=1

(∫ v

v

ω(vi|x∗i , α)
{
Ŝref
i (vi, vj)− ri

}
f(vi)dvi

)

≥
2∑

1=1

(∫ v

v

ω(vi|v̂i, α)
{
Ŝref
i (vi, vj)− ri

}
f(vi)dvi

)
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The last inequality is explained as follows: When vi < v̂i, ω(vi|x∗i , α) ≤ ω(vi|v̂i, α) and

Sref
i (v̂i) − ri ≤ 0. If vi > v̂i, ω(vi|x∗i , α) ≥ ω(vi|v̂i, α) and Sref

i (v̂i) − ri ≥ 0. This im-

plies, ω(vi|x∗i , α)(S
ref
i (v̂i)− ri) ≥ ω(vi|v̂i, α)(Sref

i (v̂i)− ri). Hence s
∗ maximizes the original

objective function.

Now, we prove the existence of x∗ such that the allocation s∗ satisfies (3.7) for that par-

ticular x∗. Suppose that agents share the same x∗ and have the same ironed virtual valuation

function i.e. ω1(v1|x∗, α) = ω2(v2|x∗, α) = ω(vi|x∗, α), ∀i ∈ {1, 2}. Since Sref
i (vi)− ri = 0

for vi ∈
[
(ωS

i )
−1(x∗), (ωB

i )
−1(x∗)

]
and for i ∈ {1, 2}, x∗ must be such that the following holds

for agent 1:∫ (ωS
1 )

−1(x∗/k)

v

(1 + η)(1− r1)f(v2)dv2 +

∫ v

(ωB
1 )−1(kx∗)

(1 + ηλ)(0− r1)f(v2)dv2 = 0

v∗iv v

vi

ωi(vi|xi, α)

ωS
i (v∗i |α)

ωB
i (v∗i |α)

ωi(vi|xi, α)

ωi(vi|xi, α)
k

kωi(vi|xi, α)

x∗

(ωs
1)

−1 (x∗/k)
(
ωB
1

)−1
(kx∗)

The explanation is as follows. For v1 ∈
[
(ωS

1 )
−1(x∗), (ωB

1 )
−1(x∗)

]
, the ironed virtual

valuation of agent 1 is x∗. So agent 2’s virtual valuation is to be compared with kx∗ and

x∗/k. Hence, we need to find the set of valuations of agent 2 for the following cases: (a)

ω(v2|x, α) < x∗/k, (b) x∗/k < ω(v2|x, α) < kx∗ and (c) ω(v2|x, α) > kx∗. For ω(v2|x, α) <
x∗, ω(v2|x, α) = ωS(v2|α) and for ω(v2|x, α) > x∗, ω(v2|x, α) = ωB(v2|α).

From the graph, it can be seen that for v2 < (ωS
1 )

−1(x∗/k), ωS(v2|α) < x∗/k. According

to allocation s∗, agent 1 will get the entire object. Since (s∗1, s
∗
2) = (1, 0), µ1 = 1 and µ2 = 0.

Therefore, Sref
1 (v1)−r1 =

∫ (ωS
1 )

−1(x∗/k)

v
(1+η)(1−r1)f(v2)dv2 for v2 < (ωS

1 )
−1(x∗/k). Similarly
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for v2 > (ωB
1 )

−1(kx∗), ωB(v2|α) > kx∗ and the optimal mechanism allocates the entire object

to agent 2. As a result, µ1 = λ and µ2 = 1. Therefore, Sref
1 (v1)−r1 =

∫ v

(ωB
1 )−1(kx∗)

(1+ηλ)(0−
r1)f(v2)dv2 for v2 > (ωB

1 )
−1(kx∗). For (ωS

1 )
−1(x∗/k) < v2 < (ωB

1 )
−1(kx∗), x∗/k < ω(v2|α) <

kx∗ and implicitly, ω(v2|α)/k < x∗ < kω(v2|α). Hence according to the optimal allocation,

s∗1 = r1 and s∗2 = r2 and Sref
i (vi) − ri = 0 for (ωS

1 )
−1(x∗/k) < v2 < (ωB

1 )
−1(kx∗). From all

these cases, we get the equation.

So,

(1 + η)(1− r1)F

(
(ωS

1 )
−1(x∗/k)

)
− r1(1 + ηλ)

[
1− F

(
(ωB

1 )
−1(kx∗)

)]
= 0

This implies,

r2F

(
(ωS

1 )
−1(x∗/k)

)
+ kr1F

(
(ωB

1 )
−1(kx∗)

)
= kr1 (3.17)

Similarly, for agent 2,

r1F

(
(ωS

2 )
−1(x∗/k)

)
+ kr2F

(
(ωB

2 )
−1(kx∗)

)
= kr2 (3.18)

Adding (3.17) and (3.18) gives

F

(
(ωS)−1(x∗/k)

)
+ kF

(
(ωB)−1(kx∗)

)
= k (3.19)

because ωA
1 (v|α) = ωA

2 (v|α) for A ∈ {B, S}
Notice that for x∗ = kv

F

(
(ωS)−1(x∗/k)

)
+ kF

(
(ωB)−1(kx∗)

)
= F

(
(ωS)−1(v)

)
+ kF

(
(ωB)−1(k2v)

)
< kF (v)

= k

For x∗ =
v

k

F

(
(ωS)−1(x∗/k)

)
+ kF

(
(ωB)−1(kx∗)

)
= F

(
(ωS)−1(

v

k2
)

)
+ kF

(
(ωB)−1(v)

)
> F (v) + k

= k

Due to continuity and monotonicity of F

(
(ωS)−1(v/k)

)
+kF

(
(ωB)−1(kv)

)
, there will exist

an x∗ ∈

[
kv, v

k

]
that satisfies (3.19). ■
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Chapter 4

Efficient Dissolution Mechanisms

4.1 Introduction

The classical work of Myerson and Satterthwaite (1983) laid the foundation for the bargain-

ing models and showed that under extreme ownership shares where one agent has all the

shares of the object (seller) and the other agent has none (buyer), efficient outcome can be

implemented by an incentive compatible and individually rational mechanism if and only if

an outside party provides a subsidy. Cramton et al. (1987) showed that efficient outcome is

possible if the ownership structure is symmetric. Since then, literature has explored the pos-

sibility (impossibility) of reallocation of object to achieve ex-post efficiency by analyzing the

conditions on the initial ownership shares (Makowski and Mezzetti (1993), McAfee (1991)).

In chapters 1 and 2, we have explored the literature on loss-averse preferences, and the

evidence shows that the possibility of trade or dissolution is reduced due to the higher loss

sensitivity associated with losing the share compared to the gains. We try to answer the

following question: We try to answer the following question: Does the Cramton et al. (1987)

possibility result hold with loss-averse agents? i.e., with an equal-share partnership, is it

still possible to dissolve the partnership with an efficient, Bayesian incentive compatible

and interim individually rational mechanism, or does it depend on the values of the loss

aversion parameters? We find that with loss-averse agents, it is not always possible to

dissolve an equal-share partnership efficiently. There exists a cut-off point for the loss aversion

parameters such that the partnership cannot be dissolved by a Bayesian incentive compatible,

individually rational, and efficient mechanism, even when the agents have equal shares, for

any distribution. However, we cannot say that for parameter values less than the cutoff

point, an equal share partnership is dissolvable by a Bayesian incentive compatible, interim

individually rational, budget balanced and efficient mechanism. The particular values of loss

aversion parameters such that the equal share partnership can be dissolved efficiently depend
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on the specific distribution. Therefore, without knowledge of the loss aversion parameters

and distribution functions, it is not possible to decide whether efficient trade can take place.

