
Some Studies on Mathematical Morphology in

Remotely Sensed Data Analysis

A thesis submitted to Indian Statistical Institute
in partial fulfilment of the thesis requirements for the degree of

Doctor of Philosophy in Computer Science

Author: Geetika Barman
Systems Science and Informatics Unit

Indian Statistical Institute

Bangalore -560059

Supervisor: Prof. B. S. Daya Sagar
Systems Science and Informatics Unit

Indian Statistical Institute

Bangalore -560059

July, 2023





This thesis is lovingly dedicated to my parents, Late Lohit Bar-

man and Mrs Deepti Barman, my first teachers and torchbear-

ers, who illuminated my path with their wisdom and love.





Acknowledgments

My thesis has become a reality with the kind support and help of many individuals.
I want to express my sincere appreciation and admiration to everyone who has helped
me tremendously throughout my PhD work.

I would like to express my profound gratitude to my PhD supervisor Prof. B.S.
Daya Sagar for his unwavering guidance, patience, and support throughout the course
of this research. Your insightful feedback pushed me to sharpen my thinking and
brought my work to a higher level. I also want to express my gratitude to my col-
leagues Sampreeti Soor, Athira, Aditya Challa, and Sravan Danda, and for the
enormously helpful discussions we had over the years.

I am thankful to CCSD faculty members for enlightening me with the knowledge
that I have gained during my coursework. I would also like to thank all the members
of CCSD-RFAC and CCSD PhD/DSc committees for providing me continuous
support and suggestions during my PhD.

I am obliged to Indian Statistical Institute for providing fellowship to pursue
my PhD.

I am blessed with a circle of incredibly supportive friends, who have been my lifeline
through this process. Their unwavering belief in me, constant encouragement, and
shared moments of levity have been fundamental in keeping my motivation high. I
could not have navigated the challenges of this journey without you.

I extend my heartfelt gratitude to my family, my mother, my siblings, and my
in-laws, for your unfailing love, understanding, and encouragement when it was most
needed. Your faith in me has been a constant source of strength.

Finally, a special thanks to my spouse Abhijit for his unwavering faith in me, his
sacrifices, and his love and companionship that carried me through this journey.

This thesis is a testament not just to my efforts, but also to the collective encour-
agement, support, and belief of all these wonderful people around me.

Geetika Barman





Abstract

The application of Mathematical Morphology (MM) tech-

niques has proven to be beneficial in the extraction of shape-

based and texture-based features during remote sensing image

analysis. The characteristics of these techniques, such as non-

linear adaptability and comprehensive lattice structure, make

them useful for contextual spatial feature analysis. Despite

the advancements, there are still persistent challenges, includ-

ing the curse of dimensionality, maintaining spatial correlation,

and the adaptability of morphological operators in higher di-

mensions. The focus of this thesis is to explore the poten-

tial of MM-based methods to analyse spatial features in ad-

dressing these challenges, specifically in the context of spatial-

contextual feature analysis of hyperspectral images and Digital

Elevation Models. This thesis explores the power of morpho-

logical distance in capturing spatial relationships and proposes

a modified definition called "Dilation Distance" to address the

"Dimensionality Curse" in hyperspectral images. By employ-

ing dilation-based distances, spatially separated objects can be

identified, reducing redundancy and enhancing efficiency. Ex-

perimental trials demonstrate the superiority of the proposed

approach. Additionally, the thesis introduces a new approach



using morphological interpolation for terrain surface interpola-

tion, preserving geometric structure while providing a smooth

surface. The extension of conventional univariate morphologi-

cal tools to hyperspectral images in a multivariate way is also

explored, ensuring the concurrent application of operators while

preserving the multivariate nature of the data. To achieve that

a vector ordering strategy is proposed. Overall, these tech-

niques have a profound impact on the progress of mathematical

morphology in remotely sensed image analysis, offering valuable

insights.
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Chapter 1

Introduction

Remote sensing data analysis is crucial for understanding earth’s

surface dynamics [1]. Mathematical morphology enables spa-

tial analysis, extracting features, reducing noise, detecting ob-

jects, and analyzing patterns. By applying morphological op-

erators, such as erosion, dilation, opening, and closing, remote

sensing data can be processed for land cover, urban growth,

ecology, and environmental monitoring. This thesis explores

mathematical morphology’s applications in spatial analysis of

remote sensing data, emphasizing two byproducts of remote

sensing imaging systems namely hyperspectral image data [2]

and Digital Elevation Models (DEMs) [3, 4]. It enhances our

understanding of the spatial features of the earth’s surface data.

1



Chapter 1: Introduction

1.1 Remote Sensing Imaging

In the early 1960s, the term "remote sensing" was coined to de-

scribe the process of collecting and measuring data on objects

and phenomena without physical contact. It involves using sen-

sors on aircraft or satellites to measure electromagnetic energy

emitted or scattered from the earth’s surface. This energy ex-

ists across various wavelengths in the electromagnetic spectrum.

The incident energy from the surface, originating from sources

like the Sun, passes through the Earth’s atmosphere and inter-

acts with the surface by absorption, scattering, and reflection.

The reflected and scattered components eventually reach the

sensor after traveling back through the atmosphere. The sensor

measures the radiance in different spectral components, focus-

ing on specific bands of the electromagnetic spectrum [1, 5–9].

The measured data is converted into digital or analog format

and transmitted to the earth’s receiving stations for processing

and error correction [10]. Digital image processing techniques

are applied to extract information from digital images, while

visual interpretation techniques are used for analog data. The

interpreted data is then separated and transformed into vari-

ous layers of thematic maps; additionally, tabular data are also

Page 2



1.1. Remote Sensing Imaging

extracted from quantitative measures [11–13].

1.1.1 Hyperspectral Image and Digital Elevation Model

Hyperspectral Images (HSI) [14] and Digital Elevation Models

(DEMs) [15] are vital derived products of remote sensing data

that offer valuable insight into the surface of the earth. HSI

has revolutionized remote sensing by capturing a wide range of

spectral bands across the electromagnetic spectrum, allowing

for detailed analysis and interpretation of the earth’s surface.

On the other hand, DEMs represent the topography and eleva-

tion of the terrain, enabling a three-dimensional understanding

of the earth’s surface.

HSI data consists of numerous narrow and contiguous spec-

tral bands, allowing for precise identification and characteriza-

tion of objects based on their unique spectral signatures. With

its ability to acquire hundreds of spectral bands, HSI provides

an unprecedented level of spectral detail. This abundance of

spectral information enables the identification and characteri-

zation of materials based on their unique spectral signatures,

which leads to applications in environmental monitoring, land

cover classification, mineral exploration, agriculture, and urban

Page 3



Chapter 1: Introduction

Figure 1-1: An example hyperspectral image where a generic scheme of HSI mapping of
soil, vegetation, and water is shown. Soil, water, and vegetation have different spectral
signatures captured at different wavelengths [16]

planning. Fig.1-1 is shown as an example hyperspectral image

where a generic scheme of HSI mapping of soil, vegetation, and

water is shown. Soil, water, and vegetation have different spec-

tral signatures captured at different wavelengths. The unique

spectrum is shown for a single pixel in Fig.1-1.

DEMs, on the other hand, provide crucial information about

the terrain, offering a detailed representation of the earth’s sur-

face elevation [15, 17]. DEMs play a pivotal role in geospa-

tial analysis, hydrological modeling [18], and landform charac-

terization [19]. They enable the visualization of topographic

Page 4



1.2. Challenges in Processing Remotely Sensed Data

features [15] such as mountains, valleys, rivers, and slopes.

This elevation information helps to assess flood risks, deter-

mine drainage patterns, analyze terrain ruggedness, and iden-

tify suitable locations for infrastructure development. How-

ever, hyperspectral images contain vast amounts of spectral in-

formation, necessitating advanced algorithms for data analysis

and feature extraction [20, 21]. Handling high dimensionality

and large datasets requires efficient storage and computational

resources [22]. DEM processing involves managing extensive

elevation data, performing terrain correction, and addressing

data gaps. Challenges include data fusion, accuracy [23], and

managing computational demands [24] etc. Satellite data pro-

cessing entails addressing atmospheric effects, geometric dis-

tortions, and data calibration for reliable analysis. Integrating

data from various sensors and platforms is crucial. Various

challenges in processing this data at the digital image level will

be discussed in the next section.

1.2 Challenges in Processing Remotely Sensed Data

Conventionally, due to direct application to images, low-resolution

remotely sensed images are processed using pixel-based ap-

Page 5



Chapter 1: Introduction

proaches. In such approaches, only the spectral signatures of

pixels are taken into account, not any spatial characteristics of

the image. Although the analysis results were satisfactory, cur-

rently with an increase in geometrical resolution and spectral

resolution, due to the high correlation between neighboring pix-

els, such approaches fail to perform better [25]. However, the

spatial information captured in earth observation data greatly

aids in the comprehension of earth data, as it characterizes the

spectral signature in a complementary manner to the spectral

signature of earth objects [25, 26] [26–30].

The study and analysis of spatial information can signifi-

cantly contribute to understanding the scene in high-resolution

remote sensing data. It is possible to code spatial informa-

tion as relationships between adjacent pixels, spatial patterns

(such as texture), spatial characteristics of regions (such as ge-

ometrical, morphological, and textural measures), structural

relationships in objects, and relational links between scene ele-

ments. In short, the knowledge derived from the characteristics

extracted from the spatial domain can be said to be spatial in-

formation [25,27]. Although spectral analysis-based approaches

are straightforward to apply in images, we cannot say the same

Page 6



1.2. Challenges in Processing Remotely Sensed Data

for the approaches that extract and exploit spatial information.

The challenges and importance of retrieving spatial information

from earth observation data are shown in [31,32].

There are different ways to extract spatial information from

remote sensing data depending on the objective and purpose

of processing, and this information can then be further pro-

cessed to help better understand the data. With a wide range

of abstraction levels and semantic levels, spatial domain-related

features are not limited and are not simple to extract. Such ap-

proaches where spatial information is incorporated with spec-

tral information for a better understanding of the image is

known as "spatial-contextual" [33, 34] processing, which indi-

cates the relationship between the pixels in a neighborhood

with a target pixel [35]. These spatio-contextual image classi-

fication methods can be categorized into three groups: texture

extraction, Markov Random Fields (MRF) modeling, and im-

age segmentation and object-based image analysis [33, 36, 37]

Applications of texture extraction in remote sensing image

processing date back to the 1970s [38, 39], and several studies

have shown that the inclusion of texture metrics can enhance

understanding while reducing spectral confusion between spec-
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Chapter 1: Introduction

trally similar classes [40]. Four categories can be made up of the

most common texture extraction techniques: 1) structural, 2)

statistical, 3) model- based, and 4) transform [41–43]. Through

analyzing pre-defined primitives and the spatial configurations

of these primitives, structural approaches [39] make an effort to

examine image textures. Utilizing primitives and their place-

ment guidelines, one can specify the texture of an image.

Another group of methods for extracting texture involves

using models, such as fractal models [44], auto-regressive mod-

els [45], and MRF models [46]. Moreover, the transform meth-

ods, which include Fourier and Gabor transforms, as well as

Wavelet transforms [47]. Wavelet transformations outperform

Fourier and Gabor [47]. Wavelet transforms outperform Fourier

and Gabor transforms because they operate at multiple spa-

tial resolutions and offer a wide range of wavelet functions

that can be chosen to enhance remote sensing image processing

tasks. Texture information can be integrated into both the pre-

processing (e.g., as an extra variable) and post-processing (e.g.

image filtering) stages of image processing [48]. Numerous stud-

ies have demonstrated that incorporating texture information

into remote sensing image classification can improve accuracy

Page 8



1.2. Challenges in Processing Remotely Sensed Data

and better discriminate between land cover types. According

to Moser et al., [49], MRFs are capable of examining the global

and local characteristics of a remote sensing image and quanti-

fying the spatial auto-correlation among pixels using a rigorous

mathematical approach. MRFs have thus been used to address

a variety of issues with remote sensing image analysis, such

as classification, change detection, sub-pixel analysis, and seg-

mentation [50–52]. Kettig and Landgrebe [53] introduced an

image segmentation application to remote sensing, and further

refined the work with the development of the ECHO classifier.

In the case of remote sensing image segmentation, algorithms

have been devised to incorporate spatio-contextual information.

These algorithms encompass region-growing methods [54, 55],

watershed methods [56], and hierarchical algorithms [57]. By

considering spatial relationships and context between image re-

gions, these techniques aim to improve the accuracy and effec-

tiveness of image analysis processes.
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Chapter 1: Introduction

1.3 Mathematical Morphology in Processing Spatial

Features

In the mid-1960s, Mathematical Morphology (MM) emerged as

a field of image analysis. From its inception, it encompassed

both theoretical findings and investigations into the connections

between geometrical textures and the physical properties of the

objects being studied. This field originates from the exploration

of binary porous media, such as sandstone. These media con-

sist of two distinct phases: the matrix and the embedded pores.

Matheron [58] and Serra [59,60] introduced a formalism in 1967

to analyze binary images, wherein the matrix represents the set

of object points and the pores represent the complementary set.

To extract or suppress specific structures within image objects,

a structuring element is defined and carefully selected in terms

of shape and size. This element is then applied across the im-

age, acting as a probe. Morphological operations rely on set

operations like union, intersection, complement, and transla-

tion, evaluating the compatibility of the structuring element

with the image objects at various positions.

The evolution of Mathematical Morphology (MM) from its

roots in binary image processing to its current status as a

Page 10



1.3. Mathematical Morphology in Processing Spatial Features

versatile tool for handling complex image structures has been

remarkable. Initially introduced by Matheron [58] and Serra

[59, 60], the original MM framework focused on fundamental

operations such as binary dilation and erosion, deeply rooted

in the geometric measure theory of Minkowski and Hadwiger

[61,62]. However, with the increasing need to process grayscale

images, the framework underwent significant extensions. The

most notable generalization is the utilization of the complete

lattice by Serra [63]. Sternberg extended mathematical mor-

phology principles from two to three dimensions and introduced

grayscale mathematical morphology [64]. Ronse [65] and Hei-

jman [66] demonstrated that extending morphological opera-

tions to complete lattices is essential for mathematically ap-

plying these operators to grayscale images. For a detailed dis-

cussion, the reader can refer to [67, 68]. Also, the introduc-

tion of fuzzy set theory [69] led to the development of fuzzy

MM [68, 70–74], which was subsequently extended to L-fuzzy

MM [75], where L denotes an arbitrary complete lattice, fur-

ther broadening the scope of grayscale MM. These studies have

contributed foundational principles, including those based on

complete lattices and fuzzy sets, offering a comprehensive un-

Page 11



Chapter 1: Introduction

derstanding of morphological operations.

Destival [76] was among the early researchers who acknowl-

edged the value of mathematical morphology in extracting ob-

jects with specific shapes, like roads, river networks, and village

outlines. Another study [77] focused on the development of a

directional morphological filter to reduce acquisition stripes in

satellite images. In a separate work, Martel et. al. [78] demon-

strated that mathematical morphology could serve as a viable

alternative to harmonic analysis when determining certain fac-

tors. Characteristic features of functions defined on the earth’s

surface are explored in various studies. One example is the

detection of gravity anomalies using directional morphological

filters. In [79], binary morphological operations and polygon

fill techniques are employed for land masking and coastline cor-

rection in AVHRR images. Another study [80] successfully ex-

tracted built-up areas on SPOT-P images by employing resam-

pled morphological gradient, achieving accuracy comparable to

manual photo interpretation. In [81], opening and closing op-

erations are utilized to remove noise, and small ice floes, and to

smoothen boundaries in Landsat TM Antarctic scenes, signifi-

cantly improving the segmentation and classification of complex

Page 12



1.3. Mathematical Morphology in Processing Spatial Features

scenes.

Infrared ocean images employ alternating sequential filters

to extract closed circulation areas (vortices) [82, 82]. Aerial

photographs differentiate tree species using granulometry with

different structuring elements [83]. Landforms like domes and

deflation areas are mapped from panchromatic SPOT images

using morphological top-hat filters [83, 84]. In addition, mor-

phological clustering in a feature space proves effective for satel-

lite images, outperforming supervised methods [85,86]. Further

advancements include geodesic filtering and marker-controlled

segmentation for multispectral images [87].

Morphological operators also have demonstrated their suit-

ability for processing Digital Elevation Models (DEMs). The

initial application focused on extracting catchment basins and

watersheds [88] (also covered in [89] and [90] with a fast algo-

rithm utilizing first-in-first-out queue data structures). Geodesic

interpolation is introduced in [91] to generate DEMs from dig-

itized elevation contour lines (further enhancements are dis-

cussed in [92] based on generalized geodesy principles [92]).

Efficient methods for extracting drainage networks from DEMs

using fast fill holes and lower complete transformations are elab-

Page 13



Chapter 1: Introduction

orated in [93]. An overview of these applications can be found

in [94,95].

1.4 Objective and Contribution

The literature indicates that as the resolution of data increases,

it becomes crucial to incorporate spatial features to obtain a

better understanding of the scene. Mathematical morphology

(MM) has emerged as a powerful tool for extracting spatial

features while preserving geometric information [59, 60, 96, 97].

In the field of remotely sensed image analysis, MM has been

recognized for its potential in various applications, including

image filtering, image segmentation, and image recognition, as

identified by Soille and Pesaresi in their research [95].

This thesis focuses on three interrelated challenges, all con-

verging to elevate the understanding of spatial relationships in

remotely sensed data, with a special focus on spatial analysis of

HSI and DEMs. Each problem contributes to the unified goal

of enhancing spatial analysis methodologies through the use

of mathematical morphology (MM) based methods. The first

problem (Chapter 3), centers on the introduction and analysis

of the property of MM grayscale operators to capture the spa-
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tial relationships between two spatial fields, which leads to the

proposal of the Dilation Distance method. It also showcases

the utility of reducing the dimensionality of hyperspectral im-

ages, providing a methodical approach to understanding spatial

features across different bands. Expanding the scope, our in-

vestigation extends to mathematical morphology-based inter-

polation techniques using binary MM operators (Chapter 4),

specifically addressing ordered sets derived from topographic

maps. Many times, the variable-specific information mapped

from the specific bands of the high spatial resolution hyperspec-

tral images needs to be draped on high-resolution DEMs. How-

ever, the DEMs of low spatial resolution exhibit aliasing effects,

which in turn are not suitable for draping the variable-specific

information mapped from remotely sensed satellite data such

as multispectral and hyperspectral images. To fill that gap, we

proposed and demonstrated the generation of fine-resolution

contour-based DEMs from coarse-resolution DEMs. The pro-

posed median-set-based interpolation technique demonstrates

its efficacy in analyzing spatial relationships between ordered

sets and in generating finer-resolution DEMs from available to-

pographic maps. This contribution significantly advances our
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Chapter 1: Introduction

ability to interpret and exploit spatial relationships among ter-

rain elevation features using MM operators. The third problem

(Chapter 5) responds to the demand for the applicability of

MM-based methods in multiband images. To overcome the lim-

itations of MM operations defined on 2D images, a vector order-

ing strategy is proposed. This strategy facilitates the definition

of supremum and infimum for vector comparisons, leading to

the introduction of multivariate MM operations. The objective

is to extend MM operations directly to multiband images in a

multivariate manner, addressing the evolving needs of remote

sensing image analysis. With all these problems addressed in

Chapters 3 to 5, this thesis offers a unified perspective and ap-

plication of MM-based techniques on advancing spatial analysis

in remotely sensed data. This thesis collectively contributes to

a more comprehensive understanding of spatial relationships

within the context of hyperspectral images and DEMs.

