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ABSTRACT II

ABSTRACT

Graph coloring is one among the oldest and broadly studied topics in graph theory. A coloring of a

graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the

same color, and the chromatic number of G (denoted by χ(G)) is the minimum number of colors needed

to color G. The clique number of G (denoted by ω(G)) is the maximum number of mutually adjacent

vertices in G. In this thesis, we focus on some problems on bounding the chromatic number in terms of

clique number for certain special classes of graphs with no long induced paths, namely the class of Pt-free

graphs, for t ≥ 5.

A hereditary class of graphs G is said to be χ-bounded if there exists a function f : N → N with f(1) = 1

and f(x) ≥ x, for all x ∈ N (called a χ-binding function for G) such that χ(G) ≤ f(ω(G)), for each G ∈ G.
The smallest χ-binding function f∗ for G is defined as f∗(x) := max{χ(G) : G ∈ G and ω(G) = x}. The
class G is called polynomially χ-bounded if it admits a polynomial χ-binding function.

An intriguing open question is whether the class of Pt-free graphs is polynomially χ-bounded or not.

This problem is open even for t = 5 and seems to be difficult. So researchers are interested in finding

(smallest) polynomial χ-binding functions for some subclasses of Pt-free graphs. Here, we explore the

structure of some classes of P6-free graphs and obtain (smallest/linear) χ-binding functions for such classes

of graphs. Our results generalize/improve several previously known results available in the literature.

Chapter 1 consists of a brief introduction on χ-bounded graphs and a short survey on known χ-bounded

P6-free graphs. We also provide motivations, algorithmic issues, and relations of χ-boundedness to other

well-known/related conjectures in graph theory.

In Chapter 2, we study the class of (P2 + P3, P2 + P3)-free graphs, and show that the function

f : N → N defined by f(1) = 1, f(2) = 4, and f(x) = max
{
x+ 3,

⌊
3x
2

⌋
− 1

}
, for x ≥ 3, is the smallest

χ-binding function for the class of (P2 + P3, P2 + P3)-free graphs.

In Chapter 3, we are interested in the structure of (P5, 4-wheel)-free graphs, and in coloring of such

graphs. Indeed, we first prove that if G is a connected (P5, 4-wheel)-free graph, then either G admits

a clique cut-set, or G is a perfect graph, or G is a quasi-line graph, or G has three disjoint stable sets

whose union meets each maximum clique of G at least twice and the other maximal cliques of G at least

once. Using this result, we prove that every (P5, 4-wheel)-free graph G satisfies χ(G) ≤ 3
2ω(G). We also

provide infinitely many (P5, 4-wheel)-free graphs H with χ(H) ≥ 10
7 ω(H).

It is known that every (P5,K4)-free graph G satisfies χ(G) ≤ 5, and that the bound is tight. Both the

class of (P5, flag)-free graphs and the class of (P5, K5 − e)-free graphs generalize the class of (P5,K4)-free

graphs.

In Chapter 4, we explore the structure and coloring of (P5, K5 − e)-free graphs. In particular, we

prove that if G is a connected (P5,K5 − e)-free graph with ω(G) ≥ 7, then either G is the complement

of a bipartite graph or G has a clique cut-set. From this result, we show that if G is a (P5,K5 − e)-free

graph with ω(G) ≥ 4, then χ(G) ≤ max{7, ω(G)}. Moreover, the bound is tight when ω(G) /∈ {4, 5, 6}.
In Chapter 5, we investigate the coloring of (P5, flag)-free graphs. We prove that every (P5,flag,K5)-

free graph G that contains a K4 satisfies χ(G) ≤ 8, every (P5,flag,K6)-free graph G satisfies χ(G) ≤ 8,

and that every (P5,flag,K7)-free graph G satisfies χ(G) ≤ 9. Moreover, we prove that every (P5, flag)-

free graph G with ω(G) ≥ 4 satisfies χ(G) ≤ max{8, 2ω(G) − 3}, and that the bound is tight for

ω(G) ∈ {4, 5, 6}.
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GLOSSARY VIII

GLOSSARY

We consider only simple, finite and undirected graphs. If G is a graph, then V (G) and E(G)

respectively denote its vertex-set and its edge-set. We use standard terminology from Bondy and

Murty [11] and West [169]. For easy reference, we give below some of the definitions which are

used in this thesis.

Acyclic graph: A graph with no cycles.

Adjacent vertices: Two vertices joined by an edge.

Antihole: The complement graph of a hole.

Atom: A graph which has no clique cut-set.

Big component of a graph: A component with at least two vertices.

Bipartite graph: A graph whose vertex-set can be partitioned into two stable sets.

Chordal graph: A graph that does not contain a hole.

Chromatic number of a graph: The least possible integer k such that the graph admits a

k-vertex coloring.

k-chromatic graph: A graph whose chromatic number is equal to k.

Claw: The graph K1,3.

Clique covering of a graph: A set of cliques whose union is the vertex-set of the graph.

Clique covering number of the graph G: The chromatic number of the complement graph

of G or the smallest possible integer t such that the vertex-set of G can be written as a union

of t cliques.