This is in contrast to Cramton et al. (1987) and our result generalises the result of Cramton

et al. (1987) (when there is no loss aversion). The reason the possibility result breaks down

is the following: As sensitivity to losses increases, the set of values at which trade could be

implemented is reduced. This leads to a shrinking of the set of values at which dissolution

takes place. A higher sensitivity to losses means it is less efficient to dissolve the partnership.

Using the example of a unit interval uniform distribution, we provide a range for the loss

aversion parameters at which the dissolution of a partnership is efficient.

We also consider a one owner partnership model (bilateral trade) and show that the

impossibility result of Myerson and Satterthwaite (1983) still persists. The result is quite

intuitive since the agents are less willing to participate in the trade due to the loss aversion

with respect to losing the initial share. However, we find that the minimal subsidy required

to implement the efficient outcome decreases as the loss sensitivity of agents increases. The

possible reason for this is could be the following: As sensitivity to the losses increase, the set

of values at which trade could be conducted is reduced. With less possibility of trade, the

requirement for minimal subsidy also reduces. There could occur a possibility that the loss

aversion parameters are so high that the agents do not participate in the trade and therefore,

the minimal subsidy would be 0.

There are few papers in the literature that talk about the departure from quasi-linear

preferences in the bilateral trade setting. Chatterjee and Samuelson (1983) showed that

as agents become infinitely risk-averse, double auctions are efficient asymptotically. Garratt

and Pycia (2023) relaxed the assumption that agents have quasilinear preferences in Myerson

and Satterthwaite (1983) model. They showed that if the agents are risk-averse or the utility

of the agents from the object is dependent on wealth, then there is a possibility that the

trade among the agents is ex-post efficient. Under risk aversion or wealth effects, they give

conditions to realize all gains from trade. Their results show that the impossibility of bilateral

trade is due to the assumption of quasilinear preferences. Under quasilinear preferences,

the reason for the impossibility is that the gains from trade are not sufficient to cover the

information rents (due to private information) of the agents. On the other hand, additional

efficiency gains are generated from risk aversion. Wolitzky (2016) examines efficiency within

a bilateral trade model where both the buyer and seller know the expected valuation of each

other. He demonstrates that efficient trade is feasible under certain parameter conditions

and gives an exact characterization of that.

Benkert (2023) introduced loss aversion in the bilateral trade setting of Myerson and

Satterthwaite (1983). He applies expectation-based loss averse preferences (Köszegi and

Rabin (2006, 2007)) by adapting the narrow bracketing model of Eisenhuth (2018). Eisenhuth
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(2018) considers the problem of designing optimal auction for loss averse agents and he used

two forms of utility functions: (a), gains and losses are evaluated in the good dimension and

in the money dimension separately known as narrow bracketing and (b), gains and losses

are evaluated over the entire risk neutral utility, known as wide bracketing. Benkert (2023)

discusses that loss aversion decreases the buyer’s information rent due to which there is a

possibility that the gains from trade (which are also decreased due to reduction in agent’s

expected utility) can cover the information rent, depending on the parameters of loss aversion.

Note that Benkert (2023) talks about implementing the materially efficient outcome. Our

paper is different because of two reasons: 1) We consider a fixed reference point which is the

initial share/endowment. 2) Benkert (2023) considers loss aversion with respect to transfers

as well. Benkert (2023) also showed that a lower subsidy would be required to implement

the efficient outcome.

Literature on the partnership dissolution focuses on the ownership structure that will

implement efficient outcome. Fieseler et al. (2003) with positive interdependent valuation,

showed that it may not be possible to achieve ex-post efficiency even with equal ownership.

It is impossible to decide whether ex-post efficient reallocation can take place or not without

the knowledge of distribution of private values. Schweizer (2006) showed that the possibility

result holds for all prior distributions if the ex-post efficient surplus is sufficient to cover

ex-post information rents and the value of outside option at the critical valuation for all

type profiles. The impossibility result is true if the ex-post efficient surplus is lower than

the ex-post information rents and the value of outside option at the critical valuation for all

type profiles, irrespective of prior distribution. For the rest of the cases, the possibility or

impossibility result depends on the prior distribution. In a partnership setting where agent’s

type is private information and types are drawn from different distributions, Figueroa and

Skreta (2012) try to find the ownership structure to dissolve the partnership efficiently. They

showed that if the agents’ critical types (types at which the gains from trade are lowest)

are equal, partnership can be dissolved efficiently. When types are drawn from symmetric

distribution, equal property rights guarantee equal critical valuations for agents. In the

case of asymmetric distributions, equal critical types hold for extremely unequal property

rights. They also show that the agents with highest valuation must have a larger share of

the object in the partnership. We could not find any paper in the literature that talks about

departure from quasi-linear preferences in the partnership dissolution and hence ours is the

first paper to study dissolution of partnership for the efficient outcome when preferences are

non-standard.

The rest of the chapter is structured as follows: Section 4.2 introduces the formal frame-

work. The impossibility result with loss averse preferences in bilateral trade and partnership

setting is discussed in section 4.3. Section 4.4 derives optimal mechanisms that maximize
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expected total gains in bilateral trade. Section 4.5 concludes. All the proofs are relegated to

an appendix 4.6 at the end .

4.2 Model

4.2.1 Types, Information and preferences

Two agents, denoted by i ∈ {1, 2}, hold the shares of an asset. Agent 1 owns a share r1 of

the asset and agent 2 owns r2 where r1 + r2 = 1. Valuation for the entire asset by agent i is

vi which is a private information and vi ∼ F [v, v] with positive continuous density f where

v > 0. Agents have loss averse preferences with respect to the share ri, which acts as an

endowment in this case.

Following Köszegi and Rabin (2006), preferences of the loss averse agent are represented

using the following utility function.

ûi(si, ti|vi, ri) = sivi + ti︸ ︷︷ ︸
material utility

+ ηµi

(
sivi − rivi

)
︸ ︷︷ ︸

gain-loss utility in ownership

where

µi(si) =

1 if si ≥ ri,

λ > 1 if si < ri
.

si ∈ [0, 1] is the actual consumption, ri ∈ [0, 1] is the reference level of endowment and

ti ∈ R is transfer (payment). Per unit valuation of the asset vi is the private information

of the agent, sivi is the intrinsic utility of the object and rivi is the reference utility. The

term sivi + ti is the material utility that incorporates the transfers. Gain-loss utilities are

considered with respect to the loss in the reference utility. The loss aversion parameters

are η and λ where η > 0 captures the importance of gain-loss utility relative to intrinsic

utility, and λ > 1 captures the degree of loss aversion. We assume that both the agents have

identical loss aversion parameters.

Note that µi is an indicator function: If si ≥ ri, then there is gain of endowment and if

si < ri, then there is loss. Greater weight to loss is reflected by the fact that λ > 1.

