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Abstract

A complex network is a useful model for many real-world systems. Recently, much effort has been put

into studying the insights of the complex network. This thesis is all about the study of complex networks.

Based on the study, this thesis can be broadly divided into three parts: The first one involves analysing a

complex network to find a crucial network structure called constant community by extracting and apply-

ing some features called graph representations. The second part involves the study of the quality of the

graph representations on a downstream task, i.e., the node classification task. In the third part, we tried

to apply the handcrafted and automatically learned graph features to some real-world scenarios, i.e., in

brain networks.

While detecting the constant community, we developed two strategies to construct and use the graph

representations: semi-supervised and unsupervised. In the semi-supervised approach, we converted the

original graph to its corresponding line graph, where a node in the line graph represents an edge in the

original graph. We then applied a graph neural network (GNN) as a graph representation learning tool

to classify the nodes in the line graph, which in turn was used to capture the constant communities in

the original graph. In the unsupervised approach, using some hand-crafted features for each edge in

the original network, we developed some novel algorithms inspired by image thresholding algorithms to

filter out the non-constant community edges and hence find the constant communities.

In the semi-supervised approach, we noticed that when we reduced the number of training nodes, the

representational capability of GNN decreased, and as a result, the classification accuracy of GNN drasti-

cally dropped. This phenomenon led us to develop input and output intervention methods to improve

the accuracy of the GNN. In the input intervention, we extend the training nodes’ set using random walk

and some machine learning methods to agnostically capture similar nodes from various non-contiguous

sub-networks in a whole network. In the output intervention, we used random walk methods to correctly

relabel the possibly misclassified nodes by the GNN as its output.

The last part of the thesis deals with applications of network representation, classification, and finally

manipulation in dealing with complex human brain networks. The brain regions and their interrelation-

ships can be modelled using complex network. Utilising the complex network and its representation, in

this part we contributed to neuroscience in two ways: first, we devised a methodology to diagnose a neu-

rodevelopmental disease called Attention Deficit Hyperactivity Disorder (ADHD) using some extracted

network features and applied them to various deep learning-based models. Then in the second work, we

built a probabilistic model using anatomical and topological similarities to generate synthetic brain net-

works and track down the progression of a neurodegenerative disease called Alzheimer’s disease (AD)

in human brains. The results are promising enough to establish the use of complex network analysis in

computational neurology.
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Chapter 1

Introduction

Network or Graph1. During the COVID-19 pandemic, how did the Corona virus

spread? How many friends are there between the two randomly chosen individuals?

How does a rumour spread in society? How is it possible for a human brain to func-

tion so effectively when each brain cell is so basic? - Networks play an important role

in a variety of such problems that may appear unrelated. Historically, graph theory, a

subfield of discrete mathematics, has dominated the study of graphs or networks [1]

and was first developed by a Swiss mathematician, Leonhard Euler, in 1735 with his

solution to the popular Königsberg bridge problem. Recently, networks have received

plenty of interest from a variety of sectors and can be used as a foundation for the

mathematical modelling of many different complex systems. A graph or a network can

be easily understood as a set of objects (referred to as nodes or vertices) and a set of

connections (referred to as links or edges) between these objects. Based on the under-

lying topology, a graph can be classified into various classes, such as regular graph [2],

random graph [3], complex graph [4] etc.

A regular graph is one in which every vertex has the same number of neighbours,

or the same degree or valency. Starting with a collection of isolated vertices, a random

set of edges connecting them results in a random graph. When a network’s collective

behaviour cannot be predicted from its constituent parts, it is said to be a complex net-

work.

1In this thesis we synonymously use these two terms

1
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FIGURE 1.1: Social network representation with graph

Complex Network. The idea of complex networks was first found in two seminal pa-

pers: one by Watts and Strogatz [5] and others by Barabasi and Albert [6]. A com-

plex network has some topological properties that cannot be seen in a regular or ran-

dom network. These properties include a high clustering coefficient, a heavy tail in

the degree distribution, assortativity (or disassortativity) among vertices, hierarchical

structure, and community structure. Even though the nodes and linkages may have

diverse interpretations, complex networks exhibit significant statistical and topologi-

cal similarities. Many real-world systems can be effectively modelled using complex

networks. Examples include: the social network [7] where the nodes stand in for the

individuals and the edges between the nodes (individuals) signify that they are friends

(FIGURE. 1.1), Neuroscience [8] where the brain regions can be represented as nodes

and the correlations between them can be represented by edges, NLP [9] where words

are represented as nodes and an edge exists between two words if they are synonyms.

Other domains include computer graphics [10], recommendation systems [11], trans-

portation networks [12] etc. In addition to these, there are some well-known exam-

ples of real-world networks created by linking a few nodes, such as the football net-

work [13], karate club network [14], Les Miserable [15], Dolphin social network [16]

etc. Studying the topologies of complex networks, however, has proven to be a dif-

ficult challenge. There is no one location where one can get a complete image of the

topology because a large-scale network is typically made up of dozens or even mil-

lions of nodes. Furthermore, networks are rapidly evolving and changing over time.

Various random graph theory-based models had been put forth in the early stages of

complex network research to represent the topology of a complex network. Erdos and

Renyi [17] developed one of the earliest theoretical models of a complex network where
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the nodes are connected at random. Unfortunately, when modelling real-world com-

plex networks using a random graph, the structures of these graphs fail to capture the

structural characteristics because most of the vertices have nearly the same degree. Due

to these difficulties, a number of new network models [18, 19] have been put forth that

can characterise the similarities and differences in the structures and functions of actual

complex systems and networks across a range of domains.

Concept of Communities in a network. The structural properties of the complex

network provide insights into the characteristics of the underlying complex system.

Most of the research in network analysis focuses on identifying network properties

that map to interesting features of complex networks and developing efficient algo-

rithms to compute these properties. As mentioned earlier, one of the important prop-

erties of a complex network is the presence of community within it. A community is

a group of nodes where, within this group, nodes are more densely connected with

the edges than outside the group. A wide range of fields, including criminology [20],

public health [21, 22], politics [23, 24], customer segmentation [25], Recommendation

Systems [26, 27], Social Network Analysis [28], etc., can benefit from community detec-

tion.

There are several algorithms, such as Louvain [29], Infomap [30], label propaga-

tion [31] etc., to find such communities. Despite its importance, there is yet no mathe-

matical definition of what constitutes a community in a network. Instead, community

detection algorithms are defined by how well a certain parameter, such as modular-

ity [32], or entropy [33] is optimized. All these optimization problems are NP-hard,

and approximations to the algorithms render the process stochastic. Even when the

optimum values of the parameters are obtained, community detection algorithms can

produce multiple solutions or exhibit a resolution limit. Thus, due to the nature of the

problem, compounded with the algorithm approximations, community detection re-

sults can differ based on the methods used, changes in parameters, and even the order

of the vertices in the input.

Therefore, one of the most challenging tasks these days is to study and analyze

the community structure in the complex network in order to understand both the mi-

croscopic and macroscopic insights of the system. These studies involve finding and
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analysing the community structure of a complex network by identifying several non-

trivial characteristics or features in the network.

Feature engineering in the network The conventional feature engineering of network

data typically focuses on obtaining a number of predefined simple features at the node,

edge and subgraph levels (frequent subgraphs [34] and graph motifs [35]). Common

features are: network diameter, centrality measures, average path length, clustering co-

efficient, etc. Although they describe a number of fundamental aspects of the graphs,

those few hand-crafted, clearly defined features ignore patterns that they are unable

to cover. Furthermore, since real-world network phenomena are extremely complex,

they either require highly complex, unproven combinations of those predefined fea-

tures or cannot be described by any of them. Furthermore, these handcrafted feature

generations suffer from computational overhead, especially in large-scale networks.

Graph Representation Learning (GRL) [36] on the other hand, has received plenty

of attention in recent years. While maintaining the network topology, vertex/edge

content, and other side information, GRL aims to learn latent, low-dimensional repre-

sentations of network vertices/edges. Network analytic tasks can be completed quickly

and effectively by applying traditional vector-based machine learning algorithms to the

new representation space after new vertex/edge representations have been learned.

Traditional graph embedding includes K-nearest neighbours (KNN) [37] based tech-

niques in association with the multidimensional scaling (MDS) method [38], locally

linear embedding (LLE) [39], laplacian eigenmaps (LE) [40] etc. Modern graph em-

bedding techniques such as random walk [41], matrix factorization [42], Graph Neural

Networks (GNN) [43, 44], etc. are considered the generalization of these traditional

embedding techniques.

In this thesis, we begin with the study and analysis of community structure us-

ing various handcrafted and automated features. Following this, an investigation of

modern automated feature generation tools, the Graph Neural Network (GNN), is per-

formed here. In addition, we also take care of some of the applied parts, i.e., how we

can apply the learned features or representations in the various real-life applications
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such as neuroscience, recommendation systems, etc.

1.1 Motivation and Objectives

Recently, complex networks have been used to mimic a broad spectrum of real-world

systems like social networks, biological networks, ecological networks, recommenda-

tion systems, etc. Modelling these real-world systems results in huge success in finding

several hidden but important pieces of information, such as groups in a social network

involved in criminal activities, functional groups that cause cell proliferation or cell

death, etc. One such crucial structural characteristic, community structure, has started

to emerge in the continuous evolution of real-world complex networks and helps us

get such important information. But the investigation of communities is a challeng-

ing task due to the stochastic nature of the community detection algorithms. Recent

advancements in feature engineering techniques open up a doorway to studying sev-

eral important characteristics of a network. This motivates us to begin with a deeper

investigation of the communities inside the complex network by developing several

algorithms using some hand-crafted as well as automated feature engineering tech-

niques. Now, developing algorithms using such feature engineering techniques comes

up with the following important questions: how good is the constructed graph rep-

resentation (especially using the automated feature engineering technique)? Does it

capture enough information about a particular network? And how can the application

of graph representations help us in real-life situations?

The objective of this thesis is to develop and apply algorithms to study the chang-

ing nature of the community structures in a complex network using hand-made and

automated feature engineering techniques, analyse the graph representation learning

technique itself to study how well it represents a network, and apply them in some

real-life scenarios.

The thesis can be broadly categorized into three parts: (i) developing algorithms to

study the invariant nodes inside the community using the graph representation tech-

nique; (ii) studying the goodness of representations of a network; and (iii) applying the
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graph representations in neuroscience. Next, we’ll discuss the inspiration for each of

the three components before moving on to the thesis’ chapter-by-chapter contributions.

1.1.1 Part I: Developing algorithms to study the invariant nodes inside the

community using Graph Representation technique

From social networks to neuroscience to politics, community structure in a network

yields significant information. While there are a few well-known techniques for the

detection of communities in a complex network, they tend to be stochastic in nature,

which leads to changing the community structure in a network during each execution

of the community detection algorithms. Since communities are important because of

their diverse applicability in real-world systems, changing the community structure

or moving the nodes from one group to another in different executions creates severe

problems, like the accurate determination of criminal groups in a social network or

harmful protein groups in a biological network, etc. Thus, the determination of the

nodes that never leave their corresponding group is important. One simple approach

is to execute a particular community detection algorithm several times and track the

nodes’ belongingness. But this approach is computationally expensive, especially for

large networks. This problem makes us start thinking about the following: can we

quickly identify these invariant sets of nodes? One possible solution can be found in

the properties of the network itself, and therefore, this motivates us to use the network

features or representations along with developing algorithms.

1.1.2 Part II: Study the goodness of representations of a network

In Part I, we identified the invariant nodes within the community using graph repre-

sentations, and we employed Graph Neural Network (GNN) as one of the Graph Rep-

resentation Learning (GRL) techniques. Variants of Graph Neural Networks (GNNs)

have recently been utilised as a key tool in a variety of these downstream tasks, such

as node categorization [43], link prediction [45] etc. The effectiveness of these activi-

ties depends on how well the network’s node- or edge-level information is captured.

Although they sometimes learn the graph representation very well, they occasionally
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miss the mark. This observation inspires us to investigate the GNN’s learning in this

section.

1.1.3 Part III: Application of the complex network and its representations in

neuroscience

Complex network models are becoming applicable to a wide range of real-world ap-

plications, including social networks (such as Facebook and Instagram), biological net-

works (such as gene regulatory networks), recommendation systems, and many oth-

ers. In case of neuroscience, the human brain can be modelled as complex network [46]

where each region of the brain can be considered as node and the functional connec-

tion between two regions can be treated as edges in the network. The human brain

is susceptible to a wide variety of neurodevelopmental and neurodegenerative dis-

orders, including attention deficit hyperactivity disorder (ADHD) [47], Alzheimer’s

disease [48], Parkinson’s disease [49], and many others. In case of neurodevelopmental

disease (e.g., ADHD) if patients do not receive an early diagnosis, their ability to partic-

ipate in social activities becomes severely limited. In case of neurodegenerative disease

(e.g., Alzheimer’s disease), it is very important to understand the present status of the

patient’s brain - i.e., whether a person has any tendency that in future he will be suffer-

ing from Alzheimer’s disease or not. In other words, it is extremely important to track

the progression towards the Alzheimer’s disease from a healthy brain. For this reason,

it is of the utmost importance to have an understanding of two things: (i) whether or

not brain disorders can be detected at an early stage, and (ii) whether or not their pro-

gression can be monitored. Given that the human brain can be described as a complex

network, the question becomes whether or not it is possible to use the properties of the

network to solve these two challenges. This motivates us to employ the graph repre-

sentations once more to address these problems because we already use the manually

produced and automated network attributes to tackle the preceding concerns.

1.2 Organization of the thesis

The background and original contributions made in the various chapters of this thesis

will be discussed in this section. There are seven chapters in this thesis, of which four
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(Chapters 3− 6) contribute. In Chapter 2, we discuss all the preliminary and related

works necessary for the rest of the chapters.

Part I includes only Chapter 3. This is the first contributing chapter, it deals with the

problem of finding invariant nodes inside the community in a complex network with

two methods - semi-supervised and unsupervised.

Part II includes only Chapter 4. In Chapter 3, we used an automated feature engi-

neering technique (the Graph Representation Learning (GRL) technique) in the semi-

supervised method. We have seen that the accuracy drops when the size of the training

nodes used in the semi-supervised method is very small. This is due to the fact that

training a Graph Neural Network (as a GRL tool) with such a small number of train-

ing nodes results in poor learning in network representation. In this chapter, we try to

resolve this problem.

Part III includes Chapters 5 and 6. Since the human brain can be represented by

a complex network, we make use of the complex network and its properties or net-

work representations to deal with the problems associated with neuroscience. Chapter

5 deals with diagnosing of a neurodevelopmental disease called Attention Deficit Hy-

peractivity Disorder (ADHD). In Chapter 6, we investigate the progression towards a

neurodegenerative disease called Alzheimer’s disease (AD) from a healthy brain.

Finally, there is a conclusion chapter that summarizes the basic findings and contri-

butions of this thesis and indicates the future directions of research.

1.2.1 Chapter 3: Detection of constant communities in a complex network

Communities in a network are important since they can be used in diverse areas. But

due to the stochastic nature of the community detection algorithms, it is very diffi-

cult to have the same community structures in a network for different executions of a

particular algorithm. Since the community structure changes, few nodes change the

community in which they were in the previous execution; as a result, it may hurt the

applied part. For example, in a social network, we cannot properly track people who

are involved in a particular activity, or in a brain network, we cannot properly deter-

mine the belongingness of a brain region (node) in a particular functional group. But

there are a few nodes that never change their community, and in a real-life scenario,
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it is very important to identify these invariant nodes. These sets of nodes are called

constant community nodes, and the community they form is called constant commu-

nity. Thus, in this chapter, our objective is to determine the set of constant communi-

ties in a complex network. For that, we have developed two novel approaches—semi-

supervised and unsupervised—based on graph representation techniques. In the semi-

supervised technique, we use Graph Convolutional Neural Network (GCN) [43] and

line graphs [50] to determine the constant communities, and in the unsupervised tech-

nique, we have used several image thresholding approaches to do the same. Finally, we

performed a case study where we employed the neighbourhood-based recommender

system and showed the effectiveness of our proposed algorithms.

1.2.2 Chapter 4: Improving the accuracy of Graph Neural Network

While using a semi-supervised approach in our previous work, we have observed that

if the size of the training nodes (seeds) is very small (two per class), then the classifica-

tion accuracy of GCN drastically drops. Not only GCN, but we have also observed that

the same problem occurs in several variants of Graph Neural Networks (GAT, Graph-

SAGE, etc.). Now, keeping the size of the training set small is important since a large

training set defeats the purpose of a semi-supervised approach, and in some real-life

situations, due to some unavoidable circumstances, it is sometimes very difficult to

obtain the training seeds. Therefore, it is necessary to develop some techniques that,

if applied, would keep the GNN’s accuracy high even if the training set size is very

small; in other words, the GNN could well capture the topological information (learn

the graph representations). For that, we have discussed two such techniques: input-

level intervention and output-level intervention, to achieve the solution to this prob-

lem. In the input-level intervention technique, we develop a method that agnostically

increases the training set and captures nodes from different parts of the network with

the same class labels. The output-level intervention is like a post-processing technique

where, after a successful execution of the GNN, we tired to find a few miss-classified

nodes and tried to relabel them with their correct labels.
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1.2.3 Chapter 5: Diagnosing ADHD disease using complex network and its

representation

Chapters 5 and 6 deal with the importance of graph representation in human brain

especially in computational neurology. In this chapter, we discuss the diagnosis of a

neurodevelopmental disease, Attention Deficit Hyperactivity Disorder (ADHD) using

fMRI data. ADHD is one of the most common neurodevelopmental disorders in child-

hood. People with ADHD may struggle to focus, manage impulsive behaviours (doing

things without considering the consequences), or be extremely active. Despite the fact

that ADHD cannot be cured, if it is diagnosed early, it can be effectively controlled, and

some symptoms may improve as the kid gets older. In order to classify the ADHD brain

from a non-ADHD brain, we use complex network and its representation in our study.

The relationships among the Blood Oxygen Level Dependent (BOLD) [51] signals ex-

tracted from each of the brain regions can be modelled by a connectivity matrix. Since

the connectivity matrix is symmetric, it can be considered as a weighted adjacency ma-

trix of anetwork where each region is represented as a node and their relationship can

be represented as an edge. Finally, after building a handcrafted network representation

(feature vectors) of the network, we feed it into some one-dimensional neural networks

to diagnose the ADHD brain2. We also discuss how accuracy varies when we vary the

brain atlas or connectivity measures.

1.2.4 Chapter 6: Investigating the progression of the brain network: from a

healthy brain to Alzheimer’s disease

In chapter 5, we have discussed the diagnosis of a neurodevelopmental disease called

ADHD and shown how the complex network and its representation can be applied to

model the fMRI data while diagnosing the disease. In this chapter, we again apply the

complex network and its representation to study the progression towards Alzheimer’s

disease in the healthy brain using a graph manipulation approach. The majority of

neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, etc. are in-

curable and often worsen with time. It is very difficult for most people suffering from

these diseases to go for a regular brain scan to track the progression of their disease. In

2Additionally, we visualised the connectivity matrix as an image and fed the image into some two-
dimensional neural networks to distinguish the ADHD brain from the non-ADHD brain. We discussed
this part in the appendix.



1.3. Conclusion 11

this chapter, we discuss the methods that keep track of the progression of Alzheimer’s

disease. We proposed a novel model that takes the real healthy brain network as an in-

put and produces synthetic brain networks similar to those in Alzheimer’s disease by

doing a series of manipulations in the form of edge addition and deletion processes. We

use both topological and anatomical similarity to develop the model. While using the

topological similarities, we have used several classic methods as well as GNN models

to generate the node embedding, and while using the anatomical similarities, we have

used the centroid of the regions represented by 3D coordinates.

1.3 Conclusion

This thesis deals with the study of complex networks and its contributions in three

broad areas: communities in complex networks, graph-based deep learning, and neu-

roscience. First, it tries to address an interesting problem of graph algorithms, which is

finding the constant community in a complex network. Finding the communities using

an optimization technique in a network itself is an NP-Hard problem. Thus the ap-

proximation of this optimization technique makes the community detection a stochas-

tic process which results in different community structures in different runs. In this

regard, the detection of the invariant nodes within communities becomes a challenging

task. We have addressed this challenge using edge filtering technique by employing

two novel approaches (semi-supervised and unsupervised) with the help of complex

network representations. The semi-supervised approach tries to distinguish the invari-

ant set of nodes with the help of line graph conversion of the original graph and apply-

ing Graph Convolutional Neural Network (GCN), a variant of Graph Neural Network.

The unsupervised approach uses several classic image thresholding methods to predict

the set of invariant nodes.

The second part contributes to the field of graph based deep learning. In this part,

we continue with an observation of the first part. We have seen that the classification

accuracy of a Graph Neural Network (GNN) drastically dropped when we decreased

the number of training nodes. This problem occurs due to the poor representation

capacity of GNN when the number of training nodes is low. In this part, we address

the issue in two ways: first by implementing input-level intervention, where beginning

with a very small number of nodes for each class, we agnostically extend the number
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of training nodes and try to capture the similar nodes from every corner of the graph

by applying random walks and some machine learning algorithms. In the output-level

intervention, we again use the random walk to relabel the nodes that were wrongly

predicted by GNN.

The final part of this thesis deals with specific challenges in an important applied

area of complex networks, which is neuroscience. In this part, we study two challeng-

ing tasks: one is to diagnose a particular neurodevelopmental disease called ADHD,

where the fMRI data are first converted into a connectivity matrix and then into a com-

plex network, and some handcrafted network properties are collected to build a feature

vector for that network to feed into some neural network for the classification task.

The second task is to build a novel model to study the progression of a healthy brain

network towards a brain network of a neurodegenerative disease called Alzheimer’s

disease (AD). Once again, we start by turning the brain’s fMRI data into a complex

network, and then we use the network’s anatomical and topological characteristics to

construct the model. The constructed model is then used in the network manipulation

task to generate synthetic AD brain network from the real healthy control’s (HC) brain

network.



Chapter 2

Literature Survey

2.1 Concepts

2.1.1 Graph or network

Technically, a graph can be described as a collection of nodes (V) and their connecting

edges (E). We can say that (u, v) ∈ E if and only if node u and node v are connected, i.e.,

there is an edge between node u and node v. In this study, we shall consider a simple

graph where (u, u) ̸∈ E, ∀u ∈ V and there exists at most one edge between u and v and

all edges are undirected.

Graphs can be conveniently represented using an adjacency matrix A. We arrange

the nodes in the graph so that each node indexes a specific row and column in the adja-

cency matrix in order to describe a graph with an adjacency matrix. The existence of an

edge in a graph can then be represented by entries in the adjacency matrix: A[u, v] = 1

if (u, v) ∈ E and A[u, v] = 0 otherwise for u, v ∈ V. As the graph in our study is undi-

rected, the adjacency matrix is symmetric. Moreover, some graphs feature weighted

edges, where the entries in the adjacency matrix take the form of arbitrary real values

rather than the numbers 0 and 1. For instance, a weighted edge in a brain network

illustrates the type of correlation between two brain regions.

13
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FIGURE 2.1: Examples of regular graphs (a) 0-regular graph, (b) 5-regular graph (c)
Not a regular graph

2.1.2 Types of the graph or network

2.1.2.1 Regular graph

A regular network is a graph where each vertex has the same number of neighbours.

A regular graph is said to be k−regular if all the nodes have degrees equal to k. A

regular graph also has an even number of vertices with an odd degree, according to the

handshaking lemma [52]. Fig 2.1 includes a few examples of regular graphs.

2.1.2.2 Random graph

A random graph is obtained by starting with a set of n isolated vertices and adding suc-

cessive edges between them at random. Various random graph models exist, and they

produce different results, viz., uniform random graph [53], binomial random graph [54]

etc. A survey regarding the random graph model can be found in [55]. Applications of

random graphs can be found in various places. A study related to the random graph

model on social networks was proposed by [56]. Application of random graphs in

data analysis can be found in [57]. Other applications include protein-protein interac-

tions [58], food webs [59] etc.

2.1.2.3 Complex graph

A complex network is characterised by the inability to draw definitive conclusions

about the entire network by analysing its sub-networks individually. We can define
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a complex network in two ways, one is as done by Barabási and Albert [60] and an-

other is that by Kim and Wilhelm [61]:

i. Complex networks are systems composed of interconnected elements, where the

arrangement of connections displays non-trivial structural properties such as small-

world phenomenon, power-law degree distributions, and community structure [60].

ii. A complex network is a network consisting of different subgraphs, where two

subgraphs are different if they are non-isomorphic. The more different subgraphs a

graph contains, the more complex it is [61].

Thus, a complex network is a network having non-trivial topological features that

are not present in lattice or random network but often occurs in networks representing

real systems, such as long tail in the distribution of degrees, high clustering coefficient,

either assortative or dis-assortative connections between vertices, the presence of com-

munity structure, and a hierarchical organisation [62]. [61] proposed different measures

to quantify the complexity of a complex network such as the relative number of non-

isomorphic one-edge-deleted subgraphs, entropy measures to quantify the diversity of

different topological features. Other measures of complexity of complex network in-

cludes Medium Articulation [63] and Offdiagonal complexity [64].

Complex networks can be found in most social, biological, and technological networks

since their connection patterns are neither strictly regular nor strictly random. Scale-

free [6] networks and small-world networks [65] are two well-known and representa-

tive class of complex networks. Structural characteristics of both topologies include

power-law degree distributions for the scale-free case, short path lengths in both cases,

and high clustering for the small-world case.

2.1.2.4 Line Graph

We can define a line graph L(Vl , El) [50] of a graph G(V, E) as:

• Each node ul in the line graph L maps to an edge e in G.

• An edge (ul , vl) ∈ El exists in line graph iff two edges eu and ev in G mapped to

ul and vl respectively are incident in the graph G.
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FIGURE 2.2: (a) Graph G with four nodes and four edges, (b) Line graph (L) of graph
G.

An example of a line graph is shown in Fig. 2.2. The number of nodes in a line graph

L is |Vl | = |E| the number of edges in the graph G and the number of edges in L can

be calculated as |El | = 1
2 ∑|V|i=1 deg2

i − |E|, where degi is the degree of node vi ∈ V. The

linear time conversion of a graph G to its line graph L can be found in [66, 67].

2.1.3 Various graph properties

2.1.3.1 Clustering coefficient

How tight a community is can be found by a metric called clustering coefficient [68].

The clustering coefficient Ci for a vertex vi is then given by the proportion of links

between the vertices within its neighbourhood divided by the number of links that

could possibly exist between them. Formally:

Ci =
2
∣∣∣{ejk : vj, vk ∈ Nbd(i), ejk ∈ E

}∣∣∣
ki(ki − 1)

where ki is the degree of node vi, E is the set of edges, Nbd(i) is the set of neighbourhood

nodes of node vi. Clustering coefficient is important due to several reasons: (i) It is

a measure of the degree to which nodes in the graphs tend to cluster together. (ii)

Empirically nodes with higher degree having a lower local clustering coefficient on

average. (iii) It measures how influential a node is in a network.
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2.1.3.2 Degree Centrality

The degree centrality [69] of a node v in a graph G is the fraction of nodes it is connected

to, as given by the formula

centralitydeg(v) =
degv

(|V| − 1)

where centralitydeg(v) is the degree centrality of a vertex or node v and degv are the

number of edges adjacent to the node v, with V as the set of all nodes in graph G. If a

node has higher degree centrality, then the node is more central in the network. This

aids in identifying the node that distributes information to a large number of nodes.

Degree centrality is useful in many contexts. For instance, the degree of a node in a

gene regulatory network makes it possible to evaluate the node’s regulatory relevance

right away. Highly interacting proteins with the majority of signalling proteins in sig-

nalling networks imply a central regulatory function, i.e., the regulatory hubs [70]. The

degree of a node may also indicate a crucial involvement in transcription factors, or

gene expression, depending on the type of protein [71]. While having a high degree

is vital, there are situations in which low degree nodes end up being more significant

than high degree nodes. Take into consideration, for instance, the case when a node of

degree two links two sections of the network together.

2.1.3.3 Closeness Centrality

Closeness centrality [72] of a node v is the reciprocal of the average shortest path dis-

tance to v across all n-1 reachable nodes, given by the formula

centralityclose(v) =
n− 1

∑n−1
u=1 d(u, v)

where d(v, u) is the shortest-path distance between v and u, and n − 1 is the number

of nodes reachable from v. A node in a network has lower closeness centrality if it is

closer to the center. The closeness centrality is commonly employed to assess the ef-

ficiency of information flow among nodes in a network, as well as to choose the most

optimal starting point (node) within the network. Closeness is employed in several

situations. In the study of bibliometrics, the concept of closeness has been employed
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to examine how academics select journals and bibliographies in various disciplines, as

well as to assess an author’s influence on a particular subject and their social stand-

ing [73]. The notion of closeness centrality has been used to discover the metabolites

that are particularly significant in a genome-based, large-scale metabolic network [74],

contrast unicellular and multicellular animals [75] and obtain a deeper understanding

of the development of metabolic organisation [76]. Closeness centrality suffers from

the disconnected graph problem. In a disconnected graph, the distance between two

vertices belonging to different components is usually set to infinity [77] and for such a

graph, closeness centrality does not provide any information, as each vertex is assigned

to 1
∞ .

2.1.3.4 Betweenness Centrality

Betweenness Centrality [78] of node v is the sum of the fraction of all-pairs shortest

paths that pass through v, given by the formula

centralitybet(v) = ∑
s,tϵV

σ(s, t|v)
σ(s, t)

where V is the set of nodes, σ(s, t) is the number of shortest paths between nodes s and

t and σ(s, t|v) is the number of shortest paths between s and t passing through v. This

centrality measures the extents to which a certain vertex lies on the shortest path of

other vertex. Sometimes betweenness centrality is used to find the network hubs that

can enhance the transmission efficiency of the data [79]. Betweenness centrality was

first proposed in [77] to circumvent the problem of closeness centrality problem in the

disconnected graphs as any pair of vertices s and t that does not have a shortest path

connecting them will simply add 0 to the betweenness centrality of every other vertex.

Betweenness centrality has several applications. In protein networks, the betweenness

of a protein reveals its potential to facilitate communication among a variety of pro-

teins [80]. In a telecommunications network, a node with higher betweenness centrality

would exert greater influence over the network as it would serve as a critical pathway

for the transmission of information [81].
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2.1.3.5 Eigenvector Centrality

Eigenvector centrality [82] calculates a node’s centrality based on the centrality of its

neighbours. The eigenvector centrality for node v is the vth element of the vector x,

which is defined by the equation

Ax = λx

where A is the adjacency matrix of graph G with eigenvalue λ. It is the extension of

degree centrality and the measure of the transitive influence of a node in a graph. This

centrality measure is based on a idea that a node is important if it is connected to other

important nodes. In recent times, scholars from several disciplines have examined the

uses, expressions, and expansions of eigenvector centrality in diverse areas: the eigen-

vector centrality of a neuron in a model neural network has been discovered to have a

correlation with its relative firing rate in the field of neuroscience. [83]. A study con-

ducted in the Philippines utilised data to demonstrate the disproportionate prevalence

of political candidates’ families with high eigenvector centrality in local intermarriage

networks [84].

2.1.3.6 Page Rank

Page Rank [85] ranks nodes in graph G based on the structure of the incoming links.

It assigns an importance score to each node. Important nodes have a high number of

in-links from important pages. Page Rank is a link analysis algorithm and it assigns

a numerical weighing to each element of a hyperlinked set of documents, such as the

World Wide Web, with the purpose of "measuring" its relative importance within the

set. To define the Page Rank formally, we need to define its rank rj of a node as:

rj = ∑
i→j

ri

di

where, di is the out degree of node i. As the matrix formulation, let M is a column

stochastic matrix (column sum equals to 1) defined as Mij =
1
dj

; then the flow equation

corresponding to the rank vector can be written as:

r = Mr
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2.1.3.7 Global Efficiency

The efficiency [86] between two nodes u and v in a graph can be defined as

E f f (u, v) =
1

d(u, v)

The global efficiency [87] is the average efficiency over all u ̸= v, where, u, v ∈ V.

Mathematically,

GE =
1
|E|∑u,v

E f f (u, v)

Global efficiency has become increasingly important in several practical applications,

such as optimising transportation systems [88], brain connectivity [89] etc.

2.1.3.8 Local efficiency

The multiplicative inverse of the shortest path [90] between any two nodes in a network

is the local efficiency [86] of those nodes. It is the global efficiency computed on the

neighborhood of the node. Formally, the local efficiency of node v ∈ V can be defined

as:

LE(v) =
1

|{e|e ∈ GNbd(v)}| ∑
u,v∈Nbd(v)

d(u, v)

Where Nbd(v) set of neighbourhoods of node v. is the The local efficiency measures the

ability of a network to withstand failures at a small scale. The local efficiency of a node

refers to its ability to facilitate information flow among its neighbours in the event of

its removal.

2.1.3.9 Community

Finding community structure inside a network means characterizing the network struc-

ture at the mesoscopic level[91] - which means neither the nodes (microscopic level) nor

the whole network (macroscopic level) but rather an intermediate level is considered.

The problem of finding a community is difficult to formalize since the task can be done

in several ways. So, an intuitive definition of a community can be defined as: A net-

work is said to have community structure if the nodes in it can be easily grouped into

(potentially overlapping) sets of nodes such that each set of nodes is densely connected
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internally. One can relate the community detection task to cluster analysis, which par-

titions a set of objects to identify homogeneous groups. In cluster analysis, each object

is represented by a vector of attributes, and the grouping is done based on the compar-

ison of those vectors. However, in community detection, the grouping is done based

on the relationships (links) between the objects (nodes).Formally, a community in a

graph G(V, E) is a partition P = {V1, V2, ...Vp} of the set of nodes V on which we get

the optimum value of a particular objective function (e.g., modularity [32], conduc-

tance [92]). But finding such an optimum partition is an NP-hard problem. Several fast

approximations are used to find such partitions. Popular community detection tools

like Louvain[29], Infomap[30], Permanence[93] etc. are available.

Evaluating community structure How good the community detection algorithm is can

be found by several metric calculations. Modularity [32] is one of those metrics that

can be used to measure the strength of the network community structure. Formally, it

can be defined as:

Q =
k

∑
i=1

(eii − a2
i )

where eii is the % of edges in community i and ai is the % of edges with at least one end

in community i. Another definition of modularity is:

Q =
1

4m ∑
i,j
(Aij −

kik j

2m
)

where m is the number of edges in the graph, ki is the degree of node i and Aij is 1

when there exists an edge between node i and j else 0.

Comparing communities Comparison between communities can be done by several

metrics, viz., Normalized Mutual Information (NMI) [94], Adjusted Rand Index (ARI) [95],

Purity etc. In ARI, each object is considered individually. In Purity [96], a pair of objects

are considered, and in NMI, information theory approach is considered.
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2.1.3.10 Constant community

When the optimization problem (e.g., modularity [32], conductance [92]) is NP-hard,

the order in which vertices are processed as well as the heuristics can change the results.

But there are few vertices who never change their communities, irrespective of the

changes in the orderings or heuristics. This invariant group of vertices forms a constant

community [97]. The vertices that belong to the constant community are called constant

vertices. Note that constant community is not a partition of nodes (as in the case of

community), since a few non-constant nodes are not included in this structure.

2.1.4 Graph representations

The representation of the graph data is difficult and distinct from the representation of

image and text data. Words in textual data are connected to one another in the form

of a phrase, and within that sentence, they occupy predetermined positions. Pixels

in image data are typically laid out on a grid space that is ordered, and this grid can

be represented by a matrix. Graphs, on the other hand, have non-ordered nodes and

edges that each have their own characteristics. A simple graph representation is the

adjacency matrix A, where a cell A[i][j] in the matrix denotes whether there is any

edge exists between node i and node j or not. Formally,

A[i][j] =


1, if (i, j) ∈ E

0, otherwise

The problem of this representation is that for the large graph, its space complexity

is high. Moreover, this simple representation can not capture the hidden but important

features of the graph entities. Another way of representing the graph is mapping graph

entities into vector space. A typical example is node embedding of a graph, where

each node is mapped into a d-dimensional vector space. An extension of the node

embedding could be edge embedding or the whole graph embedding.
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3. GPNN [116]

Attention
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Embedding

1. GAT [44]
2. AGRNN [117]

FIGURE 2.3: Various Graph Representation Learning methods

2.1.5 Graph Representation Learning

Graph representation allows the topological information of the interacting entities to be

stored and accessed efficiently. A number of graph embedding techniques are adopted

to convert the raw graph data into a vector representation while keeping its intrin-

sic graph properties. This process is called graph representation learning. After the

graph representation is learned, it can be used with machine learning tools for many

downstream tasks. The challenges of learning graph representation include: (i) A

higher-dimensional representation tends to preserve more information than a lower-

dimensional representation, but it is very costly in terms of storage and computation.

(ii) As a graph contains a large number of attributes, picking the right one to embed can

be problematic. According to [98], graph representation learning can be categorized

into classic methods and emerging methods. Figure 2.3 shows the full categorization

of graph representation learning.

2.1.6 Random Walks on network

On a graph, a random walk is a process that starts at one vertex and proceeds to a dif-

ferent vertex after every time step. When the graph is unweighted, the walk advances

to a new vertex that is uniformly selected at random from its neighbours. If a graph



24 Chapter 2. Literature Survey

has weighted edges, it will migrate to a neighbour with a probability proportional to

that edge’s weight.