This thesis primarily focuses on exploring MM-based non-

linear operator methods and analyzing the spatial features of

remotely sensed data, with a particular emphasis on hyperspec-

tral images and Digital Elevation Models (DEMs). The main

objective of this thesis is to introduce a dilation-based distance
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and discuss its properties. Additionally, it aims to demonstrate

its application in capturing spatial distances across bands of

multiband images, thereby reducing dimensionality. The thesis

also investigates morphological-based interpolation techniques

for ordered sets. It studies topographic maps as binary thresh-

olded regions and explores the spatial relationship between two

ordered sets through the use of Hausdorff distance. The pro-

posed median-set-based interpolation technique performs well

in the application of generating a Digital Elevation Model from

a topographic map. Furthermore, the application of median

set-based interpolation to DEMs can be considered to explore

the spatial relationship among terrain elevation features. It is

a significant contribution to this research. However, the MM

operations are defined till now on 2D images by defining min-

imum and maximum in local neighborhoods. The demand for

the applicability of MM-based methods in multiband images,

such as HSI, motivates us to explore the MM operators directly

on multiband images in a multivariate way. This leads to a

proposal of a vector ordering strategy in this thesis to define

supremum and infimum in comparing vectors, which in turn

propose multivariate MM operations for HSI.
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1.5 Thesis outline

This thesis is structured as six chapters. Chapters 3, 4, and 5

are contributing chapters of this thesis, whereas Chapters 1 and

2 discuss the introductory literature and background concepts

of related theory.

• Chapter 1: This chapter primarily provides an overview of

the inspiration and motivation that drove the research con-

ducted for this thesis, including a review of related work. It

encapsulates the theoretical basis that underpins the pro-

posed study’s motivations.

• Chapter 2: This chapter offers comprehensive explana-

tions of the terms and notations associated with initial

Mathematical Morphological operators, along with some

relevant methods employed in the processing of remote

sensing imagery.

• Chapter 3: This chapter discusses the proposed math-

ematical morphological method, "Dilation Distance", and

its application in hyperspectral image classification, specif-

ically in experiments involving dimensionality reduction of

hyperspectral image. This chapter is taken from the arti-
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cle:

A. Challa, G. Barman, S. Danda, and B. S. D. Sagar, "Band

Selection Using Dilation Distances," in IEEE Geoscience

and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, doi:

10.1109/LGRS.2021.3057117.

• Chapter 4: This chapter covers the utilization of mathe-

matical morphological interpolation for spatial information

extraction and enhancement of the resolution of the Digi-

tal Elevation Model, which is generated from topographic

maps (contour maps). In this chapter, a median-set-based

interpolation method is proposed for DEM generation from

topographic maps. This chapter is taken from the articles:

G. Barman, A. Kakati, S. L. Lim, and B. S. Daya Sagar,

"Interpolation of Subsurface Isopach Maps Using Mathe-

matical Morphology," OCEANS 2022 - Chennai, 2022, pp.

1-5, doi: 10.1109/OCEANSChennai45887.2022.9775480.

G. Barman, B. S. D. Sagar, "Generation of High Spatial

Resolution Terrestrial Surface from Low Spatial Resolution

Elevation Contour Maps via Hierarchical Computation of
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Median Elevation Regions," IEEE Transactions on Geo-

science and Remote Sensing, vol. 61, pp. 1-11, 2023, Art

no. 4508811, doi: 10.1109/TGRS.2023.3335120.

• Chapter 5: This chapter discusses the extension of the

fundamental mathematical morphological operators, dila-

tion and erosion, to higher dimensions in multiband images.

It also covers their application in hyperspectral image clas-

sification. Here, a vector ordering strategy is defined to use

multivariate MM operators on HSI. This chapter is taken

from the article:

G. Barman and B. S. Daya Sagar, "A New Approach to

Compute Vector Based Morphological Features for Classi-

fication of Hyperspectral Image," 2023 IEEE India Geo-

science and Remote Sensing Symposium (InGARSS), Ban-

galore, India, 2023, pp. 1-4,

doi: 10.1109/InGARSS59135.2023.10490362.

• Chapter 6: This chapter summarizes the contribution

of the thesis and provides a concluding remark and future

work.
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Chapter 2

Theoretical Background

This chapter will revisit some fundamental MM operators and

some image analysis concepts that are necessary for the pro-

posed frameworks in this thesis.

2.1 Mathematical Morphological Operator

In this section, we will review the essential mathematical mor-

phological concepts required for the suggested framework. Since

we are working with digital images, in this thesis we restrict our

attention to digital framework only. The morphological opera-

tors are also defined in discrete space. The basic MM operators,

namely dilation and erosion, will be discussed in the context of

both binary images and grayscale images. For a more in-depth

theoretical understanding, readers can further go through ref-
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erences [3, 60,66, 95,97–99].

2.1.1 Structuring Elements

Unlike point image transformations, mathematical morphology

(MM) operations involve neighborhood image transformations.

In these operations, the value of an output pixel is a function of

its neighboring pixel’s values. The neighborhood itself is deter-

mined by a separate set of pixels referred to as the Structuring

Element (SE) with a defined origin [60, 96, 99]. The structural

element (SE) serves as a tool to analyze the morphology of an

object. Typically, the SE has a basic geometric shape such as

a disk or square, and its size, like a 3x3 window, is adjusted

based on the object’s geometry being processed. For grayscale

image transformation, a SE can take any value. SE is referred

to as a "Flat SE" if it consists of a collection of pixels without

any assigned values; otherwise, if it takes any integer value, it

is referred to as a "Non-Flat SE." However, in the context of

the thesis, only "Flat SE" is discussed. In mathematical terms,

for a set 𝐸 ⊂ R2 or 𝐸 ⊂ Z2, a flat SE is defined as follows:
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2.1. Mathematical Morphological Operator

Figure 2-1: Example of commonly used structuring element, the left image is disk SE
of radius 1 with its origin and the right image is 3x3 square SE with its given origin.

𝑓 (𝑥) =

⎧⎨⎩ 0, 𝑥 ∈ 𝐸

−∞, 𝑥 /∈ 𝐸

Throughout this thesis, we shall only consider SE as a flat SE

and a disk of radius 1. If it is used as other shape and size

other than a disk of radius 1, it is mentioned in that specific

chapter. Two commonly used SEs are shown in Fig.2-1. Even

if the example is shown with the same origin point, the origin

may be any pixel.

2.1.2 Binary Dilation and Erosion

In Mathematical Morphology, a binary image can be defined as

a mapping function 𝑓 : 𝐸 −→ {0, 1}, where 𝐸 represents the

"Image plane" or the domain in which the image is defined.

This domain, also referred to as the "Definition Domain", is

typically a subset of either the discrete space Z2 or the contin-
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uous space R2.

The dilation of a set 𝑌 by SE 𝐵 is denoted by 𝛿𝐵(𝑌 ) and

is defined as the locus of points 𝑦 such that 𝐵 hits 𝑌 when its

origin coincides with 𝑦 [66, 96,99]:

𝛿𝐵(𝑌 ) = 𝑌 ⊕𝐵 =
{︁
𝑦 | 𝐵𝑦 ∩ 𝑌 ̸= 𝜑

}︁
=

⋃︁
𝑏∈𝐵

𝑌𝑏 (2.1)

where 𝑌𝑏 is the translation of 𝑌 along the vector 𝑏 and �̂�

is the transposition of 𝐵 with respect to its origin, that is,

�̂� = {𝑏 | −𝑏 ∈ 𝐵}.

Similar to dilation, erosion of set 𝑌 by SE 𝐵 is denoted by

𝜀𝐵(𝑌 ) and is defined as the locus of points 𝑦, such that 𝐵 is

included in 𝑌 , when its origin is placed at 𝑦 [60, 66,96,99]:

𝜀𝐵(𝑌 ) = 𝑌 ⊖𝐵 = {𝑦 | 𝐵𝑦 ⊆ 𝑌 } =
⋂︁
𝑏∈𝐵

𝑌−𝑏 (2.2)

where 𝐵𝑦 is the translation of 𝐵 by vector 𝑦 and 𝑌−𝑏 denotes

the translation of 𝑌 by −𝑏.

If SE is symmetric to its origin, then both erosion and di-

lation are equivalent to Minkowski subtraction and Minkowski

addition respectively. An example of binary dilation and binary
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erosion is shown in Fig.2-2.

(a) Binary Dilation

(b) Binary Erosion

Figure 2-2: Example of binary dilation and erosion with input image on left and output
image at the rightmost side, the image in middle is disk SE of radius 1.

2.1.3 Grayscale Dilation and Erosion

Similar to binary morphological operations, in grayscale mor-

phological transformations, images are considered as a map-

ping function 𝑓 : 𝐸 −→ R̄, where R̄ is R ∪ {+∞,−∞} or

𝑓 : 𝐸 −→ Z̄, where Z̄ is Z ∪ {+∞,−∞} . The dilation opera-

tor on a grayscale image 𝑓 (𝑥) by a structuring element 𝑔(𝑥) is

defined as [66,96,99]:

𝛿𝑔(𝑓 )(𝑥) = (𝑓 ⊕ 𝑔)(𝑥) = sup
𝑦∈𝐸
{𝑓 (𝑦) + 𝑔(𝑥− 𝑦)} (2.3)
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Similarly, the erosion operator on grayscale image 𝑓 (𝑥) by

SE 𝑔(𝑥) is defined as :

𝜀𝑔(𝑓 )(𝑥) = (𝑓 ⊖ 𝑔)(𝑥) = inf
𝑦∈𝐸
{𝑓 (𝑦)− 𝑔(𝑦 − 𝑥)} (2.4)

where 𝑥 and 𝑦 are the pixel coordinates of the input image and

SE respectively, 𝑔 is the structuring element for a grayscale

image and also can be defined as a structuring function defined

on 𝐸 and 𝑠𝑢𝑝 denotes supremum and 𝑖𝑛𝑓 denotes infimum. If

𝑔 can take any values, it is referred to as a non-flat structuring

element. If 𝑔 takes values only in {0,−∞} and has the value

0 on a finite subset, this is referred to as a flat structuring

element. Therefore, flat structuring functions are functions of

𝑔(𝑥) in the form:

𝑔(𝑥) =

⎧⎨⎩ 0, 𝑥 ∈ 𝐵

−∞, 𝑥 /∈ 𝐵

In this case, the definition of dilation by structuring element 𝐵

can be written as:

𝛿𝑔(𝑓 )(𝑥) = sup
𝑦∈𝐵𝑥

𝑓 (𝑦)(= 𝑓 ⊕𝐵) (2.5)

𝐵 denotes the set where 𝑔 takes the value 0 and 𝐵𝑥 =
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Figure 2-3: Illustrating grayscale dilation. On the left, we have a grayscale image. A
flat structuring element is shown in the center. Pixels with 0 value are shown and all
other pixels have a value ∞. The center is indicated with a circle around the value.
The dilated image is obtained by placing the center of the structuring element at each
position and taking the maximum. The final answer is shown in the right image.

{𝑥 − 𝑏|𝑏 ∈ 𝐵} . The dilation is written as 𝑓 ⊕ 𝐵 for this flat

structuring element. A simple illustration is shown in Fig.2-3.

Similarly, the grayscale erosion on 𝑓 (𝑥) by structuring ele-

ment 𝐵 can be defined as:

𝜀𝑔(𝑓 )(𝑥) = inf
𝑦∈𝐵𝑥

𝑓 (𝑦)(= 𝑓 ⊖𝐵) (2.6)

2.1.4 Opening and Closing

The sequential operation of erosion followed by dilation and

dilation followed by erosion is known as morphological open-

ing and closing, respectively. The morphological opening of an

image, denoted by 𝑓 using a structuring element B, is charac-
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terized as the erosion of 𝑓 using B, succeeded by the dilation of

the eroded output with 𝐵. Here, B represents the structuring

element. The morphological opening (𝛾𝐵(𝑓 )) can be defined as:

𝛾𝐵(𝑓 ) = 𝛿𝐵[𝜀(𝑓 )] (2.7)

On the other hand, the morphological closing of 𝑓 by B is

defined as the dilation of 𝑓 followed by the erosion of 𝑓 by 𝐵.

It is written as:

Φ𝐵(𝑓 ) = 𝜀𝐵[𝛿(𝑓 )] (2.8)

2.1.5 Closing and Opening by Reconstruction

Morphological opening and closing operators [60] can profoundly

impact images, particularly when the structuring element (SE)

is large compared to the image structures. These operators

can distort or entirely erase geometrical attributes of struc-

tures, which is disadvantageous when needing to extract object

details post-filtering. Geodesic reconstruction-based morpho-

logical operators [59,60] can adeptly manage images, resolving

these issues by either removing or preserving image compo-

nents based on their interaction with the structuring element

(SE). If an image component is larger than the SE, it remains
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unchanged; otherwise, it’s merged with a brighter or darker

neighboring region, depending on whether a closing or opening

operation is applied. An opening by reconstruction of image 𝑓

is performed in two separate phases and defined as [100]:

𝛾𝜈
𝑅(𝑓 ) = 𝑅𝛿

𝑓 [𝜀
(𝜈)(𝑓 )] (2.9)

where the first phase is 𝜀(𝜈), that is, the erosion of 𝑓 , with

SE of size 𝜈, indicating the size of the opening. It creates

the marker image for the reconstruction operation. The second

phase involves performing a reconstruction by dilation, denoted

as 𝑅𝛿
𝑓(.), of the marker image using the reference mask 𝑓 . This

operation is an iterative process that applies geodesic dilation

(defined as the infimum of the elementary dilation and the mask

image) on the marker image until idempotence is achieved (the

idempotence condition is: 𝛿𝑛𝑓 = 𝛿𝑛+1
𝑓 ):

𝑅𝛿
𝑓(.) = 𝛿𝑛𝑓 (.) = 𝛿1𝑓 · 𝛿1𝑓 · 𝛿1𝑓 · · · 𝛿1𝑓(.) (n times) (2.10)

Similarly, closing by reconstruction Φ𝜈
𝑅(𝑓 ) on image 𝑓 is de-

fined as the reconstruction by erosion of 𝑓 from the dilation of
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𝑓 using a structuring element of size 𝜈:

Φ𝜈
𝑅(𝑓 ) = 𝑅𝜀

𝑓 [𝛿
(𝜈)(𝑓 )] (2.11)

2.1.6 Morphological Profile

Morphological profiles were first proposed by Pesaresi and Benedik-

tsson in their work [101], where it is delineated as a sequence

of anti-granulometry followed by granulometry. These are ex-

ecuted by closing and opening by reconstruction transforma-

tions, respectively. The term "anti-granulometry" is denoted

as closing profile ΠΦ, while "granulometry" is referred to as

opening profile Π𝛾. The morphological opening 𝑛 profile of an

image 𝑓 is a sequence of 𝑛 openings applied to the original im-

age 𝑓 using a structuring element (SE) of size 𝛼. It is defined

as:

Π𝛾(𝑓 ) = {Π𝛾𝛼(𝑓 ) : 𝛾
𝛼
𝑅(𝑓 ), 𝛼 = 0, 1, . . . , 𝑛} (2.12)

Thus, morphological closing profile ΠΦ(𝑓 ) is defined as:

ΠΦ(𝑓 ) = {ΠΦ𝛼(𝑓 ) : Φ
𝛼
𝑅(𝑓 ), 𝛼 = 0, 1, . . . , 𝑛} (2.13)

Combining these, both closing and opening profiles of size 𝑛,

morphological profile (MP) is obtained. The resulting MP is of
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size 2𝑛−1, because when 𝛼 = 0 the opening and closing profiles

are equal to the original image and thus they are considered

only once. So, a morphological profile (MP) is defined as:

𝑀𝑃 (𝑓 ) =

⎧⎪⎨⎪⎩Π𝛾𝛼(𝑓 ) for 𝛼 = (𝑛− 1 + 𝜈), ∀𝛼 ∈ [1, 𝑛]

ΠΦ𝛼(𝑓 ) for 𝛼 = (𝜈 − 𝑛− 1), ∀𝛼 ∈ [𝑛 + 1, 2𝑛 + 1]

(2.14)

All these definitions and concepts are explained in detail in

[100].

2.2 Evaluation Metric Used

Evaluation metrics are used to analyze proposed methods for re-

mote sensing data, specifically hyperspectral images and digital

elevation models (DEMs). The evaluation metrics help quan-

tify the performance and effectiveness of the proposed methods

across various datasets in this domain. This section provides

details about the evaluation metrics used throughout the work.
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2.2.1 Overall Classification Accuracy

Overall classification accuracy, in the context of multi-class

classification, is a performance metric represented by the ra-

tio of the number of correctly classified instances to the total

number of instances:

Accuracy = (Number of correctly classified instances) / (To-

tal number of instances)

This formula quantifies the model’s ability [102] to predict

the correct class labels across all the classes present in the

dataset. It provides a a numerical measure of the model’s over-

all predictive accuracy, where a higher accuracy value indicates

a better-performing model [103] in correctly assigning class la-

bels to instances.

2.2.2 Average Classification Accuracy

The average classification accuracy (ACA) is a metric used to

evaluate the performance of a classification model. It calculates

the average accuracy across all classes by dividing the sum of

individual class accuracies by the total number of classes. ACA

provides an overall measure of the model’s accuracy in classi-

fying instances [104–106].

Page 32



2.2. Evaluation Metric Used

2.2.3 Kappa Coefficient

The Kappa coefficient (𝜅) in terms of classification [107] can be

mathematically defined as [108]:

𝜅 =
𝑃0 − 𝑃𝑒

1− 𝑃𝑒

Where:

𝑃0 represents the observed agreement, which is the propor-

tion of instances where the classifiers or observers agree on

the assigned class labels, 𝑃𝑒 represents the expected agree-

ment by chance. It is calculated based on the distribution of

class labels and the probabilities of random agreement. The

Kappa coefficient provides a standardized measure to evaluate

the agreement between classifiers or observers in classification

tasks [109–111], considering both observed and expected agree-

ment and is particularly useful when comparing multiple classi-

fiers or assessing the consistency of observers in assigning class

labels.

2.2.4 Root Mean Square Error

In the context of digital elevation models (DEMs), it is ex-

pected that the elevations corresponding to the original con-
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tour lines should ideally have values that are either equal to

(through interpolation) or very close to (through approxima-

tion) the contour labels. The accuracy of this correspondence

can be quantified using the root mean square error (RMSE)

measurement [112,113]. The RMSE can be defined as:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(𝑢𝑖 − 𝑤𝑖)
2

where 𝑢𝑖 is the estimated elevation values of the DEM from

its adjacent contour elevation values at test point 𝑖; 𝑤𝑖 is the

actual elevation value of the DEM at the test point 𝑖 and 𝑁 is

the total number of test points.

2.2.5 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) [114, 115] is a

metric that quantifies the average absolute percentage errors

(APE) between actual and estimated elevation values at point

𝑖 from its neighboring contour elevation values. Let’s denote

the actual elevation value at test points 𝑖 as 𝑤𝑖 and the corre-

sponding predicted elevation values from its adjacent elevation

values as 𝑢𝑖. The MAPE can be defined as:
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𝑀𝐴𝑃𝐸 =
1

𝑁

𝑁∑︁
𝑡=1

⃒⃒⃒⃒
𝑤𝑖 − 𝑢𝑖

𝑤𝑖

⃒⃒⃒⃒

2.2.6 Jaccard Similarity Coefficient

The Jaccard similarity coefficient, also known as the Jaccard

index, is a measure used to compute the similarity between two

sets, typically used to compare shapes [116]. We can define the

shape as the set of points contained within it. In the context of

the proposed framework mentioned in Chapter 4, this measure

is utilized to assess the similarity between predicted contours

and actual contours, where the shape of contours can be defined

by the set of pixels contained within it.

Let 𝑆𝐼𝑆 and 𝑆𝐺𝑇 represent the predicted shape and ground

truth shape of the contours, respectively. the Jaccard similar-

ity coefficient is calculated as the ratio of the intersection of

these two sets to the union of the sets The Jaccard Similarity

coefficient is computed as:

𝐽 =
|𝑆𝐼𝑆 ∩ 𝑆𝐺𝑇 |
|𝑆𝐼𝑆 ∪ 𝑆𝐺𝑇 |

This coefficient quantifies the intersection of the interpolated

shape and the ground truth shape divided by the union of the

Page 35



Chapter 2: Theoretical Background

two shapes.
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Chapter 3

Dilation Distance and Its Application

in Hyperspectral Image

3.1 Introduction

Advances in imaging techniques now allow us to capture spec-

tral reflectance at several bands [117]. The finer resolution

in spectral dimension allows us to capture different kinds of

ground objects used across various application domains [118].