Value of µ can vary across the agents as it depends on the difference between allocation

received and initial endowment, even though λ is same for all agents. Throughout the

analysis, we assume that kv <
v

k
where k =

1 + ηλ

1 + η
.
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4.2.2 Mechanism

A direct revelation mechanism is (s, t) ≡ (s1, s2, t1, t2) where, si : [v, v]2 −→ [0, 1] with

s1(v1, v2) + s2(v1, v2) ≤ 1, ∀v ∈ [v, v]2 and ti : [v, v]
2 −→ R. The agents directly report

their valuations for the object, and then receive the share of the ownership si(vi, vj) and the

transfers ti(vi, vj).

Utility function of agent i from the mechanism when the other agent reports vj is

ûi(vi, vj) = sivi + ti + ηµi

(
si(vi, vj)vi − rivi

)
∀vi ∈ [v, v]

Define srefi (vi, vj) as the modified allocation where

srefi (vi, vj) = si(vi, vj) + ηµi

(
si(vi, vj)− ri

)
This allows us to compactly write ûi(vi, vj) = srefi (vi, vj)vi + ti(vi, vj). Net payoff from the

mechanism, denoted as ui(vi, vj), is defined as the difference between the utility from the

trade ûi(vi, vj) and the reference utility i.e.

ui(vi, vj) =

(
srefi (vi, vj)− ri

)
vi + ti(vi, vj)

The expected modified share and expected money transfer for player i when he announces

vi are S
ref
i (vi) and Ti(vi) where

Sref
i (vi)− ri =

∫
vj

(si(vi, vj) + ηµi(si(vi, vj)− ri)− ri)f(vj)dvj

=

∫
vj :si≥ri

(si(vi, vj)− ri + η(si(vi, vj)− ri))f(vj)dvj

+

∫
vj :si<ri

(si(vi, vj)− ri + ηλ(si(vi, vj)− ri))f(vj)dvj

=

∫
vj

(1 + ηµi)(si(vi, vj)− ri)f(vj)dvj

and

Ti(vi) =

∫
vj

ti(vi, vj)f(vj)dvj

So the agent’s expected net payoff is

Ui(vi) = (Sref
i (vi)− ri)vi + Ti(vi) (4.1)

This model generalizes the bilateral trade setting considered by Myerson and Satterthwaite

(1983). If agent 1 does not have any share of the object (r1 = 0) and agent 2 has the entire
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ownership of the good (r2 = 1), then the utility function of agent 1 is (1 + η)s1(v1, v2)v1 +

t1(v1, v2) where (1 + η)s1(v1, v2) is the gain utility in the share of the object and the utility

function of agent 2 is (1 + ηλ)(s2(v1, v2)− 1)v2 + t1(v1, v2) where (1 + ηλ)(s2(v1, v2)− 1) is

loss in the share of the object due to loss aversion.

We define incentive compatibility and individual rationality of the mechanism.

Definition 4.1 The mechanism (s1, s2, t1, t2) is Bayesian incentive compatible (BIC)

if for all i and for every vi, v̂i ∈ [v, v],

Ui(vi) ≥ (Sref
i (v̂i)− ri)vi + Ti(v̂i)

Definition 4.2 The mechanism (s1, s2, t1, t2) is interim individually rational (IIR) if

for all i and for all vi ∈ [v, v],

(Sref
i (vi)− ri)vi + Ti(vi) ≥ 0

We now give a necessary and sufficient condition for a mechanism to be incentive incom-

patible.

Lemma 4.1 The mechanism (s1, s2, t1, t2) is incentive compatible if and only if for agent i

and j, Sref
i (vi) is non-decreasing and

Ui(vi) = Ui(v
∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi (4.2)

For a given monotone allocation rule, payoff equivalence pins down interim expected

payoffs Ui and payments Ti up to a constant. Equation (4.2) implies that expected net utility

Ui(vi) is continuous and convex in vi. The continuity of Ui(vi) implies it has a minimum at

some v∗i ∈ [v, v] where v∗i is defined in the following lemma.

Lemma 4.2 Given a Bayesian incentive-compatible mechanism (s, t), agent i’s net utility is

minimized at

v∗i ∈ Ω(Sref
i ) = {vi : Sref

i (z)− ri ≤ 0 ∀z < vi;S
ref
i (z)− ri ≥ 0 ∀z > vi} (4.3)

Note that Ω(Sref
i ) is non-empty because Sref

i (vi) is non-decreasing (Lemma 4.1)

Lemma 4.3 An incentive-compatible mechanism (s, t) is interim individually rational if and

only if for all i ∈ {1, 2}
Ui(v

∗
i ) ≥ 0
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For any allocation (s1, s2) such that Sref
i (vi) is non-decreasing for all i ∈ {1, 2}, Ωi(S

ref ) is

well-defined in (4.3) and is called the worst off types. Equations (4.2) and (4.3) imply that

expected net utility Ui(vi) is continuous and convex in vi and is minimized at v∗i ∈ Ω(Sref
i ).

The modified expected share Sref
i (vi) is a continuous function with ri in its range. The worst

off v∗i type satisfies Sref
i (v∗i )− ri = 0 i.e. the worst-off type expects to receive a share equal

to his initial ownership share ri. As in Cramton et al. (1987) and Lu and Robert (2001), this

means that, on an average, the worst-off type expects to be neither a buyer nor a seller of

the asset. Therefore, he has no incentive to overstate or understate his valuation. Hence, he

does not need to be compensated in order to induce him to report his valuation truthfully. It

is no longer clear who is selling and who is buying prior to revelation of types, but on average

agent i is a buyer if his type vi ≥ maxv∗i ∈Ω(Sref ) v
∗
i and a seller if his type vi ≤ minv∗i ∈Ω(Sref ) v

∗
i .

Define, for any α ≥ 0 and v ∈ [v, v],

ωB
i (vi|α) = vi − α

(1− F (vi))

f(vi)
and ωS

i (vi|α) = vi + α
F (vi)

f(vi)
(4.4)

where ωB
i (vi|α) and ωS

i (vi|α) are referred to as the α-virtual valuation of agents buyer-type

and seller-type respectively. We will impose the regularity assumption that each agent’s

α-weighted valuation is strictly increasing, i.e.,

d

dv
ωB
i (v|α) ≥ 0 and

d

dv
ωS
i (v|α) ≥ 0 ∀v ∈ [v, v]

Given a Bayesian incentive compatible and interim individually rational mechanism, for

v∗i ∈ Ω(Sref
i ), let

ωi(vi|v∗i , α) =


ωB
i (vi|α) if vi > v∗i ,

v∗i if vi = v∗i ,

ωS
i (vi|α) if vi < v∗i .

If ri = 0, then v ∈ Ω(Sref ) for all implementable allocations s. For v∗i = v, ωi(vi|v, α) =

vi − α
(1− F (vi))

f(vi)
= ωB

i (vi|α) ∀vi > v implying agent i has buyer-type virtual valuations.

If ri = 1, then v ∈ Ω(Sref ) for all implementable allocations s. For v∗i = v, ωi(vi|v, α) =

vi + α
F (vi)

f(vi)
= ωS

i (vi|α) ∀vi < v implying agent i has seller-type virtual valuations. For

ri ∈ (0, 1), v∗i is between v and v which means that agent i has virtual valuations of both,

buyer-type and seller-type.

The above lemmas give a necessary and sufficient condition for a mechanism to be BIC,

IIR and budget-balanced, specified below.