Clique cut-set: A cut-set which is a clique.

Clique of a graph: A set of mutually adjacent vertices.

Clique number of a graph: The largest possible integer t such that the graph contains a clique

of size t.

k-coloring or proper k-vertex coloring of a graph: An assignment of k colors to the vertices

of a graph such that no two adjacent vertices receive the same color or a partition of the

vertex-set of a graph into k stable sets.

Coloring of a graph: A k-coloring of the graph, for some k.

k-colorable graph: A graph with a k-coloring.

Color class with respect to a k-coloring of a graph: A set of vertices with the same color.

Complement graph of the graph G: The graph with vertex-set V (G) and edge-set {uv | uv /∈
E(G)}.



GLOSSARY IX

Complement graph of a bipartite graph: A graph whose vertex-set can be partitioned into

two cliques.

Complete bipartite graph Kp,q: A graph whose vertex set is a union of two disjoint stable sets

of size p and q such that each vertex in one set is adjacent to every vertex in the other.

Complete graph Kt: A simple graph whose vertex-set is a clique of size t.

Component of a graph: A maximal connected subgraph.

Connected graph: A graph in which there is a path between any two vertices.

G contains H: If G has an induced subgraph which is isomorphic to H.

Cut-set or Separator or Separating set: A set of vertices whose removal increases the number

of components.

Cut-vertex of a graph: A vertex whose removal increases the number of components.

Cycle/chordless cycle/induced cycle: The graph obtained by joining two pendant vertices of

an induced path.

k-cycle: A cycle of length k.

Degree of a vertex v of a graph: The number of vertices adjacent to v.

Disconnected graph: A graph with more than one component.

Distance between a pair of vertices: The length of a shortest path between the vertices.

Even hole: A hole with even number of vertices.

Dominating set of a graph: A subset S of the vertex-set such that every vertex is either in S

or has a neighbor in S.

Dominating induced subgraph: The subgraph induced by a dominating set.

Forest: An acyclic graph.

H-free graph G, where H is any graph: If G does not contain H.

(H1,H2, . . . ,Hk)-free graph G, where H1, H2, . . . , Hk ( k ≥ 2) are given graphs: IfG

does not contain Hi, for any i ∈ {1, 2, . . . , k}.

F-free graph G, where F is a given class of graphs: If G does not contain any graph in F .

Girth of the graph G: The smallest possible integer ℓ such that G contains a cycle of length ℓ,

if G contains a cycle, else it is ∞.

Hereditary class of graphs: A graph class C such that if a graph G ∈ C and G′ is an induced

subgraph of G, then G′ ∈ C.

Hole: An induced cycle of length at least 4.



GLOSSARY X

Homogeneous set: A subset S of the vertex-set with at least two vertices such that each vertex

not in S is either adjacent to all the vertices in S or non-adjacent to all the vertices in S.

Imperfect graph: A graph which is not a perfect graph.

Independent or stable set of a graph: A set of mutually non-adjacent vertices.

Independence or stability number of a graph: The largest possible integer t such that the

graph contains a stable set of size t.

Induced subgraph on a vertex subset S of G: The subgraph with vertex-set S and edge-set

consisting of edges of G with both the ends in S.

Isomorphic graphs: Two graphs G and G′ that have an isomorphism between them, that is, there

exists a bijection f : V (G) → V (G′) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(G′).

Join of two vertex disjoint graphs G and H: The graph with vertex-set V (G) ∪ V (H) and

edge-set E(G) ∪ E(H) ∪ {uv | u ∈ V (G), v ∈ V (H)}.

Length of a path/cycle: The number of edges in a path/cycle.

Maximal clique of a graph: A maximal set of mutually adjacent vertices.

Neighbor of a vertex v: A vertex which is adjacent to v.

Non-neighbor of a vertex v: A vertex which is non-adjacent to v.

Neighborhood of a vertex v: The set of neighbors of v.

Non-adjacent vertices: If there is no edge joining them.

Non-neighborhood of a vertex v: The set of non-neighbors of v.

Null graph: A graph whose vertex-set is an empty set.

Odd antihole: The complement graph of an odd hole.

Odd hole: A hole with odd number of vertices.

Path/chordless path/induced path: A graph whose vertices can be ordered such that two

vertices are adjacent if and only if they are successive in the ordering.

(u, v)-path: A path with u and v as pendant vertices.

Pendant vertex: A vertex of degree 1.

Perfect graph: A graph such that chromatic number is equal to the clique number for each of

its induced subgraph.

Quasi-line graph: A graph in which the neighborhood of each vertex can be expressed as a union

of two cliques.

Ramsey number R(s, t) : The minimum possible integer n such that every graph on n vertices

contains a clique of size s or a stable set of size t.



GLOSSARY XI

Regular graph: A graph in which all the vertices have same degree.

k-regular graph: A regular graph whose common degree is k.

Self-complementary graph: The graph which is isomorphic to its complement graph.

Self-complementary graph class: A graph class C such that C = C.

Subgraph of a graph G: A graph whose vertices and edges are in G.

Tree: A connected acyclic graph.

Twins in a graph: Two non-adjacent vertices such that the neighborhood of one vertex is

contained in the neighborhood of the other.