However, this also leads to capturing a large volume of data,

leading to difficulties in processing. It is estimated that the hy-

perspectral infrared images by NASA capture 5.2Tb/day [119].

Also, adjacent bands have a high correlation leading to vast

redundancy in representing the information. Hence, band se-

lection and feature extraction methods are used for efficient

storage, retrieval, and processing. Both these techniques are
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part of larger dimensionality reduction methods.

3.1.1 Band Selection Versus Feature Extraction

Both band selection and feature extraction methods reduce the

dimensionality of data. Band selection proceeds by selecting

a subset of features. However, feature extraction transforms

the features into low dimensions using certain criteria such as

principal component analysis (PCA) [120], and minimum noise

fraction (MNF) [121]. These transforms can be either linear or

nonlinear and are usually complex. Hence, the spectral mean-

ing of the features is usually lost in the process. On the other

hand, band selection preserves the spectral meaning of bands.

This further helps in the interpretation of the results. Hence,

band selection is preferred over feature extraction in several

applications. This is evidenced by the vast amount of litera-

ture recently [122–126]. A recent comprehensive review can be

found in [127]. In this chapter, we propose a novel band selec-

tion method using the techniques from mathematical morphol-

ogy (MM) [58, 60, 63]. We use the grayscale dilation operator

to define dilation distances (dd) and use this as a criterion for

band selection.
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3.1.2 Why Dilation Distance?

The problem of band selection asks— to identify the subset of

bands such that all objects in the image can be distinguished.

Now, the two main properties of such objects are:

1. The pixels within these objects have similar spectral signa-

tures.

2. Different objects are spatially separated. Several existing

methods exploit the first property to identify a subset of

bands.

However, to our knowledge, there does not exist any band se-

lection method, which explicitly exploits the second property

mentioned above for band selection. Dilation distance, as pro-

posed in this chapter, captures the spatial distance. Using this

dilation distance for band selection will allow us to exploit the

second property, as mentioned above. This is illustrated using a

synthetic example (Fig.3-1). For comparison, we consider band

selection using correlation-based distance and optimal neigh-

borhood reconstruction (ONR) [128]. Here we consider an RGB

image (left image in Fig.3-1) with three objects identified by the

colors red, green, and blue. Using this image, we construct a
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Figure 3-1: Figure illustrating the band selection using dilation distance. We start with
an RGB image with three distinct objects represented by the three colors. We then
generate several bands randomly to obtain a multiband image using Eq.3.1. The band
selection procedures are applied to this multiband image. Observe that the dilation
distance picks the bands such that each band represents a single object. On the other
hand, the correlation-based band selection and ONR [128] do not exhibit this property.

multi-band image by considering several unit normed intensities

in RGB denoted by {𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛𝑧}, where 𝑛𝑧 denotes the

number of bands. We produce several artificial bands by taking

the dot product with different (random) unit normed vectors

such as 𝑎𝑟, an example of which is given in Eq.3.1. Each of these

dot products, with the RGB intensity of a pixel, will result in

a grayscale image, which is taken to be a different band. For

instance, the unit normed vector for 𝑟𝑡ℎ band may be denoted

by:

𝑎𝑟 = (
1√
6
,
2√
6
,
1√
6
) (3.1)

Accordingly, one can obtain the pixel values for the 𝑟𝑡ℎ band
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by 𝑎𝑟. For example, for each unit normed vector 𝑎𝑟, calculate

the dot product with the RGB values of each pixel. This will

yield a new intensity value for each pixel, forming a new band.

For a pixel with RGB values [𝑅,𝐺,𝐵], the intensity value of

the pixel in the 𝑟𝑡ℎ band is:

band𝑟 = 𝑅 · 1√
6
+𝐺 · 2√

6
+𝐵 · 1√

6

𝑎0, 𝑎1, . . . , 𝑎𝑛𝑧 are random unit normed vectors similar to 𝑎𝑟.

Several such bands are generated (middle image in Fig.3-1) us-

ing this approach. Using this multi-band image, we compare

the top 3 bands selected by dilation distance (details of dilation

distance are discussed in Section 3.3) with the ones obtained

by correlation and ONR. The subset of bands is selected using

the criterion

𝐶(𝐾) = min
𝑏𝑖,𝑏𝑗∈𝐾

distance(𝑏𝑖, 𝑏𝑗) (3.2)

where K denotes the subset of bands and 𝑏𝑖, 𝑏𝑗 are two separate

bands within 𝐾, the distance can be either correlation, ONR,

or dilation distance. The bands are obtained by maximizing

the above criterion. These are shown on the right of the image

in Fig.3-1. Observe that, as dictated by intuition, dilation dis-
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tance picks the three bands that indicate each distinct object of

red, green, and blue. However, bands selected using correlation

distances and ONR do not have this property.

In this chapter, we formalize the notion of dilation-based

distance and analyze their application to the band selection

problem. In this chapter, we set up the notation and review the

basic definitions required for the rest of the chapter. We define

the dilation distance and explain the approach of band selection

using dilation distance. Further, we compare the results on real

hyperspectral data sets and illustrate several quantitative and

qualitative results.

3.2 Review Of Terminology

Let 𝐻 denote the hyperspectral image with 𝑛𝑧 bands. Also,

assume the size of each band is (𝑛𝑥, 𝑛𝑦). The bands of 𝐻 are

represented by {𝑓1, 𝑓2, . . . , 𝑓𝑛𝑧} where each 𝑓𝑖 is a grayscale

image. A grayscale image can be thought of as a function 𝑓 :

𝐸 → R, where 𝐸 denotes the domain of the image and R is

R∪{−∞,∞} (completion of real space R ). 𝐸 is usually taken

to be a subset of 2−𝐷 discrete space Z2, although it is common

to use the 1−D discrete space Z for illustrations. Based on the
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definition given in Eq.2.3 and Eq.2.5 in Chapter 2, the dilation

distance is defined as:

𝑑𝑑 (𝑓𝑖, 𝑓𝑗) = min {𝑛 | 𝑓𝑖 ⊕ 𝑛𝐵 ≥ 𝑓𝑗} (3.3)

Recall that 𝑛𝐵 denotes a flat structuring element obtained

by 𝐵⊕𝐵⊕ 𝐵 . . . (n times) . . .⊕𝐵. This definition is adapted

from the one mentioned in [129]. 𝐵 is considered to be the unit

disk structuring element.

Remark: The term "dilation distance" (dd) used in Eq. 3.3

is not a traditional distance metric in the mathematical sense.

Although we refer to it as distance, it is a dissimilarity mea-

sure related to the morphological dilation process. We use it

to maintain consistency within the context. Also, the unit disk

structuring element is conventionally used for dilation here. Us-

ing any other structuring element would distort the measure in

a spatial direction, a property that is not recommended unless

there is an explicit reason to do so. Hence, we consider only

the unit disk structuring element.

The following properties of the dilation distance are noted:

1. It is possible that there does not exist any 𝑛 such that

𝑓𝑖 ⊕ 𝑛𝐵 ≥ 𝑓𝑗. In such cases, 𝑑 (𝑓𝑖, 𝑓𝑗) is taken to be ∞.
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However, we have that if sup {𝑓𝑖} ≥ sup {𝑓𝑗} and the do-

main is finite, then 𝑑𝑑 (𝑓𝑖, 𝑓𝑗) < ∞, where sup is denoted

as supremum. Hence, for both 𝑑𝑑 (𝑓𝑖, 𝑓𝑗) and 𝑑𝑑 (𝑓𝑗, 𝑓𝑖) to

be finite, we require sup {𝑓𝑖} = sup {𝑓𝑗}. In this work,

we assume that the features (pixel intensity values of each

band) are scaled to [0, 1] before computing the distance.

Hence, we have sup {𝑓𝑖} = sup {𝑓𝑗}.

2. Observe that 𝑑𝑑 (𝑓𝑖, 𝑓𝑖) = 0 and 𝑑𝑑 (𝑓𝑖, 𝑓𝑗) ≥ 0 for any

𝑖, 𝑗. However, it is not true that 𝑑𝑑 (𝑓𝑖, 𝑓𝑗) = 𝑑𝑑 (𝑓𝑗, 𝑓𝑖),

i.e., it is not symmetric. Also, 𝑑𝑑(.,.) does not satisfy the

triangle inequality in general. Hence, although we refer to

𝑑𝑑 as distance, it does not have the properties of the usual

metric.

3. As we have already mentioned in the remark that 𝑑𝑑 is

not a mathematical distance metric. So it does not fol-

low the properties of the distance metric. One can define

an equivalent dilation distance as ̂︁𝑑𝑑, which is in terms of

preserving its properties and also symmetric. Thus, the

dilation distance ̂︀𝑑
is defined as:

Page 44



3.2. Review Of Terminology

̂︁𝑑𝑑 (𝑓𝑖, 𝑓𝑗) = 𝑑𝑑 (𝑓𝑖, 𝑓𝑗) + 𝑑𝑑 (𝑓𝑗, 𝑓𝑖) (3.4)

4. The most important property that is extensively used in

this work is that dilation distance captures the spatial dis-

tance between bands. To illustrate this, we use 1-D images

as shown in Fig.3-2. We consider the case of two pulse

functions 𝑓1, 𝑓2 as an example and compare them with cor-

relation distances to observe the difference. In Case 1, the

correlation distance is 0 and the dilation distance can be

seen to be 3. However, when 𝑓2 is translated (in Case

2), the correlation is still 0, while the dilation distance in-

creases to 6 and captures the difference. This intuitively

shows that the dilation distance captures the spatial dis-

tance. Also, this implies that, when one selects the bands

with the largest dilation distance, it implicitly selects the

bands with the largest spatial distance between the objects

the bands represent. This phenomenon is reflected in the

toy example of Fig.3-1, where dilation distance-based band

selection selects each band with a unique object.
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Figure 3-2: Figure illustrating that dilation distance captures the spatial distances. We
consider pulse functions 𝑓1 and 𝑓2 as shown in the figure. In Case 1, we have that the
dilation distance is 3 and the correlation is 0. When the pulse 𝑓2 is translated by 3
units, the correlation is still 0 while the dilation distance increases to 6. This intuitively
shows why dilation distances can capture spatial distances. Thus, selecting the bands
with the largest dilation distance will implicitly select the bands that have objects with
the largest spatial distance between them.

3.3 Dilation Distance

While the dilation distance defined in Eq.3.3 captures the spa-

tial distance between the pulses (Fig.3-2), in reality, we have

signals with several peaks. To allow dilation distance to capture

distance at different gray intensity levels (scales) of an image,

it can be defined as:

𝑑𝑑𝜆 (𝑓𝑖, 𝑓𝑗) = min {𝑛 | (𝑓𝑖 + 𝜆1)⊕ 𝑛𝐵 ≥ 𝑓𝑗} (3.5)

where 1 denotes a grayscale image with every pixel intensity
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value of 1. Recall that, we have assumed 𝑓𝑖, 𝑓𝑗 are scaled to be

between [0, 1]. 𝜆 denotes the gray levels or pixel intensity levels

(scale) at which one must compare 𝑓𝑖 and 𝑓𝑗. By adjusting 𝜆

and introducing 1, we effectively allow the dilation distance to

consider differences at different intensity levels, accommodating

1-D images with multiple peaks. The following properties are

to be noted:

1. First, we have that at 𝜆 = 0, 𝑑𝑑𝜆(.,.) corresponds to the

definition of 𝑑𝑑(.,.) in Eq.3.3.

2. Note that 𝑑𝑑𝜆1 ≤ 𝑑𝑑𝜆2 if and only if 𝜆1 ≥ 𝜆2. For example,

𝑑𝑑𝜆(.,.) decreases with 𝜆. Here, 𝜆1 and 𝜆2 are two different

values of 𝜆.

3. As we have assumed that, 𝑓𝑖, 𝑓𝑗 are scaled between [0, 1],

we have 𝑑𝑑1 (𝑓𝑖, 𝑓𝑗) = 0, because (𝑓𝑖 + 1) will always be

greater than or equal to 𝑓𝑗.

To generalize the dilation distance defined so far, we consider

Δ(𝑓𝑖, 𝑓𝑗) =

∫︁ 1

𝜆=0

𝑑𝑑𝜆 ≈
1

𝑁

𝑁−1∑︁
𝑖=0

(︀
𝑑𝑑𝑖/𝑁

)︀
(3.6)

For example, we consider an average of 𝑑𝑑𝜆 over all scales of

𝜆 to be the dilation distance. In practice, this is approximated
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by the average over several levels, as shown in Eq.3.6. Here, 𝑁

denotes the discretization parameter, the number of discrete 𝜆

values used to approximate the integral from 0 to 1. Specifically,

the intensity interval [0, 1] is divided into 𝑁 equally spaced

steps/levels, and the average dilation distance is computed over

these levels.

Fig.3-3 illustrates the above definitions. Consider the 1-D

grayscale images 𝑓1, 𝑓2 as shown in the figure. At scale 𝜆 = 0,

the dilation distance would be the distance between the peaks

𝑑1. For 𝜆 between (0, 𝜆1), this value would not change. At 𝜆1,

the distance drops to the next closest peak, and this distance

would be equal to 𝑑2 as shown. Similarly, the next change would

be when 𝜆 = 𝜆2 > 𝜆1 when the distance would reduce to 𝑑3.

This is illustrated as a plot of 𝑑𝑑𝜆(𝑓1, 𝑓2) versus 𝜆 on the right

side of the Fig.3-3. The x-axis represents 𝜆 (intensity levels),

and the y-axis represents the dilation distance. The quantity

Δ(𝑓𝑖, 𝑓𝑗) is obtained as the area under this curve. Since this ex-

ample is shown in the case of the 1-D image, it can be extended

to 2-D images also. In the case of a 2-D image, if we visualize it

as a 3-D surface (intensity value as 3rd dimension), the dilation

distance vs 𝜆 curve can be seen as evaluating cross-sections of
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Figure 3-3: Figure illustrating the definitions of 𝑑𝑑𝜆(., .) and ∆(.,.). On the left, we have
two functions 𝑓1 and 𝑓2. At scale 𝜆 = 0, the dilation distance between the peaks, is 𝑑1.
For all lambda between 0 and 𝜆1, this quantity would not change. At 𝜆1, the dilation
distance would be the distance between the "closest" peaks, which gives 𝑑2. The next
change would be at 𝜆2 when the distance further drops to 𝑑3. Accordingly, one can
plot 𝑑𝑑𝜆 versus 𝜆 as shown on the right. The quantity ∆(𝑓1, 𝑓2) is obtained as the area
under the curve.

this 3-D surface at different intensity levels 𝜆.

Note that, as with 𝑑𝑑(., .), Δ(.,.) is also non-symmetric. Hence,

we consider

̂︀Δ(𝑓𝑖, 𝑓𝑗) = Δ (𝑓𝑖, 𝑓𝑗) + Δ (𝑓𝑗, 𝑓𝑖) (3.7)

to be the dilation distance between the bands.

3.4 Complexity Analysis

The dilation operator typically has a time complexity of 𝒪(𝑛𝑝),

where 𝑛𝑝 denotes the total number of pixels present in one

grayscale band of 𝐻. The number of dilations required to get

the distance between two bands using the disk structuring ele-
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ment has a worst-case time complexity of 𝒪(√𝑛𝑝). If the set of

bands is given by 𝑛𝑧, then computing the dilation distance be-

tween all pairs will have a complexity of 𝒪
(︀
|𝑛𝑧|2

)︀
. Hence, the

total complexity is obtained by 𝒪
(︁
𝑛
3/2
𝑝 |𝑛𝑧|2

)︁
. However, this

time complexity is based on single-thread processing and has a

huge potential for parallelization. CUDA-based dilation opera-

tors [130] are comparatively very fast. Also, computing the dis-

tance between two different pairs is independent of each other

and can be accomplished using independent processes that can

easily be parallelized. Hence, given enough resources for paral-

lel processing, the complexity could potentially be reduced to

𝒪(√𝑛𝑝). This is considered for future work.

3.4.1 Selection of a Subset of Bands Using Spectral Clustering

To select a subset of size 𝐾, we use spectral clustering [131–

133]. Let 𝑉 denote the set of vertices where each vertex cor-

responds to a single band of hyperspectral image 𝐻. Consider

a complete graph, i.e., we assume all pairs of vertices are con-

nected. Hence, the edge set is given by 𝐸 = 𝑉 × 𝑉 . We as-

sume that the edge weight between two vertices corresponding

to 𝑓𝑖 and 𝑓𝑗 is given by 𝑊𝑒 ({𝑓𝑖, 𝑓𝑗}) = exp
(︁
−𝛽 * ̂︀Δ(𝑓𝑖, 𝑓𝑗)

)︁
.
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Then, we perform spectral clustering [133] on the graph 𝐺 =

(𝑉,𝐸,𝑊𝑒), to obtain 𝐾 (required number of bands) clusters.

Next, we identify the representative bands from each cluster as

the bands that maximize the sum of similarities, that is

argmax
𝑖

∑︁
𝑗

exp
(︁
−𝛽 * ̂︀Δ(𝑓𝑖, 𝑓𝑗)

)︁
(3.8)

The value of 𝛽 is identified empirically. We consider different

values for 𝛽 (here we use {1, 3, 5, 10} ) and use the optimal

value for each case based on their effects on the clustering and

subsequent classification performance of the selected bands.

To summarize the band selection using dilation distances,

1. First, compute the dilation distances between all pairs of

bands using (Eq.3.7). This involves considering different

intensity levels (scales) represented by 𝜆.

2. Next, use the spectral clustering procedure (as described

above) to identify the clusters of bands (𝐾). Each cluster

will contain bands that are similar to each other in terms

of their dilation distance, ensuring that the bands within a

cluster have similar spectral characteristics.

3. Identify a representative band from each cluster by maxi-
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mizing the sum of similarities, as described in Eq.3.8.

3.5 Experimental Result

3.5.1 Dataset Used

University of Pavia: The dataset used in our experiment is

the Hyperspectral Image of Pavia University [134] acquired by

ROSIS sensor. The size of the data is 610 by 610 pixels. How-

ever, some of the samples contain no information, so they are

discarded. It has 103 spectral bands and 9 different classes. For

illustrative purposes, Fig.3-4 shows the false color composition

of Pavia University Data and its ground truth data with class

details.

Indian Pine Dataset: The AVIRIS sensor collected a 145x145

pixel scene over Indiana’s Indian Pines site [134], featuring 224

spectral bands within 0.4–2.5x 10−6 meter wavelengths. This

subset of a larger scene encompasses agriculture, forests, high-

ways, a rail line, and sparse housing. Captured in June, early-

stage crops like corn and soybeans covered less than 5% of the

area. With non-mutually exclusive ground truth divided into

16 classes, some spectral bands were eliminated due to water

absorption. The reduced 200-band data is accessible. for visu-
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Figure 3-4: False color composition and ground truth representation of Pavia University.
The false color composite image highlights various land cover types in different colors.
The corresponding ground truth map of Pavia University delineates 9 different classes
of land cover from its ground truth.

alization, the false color composition and corresponding ground

truth data are shown in Fig.3-5.

3.5.2 Result Analysis

As illustrated in Fig.3-1, the main aspect that differentiates

dilation distance-based band selection from other approaches is
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Figure 3-5: False color composition and ground truth representation of Indian Pine
Dataset. The false color composite image highlights various land cover types in different
colors. The corresponding ground truth map of the Indian Pine dataset delineates 16
different classes of land cover from its ground truth.
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the fact that it selects the bands such that each band represents

a unique spatial object in the image.