Lemma 4.4 For any allocation s such that Sref
i (vi) is non-decreasing for all i ∈ {1, 2}, there

exists a transfer function t where
∑2

i=1 ti = 0 such that (s, t) is incentive compatible and
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individually rational if and only if

ϕ(r1, r2) =
2∑

i=1

∫ v

v

ω(vi|v∗i , 1)(S
ref
i (vi, vj)− ri)f(vi)dvi ≥ 0 (4.5)

where v∗i ∈ Ω(Sref
i ).

4.3 Efficient outcome in Bilateral Trade and General

Partnership

A partnership can be dissolved efficiently if there exists an ex post efficient trading mechanism

(s, t) that is Bayesian incentive compatible and interim individually rational. One owner

partnership is equivalent to bilateral trade of Myerson and Satterthwaite (1983). From

proposition 2.1, the efficiency condition in the case of one owner partnership reduces to

s1(v1, v2) =

1 if v1 > kv2,

0 if v1 <
v2
k
.

We check if the condition mentioned in lemma 4.4 is satisfied in buyer-seller setup. The

result is stated below:

Proposition 4.1 A one-owner partnership (ri = 1, rj = 0) cannot be dissolved efficiently.

The proof of the above proposition indicates that the minimum subsidy required to implement

efficient outcome with loss averse agents is (1+η)
∫ v

kv

(
1−F (x)

)
F
(x
k

)
dx. Next we check the

efficiency loss by comparing the minimum subsidy in case of loss aversion and standard case.

In Myerson and Satterthwaite (1983), the minimal subsidy required was
∫ v

v
(1−F (x))F (x)dx.

Next we check the efficiency loss by comparing the minimum subsidy in case of loss

aversion and standard case. In Myerson and Satterthwaite (1983), the minimal subsidy

required was
∫ v

v
(1− F (x))F (x)dx.

Let

S(k) = (1 + η)

∫ v

kv

(
1− F (x)

)
F (
x

k
)dx

We want to check whether the subsidy increases if, for a given η > 0, λ increases.
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We will use Leibniz rule to find
dS(k)

dλ
.

dS(k)

dλ
= (1 + η)

[ ∫ v

kv

(1− F (x))f

(
x

k

)(
− x

k2

)
dk

dλ
dx

]
= −(1 + η)

∫ v

kv

(1− F (x))f

(
x

k

)(
x

k2

)
η

1 + η
dx

= η

∫ v

kv

(1− F (x))f

(
x

k

)(
x

k2

)
dx

As λ increases, the minimal subsidy required decreases. Therefore, the loss in efficiency

decreases with increase in the loss sensitivity parameter.

Now, we examine if Cramton et al. (1987) result remains applicable when preferences

exhibit loss aversion for equal share partnerships or there exists an impossibility. The result

is stated below.

Theorem 4.1 Equal share partnerships cannot be dissolved by a BIC, IIR, budget balanced

and efficient mechanism for k ≥
√
v

v
.

We have found a cut-off point k∗ =

√
v

v
for the loss aversion parameters beyond which the

partnership cannot be dissolved by a Bayesian incentive compatible, individually rational,

and efficient mechanism, even when the agents have equal shares, for any distribution. We

cannot say that for k <

√
v

v
equal share partnership is dissolvable by a BIC, IIR, budget

balanced and efficient mechanism. The particular values of loss aversion parameters such that

the equal share partnership can be dissolved efficiently depend on the specific distribution.

This is in contrast to Cramton et al. (1987) and our result generalizes the result of Cramton

et al. (1987) (when there is no loss aversion). The impossibility of implementing efficient

trade occurs due to the following reason. A higher sensitivity to losses leads to a reduction

in the range of values at which trade can occur. Consequently, the set of values at which

dissolution takes place is reduced. A heightened sensitivity to losses implies that dissolving

the partnership becomes less efficient.

Garratt and Pycia (2023) showed that the impossibility result in bilateral trade setting

hinges on the assumption that agents have quasilinear utility functions. Their results proved

that ex-post efficient trade via BIC, IIR and budget balanced mechanism among privately

informed parties is possible in situations where the trading parties exhibit risk aversion or

where their utility derived from the traded object is contingent upon their wealth. Wolitzky

(2016) introduced max-min preferences of Gilboa and Schmeidler (1989) in the bilateral

trade setting and provided an exact characterization of when efficient trade is possible, while
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assuming that each agent knows the other agent’s expected valuation for the good. These

papers show that it is possible to have efficient outcome for different kind of behavioural

preferences. Our result, on the other hand, breaks down the possibility result, when partners

exhibit loss aversion.

It is difficult to derive a closed form solution of loss aversion parameters such that the

efficient outcome is implementable for general distributions. However, we show an example

to derive a closed form solution for uniform distribution.

Example 4.1 Consider the case of uniformly distributed types on the unit interval [1, 2].

Then f(v) = 1 and F (v) = v − 1.

First we find the worst off type v∗i using the condition Sref
i (v∗i )− ri = 0.

v∗i
k

− 1 + k(kv∗i − 1) = k

which gives

v∗i =
2k2 + k

1 + k3
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Then,

ϕ =

∫ v

v/k

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

))
f(vi)dvi

+

∫ v/k

v∗i

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

+

∫ v∗i

kv

[
vi +

F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

−
∫ kv

v

[
vi +

F (vi)

f(vi)

](
1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

= (1 + η)

∫ 2

2/k

[
2vi − 2

](
vi
k
− 1

)
dvi

+

∫ 2/k

v∗i

[
2vi − 2

]((
vi
k
− 1

)
− k

(
1−

(
kvi − 1

)))
dvi

+

∫ v∗i

k

[
2vi − 1

]((
vi
k
− 1

)
− k

(
1−

(
kvi − 1

)))
dvi

−
∫ k

1

[
2vi − 1

](
k

(
1−

(
kvi − 1

)))
dvi

= −4 (k − 1) (2k2 − k − 4)

3k4
− (k2 − 2)

2
(3k4 − 6k3 − k2 + 3k − 4)

3k4 · (k + 1)2 (k2 − k + 1)2

− k3 · (k2 − 2)
2
(4k4 − 3k3 + 4k2 + 6k − 3)

6 (k + 1)2 (k2 − k + 1)2
+

(k − 1) k2 · (4k2 + k − 11)

6
.

For vi ∼ U [1, 2], ϕ ≥ 0 for k ∈ [1, 1.1556] and ϕ < 0 for k > 1.1556.

4.4 Maximizing expected gains in dissolution

For bilateral trade with loss averse preferences, ex post efficiency is unattainable. Therefore,

we seek a mechanism that maximizes expected total gains from trade, subject to the incentive

compatibility and individual-rationality constraints. Suppose agent 1 is a buyer and agent 2

is a seller. We have to choose s to maximize

W0(s) =

∫ v

v

∫ v

v

(
sref1 (v1, v2)v1 + sref2 (v1, v2)v2

)
f(v1)f(v2)dv1dv2

subject to∫ v

v

∫ v

v

(
(1+η)s1(v1.v2)

[
v1−

(1− F (v1))

f(v1)

]
+(1+ηλ)(s2(v1, v2)−1)

[
v2+

F (v2)

f(v2)

])
f(v1)f(v2)dv1dv2 ≥ 0
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Consider the following allocation:

sα1 (v1, v2) =

{
1 if ωB

1 (v1|α) ≥ kωS
2 (v2|α),

0 if ωB
1 (v1|α) < kωS

2 (v2|α).
(4.6)

and

sα2 (v1, v2) =


1 if ωS

2 (v2|α) ≥
ωB
1 (v2|α)
k

,

0 if ωS
2 (v2|α) <

ωB
1 (v2|α)
k

.
(4.7)

where k =
1 + ηλ

1 + η
.