Formal overview. Let X be a random variable. {Xn} denotes a sequence of random

variables, where n ≥ 0 is called the time step. This sequence of random variables is

also called “discrete-time stochastic process” when these random variables take values

from a set S, where S is called the state space and S could be N, Z or in our case, the

vertex set V. As S = V is discrete, thus it is also called “a discrete-time discrete-space

stochastic process. With this definition, a Markov process can be defined as a stochastic

process Xn having a property:

P[Xn+1 ∈ A|Xn = xk, k ≤ n] = P[Xn+1 ∈ A|Xn = xn]

, whereA denotes the set of all events and n ≥ 0. This Markov process can be analyzed

by its one-step-transition probabilities:

pij = P[Xn = j|Xn−1 = i]

Thus, a random walk in a network can be defined as a discrete-time stochastic process

where the state space is V whose one-step-transition probability can be defined as:

pij =


1
di

, if (i, j) ∈ E

0, otherwise

, where di is the degree of node i, which means that the walk jumps from a vertex to

its adjacent vertex with equal probability. When the network is connected, one can

represent the all-pair Markovian process in a matrix form:

P = D−1A

where D is the degree matrix, which is defined as,

Dij =


di, if (i, j) ∈ E

0, otherwise
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where di is the degree of a node i, and A is the adjacency matrix representing the net-

work.

2.1.7 Graph Neural networks

GNNs are a new type of deep learning architecture that is built exclusively for graph-

structured data. Unlike classic deep learning algorithms, which were designed pri-

marily for text and image processing, GNNs are deliberately designed to process and

analyze graph information. Figure 2.4 shows various graph based tasks performed by

GNN. GNNs have become a potent tool for graph learning and have produced out-

standing outcomes across a range of applications and sectors. The discovery of a novel

antibiotic by a GNN model is among the most striking examples [118]. The model was

evaluated on a library of 6,000 chemicals after being trained on 2,500 molecules. It

stated that a substance known as Halicin [119] should be able to destroy a large num-

ber of germs that are resistant to antibiotics while posing little risk to human cells. This

prediction led the researchers to treat mice afflicted with microorganisms resistant to

antibiotics with halicin. They established its efficacy and held the model’s potential for

usage in the creation of fresh pharmaceuticals.

FIGURE 2.4: Application of GNNs. (a) GNN is used for the node classification task. (b)
GNN is used for link prediction tasks. (c) GNN is used for graph classification tasks.
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2.1.7.1 Types of GNN

In the literature, graph neural networks mostly come in three flavours: Recurrent Graph

Neural Network [120], Spectral Convolutional Network [121] and Spatial Convolu-

tional Network [122].

Recurrent Graph Neural Network. Most of these are early GNN works. RecGNNs use

recurrent neural architectures to learn node representations. They presume that each

node in a graph communicates with each of its neighbours continuously until a stable

equilibrium is attained. Conceptually significant RecGNNs influenced later research

on ConvGNNs. Let, xu, xv, xuv denote the feature vector corresponding to nodes u, v

and edge (u, v). Then, the node’s current state is recurrently updated as follows:

ht
u = ∑

v∈Nbd(u)
f (xu, xuv, xv, ht−1

u )

where f is a parametric function. Examples include GraphESN [123], GGNN [124],

SSE [125] etc.

Spectral Convolutional Network. Graph signal processing uses spectral-based ap-

proaches because of their strong mathematical foundation. Here, the vector xi ∈ Rn

corresponding to a node i is considered a signal. The fourier transformation of the

graph signal can be defined as:

F (x) = UTx

Where U = [u0, u1, ..., un−1] ∈ Rn×n is the matrix of eigenvectors ordered by eigenval-

ues λi (spectrum). This matrix U can be found by factorizing the normalized laplacian

matrix L = UΛUT, where Λ is the diagonal matrix of eigenvalues. Let g be a filter,

thus, the graph convolution operation can be defined as:

x ∗ g = F−1(F (x)⊙F (g)) = U(UTx⊙UTg)

where ⊙ is the element wise multiplication. The above equation can be simplified as:

x ∗ g = UgθUTx
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taking gθ = diag(UTg), diag() is the diagonal matrix. Now if we consider gθ as a set of

learnable parameters Θi,j then the kth hidden layer can be defined as:

Hk
:,j = σ(

fk−1

∑
i=1

UΘk
i,jU

T Hk−1
:,i ), j = 1, 2, ..., fk

where H0 = x. Examples of Spectral Convolutional Network include GCN [43], Cheb-

Net [126] etc.

Spatial Convolutional Network. Spatial-based approaches define graph convolutions

based on a node’s spatial relations, similar to the convolutional operation of a tradi-

tional CNN on an image. Images can be thought of as a particular type of graph, with

each pixel acting as a node. Each pixel has a direct connection to the pixels around it.

To create the updated representation for the central node, the spatial-based graph con-

volutions convolve the representation of the central node with the representations of

its neighbours. Spatial-based ConvGNNs and RecGNNs both adhere to the same prin-

ciples of information propagation. One example of Spatial Convolutional Network is

NN4G [122], where the equation of the next layer node state can be given as:

Hk = f (XWk +
k−1

∑
i=1

AHk−1Θk)

Where f is an activation function, X ∈ Rn×d is the node feature matrix, W and Θ are

the learnable model parameters, and A is the adjacency matrix representing the graph

G. Other examples include Diffusion CNN (DCNN) [127], Message Passing Neural

Network (MPNN) [128] etc.

2.1.8 Thresholding algorithms used for edge classification in a network

In Chapter 3, we used an unsupervised algorithm where we classify the constant com-

munity edges (edges whose two terminals always belong to the same community ir-

respective of multiple runs) with the non-constant community edges using an image-

based thresholding algorithm. We have used a variety of image-based thresholding

approaches. A short description of each of the methods is provided below:
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2.1.8.1 Bi-Level

The bi-level [129] method is a simple and fast image thresholding approach. If the back-

ground and foreground portions of a histogram are distributed equally, the histogram

is completely balanced. In this method, the best threshold is determined by attempting

to balance an uneven histogram. The background and the foreground are the two main

classes that the input image is supposed to be separated into.

2.1.8.2 Otsu

Otsu’s binary classification algorithm [130] is a form of finding a globally optimal k-

means. This algorithm is used to segment/binarize grayscale images such that the

object in the foreground can be distinguished from the background. The output of the

algorithm is a single intensity threshold that separates pixels into two classes, fore-

ground and background. This binary level thresholding algorithm [130] can be easily

extended to multi-level thresholding [131]. As shown in Fig. 2.5, the single threshold

based binarization may not always yield the best results. In this case, the flower (object)

cannot be demarcated from the background by the conventional binary Otsu.

FIGURE 2.5: Several thresholding approaches for images that separate an image’s fore-
ground from background.
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2.1.8.3 Histogram concavity

If an image can be easily divided into object and background in a histogram, the ranges

can be easily distinguished. In this case, the threshold is the point at the valley’s bottom,

which is clearly visible. However, the object becomes difficult to distinguish from the

background when the ranges in the histogram overlap. The best threshold would then

be at the root of the shoulder (where the background pick and object peak overlap). It

is not easy to locate the valleys and the shoulders. However, both of them are part of

the histogram’s concavities. The ideal threshold can be discovered by examining the

concavity structure.

2.1.9 Fundamentals of brain networks: a brief anatomy of the human brain

The brain is a sophisticated organ that manages every bodily function as well as thought,

emotion, memory, motor skills, touch, temperature, vision, respiration, and hunger.

The central nervous system, or CNS, is made up of the spinal cord that emerges from

the brain. The cerebrum, brainstem, and cerebellum can be thought of as the three main

parts of the brain.

2.1.9.1 Cerebrum

It is the largest part of the human brain. It can be divided into two parts: the left

and right hemispheres. Each hemisphere can be divided into four lobes: the frontal,

parietal, temporal, and occipital lobes.

Frontal lobe. Of the four primary lobes, the frontal lobe is the biggest. It is covered by

the frontal cortex. The frontal lobe is mainly responsible for decision-making, numer-

acy skills, and language.

Parietal lobe. The parietal lobe is located behind the frontal lobe and above the tempo-

ral lobe. The parietal lobe is crucial for manipulating things, understanding numbers

and their relationships, and integrating sensory data from different sections of the body.

Temporal lobe. The second-largest lobe is the temporal lobe, which is located behind

the ears. They are frequently linked to memory encoding and the processing of audi-

tory information.
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Occipital lobe. The majority of the anatomical region of the visual cortex is located in

the occipital lobe, which is the brain’s processing hub for visual information.

2.1.9.2 Cerebellum

Cerebellum is the small part of the human brain. Cerebellum contains more neurons

than the rest of the brain because of the large number of granule cells.Although it takes

up only 10% of the total brain volume. It involves motor movement regulation and

balance control. It is attached to the underneath of the cerebral hemispheres. The floc-

culonodular lobe, the posterior lobe, and the anterior lobe make up the cerebellum. The

vermis connects the anterior and posterior lobes in the centre. The anterior and poste-

rior lobes of the cerebellum play a role in the coordination and smoothing of compli-

cated motor motions, whereas the flocculonodular lobe is responsible for maintaining

balance.

2.1.9.3 Brainstem

Brain stem is the stalk-like structure of the brain that connects the cerebrum to the

spinal cord and cerebellum. The Brain stem is responsible for breathing, blood pres-

sure, sleep, heart rate etc. The mid-brain, pons, and medulla make up the brainstem,

which is located beneath the cerebrum.

Mid-brain (also known as the mesencephalon): This is the topmost and the small-

est portion of the brain stem. It can be further subdivided into three parts: Tectum,

Tegmentum and Ventrul tegmental area. Tectum forms the ceiling, tegmentum forms

the floor of the mid-brain. and ventrul tegmental area is composed of paired cerebral

penduncles. Mid-brain is responsible for eye movement, auditory and visual process-

ing.

Pons: Pons lies in between mid brain and medula oblongata. It coordinates the activ-

ities within the cerebral hemisphere. It influences the sleep cycle, manages breathing,

pain signals etc.

Medulla oblongata: It is located on the lower half of the brain stem. It deals with heart

rate, blood presure and breathing.
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2.1.10 Neurological applications of brain network analysis: Attention Deficit

Hyperactivity Disorder and Alzheimer’s disease

The human brain is a complex biological system. It is responsible for everything that we

do, feel, and perceive. Thus, it is very important to know the brain diseases that affect

regular life. Brain diseases can be of many types, ranging from injuries and infections

to brain tumours and dementia. In this section, we shall discuss two such diseases:

Alzheimer’s Disease (AD) and Attention Deficit Hyperactivity Disorder(ADHD). AD

is a neurodegenerative disorder [132] whereas ADHD is a neurodevelopmental disor-

der [47].

Neurodegenerative disorder is a condition in which the central nervous system’s

cells degenerate or stop functioning. In most cases, there is no therapy for neurodegen-

erative diseases, which often worsen with time. They could develop due to a tumour

or stroke, or they might be inherited. A significant alcohol intake, exposure to some

viruses, or ingestion of certain poisons are all risk factors for neurodegenerative dis-

eases. Other examples include: Parkinson’s disease [133], Huntington’s disease [134].

Disorders that influence how the brain develops are known as neurodevelopmental

disorders. The severity of the illnesses might range from minor ones that don’t interfere

with daily life to severe ones that require lifetime care. Other neurodevelopmental

disorders include Autism [135], Schizophrenia [136] etc.

2.1.10.1 Alzheimer’s disease

Alzheimer’s disease (AD) [137] is a neurological condition that typically develops grad-

ually and gets worse over time. 60–70% of cases of dementia progress to Alzheimer’s

disease. The disease is gradual, starting with mild memory loss and potentially pro-

gressing to the loss of communication and environmental awareness. The brain regions

that are responsible for thought, memory, and language are affected by Alzheimer’s

disease. It can significantly impair a person’s capacity to carry out daily tasks. It is

unclear what causes Alzheimer’s disease. There are numerous genetic and environ-

mental risk factors connected to its development. The most potent genetic risk factor

originates from an APOE [138] allele. A history of clinical depression, head trauma,
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and high blood pressure [139] are additional risk factors. As per the report in [140], in

2020, around 50 million people worldwide suffered from Alzheimer’s disease.

2.1.10.2 Attention Deficit Hyperactivity Disorder disease

One of the most prevalent neurodevelopmental diseases in children is Attention Deficit

Hyperactivity Disorder (ADHD) [141]. It frequently persists into maturity and is typ-

ically first diagnosed in infancy. Children with ADHD may struggle to focus, manage

impulsive behaviours (doing things without considering the consequences), or be ex-

tremely active. Many adults with ADHD experience antisocial, depressive, and anxiety

disorders, just like their younger counterparts. Additionally, they have clinically signif-

icant impairments, such as histories of academic failure, work-related issues, and traf-

fic accidents [142]. ADHD is not completely curable. If it is diagnosed early, then with

some proper techniques such as medications [143, 144], meditation [145], virtual real-

ity [146] etc., the inattentiveness, anxiety, and hyper-activity can be controlled, which

helps them lead a smooth social life.

2.1.11 Brain Imaging Techniques

The fast development of brain imaging techniques over the past few decades, such as

magnetic resonance imaging (MRI) [147] , electroencephalography (ECG) [148], magne-

toencephalography (MEG) [149], electrocorticography (ECoG) [150], etc., has benefited

the advancement of cognitive neuroscience. Out of these techniques, three widely used

methods of magnetic resonance imaging include diffusion tensor imaging (DTI) [151],

magnetic resonance imaging (MRI) [147] and functional MRI (fMRI) [152]. They have

been used largely as a diagnostic tool as well as for research purposes.

2.1.11.1 MRI

The term “magnetic resonance imaging” [147] (MRI) refers to a method of medical

imaging that creates detailed 3D-images of the organs and tissues within the body by

employing a magnetic field and computer generated radio waves. In 1979, MRI was

first used to image the human brain. In contrast to CT and PET scans, magnetic reso-

nance imaging (MRI) does not require the use of X-rays or any other form of ionising
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radiation and provides better contrast in images of soft tissues. Brain MRI scans can

be used to segment the grey and white matter volumes. In clinical studies of brain ill-

nesses, alterations in grey matter found in the MRI images could show morphological

traits, such as the location and size of a specific lesion in the brain region. MRI has been

extensively employed in the study of numerous neuropsychiatric illnesses, including

Parkinson’s disease [49], alzheimer’s disease [153], schizophrenia [154] etc.

2.1.11.2 DTI

Diffusion tensor imaging [151], often known as DTI, is a type of magnetic resonance

imaging (MRI) that estimates the axonal (white matter) architecture of the brain by

using anisotropic diffusion [155]. Peter Basser was the one who initially presented the

DTI method in 1994. It is an upgraded version of the traditional MRI, in which the

signals are generated entirely from the motion of water molecules. The unpredictable

and thermal movement of water molecules is denoted by the term "diffusion." In other

words, diffusion tractography imaging (DTI) makes use of the diffusion of water as

a tool to assess the anatomy of a brain network. This offers information on the static

anatomy of the brain, which is an anatomy that is unaffected by the functioning of the

brain.

2.1.11.3 fMRI

Functional magnetic resonance imaging [152], often known as functional MRI or fMRI,

is a method for measuring brain activity that focuses on identifying changes linked

with blood flow. The notion that cerebral blood flow and neuronal activation are con-

nected is the foundation of this method. Blood flow to a certain region of the brain

increases when that area of the brain is being actively used. The blood-oxygen-level de-

pendent (BOLD) contrast was found by Japanese biophysicist and neuroscientist Seiji

Ogawa [156] in 1990 and is used in the principal form of functional magnetic resonance

imaging (fMRI). This is a specific form of brain and body scan that can be used to map

neuronal activity in the brain of humans. This is accomplished by imaging the alter-

ation in blood flow (hemodynamic response [157]) that is associated with the use of

energy by brain cells.
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2.1.12 Functional connectivity matrix generation using fMRI data

Generating time-series signal: fMRI is 4-D data. More specifically, it is a collection

of 3-D images taken over a particular interval of time. If we consider a particular 3-

D image, then each voxel has some particular intensity value representing the oxygen

level at that point in the brain. Since the amount of oxygen changes over time, the

intensity of each pixel representing it changes, and therefore, if we plot the changes

in intensity value of a voxel with respect to time, we get a time-series signal. A time-

series signal corresponding to a particular brain region is the mean signal of all the

voxels that constitute the particular brain region. Fig 2.6 shows the generation of a

single time-series from a particular brain region from a fMRI data.

FIGURE 2.6: Steps for time-series generation: (a) 3-D images of fMRI data, in each time
stamp, a region (a small square box) is selected to get the variation in mean intensity
of the voxels in that region. (b) An array representing the mean intensity value of that
region. (c) Plotting the array with respect to time (index starting from 1) indicates the

time-series signal of that particular region.

Generating functional connectivity matrix: To obtain time-series signals from specific

parts of the brain, the fMRI data needs to be masked with a standard brain atlas. Sev-

eral brain atlases exist such as Harvard atlas [158], AAL atlas [159], MSDL atlas [160]

etc. After obtaining time-series signals from various regions, a standard functional re-

lationship (like Pearson correlation, partial correlation, covariance, etc.) is measured

between every pair of regions, and a matrix representing their association is formed.

This matrix is named the functional connectivity matrix. Later on, we will see how
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this functional connectivity matrix can be used in various tasks such as the diagnosis

of brain disease, the progression of brain disease, etc.

2.1.13 fMRI preprocessing

Since the downloaded fMRI data is in raw form, it needs to be treated in advance to

remove various artefacts. Before using the fMRI data, it must go through some pre-

processing steps, such as: (i) Remove the first few brighter images [161] (ii) head motion

correction [162, 163], (iii) slice time correction [164, 165], (iv) distortion correction [166,

167], (v) registration [168], and (vi) spatial smoothing [169].

2.1.13.1 Removal of the first few brighter images

As a first step, the first few images are removed. Due to the magnetization effect, the

first few images appear to be extremely brighter than the subsequent images. Thus, the

volumes that are acquired for the first few seconds (typically 10s) are removed.

2.1.13.2 Head motion correction

Head movement has two main consequences. The location of succeeding images in the

time series is first misaligned; this is referred to as bulk motion [170] since it entails a

large-scale head movement. By realigning the images in the time series to a single ref-

erence image, typical motion correction techniques are intended to rectify this type of

motion. Due to the fact that huge changes in picture intensity can occur when a voxel

that at one point had no brain tissue suddenly contains tissue due to motion, bulk mo-

tion can have significant effects on activation maps, which typically occur near edges in

the image. Second, head movement may cause the MRI signal to be corrupted. The pro-

tons from a nearby slice that migrate into a voxel as the head moves have an excitation

that is different from what the scanner anticipates, and as a result, the reconstructed

signal will not accurately reflect the tissue in the voxel. This phenomenon is referred to

as the spin history effect [171]. If interleaved acquisition is employed, these effects can

cause significant fluctuations in the intensity of a single slice or group of slices, which

can be seen as stripes of alternating bright and dark slices. Standard motion correction
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techniques cannot be used to correct this type of motion, but experimental techniques

like ICA [172] or spin-history corrections [173] are used nowadays.

2.1.13.3 Slice timing correction

The fMRI data are gathered using two-dimensional MRI acquisition, which collects

data one slice at a time. The slices are acquired in either ascending or descending order.

Another technique, interleaved acquisition, involves sequentially acquiring every other

slice, so that half of the slices (for example, the odd slices) are acquired before the other

half (e.g., the even slices). Data in different areas of the image are regularly acquired at

different times when using two-dimensional acquisition, and these discrepancies might

be as much as several seconds (based on the pulse sequence’s repetition time, or TR).

It is difficult to analyse fMRI data when various voxels have varied acquisition times.

A statistical model that simulates the anticipated signal that the task will evoke is built

using the times of events (such as trials in a task). The data from each time point are

then compared to this model, but because this analysis assumes that all of the data in

the image were recorded simultaneously, there is a discrepancy between the model and

the data, which varies across the brain.

2.1.13.4 Distortion correction

Gradient-echo echoplanar imaging (EPI), the most popular technique for fMRI acqui-

sition, exhibits artefacts close to areas where air and tissue converge, such as the si-

nuses or ear canals. Dropout and geometric distortion are two of these effects, both of

which are brought on by the air-tissue interfaces’ inhomogeneity of the main magnetic

field (also known as B0). Dropout is characterised by diminished signals in the orbito-

frontal cortex and the lateral temporal lobe, two brain regions close to these air-tissue

interfaces. It is best to use MRI acquisition techniques that minimise dropout since,

after the data have been recorded, there is no way to retrieve data from a region with

considerable dropout. fMRI scans can exhibit spatial distortion in the same locations in

addition to signal loss. These inhomogeneities in the magnetic field lead to inaccuracies

in the positioning of structures when gradients are used to encode spatial information

in the MRI picture. With the aid of a field map [166], which describes the B0 field, the

consequences of magnetic field inhomogeneity can be substantially mitigated.
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2.1.13.5 Registration

Compared to MRI data, fMRI volumes have lower resolution and lower inter-tissue

contrast. Thus, registration of fMRI data is difficult compared to MRI data. The reg-

istration process of fMRI data is a three-step process: first, it is registered into high-

resolution MRI data (T1-weighted) of the same subject by rigid body transformation [174].

Then, the constructed T1-weighted MRI data is registered onto a standard space by

affine transformation [175]. These two transformation matrices are then combined and

applied to the fMRI data to register it in standard space.

2.1.13.6 Spatial smoothing

By applying a filter to the image, spatial smoothing [176] eliminates high-frequency

information. Researchers apply spatial smoothing to the fMRI data for a variety of

reasons. First, smoothing improves the signal-to-noise ratio for signals with greater

spatial dimensions by removing high-frequency information or small-scale changes in

the image. Second, it is recognised that there is spatial variability in the placement of

functional zones when data from different people is pooled, and this spatial variability

is not fixed by spatial normalisation. At the price of spatial resolution, spatial smooth-

ing can lessen the disparity between individuals by fuzzing the data across space.

2.1.14 Preliminaries of Recommender system for network based study

Recommender systems (RS) are data-driven tools that use information processing to

predict, prioritise, and identify users’ preferences from a wide range of options. The

main objective of recommender systems is to minimise the user’s effort and time needed

to get pertinent information on the internet. The ability of RSs to forecast a user’s pref-

erences and interests by examining their behaviour in order to generate specialised sug-

gestions is its most important feature. The recommendation system was first applied

to e-commerce sites to suggest products to customers and increase merchant revenue

through greater sales [177]. The fundamental ideas of friendship and similarity served

as the foundation for recommender system development. RSs typically have three com-

ponents: user information, item information, and filtering techniques that use the user

and item information to find products that match the users’ interests. User information
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includes things like what the user likes, what he or she has purchased, user ratings,

and reviews. Item information includes things like how the items look and function.

It takes both user and item information to create user-item interactions, which are the

decisions the user makes when interacting with the system for a certain item. Partic-

ipation could take the form of looking for a certain item or offering feedback on one.

These activities are all recorded in the recommendation system’s activity log. Finally,

the RS filtering algorithms take into account user-item interactions in addition to user

information and item information as input and offer a suggestion for a new item for

the users to consider. The procedure is shown in Figure 2.7.

FIGURE 2.7: Basic Architecture of a Recommender System

2.1.14.1 Types of recommender system

The four main RSs approaches (Figure 2.8) are content-based filtering (CBF), collabora-

tive filtering (CF), hybrid filtering (HF), and knowledge-based filtering (KBF).

Collaborative filtering (CF) The most popular method for creating recommender sys-

tems [178] is called collaborative filtering (CF). The typical CF recommendation ap-

proach analyzes past user-item rating data to locate new like-minded users to provide

recommendations and suggestions. It predicts a user’s behaviour based on their past

behaviours, or, to put it another way, it establishes a connection between two or more

comparable users based on their past behaviours in order to provide a recommenda-

tion [179]. "Neighbours" refers to these users who are similar to one another. The CF

technique is used in almost every data field in recommender systems, despite the fact
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FIGURE 2.8: Major types of Recommender System

that it has a cold start issue [180, 181]. Collaborative filtering can be further divided

into memory-based and model-based filtering.

Content-based filtering (CBF) The content-based filtering (CBF) recommender system

is developed using a user’s past behaviour. It makes the assumption that if someone

previously preferred something, they will do so going forward. By comparing each of

the unique features of the two items, one can determine how similar they are. The CBF

method focuses mostly on these extracted features of the various items in an RS and

delivers recommendations for an item to a user inside that RS based on these extracted

features. When meaningful information cannot be extracted from data objects, CBF

occasionally experiences limited content analysis [182] problems.

Hybrid filtering (HF) Collaborative filtering (CF) suffers from a cold start problem,

whereas content-based filtering (CBF) suffers from a limited content analysis problem.

Researchers have created hybrid systems [183] that blend CF and CBF techniques in

order to overcome these problems. Combining CF and CBF in various ways can lead to

the creation of a number of hybrid strategies [184]. The performance of recommender

systems has improved thanks to the growing use of hybrid techniques. As a result,

hybrid methods have been used in practically every recommendation-related industry,

from e-commerce, hotels, and tourism to movies and novels [185, 186].

Knowledge-Based filtering: Knowledge-based (KB) filtering [187, 188] eliminates ex-

traneous information by using background knowledge or data about users, objects, and
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FIGURE 2.9: Confusion matrix. p: actual positive value, n: actual negative value, p′:
predicted positive value, n′: predicted negative value,

their relationships. Some e-learning recommendation systems base their recommenda-

tions on their expertise in the subject. Knowledge-based filtering methods show how

a certain product meets the requirements of a particular customer. To use the KB ap-

proach effectively, one must gain domain-specific knowledge about people and things.

Relational information is used by KB systems in the context of e-learning to find learn-

ing resources that are pertinent to the users of the systems [189].

2.1.15 Some Evaluation techniques

Confusion matrix. The confusion matrix is a matrix that is used to assess the perfor-

mance of classification models for a given set of data. It can be determined only if

the true values of the data are known. The confusion matrix is used to evaluate the

performance of a model. A visual representation of the confusion matrix is shown in

FIGURE 2.9.

Precision. It can be described as the number of correct outcomes produced by the

model, or how many of the positive outcomes predicted correctly by the model were

actually true. It can be defined as:

Precision =
TP

TP + FP
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Recall. It is defined as the percentage of positive classes predicted correctly by a model

out of a total of positive classes. It can be defined as:

Recall =
TP

TP + FN

F1 score. It is the harmonic mean of precision and recall. It is difficult to compare two

models that have low precision but high recall, or vice versa. So, we can use the F1 score

for this purpose. This score allows us to assess both recall and precision simultaneously.

If the recall equals the precision, the F1 score is maximised. It can be defined as:

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall

Accuracy. It is one of the crucial factors in figuring out how accurate a classification

problem is. It specifies how frequently the model predicts the right result. The number

of accurate predictions made by the classifier divided by the total number of predictions

made by the classifiers can be used to compute it. It can be defined as:

Accuracy =
TP + TN

TP + TN + FN + FP

Mean absolute error (MAE).It is broadly used in recommender systems. Let’s say there

are N items. If ŷi denotes the predicted rating for an item i and yi denotes the actual

rating the item has, then MAE can be defined as:

MAE =
∑N

i=1 |yi − ŷi|
N

Precision@k. In the domain of recommendation systems, the term “precision” can be

defined as:

Precision =
Number of relevant items in the recommended items

Total Number of recommended items

Recommended items can be divided into relevant recommended items and irrelevant

recommended items. Now, in a recommender system, the rank of the items matters.

Defining precision in such a way misses the consideration of rank. Thus, to include the
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rank of the items, “precision@k” is considered a metric. Formally,

Precision@k =
Number of relevant items in the top k recommendation

Number of items in top k recommendation

Average precision@k. Based on the definition of precision@k, the average precision@k

can be defined as:

Average precision@k (AP@k) =
1

Total number of relevant items

K

∑
k=1

Precision@k∗Relevent(k)

Relevent(k) =


1, if item at kth rank is relevant

0, otherwise

Mean average precision@k (MAP@k). Average precision@k is based on a single user

only. When we have more than one user, the mean average precision@k is taken into

account. Formally,

MAP@k =
1
N

N

∑
i=1

AP@ki

Where, N is the total number of users.

2.2 Related works

2.2.1 Graph representation Learning

Presently, an enormous number of graph representation learning techniques are pro-

duced, and they are applied in different domains such as bio-informatics [190], chem-

istry [191], criminology [192], neuroscience [193] etc. Recent works on graph represen-

tational learning are mainly based on deep neural networks. Popular models include

ChebyNet [126], GCN [43], GAT [44], APPNP [194], GPRGNN [195], etc. Zheng et

al. [196] proposed “MathNet," which uses wavelet multiresolution analysis techniques

for graph representation learning and takes different graph structures as input and as-

sembles several consistent graph embeddings. Zhong et al. [197] uses temporal graph

transformer as a model for graph representation learning in dynamic graphs. In [198],
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the authors combined deep generative models with a graph auto encoder to exploit

the uncertainty of hidden variables to produce better graph representations. A work

based on unified representation learning considering both social networks and knowl-

edge graphs is done in [199]. Most of the emerging GNN based graph representation

learning techniques are based on semi-supervised methods. Some recent graph repre-

sentation learning methods based on unsupervised methods include [200, 201, 202] etc.

Some survey papers based on graph representation learning techniques can be found

in [203, 204, 205].

2.2.2 Classification using Image Thresholding

The image thresholding algorithms are very commonly used for classification of im-

ages, such as in Mahdy et al.[206] where they use the image thresholding algorithms

to classify the detection of COVID-19 patients. Iqbal et al. [207] presented a survey for

the detection and classification of citrus plant diseases, and Amin et al. [208] presented

a method to detect and classify tumours. Survey papers by Lamont et al. [209], Asokan

et al. [210], and Chouhan et al. [211] present an overview of all the works related to

image thresholding algorithms for classifying images. This paper is the first attempt to

use this approach for graph related classification problems. We believe this approach

will be extended to other classification problems in the future.

2.2.3 Graph Neural Networks

Graph Convolution Neural Network is categorised as a sub-class of techniques un-

der the broader domain of Graph Neural Networks (GNNs). There are various types

of GNNs based on their application domains. A graph neural network can be used

in many fields, such as classifying the nodes [43, 212], link prediction [213, 214], graph

classification [215, 216, 217], graph generation [218, 219, 220], community detection [221,

222] etc. A comprehensive survey on GNNs can be found here [223, 224]. Souravlas et

al. [225] gave a brief overview of current state & advances in deep learning techniques

for community detection. We have also seen many attempts to detect communities us-

ing GNN such as Bruna et al. [226], Shchur et al. [227], and Moradan et al. [228]. We

didn’t find any work that has attempted to use GNN for detecting constant communi-

ties.
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In recent studies, GNNs have also been used with line graphs. For example, a super-

vised community detection task using a GNN model called a line graph neural network

(LGNN) is proposed in [229]. LGNN uses both the graph G and its corresponding line

graph L(G) to find the communities in G. Using the LGNN, the authors in [230] study

the link prediction task in the graph.

2.2.4 Constant or Consensus Community

Community detection is a well-studied problem, and numerous algorithms exist (see

survey [231]). However, finding non-stochastic communities is a much less studied and

more challenging problem.

Community detection algorithms are primarily based on optimizing objective func-

tions. Due to underlying stochasticity, the resulting structures show considerable vari-

ations. Newman [232] suggests that stochasticity can be reduced by identifying “build-

ing blocks", i.e., groups of network nodes that are usually found together in the same

community. In [233], a precursor to this work, the authors investigated the properties

of constant communities with respect to within communities and across community

edges.

A popular approach to finding stable communities is via consensus clustering, as

introduced in [234]. Variations include multi-resolution consensus clustering [235], en-

semble clustering [236, 237] and fast consensus [238] clustering and CHAMP [239].

Nevertheless, as seen here, these are not yet fast enough for large networks.

2.2.5 Random walks in a network

A random walk is the process of randomly going from one node to the next and form-

ing a path. A random walk on a directed graph is equivalent to a Markov chain,

while a random walk on an undirected graph is equivalent to a time-reversible Markov

chain [240]. [241] studied large networks with random walks and came up with the

precise expression for the mean first-passage time between two nodes. Variants of

random walks include random walk with restart [242], PaRWalk [243], personalized

PageRank [244], lazy random walk [245], etc. In [246], they used random walk to

extend the original node2vec node-neighbourhood sampling method and produce a
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second-order random walk sampling for heterogeneous multi-graphs. Multiple appli-

cations are built using random walk based algorithms including recommendation sys-

tem [247, 248], link prediction [249], computer vision [245], network embedding [250,

105], semi-supervised learning [251, 252], complex social network analysis [253] etc.

Several surveys based on random walk include [254, 255, 253].

2.2.6 Random walks based node embedding techniques

Node embedding technique is a popular graph representation learning (GRL) method [256].

Few popular random walk based node embedding techniques include DeepWalk [250],

Large-scale Information Network Embedding (LINE) [106], Node2Vec [105], Asymmet-

ric Proximity Preserving (APP) [257] etc. DeepWalk applies standard random-walk

methods to generate node embeddings. Node2Vec uses biased random walks for better

embeddings. APP uses rooted PageRank. By maximising an objective function, LINE

maintains the integrity of both the global and local network architecture. Huang et. al.

[258] broadly categorizes the random walk based node embedding process into two cat-

egories: Pointwise Mutual Information (PMI) and Auto-covariance. DeepWalk [250],

LINE [106], NetMF [259], Node2Vec [105], WalkLets [260], and NetSMF [261] fall into

the PMI group whereas, Multiscale [262] and the proposed method of (Huang et. al.) [258]

falls in the auto-covariance group. Few surveys on node embedding techniques based

on random walk method includes [263, 264, 265, 266].

2.2.7 Graph-based semi-supervised learning

Semi-supervised learning (SSL) [267, 268] and graph-based SSL (GSSL) [269, 270, 271]

have become popular over past few years. Spreading labels from a small number of la-

belled data points to a larger number of unlabeled data is the topic of this study. Some

GSSL [272] learned from both labelled and unlabeled data by taking advantage of pair-

wise correlations between the nodes in the min-cut algorithm. Some methods take

into account the cluster assumption [273], which stipulates that the decision bound-

ary shouldn’t cross densely inhabited areas. The spectrum approach was employed by

the [274, 275] for the semi-supervised learning challenge. [276] talked on the consis-

tency of optimization-based methods for the GSSL under the presumption that the un-

labeled data and labels with low noise levels are well clustered. Other works include
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label propagation techniques using harmonic and Gaussian fields [270], transductive

SVM [277], random walks [278, 279], combination of label propagation and bipartite

graph construction [280] etc. Fergus et al. [281] provided a method for creating nu-

merical approximations to the eigenvectors of normalised graph Laplacian by taking

advantage of the convergence of the eigenvectors of the normalised graph Laplacian

to the eigen-functions of weighted Laplace-Beltrami operators. Few GSSL approaches

take into account both the graph structure, which includes regularisation tasks, and

the feature vectors related to the data. Zhang et. al. [282], for instance, proposed using

prototype vectors under the low-rank approximation and minimal information loss as-

sumption to approximate the graph-based regularizer in GSSL. Belkin et. al. [283] sug-

gested a few graph regularisation algorithms. The proposed techniques resolve a single

sparse system of linear equations and are rather simple. Zhou et. al. [284] introduced

GSSL by higher order regularisation, which is similar to a higher order Sobolev semi-

norm, where they employed Iterated Laplacian regularisation. Li et.al. [285] improved

the performance of Laplacian Regularised Least Squares by using Nystrom subsam-

pling and preconditioned conjugate gradient descent. Belkin et. al. [286] demonstrated

a technique for data-dependent regularisation that makes use of the geometry of the

probability distribution. Recent GSSL surveys include [287, 288].

2.2.8 Graph neural networks for node classification

Graph Neural Network (GNN) [223] is a tool for various graph-based semi-supervised

downstream tasks such as node classification [289], edge prediction [290], network clas-

sification [215, 291], network embedding [292], and so on. One of the most important

tasks in the network domain is node classification because it has many applications

in various fields such as text classification [293], molecular fingerprints learning [294]

neural machine translation [295], etc. Over-fitting and over-smoothing hinder the de-

velopment of GNN for node categorization. Thus, the majority of current GNN re-

search efforts are directed on solving these problems. For instance, in [296], the authors

extended the training set using PaRWalk [243], which increased the GCN’s accuracy.