In this section, we use the real-world data sets Indian Pines

data and the University of Pavia data to illustrate this aspect.

We discuss cases where dilation distances are optimal as well

as cases where they would not be optimal. The selected bands

for both datasets are shown in Fig.3-6a and Fig.3-6b.

First, we answer: what are the bands selected using dilation

distance? To answer this, we perform the following experiment:

consider the average of pixels for each class in the ground truth

and for each available band. These plots are shown in Fig.3-6.

The bands selected are shown by vertical dashed lines. To un-

derstand this particular selection, recall that dilation distance

selects those bands that highlight a single object. This implies

bands where a single object/class gets highlighted the most. In

practice, this translates to identifying the bands that maximize

the encircled regions in Fig.3-6. In other words, it identifies

those bands that can differentiate between the classes. This jus-

tifies the superior performance of dilation distance-based band

selection.

For a quantitative evaluation of the method, we consider us-
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(a)

(b)

Figure 3-6: Figure illustrating the band selection by dilation distance. In (a), using
the Indian Pines data set, we plot the average intensity of all pixels for each class
for each band and obtain the plot as shown. The dashed vertical lines represent the
bands selected using the dilation distances. Observe that the bands selected are such
that the classes can easily be differentiated. This is because of the fact that dilation
distance selects the bands such that spatial objects can easily be differentiated. A
similar phenomenon is seen in (b), where the University of Pavia data set is used. (a)
Indian Pines. (b) University of Pavia.
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(a)

(b)

Figure 3-7: Accuracy versus the number of bands. For the evaluation of a subset
of bands, we use the accuracies obtained by SVM. We split the data set into train
(10%) and test (90%) and trained the SVM classifier on the training set with the given
subset of bands. The testing accuracy is plotted versus the number of bands. The
hyperparameters are selected using fivefold cross-validation. Baseline comparison with
two other methods, ONR and uniform band selection (UBS), described in [128], is
included. The number of bands for the dilation-distance approach is taken from 2 to
60 using a step size of 2. The number of bands for ONR and UBS is taken from 3 to
60 using a step size of 3.
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ing the evaluation based on support vector machines (SVM)

[135]. We split the data into train (10%) and test (90%) data

sets. To evaluate a given subset of bands, we perform the

SVM classification using only this subset of bands. Optimal

hyperparameters are chosen using a fivefold cross-validation

scheme. Here, the test accuracy would indicate how well the

subset of bands represents the original set. Test accuracy is

referred to as SVM accuracy or simply accuracy, depending on

the context. Fig.3-7 shows the plots of accuracies versus the

number of bands for Indian pines and the University of Pavia

data sets. As a baseline, the accuracies when all bands are

taken are also shown. Observe, from Fig.3-7a, that we reach

the baseline very quickly at around 30 bands. However, from

Fig.3-7b, the convergence to the baseline is slow. This is at-

tributed to the fact that objects within the same class in the

University of Pavia data set are disconnected. Hence, dila-

tion distance-based band selection does not perform the best

in this case. Table 3.1 compiles the results for 30 bands and

compares them with existing approaches- Ward’s Linkage strat-

egy using Divergence (WaluDI) [136], Minimum-variance PCA

(MVPCA) [137], Improved Sparse Subspace Clustering (ISSC)
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[138], Adaptive Distance-Based Band Hierarchy (ADHB) [139],

Optimal neighborhood reconstruction (ONR) [128], and Fast

and Latent Low-Rank Subspace Clustering (FLLRSC) [140].

As per [138], ISSC obtains the current state-of-art results. We

use three metrics- overall classification accuracy (OCA), aver-

age classification accuracy (ACA), and Kappa coefficient (KC).

OCA ACA KC

Indian Pines

Dilation Distances 79.28 73.84 76.49
All Bands 79.24 70.93 76.34
WaluDI 77.15 69.35 73.86
MVPCA 70.18 65.99 65.83

ISSC 81.61 76.85 78.98
ADBH 78.52 77.75 76.5
ONR 79.00 76.45 77.27

FLLRSC 82.31 * * * * * *

University

Dilation-Distance 92.14 91.29 89.63
All Bands 93.39 92.09 91.26
WaluDI 86.04 83.69 81.11
MVPCA 92.70 90.51 90.27

ISSC 94.14 92.00 92.20
ADBH 91.63 89.30 89
ONR 92.28 92.24 89.84

FLLRSC 94.41 * * * * * *

Table 3.1: Evaluation Using SVM for 30 Bands. Note: OCA is considered *** indicated
the results are not available.

The all-band accuracies are also provided as a baseline. Observe

that dilation distance-based band selection performs compara-
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bly with other approaches on the Indian pines data set. For

the University of Pavia data set, it is comparable with other

approaches except for ISSC, and FLLRSC. This, to reiterate,

is due to the fact that dilation distance is not designed to cap-

ture objects that are disconnected, as is the case in the Uni-

versity of Pavia data set. Suitable preprocessing for dilation

distance-based band selection would improve the results and is

considered for future work.

3.6 Conclusion and Future Work

To summarize, in this chapter, we use the dilation operator from

MM to define dilation distance, which is in turn used for band

selection. We show that dilation distance can capture spatial

distances. Hence, we show that dilation distance-based band

selection selects bands that identify a unique spatial object.

We illustrate this property using both toy as well as real data

sets. We empirically prove that dilation distance provides a

competitive approach for band selection.

However, there are several avenues to improve this approach

further. First, selecting suitable preprocessing steps to allow for

objects that are spatially disconnected will improve the perfor-
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mance of this approach. Also, other approaches to selecting

the subset of bands based on dilation distance may be exper-

imented with. We believe the main advantage of the current

approach is that it can be used along with other approaches,

such as ISSC. This is considered for future work. Also, one may

ask a related question: identify the "signature" band of a given

object, i.e., the band that differentiates it from the rest of the

objects. Dilation distance is uniquely positioned to answer this

question, and this is also considered for future work.
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Chapter 4

Terrain Surface Generation via

Hierarchical Median Set Based

Interpolation

4.1 Introduction

Understanding Earth’s topography is crucial for studying changes

in shape, texture, and patterns resulting from natural or human

alterations. Qualitative and quantitative topographic informa-

tion is essential for analyzing climate, vegetation distribution,

and surface processes. Traditionally, topographic maps have

been used for quantitative analysis. A topographic map is a

two-dimensional representation of a region’s surface features,

depicting elevation changes through the use of contour lines.

Elevation refers to the height of a point on the Earth’s surface
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relative to the mean sea level. Contour lines on these maps con-

nect points of equal elevation, effectively illustrating the three-

dimensional landscape on a flat surface. Contour maps provide

reliable elevation measurements, which is especially useful for

studying historical landscapes. They are also cost-effective for

covering larger areas with sparse data, making them an invalu-

able tool for modern topographic analysis.

Digital Elevation Models (DEMs), on the other hand, fur-

ther enhance our understanding of topography by providing a

3-D digital representation of the terrain’s surface. A DEM is a

digital model that depicts elevation or the ground height above

sea level, typically using a grid where each cell represents an

elevation value. DEMs can be generated from both contour

maps and remote sensing data. Despite advancements in re-

mote sensing technologies, contour maps remain a preferred

source for creating DEMs [141–143] or terrain surface. This is

due to the accuracy of contour maps in representing true terrain

elevations, whereas satellite data might mistakenly record ob-

ject heights, like buildings or trees, as ground elevation [144].

Additionally, topographic maps remain a vital source of ele-

vation data globally and offer unique insights into historical

Page 64



4.1. Introduction

landscapes where remote sensing can be cost-prohibitive. The

simplicity and cost-effectiveness of storing and presenting large

area DEMs using sparse data like contours, is another advan-

tage. Thus, reconstructing terrain surfaces from contour maps

is crucial for creating accurate DEMs, which are invaluable for

further analyzing and visualizing surface properties.

In recent times, terrain surface reconstruction through inter-

polation methods, particularly using contour maps, has gained

popularity. Reconstructing a topographic or terrain surface

starts with the basic principle and assumption that it is con-

tinuous and smooth [145–147]. A topographic surface is often

described as "continuous" and "smooth" for cartographic rep-

resentation and modeling. "Continuous" suggests that the sur-

face doesn’t have any breaks or gaps, allowing for theoretical

movement from any point to any other point without leaving

the surface. "Smooth" refers to the absence of abrupt changes

in gradient or direction, like cliffs or overhangs. Another pri-

mary assumption is that the gradient between the two contour

lines is relatively linear. This means that the elevation change

between the two contour lines is steady and consistent, not

abrupt and drastic. It implies that the neighboring contours
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carry a lot of information about the spatial location closed

within those contours. Thus, most of the topographic surface

reconstruction algorithms interpolate to create a terrain surface

from the known existing elevation points [148]. The two most

common methods for generating a terrain surface using con-

tour lines are constructing triangulation of points (TIN) [149]

on contours or interpolating onto a grid of contours. Grid of

contours are represented as raster data, where raster data pro-

vides a structured method for storing, processing, and display-

ing spatial information. In this format, each area of interest is

partitioned into rows and columns, forming a grid where each

cell represents a specific location on the map. Within this grid,

attributes such as elevation values are assigned to each cell,

allowing for the representation of terrain features. For process-

ing raster data, this grid can be treated as a pixel grid of 4N or

8N connectivity. In this chapter, our primary focus is on the

methods for reconstructing the terrain surface from grid-based

contour lines, which involves interpolating each pixel’s eleva-

tion value from existing contour pixels [150]. In this thesis, we

are considering an 8N-connectivity grid to represent contours

and henceforth, it will be simply referred to as the grid for
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the rest of this chapter. An in-depth discussion of various ex-

isting interpolation methods for terrain surface reconstruction

is done [151–153]. However, many of them cannot show sat-

isfactory outcomes in situations such as small ridges, valleys,

modeling slopes, etc. Some are prone to smoothening or some

are not able to provide the terrain trends or generate peaks that

are not present in the input sample [154].

This chapter adopts a mathematical morphology-based ap-

proach to interpolate a terrain surface by generating intermedi-

ate contours from existing contour lines. This method utilizes a

non-parametric binary morphological operator and morpholog-

ical interpolation methods to interpolate the median contours

in hierarchical order. In the study [155–157], it has been estab-

lished that mathematical morphology (MM) operators are well

suited for visualizing the geometry of terrain surfaces. Although

the articles mentioned above, initially attempted to generate a

smooth surface by generating intermediate contours using MM,

in this chapter, we adopted the idea of hierarchically generating

a median element set to determine the median contours between

the source and target contours. Hausdorff’s Median Set calcu-

lation is conducted along with the Threshold Decomposition of
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the raster form of the input contour map. The major contri-

bution of this chapter includes the following: 1) for the first

time, this binary morphological median set concept is utilized

in generating terrain surface from contours using source and

target sets extracted from contours, which give a morphing-like

progression of how the source contour changes to the target

contour, 2) the idea of threshold decomposition makes it less

expensive to extract the contour boundary to decide the po-

sition of the median contour, 3) simplification of the interme-

diate contour generation problem to find the median elevation

region from the binary set, 4) description of the contour region

properties using a spatial and logical relationship in different

scenarios. This approach of hierarchical recursive generation of

intermediate contours to create a smooth and continuous ter-

rain surface also preserves the geometric structure of existing

contours and the newly generated intermediate contours. Here

we also took care of the flat hilltop and saddle areas whose

information is not available in the input contours.
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4.2 Some Background Concept

4.2.1 Contour Lines

Contour lines, or isolines, connect points of equal elevation on a

map, providing a clear representation of the terrain’s elevation

variations. As already mentioned, elevation refers to the height

of a point or location on the earth’s surface above a reference

level, commonly measured from the mean sea level, providing

crucial information about the vertical position of terrain fea-

tures.

Contour lines, or isolines, are connected points having the

same elevation values throughout the connected points. We as-

sume that all the contours in the contour map are well-sampled

and well-connected segments. Contour lines possess some in-

herent properties. Some of the contour properties include:

1. Two contours of different elevation values never intersect

each other [158].

2. It always follows the child-parent or inside-outside relation-

ship, e.g. if 𝐶𝑖 and 𝐶𝑗 are two contours and if their spatial

relationship can be described as 𝐶𝑖 is inside 𝐶𝑗 or 𝐶𝑗 is

outside 𝐶𝑖, then it is always maintained an ordered rela-
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tionship for their corresponding elevation values 𝑒(𝐶𝑖) and

𝑒(𝐶𝑗) such that, 𝑒(𝐶𝑖) ≥ 𝑒(𝐶𝑗) or 𝑒(𝐶𝑗) ≥ 𝑒(𝐶𝑖) [159].

3. Contour Region – An area surrounded by a closed contour

is known as the Contour Region [159].

4. Any point 𝑝 in the neighborhood of a contour point on the

terrain surface, can have only two values, either greater

than or equal to the contour elevation value or less than

the contour elevation value. If all the points in a contour

region are assumed to have the same elevation value, then

it means that the region is assumed to be flat.

All these properties mentioned above carry important informa-

tion for generating intermediate contours between two adjacent

contours, which are essential for reconstructing the terrain sur-

face.

4.2.2 Hausdorff Erosion Distance and Hausdorff Dilation Dis-

tance

Let 𝐸 be a metric space, of distance 𝑑. So, for each non-empty

subset 𝑋 ⊂ 𝐸 and 𝑌 ⊂ 𝐸, the classical Hausdorff distance is
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defined as,

𝑑𝐻 = max

{︂
sup
𝑥∈𝑋

𝑑(𝑥, 𝑌 ); sup
𝑦∈𝑌

𝑑(𝑦,𝑋)

}︂
where, 𝑑(𝑥, 𝑌 ) = inf{𝑑(𝑥, 𝑦), 𝑦 ∈ 𝑌 }, which gives the distance

from a point 𝑥 ∈ 𝑋 to 𝑦 ∈ 𝑌 . In mathematical morphol-

ogy, as mentioned in [160], the above-mentioned Hausdorff dis-

tance can be rewritten in terms of dilation (𝛿𝑛) and erosion

(𝜀𝑛) by SE 𝐵 of size 𝑛 in 𝐸 [160]. These derived distances

are called Hausdorff dilation distance (𝜌(𝑋, 𝑌 )) and Hausdorff

erosion distance (𝜎(𝑋, 𝑌 )) between non-empty compact set 𝑋

and 𝑌 respectively.

𝜌(𝑋, 𝑌 ) = inf {𝑛 : 𝑌 ⊆ 𝛿𝑛(𝑋), 𝑋 ⊆ 𝛿𝑛(𝑌 )} (4.1)

𝜎(𝑋, 𝑌 ) = inf {𝑛 : 𝜀𝑛(𝑌 ) ⊆ 𝑋, 𝜀𝑛(𝑋) ⊆ 𝑌 } (4.2)

where 𝛿𝑛(𝑋) and 𝛿𝑛(𝑌 ) is dilation of 𝑋 and 𝑌 by SE of size

𝑛 and similarly 𝜀𝑛(𝑋), 𝜀𝑛(𝑌 ) is erosion of 𝑋 and 𝑌 by SE of

size 𝑛. For instance, the Hausdorff erosion distance (𝜎(𝑋, 𝑌 ))

between 𝑋 and 𝑌 is defined as the smallest 𝑛 such that 𝑋 is

contained within the erosion of 𝑌 by 𝑛-sized SE (𝐵), and vice
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versa. Similarly, the Hausdorff dilation distance (𝜌(𝑋, 𝑌 )) be-

tween 𝑋 and 𝑌 is determined using dilation operations. Alge-

braically, these two distances are dual to each other and follow

all the properties of a distance metric. For further properties

and proofs, the reader can refer to [160].

The SE of size 𝑛 mentioned in Eq.4.1 and Eq.4.2 can also be

explained in their multi-scale version as a sequence of repetitive

operation with SE of smaller size. For example, dilation (𝛿) and

erosion (𝜀) with a SE of size 𝑛 are equivalent to dilation and

erosion 𝑛-times with the same SE of size 1 (in case of disk SE).

As mentioned in [60], formally, we can write it as:

𝛿𝑛(𝐵) = 𝛿𝐵(𝑛)

This relation means that dilating the structuring element 𝐵,

𝑛 times is equivalent to considering a single dilation operation

with a structuring element that has been scaled or expanded to

size 𝑛.

4.2.3 Median Set Computation

Jean Serra introduced a method to compute the median set

in [160] using the Hausdorff dilation distance (𝜌) and Hausdorff
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erosion distance (𝜎) in Eq.(4.1) and Eq.(4.2). It is also known

as Serra’s median. Given two non-empty and ordered nested

sets, 𝑋 and 𝑌 , such that 𝑋 is completely contained in 𝑌 ,

i.e. 𝑋 ⊆ 𝑌 , the median (𝑀) between these two sets can be

computed as:

𝑀(𝑋, 𝑌 ) =
⋃︁

(𝑋 ⊕ 𝑛𝐵) ∩ (𝑌 ⊖ 𝑛𝐵) | ∀𝑛 ≥ 0 (4.3)

The concept of multi-scale erosion and dilation (𝑛𝐵 denotes

a structuring element obtained by 𝐵⊕𝐵⊕ 𝐵 . . . (n times) . . .⊕
𝐵) is used during the computation of the median set. We can

say that 𝑀 is midway between 𝑋 and 𝑌 and call it a median,

as for every point 𝑚′ ∈ 𝑀 , ∃𝑛 ≥ 0 such that 𝑑(𝑚′, 𝑋) ≤ 𝑛

and 𝑑(𝑚′, 𝑌 𝑐) ≥ 𝑛, where 𝑑 is the distance between two sets

as discussed in section 4.2.2, 𝑌 𝑐 is the complement of set 𝑌 and⋃︀
denotes union operation. From this observation, it can be

implied that this median set follows a symmetrical property. It

is shown in [160] that the median set 𝑀(𝑋, 𝑌 ) is at 𝜇 Hausdorff

dilation distance from 𝑋 and 𝜇 Hausdorff erosion distance from

𝑌 . 𝜇 is defined as:

𝜇 = inf{𝑛 : 𝑛 ≥ 0, (𝑋 ⊕ 𝑛𝐵) ⊇ (𝑌 ⊖ 𝑛𝐵)}
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From the above-mentioned relation, it can be claimed that

if 𝑋 and 𝑌 are ordered and non-empty sets and 𝑋 ⊆ 𝑌 , then

also 𝑋 ⊆ 𝑀(𝑋, 𝑌 ) ⊆ 𝑌 . For further proof and properties,

readers can refer to [160].

4.2.4 Threshold Decomposition

A digital gray-scale image signal 𝑓 (𝑥, 𝑦) at pixel location (𝑥, 𝑦)

is assumed to be a non-negative 2D sequence, with intensity

values 𝑞 = 0, 1, 2, . . . , 𝑄. This signal can be thresholded at all

possible intensity values 0 < 𝑞 < 𝑄 to obtain 𝑄 + 1 threshold

binary images denoted as 𝑓𝑞(𝑥, 𝑦), where,

𝑓𝑞(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1, if 𝑓 (𝑥, 𝑦) ≥ 𝑞

0, if 𝑓 (𝑥, 𝑦) < 𝑞
(4.4)

The reconstruction of the original image 𝑓 from its thresh-

olded binary images can be expressed as :

𝑓 (𝑥, 𝑦) =

𝑄∑︁
𝑞=1

𝑓𝑞(𝑥, 𝑦), ∀𝑥, 𝑦

= max{𝑞 : 𝑓𝑞(𝑥, 𝑦) = 1}

(4.5)

Page 74



4.3. Methodology

Thus, applying an discrete space image transformation Ω

to the threshold image and original image 𝑓 gives [161] the

following:

Ω[𝑡𝑞(𝑓 )] = 𝑡𝑞[Ω(𝑓 )] where 𝑡𝑞(𝑓 ) = 𝑓𝑞 (4.6)

This relationship holds true for all 𝑞 and for the entire image

domain 𝑥, 𝑦. For further details, readers can refer to the article

[161].