Using the constrained optimization, the Lagrange multiplier is γ and we get∫ v

v

∫ v

v

(
(1 + η)s1(v1.v2)v1 + γ

[
v1 −

(1− F (v1))

f(v1)

]
(1 + η)s1(v1.v2)

+ (1 + ηλ)(s2(v1, v2)− 1) + γ

[
v2 +

F (v2)

f(v2)

]
(1 + ηλ)(s2(v1, v2)− 1)

)
f(v1)f(v2)dv1dv2

=

∫ v

v

∫ v

v

(
(1 + γ)(1 + η)s1(v1, v2)v1 − γ

(1− F (v1))

f(v1)

+ (1 + γ)(1 + ηλ)(s2(v1, v2)− 1) + γ
F (v2)

f(v2)

)
f(v1)f(v2)dv1dv2

= (1 + γ)

∫ v

v

∫ v

v

(
(1 + η)s1(v1.v2)

[
v1 −

γ

1 + γ

(1− F (v1))

f(v1)

]
+ (1 + ηλ)(s2(v1, v2)− 1)

[
v2 +

γ

1 + γ

F (v2)

f(v2)

])
f(v1)f(v2)dv1dv2

= (1 + γ)

∫ v

v

∫ v

v

(
(1 + η)s1(v1, v2)ω

B
1

(
v1|γ/1 + γ

)
+ (1 + ηλ)(s2(v1, v2)− 1)ωS

2

(
v2|γ/1 + γ

))
f(v1)f(v2)dv1dv2

Any s that satisfies the constraint with equality and maximizes the Lagrangian for some γ ≥ 0

must be a solution for our problem. The Lagrangian is maximized by (sα1 (v1, v2), s
α
2 (v1, v2)),

when α =
γ

1 + γ
and the constraint will be satisfied with equality.

Let

R(α) =

∫ v

v

∫ v

v

(
(1+η)

[
v1−

(1− F (v1))

f(v1)

]
−(1+ηλ)

[
v2+

F (v2)

f(v2)

])
s1(v1.v2)f(v1)f(v2)dv1dv2

R(α) =

∫ v

v

∫ v

v

(
(1 + η)ωB

1 (v1|1)− (1 + ηλ)ωS
2 (v2|1)

)
sα1 (v1, v2)f(v1)f(v2)dv1dv2
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Now, R(1) ≥ 0 because if (1 + η)ωB
1 (v1|1) ≥ (1 + ηλ)ωS

2 (v2|1), then s1(v1, v2) = 1 making

R(1) ≥ 0 and if (1 + η)ωB
1 (v1|1) < (1 + ηλ)ωS

2 (v2|1), then s1(v1, v2) = 0 making R(1) = 0.

Also, R(0) < 0 from theorem 4.1 (Impossibility result).

As α increases, sα1 (v1, v2) decreases. Note that (1+η)ω
B
1 (v1|1) < (1+ηλ)ωS

2 (v2|1). These
two together make R(α) increasing.

It is obvious that R(α) is continuous. Thus, by Intermediate Value Theorem, there must

be some α ∈ (0, 1] such that R(α) = 0 and (sα1 (v1, v2), s
α
2 (v1, v2)) must satisfy (4.6) and (4.7).

This gives the following result.

Theorem 4.2 There exists an incentive compatible and individually rational mechanism with

(sα1 (v1, v2), s
α
2 (v1, v2)) defined in (4.6) and (4.7) for some α ∈ [0, 1] such that this mechanism

maximizes the expected gains from trade among all incentive compatible and individually

rational mechanisms.

Example 4.2 Consider the same setup described in example 4.1. The α-virtual valuations of

the agents are ω1(v1|α) = v1−α(1−(v1−1)) = (1+α)v1−2α and ω2(v2|α) = v2+α(v2−1) =

(1 + α)v2 − α. The following is the optimal allocation :

sα1 (v1, v2) =

{
1 if (1 + α)v1 − 2α ≥ k[(1 + α)v2 − α],

0 if (1 + α)v1 − 2α < k[(1 + α)v2 − α].

and

sα2 (v1, v2) =

{
1 if (1 + α)v1 − 2α < k[(1 + α)v2 − α],

0 if (1 + α)v1 − 2α ≥ k[(1 + α)v2 − α].

But we must have∫ 2

1

∫ 2

1

((1 + η)(2v1 − 2)s1(v1, v2))− (1 + ηλ)(2v2 − 1)(1− s2(v1, v2)))dv2dv1 = 0

So, the above equation is∫ 2

k−[(k−2)α/(1+α)]

∫ (v1/k)+((k−2)α)/k(1+α)

1

((1 + η)(2v1 − 2))− (1 + ηλ)(2v2 − 1))dv2dv1 = 0

This implies ∫ 2

k+(k−2)α/(1+α)

(αv1 + v1 − k − 2α) ((α + 1) v1 − αk − 2)

(α + 1)2 k
dv1 = 0

Therefore,

−(3α− 1) (k − 2)3

6 (α + 1)3 k
= 0
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So, α =
1

3
and the optimal allocation is

s1(v1, v2) =

{
1 if v1 − kv2 ≥ (2− k)/4,

0 if v1 − kv2 < (2− k)/4.

and

s2(v1, v2) =

{
1 if v1 − kv2 < (2− k)/4,

0 if v1 − kv2 ≥ (2− k)/4.

4.5 Conclusion and Future Direction

We provide a full characterization of incentive compatible and individually rational mecha-

nisms when agents are loss averse. We showed how a particular type of preferences of agents

can change the results. Although impossibility result in case of bilateral trade setting still

persists but the reduction in the amount of subsidy required for the trade shows the pos-

sibility of no trade at all if agents are highly loss averse. Similar result holds even if the

ownership structure of the object is symmetric. Cramton et al. (1987) result does not hold

anymore if the loss sensitivity exceeds a cut off point.

Although we have found a sufficient condition on the parameters such that partnership

cannot be dissolved efficiently for equal shares, it will be interesting to see if a similar cut

off point can be estimated below which the equal share partnership can always be dissolved

efficiently, for any distribution. Another take would be to consider the preferences of agents

same as Benkert (2023) and how the result changes when the reference point is endogenous.

The idea of loss aversion could also be connected with expectations. Karle et al. (2015)

investigated the effect of expectation-based loss aversion on purchasing decisions. They

examine a scenario where consumers must choose between two similar products that vary

in price and personal preferences. While consumers are aware of their preferences for both

items, they only receive stochastic information regarding the prices, compelling them to

form expectations about pricing. Ex-ante, there is an equal probability for each product

to be priced lower. Once consumers learn the actual prices of both products, they make

their decisions. The theoretical analysis involves agents who exhibit loss aversion, wherein

they perceive losses or gains based on whether the actual price paid exceeds or falls short

of their expected price. Therefore, the perceived loss associated with paying a high price

is contingent on the ex-ante probability with which the consumer anticipates paying the

lower price. Closely related papers to Karle et al. (2015) are Karle and Peitz (2014) and

Heidhues and Köszegi (2008), where consumers form expectation-based reference points in a

market characterized by oligopolistic firms. Consumers correctly anticipate the distribution

of equilibrium prices in Karle and Peitz (2014), whereas consumers are uncertain about their
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tastes for low and high priced goods but observe posted prices in Heidhues and Köszegi

(2008). It will be interesting to explore the impact of agents receiving stochastic information

about the reference point on the bilateral trade and partnership model. Heidhues and Köszegi

(2008).