Another option is Jumping Knowledge Networks (JKNet) [297], where the neighbour-

hood features are aggregated differently for each node. Label smoothing [298] and

knowledge distillation [299] are the sources of inspiration for Mutual Teaching for

Graph Convolutional Networks (MT-GCN) [300]. The model trains label expansion
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and teaches the peer network using both the temperature of the softmax layer and the

ground truth labels. However, knowledge distillation systems frequently experience

poor distillation due to insufficient utilisation of unlabeled data or too confident and

biassed pseudo-labels. Luo et. al. [301] provides DualGraph, a framework for using

unlabeled graphs for semi-supervised graph classification more effectively, as a solu-

tion to this issue. It was inspired by recent advancements in contrastive learning [302]

and dual learning [303]. PageRank [85] and GCN [43] are used by Approximate Per-

sonalised Propagation of Neural Predictions (APPNP) [194] to create a better mes-

sage passing scheme in the graph. The APPNP model, which suggested a generalised

PageRank GNN, was the source of inspiration for the generalised PageRank Graph

Neural Network (GPRGNN) [195], which addresses the issues of over-fitting and over-

smoothing. DropEdge [304] randomly eliminates a predetermined number of edges

from the input graph during each training epoch, acting as both a data augmentation

and a message carrying reduction. The accuracy is increased by iterative deep graph

learning (IDGL) [305], which simultaneously and incrementally learns graph structure

and graph embedding. Deep Graph Infomax (DGI) [306] is a method that focuses

on maximising the mutual information between patch representations and the asso-

ciated high-level graph summaries, both of which are produced using a well-known

architecture for a graph convolutional network. The Graph Harmonic Neural Network

(GHNN) [307] is made up of two modules that look at graph topology data from dif-

ferent perspectives: a graph kernel network (GKN) [308] module and a graph convolu-

tional network (GCN) module. In order to harmonise the training of the two modules

and reconcile the consistency of their predictions, they created a novel harmonic con-

trastive loss and a harmonic consistency loss by emphasising high-quality unlabeled

data during the training of the two modules.

2.2.9 Graph Theoretical Analysis in brain imaging

Graph theory offers many network modeling techniques to simulate the evolution-

ary processes of real-world complex networks [309, 310, 311]. Network modeling can

infer the reasons governing interconnections and explain the mechanisms underly-

ing the creation of a network [312, 19]. Previous research has shown that network
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modeling can be effectively applied to study the network growth and dynamics ob-

served in real-world complex networks [313, 314, 315]. With the help of suitable net-

work models, one can quickly generate or simulate the desired network, which con-

tains structural features similar to those explored in the real-world complex network

[315, 316, 317]. Graph theory also helps us in identifying many important topologi-

cal properties that can evaluate and analyze the performance of the complex human

brain networks [318, 319, 320, 321]. A node, here, represents a brain region in such net-

works, and an edge corresponds to the relationship between two brain regions. Recent

research also focuses on applying various deep learning approaches to study the cog-

nitive aspects of the brain network [322, 323, 324]. People have explored the alterations

of important topological properties of a network (transitivity, efficiency, degree distri-

bution, modularity, etc.) during the formation of brain networks generated from differ-

ent data sets such as functional MRI, structural MRI, Electroencephalography (EEG),

etc [8, 325]. Thus, network modeling is considered a valuable technique that becomes

important for understanding the mechanism of topological inter-connectivity inside a

network. In particular, several node embedding techniques, in the deep learning frame-

work, are becoming increasingly popular in representing the nodes in a brain network

in a vector space for extracting important features or properties, e.g. in the present case

for diagnosing AD patients [326, 327, 328].

2.2.10 Machine Learning Techniques in computational neurology

Recently, machine learning approaches are increasingly being used in differentiating

between healthy and diseased situations by analyzing physiological patterns (biomark-

ers) [329, 330]. Recent studies by Lo et al.[331] have used diffusion tensor image tractog-

raphy to construct connection matrices and graph matrices from DTI data of Alzheimer’s

patients. In [332], people have used fractional anisotropy (FA) values as input fea-

tures in a machine learning approach to discriminate between Alzheimer’s disease and

healthy controls. Research in [333] suggests a probabilistic neural network model for

classifying brain images using wavelet transformation. Convolution neural networks

(CNN) is one of the modern deep learning techniques [326, 327] that has been suc-

cessfully applied to classifying brain networks from magnetoencephalography (MEG)

data [334] and attention deficit hyperactivity disorder (ADHD) data [335]. Recent

research has developed several neural network-based graph embedding techniques
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[41, 105, 336] that have been successfully applied in brain research. To better learn

deep representations of graph-structured data, graph convolutional neural networks

(GCNs) have recently evolved [337] and have been demonstrated to outperform other

conventional relational learning approaches. An end-to-end graph similarity learning

framework is proposed by Ma et al. [338, 339] to learn the brain network representa-

tions from multi-subject fMRI data using a supervised technique. To characterise and

understand the community structure in brain networks, the proposed framework exe-

cutes higher-order convolutions by inserting higher-order proximity into GCN. Morris

et al. [340] proposed a sparse graph embedding technique for diagnosing Autism Spec-

trum Disorder (ASD). Hence, machine learning techniques have become popular in di-

agnosing several neurological disorders such as ADHD, AD, and ASD in the human

brain.

2.2.11 Machine learning frameworks on diagnosing ADHD:

In general, the three main steps of a machine learning-based classification process are

feature selection, feature extraction, and label selection via classifiers. The feature selec-

tion part includes LASSO [341], SVM-REF [342], FADR [343] etc. To achieve high dis-

criminating accuracy in the diagnosis of ADHD, a Support Vector Machine-Recursive

Feature Elimination (SVM-RFE) classifier was used with a different number of feature

sets. In LASSO, the functional data were first converted into wavelet data, changing

the problem of data fitting into a problem of variable selection. A discriminative subset

of functional-anatomical brain regions was chosen for Functional-Anatomical Discrim-

inative Regions (FADR), which aims to identify anomalies in functional connectivity

in mental diseases. In feature extraction a set of features are extracted from the data.

LDA [100], ICA [343], fusion fMRI method [344], subspace projection algorithm [345],

some graph based methods [346, 347] etc are used as the feature extraction methods.

Lastly, several classifiers such as SVM [346, 348], random forest, decision tree [349],

adaptive boosting decision trees (AdaDT) [350], KNN [351] are used as the classifica-

tion step. In [352], the authors fused imaging data with non-imaging data and apply

SVM to diagnose ADHD. They did not use any atlas, rather used Affinity Propagation

clustering algorithm [353] to find various brain regions. Kautzky et. al. [354] used PET

and MRI scans data along with genotypic information and apply SVM for the classifi-

cation of ADHD with the healthy control.
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In [346], Based on their inter-graph distance measurements, all the subjects are pro-

jected from an unknown graph-space to a low dimensional space using the Multi-

Dimensional Scaling (MDS) technique. The primary focus in [348] is to used ma-

chine learning to assess the relative predictive value of teacher and parent ratings, be-

havioural measures of executive function (EF), and brain measures of EF in predicting

ADHD in a sample. In [351], Electroencephalogram (EEG) data were divided using em-

pirical mode decomposition (EMD) and discrete wavelet transform (DWT) techniques.

2.2.12 Deep learning frameworks on diagnosing ADHD:

The deep learning based framework removes the boundary among the above three

steps of the machine learning based framework. Several works include fully convolu-

tional neural network (FCNet) [355] - where the model extracts functional connectivity

directly from raw fMRI time-series signals, Separated channel attention convolutional

neural network (SC-CNN-attention) [356] - where they presented a new two-stage net-

work structure by combining a separated channel convolutional neural network (SC-

CNN) with an attention-based network (SC-CNN-attention) in order to distinguish be-

tween ADHD and healthy controls on a large-scale multi-site database, 3-D-CNN [357]

- where through the use of MRI scans and 3-D convolutional neural networks (CNNs),

they created a deep learning-based ADHD classification system. They [357] also cre-

ated a method that extracts useful 3-D low-level characteristics from functional MRI

(fMRI) and structural MRI (sMRI) data in order to decrease the vast number of pa-

rameters used by neural networks. In [358], the author created a 4-D CNN that uses

granular computing and can calculate granularity at a coarse level by stacking layers.

The CNN was trained using derivative changes in entropy. In [359], using the Event-

Related Spectral EEG and CNN, the authors discriminated adult ADHD from healthy

individuals. The combination of EEG and CNN is also used in [360] for the diagnosis of

ADHD. In [361], spectral features of EEG signals is used with the LSTM for the ADHD

classification tasks. In [362], the authors built 4-D CNN based on granular comput-

ing that was trained on derivative changes in entropy and can calculate granularity at

a coarse level by stacking layers. In [363], a short-time diagnostic approach was pro-

posed which can swiftly evaluate the patients’ fMRI data and help clinicians in remote

diagnosis. In [364], the ADHD-200 dataset has been used to generate 2-dimensional
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images. A convolutional neural network (CNN) algorithm along with long short-term

memory (LSTM) have been employed. They have used these image datasets to classify

typically developing controls. Other works include [335, 365, 366] etc.

2.2.13 Machine learning frameworks on diagnosing Alzheimer’s disease

A degenerative condition called Alzheimer’s disease (AD) causes progressive, irre-

versible cognitive decline. Numerous methods based on machine learning with neu-

roimaging images have been suggested to obtain a precise and timely diagnosis and

identify AD at early stages. In [367], Franciotti et al. applied three machine learn-

ing techniques: random forest, gradient boosting, and extreme gradient Boosting algo-

rithms for diagnosing the Alzheimer’s disease. They also combine clinical and biolog-

ical measures to improve the diagnosing accuracy. Kumar et al. [368] proposed MRI

based hybrid machine learning technique (SVM and CNN) to diagnose Alzheimer’s

disease. In [369], the authors proposed a multi-class diagnosis of Alzheimer’s dis-

ease using several machine learning techniques such as: SVM, random forest, LDA,

KNN etc. Gao et al. [370] suggested a combination of SHAP (SHapley Additive exPla-

nations) [371] and XGBoost to diagnose Alzheimer’s disease and to explain the pro-

gression of this disease. In [372], the authors integrate CNN with KNN with baysian

optimization to diagnose Alzheimer’s disease. Neffati et al. [373] uses Downsized Ker-

nel Principal Component Analysis (DKPCA) and multiclass Support Vector Machine

(SVM) as their ML tools for AD classification.

2.2.14 Deep learning frameworks on diagnosing Alzheimer’s disease

In particular in the field of computer vision, deep learning, a cutting-edge machine

learning approach, has demonstrated outstanding results over conventional machine

learning methods for recognizing complicated patterns in complex high-dimensional

data. Recent years have seen a significant increase in interest in the use of deep learning

for automated classification and early detection of Alzheimer’s disease (AD), thanks

to the quick development of neuroimaging methods and the resulting production of

vast amounts of multimodal neuroimaging data. Several deep learning models include

RBM [374], DBM [375], DBN [376], CNN [377] etc are used to diagnose Alzheimer’s
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disease. In [378], the author uses various CNN based models: DenseNet121, VGG 16,

ResNet50, EfficientNetB7, and InceptionV3 for diagnosing Alzheimer’s disease. Chiyu

et al. [322] used FSBi-LSTM for the Alzheimer’s classification. Islam et al. [379] pro-

posed a deep CNN-based pipeline to identify Alzheimer’s disease along with its var-

ious stages. Sarraf et al. [380] proposed Optimized Vision Transformer (OViTAD) to

Predict Various Stages of Alzheimer’s Disease. A recent survey on deep learning based

diagnosis and prognosis of Alzheimer’s disease can be found in [381].

2.2.15 Network modeling in brain network simulation

It is important to note that network modelling has recently undergone a number of

noteworthy advancements, most notably in the field of research pertaining to the sim-

ulation of brain networks. These advancements have been made possible by the in-

tersection of graph theory and network neuroscience [382, 383, 384, 385]. In [382], the

authors proposed Economical Clustering Model (ECM). The authors attempted to dis-

cover the connection mechanism behind the construction of brain networks while ECM

was being used to build the brain network by adopting the local topologies of common

neighbours (CN) between two areas. In a similar manner, [383] put out a number of

generative models of human brain networks that were organised according to various

network architectures. They tried to gain a better understanding of the wiring rules

that determine the topologies of the brain network. In [384], they outlined the core aims

of building network models; then they went over the most popular types of network

models, which can be broadly classified along the following three main lines: from

data representations to first-principles theory; from biophysical realism to functional

phenomenology; and from elementary descriptions to coarse-grained approximations,

and at last, they established validation rules for these models using concepts from bi-

ology, philosophy, and other fields. In [385], they presented an overview of the main

results of resting-state activity across a variety of neuroimaging modalities, including

fMRI, EEG, and MEG. The authors outlined the best ways to categorise and examine

anatomical and functional brain networks and how disrupting the balance of these net-

works may result in mental health issues.
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Chapter 3

Detection of Constant Communities

in a Complex Network

Chapter summary: The detection of community in a network is a challenging task

due to its “NP-hard” nature. Hence, most of the community detection algorithms are

based on optimizing some objective function, and therefore their results are stochastic

in nature. Since community detection is extremely important in a network due to its

diverse applications, changes to the community structure on every execution creates

obstacle to obtain accurate results. In this chapter, we are going to discuss how we solve

the problem by developing some algorithms using some hand-made and automated

feature engineering (graph representations) on the network.

3.1 Introduction

One of the most important core operations in large-scale real-world networks is the

detection of communities. However, this operation is likewise stochastic by nature.

The algorithm, the settings, and even the order in which the vertices are processed

can all affect the communities that are found. Finding continuous communities is one

way to lessen the impact of these algorithmic artefacts. Constant communities are a

collection of vertices that consistently belong to the same community and display stable

partitioning (FIGURE 3.1).

55
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The current methods for finding constant communities entail executing a commu-

nity identification algorithm numerous times or a variety of them, merging the results,

and then identifying the set of vertices that are consistently clustered together. These

methods do not scale to large networks, however, and are quite expensive in terms of

time and memory.

In this chapter, we provide binary edge classification as a technique to recognise

constant communities. A network’s edges are categorised according to whether or not

they belong to a stable community. Our approaches are substantially faster than the

currently available methods and may be used with million-scale networks because the

categorization just depends on easily calculable edge attributes rather than on locating

communities.

In this research, the semi-supervised and unsupervised methods for obtaining con-

stant community are both taken into consideration. In the unsupervised approach, we

manually find the features of the edges, build histograms based on these features, and

apply some thresholding algorithms to classify the constant community edges. We

have used various histogram-based image thresholding algorithms like Bi-Level [129],

Histogram Concavity [386], Otsu’s [130] algorithm and its variants in our study. In the

semi-supervised approach, we automated the process of finding edge features using

GCN [43] and Line Graph [50].

Although the semi-supervised approach performs better than the baselines on real-

world networks, obtaining a set of known labelled nodes for training purposes can be

challenging at times, and for large networks, it takes more time to execute than the

unsupervised approach. Our unsupervised algorithms, on the other hand, can handle

networks with millions of vertices with good accuracy.

The study on noisy environments has also been incorporated into the current work,

and practical evidence has shown that our strategy still outperforms the baselines.

Lastly, we have done a case study where we have shown that application of com-

munity and constant community gives better outcomes in the neighbourhood based

recommendation system [387]. The constant community we have used in this rec-

ommendation system are found using both of our unsupervised and semi-supervised

methods.
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FIGURE 3.1: Example of formation of constant communities. (a) Output of first algo-
rithm (b) Output of second algorithm (c) Group of nodes always staying together are
called constant community. Different colors (orange and green ) represent different
communities to which vertices are assigned for each algorithm. blue node is not the

part of constant community.

3.2 Proposed strategies

3.2.1 Semi-supervised approach to detecting constant communities

In a graph-based semi-supervised learning scenario, the aim is to predict the labels of

other nodes using the label information of a small number of available nodes. GCN is

a well-liked deep learning method that employs graph-based semi-supervised learn-

ing methods. The main function of GCN is to categorise the nodes in a graph. In our

research, we use the GCN to perform edge classification and identify constant commu-

nities. We transform the input graph into its equivalent line graph so that the GCN can

classify the edges. This method allows for the representation of every edge in the input

graph G by a distinct node in the associated line graph L. The categorization of edges

in the input graph follows logically from the classification of nodes in the line graph.

The key steps of the semi-supervised approach are given below:

Step1: Generation of the line graph L. The GCN is a node classifier by default, as

was already mentioned. As the node of the line graph represents an edge of the input

graph, we must transform the input graph G to its corresponding line graph L in order

for it to function as an edge classifier. Thus, classifying the nodes in L is equivalent to

classifying the edges in G.

Step2: Generating features from graph G. GCN requires that each node be associated

with a feature vector so that it can apply the smoothing operation to the feature vectors

for the node classification task. A feature vector is composed of a number of features.
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In this step, we have discussed how we construct the feature vector for each node in

the line graph.

Before constructing the features, we numbered all the edges in G with a unique

integer in {0, 1, ..., |E|} and all the nodes in G with a unique integer in {0, 1, ..., |V|}. We

then calculate four feature vectors F e
EI , F e

EU , F e
NI and F e

NU for each edge e in G.

(i) F e
EI : For each edge e in G, we take a vector of size |E| and initialize all its cells

to zero. Let EIe represent the set of all edges collected by taking the intersection of the

neighbourhood edges of the two terminals of e. We then assign 1 to a cell i if the ith

edge belongs to EIe. Formally,

F e
EI(i) =


1 if i ∈ EIe

0 Otherwise
(3.2.1)

(ii) F e
EU : Same as before, we again consider the edges in the neighbourhoods of an

edge e but this time taking the union of the neighbourhood edges of the two termi-

nals of e. Let EUe represent this set of neighbourhood edges of e. Now F e
EU can be

constructed by first taking a vector of size |E| and initialize all its cells to zero. Then,

assigning 1 to a cell i if the ith edge belongs to EUe. Formally,

F e
EU(i) =


1 if i ∈ EUe

0 Otherwise
(3.2.2)

(iii) F e
NI : For edge e ∈ G, F e

NI be a vector of size |V| and initialize all its cells to

zero. Let NIe = {v ∈ V|v ∈ Nbd(e0) ∩ Nbd(e1)}, e0 and e1 are two terminals of edge e,

Nbd(x) is the set of neighbours of node x. Then we assign 1 and 0 to F e
NI based on the

following rules:

F e
NI(i) =


1 if i ∈ NIe

0 Otherwise
(3.2.3)

(iv) F e
NU : For each edge e in G, we take a vector of size |V| and initialize all its

cells to zero. Let NUe represent the set of all nodes collected by taking the union of the
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neighbourhood nodes of the two terminals of e. We then assign 1 to a cell i if the ith

edge belongs to NUe. Formally,

F e
NU(i) =


1 if i ∈ NUe

0 Otherwise
(3.2.4)

Step3: Concatenation of the feature vectors. After obtaining the feature vectors for

each edge e in G, we horizontally concatenated them and made a single vector F(e) of

size 2|E|+ 2|V|.

Step4: Reducing the dimension of F(e). The size of the concatenated feature vector

F(e) is 2|E|+ 2|V|, and thus it takes a huge amount of memory for the large graphs. It

also takes enormous time to train a GCN with such large feature vectors. Therefore, we

reduce the dimension of the feature vector to 20 using the Principle Component Anal-

ysis (PCA) [99] tool. Let Fr(e) denote the final reduced feature vector of an edge e in G.

Since an edge e in G is converted to a node ul
e in a line graph L, we can write the fea-

ture vector Fr(e) as Fr(ul
e) denoting the feature vector corresponding to the node ul

e in L.

Step5: Training node selection. To train a GCN, a set of nodes with known labels is

required. Since we are applying GCN to the line graph L, we need to select the seed

nodes from L. To do this, we again take help from the input graph G. First, we applied

a particular community detection algorithm a few times (2− 3) over the input graph

G, then from there selected two sets of edges: (i) EC: set of edges that never change

their community; (ii) ENC: set of edges that change their community. We then create

the node sets VLC ⊂ VL and VLNC ⊂ VL of known labels in L. VLC is constructed by

labelling the nodes in L that correspond to the edges in EC to 1 and VLNC is constructed

by labelling the nodes in L that correspond to the edges in ENC to 0. Thus, the set of

training nodes in L will be: VLT = VLC ∪VLNC, where, VLC ∩VLNC = Φ.

Step6: Applying GCN. Finally, the GCN is applied to the line graph with the set of

labelled training nodes VLT and the set of generated feature vectors Fr. The node set

VL is divided into two classes by GCN: VL1 and VL0. The set of constant community
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edges is represented by the edges in G representing the nodes in VL1, while the set of

non-constant community edges is represented by the edges in G representing the nodes

in VL0.

The workflow diagram regarding the steps of the semi-supervised approach is given

in Fig. 3.2:

FIGURE 3.2: Steps to detect the constant community using semi-supervised work-
flow. In Step 1, the line graph is generated from the input graph. In Step 2, features are
extracted from the original graph. In Step 3, the feature vector for each node in the line
graph is constructed using the features from Step 2. In Step 4, the dimensions of the
feature vectors are reduced using PCA. In Step 5, with the help of the selected training
nodes, GCN is applied to the line graph to classify the nodes. Finally, the edges of
the input graph are classified using the classified nodes in the line graph to find the

constant community.

3.2.2 Un-supervised approach to detecting constant communities

The semi-supervised technique has significant shortcomings, even though it works

well:

• It requires a collection of training nodes (nodes whose labels are known) for its

training. But finding a sufficient number of training nodes can be challenging.

• It also takes time and memory to generate a line graph.

• Training a large line graph is also time-consuming.
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We experimented with a novel, unsupervised method to address these issues. With

the help of the neighbours of each edge’s two terminals, we identify four local proper-

ties of each edge in this method, and for each of these properties, a histogram is pro-

duced. Then, we identify the ideal thresholds for each histogram using a well-known

image thresholding algorithm. Finally, we use these thresholds into our novel algo-

rithms to filter out the non-constant community edges in the graph and produce the

constant communities (FIGURE 3.4). The key steps of our unsupervised approach are

given below:

Step1: Extracting the edge features. Let e = (u, v) ∈ E be an edge and u and v be its

terminal nodes. Also, let N(u) signify the collection of neighbours for a vertex u and

∆(u) denote the set of triangles that contain vertex u. Also, for a vertex set Y, let D(Y)

signify the density of the subgraph that is generated by Y, which is the proportion of the

number of edges in the subgraph to its entire number of possible edges. The computed

four features (FIGURE 3.3) can be described as:

• Density induced by the common neighbors of the edge terminals (Dboth).

Formally, Dboth(u, v) = D(N(v) ∩ N(u)).

• Density induced by all the neighbors of the edge terminals including the terminals

(Dany).

Formally, Dany(u, v) = D(N(v) ∪ N(u)).

• The ratio of the number of triangles containing both u and v to the number of

triangles containing at least one of u or v (Dtri).

Formally, Dtri(u, v) = |∆(u)∩∆(v)|
|∆(u)∪∆(v)| .

• The proportion of the number of common neighbors and the number of all neigh-

bors of the terminals (termed as the Jaccard Index (J I)).

Formally, J I(u, v) = |N(v)∩N(u)|
|N(v)∪N(u)| .

Step2: Generating histograms. For each feature, a histogram is produced. The x-axis

of the histogram corresponds to the feature values, and the y-axis denotes their frequen-

cies. The histogram is named as: Hboth,Hany,Htri,HJ I corresponding to Dboth, Dany, Dtri,
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FIGURE 3.3: Features used for edge classification. For an edge (u, v); the red vertices
are connected to u only, the green vertices are connected to v only, and the orange
vertices are connected to u and v both. For ease of visualization, the connections to u

and v are not shown.
Dboth(u, v) = density of (3, 4, 5) = 1

3
Dany(u, v) = density of (1, 2, 3, 4, 5, 6, 7, 8, u, v) = 18

45
Dtri(u, v) = |{(u, v, 3), (u, v, 4), (u, v, 5)}|div(|){(u, v, 3), (u, v, 4), (u, v, 5), (u, 1, 2), (u, 3, 4),

(v, 7, 8), (v, 4, 6), (v, 3, 7), (v, 3, 4)}| = 1
3

J I(u, v) = |{3, 4, 5}|div(|){1, 2, 3, 4, 5, 6, 7, 8, u, v}| = 3
10 .

.

and J I respectively.

Step3: Obtaining a threshold. In this step, we have applied an image thresholding al-

gorithm to the histograms to obtain the thresholds from the histograms. We named the

thresholds Tany, Tboth, Ttri and TJ I correspond toHany,Hboth,Htri andHJ I respectively.

Step4: Edge classification. In this step, we filtered out the edges into two sets: B100

and B0. B100 is the set of edges that are predicted to belong to a constant community,

and B0 is the set of edges that are predicted to belong to a non-constant community. To

classify an edge as B100, the following conditions should be satisfied:

(a) Both Dboth and J I should be high. i.e., the edge should have a high percentage of

common neighbours, and the subgraph that is induced by both terminals of the edge

should be high.

or,

(b) Dany is high. i.e., the density induced by all the neighbours of the edge terminals,

including the terminals, is high.

or,
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(c) Dtri is high. i.e., the ratio of the number of triangles containing both u and v to the

number of triangles containing at least one of u or v is high.

The workflow diagram regarding the steps of the unsupervised approach is given

in Fig. 3.4:

FIGURE 3.4: Steps to detect the constant community using unsupervised workflow.
In Step 1, features are extracted using the neighbors of each edge. In Step 2, histograms
are generated for each feature. In Step 3, by applying an image thresholding algorithm,
an optimum threshold is obtained for each histogram. In Step 5, edges are filtered out

based on the thresholds, and finally we get the constant communities.

3.2.3 Application of the variants of the thresholding algorithms

The image thresholding methods that we used in the unsupervised approach are now

the subject of substantial discussion. We categorise the strategies into two main groups:

binary-thresholding approach and multi-thresholding approach.

Applying binary-thresholding algorithm. When using the binary classification tech-

nique, an optimal threshold is independently determined for each histogram, and the

results are combined to classify the edges in accordance with the guidelines in Step 4

above. A high value of the characteristics is one that exceeds the threshold set by the

relevant thresholding technique, according to our definition. Algorithm 1 describes

the implementation of the binary-thresholding technique. In this investigation, we em-

ployed three different binary thresholding methods: Bi-level, Histogram concavity, and

Binary Otsu.

Applying multi-thresholding algorithm. If an image is divided into many (more than

two) divisions, it may sometimes be possible to distinguish between the object and
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Algorithm 1: Binary-thresholding method for classifying the edges.
Input : The graph G(V, E). Sets of features Dany, Dboth, Dtri and J I for all the edges of G.
Output: Two sets of edges B100 (for constant community) or B0 (for non-constant community).

/* Finding the thresholds using binary-thresholding method */
1 [TDboth ]← binThresholdMethod(Dboth)

2 [TDany ]← binThresholdMethod(Dany)

3 [TDtri ]← binThresholdMethod(Dtri)

4 [TJ I ]← binThresholdMethod(J I)

/* Filter the edges using the thresholds */
5 B0← Φ; B100← Φ;
6 for each edge e ∈ E do

7 if ((Dboth(e) >
TDboth

2 AND JI(e) > TJ I
2 ) OR (Dany(e) > TDany OR Dtri(e) >

TDtri
2 )) then

8 B100← B100 ∪ e

9 else
10 B0← B0 ∪ e

background more easily. To divide an image into more than two divisions, we need

to have multiple thresholds on its histogram. The multi-thresholding approach we

utilised to identify the optimal thresholds was TSMO (henceforth referred to as Multi-

Otsu). The difficulty in using Multi-Otsu is testing every combination of thresholds and

features that might possibly exist in order to identify the best one. For instance, if the

Multi-Otsu method returns t various thresholds, then with four features, O(t4) combi-

nations should be verified in order to find the best solution, which is computationally

expensive.

We take into account the thresholds for each feature individually rather than collec-

tively in order to make classification computationally feasible. We consider the thresh-

old that produces an equal number of edges on the right and left sides of it. The in-

tuition behind this is that the number of edges within communities should be at least

equal to the number of edges among communities, if not more, given a strong com-

munity structure. The initial set of edges that will always be within communities is

provided by this optimal threshold. Algorithm 2 describes the implementation of the

multi-thresholding technique.

Further improvements. To make further enhancement on the multi-thresholding ap-

proach, we have modified Algorithm 2.

M1: Applying iterative multi-thresholding approach. By repeatedly applying Multi-

Otsu to the subgraph created by the edges in B0, which has the potential to contain

additional within-community edges, we increase the accuracy of the algorithm. 2.
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Algorithm 2: Edge classification using the multi-thresholding approach
Input : The graph G(V, E). Sets of features Dany, Dboth, Dtri and J I for all the edges of G.
Output: Two sets of edges B100 (for constant community) or B0 (for non-constant community).

/* Finding the thresholds using multi-thresholding method */
1 {Tboth1 , .., Tbothn1} ← mulThresholdMethod(Dboth)

2 {Tany1 , .., Tanyn2} ← mulThresholdMethod(Dany)

3 {Ttri1 , .., Ttrin3} ← mulThresholdMethod(Dtri)

4 {TJ I1 , .., TJ In4} ← mulThresholdMethod(J I)

/* Using cross products to produce all possible combinations */
5 Tall_comb ← {Tboth1 , .., Tbothn1} × {Tany1 , .., Tanyn2} × {Ttri1 , .., Ttrin3} × {TJ I1 , .., TJ In4}

/* Optimum threshold calculation */
6 RL← Φ
7 for (Tboth, TJ I , Tany, Ttri) ∈ Tall_comb do
8 R← max(min(getNoOfEdgesRight(Tboth/2), getNoOfEdgesRight(TJ I /2)), getNoOfEdgesRight(Tany),

getNoOfEdgesRight(Ttri/2))
9 L← |E| − R

10 RL← RL ∪ (1− R
L )

/* Choose a combination for which value in RL is minimum */
11 (T ∗both, T ∗J I , T ∗any, T ∗tri)← getOptimumThreshold(Tall_comb, RL)

/* Classify the edges. */
12 B100← Φ; B0← Φ
13 for e ∈ E do

14 if ((Dboth(e) >
T ∗both

2 AND JI(e) >
T ∗J I
2 ) OR (Dany(e) > T ∗any OR Dtri(e) >

T ∗tri
2 )) then

15 B100← B100 ∪ e

16 else
17 B0← B0 ∪ e

Based solely on the feature values of the edges in B0, we recompute the histograms

for the edges in B0. We determine the optimum set of thresholds on this set by applying

Algorithm 2 and then split B0 into B0´ and B100´ with the same assumptions as B0 and

B100 respectively. Then, we set B0 to B0´ and shift the edges of B100´ into B100.

This iteration is carried out until there is very little change in the threshold (≤ δ,

where δ is set to 0.01) and no new edges move from B0 to B100. This technique is

known as Multi-Otsu iterative.

M2: Fixing the singleton communities. The communities formed by the subgraph

induced by the edges in B100 serve as the constant communities once the edges in

B100 have been categorised. Nonetheless, certain communities can consist of just one

vertex, or form singleton communities, as can be seen in the instance of the blue vertex

in FIGURE 3.1.

The majority of community discovery algorithms incorporate this vertex into a nearby

community instead of keeping singleton communities. We recognise nodes that do not

belong to the constant communities. If both of the node’s neighbours are members of
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the same community and the node has degree 2, we include it in that community. If the

node’s neighbours are in separate communities, we shift the node to that community,

as there is a 50% chance that at least one of the node’s neighbours will be included in

one of the two communities. We called this method Multi-Otsu iterative+SC.

Empirically, it has been demonstrated that this heuristic results in a marginally

higher F1-score. As the heuristic is applied to vertices with a higher degree, the accu-

racy, however, declines. This is due to the fact that if the vertex were to be categorised

as a singleton, it may reside in any of its surrounding communities. The more nearby

communities there are, the lower the likelihood that the vertex is in any particular com-

munity.

3.2.4 Formulation of various thresholding methods

Now we discuss some mathematical formulation of some of the image-based threshold-

ing methods that we used in our networks for edge classification. While demarcating

the background from the foreground of an image, the pixel intensities of the image are

used to build the histogram. In our case, the values of a property are used to build the

histogram. The mathematical formulations are given below:

Formal overview for Bi-level. Let m(g) be the number of entries having a feature value

g, L be the number of feature values, and e0 and eL−1 be the first and last feature values

(along the x-axis) in the histogram. So, emid = e0+eL−1
2 is the middle of these two feature

values. Now, the weight of the left side of the emid be Wl = ∑emid−1
i=e0

m(i) and the right

side is Wr = ∑eL−1
i=emid

m(i). Based on the proposed algorithm in [129] (Algorithm 4.1), it

checks which side is heavier and updates Wl , Wr, e0 and eL−1 accordingly until e0 = eL−1

= T = optimum threshold.

Formal overview for Binary Otsu.

Formal overview. The probability distribution of g is, p(g) = m(g)/m; m is the total

number of entries. For a threshold T, all entries with feature value below T are given

by nB(T) = ∑t
i=e0

p(i) and all entries with feature value over the threshold are given

by nO(T) = ∑eL−1
i=T p(i). ei is the ith feature value, L is the number of the feature values,

t ∈ {e0, ..., eL−1} is the maximum value just below T.
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Let µB(T) be the mean, and σ2
B(T) be the variance of all entries with a feature value

less than the threshold, which in this case is analogous to the background of the image.

Let µO(T) be the mean, and σ2
O(T) be the variance of all entries with feature values

above the threshold, which in this case is analogous to the foreground, i.e., the object

present in the image. Let σ2 is the combined variance, and µ is the combined mean

over all edges. Given these values, the within class variance can be defined as σ2
W(T) =

nB(T)σ2
B(T) + nO(T)σ2

O(T) and between class variance can be defined as;

σ2
X(T) = σ2 − σ2

W(T) = nB(T)nO(T)[µB(T)− µO(T)]2.

We apply Otsu’s method to obtain T such that σ2
X(T) is maximized.

Formal overview.A histogram H can be thought of as a bounded 2-D region: left-

bottom (e0, 0), left-top (e0, m(e0)), right-top (eL−1, m(eL−1)) and right-bottom (eL−1, 0).

The concavity of H can be found by constructing the histogram of H. A convex hull

H̄ of a histogram H can be defined as a smallest convex polygon that contains the his-

togram H. The concavity can be defined as the set difference between H and H̄, i.e.,

H − H̄. H̄ can be constructed as follows: starting from start from (e0, m(e0)), we com-

pute a slope (θi) between the left-top point (e0, m(e0)) and (ei, m(ei)) for 1 ≤ i < L. Thus,

(e0, m(e0)) and (ek1 , m(ek1)) is a side of the convex hull if θk1 is the maximum slope. This

step will be repeated, i.e, we find the slope of (ek1 , m(ek1)) and (ei, m(ei)), k2 + 1 ≤ i < L

and θk2 be the largest slope yielding (ek1 , m(ek1)),(ek2 , m(ek2)) and so on, until we reach

L− 1.

Let m̄(ei) is the height of H̄ at ei. A point ei is in a concavity if (m̄(ei) - m(ei)) > 0.

Optimum thresholds can be found at et for which the difference (m̄(et) - m(et)) is largest.

An example of how the histogram concavity can be found is shown in Figure. 3.5.

3.3 Datasets, ground truths and baselines

In this section, we shall discuss the datasets, ground truths, baselines, and comparisons

used in our experiments.
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FIGURE 3.5: Using histogram concavity to find the optimum threshold. Figure. (a)
denotes the histogram H constructed using the feature values and their respective
frequencies. Figures. (b) to (f) represent the construction of the convex hull H̄ over
H (represented by black lines). In Fig. (g), a point (feature value) et can be found for
which the difference between m̄(et), the frequency of et in H̄ and m(et), the frequency

of et in H is maximum.

3.3.1 Datasets

In this thesis, we have made use of a variety of real-world networks of varying sizes.

Table 3.1 describes the datasets.

3.3.2 Ground-truth generation

By repeatedly executing a community detection approach over a network, we empir-

ically generated constant communities to verify our findings. We modify the order in

which the vertices are accessed at each execution by permuting the vertex order. As

demonstrated in [233], altering the processing order of the vertices can alter the out-

comes of community detection. For the specific community detection technique, the

communities that were present in all of these executions were chosen as the constant

community ground truth. By executing a community detection algorithm 50 times, we

are able to obtain the ground truth constant community. Each time the algorithm is

executed, the vertices’ order is permuted.

The standard community detection algorithms we have used for the ground-truth

generation are: Louvain [29], Infomap [394], and Label Propagation [31]. We used these

three algorithms 50 times and generate the ground truth for the small-size networks.
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Network Description |V| |E |
Small-size n/ws
Football [13] A college football network played in United States.

The nodes of this network represent teams (which
are denoted by their college names), and the edges
reflect regular-season games that take place be-
tween the two teams that are connected by those
edges.

115 613

Jazz [388] A network of Jazz musicians. Each vertex rep-
resents a musician, and if two musicians have
recorded together, they are connected.

198 2742

Dolphin [389] A network of group of dolphins found in New
Zealand. Each node is a dolphin, and each edge
is a pair of dolphins who were seen together more
often than would be expected by chance.

62 159

Email [390] An email network of an organization. A node rep-
resents an email address and a link among them
implies a communication between a pair of email
address.

1133 5451

Karate club [13] A social network of a karate club where a node
represents a member of that club and an edge rep-
resents an interactions of two members outside the
club.

34 77

Polbooks [391] A network of books of US politics published
around 2004 at the time of election. Each node is a
book and there is a link between them if two books
purchased together

105 441

Medium-size n/ws
Co-authorship
[392]

A network of authors and a link between them
represents they share a co-authorship in a paper

103,677 352,183

Com-dblp [393] DBLP represents a database of computer science
bibliographic information. This is also a co-
authorship network where the node represents an
author and a link represents that two authors pub-
lish at least a paper together.

317,080 1,049,866

Com-amazon [393] It is a network of items in Amazon website. A
node represents an item and if two items brought
together then there is a link between them.