4.3 Methodology

The primary objective of this work is to reconstruct the ter-

rain surface by generating intermediate contours from existing

contour lines within a given contour map. The task involves re-

cursively determining intermediate contours between two suc-

cessive pairs of contours termed as source and target contours.

This problem of terrain surface reconstruction from a contour

map can be formally stated as follows:

Given a pair of adjacent contours denoted as 𝐶𝑖 and 𝐶𝑗 with

their respective elevation values denoted as 𝑒𝑖 = 𝑒(𝐶𝑖) and

𝑒𝑗 = 𝑒(𝐶𝑗) (for simplicity, 𝑒(𝐶𝑖) will be referenced as 𝑒𝑖 hence-

forth). Defining an enclosed inter-contour space as 𝜙, the ob-
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jective is to generate all possible intermediate contours 𝐶𝑚 ∈ 𝜙

such that 𝑒𝑖 < 𝑒(𝐶𝑚) = 𝑒𝑚 < 𝑒𝑗. The aim is to recon-

struct a terrain surface Ψ across the image space such that

∀𝑝 ∈ 𝜙, 𝑒(𝑝) = 𝑒𝑖, if 𝑝 ∈ 𝐶𝑖 and 𝑒(𝑝) = 𝑒𝑗, if 𝑝 ∈ 𝐶𝑗 and

𝑒(𝑝) = [𝑒𝑖, 𝑒𝑗], if 𝑝 ∈ 𝜙, where, 𝑒(𝑝) or 𝑒𝑝 is elevation value

of any point 𝑝 in the intercontour space(𝜙) between 𝐶𝑖 and 𝐶𝑗.

This statement can be extended to the scenario where 𝑛 > 2 in-

volves more than two contours 𝐶𝑖 with corresponding elevations

𝑒𝑖. The special cases of extrapolating summits, which are the

highest points of elevated terrain, where 𝐶𝑗 = 𝜑, or pits, repre-

senting depressions or low points in the terrain, where 𝐶𝑖 = 𝜑,

are also discussed here. Contour morphology and contour line

properties are vital in producing intermediate contours between

any successive contours. The proposed approach is also based

on some given contour properties and assumptions that have

already been discussed. Further, a series of simplifications of

the problem of intermediate contour generation to median set

computation is also to be discussed.

Page 76



4.3. Methodology

4.3.1 Intermediate Contour Generation

Based on the properties of the contour lines discussed in the

above sections, the objective of reconstructing the terrain sur-

face by generating intermediate contours between two succes-

sive contours can be achieved by the sequential steps as follows:

1. As we propose a grid-based approach, we convert available

contour maps (if they are not already a grid of contours)

into a regular grid-based (8N-connectivity) contour (raster

format using GIS tools), where each grid point represents a

location on the map. Converting shapefiles to raster data

is a common preprocessing step in geographic information

systems (GIS) and spatial analysis workflows, especially

when working with spatial data for tasks such as terrain

analysis. This conversion represents contour lines in terms

of the grid, rendering them suitable for subsequent grid-

based interpolation techniques.

2. Using Threshold Decomposition, the contour map is de-

composed into a set of binary images at each contour ele-

vation level present, termed as Threshold Elevation regions

(TERs).
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3. Establishing a spatial relationship between TERs extracted

and their categorization.

4. Computation of Median Elevation Region (MERs) recur-

sively using the Median Set computation method between

two successive TERs.

5. Generation of a sequence of intermediate contours, based

on the produced MERs for every pair of input successive

TERs, achieved through computing the Morphological Gra-

dient of MERs.

6. Assigning the computed elevation values to the obtained

intermediate contours.

7. Repeat the steps from 2 to 6, for all the successive input

contours, until no other contour can be generated or the

inter-contour space is completely exhausted. Complete ex-

haustion of the inter-contour space is indicated when all

the pixels of the inter-contour space have values greater

than 0 (0 belongs to the background and 1 belongs to the

foreground pixels). The number of intermediate contours

that can be generated depends on the width between two

successive contours.
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For a better understanding, Fig.4-1 illustrates a flow dia-

gram, providing a sequential representation of the steps re-

quired to compute intermediate contours between successive

contours, which in turn produce a smooth terrain surface (DEM)

from a contour map. A complete algorithm to generate interme-

diate contours and a terrain surface(DEM) from a given contour

map is given in Algorithm 1.

Algorithm 1 COMPUTE INTERMEDIATE CONTOURS
Input: Contour map with a set of contours 𝐶𝑖

Output: Grid of Interpolated heights/digital elevation model
1: 𝑊 ← Input image
2: Elv_Reg← total number of contours in 𝑊
3: for each 𝑖 in Elv_Reg do
4: 𝑒𝑖 ← elevation of contour 𝐶𝑖

5: 𝑒𝑖+1 ← elevation of contour 𝐶𝑖+1

6: Initialize an empty queue 𝑄
7: 𝑆 ← Intercontour Space between 𝐶𝑖 and 𝐶𝑖+1

8: 𝑇𝑖 ← compute TER for contour 𝐶𝑖 using Eq.4.7-Eq.4.9
9: 𝑇𝑖+1 ← compute TER for contour 𝐶𝑖+1 using Eq.4.7 - Eq.4.9

10: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒((𝑇𝑖, 𝑇𝑖+1)) ◁ refer to [162] for enqueue operations
11: while 𝑆.any() < 0 do ◁ 𝑆 is pixels in inter-contour space 𝑆
12: 𝑃 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒(0) ◁ refer to [162] for dequeue operations
13: 𝑇𝑖 ← 𝑃 [0], 𝑇𝑖+1 ← 𝑃 [1])
14: 𝑀 ← compute MER for (𝑇𝑖 and 𝑇𝑖+1) using Eq.4.10-Eq.4.13
15: 𝐶𝑚 ← compute morphological gradient of 𝑀 using Eq.4.14
16: 𝑒𝑚 ← 1/2(𝑒𝑖 + 𝑒𝑗) -Eq.4.15
17: Update 𝑊 with the contour 𝐶𝑚

18: 𝑄.enqueue((𝑇𝑖,𝑀),(𝑀,𝑇𝑖+1))
19: end while
20: end for
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Figure 4-1: A Sequential Representation of the Methodology to generate intermediate
contours from successive contours from a contour map.

4.3.2 Extraction of Threshold Elevation Regions

The objective of this method is to generate a surface of higher

spatial resolution from the available sparse contours, in other

words, low spatial resolution elevation contours. The proper-

ties of isolines or contour lines ensure that two contour lines

are always approximately parallel, creating a constant contour

interval. Moreover, the elevations rarely deviate from the slope

defined by the contours [159]. As mentioned in earlier liter-

ature, the terrain surface can be generated by inserting new

contours midway between the successive contours. Our pro-

posed algorithm computes these new intermediate contours by

computing recursively the sequence of the Median Elevation Re-
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gions (MERs) using the median set computation between two

successive contour lines. Since the new intermediate contour

we generate is approximately midway between two successive

contours, the new intermediate contour is assigned an elevation

of the mean of the considered two successive contours.

The methodology mentioned here is applied to a grid of con-

tour lines. All the topographic maps are available as a shape

file. In the very first step, all the shape files are converted to

raster data. The set of contour lines is then presented as a grid

of data.

The raster image of contours obtained from processing the

topographic map can be considered a greyscale image with in-

tensity values of the elevation of the contour lines. Instead of

processing the grid of the contour map as a grayscale image, a

procedure is proposed here for generating binary input images

of contour regions from a limited set of layers, i.e. the input

set of contours. For example, if we have a grid representing a

terrain with various contour lines indicating different elevation

levels, a binary input set of contour regions could be generated

by assigning a value of 1 to pixels within each contour region

and a value of 0 to pixels outside those regions.
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The contour information presented in a given contour map

can be considered as spatially layered information about an ob-

ject or event. This information can be ordered, semi-ordered, or

disordered. For example, if we have two contours 𝐶𝑖 and 𝐶𝑗, let

us denote their extracted binary contour regions at each con-

tour elevation level as 𝑋𝑖 and 𝑋𝑗, respectively. For notational

simplicity, we denote 𝑋𝑖 and 𝑋𝑗 as sets, and we term them as

source set and target set, respectively. let 𝑘 and 𝑙 represent

the respective numbers of subsets present in 𝑋𝑖 and 𝑋𝑗 (an

example is given in Fig.4-2 to give an idea of how these subsets

are considered), where 𝑘 is the number of subsets in 𝑋𝑖 and 𝑙

is the number of subsets in 𝑋𝑗. Consequently, all the subsets

present in the sets 𝑋𝑖 and 𝑋𝑗 are denoted as 𝑋1
𝑖 , 𝑋

2
𝑖 , . . . , 𝑋

𝑘
𝑖

and 𝑋1
𝑗 , 𝑋

2
𝑗 , . . . , 𝑋

𝑙
𝑗, ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ N.

A simple method is suggested here for extracting these sets

(𝑋𝑖 and 𝑋𝑗) from the input contour map. In terms of eleva-

tion levels, we call them threshold elevation regions (TERs).

Based on Eq: 4.4- 4.6, we generate TERs for each available

elevation value. Let us consider the input contour map as a

2-D sequence 𝑓 (𝑥, 𝑦), which assumes all the elevation levels of

contours as intensity values: 𝑒𝑖, for 𝑖 ∈ {1, 2, . . . , 𝑛𝑐}, where
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𝑒𝑖 is the elevation levels or intensity level for all contours 𝐶𝑖 in

𝑓 (𝑥, 𝑦). At all possible intensity levels (elevation levels) ∀𝑖, 𝑒𝑖,
we threshold the image 𝑓 (𝑥, 𝑦) such that we obtain the set of

thresholded binary images.

∀𝑒𝑖

𝑓𝑒𝑖(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 𝑓 (𝑥, 𝑦) = 𝑒𝑖,

0 if 𝑓 (𝑥, 𝑦) ̸= 𝑒𝑖.
(4.7)

In simpler terms, this equation denotes that for each contour

level, we create a binary image where the pixels are either 1

(representing points on the contour) or 0 (representing points

not on the contour) based on whether their elevation matches

the current contour level. This process is repeated for each

contour level to obtain a set of threshold binary images. The set

of binary images obtained using Eq.4.7 gives us all the contours

at each elevation level. We convert them to threshold elevation

regions (TERs) by considering the regions under the contours

as flat regions, i.e. with the same elevation value as the contour.

Let us assume that 𝐶𝑖 and 𝐶𝑖+1 are two consecutive contours,

and 𝑒𝑖 and 𝑒𝑖+1 are their respective elevation values. Thus, two

cases are discussed to obtain their corresponding TERs.
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Case 1: 𝑒𝑖 > 𝑒𝑖+1

𝑇𝐸𝑅𝑖 = 𝑇𝑖 = 𝑓𝑒𝑖(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 𝑓 (𝑥, 𝑦) ≤ 𝑒𝑖,

0 otherwise.
(4.8)

Case 2: 𝑒𝑖 < 𝑒𝑖+1

𝑇𝐸𝑅𝑖 = 𝑇𝑖 = 𝑓𝑒𝑖(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 if 𝑓 (𝑥, 𝑦) > 𝑒𝑖,

0 otherwise.
(4.9)

In these equations, 𝑇𝑖 represents the binary image (TER)

obtained from 𝑓𝑒𝑖(𝑥, 𝑦) by considering all the points within the

contoured region where 𝑓 (𝑥, 𝑦) ≤ 𝑒𝑖 or 𝑓 (𝑥, 𝑦) > 𝑒𝑖 for con-

tour 𝐶𝑖. These equations outline the method for generating

TERs representing contours from an input contour map based

on elevation values. The purpose of these equations is to gen-

erate threshold elevation regions (TERs) that segment the con-

tour map based on elevation values. They create binary im-

ages highlighting specific regions either below or above a given

contour elevation, helping in the identification of different el-

evation levels (see Fig.4-3). It simplifies the interpolation of

intermediate contours between consecutive contour levels. The
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obtained TERs, 𝑇𝑖, follow some property that either 𝑇𝑖 ⊆ 𝑇𝑖+1

or 𝑇𝑖+1 ⊆ 𝑇𝑖. We simplify the process of finding intermediate

contours between two successive contours by interpolating be-

tween two successive thresholded elevation regions (TER) (𝑇𝑖

and 𝑇𝑖+1) corresponding to the contours 𝐶𝑖 and 𝐶𝑖+1 respec-

tively, instead of directly interpolating between the contours

themselves (𝐶𝑖 and 𝐶𝑖+1).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4-2: (a), (d), (g) Represent different possible cases of nested contours; (b),
(c) represents corresponding TERs of (a); (e), (f) represents that of (d) and (h),(i)
represents that of (g).
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Fig.4-2a, Fig.4-2d, Fig.4-2g shows three different examples of

possible nested contours, Fig.4-2b, Fig.4-2c are two TERs ob-

tained from Fig.4-2a, similarly Fig.4-2e, Fig.4-2f are obtained

from Fig.4-2d, and Fig.4-2h and Fig.4-2i are corresponding TERs

of Fig.4-2g. All the TERs extracted are nothing but binary im-

ages. Two adjacent TERs 𝑇𝑖 and 𝑇𝑖+1 can be further assumed

as two sets 𝑋𝑖 and 𝑋𝑗 along with their 𝑘 and 𝑙 numbers of

subsets in each set, respectively, as discussed earlier.

4.3.3 Spatial Relationship between TERs

Let 𝑇1, 𝑇2, . . . , 𝑇𝑛𝑐 be the TERs corresponding to the contours

𝐶1, 𝐶2, . . . , 𝐶𝑛𝑐. As we can recall, all the TERs (𝑇𝑖) derived

are nothing but binary images. These TERs are represented as

sets. If 𝑇𝑖 ⊆ 𝑇𝑖+1 or 𝑇𝑖+1 ⊆ 𝑇𝑖, then 𝑇𝑖 and 𝑇𝑖+1 are ordered

sets. If 𝑇𝑖 and 𝑇𝑖+1 are partially contained in each other, then it

is semi-ordered. If there is no intersection between 𝑇𝑖 and 𝑇𝑖+1,

then sets are disordered. Here, we only discuss the ordered and

disordered TERs, as we know that contours do not intersect

each other.

Intuitively, the sets 𝑇𝑖, 𝑖 = 0, 1, . . . , 𝑛𝑐 represent the eleva-

tion profile of the cross-section of the area at a specific spa-
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tial position. The profile evolves based on its slope to the

next elevation profile, 𝑇𝑗, where 𝑗 = 𝑖 + 1. Let us consider

{𝑇 1
𝑖 , 𝑇

2
𝑖 , . . . , 𝑇

𝑘
𝑖 } and {𝑇 1

𝑗 , 𝑇
2
𝑗 , . . . , 𝑇

𝑙
𝑗}, ∀𝑘, 𝑙 ∈ N are the corre-

sponding subsets/connected components in each set 𝑇𝑖 and 𝑇𝑗.

We can study every possible spatial relationship between con-

secutive TERs 𝑇𝑖 and 𝑇𝑗, where 𝑗 = 𝑖+1. Based on the differ-

ent spatial relationships, TERs can be grouped into some cate-

gories based on their corresponding subsets/connected compo-

nents (𝑘 or 𝑙) as follows:

• Category 1: This category satisfies simple conditions of a

spatial relationship between 𝑇𝑖 and 𝑇𝑗, where 𝑇𝑖 ⊆ 𝑇𝑗 or

𝑇𝑗 ⊆ 𝑇𝑖 and 𝑇 𝑘
𝑖 ∩𝑇 𝑙

𝑗 ̸= 𝜑 , where 𝑇 𝑘
𝑖 ∈ 𝑇𝑖 and 𝑇 𝑙

𝑗 ∈ 𝑇𝑗. This

category includes the criteria for its corresponding subsets

or connected components, a) ∀𝑘, 𝑙, 𝑇 𝑘
𝑖 ⊆ 𝑇 𝑙

𝑗 or 𝑇 𝑙
𝑗 ⊆ 𝑇 𝑘

𝑖 ,

where 𝑘 = 𝑙, b) when 𝑘 ̸= 𝑙, for each 𝑇 𝑘
𝑖 ∈ 𝑇𝑖 there exist

𝑇 𝑙
𝑗 ∈ 𝑇𝑗 such that 𝑇 𝑘

𝑖 ⊂ 𝑇 𝑙
𝑗 or for each 𝑇 𝑙

𝑗 ∈ 𝑇𝑗 there exist

𝑇 𝑘
𝑖 ∈ 𝑇𝑖 such that 𝑇 𝑙

𝑗 ⊆ 𝑇 𝑘
𝑖 . The criteria mentioned in b)

can arise as shown in examples Fig.4-2d and Fig.4-2g.

• Category 2: In some nested cases, where 𝑘 ̸= 𝑙 and there

exist some 𝑘 and 𝑙 such that,𝑇 𝑘
𝑖 ∩ 𝑇 𝑙

𝑗 = 𝜑. An example of

such a case is the hilltop area as shown in Fig.4-2h, where

Page 87



Chapter 4: Terrain Surface Generation via Hierarchical Median Set Based Interpolation

the left-side TER is a probable case of a hilltop or the

ultimate TER consists of the hilltop contoured area or the

saddle point area which does not have the corresponding

TER to interpolate with.

The above-mentioned category 1 globally belongs to the set

category 𝑇𝑖∩𝑇𝑗 ̸= 𝜑, whereas category 2 belongs to 𝑇𝑖∩𝑇𝑗 = 𝜑,

assuming that some of the subsets or connecting components

are empty sets.

4.3.4 Intermediate Contour Computation using Median Set

Serra’s median, mentioned in Eq.4.3, considers the input sets

𝑋 and 𝑌 globally, instead of focusing on local or individual

elements, regions, or connected components within these sets.

But, as we can see from the spatial relationships between TERs,

the interpolation of subset layers from the input contour sets is

category-dependent. To better visualize the spatial transition

of a subset from one elevation profile to another, we compute

the median sets termed as median elevation regions (MERs)

between successive TERs (𝑇𝑖, 𝑇𝑖+1) in a category-wise manner,

as described in Section 4.3.3. The generation of MERs and

its corresponding intermediate contours on synthetic data are
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4-3: (a) A pair of contours 𝐶1 and 𝐶2 such that 𝑒1 < 𝑒2 where 𝑒1 and 𝑒2
are their respective elevation; (b) and (c) are corresponding TERs extracted from (a);
(d) computed MER of (b) and (c), denoted as 𝑀 , obtained after 1st iteration by
using the proposed method; (e) intermediate contour computed using morphological
gradient on obtained 𝑀 ; (f) and (g) are 2nd level MERs between 𝐶1,𝑀 and 𝑀,𝐶2; (h)
contours generated after 2nd iteration; and (i) intermediate contours generated after
3rd iterations.
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shown in Fig.4-3. The computation of MERs from two succes-

sive TERs are represented as follows:

Case 1:

a) 𝑇 𝑘
𝑖 ⊆ 𝑇 𝑙

𝑖+1

𝑀𝐸𝑅(𝑇 𝑘
𝑖 , 𝑇

𝑙
𝑖+1) =

N⋃︁
𝑛=1

((𝑇 𝑘
𝑖 ⊕ 𝑛𝐵) ∩ (𝑇 𝑙

𝑖+1 ⊖ 𝑛𝐵)) (4.10)

b) 𝑇 𝑙
𝑖+1 ⊆ 𝑇 𝑘

𝑖

𝑀𝐸𝑅(𝑇 𝑙
𝑖+1, 𝑇

𝑘
𝑖 ) =

N⋃︁
𝑛=1

((𝑇 𝑘
𝑖 ⊖ 𝑛𝐵) ∩ (𝑇 𝑙

𝑖+1 ⊕ 𝑛𝐵)) (4.11)

Since 𝑇 𝑘
𝑖 and 𝑇 𝑙

𝑖+1 are subsets of 𝑇𝑖 and 𝑇𝑖+1 respectively, the

𝑀𝐸𝑅(𝑇𝑖, 𝑇𝑖+1) can be computed based on the categories they

fall into, as follows:

𝑀𝐸𝑅(𝑇𝑖, 𝑇𝑖+1) =
⋃︁
∀𝑘,𝑙

𝑀𝐸𝑅(𝑇 𝑘
𝑖 , 𝑇

𝑙
𝑖+1) (4.12)

Case 2:

Under unique situations as explained in Category 2, the MER

can be computed as:
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𝑀𝐸𝑅(𝑇 𝑙
𝑖+1, 𝑇

𝑘
𝑖 ) =

N⋃︁
𝑛=1

((𝑈𝑇 𝑙
𝑖 ⊕ 𝑛𝐵) ∩ (𝑇 𝑙

𝑖 ⊖ 𝑛𝐵)) (4.13)

Where 𝑈𝑇 𝑙
𝑖 is the ultimate eroded version of 𝑇 𝑙

𝑖 .