An alternative approach to modeling a behavioral player would be to consider the exoge-

nous share of the player as the status quo. It is likely that the status quo bias will break

the possibility result when partners have equal shares (Samuelson and Zeckhauser (1988)).

It will be a good exercise to compare the results of the initial shares being held as reference

points with those of the status quo.

4.6 Appendix

4.6.1 Proof of Lemma 4.1

Proof : Necessity: Suppose that the mechanism (s, t) is Bayesian Incentive Compatible.

Then,

Ui(vi) ≥ Ui(v̂i) + (Sref
i (v̂i)− ri)(vi − v̂i) (4.8)

which gives

Ui(vi)− Ui(v̂i) ≥ (Sref
i (v̂i)− ri)(vi − v̂i)

Exchanging the roles of vi and v̂i

Ui(v̂i) ≥ Ui(vi) + (Sref
i (vi)− ri)(v̂i − vi)

This implies

Ui(vi)− Ui(v̂i) ≤ (Sref
i (vi)− ri)(vi − v̂i) (4.9)

(4.8) and (4.9) together imply that

(Sref
i (vi)− ri)(vi − v̂i) ≥ Ui(vi)− Ui(v̂i) ≥ (Sref

i (v̂i)− ri)(vi − v̂i) (4.10)

This shows that if vi > v̂i, S
ref
i (vi) ≥ Sref

i (v̂i). Therefore, S
ref
i (·) is non-decreasing.

Claim 4.1 Ui(·) is Lipschitz continuous.

Proof : Show that there exists M > 0, such that

|Ui(vi)− Ui(v̂i)| ≤M |vi − v̂i|

If vi > v̂i,

Ui(vi)− Ui(v̂i) ≤ (Sref
i (vi)− ri)(vi − v̂i) ≤ (1 + η)(1− ri)(vi − v̂i)
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If vi < v̂i,

Ui(vi)− Ui(v̂i) ≥ (Sref
i (v̂i)− ri)(vi − v̂i)

which can also be written as

−(Ui(vi)− Ui(v̂i)) ≤ −(Sref
i (v̂i)− ri)(vi − v̂i)

≤ −(Sref
i (vi)− ri)(vi − v̂i)

Therefore,

|Ui(vi)− Ui(v̂i)| ≤ (Sref
i (vi)− ri)|(vi − v̂i)|

≤ (1 + η)(1− ri)|(vi − v̂i)|

For M = (1 + η)(1 − ri), we have proved that |Ui(vi) − Ui(v̂i)| ≤ M |(vi − v̂i)|. Therefore,

Ui(·) is Lipschitz continuous. ■

This means that Ui(·) is differentiable almost everywhere. From equation (4.10), we have

Sref
i (vi)− ri ≥

Ui(vi)− Ui(v̂i)

vi − v̂i
≥ Sref

i (v̂i)− ri

This implies
dUi(vi)

dvi
= Sref

i (vi)− ri

and

Ui(vi) = Ui(v
∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi (4.11)

∀vi, v∗i ∈ [v, v].

Substituting the expression for Ui(vi) in the above equation gives

(Sref
i (vi)− ri)vi + Ti(vi) = Ui(v

∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

which can be rewritten as

Ti(vi) = Ui(v
∗
i )− (Sref

i (vi)− ri)vi ++

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

Sufficiency: Suppose that the mechanism (s, t) is such that Sref
i (vi) is non-decreasing and

Ui(vi) satisfies (4.2)

Ui(vi)− Ui(v
∗
i ) =

∫ vi

v∗i

(Sref
i (u)− ri)du ≥

∫ vi

v∗i

(Sref
i (v∗i )− ri)du

= (Sref
i (v∗i )− ri)(vi − v∗i )
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Therefore,

Ui(vi) ≥ Ui(v
∗
i ) + (Sref

i (v∗i )− ri)(vi − v∗i )

Substituting the expression for Ui(v
∗
i ) in the above equation gives

Ui(vi) ≥ (Sref
i (v∗i )− ri)vi + Ti(v

∗
i )

Hence, (s, t) is Bayesian incentive compatible.

■

4.6.2 Proof of Lemma 4.2

Proof : By Lemma 4.1, the net utility function of trader i with valuation vi is continuous

and convex in vi. Hence, Ui(vi) is minimized at the point where the derivative of net utility

function is 0. Derivative of Ui(vi) is S
ref
i (vi)−ri almost everywhere with Sref

i (vi) is increasing

in vi. If Sref
i (vi) − ri > 0 ∀vi ∈ [v, v], then Ui(vi) is minimized at v∗i = v. Similarly, if

Sref
i (vi) − ri < 0 ∀vi ∈ [v, v], then Ui(vi) is minimized at v∗i = v. On the other hand, if

there exists p and q such that Sref
i (p)− ri ≤ 0 and Sref

i (q)− ri ≥ 0, then Ui(vi) is minimized

at v∗i where Sref
i (v∗i )− ri = 0. The set of valuations at which Sref

i (vi)− ri = 0 is denoted by

Ωi(S
ref
i ) = {vi : Sref

i (z)− ri ≤ 0 ∀z < vi;S
ref
i (z)− ri ≥ 0 ∀z > vi}.

■

4.6.3 Proof of Lemma 4.3

Proof : A mechanism is IIR if

Ui(vi) ≥ 0 ∀vi ∈ [v, v]

Because of Lemma 4.1, Ui(·) is increasing. Therefore, we need to check individual rationality

at the valuation v∗i only.

Ui(v
∗
i ) ≥ 0

■
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4.6.4 Proof of Lemma 4.4

Proof : Necessary: If the mechanism is BIC, IIR and budget balanced, then s satisfies (4.5)

From Lemma 4.1, we know that

Ui(vi) = Ui(v
∗
i ) +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

This gives,

Ti(vi) = Ui(v
∗
i )− (Sref

i (vi)− ri)vi +

∫ vi

v∗i

(Sref
i (x1)− ri)dxi

Taking expectation of Ti(vi) over vi, we get∫ v

v

Ti(vi)f(vi)dvi =

∫ v

v

(
Ui(v

∗
i )− (Sref

i (vi)− ri)vi +

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

)
f(vi)dvi

= Ui(v
∗
i )−

∫ v

v

(Sref
i (vi)− ri)vif(vi)dvi +

∫ v

v

∫ vi

v∗i

(Sref
i (xi)− ri)dxi

)
f(vi)dvi

= Ui(v
∗
i )−

∫ v

v

(Sref
i (vi)− ri)vif(vi)dvi +

∫ v

v∗i

[1− F (xi)](S
ref
i (xi)− ri)dxi

−
∫ v∗i

v

F (xi)(S
ref
i (xi)− ri)dxi

= Ui(v
∗
i )−

∫ v∗i

v

(Sref
i (vi)− ri)vif(vi)dvi −

∫ v∗i

v

F (xi)(S
ref
i (xi)− ri)dxi

−
∫ v

v∗i

(Sref
i (vi)− ri)vif(vi)dvi +

∫ v

v∗i

[1− F (xi)](S
ref
i (xi)− ri)dxi

= Ui(v
∗
i )−

∫ v

v∗i

(Sref
i (vi)− ri)