334,863 925,872

Large-size n/ws
Com-Youtube [393] Social network of Youtube. A node represents a

user and an edge represents that there is a friend-
ship between two users.

1,134,890 2,987,624

Com-LiveJournal
[393]

A blogging social network. A node represents a
user and an edge represents that there is a friend-
ship between two users.

3,997,962 34,681,189

Wiki-topcats [393] A web graph of Wikipedia hyperlinks gathered on
2011. A node represents a web page and two page
are connected if there is a hyperlink between one
page to another page.

1,791,489 28,511,807

TABLE 3.1: The test suite of real-world networks.

For the medium- and large-sized networks, we have used only the Louvain algorithm

for the ground truth generation, as it is the fastest of these three.
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3.3.3 Specifics of the algorithms

Semi-supervised: We used GCN to categorise the nodes in the line graph for the semi-

supervised approach (and hence the edges in the corresponding graph). We utilise

Optuna [395] to tune the hyper-parameters for this GCN model. Table 3.2 contains the

list of hyper-parameters that we used. Both classes of 15% training nodes were utilised.

We used every node in the network to calculate the F1 scores.

Name methods/values
Optimizer Adam, RMSprop, SGD
Learning rate 10−5 to 10−1

weight Decay 5× 10−5 to 5× 10−1

Loss Function Negative Log-likelihood
Number of epochs 200
Number of layers 2

TABLE 3.2: The list of hyper-parameters used in Optuna.

Un-supervised: In the case of the unsupervised approach, we have used different

thresholding algorithms such as Bi-level, Histogram concavity, Otsu’s binary thresh-

olding, Otsu’s multi-thresholding and its variants, etc.

3.3.4 Baselines methods.

When comparing our method to other methods, we employ two baseline algorithms.

The first approach is a consensus community algorithm [396] This involves forming a

consensus matrix called D based on multiple (we selected 100) executions of commu-

nity detection. where, Dij is the number of times nodes i and j were co-clustered within

the same community. The weighted graphs created from the consensus matrices are

iteratively subjected to a community detection method until less than a predefined con-

vergence percent (default value of 2%) of all non-zero entries in Di have weights of less

than one.

The second approach is known as CHAMP (Convex Hull of Admissible Modularity

Partitions) [239]. In order to find the subset of partitions that may be optimal while

eliminating the remaining partitions, CHAMP determines the modularity optimisation

for each partition given a collection of partitions.
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3.4 Results

In this section, we compare both the semi-supervised and unsupervised methods with

the groundtruths and baselines. Due to the stochastic nature of the baselines, the aver-

age outcomes of numerous executions are reported.

3.4.1 F1-scores comparison with the baselines

As previously stated, B100 is the set of constant community edges. The set of edges in

the constant communities that are derived from the ground truths was compared to the

set B100.

The results (F1-score) regarding the small sized networks are shown in Figs. 3.6, 3.7,

and 3.8. In the case of these small-sized networks, the ground truth community edges

are obtained by executing the Louvain, Infomap, and Label propagation algorithms,

respectively.

The results regarding medium- and large-size networks can be found in Fig. 3.9,

where, only the Louvain algorithm is applied to generate the ground truth community

edges.

The semi-supervised (Line-GCN) strategy yields the highest F1-score for all the

large networks and all but three of the small networks (Polbooks, Jazz, and Email). The

Bi-Level thresholding technique performs poorly for a selected number of networks, in-

cluding Jazz, Email, Com-amazon, Com-Youtube, and Com-liveJ. In the majority of the

networks, alternative binary and multi-thresholding approaches functioned effectively.

Our methods typically produce better results when compared to the baselines, particu-

larly Line-GCN, Histogram Concavity, Binary Otsu, Multi-Otsu, and their derivatives.

Except for the Coauthorship network (F1-scores = 70%), baseline techniques for

medium- and large-scale networks were not finished within a reasonable amount of

time (i.e., within 2 days).
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FIGURE 3.6: Performance of different methods for obtaining constant communities for
small networks. The ground truth constant community edges are obtained by execut-
ing the Louvain algorithm. The abbreviated names are as follows; L-GCN: Line-GCN,
B-Level: Bi-level, H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-Otsu:
Multi-Otsu, Mul-Otsu-itr: Multi Otsu iterative, Mul-Otsu-itr+: Multi Otsu iterative

with singleton community, Consen: Consensus
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FIGURE 3.7: Performance of different methods for obtaining constant communities for
small networks. The ground truth constant community edges are obtained by execut-
ing the Infomap algorithm. The abbreviated names are as follows; L-GCN: Line-GCN,
B-Level: Bi-level, H-Con: Histogram Concavity, Bin-Otsu: Binary Otsu, Mul-Otsu:
Multi-Otsu, Mul-Otsu-itr: Multi Otsu iterative, Mul-Otsu-itr+: Multi Otsu iterative

with singleton community, Consen: Consensus.
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FIGURE 3.8: Performance of different methods for obtaining constant communities
for small networks. The ground truth constant community edges are obtained by ex-
ecuting the Label propagation algorithm. The abbreviated names are as follows; L-GCN:
Line-GCN, B-Level: Bi-level, H-Con: Histogram concavity, Bin-Otsu: Binary Otsu,
Mul-Otsu: Multi-Otsu, Mul-Otsu-itr: Multi Otsu iterative, Mul-Otsu-itr+: Multi Otsu

iterative with singleton community, Consen: Consensus
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FIGURE 3.9: Performance of different methods for obtaining constant communities
for medium and large networks. The ground truth constant community edges are ob-
tained by executing the Louvain algorithm. The baselines are not shown here because
they did not end within a sizable amount of time. Only for coauthorship network (not

shown in the figure), the consensus method gives 70% F1-scores.

3.4.2 NMI comparison with the ground truth communities.

How closely do the ground-truth constant communities and the predicted constant

communities overlap? We build the constant communities from the edges in B100

by acquiring the connected components in order to determine that. The Normalized

Mutual Information (NMI) is then calculated between the set of predicted constant

communities and the set of ground truth communities. As shown in Table 3.3, our

results produce NMI scores that are on par with or higher than the baselines. More

specifically, Line-GCN provides comparable scores (second best or best) to the base-

lines for the small-sized networks in the majority of situations (except for the Football

graph). In the Jazz and Email networks, the unsupervised technique performs the poor-

est, but in other situations, it performs best or second best. Both the semi-supervised

(Line-GCN) and the unsupervised approaches—particularly the multi-Otsu iterative

with singleton community—perform well for all medium- and large-sized graphs. For

the Com-amazon and Wiki-topcats networks, both techniques get comparable results.

Line-GCN produces the best results for Com-dblp and Co-authorship networks, while

the unsupervised technique produces the second-best results. For the Com-youtube

network, the unsupervised method produces the best results, while Line-GCN pro-

duces the second-best results.
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Method Networks
foot-
ball

jazz email dolp-
hin

pol-
book

kar-
ate

com-
amazon

com-
dblp

coauth-
orship

you-
tube

wiki-
top

Semi-
supervised (L-
GCN) method
with best F1

0.86 0.82 0.71 0.84 0.85 0.91 0.82 0.79 0.80 0.73 0.67

Unsupervised
method with
best F1

0.97 0.81 0.69 0.86 0.84 0.91 0.82 0.75 0.78 0.76 0.67

Consensus with
best F1

0.96 0.82 0.77 0.86 0.80 0.90 X X 0.63 X X

CHAMP with
best F1

0.97 0.83 0.71 0.77 0.79 0.91 X X X X X

TABLE 3.3: Comparison of NMI. Best results are highlighted in green, second best
results are highlighted in blue and the worst in red. X: The process did not end within

a sizable amount of time. L-GCN: Line-GCN.

3.4.3 Execution time comparisons.

According to Table 3.4, it can take up to 963 hours to compute ground truth constant

communities for the largest network. These ground-truth constant communities are

generated by executing louvain’s community detection algorithm 50 times. Because

of this, it is impractical to identify constant communities in large networks using em-

pirical methods; instead, an effective algorithm like the one described in this paper is

required.

Table 3.5 represents the execution time of our algorithm and the baselines. It is evi-

dent from the result that for all the networks, our unsupervised algorithm is faster than

the baselines. Even though semi-supervised algorithms sometimes produce results on

par with unsupervised ones, they need more time. The baselines either take a longer

time (than our pro posed methods) to complete or cannot be completed in a reasonable

amount of time.

3.4.4 Results under noisy domains

Real-world networks can have missing edges and are frequently noisy. To evaluate

how effectively our strategy works in the presence of noise, we tested it using three of

the following noise models.

• Uniform: Up until a particular number of edges are left, the edges are randomly

and repeatedly eliminated.
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FIGURE 3.10: F1-scores under different noise scenarios.

All networks
Foot-
ball

Jazz Email Dol-
phin

Kar-
ate

Pol-
books

Coauth-
orship

Com-
ama-
zon

Com-
dblp

You-
tube

Com-
liveJ

Wiki-
topcats

1.06s 5.05s 20.09s 0.49s 0.25s 1.17s 2h26m 5h25m 34h8m 140h8m 872h10m 963h3m

TABLE 3.4: Time required for ground truth generation (#iterations = 50).

• Crawled: Use Breadth First Search (BFS) to crawl the network and maintain the

necessary number of edges, starting with the node with the least maximum dis-

tance from all other nodes.

• Censored: Up until a predetermined number of edges are left in the network, at

each step, randomly select one of the highest degree nodes and then randomly

delete one of its edges.

Only larger networks were used for testing because adding noise to small networks

causes them to disconnect. We demonstrate in Fig. 3.10 that our technique provides

acceptable accuracy even when the network is noisy.
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Method All networks
foot-
ball

jazz email dol-
phin

kar-
ate

pol-
books

coauth-
orship

com-
ama-
zon

com-
dblp

you-
tube

com-
liveJ

wiki-
topcats

L-GCN 2.13s 19.32s 23.56s 1.55s 1.22s 2.01s 57m21s 1h52m 4h34m 8h34m 37h13m 34h53m

B-Level 0.01s 0.21s 0.62s 0.02s 0.04s 0.04s 19.22s 6.04s 1m10s 8m11s 16h02m 10h22m
H-Con 0.01s 0.21s 0.63s 0.02s 0.04s 0.04s 23.29s 10.15s 1m14s 15m33s 16h34m 10h52m
Bin-Otsu 0.01s 0.23s 0.62s 0.02s 0.03s 0.04s 19.26s 6.17s 1m10s 8m12s 16h04m 10h23m
Mul-Otsu 0.01s 0.30s 0.65s 0.02s 0.03s 0.04s 23.29s 6.47s 1m12s 10m12s 17h03m 12h21m
Mul-Otsu-
itr

0.01s 0.35s 0.65s 0.02s 0.03s 0.04s 24.25s 7.13s 1m14s 23m06s 27h03m 24h21m

Mul-Otsu-
itr+

0.01s 0.36s 0.65s 0.02s 0.03s 0.04s 24.25s 7.13s 1m19s 26m41s 28h10m 25h21m

Consen
(cp=2%)

1.16s 3.17s 9.68s 1.17s 1.30s 1.51s X 141m X X X X

CHAMP 1.82s 5.05 18.60s 1.39s 1.16s 1.96s X X X X X X

TABLE 3.5: Time for identifying constant communities for all networks. Best timing
performances for each dataset are denoted by green cells and the worst by red cells. X:
The process did not end within a sizable amount of time. The abbreviated names are as
follows; L-GCN: Line-GCN, B-Level: Bi-level, H-Con: Histogram concavity, Bin-Otsu:
Binary Otsu, Mul-Otsu: Multi-Otsu, Mul-Otsu-itr: Multi Otsu iterative, Mul-Otsu-itr+:

Multi Otsu iterative with singleton community, Consen: Consensus.

3.5 Case Study: Application of Constant Community Detec-

tion Algorithms in a Neighborhood-Based Recommenda-

tion System

In this section, we shall see the effect of integrating some community detection algo-

rithms as well as our constant community detection algorithms in the neighbourhood-

based recommendation (or recommender) system. Vertices in a graph can be system-

atically grouped using network communities. As a result, for some applications, such

strongly linked clusters of individuals or products will produce better neighbourhoods

than those formed in a conventional approach. One way to build a neighbourhood in

RSs is to collect the common neighbours in the Recommender System. The CN [397]

method generates the neighbourhood in RS by picking the n-nearest neighbours based

on the weights W(u, v) between two user (nodes) u and v:

W(u, v) =
|S_Item(u) ∩ S_Item(v)|
|S_Item(u)|+ |S_Item(v)| , (3.5.1)

Where S_Item(x) is the set of items chosen by user x. It is logical to believe that two

consumers who choose many things and have many things in common are not the same

as two customers who choose many things but have few things in common. We used

this common neighbourhood (CN) technique to create n-nearest neighbours for our

experiment. Other baseline methods include Louvain, Label Propagation Algorithm

(LPA), and Infomap community detection methods for generating a user’s or item’s
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n-nearest neighbours in a RS. As a result, identifying communities in a network of

users or objects may be important for calculating n-nearest neighbours and, as a result,

offering better recommendations in a RS.

3.5.1 Procedure

The proposed approach of integrating the community/constant community detection

algorithms with the neighbourhood-based recommendation approach can be described

as follows:

• For each pair (u, v) of users (nodes), calculate the weight W(u, v) according to

Equation 3.5.1.

• Build a user-user graph by applying a threshold to the weight.

• Apply a particular community or constant community detection algorithm to

produce distinct communities.

• The n-nearest neighbour of a user in a community is generated by selecting the

top-n neighbours based on the sorted weight values that belong to the same com-

munity.

• Apply Adsorption algorithm [398] to generate the recommendation.

The algorithm for the above steps is given in Algorithm 3

3.5.2 Description of Datasets

In our experiment, we used a variety of real-world datasets. Table 3.6 contains descrip-

tions of the datasets. The Book Crossing dataset is a bipartite graph with nodes that

are users and books. If the user reads the book, there is a relationship between the user

node and the book node. The nodes in the Amazon Photo dataset represent goods, and

a link between two nodes indicates that these two goods were purchased together. The

nodes in the DBLP graph represent users, while a link between two nodes indicates two

users who collaborated. The Movie Lens network, like the Book Crossing network, is

a bipartite network in which nodes in one set represent people and nodes in the other

set represent movies.
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Algorithm 3: Algorithm for Community Integrated Neighbourhood-based RSs
Input : Dataset D, A threshold t, A constant k.
Output: Item recommendation vector for each user.
/* Construct all pair weight matrix from dataset D. */

1 W ← getAllPairWeight(D)
/* Construct user-user (item-item) graph using W and t. */

2 UsrGraph← getUsrUsrGraph(W, t)
/* apply community or constant communityy detection algorithms on

user-user (item-item) graph */
3 Comm← getCommProp(UsrGraph)
/* Build top-k neighbors matrix based on the communities */

4 UserNbdMatrix ← buildTopK(Comm, UsrGraph, k)
/* Using top-k neighborhoods for each users, compute preference

vectors (item recommendations) for each user by applying
adsorption algorithm. */

5 UserRecomMatrix ← ApplyAdsorption(D, UsrGraph, UserNbdMatrix)

Network # Vertices # Edges
Book Crossing [399] 440k 1.1M
Amazon Photo [400] 7k 119k
DBLP [401] 1.3M 18.9M
Movie lens [402] 138k 19M

TABLE 3.6: Dataset descriptions.

3.6 Setup, experiments and results

3.6.1 Preprocessing

We filtered out the subgraph for the Book Crossing and Movie Lens datasets by remov-

ing user nodes with degrees less than 4, which means we trimmed out users who do not

read more than four books (in the case of the Book Crossing dataset) or rate more than

four movies (in the case of the Movie Lens dataset). In the case of the DBLP dataset, we

take a subset from 1992 to 2012.

3.6.2 Dataset splits

Each dataset was divided into six sets, as indicated in Table 3.7. We obtained four

subsets (s1, s2, s3, and s4) using these splits. Each subset is divided into training and

testing sets. For Book Crossing datasets, we use about 20% of preferences in each split.

The data from each split in the DBLP dataset is based on three years. In Movie Lens
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Subset Training data Test Data

s1 T1 ∪ T2 T3
s2 T2 ∪ T3 T4
s3 T3 ∪ T4 T5
s4 T4 ∪ T5 T6

TABLE 3.7: Spliting the dataset into four subsets.

datasets, each split is done equitably depending on the user rating. Finally, with Ama-

zon Photo, the splitting criterion is applied consistently based on the product category.

3.6.3 Competitive methods

We devised and tested the resilient neighbourhood-based RSs by combining the Ad-

sorption method with five competitive network clustering approaches: Common Neigh-

bours (CN), Modularity (Modu), Infomap (Info), Label Propagation method (LPA), our

proposed unsupervised (Mul-Otsu-itr+) and semi-supervised (L-GCN) constant com-

munity detection algorithms.

3.6.4 Hyper-parameters setup

We varied the number of neighbourhoods from 5 to 10 to 15. We used four subgroups in

each example. We tested the evaluation measures on various user-user graphs formed

by altering the threshold value t corresponding to the NBC method from 0.0 to 0.80.

We set the hyper-parameters Pinj, Pterm, and Pcont to 0.10, 0.65, and 0.25, respectively, in

the adsorption method. For the top-k suggestions, the value of k is set to 10.

3.6.5 Results

Tables 3.8, 3.9, 3.10, and 3.11 denote the performance of the competing approaches in

terms of the Mean Absolute Error (MAE) and Mean Average Precision (MAP) scores

corresponding to the Book Crossing, Amazon Photo, DBLP coauthor, and Movie Lens

datasets, respectively. We have tuned the neighbourhood size to n and reported the

corresponding scores. The bold font of the average values of the evaluation measures

in each table indicates that the corresponding competitive technique exceeds the other.
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CA

Nbd Subset CN Louvain Info LPA L-GCN Mul-
Otsu-
itr+

MAP

5 s1 0.0072 0.0072 0.0074 0.0073 0.0074 0.0074
s2 0.0071 0.0073 0.0073 0.0073 0.0074 0.0074
s3 0.0074 0.0072 0.0074 0.0071 0.0074 0.0074
s4 0.0075 0.0073 0.0072 0.0072 0.0073 0.0075
Avg. 0.0073 0.0072 0.0073 0.0072 0.0074 0.0074

10 s1 0.0075 0.0072 0.0073 0.0074 0.0075 0.0074
s2 0.0074 0.0072 0.0075 0.0072 0.0075 0.0074
s3 0.0075 0.0074 0.0074 0.0073 0.0075 0.0074
s4 0.0073 0.0074 0.0074 0.0073 0.0075 0.0074
Avg. 0.0074 0.0073 0.0074 0.0073 0.0075 0.0074

15 s1 0.0071 0.0072 0.0074 0.0074 0.0075 0.0075
s2 0.0074 0.0073 0.0074 0.0073 0.0075 0.0075
s3 0.0075 0.0072 0.0075 0.0075 0.0075 0.0075
s4 0.0076 0.0075 0.0073 0.0074 0.0075 0.0075
Avg. 0.0074 0.0073 0.0074 0.0074 0.0075 0.0075

MAE

5 s1 0.643 0.596 0.641 0.644 0.652 0.653
s2 0.653 0.614 0.642 0.652 0.653 0.652
s3 0.637 0.612 0.646 0.636 0.653 0.652
s4 0.646 0.588 0.646 0.646 0.654 0.652
Avg. 0.644 0.602 0.643 0.644 0.653 0.652

10 s1 0.665 0.591 0.666 0.666 0.676 0.675
s2 0.673 0.596 0.676 0.676 0.677 0.676
s3 0.678 0.61 0.671 0.674 0.676 0.676
s4 0.675 0.612 0.671 0.676 0.677 0.675
Avg. 0.672 0.602 0.671 0.673 0.677 0.676

15 s1 0.663 0.596 0.676 0.673 0.676 0.676
s2 0.665 0.614 0.672 0.668 0.677 0.675
s3 0.676 0.611 0.676 0.676 0.677 0.675
s4 0.678 0.588 0.669 0.675 0.678 0.676
Avg. 0.670 0.602 0.673 0.673 0.677 0.676

TABLE 3.8: MAP and MAE scores for the Book Crossing dataset. Nbd, CA, CN,
Modu, Info and LPA stands for Neighbourhood size, Clustering Approaches, Com-
mon Neighbors, Modularity, Infomap and Label Propagation Algorithm respectively.
The size of the neighbourhood (n) is changed between five and fifteen, and the num-

ber of recommendations, i.e., the value of k is set at 10.

According to Table 3.10, as n increases, the MAP and MAE values of the Common

Neighbourhood (CN) technique drop in comparison to the other datasets (tables). For

Louvain, both the MAP and MAE scores decrease. For LPA, the MAP scores decrease

a little, but the MAE score increases. For Infomap and the other two constant commu-

nity detection algorithms (L-GCN and Mul-Otsu-itr+), both the MAP and MAE scores

increase.

The semi-supervised constant community detection algorithm performs better in

almost all the datasets compared to the competitive approaches in terms of all the eval-

uation metrics, as clearly seen from Tables 3.8-3.11. Again, as the value of n increases,

the performance of all the algorithms increases, corresponding to all the datasets in

terms of MAP and MAE values.
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CA

Nbd Subset CN Louvain Info LPA L-GCN Mul-
Otsu-
itr+

MAP

5 s1 0.0121 0.0134 0.0227 0.0193 0.0232 0.0220
s2 0.0121 0.0133 0.0213 0.0216 0.0215 0.0216
s3 0.0113 0.0113 0.0215 0.0237 0.0233 0.0229
s4 0.0154 0.0182 0.0225 0.0216 0.0230 0.0231
Avg. 0.0130 0.0140 0.0220 0.0215 0.0228 0.0224

10 s1 0.0141 0.0145 0.0257 0.0231 0.0248 0.0256
s2 0.0128 0.0137 0.0225 0.0212 0.0246 0.0235
s3 0.0145 0.0154 0.0241 0.0219 0.0241 0.0243
s4 0.0144 0.0152 0.0235 0.0221 0.0241 0.0243
Avg. 0.0139 0.0147 0.0239 0.0220 0.0244 0.0244

15 s1 0.0131 0.0141 0.0238 0.0232 0.0246 0.0244
s2 0.0152 0.0176 0.0244 0.0231 0.0244 0.0244
s3 0.0113 0.0178 0.0241 0.0231 0.0245 0.0241
s4 0.0173 0.0178 0.0246 0.0228 0.0245 0.0246
Avg. 0.0142 0.0168 0.0242 0.0230 0.0245 0.0244

MAE

5 s1 0.481 0.523 0.547 0.545 0.555 0.557
s2 0.475 0.539 0.567 0.546 0.556 0.563
s3 0.495 0.545 0.573 0.563 0.557 0.554
s4 0.466 0.524 0.573 0.575 0.568 0.566
Avg. 0.479 0.532 0.565 0.557 0.559 0.560

10 s1 0.463 0.535 0.583 0.575 0.582 0.576
s2 0.494 0.536 0.583 0.575 0.582 0.575
s3 0.496 0.577 0.576 0.566 0.586 0.574
s4 0.496 0.567 0.578 0.567 0.587 0.577
Avg. 0.487 0.553 0.580 0.570 0.584 0.576

15 s1 0.482 0.564 0.584 0.579 0.596 0.582
s2 0.515 0.547 0.581 0.563 0.592 0.583
s3 0.502 0.555 0.582 0.584 0.584 0.582
s4 0.491 0.576 0.582 0.568 0.584 0.588
Avg. 0.497 0.560 0.582 0.573 0.589 0.584

TABLE 3.9: MAP and MAE scores for the Amazon Photo dataset. Nbd, CA, CN,
Modu, Info and LPA stands for Neighbourhood size, Clustering Approaches, Com-
mon Neighbors, Modularity, Infomap and Label Propagation Algorithm respectively.
The size of the neighbourhood (n) is changed between five and fifteen, and the num-

ber of recommendations, i.e., the value of k is set at 10.

3.7 Discussion

To find stable communities in huge networks, we used both the semi-supervised and

unsupervised categorization methods. The training data needed for the semi-supervised

technique is not always easy to come by, despite the fact that it yields good results. We

also used an unsupervised technique that was based on the idea of segmenting images.

We demonstrated that the unsupervised method yields just as good, if not better, out-

comes as the semi-supervised method. We have made a significant improvement in

the reliability of large-scale network community detection with our study. In the unsu-

pervised method, we manually found edge features to represent the graph, whereas in

the semi-supervised approach, we used Graph Convolutional Neural Network as the
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CA

Nbd Subset CN Louvain Info LPA L-GCN Mul-
Otsu-
itr+

MAP

5 s1 0.0173 0.0172 0.0181 0.0181 0.0187 0.0179
s2 0.0153 0.0168 0.0184 0.0183 0.0187 0.0174
s3 0.0167 0.0169 0.0183 0.0182 0.0176 0.0182
s4 0.0177 0.0178 0.0183 0.0181 0.0183 0.0181
Avg. 0.0167 0.0171 0.0182 0.0181 0.0183 0.0179

10 s1 0.0161 0.0176 0.0182 0.0179 0.0186 0.0182
s2 0.016 0.0163 0.0183 0.0181 0.0187 0.0181
s3 0.0163 0.0171 0.0182 0.0181 0.0177 0.0181
s4 0.0161 0.0177 0.0183 0.0178 0.0176 0.0181
Avg. 0.0161 0.0171 0.0182 0.0179 0.0183 0.0181

15 s1 0.0158 0.0171 0.0184 0.0180 0.0189 0.0182
s2 0.0158 0.0172 0.0184 0.0179 0.0184 0.0182
s3 0.0156 0.0169 0.0182 0.0181 0.0187 0.0184
s4 0.0157 0.0171 0.0184 0.0179 0.0179 0.0184
Avg. 0.0157 0.0170 0.0183 0.0179 0.0185 0.0183

MAE

5 s1 0.529 0.523 0.567 0.569 0.562 0.562
s2 0.522 0.531 0.585 0.565 0.583 0.563
s3 0.513 0.542 0.596 0.575 0.584 0.565
s4 0.512 0.534 0.567 0.556 0.585 0.584
Avg. 0.519 0.532 0.578 0.566 0.579 0.569

10 s1 0.514 0.545 0.573 0.594 0.594 0.593
s2 0.514 0.526 0.619 0.589 0.584 0.596
s3 0.514 0.527 0.586 0.583 0.594 0.594
s4 0.517 0.526 0.595 0.596 0.586 0.592
Avg. 0.514 0.531 0.593 0.590 0.590 0.593

15 s1 0.515 0.527 0.592 0.579 0.593 0.587
s2 0.504 0.537 0.602 0.588 0.596 0.596
s3 0.514 0.531 0.596 0.586 0.597 0.593
s4 0.516 0.524 0.589 0.614 0.593 0.599
Avg. 0.512 0.529 0.594 0.591 0.594 0.593

TABLE 3.10: MAP and MAE scores for the DBLP dataset. Nbd, CA, CN, Modu, Info
and LPA stands for Neighbourhood size, Clustering Approaches, Common Neigh-
bors, Modularity, Infomap and Label Propagation Algorithm respectively. The size of
the neighbourhood (n) is changed between five and fifteen, and the number of recom-

mendations, i.e., the value of k is set at 10.

automated feature learner to represent the graph. Finally, using this graph/network

representation, we found the constant communities in a graph by filtering the proper

edges. We have also done a case study in which we showed that the constant commu-

nity found in our approach can be used in a recommendation system to achieve better

results.

3.8 Conclusion

Due to the “NP-hard” nature of the problem, identifying communities within networks

is an extremely difficult undertaking. The majority of community detection algorithms,



3.8. Conclusion 83

CA

Nbd Subset CN Louvain Info LPA L-GCN Mul-
Otsu-
itr+

MAP

5 s1 0.0154 0.0152 0.0151 0.0153 0.0155 0.0154
s2 0.0152 0.015 0.0159 0.0157 0.0156 0.0155
s3 0.0152 0.0149 0.0159 0.0155 0.0154 0.015
s4 0.0155 0.0151 0.0152 0.0156 0.0155 0.0151
Avg. 0.0153 0.0150 0.0155 0.0155 0.0155 0.0152

10 s1 0.0152 0.0153 0.0152 0.0157 0.0152 0.0153
s2 0.0151 0.0154 0.0156 0.0155 0.0157 0.0154
s3 0.0151 0.0152 0.0162 0.0155 0.0166 0.0151
s4 0.0155 0.0153 0.0159 0.0157 0.0161 0.0152
Avg. 0.0152 0.0153 0.0157 0.0156 0.0159 0.0152

15 s1 0.0151 0.0153 0.0159 0.0158 0.0152 0.0155
s2 0.0154 0.0153 0.0157 0.0157 0.0156 0.0155
s3 0.0151 0.0154 0.0158 0.0158 0.0166 0.0157
s4 0.015 0.0156 0.0156 0.0157 0.0165 0.0152
Avg. 0.0151 0.0154 0.0157 0.0157 0.0160 0.0154

MAE

5 s1 0.491 0.492 0.512 0.524 0.538 0.522
s2 0.488 0.498 0.531 0.527 0.542 0.538
s3 0.486 0.488 0.532 0.525 0.535 0.542
s4 0.482 0.482 0.531 0.526 0.536 0.533
Avg. 0.486 0.490 0.526 0.525 0.538 0.534

10 s1 0.491 0.502 0.532 0.532 0.545 0.542
s2 0.480 0.512 0.545 0.538 0.544 0.496
s3 0.485 0.514 0.546 0.539 0.546 0.499
s4 0.482 0.512 0.513 0.532 0.548 0.538
Avg. 0.484 0.510 0.534 0.532 0.546 0.520

15 s1 0.482 0.521 0.537 0.538 0.545 0.531
s2 0.488 0.501 0.538 0.534 0.543 0.529
s3 0.482 0.492 0.535 0.539 0.546 0.539
s4 0.483 0.522 0.536 0.536 0.549 0.535
Avg. 0.483 0.509 0.536 0.536 0.546 0.534

TABLE 3.11: MAP and MAE scores for the Movie Lens dataset. Nbd, CA, CN,
Modu, Info and LPA stands for Neighbourhood size, Clustering Approaches, Com-
mon Neighbors, Modularity, Infomap and Label Propagation Algorithm respectively.
The size of the neighbourhood (n) is changed between five and fifteen, and the num-

ber of recommendations, i.e., the value of k is set at 10.

as a consequence of this fact, are based on optimising some objective function; hence,

the outcomes of these algorithms are stochastic in nature. Alterations to the commu-

nity structure on each execution cause a great deal of trouble because the detection of

communities is of vital significance in networks due to the wide variety of applications

that they support. In this chapter, we talked about how we solved the problem by

constructing some algorithms that used certain hand-made and automated feature en-

gineering (graph representations) on the network. As a result, we ended up with two

novel methods: unsupervised and semi-supervised. In the unsupervised method, our

inspiration was the classical image thresholding algorithm, and in the semi-supervised

method, we used a line graph and Graph Convolutional Neural Network (GCN) to

find the constant communities in a complex network.
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Chapter 4

Improving the Accuracy of Graph

Neural Network

Chapter summary: In the previous chapter, our study contributed to a challenging

problem of complex network field where we studied the importance of constant com-

munity in a complex network and proposed two approaches (unsupervised and semi-

supervised) to discovering it. Both approaches use graph or network representation

to correctly find the constant communities. In the semi-supervised approach, we in-

troduced the Graph Convolutional Neural Network (GCN) as a graph representation

learner. To train the GCN, we used 15% training nodes. But what happens if we do

not have enough training nodes to train it? According to experimental findings, the

accuracy of GCN drastically drops when the number of training nodes is reduced. The

reason is due to the poor representation learning of the GCN on the graph, i.e., with the

small number of training nodes, the GCN could not capture the features of the nodes

accurately. In this chapter, we outline the problem and offer a potential resolution. In

fact, we generalised the GCN and expanded the scope of the issue using Graph Neural

Network (GNN). As a result, this chapter contributes to the field of graph-based deep

learning.
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4.1 Introduction

A crucial issue in data mining is vertex classification, which entails finding vertices in

a complex network that belong to the same class. With the development of datasets

with abundant information, vertex-related features now also contribute to classifica-

tion. Hence, semi-supervised methods like Graph Neural Networks (GNN) [43, 195,

44, 297, 289, 194, 300, 113], which can take into account both structural and feature

vector data, have gained popularity as vertex classification tools.A GNN model begins

with a collection of training nodes, also known as seeds, for which the correct classes

or labels are already known. It performs its operations by first gathering the features of

each node’s neighbours and then conducting a form of Laplacian smoothing to change

the features of that node in such a way that the nodes that are assigned to the same

class after smoothing have similar feature sets.

The main goal after establishing any GNN model is to adjust the hyperparameters

to improve accuracy. Two simplistic methods for improving a neural network model’s

accuracy include (i) increasing the number of hidden layers and (ii) increasing the train-

ing nodes.

Increasing the number of hidden layers. A neural network model with poor repre-

sentational capacity [403] could occasionally have trouble fitting the training set. We

can boost the model’s ability to represent more information by adding more layers.

Yet, adding more hidden units results in higher time and memory costs. Moreover, for

some GNN models, adding more hidden units frequently exacerbates the oversmooth-

ing issue. According to the discussion in [296], the GCN (a version of the GNN) with

multiple hidden layers, which can cause nodes from different classes to have nearly

identical features after the final smoothing process.

Increasing the training nodes. The accuracy rises as the number of training nodes in-

creases (see Fig. 4.1). Yet, the aim of semi-supervised learning is defeated by merely

increasing the number of training nodes. A more recent approach [296] has instead

concentrated on agnostically growing the number of training nodes by using random

walks from a limited number of starting training nodes with known labels. Using (a)
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the label data of a few seed nodes and (b) the network’s topology, this technique in-

creases the training set. The technique is similar to an unsupervised set expansion

technique [404, 405] and does not require extra label information.

FIGURE 4.1: Accuracy dropped when the percentage of training nodes is near 0%.
This experiment was done on the Cora Network [406] using the Graph Convolutional

Network.

Problems with adding more training nodes. The GNN’s node classification accuracy

can be improved by agnostically adding more training nodes using the random walk

method. But sometimes it suffers from the following problem: (i) This technique fre-

quently results in training nodes that are positioned close to the seed nodes. To train

a GNN, a set of seed nodes is collected from each class. However, some of these sub-

graphs might not be included in the training set if the same class is dispersed among

non-contiguous subgraphs. If all of the nodes in the extended training set belong to the

same subgraph, the nodes from the other subgraphs will be unrepresented, resulting in

classification errors. Therefore, some pre-processing must be used to make sure that the

training nodes are dispersed across the network and not concentrated in any particular

areas. In Fig. 4.2, we provide a hypothetical scenario to clarify this concept. (ii) From a

set of initial seeds, the extra nodes accumulated with a random walk are relabeled with

the same colour as those initial seeds. In reality, though, a number of relabeled nodes

may belong to various classes. When these incorrectly relabeled nodes are employed

as training nodes, accuracy may suffer. We have observed in particular that the result

contains localised areas of incorrectly categorised nodes. Thus, to find and change any

potentially incorrectly labelled nodes, post-processing is crucial.
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FIGURE 4.2: The collection of training nodes of the same class but non-contiguous
sub-graphs improves accuracy. Top (i), the correct labels of the nodes. Bottom left
(ii), training nodes are {A, B} and {I, G} from the two different classes. The subgraph
{K,L,M,N} is erroneously subsumed into the green class. Bottom right (iii), training
nodes are {A, M} and {G, I}. The yellow class has representative from two of its sub-

graphs, and correct classification is obtained.

Main contribution. In this study, our primary contribution is to develop novel input

and output intervention methods to address these issues. These methods include (i)

selecting a set of training nodes that are distributed along various non-contiguous sub-

graphs of the same class and (ii) identifying misclassified nodes and correcting their

labels. Both of these steps are performed in order to address the two problems men-

tioned above.

Input intervention: We make use of the structure of the graph by combining random

walks as well as the feature vector that is associated with each node, and we apply some

preprocessing to the training nodes in order to improve the representational capacity

of the GNN and hence the training accuracy.

Output intervention: We first identify nodes with low confidence in classification by

utilising the confidence vector that is linked to each node at the output. Then, we

relabel the low-confidence nodes with the labels of their neighbouring high-confidence

nodes for further improvement of accuracy.

4.2 Proposed strategies

Here, we lay out our two primary contributions: (i) an intervention at the input level

to increase the spatial variety of the training set; and (ii) an intervention at the output

level to identify and relabel the misclassified nodes. Figure 4.3 shows all the steps.
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4.2.1 Input level intervention

We take a look at two different approaches known as ParWalk and DeepWalk, both

of which involve expanding the set of training nodes using a variety of distinct ap-

proaches to random walks. Nevertheless, just increasing the training nodes in a graph

might not be enough to capture all of the instances of the same class if they are spread

out across multiple non-contiguous subgraphs in the graph. We make use of the well-

known clustering (K-means) and classification (K-NN) methods in order to locate the

training nodes from several non-contiguous sub-graphs that have the same class label.

The stages involved in this input intervention method can be divided into two primary

categories. A set of initial training nodes (seed nodes) selection steps is required before

these steps in order to proceed.