Eq.4.13 can be used to compute MERs for hill-top regions.

In category 2 cases, where there are no successive TERs (𝑇𝑖+1)

or corresponding successive subsets, the MERs are computed

as follows: the MERs are calculated by taking the ultimate

erosion of the TER (𝑇𝑖) or any subset (𝑇 𝑙
𝑖 ) whose corresponding

successive subset is empty. We treat the ultimate erosion of

such TERs as 𝑇𝑖+1. The elevation level of this ultimate eroded

version 𝑇𝑖+1 is assumed to be 𝑒𝑖+1 = (𝑒𝑖 + contour interval),

where 𝑒𝑖 is the initial elevation of 𝑇𝑖 and the contour interval is

the vertical distance or difference in elevation between adjacent

contour lines in a contour map. For instance, if the elevation

level of the TER 𝑇𝑖 is 𝑒𝑖, say 100 meters, and the contour

interval is 10 meters, then the elevation level after ultimate

erosion 𝑒𝑖+1 assumed to be 110 meters.

Finally, the intermediate contours are computed from the

MERs obtained with Eq.4.10 to Eq.4.13, by applying the Mor-

phological Gradient (MG). The morphological gradient (MG)
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can be defined as the difference between the dilation and ero-

sion of two images or sets. Therefore, the intermediate contour

(IC) between two contours 𝐶𝑖 and 𝐶𝑖+1 is derived from the

computed MERs as follows:

𝐼𝐶(𝐶𝑖, 𝐶𝑖+1) = 𝐶𝑚 = 𝑀𝐺(𝑀𝐸𝑅(𝑇𝑖, 𝑇𝑖+1))

= (𝑀𝐸𝑅(𝑇𝑖, 𝑇𝑖+1)⊕𝐵)− (𝑀𝐸𝑅(𝑇𝑖, 𝑇𝑖+1)⊖𝐵)

(4.14)

where 𝐵 is 3x3 square flat structuring element and 𝐼𝐶(𝐶𝑖, 𝐶𝑖+1)

is the intermediate contour between 𝐶𝑖 and 𝐶𝑖+1 and denoted

as 𝐶𝑚. Also as we already know, ⊕ and ⊖ are the dilation and

erosion operator respectively

After computing the intermediate contours, we assign the

elevation values of the intermediate contours 𝐶𝑚 as:

𝑒(𝐶𝑚) = 𝑒𝑚 = 1/2{𝑒𝑖 + 𝑒𝑖+1} (4.15)

where 𝑒𝑖 and 𝑒𝑖+1 are the elevation values of 𝐶𝑖 and 𝐶𝑖+1 re-

spectively.
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4.3.5 Complexity Analysis

This method, as presented through Eq.4.7 to Eq.4.15, provides

a systematic way of computing intermediate contours in the

context of successive TERs and subsequently the intermediate

contour computation from its successive input TERs. Let’s

consider the case where we have a sequence of input contours,

denoted as 𝐶𝑖 and 𝐶𝑖+1. In this scenario, we can assume that

the first contour in this sequence, 𝐶𝑖, is denoted as 𝐶0, and the

successive contour 𝐶𝑖+1, is denoted as 𝐶1. With these assump-

tions, we can now discuss the computation of the intermediate

contour, which serves as a transition between the contours 𝐶0

and 𝐶1. So the first intermediate contour can be considered

as 𝐶0.5 = 𝐼𝐶(𝐶0, 𝐶1), where 𝐶0.5 is approximately midway be-

tween 𝐶1 and 𝐶0 and it breaks down the inter-contour space into

two subspace. Next, we can compute the intermediate contours

between 𝐶0.5, 𝐶1 and 𝐶0, 𝐶0.5 which are again approximately

midway between 𝐶0, 𝐶0.5 and 𝐶0.5, 𝐶1. The maximum number

of intermediate contours that can be generated in between two

successive contours depends on the width of the contour space.

Thus, the recursive computation of the intermediate contours

divides each time the inter-contoure space into two subspaces.
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Since the inter-contour space is independent of each other and

can be processed in parallel. So we can say the process takes

log2 𝜙, where 𝜙 is the inter-contour space.

4.4 Results and Discussion

The proposed method mentioned is applied to real contour

data to demonstrate its applicability. An overview of how the

method works in synthetic data and its result is already shown

in Fig.4-3. In Fig.4-3a, it is given as input contours 𝐶1 and 𝐶2;

Fig.4-3b and Fig.4-3c are its respective TERs; Fig.4-3d is first

level MER between Fig.4-3b and Fig.4-3c denoted as 𝑀 using

the proposed method; Fig.4-3e is the intermediate contour be-

tween 𝐶1 and 𝐶2 at first iteration; Fig.4-3f, Fig.4-3g are the cor-

responding second level MERs between 𝐶1,𝑀 (MERs between

Fig.4-3c and Fig.4-3d) and 𝑀,𝐶2 (MERs between Fig.4-3d and

Fig.4-3b); Fig.4-3h shows the intermediate contours computed

from Fig.4-3f and Fig.4-3g at 2nd iteration; Fig.4-3i is show-

ing the contours generated after 3rd iteration. This method

also interpolates intermediate contours of hilltop regions us-

ing Eq.4.13 as shown in Fig.4-3i. For the best applicability,

we consider some sparse contour data and examine how they
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can produce dense spatial distribution or a continuous grid of

interpolated elevation values. We consider demonstrating the

proposed method to a set of contours extracted from a portion

of the topographic map from the United States Geological Sur-

vey (USGS) [163] in the form of a Digital Line Graph (DLG).

The procedure is applied to a grid of contours only. Since the

proposed method works only on grid of contours, at first the

obtained contours are preprocessed to a raster format (raster

data are presented in terms of grid ) using QGIS and ArcGIS

software. During vector conversion to a raster format, there

might be some errors, which is inevitable. Because of these er-

rors, some undesired artifacts and errors may have been formed

on occasion.

4.4.1 Case study on Mt. Washington, NH

Two sets of contours named “Zone A” (800x800 grid, Fig.4-4a)

and “Zone B” (500x500 grid, Fig.4-4d) from the topographic

map of Mt. Washington [163], are chosen to demonstrate the

proposed method mentioned above. The contour interval is

20 meters in both cases and the elevations range from 2300-

3540 meters in Zone A and 1140-1920 meters in Zone B re-
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spectively. In both Category 1 and Category 2, the spatial

relation of TERs can be observed in Zone A, whereas in Zone

B, the TERs obtained can be classified as Category 1 only. The

topographic surface is computed in both zones by computing

the maximum possible intermediate contours between succes-

sive TERs using Eq.4.7 to Eq.4.15. Fig.4-4b and Fig.4-4e are

the topographic surfaces computed using the proposed method

from Figs.4-4a and Fig.4-4d, respectively. For better visual-

ization, 3D-rendering of the obtained surfaces using QGIS soft-

ware [164] is also shown in Fig.4-4c, Fig.4-4f. It can be seen that

the topographic surface generated using the method is rather

smooth and without any contour ghosting or artifacts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(j) (k) (l)

Figure 4-4: (a) Given input set of contours “Zone A”; (b) computed topographic surface
from (a) using the proposed method; (c) 3D rendering of the surface in (b); (d) given
input set of contours “Zone B”; (e) computed topographic surface from (b) using the
proposed method; (f) 3D rendering of the surface obtained in (d); (g) the set of test
contours of contour interval 40 meters obtained from (a) by skipping alternate contours
𝐶𝑖 from input contours; (h) and (i) are corresponding computed topographic surface
and 3D rendering of the surface respectively using the proposed method; (j) the set
of test contours by skipping alternate contours Ci from input contours “Zone B” (b);
(k),(l) are respective interpolated topographic surface and it’s the 3D view from (j).

4.4.2 Validation of the Method

Since the available contour maps do not have any ground truth

data to validate with, for validation of the quality of gener-

ated intermediate contours, we created some test instances by

skipping random alternate contours from the original contours

(Figs.4-4a, Fig.4-4d), resulting in a contour map with 40-meter

contour intervals in some areas (see Fig.4-4g, Fig.4-4j). The test
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instances where we have the ground truth value, comprise the

skipped set of contours and their elevation values. Then, to as-

sess the quality of the interpolated contours using the proposed

method, we compare the available ground-truth value of the set

of contours with the interpolated contours at the test points us-

ing some of the error measures (Fig.4-5). To check the quality

of the proposed method, we compute 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2)(interpolated

contours) with ground truth 𝐶𝑖+1 for all possible 𝑖 values of

available contours. If the comparison yields an acceptable de-

gree of match, in that case, we can conclude that the generation

of further levels of intermediate contours will undoubtedly pro-

vide a better quality terrain surface from available contours.

To compare the original 𝐶𝑖+1 with the computed 𝐶𝑖+1 obtained

from 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2), we generated test cases for Zone A (Fig.

4-4g) and Zone B (Fig. 4-4j) by randomly skipping alternate

contours (𝐶𝑖+1). This resulted in a contour interval of 40 me-

ters. For instance, if we have three contours 𝐶1, 𝐶2, 𝐶3 with a

contour interval of 20 meters, we skip 𝐶2 in the input contour

map and take 𝐶2 with its elevation value as the test set. This

adjustment makes the input contour map have a 40-meter con-

tour interval, which is then used for testing the accuracy of the
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predicted values at the test contours.

From each of the test sets, by comparing the given 𝐶𝑖+1 and

𝐼𝐶(𝐶𝑖, 𝐶𝑖+2), using the proposed method, we discovered a sig-

nificant resemblance for the interpolated intermediate contours.

Fig.4-6a and Fig.4-6b depict a portion of the test set of contours

that illustrates the visual representation of interpolated

1st-level intermediate contours by superimposing the computed

intermediate contours (𝐼𝐶(𝐶𝑖, 𝐶𝑖+2)) , blue in color with the

ground truth contour 𝐶𝑖+1, red in color. From the superimposi-

tion of computed and original contours (refer to Fig.4-6a,4-6b),

it can be observed that there is a small difference between the

actual and interpolated contours because of the changes in the

shape of the contours and the absence of corresponding con-

tours in the test cases. From the visualization, one can assume

that the proposed method interpolated a quality of intermedi-

ate contours.

Further, the Root Mean Square Error (RMSE) and Mean

Absolute Percentage Error (MAPE) were computed for the ter-

rain surface generated from the test set of contours (Figs.4-4h,

4-4k) for both “Zone A” and “Zone B” with the terrain surface
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Figure 4-5: The figure depicts the RMSE, MAPE, and Jaccard Index value for each
test contour for both case studies “Zone A” and “Zone B”; 2nd and 3rd row plots
the percentage-wise distribution of interpolated test contours for RMSE, MAPE, and
Jaccard Index values of “Zone A” and “Zone B” respectively, red color represents “Zone
A” and blue represents “Zone B”.
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(a) Test contours (b) Superimposed interpolated contours

Figure 4-6: (a) Set of test contours of contour interval 40 meters obtained from Zone A;
(b) overlapping of interpolated 1st level intermediate contours (blue color) and original
contours (red color)

generated from given input set of contours (Figs.4-4b, 4-4e).

These error metrics are discussed in detail in Chapter 2. The

test case consists of 25 contours for “Zone A” and 18 contours

for “Zone B”. The RMSE and MAPE compute the accuracy

of the interpolated intermediate contour values at the set of

test contours for every set of 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2) and 𝐶𝑖+1 (see Fig.4-

5). The interpolated elevation values that intersect the original

contours must have values equal to or approximately equal to

the contour labels when measured by RMSE and MAPE. The

lesser the RMSE and MAPE value between the actual contour

and interpolated contour, the more they are similar and the

Page 102



4.4. Results and Discussion

more valid the interpolation is. The computed RMSE for all

the test contours lies between 2 to 7 for “Zone A” and 1 to 6

for “Zone B” ( refer to Fig4-5). The average RMSE obtained

for "Zone A" is 3.04 and for "Zone B" is 3.49 and the max-

imum MAPE obtained for “Zone A” and “Zone B” are 0.152

and 0.326 respectively. Also, the minimum MAPE is 0.039 and

0.072 respectively for “Zone A” and “Zone B” (Fig.4-5 for RMSE

and MAPE for both cases). The maximum and average values

for both RMSE and MAPE are reasonably acceptable. We also

have analyzed that, for “Zone A” more than 80% of the interpo-

lated contours have RMSE values from 2 to 4 and MAPE is less

than 0.1%, which is definitely within an acceptable range. Sim-

ilarly, for “Zone B”, 80% of interpolated contours have RMSE

values less than 5 and 90% have MAPE values less than 0.3%

as described in Fig.4-5. It indicates that the interpolated set

of test contours (𝐼𝐶(𝐶𝑖, 𝐶𝑖+2)) matches the original set of con-

tours to a high degree and the error of the proposed interpola-

tion method is within an acceptable range.

This method computes all feasible intermediate contours be-

tween two given contours, so the geometric shape of the con-

tours is also essential. Therefore, to validate the quality of
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the computed intermediate contours, Hausdorff Distance and

Jaccard Index (discussed in Chapter 2) were also computed

between 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2) and 𝐶𝑖+1 for all 𝑖 in Table.4.1, Fig.4-5

and Fig.4-7. The interpolation result is considered to be better

when the difference between the Hausdorff Distance (HD) of

computed contour 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2) and 𝐶𝑖 and the Hausdorff Dis-

tance (HD) of 𝐶𝑖 and 𝐶𝑖+1 is minimal. Furthermore, a Jaccard

index value close to 1 between 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2) and 𝐶𝑖+1 suggests

a superior quality of interpolation. Table.4.1 displays HD val-

ues of some contours for both case studies “Zone A” and “Zone

B”. Fig.4-7 displays HD values for 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2)and 𝐶𝑖 as HD

interpolated vs. HD values for (𝐶𝑖, 𝐶𝑖+1) as HD actual for all

the contours with their elevation values. The degree of match-

ing in "Zone A" is seen to be higher than it is for "Zone B”

(Fig.4-7). In Table 4.1, some of the rows 𝐶1, 𝐶3, 𝐶33, 𝐶34 and

𝐶36 show an exact match between Hausdorff Distance values,

however, there are exceptions also.

The Jaccard Index, often referred to as a similarity coeffi-

cient, measures the similarity between two sample sets. In our

scenario, we gauge the resemblance between a given contour

(𝐶𝑖+1) and the interpolated contour 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2) by treating
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Figure 4-7: The scatter plot of Hausdorff Distance values for 𝐼𝐶(𝐶𝑖, 𝐶𝑖+2) and 𝐶𝑖

as HD interpolated vs. Hausdorff Distance values for (𝐶𝑖, 𝐶𝑖+1) as HD actual for all
the contours, blue points indicating Zone A contours and red point indicate Zone B
contours.

each contour, along with its enclosed contour region pixels, as

a set. This approach helps in justifying the shape similarity

between the two contours. Jaccard index value ranges from 0

to 1, with 0 denoting no similarity and 1 denoting an exact set.

A Jaccard similarity coefficient closer to 1 indicates a higher

degree of similarity between two sets. Both case studies have

Jaccard index values greater than 0.9 (Fig.4-5). It indicates a

high similarity between the interpolated contours and actual

input contours. However, in the case of “Zone B”, some of the

contours are showing a Jaccard Index value of approximately

0.8, indicating a slight mismatch with the actual contour set.

Page 105



Chapter 4: Terrain Surface Generation via Hierarchical Median Set Based Interpolation

𝐶𝑖, Elevation (meter) HD (𝐼𝐶(𝐶𝑖, 𝐶𝑖+2), 𝐶𝑖) HD (𝐶𝑖, 𝐶𝑖+1)
𝐶1, 2340 15 15
𝐶2, 2360 7 14
𝐶3, 2380 16 16

...
...

...
𝐶49, 3460 13 14
𝐶50, 3480 13 15
𝐶51, 3500 6 8
𝐶52, 3520 5 5
𝐶1, 1160 6 6
𝐶2, 1180 4 6
𝐶3, 1200 6 6
𝐶4, 1220 5 7

...
...

...
𝐶33, 1840 2 2
𝐶34, 1860 2 2
𝐶35, 1880 1 2
𝐶36, 1900 2 2

Table 4.1: Hausdorff Distance values for “Zone A" and “Zone B”

Except for a few contours, the comprehensive analysis results

indicate a high degree of validation for the proposed interpola-

tion method. The overall acceptable range of RMSE, MAPE,

and Jaccard Similarity Coefficient, along with the matching HD

values of the actual or predicted contours for both case studies,

affirm the credibility of the interpolation technique. Some of

the discrepancies are caused by the high degree of crenulation

in the contours. Additionally, some of the contours contain

information about abrupt changes in slope, and when we use

those contours as test contours, the method is unable to predict
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those changes.

We also conducted a thorough quantitative comparison against

existing spatial interpolation techniques. We focused on a seg-

ment of “Zone A”, as depicted in Fig.4-4a, to perform this anal-

ysis. Using this data, the Digital Elevation Model (DEM) was

generated using three methods: Ordinary Krigging [165, 166],

Inverse Distance Weighting (IDW) [167], and the TOPOGRID

[168,169] method. Both Root Mean Square Error (RMSE) and

Mean Absolute Percentage Error (MAPE) were determined for

each method. As mentioned earlier a set of contours, 50% of

the contours (selecting every alternate contour), we made the

contour map of 40 meters contour interval, and the remaining

set of contour pixels are used for validation to compute RMSE

and MAPE. Subsequently, the result obtained is compared to

the interpolated pixel values produced by each method. The

results were then compared to those of our proposed method.

For a detailed comparison, please refer to Table 4.2.

Table 4.2 provides a comparison of the performance of four

different interpolation methods: Ordinary Kriging [165, 166],

Inverse Distance Weighting (IDW) [167], TOPOGRID [168,

169], and the Proposed Method. The performance of each
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Table 4.2: Result of Applying Different Methods

Method RMSE MAPE
Ordinary Kriging [165,166] 3.61 0.09
IDW [167] 8.71 0.24
TOPOGRID [168,169] 3.40* –
Proposed Method 3.33 0.08

Remark: * indicates data not available.

method is evaluated using two metrics: the Root Mean Square

Error (RMSE) and the Mean Absolute Percentage Error (MAPE).

The obtained RMSE and MAPE of the IDW method, indi-

cate the lower accuracy of the interpolated values among the

other methods presented. Table 4.2 also highlights that the

Proposed Method has the lowest RMSE of 3.33 and a MAPE

of 0.08 indicating its compelling performance. Although the

Ordinary Kriging and TOPOGRID methods have similar accu-

racy, both methods are complicated and require a lot of compu-

tation. Ordinary Kriging faces challenges with larger datasets

due to its need to store extensive distance pairings for each grid

value. This requirement can sometimes strain computational

resources. In contrast, the proposed method strategically con-

fines the computation of intermediate contours to the region be-

tween two specified contours (inter-contour space), deliberately

omitting the elevation values of pixels from alternate contours.