(
vi −

(1− F (vi))

f(vi)

)
f(vi)dvi

−
∫ v∗i

v

(Sref
i (vi)− ri)

(
vi +

F (vi)

f(vi)

)
f(vi)dvi

The expected revenue function as

R(s) = −
∫ v

v

∫ v

v

(
t1(v1, v2) + t1(v1, v2)

)
f(v2)f(v1)dv2dv1

= −
(∫ v

v

T1(v1)f(v1)dv1 +

∫ v

v

T2(v2)f(v2)dv2

)
Substituting

∫ v

v
Ti(vi)f(vi)dvi in the revenue function gives∫ v

v

∫ v

v

(
t1(v1, v2) + t1(v1, v2)

)
f(v2)f(v1)dv2dv1 =

2∑
i=1

(∫ v

v∗i

(Sref
i (vi)− ri)

(
vi −

(1− F (vi))

f(vi)

)
f(vi)dvi

+

∫ v∗i

v

(Sref
i (vi)− ri)

(
vi +

F (vi)

f(vi)

)
f(vi)dvi − Ui(v

∗
i )

)
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t1(v1, v2) + t1(v1, v2) = 0 gives

2∑
i=1

(∫ v

v∗i

(Sref
i (vi)−ri)

(
vi−

(1− F (vi))

f(vi)

)
f(vi)dvi+

∫ v∗i

v

(Sref
i (vi)−ri)

(
vi+

F (vi)

f(vi)

)
f(vi)dvi

)
= Ui(v

∗
i )

From lemma 4.3, we get,

2∑
i=1

(∫ v

v∗i

(Sref
i (vi)−ri)

(
vi−

(1− F (vi))

f(vi)

)
f(vi)dvi+

∫ v∗i

v

(Sref
i (vi)−ri)

(
vi+

F (vi)

f(vi)

)
f(vi)dvi

)
≥ 0

which means
2∑

i=1

∫ v

v

ω(vi|v∗i )(S
ref
i (vi, vj)− ri)f(vi)dvi ≥ 0

Sufficiency: Suppose that s satisfies (4.5), then there exists a transfer such that the mecha-

nism (s, t) is incentive compatible, individually rational and budget balanced.

Define

ci =
1

2

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)−ri)f(vi)dvi−

∫ v

v∗i

(Sref
i (vi)−ri)−

∫ v

v

[uf(u)+F (u)−1](Sref
2 (u)−ru)du

ci =
1

2

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v

v∗i

(Sref
i (vi)− ri)dvi

−
∫ v

v

[vjf(vj) + F (vj)− 1](Sref
2 (vj)− rj)dvj

This means

c1 =
1

2

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v

v∗1

(Sref
1 (v1)− r1)dv1

−
∫ v

v

[v2f(v2) + F (v2)− 1](Sref
2 (v2)− r2)dv2

and

c2 =
1

2

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v

v∗2

(Sref
2 (v2)− r2)dv2

−
∫ v

v

[v1f(v1) + F (v1)− 1](Sref
1 (v1)− r1)dv1
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Adding c1 and c2 gives

c1 + c2 =

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v

v∗1

(Sref
1 (v1)− r1)dv1 −

∫ v

v∗2

(Sref
2 (v2)− r2)dv2

−
∫ v

v

[v1f(v1) + F (v1)− 1](Sref
1 (v1)− r1)dv1 −

∫ v

v

[v2f(v2) + F (v2)− 1](Sref
2 (v2)− r2)dv2

=

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v

v∗1

(Sref
1 (v1)− r1)dv1 −

∫ v

v∗2

(Sref
2 (v2)− r2)dv2

−
∫ v∗1

v

[v1f(v1) + F (v1)− 1](Sref
1 (v1)− r1)dv1 −

∫ v∗2

v

[v2f(v2) + F (v2)− 1](Sref
2 (v2)− r2)dv2

−
∫ v

v∗1

[v1f(v1) + F (v1)− 1](Sref
1 (v1)− r1)dv1 −

∫ v

v∗2

[v2f(v2) + F (v2)− 1](Sref
2 (v2)− r2)dv2

=

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v∗1

v

[v1f(v1) + F (v1)− 1](Sref
1 (v1)− r1)dv1

−
∫ v∗2

v

[v2f(v2) + F (v2)− 1](Sref
2 (v2)− r2)dv2 −

∫ v

v∗1

[v1f(v1) + F (v1)](S
ref
1 (v1)− r1)dv1

−
∫ v

v∗2

[v2f(v2) + F (v2)](S
ref
2 (v2)− r2)dv2

=

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

2∑
i=1

(∫ v

v∗i

(Sref
i (vi)− ri)

(
vi −

(1− F (vi))

f(vi)

)
f(vi)dvi

+

∫ v∗i

v

(Sref
i (vi)− ri)

(
vi +

F (vi)

f(vi)

)
f(vi)dvi

)
=

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi −

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi

= 0

Now, we can define transfer function as

ti(vi, vj) = vi(S
ref
i (vi)− ri)−

∫ vi

v

(Sref
i (u)− ri)du− [vj(S

ref
j (vj)− rj)−

∫ vj

v

(Sref
j (u)− rj)du]− ci
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This implies

t1(v1, v2) + t1(v1, v2) = v1(S
ref
1 (v1)− r1)−

∫ v1

v

(Sref
1 (u)− r1)du− [v2(S

ref
2 (v2)− r2)

−
∫ v2

v

(Sref
2 (u)− r2)du]− c1 + v2(S

ref
2 (v2)− r2)−

∫ v2

v

(Sref
2 (u)− r2)du

− [v1(S
ref
1 (v1)− r1)−

∫ v1

v

(Sref
1 (u)− r1)du]− c2

= 0 (∵ c1 + c2 = 0)

This transfer function gives

Ti(vi) = vi(S
ref
i (vi)− ri)−

∫ vi

v

(Sref
i (u)− ri)du−

∫ v

v

(vj(S
ref
j (vj)− rj))f(vj)dvj

+

∫ v

v

∫ vj

v

(Sref
j (u)− rj)duf(vj)dvj − ci

= vi(S
ref
i (vi)− ri)−

∫ vi

v

(Sref
i (u)− ri)du−

∫ v

v

(vj(S
ref
j (vj)− rj))f(vj)dvj

+

∫ v

v

[1− F (u)](Sref
j (u)− rj)du− ci

= vi(S
ref
i (vi)− ri)−

∫ vi

v

(Sref
i (u)− ri)du−

∫ v

v

[vjf(vj) + F (vj)− 1](Sref
j (vj)− rj))dvj − ci

= vi(S
ref
i (vi)− ri)−

∫ vi

v∗i

(Sref
i (u)− ri)du−

1

2

∫ v

v

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi

From here we get,

Ui(vi) = vi(S
ref
i (vi)− ri) + Ti(vi) =

∫ vi

v∗i

(Sref
i (u)− ri)du+

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi

with

Ui(v
∗
i ) =

2∑
i=1

ωi(vi|v∗i , 1)(S
ref
i (vi)− ri)f(vi)dvi ≥ 0

So, the mechanism is BIC and IIR. ■
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4.6.5 Proof of Proposition 4.1