Selection of seed nodes: For each class c ∈ {1, 2, ..., k}, a set of nodes (Ic) is selected

and accumulated in the initial training node set I. Thus, formally,

I = {I1, I2, .., Ik}

Step 1: The idea of this step is to apply the random walk or embedding algorithm to

the seed nodes for each class to expand the training nodes’ set. The random walk or

node embedding can be obtained as follows:

• For PaRWalk (Algorithm 4), a transition probability matrixA is constructed (which

is also termed the random walk). Given a graph Laplacian Γ, the transition prob-

ability matrix A can be constructed as A = (Γ + αΛ)−1, where Γ = D− A, D is

the degree matrix D = diag(d1, d2, ..., d|V|), di is the degree of node vi and A is the

adjacency matrix, α > 0 is a scalar value, Λ = diag(λ1, λ2, ..., λ|V|) is known as

the regularizer, and λi ≥ 0 is some arbitrary value.

• For DeepWalk (Algorithm 5), first, we constructed the model with the assistance

of the algorithm that is described in [250]. The parameters that we used for this

algorithm were the number of walks (Wp) per node and the walk length (Wl).

Then we fit the graph inside the model to get the node embedding.
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After constructing the transition probability matrix, or node embedding, the next

task was to expand the initial seed node sets. For that, for each seed node’s set Ic

of class c, we use random walk (transition probability matrix) or node embedding to

agnostically obtain at most t number of the nodes that are most similar to the nodes in

Ic. Now t is defined as:

t =
|Ic| × b× η

∑k
c=1 |Ic|

b is a constant, η = |V|/(davg)τ, davg is the average degree of the graph G and τ is the

number of layers of the GNN. The concept of most similar nodes can be defined as:

• In the case of PaRWalk, a node i is more similar to node j than node k if

aij > aik

where aij and aik are the absorption probabilities corresponding to node pairs (i,

j) and (i, k) respectively.

• In the case of DeepWalk, a node i is more similar to a node j than a node k if

COS( f (i), f (j)) > COS( f (i), f (k))

COS( f (i), f (j)) is the Cosine Similarity [407] between vector f (i) and vector f (j),

f (n) ∈ Rd is the embedded vector representing a node n of size d.

Step 2: Using the random walk or node embedding technique, the set of extended train-

ing nodes X was constructed in Step 1. But as previously discussed, simply increasing

the training node set may not include nodes from the non-contiguous subgraphs for a

particular class. Therefore, to include these nodes, we employ clustering and classifi-

cation techniques, which are discussed in this step.

After providing the expanded set of training nodes X, we proceed to carry out an

unsupervised classification utilising the K-means algorithm in order to divide the set

X into two clusters Clus1 and Clus2 according to the feature vector of the nodes. We

hypothesise that the smaller cluster will aggregate nodes belonging to different classes,

whereas the bigger cluster will have a greater number of nodes belonging to the same

class as the seed. This hypothesis is founded on the hunch that the vast majority of the
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nodes located in close proximity to the seed will belong to the same category and, as

a result, will be components of the larger cluster (Cmax = max{Clus1, Clus2}). In fact,

as demonstrated by the findings, the application of this heuristic yields much better

categorization results.

After that, we change out the potentially accurate locally clustered nodes from set

Cmax with new nodes that are spread out across the graph. We use the K-Nearest Neigh-

bors (K-NN) approach to the feature vector space of the nodes in order to locate the

|Cmax| nodes that are located in the closest proximity to the centroid of the nodes in set

Cmax. These new nodes were chosen from the set of nodes that are not in X. This new

set of nodes comprises the set C′max, and they are the set of extended nodes that were

obtained from the initial seed that was used to start the random walk.

Usually, we are only able to apply the set of training nodes designated as C′max.

On the other hand, we intend to evaluate the advantages of utilising spatially diverse

nodes in contrast to those that are generated through random walk approaches. As a

result, we merge the set C′max with the set Cmin (nodes that may have been mislabeled),

which results in the creation of our ultimate training set X′. Note that the nodes that

could be incorrectly identified are located in relatively close proximity to one another,

while the nodes that could be correctly classified are spread out across the network. We

also gave the nodes in the expanded set X′ a label that corresponds to the label of the

starting seed nodes.

Finally, in order to create the complete training set, we combine the relabeled ex-

tended nodes that we have gotten to match all classes.

4.2.2 Output level intervention

The identification of misclassified nodes generated by a GNN’s output and their ag-

nostic relabeling to their possibly accurate labels constitute our second contribution.

The output of the GNN is passed through a softmax layer to obtain the vector of

probabilities, Pu = [pu1, pu2, ..., pun] of node u ∈ V, where, pui is the probability of node

u belonging to class i. This vector Pu is what we refer to as a confidence vector. The
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Algorithm 4: Input level intervention using PaRWalk
Input : G(V, E), Γ, Λ, t, I, α
Output: Expanded set of training nodes S

1 S ← ∅;
2 A ← (Γ + αΛ)−1;
3 for each class c ∈ {1, 2, ..., k} do
4 AS ← ∑i∈Ic

A:,i;
5 X ← select the t highest valued indices from AS;
6 Clus1, Clus2← K-means(X, Size = 2);
7 Cmax ←max(Clus1, Clus2);
8 Cmin ←min(Clus1, Clus2);
9 Ccent ← centroid of Cmax;

10 C′max ← using K-NN, select |Cmax| nearest nodes to Ccent from (V − X);
11 X′ ← C′max ∪ Cmin;
12 for each node x ∈ X′ do
13 Label[x]← lc;
14 end
15 S ← S ∪ X′;
16 end

FIGURE 4.3: Our proposed input and output interventions to GNN-based node clas-
sification.

confidence of a node u can be defined as:

Con f (u) = max{Pu}
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Algorithm 5: Algorithm for input level intervention with DeepWalk
Input : G(V, E), I, t,WP,WL
Output: Expanded set of training nodes S

1 S ← ∅;
2 Model ← DeepWalk(WP,WL);
3 Emb← Fit G in the Model to get the node embedding;
4 for each class c ∈ {1, 2, ..., k} do
5 X ← ∅;
6 for each node n ∈ Ic do
7 Xn ← get nearest t

|Ic| nodes of n using Emb;
8 X ← X ∪ Xn;
9 end

10 Clus1, Clus2← K-means(X, Size = 2);
11 Cmax ←max(Clus1, Clus2);
12 Cmin ←min(Clus1, Clus2);
13 Ccent ← centroid of Cmax;
14 C′max ← using K-NN, select |Cmax| nearest nodes to Ccent from (V − X);
15 X′ ← C′max ∪ Cmin;
16 for each node x ∈ X′ do
17 Label[x]← lc;
18 end
19 S ← S ∪ X′;
20 end

Next, we compute the mean (µ) and standard deviation (σ) of the confidence score

distribution across all of the nodes. A node is said to have high confidence if

Con f (i) ≥ µ + α× σ

and low confidence otherwise.

We generated a number of high confidence node sets denoted by HCN for each of

the classes. Where,

HCN = {HCN1, HCN2, ..., HCNk}

HCNc stands for the set of high confidence nodes belonging to the class c. Then from

each HCNc we use either PaRWalk or DeepWalk to retrieve a collection of nodes de-

noted by RWN of size atmost t. In this case, the size of t is determined by the proportion

of the number of nodes in G to the total number of classes in G. If a certain node in the

RWN has a low confidence score, then the label of that node will be changed according

to the following rule: We start by creating a set that is the union of the nodes in HCNc

and the neighbours Nbd of the present node. Then, we select the label lc of the node
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whose confidence is the highest, and we re-label the node with the lowest confidence

with label lc.

Algorithm 6: Algorithm for output level intervention using PaRWalk
Input : The network G(V, E), Predicted label of all nodes PredLabel, set size t,

Confidence of each node Con f , Hyper parameter α, mean (µ) and
standard deviation (σ) of the distribution of confidence of all the nodes,
graph laplacian Γ, scalar value α, regularizer Λ,.

Output: Modified PredLabel.
1 A ← (Γ + αΛ)−1;
2 HCN ← select a set of high confidence nodes for every class using Con f , µ and

α ∗ σ;
3 for class c ∈ {1, 2, ..., k} do
4 AS ← ∑i∈HCNc

A:,i;
5 RWN ← select the t highest valued indices from AS;

/* change the label of the low confidence nodes */
6 for node u ∈ RWN do
7 S ← HCNc ∪ Nbd(u);
8 f ← select a node in S ;
9 maxCon f ← Con f ( f );

10 if Con f (u) ≤ µ - α ∗ σ then
11 for node v ∈ S do
12 if Con f (v) > maxCon f then
13 maxCon f ← Con f (v);
14 l ← arg maxi(CVv);
15 end
16 end
17 PredLabel[u]← l
18 end
19 end
20 end

4.3 Rationale and error analysis

Rationale: We now present an explanation as to why the classification has improved

as a result of our intervention strategies. The random walks in both methods have the

goal of identifying the local structures based on the assumption that nodes that are

structurally local belong to the same class.

By first choosing the set of nodes that are most likely to belong to the right class and

then expanding this set by comparing similar feature vectors rather than locally close

nodes, our input intervention seeks to reduce the discrepancies between the structure
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Algorithm 7: Algorithm for output level intervention using DeepWalk
Input : The network G(V, E), Predicted label of all nodes PredLabel, set size t,

Confidence of each node Con f , Hyper parameter α, mean (µ) and
standard deviation (σ) of the distribution of confidence of all the nodes,
walks per nodeWP, walk lengthWL

Output: Modified PredLabel.
1 Model ← DeepWalk(WP,WL);
2 Emb← Fit G in the Model to get the node embedding;
3 HCN ← select a set of high confidence nodes for every class using Con f , µ and

α ∗ σ;
4 for class c ∈ {1, 2, ..., k} do
5 RWN ← ∅;
6 for node n ∈ HCN do
7 X ← get nearest t

|HCNc| nodes of n using Emb;
8 RWN ← RWN ∪ X;
9 end

/* Change the label of the low confidence nodes */
10 for node u ∈ RWN do
11 S ← HCNc ∪ Nbd(u);
12 f ← select a node in S ;
13 maxCon f ← Con f ( f );
14 if Con f (u) ≤ µ - α ∗ σ then
15 for node v ∈ S do
16 if Con f (v) > maxCon f then
17 maxCon f ← Con f (v);
18 l ← arg maxi(CVv);
19 end
20 end
21 PredLabel[u]← l
22 end
23 end
24 end

of the graph and the labelling of the nodes. As a result, we blend both structural and

feature properties. In the output intervention, we found the low confidence nodes that

have structural similarity with the high confidence nodes and changed their labels to

match the labels of the high confidence nodes. Thus, we can accurately classify the

misclassified nodes in this manner.

Error while training node expansion: We have observed that the training nodes’ set is

increased in the input level intervention technique by applying a random walk or graph

embedding technique to each set of starting seed nodes. In this section, we discuss the

error that is introduced while expanding the training set. Let S =
⋃k

c=1 Sc be the final
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set of elongated nodes in the training process, where Sc be the set of extended nodes

for class c. Now the label of each individual node in Sc has been updated lc. As a

consequence of this, the labels of the nodes that belong to other classes will also be

relabeled to reflect the class label lc. Because of this, an error was produced in the

extended set.

Assume that the group of nodes with the class label lc is called Vc. Hence, it is simple

to confirm that,
⋃k

c=1 Vc = V and Vc1 ∩Vc2 = Φ for c1 ̸= c2 and c1, c2 ∈ {1, 2, ..k}. As a

result, the number of nodes with the correct class label lc in the set Sc will be:

Nc = |Sc ∩Vc|

Hence, the number of undesirable nodes (nodes from a different class) in Sc or the error

related to Sc

Ec = |Sc| − Nc = |Sc| − |Sc ∩Vc|

As a result, the probability of error for Sc will be as follows:

Pc =
Ec

|Sc|
=
|Sc| − |Sc ∩Vc|

|Sc|
=

t− |Sc ∩Vc|
t

= 1− |Sc ∩Vc|
t

, as |Sc| = t, ∀c ∈ {1, 2, ..., k}

Moreover, the likelihood of error for Sc will be:

P =
∑k

c=1 Ec

∑k
c=1 |Sc|

=
∑k

c=1(|Sc| − |Sc ∩Vc|)
∑k

c=1 |Sc|
=

kt−∑k
c=1 |Sc ∩Vc|

kt
= 1− ∑k

c=1 |Sc ∩Vc|
kt

, as |Sc| = t, ∀c ∈ {1, 2, ..., k}

The accuracy with which the input level intervention technique gathers the nodes with

the same label as the original seed nodes determines the value of the likelihood.

For instance, if we suppose that each class is equally distributed, and the input in-

tervention method only captures the 3
4

th correct nodes (nodes with the same class label

as c), then, |Sc ∩Vc| = 3t
4 implying Pc = 1− 3t

4t = 1− 3
4 = 1

4 .

In our study, we have taken t as, t = b |Ic|×η

∑k
x=1 |Ix |

, where b is an integer. The set size t is

changed as a result of tuning b. Too many nodes from different classes enter Sc when

the value of t is large, increasing the error and lowering the GNN’s test accuracy. On
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the other hand, when t is small, too few nodes from the actual class c enter Sc, which

lowers the GNN’s test accuracy.

Figure 4.4 shows the experimental data capturing the likelihood of error for each

class. As we adjust the set size t, we also show the plot of error associated with the

completely expanded set S and the test accuracy of GCN in 4.5. In our research, we set

b to 3.

4.4 Time complexity analysis

The time complexity of our algorithms will be provided in this section. We employed

random walks in both the input and output intervention strategies. So, before deter-

mining the actual time complexity of both techniques, we first compute the random

walk’s time complexity.

Time requirement for PaRWalk: PaRWalk requires the computation of absorption

probability matrix: A = (Γ + αΛ)−1, where, Γ is the graph laplacian defined as Γ =

D − A, D = diag(d1, d2, ..., d|V|) is the degree matrix, di is the degree of node vi and
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A is the adjacency matrix of a network, α > 0 is a scalar, Λ = diag(λ1, λ2, ..., λ|V|)

is the known regularizer and λi ≥ 0 is some arbitrary value. The computation of Γ

has linear time complexity. Computation of (Γ + αΛ) has also linear time complexity.

A = (Γ + αΛ)−1 can be computed using Williams algorithm [408] in O(|V|2.373) time.

Time requirement for DeepWalk: The time complexity of the DeepWalk [250] algo-

rithm can be calculated as O(WP|V|(WL + log(|V|))), where,WP is the walk per node,

WL is the walk length, |V| is the number of nodes. The term log(|V|) comes from the

time complexity of SkipGram [250] method.

4.4.1 Time complexity for input level intervention

It is evident from Algorithm 4 and 5 that the total time complexity of the input level

intervention is the sum of time complexities of (i) the random walk, (ii) K-means and

(iii) K-NN algorithms.

• Random walk: Already discussed.

• K-means [409]: Time complexity of K-means algorithm is: O(tδmj), where j is

the number of iterations for the convergence of the K-means algorithm, t is the

number of samples, m is the number of samples, δ is the number of clusters.

• K-NN [37]: Time complexity of K-NN algorithm is: O(|Cavg|m), where m is the

dimension of each sample in cluster of average size Cavg,

Time requirement of Algorithm 4: For L class labels, the time complexity would be:

Tip_par = O(|V|2.373) + |L|(O(tδmj) + O(|Cavg|m))

= O(|V|2.373) + (O(|L|tδmj) + O(|L||Cavg|m))

= O(|V|2.373) + (O(|L| |Ic|bη

∑k
c=1 |Ic|

δmj) + O(|LCavg|m)), since, t =
|Ic|bη

∑k
c=1 |Ic|

= O(|V|2.373)+ (O(|L| |Ic|bη

2|L| δmj)+O(|L||Cavg|m))as,
k

∑
c=1
|Ic| = 2L, since we choose two nodes per class.

= O(|V|2.373) + (O(
|Ic|bη

2
δmj) + O(|L||Cavg|m))
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= O(|V|2.373) + (O(
2bη

2
δmj) + O(|L||Cavg|m))

= O(|V|2.373) + (O(bηδmj) + O(|L||Cavg|m))

= O(|V|2.373) + (O(
|V|bδmj
(davg)τ

) + O(|L||Cavg|m)),

davg is the average degree of the graph G and τ is the number of layers of the GNN.

= O(|V|2.373) + (O(
|V|mj
(davg)τ

) + O(|L||Cavg|m)), for b = 3 , δ = 2 are constant.

Time requirement of Algorithm 5: Total time complexity for DeepWalk is:

Tip_deep = O(WP|V|(WL + log(|V|))) + (O(
|V|mj
(davg)τ

) + O(|L||Cavg|m)).

4.4.2 Time complexity for Output level intervention:

For Algorithms 6 and 7, the time complexity can be calculated as the sum of the time

taken by (i) the random walk, and (ii) relabel operations.

• Random walk: Already discussed.

• Relabel operations: Depends on the selected approach - PaRWalk or DeepWalk.

Time requirement of Algorithm 6: The time complexity of line 2 is O(|V|). For each

class, line 4 and 5 both require O(t) time + lines 6− 19 requires O(t(|Havg|+ davg)) time

(considering average degree as davg and the average number of high confidence nodes

as |Havg|). So, the total time required is (using PaRWalk):

Top_par = O(|V|2.373) + O(|V|+ |L|(t + t(|Havg|+ davg)))

= O(|V|2.373) + O(|V|+ |L|t(1 + |Havg|+ davg)).

Since we have taken t = |V|
|L| , thus, time complexity of Algorithm 6 will be:

= O(|V|2.373) + O(|V|+ |L| |V||L| (1 + |Havg|+ davg))

= O(|V|2.373) + O(|V|+ |V|(1 + |Havg|+ davg)).
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Time requirement of Algorithm 7: Similarly, the total time complexity required is (us-

ing DeepWalk):

Top_deep = O(WP|V|(WL + log(|V|))) + O(|V|+ |V|(1 + |Havg|+ davg))

Time requirement of both the input and output intervention: In this case, the random

walk is computed only once, which is then used in both interventions. Therefore, the

computation time in the case of PaRWalk for both interventions can be written as:

Tip_op_par = O(|V|2.373)+ (O

(
|V|mj
(davg)τ

)
+O(|L||Cavg|m))+O(|V|+ |V|(1+ |Havg|+ davg))

and in the case of DeepWalk:

Tip_op_deep = O(WP|V|(WL + log(|V|)))+
(

O(
|V|mj
(davg)τ

)
+O(|L||Cavg|m))+O(|V|+ |V|(1+ |Havg|+ davg))

4.5 Datasets and baselines

4.5.1 Datasets

We use the datasets in Table 4.1 for our experiments. In the table, the first four datasets

CiteSeer [406], Cora [406], Cora-ml [410] and PubMed [406], are citation networks. The

nodes on each network represent the documents, while the edges signify the citation

linkages. The node feature (a 0/1-valued vector) denotes the absence or presence of

a certain word in the corresponding document. Classes, labelled starting from 0 to

(number of subjects - 1) represent the subjects.

4.5.2 Baselines

We have used eight Graph Neural Networks and seven training set expansion methods

as the baseline methods.

Baselines: Graph Neural Networks: Several Graph Neural Networks like GCN [43],

GAT [44] etc are used here. The descriptions are given below:



4.5. Datasets and baselines 103

Network nodes Edges Features Classes Description
Citeseer [406] 3327 4732 3703 6 Citation networks extracted from the CiteSeer

digital library. Nodes represent the documents,
while the edges signify the citation linkages. The
node feature (a 0/1-valued vector) denotes the
absence/presence of a certain word in the cor-
responding document. classes, labelled starting
from 0 to (number of subjects - 1) represent the
subjects.

Cora [406] 2708 5429 1433 7 Cora citation networks. Description of nodes,
edge, feature vector and class are same as Citeseer
network.

Cora-ml [410] 2995 8416 2879 7 A sub-network of the Cora citation network con-
taining the machine learning related papers only.
Description of nodes, edge, feature vector and
class are same as Citeseer network.

Pubmed [406] 19717 44338 500 3 Citation network corresponding to Pubmed
dataset. Description of nodes, edge, feature vector
and class are same as Citeseer network.

Amazon
Photo [411]

7487 119043 745 8 Subset of the Amazon co-purchase network [412].
The goods are represented by nodes. If two
goods (nodes) are purchased together then they
are connected with an edge. Feature vector corre-
sponding to the node represents absence/presence
of certain words in the product review. classes
repersent product categories.

Amazon Com-
puters [411]

13381 245778 767 10 The goods are represented by nodes. If two goods
(nodes) are purchased together then they are con-
nected with an edge. Feature vector correspond-
ing to the node represents absence/presence of
certain words in the product review. Classes rep-
resent product categories.

ogbn-arxiv [413] 169,343 1,166,243 128 40 A citation network among all computer science
arxiv papers. Node represents the paper and if a
paper cites another paper, there is a link between
them. Feature vector corresponding to the node
represents absence/presence of certain words in
the title and abstract. Class indicates the subject
areas.

ogbn-
products [413]

2,449,029 61,859,140 100 47 Amazon product co-purchasing network. Node
represents products, Edge represents two prod-
ucts bought together. Feature vector represents the
presence/absence of certain words in the product
review. Class the product categories

ogbn-mag [413] 1,939,743 21,111,007 128 349 Nodes are either paper or author or institutions or
fields of study. Edges between two nodes repre-
sents either “affiliations” or “citations” or “writer”
or “has a topic of” relations. Class represents the
venue.

TABLE 4.1: The test suite of real-world networks.

• GCN [43] It is a linear approximation of spectral graph convolution. For each

node, the neighbours’ information is aggregated and transformed to generate bet-

ter node embeddings.
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• GAT [44] Unlike GCN, where each neighbour of a node gets equal attention dur-

ing aggregation, important neighbours get more weight (attention) during aggre-

gation.

• ChebyNet [289] ChebyNet uses Chebyshev polynomials as its foundation to im-

plement spectral convolution approximation. It applies Laplacian directly as a

filter.

• APPNP [194] To create a more effective message propagation method, graph con-

volutional networks (GCN) and personalised PageRank are combined.

• GPR-GNN [195] It is an improved version of APPNP where generalized person-

alized page rank are used with GCN instead of personalized page rank.

• JK-Nets [297] Variable neighbourhood ranges for each node are aggregated to

provide better structure-conscious representation.

• GraphSAGE [113] Instead of learning unique embeddings for every node, a func-

tion is developed that creates embeddings by selecting and combining informa-

tion from a node’s immediate neighbourhood.

Baselines: training set expansion: Also, we contrasted our intervention strategies with

the following seven training set expansion strategies:

• Random sampling For each class, rather than using the random walk, the train-

ing sets are expanded using a random sampling of nodes from the set of all nodes

|V|.

• Co-training [296] PaRWalk [243] is used to extend the training set. The confidence

level of a node belonging to class c is calculated after the normalised absorption

probability matrix A has been generated. The training set is expanded to include

the top m nodes with the greatest confidence measure, labelled lc;

• Self-training [296] The top m nodes with the highest confidence, as determined

by the softmax scores, are added to the training nodes after a GNN has been

trained with its initial training nodes for each class.

• Co-Self-union [296] The union of the extended training nodes returned by Co-

training and Self-training.
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• Co-Self-intersection [296] The intersection of the extended training nodes re-

turned by Co-training and Self-training.

• Training Node Augmentation (TNA) [414] To increase the training set, intersec-

tions of nodes from many previously trained GNNs that have confidence above

a certain threshold are gathered.

• Hi-deg-path A path of high-degree nodes is chosen for each class (like a meta-

path in a heterogeneous graph [415]). We begin by looking for the training nodes’

highest degree neighbours, selecting the highest degree neighbour, relabeling it

with the starting node’s label, adding it to the set, and continuing the procedure

from this highest degree neighbour until the set of high-degree nodes stops grow-

ing.

4.5.3 Hyperparameter settings

We employed two training nodes from each class that were randomly chosen as part

of our input level intervention. For testing purposes, each model is given a random se-

lection of 1000 nodes (not including the training nodes). We did not use any validation

set. For all the GNNs, we used two hidden layers. The learning rate and epochs are set

to 0.01 and 200, respectively. For the smaller graphs ( Citeseer, Cora, Cora-ml, Pubmed,

Amazon Photo and Amazon Computers), we set walk lengthWL to 50 and walks per

nodeWP to 30. For the larger graphs (ogbn-arxiv, ogbn-product and ogbn-mag), walk

lengthWL is set to 50 and walks per nodeWP is set to 10.

4.6 Results

As previously said, our main objectives are to improve the accuracy of GNNs through

the application of (a) input-level intervention and (b) output-level intervention. We em-

ploy the PaRWalk and DeepWalk algorithms for training set enlargement in the input

level intervention. The output level intervention also employs these two techniques

to identify the nodes that are most comparable to the high confidence nodes for each

class. Thus, we can broadly categorize the results into two groups: results based on



106 Chapter 4. Improving the Accuracy of Graph Neural Network

GNN model Networks

Cora Citeseer Pubmed Photo Computer Cora-ml arxiv product mag

Ba
se

lin
es

GCN 0.45±0.05 0.33±0.06 0.52±0.05 0.32±0.09 0.21±0.09 0.36±0.04 0.12±0.04 0.15±0.03 0.02±0.04
GAT 0.44±0.04 0.35±0.04 0.54±0.05 0.47±0.10 0.41±0.10 0.41±0.08 0.09±0.02 0.17±0.02 0.02±0.03

ChebyNet 0.31±0.05 0.26±0.03 0.47±0.04 0.35±0.11 0.27±0.09 0.24±0.09 0.09±0.02 0.11±0.05 0.03±0.06
GPR-GNN 0.48±0.06 0.38±0.05 0.62±0.08 0.54±0.13 0.44±0.17 0.52±0.09 0.14±0.02 0.21±0.02 0.05±0.03

APPNP 0.50±0.05 0.36±0.04 0.59±0.04 0.23±0.11 0.10±0.10 0.36±0.10 0.14±0.03 0.20±0.04 0.05±0.03
JKNet 0.35±0.04 0.27±0.05 0.57±0.04 0.17±0.10 0.32±0.10 0.23±0.11 0.08±0.03 0.12±0.02 0.02±0.03
SAGE 0.37±0.05 0.30±0.05 0.56±0.05 0.42±0.11 0.32±0.10 0.31±0.11 0.04±0.03 0.11±0.06 0.02±0.07

In
pu

t
in

te
rv

en
ti

on

ip+GCN 0.71±0.03 0.56±0.05 0.65±0.00 0.39±0.01 0.62±0.02 0.64±0.03 0.22±0.03 0.27±0.04 0.09±0.04
ip+GAT 0.63±0.02 0.57±0.03 0.75±0.01 0.52±0.02 0.59±0.02 0.64±0.03 0.19±0.03 0.28±0.03 0.09±0.04

ip+ChebyNet 0.68±0.01 0.62±0.03 0.85±0.00 0.50±0.03 0.51±0.01 0.60±0.03 0.20±0.02 0.20±0.07 0.11±0.05
ip+GPR-GNN 0.68±0.01 0.60±0.03 0.83±0.01 0.57±0.03 0.50±0.08 0.67±0.03 0.24±0.01 0.24±0.07 0.08±0.04

ip+APPNP 0.69±0.01 0.56±0.03 0.75±0.00 0.34±0.03 0.54±0.04 0.66±0.04 0.23±0.03 0.23±0.07 0.08±0.08
ip+JKNet 0.52±0.01 0.43±0.03 0.75±0.01 0.27±0.01 0.48±0.03 0.45±0.02 0.19±0.07 0.18±0.08 0.04±0.07
ip+SAGE 0.63±0.04 0.60±0.03 0.78±0.01 0.55±0.02 0.46±0.03 0.57±0.01 0.12±0.05 0.14±0.07 0.06±0.04

O
ut

pu
t

in
te

rv
en

ti
on

GCN+op 0.50±0.05 0.36±0.05 0.54±0.05 0.33±0.09 0.25±0.08 0.39±0.04 0.15±0.03 0.16±0.03 0.02±0.03
GAT+op 0.46±0.04 0.38±0.05 0.53±0.05 0.48±0.07 0.49±0.08 0.45±0.07 0.12±0.04 0.17±0.04 0.03±0.03

ChebyNet+op 0.35±0.04 0.27±0.03 0.48±0.04 0.36±0.10 0.28±0.09 0.27±0.08 0.11±0.04 0.12±0.04 0.03±0.03
GPR-GNN+op 0.50±0.05 0.39±0.04 0.62±0.05 0.55±0.09 0.47±0.11 0.54±0.11 0.15±0.05 0.22±0.03 0.05±0.03

APPNP+op 0.51±0.15 0.39±0.15 0.60±0.05 0.24±0.04 0.15±0.04 0.39±0.10 0.14±0.04 0.20±0.03 0.06±0.07
JKNet+op 0.37±0.10 0.29±0.09 0.59±0.04 0.18±0.04 0.32±0.04 0.29±0.09 0.11±0.04 0.13±0.03 0.02±0.03
SAGE+op 0.44±0.05 0.32±0.05 0.58±0.05 0.44±0.10 0.33±0.09 0.35±0.08 0.06±0.03 0.12±0.04 0.03±0.03

Bo
th

in
te

rv
en

ti
on

ip+GCN+op 0.74±0.01 0.63±0.02 0.67±0.01 0.40±0.04 0.64±0.05 0.68±0.02 0.24±0.04 0.28±0.03 0.09±0.04
ip+GAT+op 0.65±0.01 0.63±0.03 0.77±0.02 0.54±0.06 0.63±0.08 0.67±0.01 0.21±0.05 0.28±0.03 0.09±0.04

ip+ChebyNet+op 0.70±0.02 0.65±0.03 0.86±0.01 0.51±0.01 0.52±0.08 0.63±0.01 0.21±0.04 0.21±0.03 0.12±0.04
ip+GPR-GNN+op 0.69±0.02 0.63±0.01 0.83±0.01 0.58±0.07 0.51±0.09 0.70±0.01 0.27±0.03 0.24±0.03 0.09±0.04

ip+APPNP+op 0.71±0.01 0.59±0.01 0.78±0.01 0.35±0.06 0.53±0.08 0.69±0.01 0.24±0.04 0.24±0.03 0.09±0.04
ip+JKNet+op 0.54±0.02 0.44±0.01 0.76±0.01 0.27±0.06 0.57±0.09 0.47±0.01 0.21±0.04 0.19±0.03 0.04±0.04
ip+SAGE+op 0.65±0.01 0.65±0.01 0.78±0.01 0.43±0.06 0.56±0.10 0.60±0.01 0.13±0.04 0.16±0.03 0.09±0.06

TABLE 4.2: Accuracy of different baseline methods with and without applying in-
terventions. ip: input intervention, op: output intervention. Here we use PaRWalk
in the intervention technique. Photo: Amazon Photo and Computer: Amazon Com-
puter. arxiv stands for ogbn-arxiv, product stands for ogbn-product and mag stands

for ogbn-mag

PaRWalk and results based on DeepWalk. For each group, three subcategories of re-

sults are shown: (i) results based on only input interventions (ip + GNN variant), (ii)

results based on only output interventions (GNN variant + op), and (iii) results based

on both input and output interventions (ip + GNN variant + op).

4.6.1 Accuracies using PaRWalk

The outcomes of all three possible combinations of interventions, as well as the base-

lines, are presented in Table 4.2. As compared to the baselines, we can observe that the

accuracy improved in every scenario, even with the only intervention being at the in-

put level. When only output intervention was included, there was a little improvement

in accuracy when compared to the baselines. When we include the input and output

interventions together, as was to be expected, the combination yields the highest in-

creases in comparison to the baselines.
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GNN model Networks

Cora Citeseer Pubmed Photo Computer Cora-ml arxiv product mag

Ba
se

lin
es

GCN 0.45±0.05 0.33±0.06 0.52±0.05 0.32±0.09 0.21±0.09 0.36±0.04 0.12±0.04 0.15±0.03 0.02±0.04
GAT 0.44±0.04 0.35±0.04 0.54±0.05 0.47±0.10 0.41±0.10 0.41±0.08 0.09±0.02 0.17±0.02 0.02±0.03

ChebyNet 0.31±0.05 0.26±0.03 0.47±0.04 0.35±0.11 0.27±0.09 0.24±0.09 0.09±0.02 0.11±0.05 0.03±0.06
GPR-GNN 0.48±0.06 0.38±0.05 0.62±0.08 0.54±0.13 0.44±0.17 0.52±0.09 0.14±0.02 0.21±0.02 0.05±0.03

APPNP 0.50±0.05 0.36±0.04 0.59±0.04 0.23±0.11 0.10±0.10 0.36±0.10 0.14±0.03 0.20±0.04 0.05±0.03
JKNet 0.35±0.04 0.27±0.05 0.57±0.04 0.17±0.10 0.32±0.10 0.23±0.11 0.08±0.03 0.12±0.02 0.02±0.03
SAGE 0.37±0.05 0.30±0.05 0.56±0.05 0.42±0.11 0.32±0.10 0.31±0.11 0.04±0.03 0.11±0.06 0.02±0.07

In
pu

t
in

te
rv

en
ti

on

ip+GCN 0.69±0.02 0.54±0.05 0.64±0.00 0.38±0.01 0.63±0.02 0.62±0.03 0.21±0.04 0.24±0.03 0.07±0.05
ip+GAT 0.62±0.03 0.53±0.03 0.74±0.02 0.53±0.03 0.61±0.02 0.61±0.03 0.20±0.03 0.23±0.03 0.07±0.08

ip+ChebyNet 0.67±0.01 0.61±0.03 0.85±0.00 0.50±0.03 0.51±0.01 0.58±0.03 0.19±0.03 0.18±0.05 0.09±0.04
ip+GPR-GNN 0.68±0.01 0.60±0.03 0.81±0.01 0.60±0.03 0.50±0.08 0.66±0.03 0.23±0.03 0.24±0.05 0.07±0.04

ip+APPNP 0.69±0.01 0.57±0.03 0.74±0.02 0.32±0.03 0.55±0.04 0.65±0.04 0.23±0.03 0.24±0.07 0.08±0.07
ip+JKNet 0.53±0.01 0.41±0.03 0.75±0.01 0.28±0.01 0.47±0.03 0.43±0.02 0.17±0.03 0.18±0.06 0.06±0.06
ip+SAGE 0.62±0.04 0.58±0.02 0.78±0.01 0.54±0.05 0.46±0.09 0.58±0.04 0.12±0.02 0.15±0.06 0.06±0.04

O
ut

pu
t

in
te

rv
en

ti
on

GCN+op 0.49±0.05 0.36±0.05 0.55±0.06 0.33±0.10 0.23±0.09 0.38±0.05 0.13±0.03 0.16±0.03 0.02±0.03
GAT+op 0.45±0.03 0.39±0.04 0.54±0.06 0.48±0.10 0.43±0.12 0.45±0.07 0.11±0.04 0.17±0.05 0.03±0.08

ChebyNet+op 0.35±0.04 0.27±0.03 0.48±0.04 0.38±0.10 0.28±0.09 0.27±0.08 0.10±0.06 0.13±0.03 0.04±0.05
GPR-GNN+op 0.50±0.05 0.40±0.04 0.62±0.05 0.55±0.09 0.47±0.11 0.53±0.11 0.16±0.04 0.22±0.02 0.05±0.03

APPNP+op 0.54±0.15 0.37±0.15 0.60±0.05 0.24±0.04 0.13±0.04 0.39±0.10 0.15±0.03 0.22±0.06 0.05±0.03
JKNet+op 0.37±0.10 0.29±0.09 0.59±0.04 0.18±0.04 0.32±0.04 0.29±0.09 0.12±0.05 0.13±0.06 0.03±0.04
SAGE+op 0.42±0.05 0.32±0.05 0.58±0.05 0.44±0.10 0.33±0.09 0.35±0.08 0.05±0.07 0.13±0.06 0.03±0.04

Bo
th

in
te

rv
en

ti
on

ip+GCN+op 0.71±0.03 0.57±0.02 0.66±0.03 0.40±0.04 0.63±0.05 0.66±0.05 0.23±0.03 0.25±0.05 0.07±0.04
ip+GAT+op 0.64±0.01 0.56±0.03 0.77±0.03 0.54±0.07 0.62±0.10 0.64±0.02 0.22±0.05 0.23±0.04 0.08±0.03

ip+ChebyNet+op 0.68±0.03 0.63±0.04 0.85±0.01 0.51±0.01 0.52±0.08 0.62±0.01 0.22±0.04 0.18±0.06 0.09±0.03
ip+GPR-GNN+op 0.70±0.03 0.62±0.03 0.83±0.01 0.61±0.06 0.52±0.06 0.69±0.03 0.25±0.03 0.25±0.05 0.09±0.04

ip+APPNP+op 0.70±0.02 0.60±0.03 0.74±0.01 0.33±0.06 0.56±0.07 0.68±0.01 0.25±0.03 0.24±0.06 0.08±0.04
ip+JKNet+op 0.56±0.04 0.42±0.03 0.76±0.01 0.29±0.06 0.57±0.09 0.44±0.01 0.19±0.07 0.19±0.06 0.07±0.05
ip+SAGE+op 0.64±0.02 0.62±0.02 0.78±0.01 0.55±0.07 0.47±0.09 0.61±0.02 0.14±0.03 0.16±0.03 0.08±0.05

TABLE 4.3: Accuracy of different baseline methods with and without applying inter-
ventions. ip: input intervention, op: output intervention. Here we use DeepWalk in
our intervention techniques. Photo: Amazon Photo and Computer: Amazon Com-
puter. arxiv stands for ogbn-arxiv, product stands for ogbn-product and mag stands

for ogbn-mag

4.6.2 Accuracies using DeepWalk

When using DeepWalk as the training node expansion method, Table 4.3 shows the re-

sults of input-only interventions, output-only interventions, and input-and-output in-

terventions, respectively. We can see that using the intervention methods enhances the

accuracy in comparison to the baseline method, as was the case with the previous re-

sults (PaRWalk). The highest gain using the input intervention method is: (67-31)/31%

= 116% (for the cora network and ChebyNet model). For output intervention, the high-

est gain is: (29-23)/23% = 26% (for cora-ml network and JKNet model). Finally, for

both interventions, the highest gain is: (68-31)/31% = 119% (for the Cora network and

ChebyNet model).
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Cora Citeseer Pubmed Photo Computer Cora-ml
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FIGURE 4.6: Comparison of % accuracy (Y-axis) for different training set expansion
methods: Training Node Augmentation (TNA), random sampling (Random), High-

deg-path (Hi-deg)
, Co-training, Self-training, Co-Self-union, Co-Self-intersection and our proposed
input interventions. ip (Par): input intervention with PaRWalk, ip (Deep): input

intervention with DeepWalk, Photo: Amazon Photo and Computer: Amazon
Computer.