While capturing all available contour information, this com-
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putational approach effectively simplifies the process, thereby

making it notably beneficial for efficient parallel computation

due to its intrinsically localized focus. This entire approach can

be extended to other contexts of geosciences that include the

generation of high spatial resolution stratigraphic sequences,

tree-ring structures, gravity, magnetic, seismological, and resis-

tivity profiles, and contours. This list also includes all those

contours such as isotherms, isohyets, etc.

4.5 Conclusion

Interpolation of intermediate contours from existing sparse con-

tour maps is a challenging task in the field of geospatial visu-

alization. Maximum possible recursive intermediate contour

interpolation via computing the median elevation region is a

way to achieve visualization of the continuous surface from a

contour map. Our proposed method describes the spatial rela-

tionship between the contour regions and gives a simplification

of the original problem in terms of sets interpolation based on

different categories. The categorization is also done between

different TERs and their subsets as source-set and target-set

based on the logical relationship.
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From the result section, it can be seen how the transition

takes place from the source elevation region to target elevations

and ends up creating an intermediate contour using the math-

ematical morphological gradient. Results have been shown in

synthetic data of contours at the different spatial locations,

and also in contour maps taken from a real topographic map of

Mt. Washington, NH. Further, the method is evaluated quan-

titatively by calculating the RMSE (Root Mean Square Error)

and MAPE (Mean Absolute Percentage Error) using a set of

test contours of a 40-meter contour interval derived from in-

put contours. To validate how the proposed approach retains

the morphological attributes of a contour, we also analyzed

by computing the Jaccard Similarity coefficient and Hausdorff

Distance between interpolated test contours and given origi-

nal contours as ground truth data. The proposed method has

also been compared to existing methods such as ordinary Krig-

ing, IDW, and TOPOGRID. The results highlight that the

proposed method delivers improved accuracy over these other

methods while maintaining simpler computation and offering a

new way compared to point-wise traditional interpolation algo-

rithms that sometimes fail to preserve the spatial accuracy of
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the contours or to preserve that computation becomes expen-

sive. The proposed framework provides valuable insight into

the spatial visualization of discrete contour maps. However, in

this chapter, we only consider this framework on contour maps,

assuming that all contours run roughly parallel to each other.

As a result, the errors appear to be high in some cases, and

because we skipped alternate contours for testing the method,

the slope information is also altered. However, the result is an

acceptable smooth and artifact-free surface. Future work will

explore how this framework can be applied to other logical rela-

tionships and situations involving spatial interpolation, as well

as the parallelization of intermediate contour computations.
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Chapter 5

Adapting Morphological Operators for

Multivariate Data Processing

5.1 Introduction

As the need to handle multivariate images continues to grow,

efforts to expand the capabilities of Mathematical Morphol-

ogy (MM) to support these types of data have become in-

creasingly active. The success of using univariate morpholog-

ical operators in various fields of image processing and some-

times in multivariate data also is the motivation behind this.

The original mathematical morphology (MM) framework intro-

duced by Matheron [58] and Serra [60,63] was designed primar-

ily for binary image processing, employing fundamental opera-

tions like dilation and erosion rooted in the geometric measure

theory of Minkowski and Hadwiger [61, 62]. As the need arose
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to handle gray-scale images, various extensions of binary MM

emerged. One notable extension, spearheaded by Serra and

Sternberg [63, 64], utilized the principles of complete lattice to

form a robust mathematical foundation for understanding mor-

phological operations in the gray-scale domain. Additionally,

the introduction of fuzzy set theory [69] led to the development

of fuzzy MM [67,68,70–74,170], offering another avenue for ex-

tending gray-scale MM. The generalized fuzzy MM, known as

L-fuzzy MM where L can be any value set of an image as long

as it can be equipped with a complete lattice structure [75].

Nachtegael et al. discussed the application of L-fuzzy MM to

interval-valued images in [67, 75], demonstrating how morpho-

logical operators such as dilations and erosions can be defined

using structuring elements (SEs). Detailed foundational prin-

ciples, such as those based on complete lattices and also based

on fuzzy sets, providing a solid mathematical basis for under-

standing morphological operations are discussed and compared

in these articles [67, 68].

MM, primarily defined for single-band images, e.g. binary

and gray-scale, uses infimum and supremum operators to detect

pixel extremes within the SE window (as discussed in Chapter
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2). Thus, expanding MM operators to multiband images such

as multi-spectral and hyperspectral images, in which each pixel

is represented as a pixel vector, mainly depends on the scheme

for ordering the pixel vectors and finding the extrema of pixel

vectors within the neighborhood of the SE window. In this

chapter, we propose a novel weighted vector ordering scheme.

This scheme considers both the spectral signature and the spa-

tial correlation between pixel vector elements using dilation dis-

tance during the ranking process. Additionally, the ranking of

pixel vectors is used to define the supremum and infimum. The

proposed vector ordering scheme defines the ordering scheme of

pixel vectors to extend scalar mathematical morphology (MM)

operators to multiband images (the MM operators on multi-

band images are termed as multi-channel MM operators). The

motivation behind this work is to introduce a vector ordering

scheme that can identify the infimum and supremum among

pixel vectors within the neighborhood of the structuring el-

ement (SE). These enhanced multivariate MM operators are

then used to compute morphological profiles for feature extrac-

tion, which are subsequently validated by the accuracy obtained

in classifying hyperspectral datasets using Support Vector Ma-
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chines (SVMs) [135]. Experiments demonstrate improved clas-

sification rates with this proposed multi-channel MM approach.

5.2 Mathematical Morphology in Multivariate Data

Morphological operators, a powerful image analysis tool, has

been fully developed for binary and grayscale images in the

present day. To make it compatible with multiband images, it

is crucial to establish a method for determining the extrema

of pixel vectors. However, creating an unambiguous ordering

process for vectors remains a challenge, unlike the straight-

forward case with the scalars. If a suitable vector ordering

scheme can be given, then the MM operator Dilation (𝛿𝐵) and

Erosion (𝜀𝐵), easily can be defined in multivariate data. Ac-

cording to Brannet [171], the existing vector ordering schemes

are Marginal Ordering (M-Order), Conditional Ordering (C-

ordering), Partial Ordering (P-ordering) and Reduced Order-

ing (R-ordering). Given two vectors 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑣) and

𝑣′ = (𝑣′1, 𝑣
′
2, . . . , 𝑣

′
𝑛𝑣), different ordering strategy are discussed

below:

• Marginal Ordering: Also known as univariate ordering or
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component-wise ordering where each component of the vec-

tor is considered independently. Given two vector 𝑣 =

(𝑣1, 𝑣2, . . . , 𝑣𝑛𝑣) and 𝑣′ = (𝑣′1, 𝑣
′
2, . . . , 𝑣

′
𝑛𝑣), marginal order-

ing is defined as:

∀𝑣, 𝑣′ ∈ R𝑛, 𝑣 ≤ 𝑣′ ⇔ ∀𝑧 ∈ {1, ..., 𝑛𝑣}, 𝑣𝑧 ≤ 𝑣′𝑧

In the context of multiband image analysis, each compo-

nent of a pixel vector corresponds to a band in the image.

• Conditional Ordering: In this ordering, vectors are ordered

by marginal components selected sequentially under differ-

ent conditions, while components of the vector that are not

actively involved or considered during the ordering process

are listed based on their ranked counterparts. Lexicograph-

ical order is an example of C-ordering, using all available

components. C-orderings work best when it is possible to

determine the priority of the image channels/bands. It can

be defined as:

∀𝑣, 𝑣′ ∈ R𝑛, 𝑣 ≤𝐿 𝑣′ ⇔ ∃𝑧 ∈ {1, . . . , 𝑛𝑣},
(∀𝑧′ < 𝑧, 𝑣𝑧′ = 𝑣′𝑧′) ∧ (𝑣𝑧 ≤ 𝑣′𝑧)

• P-ordering: This method essentially utilizes pre-orderings
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to divide the given vectors into equivalent groups, based on

criteria such as order, rank, or extremity [172]. These are

typically geometric in approach and effectively account for

the interrelationships among the components.

• R-Ordering: In this approach, vectors are initially trans-

formed into scalar values and subsequently ranked based

on their scalar order. Further examples of R-orderings in-

volve categorizing them as distance or projection orderings

[26]. For instance, in an R-ordering on R𝑛 the process be-

gins by defining a transformation 𝑔 : R𝑛 → R then ordered

according to the scalar order of their projection onto R by

𝑔:

∀𝑣, 𝑣′ ∈ R𝑛, 𝑣 ≤ 𝑣′ ⇔ 𝑔(𝑣) ≤ 𝑔(𝑣′)

5.3 Related Work

In existing works, MM is often extended to multiband im-

age data by decomposing multiband images into mono-band

images. It is applied independently on each band of multi-

band images. The outcomes are then assembled into a single

dataset [101]. Although this marginal strategy is simple and

straightforward due to its inherent nature, creates new pixel
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vectors not found in the original image and loses band correla-

tions, which are major drawbacks [171]. To circumvent the issue

of losing band correlation, a dimensionality reduction transfor-

mation like Principal Component Analysis (PCA) [100, 173] is

often applied to the original multiband image before undergo-

ing the marginal treatment. This process aims to de-correlate

the image bands and mitigate the first problem inherent in

the M-ordering strategy. To mitigate this drawback, non-scalar

morphological approaches are used, processing the multiband

image as a single, cohesive data unit simultaneously. To view

the multiband image as a single entity and to implement the

MM operators, conditional ordering is also used as mentioned

before, where some bands are given higher priority than oth-

ers [174]. Thus using C-ordering, two vectors are compared

based on their prioritized band. Two vectors are equal in C-

ordering if every component’s value is equal. The Lexicographic

Ordering Strategy (L-ordering strategy), a well-known varia-

tion of the C-ordering strategy, adopts a principle similar to

how words are alphabetically ordered. Lexicographic Order-

ing Strategy (L-ordering) is one of the most commonly used

approaches in multi-channel Mathematical Morphology (MM)
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due to its capability of preserving vectors and enabling them

to follow a total order relation between compared vectors [174].

This means there are no indecisive cases between two vectors,

with the only situation of equality occurring when all the com-

ponents of compared vectors are equal. The primary sorting of

vectors is based on the first image band, and subsequent bands

are used to resolve any indecisive cases from the previous sort-

ing [174]. Consequently, it is best suited for cases where the

first image bands contain the most critical information [175].

Such situations might not naturally occur in multiband im-

ages. Still, they can be achieved through projection techniques,

such as Principal Component Analysis (PCA), which concen-

trates image information into the first bands. Angulo [176,177]

proposed distance-based and lexicographical-based approaches

for extending morphological operators to color images. The L-

ordering strategy and its variants have been extensively studied

and utilized, as documented in various research papers, includ-

ing [178–182]. This ordering can be reversed, starting with

the last image band and moving gradually to the first band

to resolve unresolved cases. The Partial Ordering Strategy (P-

ordering) operates by classifying vectors into equivalence groups
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based on a certain criterion. This strategy can compare vec-

tors from different groups, but can not compare those that are

in the same group [183]. Thus, using the P-ordering strat-

egy a total order relation between vectors cannot be achieved,

meaning that some vectors are incomparable [184, 185]. De-

spite this limitation, P-ordering has been employed in various

methods to extend Mathematical Morphology to multiband im-

ages, as discussed in the works of Valesco et al. and Aptoula

et al. [185–188]. The Reduced Ordering Strategy (R-ordering

strategy) involves simplifying vectors into scalar values for easy

comparison. This could involve projecting multi-dimensional

data onto a one-dimensional plane or measuring the distance

from a predefined reference [189,190]. Once vectors are replaced

by associated scalar values, grayscale images are created, which

can be directly processed by univariate morphological transfor-

mations. However, projection techniques such as PCA often

lead to information loss and do not guarantee unique scalar

values for each vector. To address this, Velasco et al. [185] in-

troduced a supervised learning framework for reduced vector

ordering using kriging and support vector machines, aimed at

extending mathematical morphology to hyperspectral images.
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However, it can be seen that distance measurement is a more

preferred approach, as explored by Plaza et al. [191, 192], Al-

Otum et al. and Angulo [176,193].

5.4 Proposed Vector Ordering

This work introduces an approach aimed at enhancing multi-

channel mathematical morphology (MM) operators for analyz-

ing multiband images. After gaining insight into the current

methods for extending MM operators to multiband images, in

this chapter, we propose a vector ordering algorithm that is

adapted from both reduced ordering and lexicographic order-

ing to determine the infimum and supremum of the pixel vec-

tors. The primary objective is to develop a robust vector order-

ing scheme capable of accurately identifying the minimum and

maximum among pixel vectors in the neighborhood within the

SE window. Using this infimum and supremum of pixel vectors,

we can define the multi-channel dilation and erosion, which are

then used to compute the multi-channel morphological profile

(MP) for feature extraction of multiband image.

Let 𝐻 denote the hyperspectral image with 𝑛𝑧 bands. The

bands of 𝐻 are represented by {𝑓1, 𝑓2, . . . , 𝑓𝑛𝑧} where each 𝑓𝑖 is
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a gray-scale image. Let,𝑓 (𝑥, 𝑦) and 𝑓 (𝑥′, 𝑦′) are two-pixel vec-

tors at pixel coordinate (𝑥, 𝑦) and (𝑥′, 𝑦′) respectively, where

each vector component corresponds to the bands of the im-

age. In the initial phase of our proposed algorithm, we com-

pare, 𝑓 (𝑥, 𝑦) and 𝑓 (𝑥′, 𝑦′) in terms of the weight associated with

their respective bands. To define the fundamental morphologi-

cal operations for such an image, we need to compare the pixel

vector 𝑓 (𝑥, 𝑦) with all other pixel vectors within the window

of a given structuring element (SE) based on their modified

weighted vectors. This comparison is based on their modified

weighted vectors, which provides more understanding of the

vector’s relationships and differences.

Let’s consider,

𝑓 (𝑥, 𝑦) = [𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), . . . , 𝑓𝑛𝑧(𝑥, 𝑦)]

𝑓 (𝑥′, 𝑦′) = [𝑓1(𝑥
′, 𝑦), 𝑓2(𝑥

′, 𝑦′), . . . , 𝑓𝑛𝑧(𝑥
′, 𝑦′)]

are two pixel vectors at (𝑥, 𝑦) and (𝑥′, 𝑦′) spatial location.

To compare pixel vectors in multiband images along the 𝑛𝑧

bands, we first introduce a weight factor 𝑊 for each band 𝑓𝑖 of

the image. The weight of a band 𝑓𝑖 is calculated as the cumula-

tive sum of dilation distances between 𝑓𝑖 and all other bands 𝑓𝑗
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in the image. The dilation distance is extensively discussed in

Chapter 3. Therefore using the definition of dilation distance

that is discussed in Chapter 3, the proposed weight (𝑊 ) for 𝑖𝑡ℎ

band of image 𝑓 can be defined as:

W(𝑓𝑖) = 𝑤𝑖 =

𝑛𝑧∑︁
𝑗=1

̂︀Δ(𝑓𝑖, 𝑓𝑗) (5.1)

where, 𝑓𝑖 represents the 𝑖𝑡ℎ band for which the weight is be-

ing calculated, 𝑓𝑗 represents all other bands in the image, 𝑗 ∈
{1, . . . , 𝑛𝑧}, 𝑤𝑖 is the weight of the 𝑖𝑡ℎ Band and ̂︀Δ represents

dilation distance as reported in previous Chapter 3.

Thus, 𝑊 (𝑓𝑖) is obtained by the sum of dilation distance

scores between 𝑓𝑖 and all other bands 𝑓𝑗 for 𝑗 ∈ {1, 2, . . . , 𝑛𝑧}.

The weight 𝑊 in Eq.5.1 represents the weight of each band

present in the pixel vector. Thus using 𝑊 , we define a weighted

pixel vector 𝑓 ′(𝑥, 𝑦) and 𝑓 ′(𝑥′, 𝑦′) at (𝑥, 𝑦) and (𝑥′, 𝑦′) by element-

wise multiplication of the weight vector 𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑛𝑧]

with the pixel vector 𝑓 (𝑥, 𝑦) = [𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), . . . , 𝑓𝑛𝑧(𝑥, 𝑦)]

and 𝑓 (𝑥′, 𝑦′) = [𝑓1(𝑥
′, 𝑦′), 𝑓2(𝑥

′, 𝑦′), . . . , 𝑓𝑛𝑧(𝑥
′, 𝑦′)]) as follows:
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𝑓 ′(𝑥, 𝑦) = [𝑤1 · 𝑓1(𝑥, 𝑦), 𝑤2 · 𝑓2(𝑥, 𝑦), . . . , 𝑤𝑛 · 𝑓𝑛𝑧(𝑥, 𝑦)]

𝑓 ′(𝑥′, 𝑦′) = [𝑤1 · 𝑓1(𝑥′, 𝑦′), 𝑤2 · 𝑓2(𝑥′, 𝑦′), . . . , 𝑤𝑛 · 𝑓𝑛𝑧(𝑥′, 𝑦′)]
(5.2)

The comparison between two pixel vectors 𝑓 (𝑥, 𝑦) and 𝑓 (𝑥′, 𝑦′)

can now be expressed in terms of the weighted pixel vectors

𝑓 ′(𝑥, 𝑦) and 𝑓 ′(𝑥′, 𝑦′) as follows:

𝑓 (𝑥, 𝑦) > 𝑓 (𝑥′, 𝑦′), if
𝑛𝑧∑︁
𝑖=1

𝑓 ′𝑖(𝑥, 𝑦) >

𝑛𝑧∑︁
𝑖=1

𝑓 ′𝑖(𝑥
′, 𝑦′) (5.3)

Thus, we can compare each vector within the neighborhood

lying under the SE (throughout this chapter we are considering

a flat square structuring element). However, even with this

ordering, there is no guarantee that two pixel vectors 𝑓 (𝑥, 𝑦)

and 𝑓 (𝑥′, 𝑦′) are equal if
∑︀𝑛𝑧

𝑖=1 𝑓
′
𝑖(𝑥, 𝑦) =

∑︀𝑛𝑧
𝑖=1 𝑓

′
𝑖(𝑥
′, 𝑦′) (dis-

cussed in Eq.5.1 and Eq.5.3). For instance, consider two vectors

𝑣1 = [6, 5, 1] and 𝑣2 = [2, 1, 5], along with their corresponding

band weights 𝑊 = [2, 3, 5]. Consequently, the weighted vectors

become 𝑣′1 = [12, 15, 5] and 𝑣′2 = [4, 3, 25]. Interestingly, despite

having the equal sum of the elements in the weighted vectors

𝑣′1 and 𝑣′2, this example illustrates that both vectors are inher-
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ently distinct. So to handle this kind of situation, an additional

ordering strategy is employed. In this approach, a conditional

ordering scheme is recommended, where a band prioritization

factor is utilized to assign priority values to every band of the

N-dimensional image. In this approach, The ranking of the

bands is based on the weights assigned to them according to

the Eq.5.1. The bands with high weight values are more prior-

itized in this process. We can express the priority of the band

as:

𝑓𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑊 )

where 𝑓𝑝 denotes the band with the highest priority based on

the maximum weight.

By employing this supplementary conditional ordering strat-

egy, pixel vectors that are initially incomparable are now ar-

ranged according to the scalar value of their highest weighted

component. If two vectors have identical values for the highest

weighted component, they are subsequently ordered based on

the next highest weighted component. This process continues

for successive components. This approach ensures a complete

ordering structure to resolve the incomparability between two

vectors. For instance, consider the above mentioned example
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vectors 𝑣1 = [6, 5, 1] and 𝑣2 = [2, 1, 5], along with their corre-

sponding band weights 𝑊 = [2, 3, 5]. To compare 𝑣1 and 𝑣2, we

Compare the third components: 5 (from 𝑣′1) and 25 (from 𝑣′2).