Proof : Implementing the efficient allocation rule, we get

∫ v

v

∫ v

v

(
(1 + η)s1(v1.v2)

[
v1 −

(1− F (v1))

f(v1)

]
+ (1 + ηλ)(s2(v1, v2)− 1)

[
v2 +

F (v2)

f(v2)

])
f(v1)f(v2)dv1dv2

= (1 + η)

∫ v

v

∫ v

v

(
s1(v1.v2)

[
v1 −

(1− F (v1))

f(v1)

]
− k(1− s2(v1, v2))

[
v2 +

F (v2)

f(v2)

])
f(v1)f(v2)dv1dv2

= (1 + η)

∫ v

v

∫ v

v

(
s1(v1.v2)

[
v1f(v1)− 1 + F (v1)

]
f(v2)dv1dv2

− k(1− s2(v1, v2))

∫ v

v

∫ v

v

[
v2f(v2) + F (v2)

])
f(v1)dv1dv2

= (1 + η)

(∫ v

v

∫ v1/k

v

[
v1f(v1)− 1 + F (v1)

]
f(v2)dv2dv1 − k

∫ v

v

∫ v1/k

v

[
v2f(v2) + F (v2)

]
dv2f(v1)dv1

)
= (1 + η)

(∫ v

v

[
v1f(v1)− 1 + F (v1)

]
F

(
vi
k

)
dv1 −

∫ v

v

F

(
v1
k

)
v1
k

× kf(v1)dv1

)
= −(1 + η)

∫ v

v

(1− F (v1))F

(
v1
k

)
dv1

= −(1 + η)

∫ v

kv

(1− F (v1))F

(
v1
k

)
dv1

= −(1 + η)

∫ v

kv

(
1− F (x)

)
F

(
x

k

)
dx

which is a violation of the condition. This is the minimum subsidy required to implement

efficient trade ■

4.6.6 Proof of Theorem 4.1

Proof : Ex-post efficiency from proposition 2.1 requires that

si(vi, vj) =


1 if vi ≥ kvj,

ri if
vj
k
< vi < kvj,

0 if vi ≤
vj
k
.
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ϕ(r1, r2) =

∫ v

v

∫ v

v

∑
i∈{1,2}

ωi(vi|v∗i , 1)(1 + ηµi)(si(vi, vj)− ri)f(v2)f(v1)dv2dv1

=
∑

i∈{1,2}

∫ v

v

ωi(vi|v∗i , 1)
(∫ vi/k

v

(1 + η)(1− ri)f(vj)dvj +

∫ v

kvi

(1 + ηλ)(0− ri)f(vj)dvj

)
f(vi)dvi

=
∑

i∈{1,2}

∫ v

v

ωi(vi|v∗i , 1)
(
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

=
∑

i∈{1,2}

(∫ v

v∗i

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

+

∫ v∗i

v

[
vi +

F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

)

=
∑

i∈{1,2}

(∫ v

v/k

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

))
f(vi)dvi

+

∫ v/k

v∗i

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

+

∫ v∗i

kv

[
vi +

F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

−
∫ kv

v

[
vi +

F (vi)

f(vi)

](
(1 + η)(1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

)

=
∑

i∈{1,2}

(
ψ +

∫ v/k

v∗i

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

+

∫ v∗i

kv

[
vi +

F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

)

where

ψ =

∫ v

v/k

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

))
f(vi)dvi

−
∫ kv

v

[
vi +

F (vi)

f(vi)

](
(1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

and

(1 + η)(1− ri)F

(
v∗i
k

)
− (1 + ηλ)ri(1− F (kv∗i )) = 0

or

(1− ri)F

(
v∗i
k

)
+ kriF (kv

∗
i ) = kri
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Claim 4.2 ψ < 0 when ri = 1/2 for k =

√
v

v
.

Proof : Put r1 = 0 and r2 = 1. Then v∗1 = v and v∗2 = v

ϕ(0, 1) =

∫ v

v

[
v1 −

1− F (v1)

f(v1)

]
(1 + η)F

(
v1
k

)
−
∫ v

v

[
v2 +

F (v2)

f(v2)

]
(1 + ηλ)(1− F (kv2))f(v2)dv2

=

∫ v

kv

[
v1 −

1− F (v1)

f(v1)

]
(1 + η)F

(
v1
k

)
−
∫ v/k

v

[
v2 +

F (v2)

f(v2)

]
(1 + ηλ)(1− F (kv2))f(v2)dv2

We know that a one owner partnership cannot be dissolved efficiently. This means that

ϕ(0, 1) < 0. This means∫ v

kv

[
v1 −

1− F (v1)

f(v1)

]
(1 + η)F

(
v1
k

)
−
∫ v/k

v

[
v2 +

F (v2)

f(v2)

]
(1 + ηλ)(1− F (kv2))f(v2)dv2 < 0

Simplifying,∫ v

v/k

[
v1 −

1− F (v1)

f(v1)

]
(1 + η)F

(
v1
k

)
+

∫ v/k

kv

[
v1 −

1− F (v1)

f(v1)

]
(1 + η)F

(
v1
k

)

−
∫ v/k

kv

[
v2 +

F (v2)

f(v2)

]
(1 + ηλ)(1− F (kv2))f(v2)dv2 −

∫ kv

v

[
v2 +

F (v2)

f(v2)

]
(1 + ηλ)(1− F (kv2))f(v2)dv2

< 0

This implies

ψ+

∫ v/k

kv

[
v1−

1− F (v1)

f(v1)

]
(1+η)F

(
v1
k

)
−
∫ v/k

kv

[
v2+

F (v2)

f(v2)

]
(1+ηλ)(1−F (kv2))f(v2)dv2 < 0

At k =

√
v

v
, we have kv =

v

k
=

√
vv. Substituting in the above equation gives

ψ < 0

■

This means

(1+η)

(∫ v

v/k

[
vi−

1− F (vi)

f(vi)

]
F

(
vi
k

)
f(vi)dvi−

∫ kv

v

[
vi+

F (vi)

f(vi)

](
kri(1−F (kvi))

)
f(vi)dvi

)
< 0

For ri = 1/2, v∗i satisfies

F

(
v∗i
k

)
+ kF (kv∗i ) = k
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Claim 4.3 When k =

√
v

v
, v∗i =

√
vv satisfies the above equation because

v∗i
k

= v and

kv∗i = v. So, F

(
v∗i
k

)
+ kF (kv∗i ) = 0 + k(1) = k.

Now, we prove that ϕ(1/2, 1/2) < 0

ϕ(1/2, 1/2) =
∑

i∈{1,2}

(∫ v/k

v∗i

[
vi −

1− F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi

+

∫ v∗i

kv

[
vi +

F (vi)

f(vi)

](
(1 + η)(1− ri)F

(
vi
k

)
− (1 + ηλ)ri(1− F (kvi))

)
f(vi)dvi + ψ

)
=
∑

i∈{1,2}

ψ < 0 from the claim

■
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