4.6.3 Comparison with training set expansion baselines

As already mentioned, we compared our method with seven training set expansion

methods: Random sampling, Co-training, Self-training, Co-self-union, Co-self-intersection,

Training Node Augmentation and Hi-deg-path. We used GCN as the Graph Neural

Network tool to verify their accuracy. For each network, the accuracy for GCN is shown

by the leftmost bar (base model). The following seven bars show seven baselines, and

the final two bars show the input intervention techniques, which are PaRWalk and

DeepWalk, respectively.

4.6.4 Significance test on output level intervention

We report the p-values for the Mann-Whitney significance test in Tables 4.4 and 4.5 in

order to confirm whether the outcomes of the output level interventions are statistically

significant. In every instance, p < 0.05 shows that the output intervention does in

fact produce outcomes that differ significantly from those produced by the base GNN

variant.
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GNN vs GNN+op Networks

cora citeseer pubmed photo computer cora-ml arxiv product mag
GCN vs GCN+op 0.002 0.001 0.002 0.011 0.012 0.004 0.002 0.01 0.02
GAT vs GAT+op 0.001 0.005 0.0001 0.001 0.011 0.004 0.004 0.02 0.04

ChebyNet vs ChebyNet+op 0.002 0.004 0.003 0.002 0.007 0.002 0.003 0.01 0.03
GPRGNN vs GPRGNN+op 0.001 0.03 0.002 0.005 0.02 0.004 0.002 0.01 0.04

APPNP vs APPNP+op 0.002 0.005 0.009 0.003 0.01 0.01 0.004 0.02 0.02
JKNet vs JKNet+op 0.01 0.002 0.0003 0.010 0.034 0.003 0.002 0.01 0.04
SAGE vs SAGE+op 0.0006 0.0007 0.001 0.0001 0.008 0.003 0.001 0.01 0.04

TABLE 4.4: Significance tests with output interventions plugged in. ParWalk is used
in the intervention methods. arxiv stands for ogbn-arxiv, product stands for ogbn-

product and mag stands for ogbn-mag.

GNN vs GNN+op Networks

cora citeseer pubmed photo computer cora-ml arxiv product mag
GCN vs GCN+op 0.003 0.001 0.001 0.013 0.02 0.001 0.002 0.02 0.02
GAT vs GAT+op 0.003 0.002 0.001 0.002 0.01 0.005 0.004 0.01 0.02

ChebyNet vs ChebyNet+op 0.001 0.002 0.003 0.01 0.02 0.012 0.002 0.02 0.01
GPRGNN vs GPRGNN+op 0.004 0.002 0.002 0.001 0.02 0.002 0.001 0.02 0.03

APPNP vs APPNP+op 0.001 0.005 0.003 0.002 0.02 0.012 0.006 0.01 0.03
JKNet vs JKNet+op 0.001 0.004 0.004 0.002 0.03 0.001 0.002 0.02 0.03
SAGE vs SAGE+op 0.002 0.0008 0.004 0.001 0.08 0.001 0.002 0.02 0.02

TABLE 4.5: Significance tests with output interventions plugged in. DeepWalk is used
in the intervention methods. arxiv stands for ogbn-arxiv, product stands for ogbn-

product and mag stands for ogbn-mag.

4.6.5 Time comparisons

Tables 4.6 and 4.7 compare the execution times of all the various baseline techniques

while employing PaRWalk and DeepWalk, respectively, in the intervention pipeline.

Since more steps are necessary, using the intervention methods will inevitably take

longer. In addition to the various GNN baselines, it is clear from the tables that our

intervention method requires more time if the network is large (like a computer). The

calculation of the absorption probability determines the actual time requirement for

PaRWalk, whereas for DeepWalk, the actual time requirement is primarily determined

by two parameters: the length of the random walk and the number of times the random

walk is necessary.

4.6.6 Effects on increasing the number of hidden layers

This section explains how the GNN’s accuracy in the input intervention is impacted by

the number of layers. The results of the GNNs integrated with only input intervention

on the Cora network are displayed in the Figs. 4.7 and 4.8 (for the other networks, the
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GNN model Networks

cora citeseer pubmed photo computer cora-ml arxiv product mag

Ba
se

lin
es

GCN 3s 5s 24s 36s 73s 5s 88s 32015s 1608s
GAT 35s 72s 207s 300s 601s 57s 626s 35393s 2551s

ChebyNet 15s 44s 51s 117s 248s 38s 261s 33265s 1987s
GPRGNN 9s 18s 38s 67s 147s 17s 166s 32965s 1843s

APPNP 9s 17s 37s 66s 147s 16s 163s 32958s 1839s
JKNet 8s 11s 64s 40s 85s 10s 93s 32329s 1679s
SAGE 9s 26s 46s 98s 187s 23s 253s 32768s 1983s

Random-sample 4s 6s 26s 38s 78s 6s 90s 32037s 1629s
TNA 8s 14s 50s 62s 156s 11s 95s 32048s 1641s

Hi-deg-Path 4s 8s 31s 46s 92s 9s 93s 32037s 1631s
Co-training 10s 13s 241s 131s 756s 11s 345s 33135s 2369s
Self-training 9s 18s 161s 86s 547s 10s 324s 33124s 2213s

Co-Self-union 15s 27s 347s 185s 922s 18s 548s 51567s 3516s
Co-Self-intersection 16s 27s 347s 185s 922s 18s 537s 51769s 3532s

In
pu

t
in

te
rv

en
ti

on

ip+GCN 11s 15s 248s 160s 880s 13s 940s 47763s 37593s
ip+GAT 44s 75s 432s 424s 1416s 71s 1788s 51194s 38566s

ip+ChebyNet 22s 56s 278s 241s 967s 47s 1164s 49094s 37989s
ip+GPRGNN 16s 27s 261s 193s 957s 30s 1025s 48794s 37856s

ip+APPNP 18s 29s 259s 191s 956s 27s 1022s 48781s 37849s
ip+JKNet 17s 18s 283s 167s 898s 19s 947s 48091s 37687s
ip+SAGE 19s 37s 269s 225s 1003s 33s 1116s 48534s 37973s

O
ut

pu
t

in
te

rv
en

ti
on

GCN+op 5s 9s 240s 144s 792s 9s 731s 37266s 5127s
GAT+op 36s 74s 422s 408s 1320s 66s 1582s 40649s 6079s

ChebyNet+op 18s 45s 270s 227s 1060s 43s 983s 38526s 5506s
GPRGNN+op 10s 20s 252s 188s 864s 26s 834s 38253s 5373s

APPNP+op 10s 18s 250s 186s 863s 25s 830s 38244s 5368s
JKNet+op 9s 12s 274s 161s 804s 15s 757s 37562s 5207s
SAGE+op 12s 28s 263s 209s 919s 32s 996s 39037s 5723s

Bo
th

in
te

rv
en

ti
on

ip+GCN+op 12s 19s 468s 270s 1604s 18s 1586s 52989s 41126s
ip+GAT+op 46s 77s 651s 534s 2135s 81s 2748s 56486s 42122s

ip+ChebyNet+op 23s 59s 497s 351s 1785s 52s 1889s 54361s 41566s
ip+GPRGNN+op 19s 33s 477s 314s 1676s 40s 1695s 54082s 41427s

ip+APPNP+op 19s 30s 474s 312s 1673s 39s 1693s 54072s 41405s
ip+JKNet+op 20s 23s 495s 288s 1620s 24s 1613s 53378s 41233s
ip+SAGE+op 22s 40s 481s 343s 1749s 43s 1868s 54785s 41798s

TABLE 4.6: Time requirement for different methods. PaRWalk is used in the interven-
tion methods.

trends are similar). We can see that, with the exception of GPRGNN and APPNP, the

accuracy is not significantly impacted by the number of layers. When moving from

layer 3 to layer 4, the accuracy of GPRGNN and APPNP suddenly decreases.

4.6.7 Sensitivity analysis

Certain parameters in both the PaRWalk and DeepWalk may have an impact on how

accurate our results are. In this section, we examine the effects of changing one param-

eter while holding the others constant. We conducted this study for the Cora, Citeseer,

and Pubmed networks (results for other networks give the same pattern but are not
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GNN model Networks

cora citeseer pubmed photo computer cora-ml arxiv product mag
Ba

se
lin

es

GCN 3s 5s 24s 36s 73s 5s 88s 32015s 1608s
GAT 35s 72s 207s 300s 601s 57s 626s 35393s 2551s

ChebyNet 15s 44s 51s 117s 248s 38s 261s 33265s 1987s
GPRGNN 9s 18s 38s 67s 147s 17s 166s 32965s 1843s

APPNP 9s 17s 37s 66s 147s 16s 163s 32958s 1839s
JKNet 8s 11s 64s 40s 85s 10s 93s 32329s 1679s
SAGE 9s 26s 46s 98s 187s 23s 253s 32768s 1983s

Random-sample 4s 6s 26s 38s 78s 6s 90s 32037s 1629s
TNA 8s 14s 50s 62s 156s 11s 95s 32048s 1641s

Hi-deg-Path 4s 8s 31s 46s 92s 9s 93s 32037s 1631s
Co-training 10s 13s 241s 131s 756s 11s 345s 33135s 2369s
Self-training 9s 18s 161s 86s 547s 10s 324s 33124s 2213s

Co-Self-union 15s 27s 347s 185s 922s 18s 548s 51567s 3516s
Co-Self-intersection 16s 27s 347s 185s 922s 18s 537s 51769s 3532s

In
pu

t
in

te
rv

en
ti

on

ip+GCN 8s 11s 213s 138s 683s 11s 1123s 49567s 38251s
ip+GAT 41s 78s 398s 401s 1201s 68s 1969s 52963s 31998s

ip+ChebyNet 21s 51s 246s 192s 854s 42s 1347s 50823s 38639s
ip+GPRGNN 14s 24s 229s 171s 776s 26s 1208s 50492s 38486s

ip+APPNP 15s 23s 227s 169s 774s 26s 1205s 50483s 38482s
ip+JKNet 13s 17s 254s 143s 702s 13s 1128s 49862s 38327s
ip+SAGE 16s 33s 246s 206s 805s 32s 1293s 50331s 38632s

O
ut

pu
t

in
te

rv
en

ti
on

GCN+op 5s 8s 202s 123s 608s 8s 921s 38127s 5632s
GAT+op 37s 74s 389s 385s 1133s 54s 1764s 41625s 6591s

ChebyNet+op 17s 47s 237s 174s 781s 41s 1144s 39395s 6042s
GPRGNN+op 10s 19s 217s 156s 699s 20s 1004s 39097s 5883s

APPNP+op 10s 19s 217s 154s 699s 20s 1002s 39085s 5875s
JKNet+op 9s 13s 245s 127s 625s 12s 922s 38484s 5021s
SAGE+op 13s 30s 227s 193s 725s 30s 1093s 38880s 6018s

Bo
th

in
te

rv
en

ti
on

ip+GCN+op 12s 16s 391s 230s 1221s 15s 1956s 55682s 42283s
ip+GAT+op 45s 80s 583s 486s 1743s 69s 3107s 59203s 36025s

ip+ChebyNet+op 25s 54s 435s 248s 1395s 52s 2230s 56967s 42698s
ip+GPRGNN+op 18s 28s 411s 293s 1346s 30s 2048s 56582s 42539s

ip+APPNP+op 18s 28s 408s 291s 1341s 30s 2044s 56571s 42522s
ip+JKNet+op 17s 22s 439s 231s 1249s 17s 1959s 56029s 41713s
ip+SAGE+op 23s 38s 431s 307s 1361s 41s 2153s 56461s 42683s

TABLE 4.7: Time requirement for different input intervention methods. DeepWalk is
used in the intervention methods.
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FIGURE 4.7: Effects on the % accuracy (Y-axis) for different GNN models while varying the number of
layers in cora network. L: Number of hidden layers in the GNN. PaRWalk is used for input intervention.
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GCN+ip GAT+ip ChebyNet+ip GPRGNN+ip APPNP+ip JKNet+ip
20

40

60

69
62

67 68 69

53

69
61

65 67
63

49

68
60 63

34 34

45

65
60 61

28
23

43

L = 2 L = 3 L = 4 L = 5

FIGURE 4.8: Effects on the % accuracy (Y-axis) for different GNN models while varying the number of
layers in cora network. L: Number of hidden layers in the GNN. DeepWalk is used for input intervention.

shown for brevity). We chose the GCN model specifically because it is the fastest of

all, and we only look into the input level intervention for both of these random walk

methods.

Tuning PaRWalk’s parameters The absorption probability α is the only parameter in

ParWalk. We adjust it to 10 values ranging from 10−6 to 10−1 and plot the outcomes

in Figure 4.9. As can be seen, the accuracy barely changes as α is raised from 10−6 to

10−1. According to this finding, the GCN’s accuracy is not overly sensitive to absorp-

tion probability.

Tuning DeepWalk’s parameters: The DeepWalk method has a set of crucial parame-

ters, including (i) window size (WS), (ii) walks per node (WP), and (iii) walk length

(WL). The accuracy of the GCN is shown in Figure 4.10 as various tuning parameters

are applied. Figure 4.10(a) shows that as we gradually increase the window size while

keeping walks per node at 1 and walk length at 2, the accuracy gradually improves.

The accuracy in Figure 4.10(b) first abruptly rises and then stabilises as the number of

walks per node rises from 1, while the other two parameters are held constant at 2. The

trends in Figure 4.10(c) are similar to those in Figure 4.10(b) (other parameters are kept

at 2 and 1 for window size and walks per node, respectively). The accuracy quickly

stabilises for all the parameters, indicating that the random walk has converged, and

any modification to the node embeddings after this point is extremely unlikely.

4.7 Discussion

In this chapter, we proposed two approaches: input-level and output-level interven-

tions to improve the classification accuracy of GNN. By carefully choosing nodes from
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FIGURE 4.10: Sensitivity analysis on DeepWalk by tuning various parameters while
performing input intervention. (a) Varying window size, while fixing walks per node
= 1 and walk length = 2. (b) Varying walks per node, while fixing window size = 2 and
walk length = 2. (c) Varying Walk length, while fixing window size = 2 and walks per

nodes = 1

various non-contiguous subgraphs, we add a set of additional training nodes of the

same class to the training set in the input intervention. To expand the training sets, we

employ different iterations of random walks or node embedding methods. To increase

the diversity of the nodes, we use K-means followed by K-NN. In the output inter-

vention, we apply a similar random walk or node embedding technique to find the

incorrectly labelled nodes and reclassify them using the nodes’ level of confidence. We

have used two methods (PaRWalk and DeepWalk) to agnostically expand the training

set in the input-level intervention as well as relabel the possibly incorrectly predicted

nodes of GNN in the output-level intervention technique.

When looking at the two different strategies, the intervention at the input level

works significantly better than the intervention at the output level. However, when

employed together, as one would anticipate, the combined procedures produce the

best outcomes.
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4.8 Conclusion

A graph neural network is a useful semi-supervised graph representational learning

tool. However, if it is trained with a small number of training nodes, its representa-

tional capacity goes down, which affects the downstream tasks (in our case, the node

classification). The problem with training nodes is that sometimes they are very diffi-

cult to obtain, and if we directly increase the number of training nodes, then it would

defeat the purpose of the semi-supervised approach. In this chapter, we address this

issue by proposing two novel methods: input-level intervention and output-level inter-

vention. In the input-level intervention, we discuss how the small number of training

nodes can be agnostically extended using random walks and machine learning tools.

In the output-level intervention, we discuss how the random walk can be used to post-

process the GNN’s output. The promising results obtained in this chapter makes sig-

nificant contributions and provides useful insights to the graph based deep learning

field.
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Chapter 5

Diagnosing ADHD disease using

complex network and its

representation

Chapter Summary: The functional magnetic resonance imaging (fMRI) data is used to

capture the activity of each brain region. The regions inside a human brain and the

relationships among them can be represented as a brain connectivity matrix, and this

matrix can further be modelled as a complex network. This chapter focuses on the use

of complex networks and their representation in the field of neuroscience, making a

valuable addition to this domain.

Here, we study how the complex network and its representation can be used to di-

agnose a neuro-developmental disease called Attention Deficit Hyperactivity Disorder

(ADHD). We have used various one-dimensional neural network models in our study.

We have shown that the choice of a particular atlas and connectivity matrix can affect

the classification results and, hence, the diagnosis.
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5.1 Introduction

Inattention, hyperactivity, and impulsivity are hallmarks of the prevalent brain disor-

der known as Attention Deficit Hyperactivity Disorder (ADHD) [416]. ADHD is typi-

cally present in children and often lasts into adulthood. According to a previous study,

30 to 50 percent of children with ADHD continue to experience symptoms as adults

[417]. It is essential to diagnose this condition as precisely as possible in order to pro-

vide paediatric patients with timely treatment.

The two primary classifications of the diagnosis of ADHD are symptomatologi-

cal [418] and neurobiological [419] diagnoses. In symptomatological diagnosis, patients

are continuously monitored, and some ratings are given based on different Hamilton

scales. Several technologies are used in neurobiological diagnostics to collect brain

data and identify diseases, including electroencephalography (EEG), positron emission

tomography (PET), magnetic resonance imaging (MRI), and functional magnetic reso-

nance imaging (fMRI) [420, 421]. The use of fMRI is seen as one of the most appropriate

methods for this diagnosis because it is non-invasive and has high spatial resolution.

Another factor contributing to its popularity is the fact that it uses the Blood Oxygen

Dependent (BOLD) signal [422], which can be used to detect functional connectivity be-

tween different brain regions and has been shown to produce better results than other

bio-signals [423, 424] like Amplitude of Low Frequency Fluctuation, Regional Homo-

geneity, etc. The result of fMRI is a series of 3D images taken over time, as opposed to

MRI data, which only produces a single 3D image. fMRI images are thus 4D data.

In this study, we use fMRI data to differentiate between controlled or cognitively

normal (CN) and ADHD using a neurobiological diagnosis. Here, we suggest a novel

method for diagnosing ADHD based on complex network and its representation.

We use functional connectivity between different brain regions to build a graph1. We

then develop a feature vector representation for that graph using various fundamental

properties of the graph, such as degree centrality [69], clustering coefficient [425], etc.

These constructed feature vectors are then fed into 1D-neural networks, such as 1D-

CNN [426], LSTM [427], and others.

1In appendix A, we discussed another way to use the functional connectivity matrix. We visualize the
connectivity matrix as an image and applied various 2D-neural network models to classify ADHD brain
networks with the controlled brain networks
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FIGURE 5.1: Workflow Diagram.

We have made use of fMRI data from the well-known ADHD-200 dataset that is

publicly available [428]. Data collection was followed by preprocessing for denoising.

In order to extract BOLD (timeseries) signals from various locations that are mapped by

that atlas, the preprocessed data is then mapped using the atlas. The time series gath-

ered are put to use to create functional connections (like correlations) between distinct

locations. Fig. 5.1 presents a thorough workflow.

5.2 Proposed Strategies

In this section, we discuss how the preprocessed ADHD data is used to generate the

features needed to effectively diagnose ADHD using some deep learning frameworks.

5.2.1 Time Series Generation

We took the preprocessed fMRI data and retrieved the BOLD signals (time series infor-

mation) from a number of different brain areas. The data obtained from the fMRI scan

do not include any information that pertains to the different brain regions. So, in order

to extract the time series from a number of different regions of the brain, it is necessary

to mask the fMRI data using a standard atlas. An atlas is a three-dimensional image

that has been labelled, and each of its voxels has been assigned a coordinate. Each

marker corresponds to a different region of the brain. In order to extract the time-series
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signal from a specific location, signals from all of the voxels in that region are gath-

ered, and then the average of those signals is used to generate a single signal from the

collected signals.

5.2.1.1 Generating Connectivity Matrix

The next step is to associate these time series across various parts of the brain using var-

ious connectivity measures (like Pearson correlation, partial correlation, etc.) to create a

connectivity matrix after the time series data for each region of the brain has been gener-

ated. In the field of neuroscience, a sort of representation known as a brain connectivity

matrix is used to depict the connections or interactions that take place between various

parts of the brain. The connectivity matrix contains a listing of all possible pairs of

brain areas, with a numerical value denoting the degree to which a link exists between

each such pair.

5.2.2 Diagnosing ADHD Using Deep Learning

Regardless of their direct connections, the brain areas’ functional linkages are included

in the connectivity matrix created in the previous section. This connectivity matrix was

put to use in this following way:

• Transform the functional connectivity matrix into a graph, then draw out some

key properties from the graph, and then feed these attributes as a feature vector

into the neural network model.

In this section, we will go into further detail regarding both of them.

5.2.2.1 Using complex network representation for diagnosis the ADHD

Since the generated connectivity matrix is symmetric, we can use it as a weighted net-

work or graph. Thus, the connectivity matrix is the adjacency matrix.

A = (aij) ∈ Rn×n
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where, aij ∈ R is the weight of the edge representing the connectivity of regions i and j.

Following this network generation, a number of significant attributes are calculated,

including degree centrality, closeness centrality, betweenness centrality, eigenvector

centrality, page rank, clustering coefficient, transitivity, local efficiency, and global ef-

ficiency.The issue now is that, aside from global efficiency, all of these properties are

node-based, meaning that we are receiving features for each node. Thus, we need to

convert the node-level information into network- or graph-level information in order

to categorise the graphs based on this information since our ultimate goal is to distin-

guish the ADHD fMRI data (or network) from the controlled fMRI data (or network).

For that, we take the average of the feature values. Formally, if F ∈ Rt represents the

feature vector of graph G, then,

F =
1
|V|

|V|

∑
i=1

fi

fi = ( fi1, fi2, ..., fi9) ∈ R9 is the feature vector of node i, where, fi1 is the degree cen-

trality for node i, fi2 is the closeness centrality for node i and so on... For the task of

classifying graphs (networks), these feature vectors are fed into a one-dimensional (1D)

neural network.

5.3 Data Collection and Prepossessing

5.3.1 Data collection

The present investigation employs a dataset sourced from the Neuro Bureau ADHD-

200 [428, 429] competition (conducted in 2011), which comprises resting-state fMRI (rs-

fMRI) data, anatomical images, and phenotypic information for each participant. This

dataset is a constituent of the 1000 Functional Connectomes project [430]. Samples

were obtained from the NeuroImaging Tools and Resources Collaboratory (NITRC),

which were donated by the Kennedy Krieger Institute (KKI), New York University

Medical Centre (NYU), NeuroIMAGE Sample (NI), and Peking University (PU). The

collected samples included both male and female subjects, and their corresponding in-

formation is presented in Table 5.1. The fMRIPrep software was utilised to preprocess

all of the samples, as stated in the reference [431].
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KKI NI NYU Peking
Number of subjects 74 27 181 70
ADHD/Controlled 21/53 13/14 106/75 30/40

TABLE 5.1: Class distributions for all the four datasets obtained from ADHD-200 Chal-
lenge [428]

5.3.2 Data Preprocessing

In the data processing step, we have used fMRIPrep [431] to preprocess the data. It is

a Python-based, robust pre-processing tool. The raw fMRI images are converted into

a Brain Imaging Data Structure (BIDS) [432] format, and then the fMRIPrep is applied,

which uses a set of well-known softwares like FSL [433], AFNI [434], Free-surfer [435]

and ANTs [436] . The pre-processing steps we have applied with the help of fMRIPrep

are: (i) remove the first few brighter images; (ii) head motion correction [162], (iii)

slice time correction [164], (iv) distortion correction [166], (v) EPI to template space

registration [168]. All the details of these steps can be found in the literature survey ??.

5.4 Baselines

We used three deep-learning-based models as baselines: FCNet [355], 3D-CNN [357]

and Deep-fMRI [437].

• FCNet: FCNet directly captures functional connectivity from fMRI time-series

signals in raw form. The FCNet is made up of a fully connected network that

calculates the similarity between the extracted features in a Siamese architecture

and a convolutional neural network that extracts features from time-series inputs.

When paired with phenotypic data, the functional connectivity calculated by FC-

Net is used to categorise people as either neurotypicals or ADHD cases.

• 3D-CNN: Convolutions are performed with the use of a three-dimensional filter

by a 3D CNN to discover spatial patterns in the MRI’s features. In a 3D CNN, the

kernel can slide in all three dimensions, in contrast to a 2D CNN, where it can only

slide in two dimensions. They demonstrated that the information obtained from

fMRI data and that obtained from sMRI data are complementary to one another.



5.5. Hyper-parameter Settings and the Proposed Model 123

• Deep-fMRI: The time-series data are used as an input for the diagnosis by the

deep-fMRI technique. In order to extract the features from the specific time se-

ries, a neural network is used as a feature extractor and applied to each region

separately. The output of the feature extractor network is then input into a func-

tional connectivity network, which is comprised of a few different networks that

quantify similarity. Following this step, the output of the functional connectiv-

ity matrix is input into the classification network in order to complete the real

diagnosis of ADHD.

5.5 Hyper-parameter Settings and the Proposed Model

Optuna [395] was utilised for the purpose of automatic hyperparameter tuning. The

hyperparameter ranges utilised by Optuna for its tuning objective are presented in Ta-

ble 5.2.

Name methods/values
Optimizer Adam, RMSprop, SGD
Learning rate 10−5 to 10−1

weight Decay 5× 10−5 to 5× 10−1

Loss Function Negative Log-likelihood
Number of epochs 200

TABLE 5.2: The list of hyper-parameters used in Optuna. Optuna is a software frame-
work that offers automatic hyperparameter optimization.

5.5.1 Structure of the Proposed model (ADHDNet)

The ADHDNet model we have proposed comprises five layers in total, encompassing

both the input and output layers. The ADHDNet architecture comprises a neuron dis-

tribution of 9 for input, followed by 256, 1024, 512, 64, and 2 for output. The decision

class is denoted by the labels 0 and 1. The numerical value of zero is used to denote

a neurotypical individual, while the numerical value of one is used to denote an indi-

vidual diagnosed with ADHD. The cross-entropy function has been selected as the loss

function. The ADHDNet model exhibits a compact size of 3.15 MB and encompasses a

total of 822,978 parameters that can be trained. The objective behind the development

of ADHDNet was to design a concise model that possessed equitable non-linear map-

ping capabilities. The model’s architecture is depicted in Fig. 5.2. The covariate shift
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FIGURE 5.2: The architecture of the proposed model (ADHDNet). On each layer, we
have used batch normalization with dropout = 0.20. We used ReLU as the activation

function.

problem has been addressed by utilising ReLU and one-dimensional batch normalisa-

tion at each layer. Batch normalisation is used to transform intermediate inputs into a

standard normal distribution.

5.6 Results

The accuracy of the graph-based approach is presented in Table 5.3. Bold typefaces

highlight information with the maximum accuracy. The results indicate that the em-

ployment of 1D-CNN with an MSDL atlas with Pearson correlation yields the highest

level of accuracy across all universities (KKI, NYU, NI, and Peking). The use of the

Smith atlas on the data gathered from NI University resulted in LSTM exhibiting the

least accuracy, amounting to 11.1%. Our custom made DNN gives comparable accu-

racy.

5.6.1 Comparisons with Baselines

The comparisons between our method and the baselines are presented in Table 5.4. As

can be seen, our proposed method provides the highest level of accuracy for Peking

and KKI.

5.6.2 Observations and Explanations

The precision of the categorization fluctuates and is contingent upon the selection of a

specific atlas, functional connectivity matrix, and model.

One plausible explanation for the first observation could be attributed to the vari-

ations in the generated graph as we modify the atlas or connectivity measure. Alter-

ations to the atlas lead to modifications in the quantity of regions, which subsequently
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University Atlas Connectivity matrix Models
1D-CNN LSTM ADHDNet

KKI MSDL CORR 89.65 88.29 89.63
PAR-CORR 89.65 88.21 89.61

Smith CORR 61.00 61.50 61.00
PAR-CORR 61.00 62.30 61.20

Allen CORR 64.20 64.30 64.22
PAR-CORR 63.10 63.20 63.11

Harvard-Oxford CORR 61.00 62.10 62.21
PAR-CORR 61.00 60.22 64.30

BASC-64 CORR 72.40 73.33 72.22
PAR-CORR 73.10 72.36 71.42

BASC-444 CORR 71.54 72.42 72.52
PAR-CORR 73.31 72.36 71.42

NYU MSDL CORR 73.50 62.50 73.43
PAR-CORR 65.00 60.20 61.33

Smith CORR 61.20 61.25 49.22
PAR-CORR 63.20 62.25 47.22

Allen CORR 57.24 57.23 47.20
PAR-CORR 58.33 59.45 47.21

Harvard-Oxford CORR 59.60 57.30 28.20
PAR-CORR 61.62 58.30 31.20

BASC-64 CORR 61.11 52.27 54.90
PAR-CORR 62.40 47.72 65.40

BASC-444 CORR 57.14 52.30 45.80
PAR-CORR 56.80 47.72 44.70

NI MSDL CORR 81.81 81.25 80.12
PAR-CORR 86.36 81.81 86.26

Smith CORR 77.00 74.70 22.22
PAR-CORR 44.00 11.10 25.90

Allen CORR 68.00 58.40 54.80
PAR-CORR 61.50 62.30 50.14

Harvard-Oxford CORR 63.40 60.50 66.67
PAR-CORR 60.20 58.90 52.70

BASC-64 CORR 81.81 50.00 66.60
PAR-CORR 76.40 48.90 50.00

BASC-444 CORR 78.90 50.00 50.00
PAR-CORR 74.20 50.00 48.20

Peking MSDL CORR 87.50 75.00 70.80
PAR-CORR 83.33 72.00 70.80

Smith CORR 79.10 63.26 66.67
PAR-CORR 84.56 61.54 65.34

Allen CORR 75.00 73.10 74.20
PAR-CORR 71.00 72.60 72.21

Harvard-Oxford CORR 64.00 63.50 61.50
PAR-CORR 62.00 62.22 63.20

BASC-64 CORR 56.60 48.20 48.20
PAR-CORR 52.30 48.20 51.76

BASC-444 CORR 55.14 51.80 51.70
PAR-CORR 55.14 50.20 48.23

TABLE 5.3: Accuracy in Graph-based approach. We have used four datasets (universities). For each
dataset, six atlases are used and for each of the atlases, two type of connectivity matrices are used. We
also compared three 1D models: 1D-CNN, LSTM and the proposed ADHDNet. CORR stands for Pearson-

correlation and PAR-CORR stands for Partial-correlation

affect the number of nodes in a network. A modification in the measure of connec-

tivity leads to alterations in the strength of associations among various regions. This

subsequently results in changes in the number or value of edges in the network.
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NYU Peking KKI NI
Deep Learning

FCNet [355] (2017) 58.50 68.70 - 60.00
3D-CNN [357] (2017) 71.50 - 72.80 -

Deep fMRI [437] (2018) 73.10 62.70 - 67.90
Proposed Method (Best Accuracy) 73.50 87.50 89.65 86.36

TABLE 5.4: Accuracy comparison with baselines (%).

5.7 Discussion

In this chapter, we have used a complex network-based approaches—to classify the

ADHD patients with controlled or cognitively normal (CN) people. We converted the

connectivity matrix to a network and generated hand-crafted or automated features

(a representation of the network). Then we applied several 1-D neural networks (1D-

CNN, LSTM, and ADHDNet) for the classification task. In addition, we have used six

different atlases and two different connectivity measures in this study.

5.8 Conclusion

The activity of each region of the brain is recorded using the functional magnetic res-

onance imaging (fMRI) data. A brain connectivity matrix, which can be modelled as

a complex network, can depict the areas inside a human brain and the connections

between them. This chapter contributes to the study of computational neurology by

discussing how complex networks are used in the field of clinical diagnosis. Here, we

propose a methodology showing how attention deficit hyperactivity disorder (ADHD)

diagnosis can be successfully made using a complex network and its representations.

In this investigation, we used a variety of one-dimensional neural network models.

We have demonstrated how the classification outcomes and, consequently, the diagno-

sis can be significantly impacted by the selection of atlas and functional connectivity

measures.

In the next chapter we shall discuss another important disease called Alzheimer’s

disease (AD). Unlike ADHD which is a neurodevelopmental disease, AD is a neurode-

generative disease. Thus, instead of AD classification we address another equally, if

not more, challenging problem of progression of healthy brain towards AD by using

complex network, their representation, and network manipulation.



Chapter 6

Investigating the Progression of the

Brain Network: from a Healthy

Brain to Alzheimer’s Disease

Chapter Summary: In the previous chapter, we spoke about how to use a complex net-

work and its representation to diagnose a neurodevelopmental brain disease called At-

tention Deficit Hyperactivity Disorder (ADHD). In this chapter we make another con-

tribution to the field of neuroscience by studying another disease called Alzheimer’s

disease (AD). Since AD is a neurodegenerative disease, therefore instead of diagnos-

ing, it is an equally challenging task to study the progression of healthy brain towards

AD. Similar to the previous chapter a complex network is used to model the regions

and their relationships in a brain. With the help of this complex network we build

a mathematical model that combines both the anatomical and topological similarity

between two brain regions to capture a hidden relationship among all pairs of brain re-

gions to track how a real healthy control (HC) brain network progress towards the AD

network. In other words the model generates a synthetic AD brain network from the

real healthy control (HC) brain network by manipulating the HC network. To compute

the anatomical similarity between two brain regions we make use of the euclidean dis-

tance between them and while calculating the topological similarity we make use of the

network representation (network embeddings) of the nodes in the HC brain network.
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Finally, we use several network properties to compare the synthetic brain network with

the real brain network.

6.1 Introduction

Alzheimer’s disease (AD) is the most common kind of neurodegenerative brain illness

and is one of the more severe forms of dementia that affects elderly people [438]. Indi-

viduals with Alzheimer’s disease exhibit signs of decreased memory, speech, analytical

thinking, and other important cognitive skills that negatively impact a person’s ability

to carry out their day-to-day activities. This impairment develops as a result of the bro-

ken functional links that exist between the regions of the brain, which inhibit the typical

information processing activities [439, 48]. It is hard to determine why the functional

connections in the brain networks of people with Alzheimer’s disease change com-

pared to those of healthy people [440, 441]. Investigating the reason of this alternation

of connection would be very significant and beneficial for gaining a better understand-

ing of the many interactions that take place between different parts of a patient’s brain

and a healthy brain. By examining these changed interactions in the brain’s networks

would also help in the early detection and early therapy of Alzheimer’s disease.

Many studies have also shown that changes in the structural and functional link

pairs are widespread in Alzheimer’s disease (AD) [442, 443]. In recent research, the

technique of resting-state functional magnetic resonance imaging, also known as rs-

fMRI, has been used to evaluate the progression of Alzheimer’s Disease [444, 445]. It

measures the temporal correlation of spontaneous blood oxygenation level-dependent

(BOLD) signals in various parts of the brain. Studies [318] were done to find out how

the functions of these different parts of the brain change as Alzheimer’s disease (AD)

gets worse. So, graph or network analysis [446, 46] is a better way to understand the

structure of a network. It shows that AD patients’ brain networks have strange patterns

of functional connectivity organisation.

Network modelling is becoming more popular in the field of network neuroscience.

It is used to model or simulate real brain networks [382, 383, 384]. One of the most

important parts of network modelling is making a synthetic target brain network from
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a real source brain network 1. With the help of this generating process, one can sim-

ply determine the shifts that have taken place in the connection patterns between the

nodes that make up the brain network. The real and synthetic target brain networks

should have as many similarities as possible in order to achieve the highest level of

accuracy in capturing the underlying connection patterns. To construct synthetic brain

networks, the most recent methods [382, 383] of network modelling take into account

both the anatomical distance (Eucledian distance) of the brain areas and the topological

properties of the network nodes.