Since 5 < 25, we conclude 𝑣1 < 𝑣2. For example, if the third

components were both 5, we would compare 15 (from 𝑣′1) and

3 (from 𝑣′2). If we order the bands according to their assigned

weights, where the highest weight signifies the highest priority,

We can define a priority vector 𝑊 ′ which is in decreasing order

of the weights in 𝑊 . It is denoted as:

𝑊 ′ = [𝑤′1, 𝑤
′
2, . . . , 𝑤

′
𝑛𝑧]

𝑊 ′ is in decreasing order of of weights in 𝑊 , i.e. 𝑤′1 ≥ 𝑤′2,≥
. . . ,≥ 𝑤′𝑛𝑧, also 𝑤′𝑘 = 𝑤𝑗, where 𝑤′𝑘 ∈ 𝑊 ′ and 𝑤𝑗 ∈ 𝑊 .

𝑤′𝑘 = 𝑤𝑗 means that the 𝑗𝑡ℎ band has 𝑘𝑡ℎ highest weight.

With the priority vector 𝑊 ′, the ordering strategy can be

formulated as:

𝑓 (𝑥, 𝑦) > 𝑓 (𝑥′, 𝑦′), if ∃𝑘 ∈ {1, 2, . . . , 𝑛𝑧} such that,

(𝑤′𝑘 = 𝑤𝑗) ∧ (𝑓 ′𝑖(𝑥, 𝑦) = 𝑓 ′𝑖(𝑥
′, 𝑦′)) ∧

(︀
𝑓 ′𝑗(𝑥, 𝑦) > 𝑓 ′𝑗(𝑥

′, 𝑦′)
)︀

∀𝑖 < 𝑘

(5.4)
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Similarly, if 𝑓 (𝑥, 𝑦) < 𝑓 (𝑥′, 𝑦′) can be decided:

𝑓 (𝑥, 𝑦) < 𝑓 (𝑥′, 𝑦′), if ∃𝑘 ∈ {1, 2, . . . , 𝑛𝑧} such that

(𝑤′𝑘 = 𝑤𝑗) ∧ (𝑓 ′𝑖(𝑥, 𝑦) = 𝑓 ′𝑖(𝑥
′, 𝑦′)) ∧

(︀
𝑓 ′𝑗(𝑥, 𝑦) < 𝑓 ′𝑗(𝑥

′, 𝑦′)
)︀

∀𝑖 < 𝑘

(5.5)

If, at all the components of 𝑓 ′(𝑥, 𝑦) and 𝑓 ′(𝑥′, 𝑦′) has equal

value, then 𝑓 (𝑥, 𝑦) = 𝑓 (𝑥′, 𝑦′). 𝑓 ′(𝑥, 𝑦) and 𝑓 ′(𝑥′, 𝑦′) are al-

ready defined in Eq.5.2.

This equation gives a tie-breaking conditional strategy that

helps to decide the order between two pixel vectors when it

is equal according to the Eq.5.3. This equation signifies that,

the 𝑘𝑡ℎ priority band is actually the 𝑗𝑡ℎ band in pixel vector

according to its weight. So, if the 𝑗𝑡ℎ component of 𝑓 ′(𝑥, 𝑦) >

𝑓 ′(𝑥′, 𝑦′), and all the other components of higher priority than

𝑘 are equal, then 𝑓 (𝑥, 𝑦) > 𝑓 (𝑥′, 𝑦′). Otherwise, if the 𝑗𝑡ℎ

component of 𝑓 ′(𝑥, 𝑦) < 𝑓 ′(𝑥′, 𝑦′), and all the other components

of higher priority than 𝑘 are equal, then 𝑓 (𝑥, 𝑦) > 𝑓 (𝑥′, 𝑦′). On

the other hand, if all the components of 𝑓 ′(𝑥, 𝑦) and 𝑓 ′(𝑥′, 𝑦′)

has equal value, then 𝑓 (𝑥, 𝑦) = 𝑓 (𝑥′, 𝑦′).

According to the vector ordering strategy proposed, we can
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now define the supremum and infimum of an arbitrary set of

vectors. Given a set of vectors 𝑆 = {𝑠1, 𝑠2, . . . 𝑠𝑛𝑠}, where 𝑛𝑠 is

the number of vectors in the set. So the infimum and supremum

are the vectors that are lesser than and greater than all other

vectors in the set respectively according to the vector ordering

strategy proposed.

Sup(𝑆) = 𝑠𝑖 such that 𝑠𝑗 ≤ℎ 𝑠𝑖, ∀𝑗 ̸= 𝑖 and 𝑠𝑗 ∈ 𝑆 (5.6)

Inf(𝑆) = 𝑠𝑖 such that 𝑠𝑖 ≤ℎ 𝑠𝑗, ∀𝑗 ̸= 𝑖 and 𝑠𝑗 ∈ 𝑆 (5.7)

In the above equations, 𝑆 represents the set of vectors, and

𝑠𝑖 represents a vector in the set 𝑆. ≤ℎ denotes the proposed

vector ordering strategy. These equations define the supre-

mum (Sup(𝑆)) and infimum (Inf(𝑆)) of the set 𝑆 based on the

proposed vector ordering strategy. The supremum of 𝑆 is the

smallest upper bound of 𝑆 and the infimum of 𝑆 is the largest

lower bound of 𝑆. Thus using the proposed vector ordering

strategy (≤ℎ), the basic MM operator dilation and erosion can

be expanded to multivariate data.
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Based on the definition given in Eq.2.4, Eq.2.3, and our pro-

posed supremum and infimum, the extended multivariate dila-

tion and erosion on discrete space Z2 can be defined as:

𝛿′𝐵(𝑓 ) = (𝑓 ⊕𝐵)(𝑥, 𝑦) = 𝑆𝑢𝑝𝑐,𝑑∈𝐵{𝑓 (𝑥+ 𝑐, 𝑦+ 𝑑)}, (𝑥, 𝑦) ∈ Z2

where 𝛿′𝐵(𝑓 ) is the extended dilation on multivariate image 𝑓

by flat structuring element 𝐵. The 𝐵 ⊂ Z2 denotes the set of

discrete spatial coordinates associated with pixels lying within

the neighborhood defined by a flat structuring element (SE) 𝐵.

Also, in this case, we are considering a symmetric structuring

element. Similarly, the extended erosion 𝜀′𝐵(𝑓 ) can be defined

as:

𝜀′𝐵(𝑓 ) = (𝑓⊖)𝐵(𝑥, 𝑦) = 𝐼𝑛𝑓𝑐,𝑑∈𝐵{𝑓 (𝑥 + 𝑐, 𝑦 + 𝑑)}, (𝑥, 𝑦) ∈ Z2

Based on the simple definitions above, the flat extended di-

lation and erosion of 𝑓 by 𝐵 is based on the selection of the

B-neighborhood pixel vector which is supremum and infimum

within the pixel vectors of B-neighborhood respectively.

Since we already know that the MM operator can be ap-
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plied only to gray-scale images. Thus, by employing this frame-

work, the extension of MM to multiband images especially in

hyperspectral images is achieved, which can directly be used

to compute features of hyperspectral images for further pro-

cessing. Using the definitions of supremum and infimum given

in Eq.5.6 and Eq.5.7, the multi-channel morphological profiles

(Morphological profile is explained in Chapter 2) are computed,

which are used as feature vectors for support vector machines

for supervised classification of hyperspectral data. Since the ex-

tended dilation and erosion for multivariate data are defined us-

ing the above equations, the multi-channel morphological pro-

files(MMP) can be computed by simply replacing the classic

gray-scale dilation and erosion in Eq.2.9 to Eq.2.14 by the de-

fined extended dilation and erosion on multivariate data.

5.5 Result and Analysis

The application of our proposed weighted vector ordering strat-

egy on the Pavia University hyperspectral image dataset, as de-

tailed in Chapter 3, provided detailed significant insights. This

dataset, consisting of nine classes and 115 bands, served as an

ideal real test case for our method. For analysis purposes, we
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computed a multi-channel morphological profile (MMP) that

was subsequently used for land cover classification. We used the

Support Vector Machine (SVM) [52] method for the classifica-

tion task. Notably, the utilization of the MMP-based features

in the SVM classifier exhibited a promising performance. To

further evaluate our proposed method, we compared the clas-

sification results obtained using our strategy against two other

widely accepted vector ordering strategies 1) Lexicographic or-

dering with increasing priority, 2) Lexicographic ordering with

decreasing priority with Multi-channel Morphological Profile.

A detailed qualitative and quantitative analysis is provided in

this section.

A unique aspect of our approach was assigning a priority to

each of the bands based on the dilation distance( explained in

Chapter 3) computed for each band to compare with other pixel

vectors as mentioned in Eq.5.1 and Eq.5.3. Using the dilation

distance value as a priority, how the available bands are prior-

itized, is explored in this experiment. We have computed the

average intensity values of pixels for each class available in the

ground truth data and the priority values of each band. We

have selected some of the priority values and their correspond-
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ing bands for better visibility. The plot of the priority of bands

vs. the average intensity of pixels for each class is shown in

Fig.5-1. The priority of the bands is written on the dotted line

as P: value. As we can recall from Chapter 3, dilation distance

can capture the spatial distance and it is useful to separate

the class objects. This concept helped us to assign the priority

value of each band. As we can see in Fig.5-1, those bands are

set higher priority with significant separability from each class.

Those bands, in which even though one class is quite separable

from other classes, the others are not following that property

are assigned a medium level of priority as we can see one band

in between the 80th and 100th band. This experiment strength-

ens our intuition that the dilation distance-based priority value

is a good choice for priority-based vector ordering.

To visualize and analyze the distinction between multi-channel

morphological operations and univariate morphological opera-

tions, we also implemented the proposed vector ordering-based

multi-channel dilation and erosion on the dataset. Also, we

have selected the 5th band of the image cube to perform the

mono-channel grayscale dilation and erosion, due to its specific

spectral characteristics.
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Figure 5-1: Plot of band priority versus average intensity for each class, demonstrating
the efficiency of band priority assignment. The plot illustrates how the prioritization
of bands effectively captures the divergence of class information contained within each
band. The priority of bands is shown in the dotted line and as P: value, e.g. P:51 is
the 51st priority band. Each curve represents a unique class, showing the relationship
between the assigned band priority and its corresponding average intensity. This indi-
cates how successfully the band priority assignment discerns the different classes based
on their spectral properties.
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For visual analysis, of how these multi-channel Morphologi-

cal operation results are different from univariate morphological

operations, we applied the proposed vector ordering strategy

to compute multi-channel dilation and erosion on the dataset.

Also, we have selected the 5th band of the image cube to per-

form the mono-channel grayscale dilation and erosion on that

band. The obtained dilated and eroded images are shown in

Fig.5-2a to Fig.5-2e with the base image at the 5th band. To

demonstrate the proposed approach, we consider 3x3 flat Struc-

turing element 𝐵 throughout the process. The result of apply-

ing multi-channel dilation and erosion on the image using struc-

turing element B is an image cube with the same dimension as

the original data. In the resultant data cube, every pixel vec-

tor is replaced by its neighboring supremum or infimum pixel

vector as defined in Eq.5.6 and Eq.5.7. Fig.5-2c the base image

at 5th band of the image dataset, Fig.5-2a and Fig.5-2b shows

the 5th resultant band obtained after applying multi-channel

erosion and dilation using the proposed method at the whole

image cube and Fig.5-2d and Fig.5-2e are resultant image ob-

tained after applying mono-channel grayscale dilation (𝛿𝐵) and

erosion (𝜀𝐵). It can be seen in Fig.5-2a and Fig.5-2b that multi-
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channel dilation (𝛿′𝐵) and erosion (𝜀′𝐵) expand and shrink par-

ticular classes in that bands, especially the "metal-sheet" class

(that is more visible), whereas, the mono-channel dilation ero-

sion (Fig.5-2d, Fig.5-2e) tends to expand the brighter objects

and shrink the darker objects available only in that band irre-

spective of the spectral purity of that band. For a quantitative

evaluation of the proposed method, we consider the evaluation

using a classification based on Support Vector Machine(SVM)

by computing mult-channel MP. We split the data into the

train(70%) and test(30%) data sets. To evaluate the proposed

vector ordering method, we computed the multi-channel MP on

the dataset and performed SVM classification on that. As we

have already discussed in Chapter 2 using Eq.2.14 that morpho-

logical profile (MP) is dependent on the number of opening and

number closing cycles we use. Therefore we have experimented

to show how SVM classification accuracy changes according to

the number of opening and closing cycles we use for computing

MP, which eventually generates the feature vectors for SVM.

Fig.5-3, shows the accuracy plot vs. the number of opening

and closing cycles used to compute MP in the Pavia University

dataset. Observation is drawn from this experiment that the
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optimal accuracy is coming from the number of opening and

closing cycles around 15 to 20.
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(a) (b) (c)

(d) (e)

Figure 5-2: Comparative effects of dilation and erosion operations on multi-channel
and mono channel data. (a) Result of the erosion operation on the multi-channel data
(b) Result of the dilation operation on the multi-channel data. (c) The base image
represents the original data at the 5th band. (d) Result of the dilation operation on
the mono channel data. (e) Result of the erosion operation on the mono channel data.
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Figure 5-3: Classification accuracy vs. the number of opening and closing cycles (as
discussed in Eq.2.14) used to compute MP.

Therefore we have chosen 18 numbers of cycles to use for fur-

ther experiments. This slightly gives the idea about the shape

and size of the spatial objects present in the Pavia University

data. Other optimal hyperparameters for SVM are chosen us-

ing a five-fold cross-validation method. The classification accu-

racy(SVM accuracy) would indicate how well the vector order-

ing method is working. A detailed SVM classification accuracy

in terms of precision, Recall, F1-score and accuracy of each class

and Overall Accuracy(OA) of Pavia University using the pro-

posed vector ordering method to compute Multi-channel MP is

given in Table.5.1. The OA obtained is 92.30 which indicates a

significant classification capacity.

SVM accuracy is chosen using a five-fold cross-validation

Page 139



Chapter 5: Adapting Morphological Operators for Multivariate Data Processing

Class Precision Recall F1-Score Accuracy
1 81.67 89.12 85.23 89.20
2 92.47 80.66 86.16 81.14
3 89.18 93.47 91.28 93.47
4 93.73 86.39 89.91 86.41
5 100.00 99.65 99.82 99.46
6 92.50 93.17 92.83 93.20
7 92.43 98.65 95.44 98.7
8 90.75 89.47 90.11 89.51
9 99.63 100.00 99.82 100.00

OA - - - 92.30

Table 5.1: Classification metrics for proposed method

method. The classification accuracy(SVM accuracy) would in-

dicate how well the vector ordering method is working. A de-

tailed SVM classification accuracy in terms of precision, Recall,

F1-score, and accuracy of each class and Overall Accuracy(OA)

of Pavia University using the proposed vector ordering method

to compute multi-channel MP is given in Table.5.1. The OA

obtained is 92.30% which indicates a significant classification

capacity.

For a comparative analysis, we computed the classification

result using two other widely used vector ordering methods,

Lexicographic Ordering with decreasing priority(L-ordering (as-

cending priority)) and Lexicographic ordering with increasing

priority (L-ordering (descending priority)). These two meth-

ods are used to compute the multi-channel MP in the Pavia
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University multiband image. For comparison, we have used

two metrics Overall Accuracy(OA) and Kappa coefficient(KC).

A summary of results for all three vector ordering methods

in terms of OA and KC is given in Table. 5.2. The corre-

sponding classification map for all three methods along with

the given ground truth map is also shown in Fig.5-4 for visual

comparison. In Fig.5-4, Fig.5-4a shows the ground truth of the

dataset, Fig.5-4b is the classification map obtained by comput-

ing multi-channel MP using the proposed vector ordering strat-

egy, Fig.5-4c is the classification map obtained by computing

multi-channel MP using Lexicographic- with increasing priority

vector ordering strategy and Fig.5-4d is the classification map

obtained by computing multi-channel MP using Lexicographic-

with decreasing priority vector ordering strategy.

Observe that the classification accuracy obtained using the

proposed vector ordering strategy to compute multi-channel

MP outperforms the classification accuracy, where we used Lex-

icographic ordering to compute multi-channel MP. This sum-

mary of results can be comprehended as our selection of priority

and weight for each band is relevant towards the computing of

multi-channel Morphological operation.
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(a) (b)

(c) (d)

Figure 5-4: (a) Ground-truth of the dataset (b) classification map obtained by com-
puting multi-channel MP using the proposed vector ordering strategy (c) classification
map obtained by computing multi-channel MP using Lexicographic- with increasing
priority vector ordering strategy,(d) classification map obtained by computing multi-
channel MP using Lexicographic- with decreasing priority vector ordering strategy.
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Method OA KC(%)

Proposed vector-ordering method 92.29 91.33

L-ordering(ascending priority) 85.34 81.04

L-ordering (descending priority) 90.52 87.58

Table 5.2: Evaluation using SVM for classification on multi-channel MP

5.6 Conclusion

Mathematical morphology (MM) is a crucial non-linear image

analysis tool used in object and pattern recognition. Standard

MM operators, defined on 2D binary and gray-scale images,

based on local minimum or infimum and maximum or supre-

mum. Because of their proven effectiveness in shape-based fea-

ture analysis on single-band images, extending these operators

to multiband images is an area of significance. However, this

task is challenging due to the absence of a predetermined vec-

tor ordering. To address this, we propose a new vector ordering

method, based on defining a dilation distance weight for each

band in multiband images.

Our method has empirically performed better than the exist-

ing lexicographic ordering method providing 92.29% SVM clas-

sification accuracy. This method is vector preserving while pro-

viding a total order relation between compared vectors, making
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the results reasonable and justifiable. Moreover, the versatil-

ity of the proposed algorithm suggests its potential for usage in

other multi-channel morphological operations for multi-channel

images. It offers a new, practical approach to image analysis,

promising to extend the reach and impact of MM techniques.
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Conclusions and Future Work

In conclusion, this thesis focuses on exploring Mathematical

Morphology(MM) based nonlinear operator methods and an-

alyzing the spatial features of remote-sensing images, with an

emphasis on Hyperspectral images and Digital Elevation Mod-

els (DEMs). The research investigated morphological-based in-

terpolation techniques for ordered sets and explored the spatial

relationship using MM-based methods. The application of Mor-

phological interpolation to DEMs provided different prospects

for its utilization. Also, the proposed methods for extending

the MM operator open a new path of exploration. Overall,

the findings and methodologies presented in this study provide

valuable insights into enhancing the analysis and processing of

remotely sensed data.

Having revisited the purpose and goal of this research work,
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the following summary of the main findings in this thesis.

• It is demonstrated that the Dilation Distance-based method

for band selection can capture spatial distances and iden-

tify unique spatial objects. It adds a new viewpoint to

Hyperspectral Image analysis using MM-based methods.

• We provide empirical evidence that the MM-based method

presents a better strategy for analyzing remote sensing im-

ages, especially in dimension reduction.

• Morphological interpolation method proposed in Chapter 4

effectively addresses the challenges in spatial visualization

of a continuous surface.

• Further, a spatial relationship and logical relationship are

also analyzed between source-target sets.

• Apart from using binary and grayscale MM operators, chap-

ter 5 provides an insight to effectively extend these oper-

ators to multiband remotely sensed images directly all at

once.

• The obtained empirical results in this research work have

proven the capability of Mathematical Morphology in terms

of spatial feature analysis of remote sensing data.

Page 146



.

However, based on the results obtained, it is believed that

further research in this area can not only improve the methods

but also provide new insights into Mathematical Morphology

based tools in image analysis. Some of the future scopes and

ideas are briefly mentioned below.

• Selection of suitable preprocessing steps for objects which

are spatially disconnected, can improve further these ap-

proaches.

• Incorporating MM-based methods into state-of-the-art meth-

ods and learning-based methods is one of the important

future scopes.

• Using more complex data and an unordered set for median

set-based interpolation can provide significant insight and

is considered for future work.

• Improvising the weight and priority for vector order is left

as future research.

• Also, MM-based methods can be applied to other remotely

sensed data for mineral mapping, crater detection, glacier

study, etc.
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