When topological features are computed based solely on local properties, there is

a possibility that they will miss capturing some critical information contained within

the entire network. This, in turn, will result in a model that is less accurate. In this

thesis, we have used common node embedding techniques for computing topologi-

cal characteristics in order to more accurately capture the global structural information

of a network and get around this problem. As a result, for the purpose of comput-

ing the embedded topological properties of a network, we have utilised two distinct

types of methodologies, namely (i) methods that are based on random walks and (ii)

methods that are based on graph neural network (GNN) techniques. In this thesis, a

new method for simulating and capturing the topological changes in a brain network

as it goes from HC to AD2 is proposed. In order to produce the connection probabil-

ity for the simulation of real-brain networks, the model that has been proposed and

referred to as NeuroANATOP combines the anatomical information with embedded

topological information of the brain. In addition, the thesis discusses the pattern of

change that occurs in a number of significant topological properties as they are applied

to generated real-brain networks. These topological properties include the clustering

coefficient, average path length, global efficiency, local efficiency, rich-club coefficient,

and modularity. So, the primary goal of this research is to establish a method for the

development of synthetic brain networks that have topological qualities that are com-

parable to those seen in brain networks that exist in the physical world.

Thus, the study in this chapter can be summarized as follows:

1With fMRI data, the real brain network can be generated. Inside the network, the “nodes” are the
different regions of the brain, and the “edges” between the “nodes” are the connections between the
various regions of the brain.

2In Appendix B, we showed the simulation of Mild Cognitive Impairment (MCI) brain network. MCI
is a stage in between HC and AD.
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FIGURE 6.1: Generation of synthetic AD brain network from real HC brain network.

First, we Pre-processed all the raw fMRI data. Then, we masked the fMRI data with

an atlas to identify the set of required regions of interest (ROIs) in the brain. Using

the pre-processed real HC and AD fMRI data and the identified ROIs, we constructed

actual HC and AD brain networks. After that, we used well-known node embedding

methods to calculate the embedded topological similarity between nodes in the brain

network. We then used the conventional Euclidean distance (ED) measure to determine

how two nodes or ROIs are anatomically similar. Then the embedded topological and

anatomical similarities are combined to generate the connection probability between

nodes in a network. Using the resulting connection probabilities between nodes, we

simulated the true AD brain network from HC. Finally, we analyzed the differences in

topology and/or structure between real and simulated brain networks.

Fig. 6.1 shows the whole flowchart of the procedure for creating an AD brain net-

work from a real HC brain network.

6.2 Proposed Strategies

In this section, we discuss the following things: (i) generation of a real brain network

from the three-dimensional atlas and four-dimensional rs-fMRI data; and (ii) a frame-

work for simulating the real AD brain network.
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6.2.1 Generation of the real brain networks

An atlas that gives a unique brain area representing a node in the brain network is

required in order to generate or construct a brain network based on the results of an

rs-fMRI scan. In this study, we have used the Automated Anatomical Atlas (AAL)

[447] to generate the brain network. The AAL atlas has 116 regions of interest (ROIs)

representing the nodes in the network. Steps for generating the brain network include:

• First, using the AAL atlas, the 116 number of regions are masked, and for each

region, average time series data is captured. This time series data is nothing but

the BOLD (blood oxygen level-dependent) signal.

• Then, for each time-series generated, a pairwise pearson correlation is calculated,

and a 116× 116 matrix representing the pairwise correlation is generated.

• After that, we applied Fisher’s r-to-z transformation [448] to this correlation ma-

trix to convert the highly skewed distribution of the correlation coefficients into

normal distributions with a stable variance.

• Then, the mean correlation matrix is created for each group HC and AD, by tak-

ing the average of the correlation matrices that are associated with each group.

• We then apply a threshold th to the mean correlation matrix of each group and

generate a binary matrix. This binary matrix is a symmetric matrix. Thus, it can

be thought of as an adjacency matrix. We take the value of the threshold th = 0.5.

When the corresponding correlation coefficient in the average correlation matrix

is higher than the threshold, the entries of the binary correlation matrix become

1, and when it is lower than the threshold, we replace it with 0.

• Finally, the adjacency matrix of each group’s (HC and AD) represents a different

network or graph GHC
avg and GAD

avg respectively.

6.2.2 Generation of the synthetic brain networks

After the generation of the real brain networks, the next task is to generate the synthetic

brain networks for the AD (GAD
syn ) group by applying a generative model to the GHC

avg

- which is the real brain network of the HC group. Algorithm 8 provides a general
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technique for creating synthetic brain networks from a genuine brain network. The

comments’ typefaces are highlighted in brown to help comprehend the algorithm.

Algorithm 8: Synthesizing AD networks from real HC network

Input : GHC
avg : Real HC brain networks, MAD

add , MAD
del : number of edges to be

added and deleted respectively to generate synthetic AD brain
network from real HC brain network, a set of coordinates C
representing the location of the brain regions, parameters k1 and k2.

Output: GAD
syn : Synthetic AD brain network.

/* Generate all pair anatomical similarity matrix */
1 EDSall ← getAllPairAS(C); Step 1;
/* Generate all pair topological similarity matrix */

2 TPSall ← getAllPairTS(GHC
avg); Step 2;

/* Generate all pair connection probability matrix */
3 Pcon_all ← getAllPairCP(TPSall , EDSall , k1, k2); Step 3;
/* Generate synthetic AD networks. Starting from GHC

avg, this
process iteratively add/delete edges to/from GHC

avg using the
connection probability Pcon_all until MAD

add number of edges added
and MAD

del number of edges deleted. */
4 c1 ← 0, c2 ← 0; Step 4;
5 while NOT (c1 ≥ MAD

add AND c2 ≥ MAD
del ) do

6 r ← genRandNum(0, 1) ;
7 if r ≥ 0.5 then

/* Select a pair having no edge and maximum connection
probability */

8 (u, v)← getNoEdgeMaxConnProb(GHC
avg , Pcon_all) ;

/* add an edge between these nodes */
9 GHC

avg(VHC, EHC)← GHC
avg(VHC, EHC ∪ (u, v));

10 c1 ← c1 + 1;
11 else

/* Select a pair having an edge and minimum connection
probability */

12 (u, v)← getEdgeMinConnProb(GHC
avg , Pcon_all) ;

/* Delete an edge between these nodes */
13 GHC

avg(VHC, EHC)← GHC
avg(VHC, EHC − {(u, v)});

14 c2 ← c2 + 1;

/* Return the synthetic brain network */
15 GAD

syn ← GHC
avg ; Step 5;

16 return GAD
syn ;

The explanation of the Algorithm 8 is provided in the following:

Inputs to the Algorithm.
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• GHC
avg : A real brain network of the HC group. VHC is the set of nodes and EHC is

the set of edges.

• MAD
add : The number of edges that need to be added in the real HC brain network

GHC
avg to generate a synthetic AD brain network GAD

syn . It is the number of edges

present in the real AD brain network GAD
avg but absent in GHC

avg .

• MAD
del : The number of edges that need to be deleted in the real HC brain network

GHC
avg to generate a synthetic AD brain network GAD

syn . It is the number of edges

absent in GAD
avg but present in GHC

avg .

• C: A set of coordinates {c1, c2, ..., cn} in the MNI space for each region inside a

brain.

• k1 and k2: Preferential parameters corresponding to topological similarity and

connection probabilities respectively.

The term Gx
avg is the real brain networks generated using the binary correlation ma-

trices ADJx
avg where x ∈ {HC, AD}.

Step 1: Computation of anatomical similarity (ANS). In order to determine the degree

of anatomical similarity (ANS) that exists between two regions of a brain, we compute

the anatomical distance (AND). Formally,

ANS =
1

AND

The anatomical similarity (ANS) for all the node pairs (ANSall) is computed to gener-

ate the connection probabilities for simulation purposes. Over the entirety of the ex-

periment, we computed the anatomical similarity (Euclidean similarity, EDS) between

areas in a brain by using the conventional Euclidean distance, (ED) as the anatomical

distance. The value that is returned by the EDSall function is a representation of the

Euclidean similarity between every pair of nodes in a network.

Step 2: Computation of topological similarity (TPS). To compare the structural simi-

larity of two nodes in a network, the topological similarity between them is compared.

Calculating the topological similarity between two nodes in a network often involves
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computing their common neighbours. Nevertheless, this does not always succeed in

capturing the global properties of a node in a network. To overcome the problem, node

embedding into the vector space is necessary to retain the global characteristics. There

are various node embedding techniques described in the literature. In this thesis, we

used several random walk based (e.g., DeepWalk (DW) [41], Node2Vec (N2V) [105],

etc.) and GNN based (Graph Convolutional Neural Network (GCN) [43], Graph SAm-

ple and aggreGatE (SAGE) [113], etc.) node embedding techniques in our investigation.

By computing the cosine distance similarity between these embedded feature vectors,

the topological similarity for all pairs of nodes TPSall are determined.

Step 3: Computation of Connection probability. Using TPSall , EDSall , k1 and k2, the

connection probability PCN
con_all for all pairs of nodes is generated. In Section 6.3, we dis-

cuss this computation in more detail.

Step 4: Generation of synthetic network. Utilising the generated connection probabil-

ities and the aforementioned edge differences, the synthetic graph GAD
syn from GHC

avg are

generated. In the genRandNum method (in Algorithm 8), a random real number r is

generated between 0 and 1. Then,

• If r is greater than or equal to 0.5 then a pair of nodes is chosen such that there

is no edge exist between them and the connection probability is maximum. Then

an edge is added between them.

• Else, an edge with the minimum connection probability in GHC
avg is chosen and

deleted.

The above steps will continue until the number of deleted edges becomes MAD
del and the

number of added edges becomes MAD
add .

Step 5: Returning the synthetic network. Finally, the modified HC network is the

synthetic AD network and this synthetic network is returned.

Fig. 6.2(b) shows the generated synthetic Alzheimer’s disease (AD) brain network

(GAD
syn ) from real or true healthy control (HC) brain network (GHC

avg).
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FIGURE 6.2: Three networks: (a) represents the real HC network (GHC
avg ); (b) represents

the synthetic AD network (GAD
syn ) generated from HC network using the N2V embed-

ding technique; (c) represents the real or true AD brain network (GAD
avg ). From these

figures, it is evident that the proposed constructed GAD
syn network closely resembles the

GAD
avg network.

6.3 Calculation of connection probabilities

In the earlier part of this chapter, we came to the conclusion that connection probabil-

ities are required in order to derive the synthetic brain network GAD
syn from the actual

brain network GHC
avg . It is necessary to make a prediction regarding whether or not

there ought to be a link between a couple of nodes. To put it another way, by utilising

these probabilities of connection, we are able to capture the formation pattern of these

synthetic networks. In the context of a brain network, the computation of connection

probability was initially proposed in [382]. They integrate the common neighbour

similarity (CNS) (by taking the number of common neighbours) as the topological sim-

ilarity and the Euclidean similarity (EDS) (by taking the inverse Euclidean distance) as

the anatomical similarity in their model, which we will refer to as CN. This allows them

to calculate the connection probability for a pair of nodes (u, v) in a network using the

formula below:

PCN
con (u, v) = CNS(u, v)k1.EDS(u, v)k2 (6.3.1)

where k1 and k2 are the two preferential parameters of the aforementioned equa-

tion, which are determined from the data.

Problem of CN. Although CN is a straightforward model, it only accounts for the

node’s local characteristics, which might not be universal across the network. As a re-

sult, we need to come up with a different method for identifying a node’s distinctive
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characteristics in a network. When creating synthetic AD brain network, a better con-

nection probability can be calculated using this special property of nodes.

Proposed solution to the problem of CN. One method for displaying the distinctive

qualities of individual network nodes is to vectorize each node individually. Calculat-

ing the cosine distance similarity between the node pair (u, v) allows one to gauge how

similar they are topologically. In this approach, the unique qualities of each node are

properly preserved, and topological similarity is increased more than when the quan-

tity of shared neighbours is used. Thus, our goal is to present a novel version of the

conventional CN model that takes into account the embedded similarity (EBS(u, v))

as a topological similarity (TPS) and the Euclidean similarity (EDS) as the anatomical

similarity (ANS) between two nodes u and v.

In this manner, the updated version of the CN model may offer a better connection

probability between nodes u and v, which will be helpful in modelling the impairments

that occur when HC progresses to AD.

Formally, the connection probability between nodes u and v can be determined by:

Pemb
con (u, v) = TPS(u, v)k1.ANS(u, v)k2

or, equivalently,

Pemb
con (u, v) = EBS(u, v)k1.EDS(u, v)k2 (6.3.2)

k1 and k2 are two preferential parameters. By employing simulated annealing [449]

to optimise the performance measure, the ideal values of k1 and k2 are discovered.

Motivation behind the proposed solution. Anatomical distance between any pair of

regions was taken into consideration in earlier research by Kaiser et al. [450, 451] to de-

termine connection probabilities between them. Kaiser et al. used an exponential decay

model with a penalization parameter to simulate real-brain networks. They discovered

that these simulation models, in terms of global efficiency, local efficiency, clustering co-

efficient, etc., did not correctly match the real-brain networks. As a result, it seems that

just penalising connection probability based on anatomical distance won’t be enough
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to accurately mimic the topological characteristics of functional networks in human

brains. In order to better synthesize the real-brain network structure, there must be

some sort of link, or trade-off, between distance penalization and one or more other

factors.

We examined embedded topological similarity and combined it with anatomical

similarity in order to maintain the balance or trade-off. According to Eqn.6.3.2, the pref-

erential parameters (k1 and k2) help to optimise the connection probability. The best-

fitting of these connection probability models included a power-law based anatomical

similarity preference as well as a power-law function of a topological similarity term.

According to the empirical results, real-brain network modelling is more accurate when

this two-parameter connection probability model with trade-off is used.

Construction of the proposed variants. To compute the various embedded similari-

ties, we make use of a variety of node embedding techniques, including three distinct

methods that are based on random walks and four distinct methods that are based on

well-known neural network algorithms. The various embedded similarities each pro-

vide their own set of connection probabilities. The descriptions of these models are

provided in table 6.1.

The feature vector that corresponds to a node v is constructed for each of these mod-

els by first taking a vector F with the same length as the number of nodes in the net-

workand setting all of its entries to zero. Next, one adds a 1 to the index u of F if the

node u is adjacent to v. Using the well-known Infomap [30] community detection tech-

nique leads to the determination of the number of communities, which in turn leads to

the assignment of the class number for the network. Each community is given a class

label, with the first one starting at zero. In accordance with this, the GNNs are trained

by selecting 10% of the nodes from each class to serve as the training nodes, and ulti-

mately, the embedding vectors are obtained from the hidden layer that is next to the

last one.

As a result, each node u of the real brain networks GHC
avg for HC has a vector repre-

sentation u⃗emb. After that, the topological similarity between two nodes, u and v, in a

real brain network is determined by calculating their cosine distance in the embedded

space.
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Embedding
methods

Type Descriptions

DeepWalk
(DW) [41]

Random
walk

In order to provide insights into the localised struc-
tures that are present inside networks, it employs
a technique called randomised path traversal. This
is accomplished by the utilisation of these random
pathways as sequences, which are subsequently put
to use in the process of training a Skip-Gram lan-
guage model [452].

Node2vec
(N2V) [105]

Random
walk

The learning of the vector representation of a net-
work’s nodes is the goal of the node2vec algorithm,
which does this by maximising a neighborhood-
preserving objective function. It is an expansion of
the popular DeepWalk node embedding technique,
and it is composed of the well-known state-of-the-art
word embedding algorithm word2vec [336].

LINE [106] Random
walk

LINE achieves its results by optimising an objective
function in such a way that it maintains both the
global and local network structures.

ChebyNet [126] Deep
Learning

ChebyNet is a spectral-based Graph Convolutional
Network that utilises a fast localised convolutional
filter on networks as its foundation.

GCN [43] Deep
Learning

GCN is a linear approximation of Spectral-based
Graph Convolutional Networks.

Graph
SAGE [113]

Deep
Learning

Graph SAGE relies mostly on inductive learning for
its classification of nodes; however, it also functions
in a transductive environment.

GAT [44] Deep
Learning

GAT is put into action by applying varying weights,
or values, to the individual nodes that make up a
neighbourhood.

TABLE 6.1: List of embedding methods.

EBS(u, v) =
u⃗emb .⃗vemb

||u⃗emb||.||⃗vemb||

In conclusion, the following equation can be used to define the proposed connection

probability between two nodes u and v in a real brain network.

Pemb
con (u, v) =

(
u⃗emb .⃗vemb

||u⃗emb||.||⃗vemb||

)k1

. EDS(u, v)k2 (6.3.3)

The proposed approach, as well as the recommended connection probability that

was defined earlier, can be altered by incorporating a variety of different embedding



6.4. Data Collection and Prepossessing 139

stat HC AD
Number 62 63

Male/Female 27/35 31/32
Average age 73.78 75.11

Average weight 72.45 74.57

TABLE 6.2: Structural statistics of participants belonging to healthy controls (HC)
group and Alzheimer’s disease (AD) group.

techniques.

We have termed the respective proposed variants as PVi, i ∈ {1, 2, ..., 7} which cor-

responds to the various embedding methods, namely DW, N2V, LINE, GCN, SAGE,

ChebyNet, and GAT, respectively.

6.4 Data Collection and Prepossessing

6.4.1 Data collection

We have compiled the fMRI datasets, which include 125 participants. The metadata for

these participants is accessible to the public and can be downloaded from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) repository. The ADNI repository can be ac-

cessed at the following URL: http://adni.loni.ucla.edu. Following the download-

ing of the data, we separated all of the participants into two groups: those with healthy

controls (HC) and those with Alzheimer’s disease (AD). Table 6.2 provides an illus-

tration of the specifics of the clinical characteristics that differ between each of these

groups.

6.4.2 Data preprocessing

As already discussed in section 2.1.13, the raw fMRI data needs to be processed to re-

move several artifacts. These preprocessing includes: distortion correction [167], head

motion correction [163], slice-timing correction [165] and spatial smoothing [176]. De-

tails of these steps can be found in section 2.1.13. Here, we have used Data Processing

Assistant for Resting-State fMRI (DPARSF) software for the preprocessing the fMRI

data.

http://adni.loni.ucla.edu
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6.4.3 Time series generation

We extracted the BOLD signals (time series data) from numerous distinct brain regions

using the preprocessed fMRI data. There is no information about the various brain ar-

eas in the fMRI scan data that was collected. Therefore, the fMRI data must be masked

using a standard atlas in order to extract the time series from a variety of distinct brain

areas. In this study, we built the brain networks using the automated anatomical atlas

(AAL). This atlas has 116 regions of interest (ROIs).

6.5 Results

6.5.1 Comparing real brain networks: GHC
avg and GAD

avg

The present study conducts a comparative analysis of the topological properties of the

actual brain networks GHC
avg and GAD

avg , as illustrated in Fig. 6.3. Six topological proper-

ties, namely clustering coefficient, modularity, transitivity, local efficiency, global effi-

ciency, and rich club index, are utilised. The figure displays three distinct groups. As

depicted on the left of FIGURE 6.3 displays a set of bars that have been plotted to rep-

resent GHC
avg , while the right figure corresponds to GAD

avg . The results indicate that there is

an increase in local efficiency, modularity, and global efficiency as the group transitions

from HC to AD. Conversely, the three remaining topological properties, namely aver-

age clustering coefficient, transitivity, and rich club coefficient, exhibit a decrease in the

same direction. The aforementioned results indicate that HC and AD exhibit distinct

topological characteristics.

HC AD
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FIGURE 6.3: Comparison of various topological properties among the real brain net-
works of healthy control (HC) and Alzheimer’s disease (AD) group.
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6.5.2 Simulation performance of the proposed variants

Within this section, an assessment is conducted on the efficacy of the proposed net-

work generative model, referred to as NeuroANATOP, as well as other competitive

models. This is achieved through a comparison of the synthetic networks generated by

these models with the actual brain network. As previously stated, the six crucial topo-

logical properties were utilised in this assessment. The baselines employ comparable

methodology, with the exception of the aspect of topological similarity, as indicated in

Table 6.3. Furthermore, apart from the aforementioned baselines, we have incorporated

a random model in which edges are added or removed in a random manner, in contrast

to the other models. The values of k1 and k2 were assigned as 20 and 8, respectively,

to produce the empirical outcomes of all the competitive models. The aforementioned

values were acquired through the implementation of simulated annealing on MSI (see

section 6.5.3). The parameters were held constant across all networks: The GNN em-

ploys a total of two layers. The hyperparameters for the training process include a

learning rate of 0.001 and a total of 200 epochs.

Models Mathematical Definitions
Common Neighbour (CN) [382] TS(u, v) = |N(u) ∩ N(v)|

Jaccard Index (JI) [313] TS(u, v) = |N(u)∩N(v)|
|N(u)∪N(v)|

Preferential Attachment (PA) [453] TS(u, v) = |N(u)|.|N(v)|
Resource Allocation (RA) [454] TS(u, v) = ∑y∈N(u)∩N(v)

1
|N(y)|

Adamic–Adar (AA) [455] TS(u, v) = ∑y∈N(u)∩N(v)
1

log|N(y)|

TABLE 6.3: Topological similarities in the baselines.

Comparing GAD
syn with GAD

avg . The bar plot depicted in Fig. 6.4a illustrates six signifi-

cant topological characteristics for various competitive models, including the random

model. The bar plot illustrating the topological features generated by the proposed

variants in comparison to the ground truth is presented in Fig. 6.4b. The leftmost

group of bars in Fig. 6.4a and 6.4b represent the ground truth. The results depicted

in Fig. 6.4b demonstrate that, for the majority of cases, the topological characteristics of

the proposed variants (PV2 (N2V) and PV7 (GAT)) closely resemble those observed in

the ground truth. Moreover, it can be observed from Fig. 6.4a that the proposed model

outperforms the other models, with RA being the second best performer and Random

exhibiting the poorest performance. Similarly, it can be observed that CN, J I, AA, and
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GT CN PA JI AA RA Random
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(a) real AD brain network (leftmost) vs synthetic AD brain networks produced by the baselines.
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(b) real AD brain network (leftmost) vs synthetic AD brain networks produced by the proposed variants.

FIGURE 6.4: Comparison of topological properties: real AD brain network (leftmost)
vs synthetic AD brain networks produced by the various models. GT: Ground Truth,
PV1: Deep Walk (DW), PV2: Node to Vec (N2V), PV3: Line Embedding (LINE),
PV4: Graph Convolutional Neural Network (GCN), PV5: GraphSAGE (SAGE), PV6:

ChebyNet (Cheb), PV7: Graph Attention Network (GAT).

RA exhibit comparable performance, albeit less efficacious in comparison to the pro-

posed approach. The performance of PA surpasses that of Random, however, it falls

short in certain cases when compared to other models that are considered competitive.

6.5.3 Model performance evaluation: Modified Similarity Index (MSI)

The Similarity Index (SI) [382, 383] was employed to assess the performance of our

study. The similarity index was adjusted by incorporating an additional value of 1 in

the denominator to prevent the occurrence of a zero value in the denominator. This

revised metric is denoted as MSI.

Formally it can be defined as:

MSI = 1/(1 + (ELE + EAC + ET + EM + EGE + ER)).

Six significant topological properties are incorporated to facilitate a rational and per-

suasive assessment. Ex denotes the relative error between real and synthetic brain net-

works corresponding to property x. The descriptions of the relative errors are provided
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in Table 6.4.

Notation Descriptions
ELE Relative error between real and synthetic brain networks

corresponding to the local efficiency.
EAC Relative error between real and synthetic brain networks

corresponding to the avg. clustering coefficient.
ET Relative error between real and synthetic brain networks

corresponding to the transitivity.
EM Relative error between real and synthetic brain networks

corresponding to the modularity.
EGE Relative error between real and synthetic brain networks

corresponding to the global efficiency.
ER Relative error between real and synthetic brain networks

corresponding to the rich club coefficient.

TABLE 6.4: Descriptions of the Errors.

Evaluating competitive models using MSI The relative errors of the topological prop-

erties of the synthetic networks generated and the ground truth network are presented

in Table 6.5. Furthermore, the MSI metric is calculated to distinctly distinguish the effi-

cacy of the suggested variations in contrast to alternative approaches. The MSI values

are presented in the final column of Table 6.5.

6.5.4 Degree Distribution

The distribution of degrees is a significant structural attribute that can be utilised to

capture changes in network structures during the progression of Alzheimer’s disease.

Comparing the degree distribution of the real brain networks and the synthetic brain

networks is essential to justifying the effectiveness of the proposed generative model.

Here, we generated the degree distributions of networks using a variety of competing

techniques, including the suggested variations, and we compared them to the distribu-

tions of the actual target networks. The experimental result shown in Fig. 6.5 demon-

strates that, when compared to the other baseline models, the degree distribution of the

synthetic networks produced by the suggested variants (Fig. 6.5b) closely resembles

the degree distribution of the target networks. The JI, AA, and RA methods all perform
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Models ELE EAC EGE EM ET ER MSI
CN 0.09 0.15 0.01 0.15 0.16 0.04 0.63
JI 0.10 0.15 0.05 0.17 0.0 0.06 0.65

PA 0.07 0.05 0.33 0.07 0.41 0.06 0.50
RA 0.01 0.15 0.03 0.13 0.06 0.04 0.70
AA 0.09 0.15 0.01 0.14 0.03 0.04 0.68
PV1 0.01 0.02 0.02 0.03 0.02 0.03 0.88
PV2 0.01 0.01 0.01 0.02 0.02 0.02 0.92
PV3 0.25 0.20 0.22 0.19 0.08 0.03 0.51
PV4 0.05 0.05 0.04 0.01 0.01 0.06 0.82
PV5 0.02 0.03 0.02 0.01 0.01 0.04 0.88
PV6 0.01 0.01 0.01 0.05 0.01 0.11 0.83
PV7 0.01 0.0 0.0 0.02 0.02 0.05 0.90

Random 0.31 0.25 0.16 0.19 0.12 0.06 0.47

TABLE 6.5: Comparison of MSI-values for all the models (baselines and our proposed
model). Larger MSI value indicate more similarity between the synthetic (AD) and
real (AD) brain networks. red cell indicates the worst performer, green cell indicates
the best performer and blue cell indicates the second best performer. CN: Common
Neighbor, PA: Preferential Attachment, JI: Jaccard Index, AA: Adamic–Adar, RA: Re-
source Allocation, PV1: Deep Walk (DW), PV2: Node to Vec (N2V), PV3: Line Embed-
ding (LINE), PV4: Graph Convolutional Neural Network (GCN), PV5: GraphSAGE

(SAGE), PV6: ChebyNet (Cheb), PV7: Graph Attention Network (GAT).

well and are close to the targeted network. PA and CN methods outperform the pro-

posed method and fail to reach the target networks. Thus, the empirical results support

the proposed generative model’s effectiveness in the progression of HC to AD.

6.5.5 Sensitivity of parameters k1 and k2 of the proposed ensemble model

While simulating the brain network, we examine how the preferential parameters k1

and k2 affect various topological features in this section. While simulating the AD

network, we have shown the effects of k1 and k2 on six topological features of real-

world complex networks that correspond to the proposed variant PV2 in Fig. 6.6. Since

the considered variant (PV2) offers greater performance compared to the competing

variants, we have provided the visual findings corresponding to the proposed variant

in Fig. 6.6. In Fig. 6.6a, we showed the changes in network properties while producing

GAD
syn from GHC

avg by raising k2 from 5 to 15 while maintaining the value of k1 at 20.

Fig. 6.6b shows the results of generating GAD
syn from GHC

avg , while altering k1 from 15 to 25

and maintaining k2 to 8.
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FIGURE 6.5: Comparing the complementary cumulative degree distribution of net-
works generated through various generative models. GT: Ground truth, CN: Common
Neighbor, PA: Preferential Attachment, JI: Jaccard Index, AA: Adamic–Adar, RA: Re-
source Allocation, PV1: Deep Walk (DW), PV2: Node to Vec (N2V), PV3: Line Embed-
ding (LINE), PV4: Graph Convolutional Neural Network (GCN), PV5: GraphSAGE

(SAGE), PV6: ChebyNet (Cheb), PV7: Graph Attention Network (GAT).
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FIGURE 6.6: Changes in various topological properties in the generated synthetic net-
works from the real brain network upon tuning the parameters k1 and k2. GHC

avg to GAD
syn

represents generation of synthetic network GAD
syn from GHC

avg

Observations: (i) local efficiency, average clustering coefficient, transitivity, modular-

ity, and global efficiency increase when we tune k2 while keeping k1 fixed; and (ii) local

efficiency, average clustering coefficient, transitivity, modularity, and global efficiency

decrease when we tune k1 while keeping k2 fixed. The empirical findings support the

sensitivity of the parameters k1 and k2 in replicating real brain networks for the AD.

We used optimized values of k1 and k2 obtained from simulated annealing throughout

the experiment.
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6.5.6 A case study of brain sub-regional simulation performance

Multiple brain areas or portions may be impacted over the course of Alzheimer’s dis-

ease, which may cause a reduction in daily activities. The deep temporal-cerebellar area

and the frontal brain are two of the most affected brain regions in people with AD, ac-

cording to authors [456, 457]. In this regard, we are investigating the network structural

alterations that take place in these two significant brain sub-regions as they advance

from HC to AD. Our goal is to determine whether the connection pattern seen in the

frontal and cerebellar subregions of the real AD network can be accurately simulated

by our suggested simulation model. Results from the experiment show that the pro-

posed model successfully created connections within each of the sub-regions, or to put

it another way, the suggested model successfully simulates the connectivity patterns in

each of the sub-regions observed in the actual AD networks. Figs 6.7(a) and 6.7(b) show

the axial views of the real and hypothetical simulated networks corresponding to the

frontal sub-regions of a brain. Coronal views of the real frontal sub-regional networks

and the simulated frontal sub-regional networks are depicted in Figs 6.7(c) and 6.7(d).

There are 18 nodes and 52 edges that make up the frontal network in the real AD

brain. In comparison, the frontal sub-region of the suggested simulated network in-

cludes 60 edges, eight more than the actual network, even though it has the same num-

ber of nodes (18 nodes).

As a result, it is clear from those figures that the suggested simulated frontal sub-

regional connection patterns closely correspond to the actual connectivity pattern of

the network seen in the frontal area of the real AD brain. Similar to this, the proposed

simulated model accurately reproduces the structural connectivity pattern seen in the

cerebellum sub-region of a real AD brain, as shown in sub-figures 6.8(a) and 6.8(b) that

show sagittal views and 6.8(c) and 6.8(d) that show coronal views, respectively.
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FIGURE 6.7: The axial views of the real and proposed simulated networks, corre-
sponding to the frontal sub-region of an AD brain network, are depicted in Figures (a)
and (b), respectively. The coronal views of the actual and proposed simulated frontal

sub-regional networks are shown in Figures (c) and (d).

FIGURE 6.8: The sagittal views of the real and proposed simulated networks, corre-
sponding to the cerebellum sub-region of an AD brain network, are depicted in Figures
(a) and (b), respectively. The coronal views of the actual and proposed simulated cere-

bellum sub-regional networks are shown in Figures (c) and (d).

6.6 Discussions

We proposed a variant of generative models that combines structural and functional

similarities to analyze the progression from Healthy Control (HC) to Alzheimer’s Dis-

ease (AD). Given a fMRI image, the structural or anatomical similarity has been mea-

sured using Euclidean distance, and the topological similarity is measured using the

distance in the embedded space by capturing the network representation. Additionally,

we concentrate on adding or removing links or connections between several significant

brain regions or places. Our goal is to identify a crucial connection mechanism that

helps brain networks transition from HC to AD. We have demonstrated that the em-

bedding structure and Euclidean distance can be combined to enhance the simulation

performance of the suggested variant model. The simulation outcomes show that node

embedding techniques have their own benefits in determining topological similarities

and may thus be helpful in simulating actual AD brain network. The experimental
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findings also point to the usefulness of the GNN models under consideration for com-

puting connection probability for simulating brain networks. Finally, we can draw the

conclusion that the suggested generative models may be helpful in accurately simulat-

ing the topological variations of brain networks when HC progresses to AD.

6.7 Conclusion

Alzheimer’s disease is a neurodegenerative disease that gradually impairs memory,

reasoning abilities, and, eventually, the capacity to do the most basic duties. Thus, it is

extremely important to study the progression of a healthy brain towards Alzheimer’s

disease to help neurologists understand the present condition of the brain. In this chap-

ter, we construct a mathematical model that explains how a healthy brain network can

be manipulated to generate a synthetic AD brain network and thus capture the pro-

gression of a healthy brain towards AD. Experimental evidences indicate that the pro-

posed NeuroAnatop model not only captures the progression of the Alzheimer’s brain

network, but also outperforms a number of competitive models. Therefore this research

represents a significant contribution towards the field of computational neurology with

the help of complex networks and their representation.



Chapter 7

Conclusions and Future Directions

Chapter Summary: In this final chapter, we sum up our conclusions by evaluating the

thesis’s contributions. Here, we talk about how these contributions could be able to

help with several open issues in three areas: communities in complex networks, graph-

based deep learning, and neuroscience. The thesis contains three parts, and each part

contributes to a particular area. Part - I contains only one chapter that contributes to

the communities in complex networks; Part - II also contains a single chapter that con-

tributes to graph-based deep learning; and the last part, i.e., Part - III, contains two

chapters where both chapters contribute to the neuroscience area in different ways.

We then go on to highlight some potential future study areas based on the approaches

given in this thesis. The highlighted future study options enhance the thesis’s contri-

butions in those aforementioned areas.

7.1 Conclusions

7.1.1 Communities in complex network

From social networks to biological networks, a wide range of real-world systems can

be represented as complex networks. Within a complex network, finding communities

has many uses, such as identifying a group of individuals participating in a specific

activity in a social network or identifying a collection of proteins that collectively con-

tribute to a particular bodily dysfunction, etc. How efficiently a certain parameter,
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such modularity or entropy, is optimised determines the characteristics of community

discovery methods. Since all of these optimisation issues are NP-Hard, the process be-

comes stochastic when the methods are approximated. Due to this stochastic nature,

community structures altered in each execution.

In Part - I, we discussed how we created algorithms that made use of both manual

and automated feature engineering (graph representations) on the network to tackle

this challenge and this contributed to this area. We came up with two novel techniques

as a result: unsupervised and semi-supervised. Inspired by the traditional histogram-

based image thresholding methodologies, where the foreground image can be demar-

cated from the background image, we employ the same histogram-based thresholding

methods to distinguish the constant community from the non-constant community in

our unsupervised approach. For the semi-supervised approach, the original network

was first converted to its corresponding line graph, and then, with the application of a

Graph Convolutional Neural Network (GCN) the nodes of the line graph were classi-

fied, which resulted in identifying the constant communities in the original network.

It is important to note that the constant community problem does not effectively

address the fundamental task of community detection, as it excludes numerous nodes

that tend to move between groups. These nodes are shared by communities and play a

crucial role in the system.

7.1.2 Graph based deep learning

Graph neural network (GNN) is a semi-supervised learning tool that requires only a

small amount of data that has been labelled as its training data. Experimental evidence

reveal that if the number of training data (nodes) is reduced then its representational

capacity goes down, which affects the downstream tasks (in our case, the node classi-

fication accuracy drastically dropped). The issue with training nodes is that it can be

very challenging to acquire them at times. If we were to directly increase the amount

of training nodes, it would be counterproductive to use a semi-supervised approach

because it would negate the point of using it.

In Part II, we address this challenge by increasing the training nodes indirectly. We

proposed a novel input-level intervention technique that uses a random walk-based
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method and some classic machine learning tools (clustering and classification) to ag-

nostically increase the number of training nodes by capturing similar nodes from var-

ious non-contiguous sub-graphs of a graph. With this agnostically extended training

set, the GNN learned better representation, and as a result, the node classification ac-

curacy increased. In addition to the input-level intervention, which is a pre-processing

method, we proposed a post-processing method - an output-level intervention. In this

novel method, we used the output of the GNN, i.e., the nodes whose labels are pre-

dicted, and with the help of a random walk-based method, we relabeled a particular

set of nodes that were possibly mispredicted by the GNN which in turn results in more

accurate classification. Apparently, our input- and output-level intervention methods

make a promising contribution to graph-based deep learning areas.

7.1.3 Neuroscience

The data obtained from functional magnetic resonance imaging (fMRI) are used to

record the activity level of each individual region of the brain. A brain connectivity

matrix constructed from the fMRI data is able to illustrate the regions that are con-

tained within a human brain as well as the relationships (functional connections) that

exist between those regions. Since this matrix is symmetric in nature, it can be consid-

ered as an adjacency matrix of a weighted complex network. In other words, a complex

network represents the regions and the inter-regional relationships of a human brain.

Since the human brain is an extremely complex system, it is a very challenging task to

deal with certain brain diseases. Sometimes it is very important but difficult to iden-

tify certain neurodevelopmental diseases, viz., Attention Deficit Hyperactivity Disor-

der (ADHD) by merely observing the patient’s behaviours. In a similar way, there are

some neurodegenerative diseases, such as Alzheimer’s disease (AD) for which study-

ing the progression of this disease is a challenging task.

In Part - III, we contributed to the area of neuroscience by addressing these chal-

lenges. Firstly, we address the diagnosis of the ADHD disease with the help of a com-

plex network and its representation. In addition, we have illustrated how the choice of

an atlas and the functional connectivity measures can have an effect on the classifica-

tion outcomes and, as a consequence, the diagnosis. Secondly, We create a mathemati-

cal model that describes how a healthy brain network may be manipulated to generate
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a synthetic AD brain network, and in doing so, we are able to capture the progression

of a healthy brain towards AD.

7.2 Future directions

In this chapter, we make an effort to foresee some of the ways in which the research

given here could be developed further. The suggested approaches to each of the dis-

tinct problems have some limits, therefore future extension is conceivable by resolving

the restrictions. We will briefly go over the proposed approaches’ limits and potential

future extensions in relation to each particular issue separately for each chapter.

7.2.1 Future Directions for Chapter 3

The identification of overlapping continuous communities is one of the crucial tasks we

hope to do in the future. In order to detect overlapping communities, it is necessary to

cluster the nodes into subgroups, with the result that some nodes will be members of

more than one community (i.e., they will have more than one community ID). There are

two characteristics that must be true for nodes in overlapping constant communities:

(i) they must always be part of the same overlapping community (s), and (ii) nodes may

have more than one label. We need to investigate which attributes are most informative

for categorization in order to pinpoint the boundaries between the overlapping groups.

With nodes being able to belong to many communities, overlapping communities face

the additional difficulty of having a larger memory footprint. Our program is required

to be executed on distributed clusters in order to grow and manage large-scale graphs

for discovering overlapping communities. To implement the proposed technique and

its overlapping variant, we want to tweak our data structure and take advantage of

high-performance computing frameworks (HPC) like MPI/Open ACC.

7.2.2 Future Directions for Chapter 4

Apply the interventions on Inductive settings: In this chapter, we only considered the

transductive settings where we were aware of the training nodes during the training. In

future we shall extend our work in the inductive setting [458]. In an inductive setting,
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we cannot see the test nodes during the training phase. To classify a pattern according

to its characteristics, inductive learning first assumes that there is a set of rules that are

to be applied by the model. In the inductive scenario, the node embedding problem is

more difficult than in the transductive setting because the algorithm needs to “align”

newly observed subgraphs to the node embeddings that it has already optimized for

in order to generalise to unseen nodes.

Both of our intervention strategies rely on a random walk that selects a collection of

nodes that are highly similar to the original nodes but are not specific to any one type

of node. Therefore, the random walk must be incorporated into the inductive functions

if we are to successfully transfer our methods to the inductive framework.

Extension on the hypergraph: A hypergraph is a graph in which the edges, called

hyperedges, can connect to more than two vertices or nodes. Some popular works

on hypergraph includes [459, 460, 461]. Applications of GNN on the hypergraph can

be found in [462, 463, 464]. According to [463] graph convolution is a special form

of hypergraph convolution that occurs when a non-pairwise connection degenerates

into a pairwise one. In the future, we are planning to extend our work on hypergraph

setting by converting the “random walk for ordinary graph” to “random walk for hy-

pergraph” [465].

7.2.3 Future Directions for Chapter 5

Some possible future works could be: spotting the set of brain regions for which the

differences between the ADHD brain and the healthy brain are maximum, so that we

can explain more accurately the reason behind the illness. Also, in this study, we com-

puted the connectivity measures among various brain regions using the time series

from various brain regions. We considered these time series as a whole to compute

such measures. In the future, we will consider them in a small window and slide the

window to capture more details while computing the connectivity measures. The ac-

curacy of the diagnosis may thus be improved.



154 Chapter 7. Conclusions and Future Directions

7.2.4 Future Directions for Chapter 6

In Chapter 6, we developed a mathematical model to study the progression of Alzheimer’s

disease from a healthy brain. Sometimes a simple mathematical model may unable to

capture some hidden patterns of a complex process. Since brain is a complex system,

thus in the future, we shall incorporate some deep generative models like variational

autoencoders (VAE) [466] or generative adversarial networks (GAN) [467] in order to

capture the hidden patterns more accurately and able to improve the accuracy of the

simulation process.
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Appendix A

Diagnosis of ADHD Using Image

Representation of Brain

Connectivity Matrix

A.1 Introduction

In Chapter 5, we discussed how the Attention Deficit Hyperactivity disorder can be

diagnosed using complex network and its representation. We saw that the complex

network can be constructed from the brain connectivity matrix M, where the each cell

M[i][j] in this matrix represents the relationships between two brain regions i and j.

In this appendix, in a parallel approach, we treat the brain connectivity matrix M as

an image representation which immediately fed into a 2D neural network (such as the

2D-CNN [377], ResNet-50 [468], EfficientNetB6 [469], etc) to diagnose ADHD. Fig. A.1

presents a thorough workflow.

A.2 Classification Approach Using Image

With this method, rather than constructing complex networks, we transformed the

functional connectivity matrix into an image and then fed it directly into a two-dimensional
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FIGURE A.1: Workflow Diagram.

(2D) neural network. This allowed us to avoid the complexity of the network gener-

ation process. The idea behind this is to represent the connectivity patterns that exist

between all of the different regions with intensity values. The primary reason for this

is to cut down on the additional work of manually extracting features and generating

graphs.

A.3 Results

A.3.1 Results using image-based approach

The accuracy of the image-based approach is presented in Table A.1. Bold typefaces

highlight information with the maximum accuracy. The comparative analysis indicates

that the graph-based approach outperforms the image-based approach. EfficientNetB3

achieved peak accuracy of 86.67% and 71.87% for the KKI and NYU university datasets,

respectively. The connectivity matrix used was Pearson-correlation, while the atlas em-

ployed was MSDL. The results obtained from the NI dataset indicate that ResNet-50

and EfficientNetB6 exhibit the highest level of accuracy, specifically 90.9%, when util-

ising the MSDL atlas and partial correlation. The results obtained from the Peking

dataset indicate that the EfficientNets exhibit superior performance, achieving an ac-

curacy rate of 75%. This outcome was observed when utilising the MSDL atlas and

Pearson correlation. The EfficientNetB6 model exhibits improved accuracy in partial-

correlation, achieving a rate of 75%.
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University Atlas Connectivity matrix Models
2D-
CNN

ResNet-
50

Efficient-
NetB3

Efficient-
NetB6

KKI MSDL CORR 80.00 73.33 86.67 86.60
PAR-CORR 73.33 80.00 73.33 86.60

Smith CORR 76.92 79.61 61.53 46.15
PAR-CORR 82.30 10.69 69.23 15.38

Allen CORR 69.23 53.84 76.92 76.92
PAR-CORR 56.15 40.80 13.31 68.81

Harvard-Oxford CORR 73.58 60.06 48.68 51.58
PAR-CORR 64.30 72.52 75.47 74.70

BASC-64 CORR 78.80 68.44 58.10 80.00
PAR-CORR 31.48 66.66 73.93 71.33

BASC-444 CORR 65.85 65.85 42.83 72.22
PAR-CORR 27.40 74.69 62.09 73.33

NYU MSDL CORR 51.22 65.85 71.87 68.75
PAR-CORR 58.54 65.85 65.62 68.75

Smith CORR 43.75 56.25 31.25 62.48
PAR-CORR 52.25 43.75 25.00 56.25

Allen CORR 37.30 53.65 68.44 42.74
PAR-CORR 25.48 36.93 60.97 65.88

Harvard-Oxford CORR 48.61 60.83 48.37 46.34
PAR-CORR 26.48 58.16 29.47 64.60

BASC-64 CORR 58.53 51.21 69.82 59.92
PAR-CORR 13.22 62.60 38.59 63.41

BASC-444 CORR 57.61 46.80 59.76 43.14
PAR-CORR 33.53 37.91 32.10 36.80

NI MSDL CORR 72.73 81.81 72.70 90.00
PAR-CORR 72.73 90.90 81.82 90.90

Smith CORR 66.90 75.00 25.00 54.62
PAR-CORR 41.50 25.00 50.00 22.33

Allen CORR 46.60 50.00 68.64 62.38
PAR-CORR 53.40 64.14 63.21 65.10

Harvard-Oxford CORR 64.70 35.29 41.17 70.80
PAR-CORR 36.36 41.17 58.82 35.29

BASC-64 CORR 41.17 64.70 52.94 47.64
PAR-CORR 57.10 47.05 29.41 76.47

BASC-444 CORR 48.02 64.71 57.61 58.82
PAR-CORR 42.90 73.69 32.13 58.82

Peking MSDL CORR 51.28 66.67 75.00 75.00
PAR-CORR 58.98 64.11 68.00 75.00

Smith CORR 25.00 55.96 71.79 67.50
PAR-CORR 61.53 49.24 58.97 51.83

Allen CORR 64.50 51.03 69.25 46.79
PAR-CORR 36.79 32.22 40.45 61.20

Harvard-Oxford CORR 33.93 61.53 49.66 57.84
PAR-CORR 56.41 43.58 60.14 69.56

BASC-64 CORR 45.48 58.97 64.10 51.77
PAR-CORR 33.60 31.33 53.84 47.93

BASC-444 CORR 56.00 56.00 61.53 43.58
PAR-CORR 53.84 52.50 69.23 61.53

TABLE A.1: Accuracy in image-based approach. We have used four datasets (universities). For each
dataset, six atlases are used and for each atlases, two type of connectivity matrices are used. We also com-
pared four 2D models: 2D-CNN, ResNet-50, EfficientNetB3 and EfficientNetB6. CORR stands for Pearson-

correlation and PAR-CORR stands for Partial-correlation
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A.3.2 Results using Combined Approach

In addition to utilising image-based and graph-based methodologies, we have imple-

mented a hybrid approach that integrates both techniques. The feature vectors of the

aforementioned methods were concatenated and subsequently used as input for sev-

eral 1D models. In order to merge a 2D image with a 1D feature vector, it is necessary to

first flatten the image and transform it into a 1D vector. Based on our observations, the

combination of these two approaches did not yield a significant increase in accuracy.

The accuracy values are presented in Table A.2.

A.3.3 Detailed comparisons with Baselines

The comparisons between our method and the baselines are presented in Table A.3.

As can be seen, the graph-based method provides the highest level of accuracy for

Peking and KKI, whereas the combined approach provides the highest level of accuracy

for NYU. The technique that exclusively relies on images offers the highest level of

accuracy for NI.

A.3.4 Observations and Explanations

Along with the previous finding, this image based and the combined approachs reveal

several noteworthy observations.

• Similar to the graph based approach, The accuracy of the categorization of the

image based approach fluctuates and is contingent upon the selection of a specific

atlas, functional connectivity matrix, and model.

• According to the results, the graph-based methodology exhibits superior accu-

racy in comparison to the image-based approach.

• The efficacy of the combined approach in enhancing accuracy is either negligible

or nonexistent.

One plausible explanation for the first observation could be attributed to the varia-

tions in the image as we modify the atlas or connectivity measure. Alterations to the
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University Atlas Connectivity matrix Models
1D-CNN LSTM ADHDNet

KKI MSDL CORR 80.00 80.70 82.60
PAR-CORR 80.00 82.60 82.60

Smith CORR 78.41 81.00 80.00
PAR-CORR 84.00 84.00 78.40

Allen CORR 65.27 75.48 72.15
PAR-CORR 45.91 68.40 56.11

Harvard-Oxford CORR 72.34 65.15 62.22
PAR-CORR 24.63 72.60 54.66

BASC-64 CORR 57.69 58.64 59.65
PAR-CORR 56.10 51.00 45.90

BASC-444 CORR 46.47 10.34 49.75
PAR-CORR 12.89 22.20 35.48

NYU MSDL CORR 74.48 69.50 32.72
PAR-CORR 64.86 67.20 67.27

Smith CORR 30.40 48.38 61.55
PAR-CORR 61.90 45.00 68.35

Allen CORR 45.37 56.70 46.60
PAR-CORR 44.25 19.47 12.94

Harvard-Oxford CORR 37.89 35.48 16.50
PAR-CORR 37.89 49.10 60.00

BASC-64 CORR 57.65 54.19 62.48
PAR-CORR 52.00 60.00 57.14

BASC-444 CORR 42.30 60.13 59.48
PAR-CORR 42.30 57.25 57.14

NI MSDL CORR 73.33 66.60 63.33
PAR-CORR 66.66 22.20 18.50

Smith CORR 33.33 65.00 69.80
PAR-CORR 28.57 22.20 51.60

Allen CORR 56.23 45.61 49.10
PAR-CORR 68.61 62.34 36.79

Harvard-Oxford CORR 45.37 15.47 51.64
PAR-CORR 12.30 59.48 26.40

BASC-64 CORR 75.00 71.25 80.00
PAR-CORR 50.00 69.14 61.81

BASC-444 CORR 51.00 81.81 80.00
PAR-CORR 64.21 25.34 36.18

Peking MSDL CORR 86.11 65.45 71.60
PAR-CORR 73.14 58.19 45.15

Smith CORR 28.57 16.75 23.80
PAR-CORR 76.14 14.28 33.33

Allen CORR 14.28 85.71 14.56
PAR-CORR 61.90 14.28 71.42

Harvard-Oxford CORR 14.28 14.28 15.60
PAR-CORR 19.04 19.04 33.33

BASC-64 CORR 51.00 55.40 55.65
PAR-CORR 51.00 55.40 52.00

BASC-444 CORR 52.00 54.15 52.89
PAR-CORR 53.14 54.20 55.40

TABLE A.2: Accuracy in combined approach. We have used four datasets (universities). For each dataset,
six atlases are used and for each atlases, two type of connectivity matrices are used. We also compared three
1D models: 1D-CNN, LSTM and the proposed ADHDNet. CORR stands for Pearson-correlation and PAR-

CORR stands for Partial-correlation.

NYU Peking KKI NI
Deep Learning

FCNet [355] (2017) 58.50 68.70 - 60.00
3D-CNN [357] (2017) 71.50 - 72.80 -

Deep fMRI [437] (2018) 73.10 62.70 - 67.90
Proposed Method - I (best Graph-based) 73.50 87.50 89.65 86.36
Proposed Method - II (best image-based) 71.87 75.00 86.67 90.90
Proposed Method - III (best combined) 74.48 86.11 82.60 81.81

TABLE A.3: Accuracy comparison with baselines (%). We have used Tables 5.3, A.1 and A.2 and pick the
best accuracies of the proposed methods.
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atlas lead to modifications in the quantity of regions, which subsequently affect the

dimensions of the image in an image-based methodology. A modification in the mea-

sure of connectivity leads to alterations in the strength of associations among various

regions. This subsequently results in changes in the pixel intensity in the image-based

approach.

One plausible explanation for the second observation is that the graph provides a

greater amount of information than the image. Images solely contain spatial informa-

tion, which is conveyed through the arrangement and intensity of pixels. However,

information pertaining to the correlation between regions cannot be inferred from the

image alone. Conversely, within a graphical representation, the existence of an edge

denotes the correlation between nodes or regions within the brain, while the numerical

value assigned to the edge signifies the magnitude of the correlation.

Concatenating the two pieces of data in the third observation may result in some

noise being introduced into the feature space, lowering accuracy in some situations.

A.4 Discussion

In the image-based approach, we consider the functional connectivity matrix as an

image and apply different two-dimensional deep learning models (2D-CNN, ResNet-

50, EfficientNetB3, EfficientNetB6). From the results, we observed that the graph- or

network-based approach shows better results than the image-based approach as well

as the combined approach.



Appendix B

Investigating the Progression of the

Brain Network: from a Healthy

Brain to Mild Cognitive Impairment

B.1 Introduction

The condition known as mild cognitive impairment (MCI) causes a slight but notice-

able decline in cognitive abilities such as memory and the ability to think. A person

diagnosed with MCI has a significantly increased risk of developing Alzheimer’s dis-

ease or another kind of dementia. On the other hand, mild cognitive impairment (MCI)

is a stage of cognitive function that can be thought of as falling somewhere in the mid-

dle of those that are compatible with normal ageing and those that fit the criteria for

Alzheimer’s disease (AD) [470]. Past studies have revealed that between thirty and

fifty percent of people who have MCI would develop Alzheimer’s disease within three

to five years after their diagnosis [471]. Thus in addition with AD, it is equally impor-

tant to figure out the progression towards MCI from HC.

In this appendix, we discuss the results of our experiment using the same model

that we have used in Chapter 6 to study the progression from HC to AD.
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to Mild Cognitive Impairment

stat HC MCI
Number 62 64

Male/Female 27/35 34/30
Average age 73.78 75.81

Average weight 72.45 82.63

TABLE B.1: Structural statistics of participants belonging to healthy controls (HC)
group and mild cognitive impairment (MCI) group.

B.2 Data Collection

We have collected 64 MCI fMRI data from the ADNI repository can be accessed at the

following URL: http://adni.loni.ucla.edu. Following the downloading of the data,

we separated all of the participants into two groups: those with healthy controls (HC)

and those with mild cognitive impairment (AD). Table B.1 provides an illustration of

the specifics of the clinical characteristics that differ between each of these two groups.

B.3 Results

B.3.1 Comparing real brain networks: GHC
avg and GMCI

avg

The present study conducts a comparative analysis of the topological properties of the

actual brain networks GHC
avg and GMCI

avg , as illustrated in Fig. B.1. As depicted on the

left of FIGURE B.1 displays a set of bars that have been plotted to represent GHC
avg . The

right figure represents GMCI
avg . The results indicate that there is an increase in local ef-

ficiency, modularity, and global efficiency as the group transitions from HC to MCI.

Conversely, the three remaining topological properties, namely average clustering co-

efficient, transitivity, and rich club coefficient, exhibit a decrease in the same direction.

The aforementioned results indicate that the three cohorts, namely HC and MCI, ex-

hibit distinct topological characteristics.

B.3.2 Simulation performance of the proposed variants

Comparing GMCI
syn with GMCI

avg .This section presents an analysis of the performance eval-

uation of our model and its baselines. Specifically, we compare the real and synthetic

http://adni.loni.ucla.edu
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FIGURE B.1: Comparison of various topological properties among the real brain net-
works of healthy control (HC) and mild cognitive impairment (MCI) group.

brain networks of individuals with Mild Cognitive Impairment (MCI). The bar plot

in FIGURE B.2a displays six distinct topological features that have been produced by

various competitive models, including the random model. The bar plot illustrating the

topological features generated by the proposed variants in comparison to the ground

truth is presented in FIGURE. B.2b. The group of bars depicted in the left section of

FIGURE. B.2a and FIGURE. B.2b represent the ground truth (GT) network. It is evi-

dent that, in nearly all instances, the suggested alternatives demonstrate comparable

topological characteristics when compared to the ground truths. The proposed vari-

ants, namely PV2 (N2V) and PV7 (GAT), exhibit superior performance relative to other

variants with respect to accurately reproducing the majority of the topological char-

acteristics that are closer to the ground truth. The results indicate that Random ex-

hibits the lowest performance among the baselines, while AA ranks second in terms

of performance. Conversely, the proposed variant demonstrates the highest level of

performance. The performance of CN, J I, and RA is suboptimal in comparison to the

proposed variants. The comparative analysis reveals that the efficacy of PA is superior

to that of random; however, it is comparatively inferior to the performance of other

competitive models.

B.3.3 Model performance evaluation: Modified Similarity Index (MSI)

Evaluating competitive models using MSI The relative errors of the topological prop-

erties of the synthetic networks generated and the ground truth network are presented

in Table B.2. Furthermore, the MSI metric is calculated to distinctly distinguish the effi-

cacy of the suggested variations in contrast to alternative approaches. The MSI values

are presented in the final column of Table B.2.
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(a) real MCI brain network (leftmost) vs synthetic MCI brain networks produced by the baselines.
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(b) real MCI brain network (leftmost) vs synthetic MCI brain networks produced by the proposed vari-
ants.

FIGURE B.2: Comparison of topological properties: real MCI brain network (left-
most) vs synthetic MCI brain networks produced by the various models. GT: Ground
Truth, PV1: Deep Walk (DW), PV2: Node to Vec (N2V), PV3: Line Embedding (LINE),
PV4: Graph Convolutional Neural Network (GCN), PV5: GraphSAGE (SAGE), PV6:

ChebyNet (Cheb), PV7: Graph Attention Network (GAT).

Models ELE EAC EM ET EGE ER MSI
CN 0.12 0.15 0.02 0.11 0.10 0.03 0.65
JI 0.12 0.04 0.05 0.11 0.08 0.03 0.69

PA 0.04 0.03 0.04 0.1 0.42 0.08 0.58
RA 0.11 0.14 0.03 0.01 0.12 0.03 0.69
AA 0.15 0.01 0.01 0.15 0.07 0.03 0.70
PV1 0.01 0.02 0.03 0.02 0.03 0.04 0.86
PV2 0.01 0.02 0.01 0.02 0.01 0.03 0.91
PV3 0.08 0.16 0.21 0.22 0.07 0.05 0.56
PV4 0.04 0.06 0.05 0.0 0.01 0.05 0.83
PV5 0.03 0.04 0.02 0.01 0.01 0.13 0.81
PV6 0.0 0.01 0.01 0.01 0.03 0.15 0.83
PV7 0.01 0.03 0.02 0.02 0.02 0.04 0.87

Random 0.23 0.16 0.16 0.07 0.13 0.13 0.53

TABLE B.2: Comparison of MSI-values for all the models (baselines and our proposed
model). Larger MSI value indicate more similarity between the synthetic (MCI) and
real (MCI) brain networks. red cell indicates the worst performer, green cell indicates
the best performer and blue cell indicates the second best performer. CN: Common
Neighbor, PA: Preferential Attachment, JI: Jaccard Index, AA: Adamic–Adar, RA: Re-
source Allocation. PV1: Deep Walk (DW), PV2: Node to Vec (N2V), PV3: Line Embed-
ding (LINE), PV4: Graph Convolutional Neural Network (GCN), PV5: GraphSAGE

(SAGE), PV6: ChebyNet (Cheb), PV7: Graph Attention Network (GAT)
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FIGURE B.3: Comparing the complementary cumulative degree distribution of net-
works generated through various generative models. GT: Ground truth, CN: Common
Neighbor, PA: Preferential Attachment, JI: Jaccard Index, AA: Adamic–Adar, RA: Re-
source Allocation, PV1: Deep Walk (DW), PV2: Node to Vec (N2V), PV3: Line Embed-
ding (LINE), PV4: Graph Convolutional Neural Network (GCN), PV5: GraphSAGE

(SAGE), PV6: ChebyNet (Cheb), PV7: Graph Attention Network (GAT).

B.3.4 Degree Distribution

The experimental result shown in Fig. B.3 demonstrates that, when compared to the

other baseline models, the degree distribution of the synthetic networks produced by

the suggested variants (Fig. B.3b) closely resembles the degree distribution of the target

networks. The JI, AA, and RA methods all perform well and are close to the targeted

network. PA and CN methods outperform the proposed method and fail to reach the

target networks. Thus, the empirical results support the proposed generative model’s

effectiveness in the progression of HC to MCI.

B.3.5 Sensitivity of parameters k1 and k2 of the proposed ensemble model

Fig. B.4a, shows the changes in network properties while producing GMCI
syn from GHC

avg

by raising k2 from 5 to 15 while maintaining the value of k1 at 20.

Fig. B.4b shows the results of generating GMCI
syn from GHC

avg , while altering k1 from 15

to 25 and maintaining k2 to 8.
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FIGURE B.4: Changes in various topological properties in the generated synthetic net-
works from the real brain network upon tuning the parameters k1 and k2. GHC

avg to
GMCI

syn represents generation of synthetic graph GMCI
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Doğutepe, and Sirel Karakaş. Machine-based learning system: Classification of

adhd and non-adhd participants. In 2017 25th Signal Processing and Communica-

tions Applications Conference (SIU), pages 1–4. IEEE, 2017.



Bibliography 203

[343] Marta Nuñez-Garcia, Sonja Simpraga, Maria Angeles Jurado, Maite Garolera,

Roser Pueyo, and Laura Igual. Fadr: Functional-anatomical discriminative re-

gions for rest fmri characterization. In Luping Zhou, Li Wang, Qian Wang, and

Yinghuan Shi, editors, Machine Learning in Medical Imaging, pages 61–68, Cham,

2015. Springer International Publishing.

[344] Atif Riaz, Muhammad Asad, Eduardo Alonso, and Greg Slabaugh. Fusion of

fmri and non-imaging data for adhd classification. Computerized Medical Imaging

and Graphics, 65:115–128, 2018. Advances in Biomedical Image Processing.

[345] Yibin Tang, Chun Wang, Ying Chen, Ning Sun, Aimin Jiang, and Zhishun Wang.

Identifying adhd individuals from resting-state functional connectivity using

subspace clustering and binary hypothesis testing. Journal of attention disorders,

25(5):736–748, 2021.

[346] Soumya Dey, Ravishankar Rao, and Mubarak Shah. Attributed graph distance

measure for automatic detection of attention deficit hyperactive disordered sub-

jects. Frontiers in neural circuits, 8:64, 06 2014.

[347] Anderson Siqueira, Claudinei Biazoli, William Comfort, Luis Rohde, and João

Sato. Abnormal functional resting-state networks in adhd: Graph theory and pat-

tern recognition analysis of fmri data. BioMed research international, 2014:380531,

08 2014.

[348] Ilke Öztekin, Mark A Finlayson, Paulo A Graziano, and Anthony S Dick. Is there

any incremental benefit to conducting neuroimaging and neurocognitive assess-

ments in the diagnosis of adhd in young children? a machine learning investiga-

tion. Developmental cognitive neuroscience, 49:100966, 2021.

[349] Bo Miao, LL Zhang, JL Guan, QF Meng, and YL Zhang. Classification of adhd

individuals and neurotypicals using reliable relief: A resting-state study. IEEE

Access, 7:62163–62171, 2019.

[350] Shuaiqi Liu, Ling Zhao, Xu Wang, Qi Xin, Jie Zhao, David S Guttery, and Yu-

Dong Zhang. Deep spatio-temporal representation and ensemble classification

for attention deficit/hyperactivity disorder. IEEE Transactions on Neural Systems

and Rehabilitation Engineering, 29:1–10, 2020.



Bibliography BIBLIOGRAPHY

[351] Hui Tian Tor, Chui Ping Ooi, Nikki SJ Lim-Ashworth, Joel Koh En Wei, V Jah-

munah, Shu Lih Oh, U Rajendra Acharya, and Daniel Shuen Sheng Fung. Auto-

mated detection of conduct disorder and attention deficit hyperactivity disorder

using decomposition and nonlinear techniques with eeg signals. Computer Meth-

ods and Programs in Biomedicine, 200:105941, 2021.

[352] Atif Riaz, Muhammad Asad, Eduardo Alonso, and Greg Slabaugh. Fusion of

fmri and non-imaging data for adhd classification. Computerized Medical Imaging

and Graphics, 65:115–128, 2018. Advances in Biomedical Image Processing.

[353] Delbert Dueck. Affinity propagation: clustering data by passing messages. University

of Toronto Toronto, ON, Canada, 2009.

[354] A. Kautzky, Thomas Vanicek, Clement Philippe, G. Kranz, Wolfgang Wad-

sak, Markus Mitterhauser, A. Hartmann, A. Hahn, Marcus Hacker, D. Rujescu,

S. Kasper, and Rupert Lanzenberger. Machine learning classification of adhd and

hc by multimodal serotonergic data. Translational Psychiatry, 10:104, 04 2020.

[355] Atif Riaz, Muhammad Asad, SM Al-Arif, Eduardo Alonso, Danai Dima, Philip

Corr, and Greg Slabaugh. Fcnet: a convolutional neural network for calculating

functional connectivity from functional mri. In International Workshop on Connec-

tomics in Neuroimaging, pages 70–78. Springer, 2017.

[356] Tao Zhang, Cunbo Li, Peiyang Li, Yueheng Peng, Xiaodong Kang, Chenyang

Jiang, Fali Li, Xuyang Zhu, Dezhong Yao, Bharat Biswal, et al. Separated chan-

nel attention convolutional neural network (sc-cnn-attention) to identify adhd in

multi-site rs-fmri dataset. Entropy, 22(8):893, 2020.

[357] Liang Zou, Jiannan Zheng, Chunyan Miao, Martin J Mckeown, and Z Jane Wang.

3d cnn based automatic diagnosis of attention deficit hyperactivity disorder us-

ing functional and structural mri. Ieee Access, 5:23626–23636, 2017.

[358] Zhenyu Mao, Yi Su, Guangquan Xu, Xueping Wang, Yu Huang, Weihua Yue,

Li Sun, and Naixue Xiong. Spatio-temporal deep learning method for adhd fmri

classification. Information Sciences, 499:1–11, 2019.

[359] Laura Dubreuil-Vall, Giulio Ruffini, and Joan A. Camprodon. Deep learning con-

volutional neural networks discriminate adult adhd from healthy individuals on

the basis of event-related spectral eeg. Frontiers in Neuroscience, 14:251, 2020.



Bibliography 205

[360] He Chen, Yan Song, and Xiaoli Li. Use of deep learning to detect personalized

spatial-frequency anomalies in eegs of children with adhd. Journal of Neural En-

gineering, 16, 08 2019.

[361] Tosun M. Effects of spectral features of eeg signals recorded with different chan-

nels and recording statuses on adhd classification with deep learning. Physical

and engineering sciences in medicine, 44:693–702, 2021.

[362] Zhenyu Mao, Yi Su, Guangquan Xu, Xueping Wang, Yu Huang, Weihua Yue,

Li Sun, and Naixue Xiong. Spatio-temporal deep learning method for adhd fmri

classification. Information Sciences, 499:1–11, 2019.

[363] Chengfeng Dou, Shikun Zhang, Hanping Wang, Li Sun, Yu Huang, and Weihua

Yue. Adhd fmri short-time analysis method for edge computing based on multi-

instance learning. Journal of Systems Architecture, 111:101834, 2020.

[364] Vikas Khullar, Karuna Salgotra, Harjit Pal Singh, and Davinder Pal Sharma. Deep

learning-based binary classification of adhd using resting state mr images. Aug-

mented Human Research, 6(1):1–9, 2021.

[365] He Chen, Yan Song, and Xiaoli Li. Use of deep learning to detect personalized

spatial-frequency abnormalities in eegs of children with adhd. Journal of neural

engineering, 16(6):066046, 2019.

[366] Mustafa Tosun. Effects of spectral features of eeg signals recorded with differ-

ent channels and recording statuses on adhd classification with deep learning.

Physical and Engineering Sciences in Medicine, 44(3):693–702, 2021.

[367] Raffaella Franciotti, Davide Nardini, Mirella Russo, Marco Onofrj, Stefano L

Sensi, Alzheimer’s Disease Neuroimaging Initiative, et al. Comparison of ma-

chine learning-based approaches to predict the conversion to alzheimer’s disease

from mild cognitive impairment. Neuroscience, 514:143–152, 2023.

[368] M Senthil Kumar, H Azath, AK Velmurugan, K Padmanaban, and Murugan Sub-

biah. Prediction of alzheimer’s disease using hybrid machine learning technique.

In AIP Conference Proceedings, volume 2523. AIP Publishing, 2023.



Bibliography BIBLIOGRAPHY

[369] Afiya Parveen Begum and Prabha Selvaraj. Multiclass diagnosis of alzheimer’s

disease analysis using machine learning and deep learning techniques. Interna-

tional Journal of Image and Graphics, page 2450031, 2023.

[370] Xiaoyi Raymond Gao, Marion Chiariglione, Ke Qin, Karen Nuytemans, Dou-

glas W Scharre, Yi-Ju Li, and Eden R Martin. Explainable machine learning aggre-

gates polygenic risk scores and electronic health records for alzheimer’s disease

prediction. Scientific Reports, 13(1):450, 2023.

[371] Yasunobu Nohara, Koutarou Matsumoto, Hidehisa Soejima, and Naoki

Nakashima. Explanation of machine learning models using shapley additive

explanation and application for real data in hospital. Computer Methods and Pro-

grams in Biomedicine, 214:106584, 2022.

[372] Salim Lahmiri. Integrating convolutional neural networks, knn, and bayesian

optimization for efficient diagnosis of alzheimer’s disease in magnetic resonance

images. Biomedical Signal Processing and Control, 80:104375, 2023.

[373] Syrine Neffati, Khaoula Ben Abdellafou, Ines Jaffel, Okba Taouali, and Kais

Bouzrara. An improved machine learning technique based on downsized kpca

for alzheimer’s disease classification. International Journal of Imaging Systems and

Technology, 29(2):121–131, 2019.

[374] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. science, 313(5786):504–507, 2006.

[375] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltz-

mann machines. In Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 693–700. JMLR Workshop and Conference Pro-

ceedings, 2010.

[376] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends®

in Machine Learning, 2(1):1–127, 2009.

[377] Richard Kinh Gian Do Rikiya Yamashita, Mizuho Nishio and Kaori Togashi. Con-

volutional neural networks: an overview and application in radiology. Insights

into Imaging, 9:611–629, 2018.



Bibliography 207

[378] EL-Geneedy Marwa, Hossam El-Din Moustafa, Fahmi Khalifa, Hatem Khater,

and Eman AbdElhalim. An mri-based deep learning approach for accurate de-

tection of alzheimer’s disease. Alexandria Engineering Journal, 63:211–221, 2023.

[379] Jyoti Islam and Yanqing Zhang. Brain mri analysis for alzheimer’s disease diag-

nosis using an ensemble system of deep convolutional neural networks. Brain

informatics, 5:1–14, 2018.

[380] Saman Sarraf, Arman Sarraf, Danielle D DeSouza, John AE Anderson, Milton

Kabia, and Alzheimer’s Disease Neuroimaging Initiative. Ovitad: Optimized

vision transformer to predict various stages of alzheimer’s disease using resting-

state fmri and structural mri data. Brain Sciences, 13(2):260, 2023.

[381] Rahul Sharma, Tripti Goel, M Tanveer, CT Lin, and R Murugan. Deep learning

based diagnosis and prognosis of alzheimer’s disease: A comprehensive review.

IEEE Transactions on Cognitive and Developmental Systems, 2023.

[382] Petra E Vértes, Aaron F Alexander-Bloch, Nitin Gogtay, Jay N Giedd, Judith L

Rapoport, and Edward T Bullmore. Simple models of human brain functional

networks. Proceedings of the National Academy of Sciences, 109(15):5868–5873, 2012.

[383] Richard F Betzel, Andrea Avena-Koenigsberger, Joaquín Goñi, Ye He, Marcel A

De Reus, Alessandra Griffa, Petra E Vértes, Bratislav Mišic, Jean-Philippe Thiran,

Patric Hagmann, et al. Generative models of the human connectome. Neuroimage,

124:1054–1064, 2016.

[384] Danielle S Bassett, Perry Zurn, and Joshua I Gold. On the nature and use of mod-

els in network neuroscience. Nature Reviews Neuroscience, 19(9):566–578, 2018.

[385] Joana Cabral, Morten L Kringelbach, and Gustavo Deco. Exploring the network

dynamics underlying brain activity during rest. Progress in neurobiology, 114:102–

131, 2014.

[386] Azriel Rosenfeld and Pilar De La Torre. Histogram concavity analysis as an aid

in threshold selection. IEEE Transactions on Systems, Man, and Cybernetics, SMC-

13(2):231–235, 1983.



Bibliography BIBLIOGRAPHY

[387] Christian Desrosiers and George Karypis. A comprehensive survey of

neighborhood-based recommendation methods. Recommender systems handbook,

pages 107–144, 2010.

[388] Pablo Gleiser and Leon Danon. Community structure in jazz. Advances in Complex

Systems, 6:565, 2003.

[389] David Lusseau. The emergent properties of a dolphin social network. Proceedings

of the Royal Society of London. Series B: Biological Sciences, 270(suppl_2):S186–S188,

2003.

[390] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas. Self-similar

community structure in a network of human interactions. Physical Review E, 68(6),

12 2003.

[391] Scott P. Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A.

Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom. The suitesparse

matrix collection website interface. Journal of Open Source Software, 4(35):1244,

2019.

[392] Tanmoy Chakraborty, Sriram Srinivasan, Niloy Ganguly, Animesh Mukherjee,

and Sanjukta Bhowmick. On the permanence of vertices in network communi-

ties. pages 1396–1405, 2014.

[393] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[394] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex net-

works reveal community structure. Proceedings of the National Academy of Sciences,

105(4):1118–1123, 2008.

[395] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization framework.

In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, 2019.

[396] Aditya Tandon, Aiiad Albeshri, Vijey Thayananthan, Wadee Alhalabi, and Santo

Fortunato. Fast consensus clustering in complex networks. Physical Review E,

99(4), 4 2019.

http://snap.stanford.edu/data


Bibliography 209

[397] Rohit Parimi and Doina Caragea. Community detection on large graph datasets

for recommender systems. In 2014 IEEE international conference on data mining

workshop, pages 589–596. IEEE, 2014.

[398] Shumeet Baluja, Rohan Seth, Dharshi Sivakumar, Yushi Jing, Jay Yagnik, Shankar

Kumar, Deepak Ravichandran, and Mohamed Aly. Video suggestion and discov-

ery for youtube: taking random walks through the view graph. In Proceedings of

the 17th international conference on World Wide Web, pages 895–904, 2008.

[399] Network dataset. Bookcrossing (implicit). KONECT, 2022.

[400] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. Pitfalls of graph neural network evaluation. CoRR, abs/1811.05868,

2018.

[401] Network dataset. Dblp computer science bibliography. KONECT, 2022.

[402] Network dataset. Movielens 20m. Kaggle, 2022.

[403] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[404] Richard C. Wang and William W. Cohen. Iterative set expansion of named entities

using the web. In 2008 Eighth IEEE International Conference on Data Mining, pages

1091–1096, 2008.

[405] Jiaming Shen, Zeqiu Wu, Dongming Lei, Jingbo Shang, Xiang Ren, and Jiawei

Han. Setexpan: Corpus-based set expansion via context feature selection and

rank ensemble. In Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski, Ce-
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