Union of two vertex disjoint graphs G and H: The graph with vertex-set V (G)∪V (H) and

edge-set E(G) ∪ E(H).

Universal vertex of a graph: A vertex which is adjacent to all other vertices.

Wheel: A join of a hole and a K1.

k-wheel: A join of a hole of length k and a K1.



NOTATION XII

NOTATION

We use standard notation of Bondy and Murty [11] and West [169]. For easy reference, we list

below some of them which we have used in the thesis.

English Symbols

Cℓ Induced cycle on ℓ vertices

d(v) or dG(v) degree of a vertex v in G or |NG(v)| or |N(v)|
dist(u, v) distance between two vertices u and v

dist(u,X) min{dist(u, x) | x ∈ X}
dist(X1, X2) min{dist(x1, x2) | x1 ∈ X1, x2 ∈ X2}
E(G) edge-set of G

G simple, finite and undirected graph

Kℓ complete graph on ℓ vertices

m number of edges in a graph

n number of vertices in a graph

N(v) or NG(v) neighborhood of v in G

N(v) or NG(v) non-neighborhood of v in G

N(X) or NG(X), where X ⊆ V (G) {v ∈ V (G) \X | N(v) ∩X ̸= ∅}
Pℓ Induced path on ℓ vertices

|X| cardinality of X

G− v subgraph obtained by deleting a vertex v from G

G− e subgraph obtained by deleting an edge e from G

G[X] subgraph of G induced by the vertex subset X

G−X the graph G[V (G) \X]

uv edge with u and v as end vertices

V (G) vertex-set of G

Greek Symbols

α(G) independence number or stability number of G

δ(G) minimum degree in G

∆(G) maximum degree in G

θ(G) clique covering number of G

χ(G) chromatic number of G

ω(G) clique number of G

Miscellaneous Symbols



NOTATION XIII

G or C or H class of graphs

G1 +G2 union of vertex disjoint graphs G1 and G2

G1 ∨G2 join of vertex disjoint graphs G1 and G2

G or Co-G complement graph of G

G {G | G ∈ G}
ℓG union of ℓ vertex disjoint copies of G

N set of natural numbers.

[k], k ∈ N {1, 2, . . . , k}.(
n
k

)
n!

k!(n−k)!

∼= isomorphic

≇ not isomorphic

∈ belongs to, is an element of

/∈ does not belongs to, is not an element of

∪ union

∩ intersection

⊆ subset, is a subgraph of

⌊x⌋ floor of x (largest integer less than or equal to x)

⌈x⌉ ceiling of x (smallest integer greater than or equal to x)

\ set difference∑
summation

□ or end or absence of proof
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SOME SPECIAL GRAPHS

3K1 2P2 K3 Paw C4 K4 − e K4 K1 +K3

Figure 1: Some special graphs on at most four vertices.

C5 P5 K1 ∨P4 or
K1 +P4

P2 +P3 4-wheel Co-chair or
Kite

HVNFlag K5 − e K5 Bull

Banner Butterfly Cricket DartCo-banner

K2,3

Crown

K1 +K4

K2 +K3 2K1 +K3 K1+paw K1 + (K4 − e) C4 +K1

Figure 2: Graphs on five vertices which are not forest.

Figure 3: The Petersen graph, and the Grötzsch Graph/the Mycielski’s 4-chromatic triangle-free graph
(left to right).
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Figure 4: The Clebsh graph, the Co-Clebsh graph, and the Co-Clebsh graph with one vertex deleted (left
to right).

Figure 5: The 16-regular Schläfli graph on 27 vertices.

Figure 6: The complement of the 16-regular Schläfli graph on 27 vertices.
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Chapter 1

Introduction

1.1 Graph coloring: An overview

Graph coloring is one among the oldest and broadly studied topics in graph theory. It started

with the ‘Four color problem’ which asks whether the countries of any map can be colored using

at most four colors such that no two countries which share a common boundary have the same

color. After several partial results, a solution for this problem was given by Appel, Haken and

Kosh [1, 2] in 1977 by an extensive use of computer verifications, and is now popularly known

as the ‘Four Color Theorem’. In 1997, Robertson, Sanders, Seymour and Thomas [148] gave an

improved and significantly simplified proof for the four color theorem using the approach given in

[1, 2]. The attempts for a solution of the four color problem give rise to many important notions

and novel techniques in graph theory, and motivated the study of various other graph coloring

problems/parameters. While vertex coloring and edge coloring are the classical graph colorings,

different types of graph colorings have been introduced and explored by many researchers in

recent years which include total coloring, list coloring, acyclic coloring, star coloring, equitable

coloring, grundy coloring, harmonious coloring etc., A famous book of Jensen and Toft [93] and

a monograph edited by Kubale [120] provide an excellent and detailed surveys on various graph

colorings. Though graph coloring theory has a remarkable growth since its inception, it is still

flooded with numerous challenging unsolved problems. It is evident from a large number of recently

published books, monographs, edited book volumes, periodic surveys and theses that graph coloring

theory still receives a wide attention all around the world, and is of current interest. In this thesis,

we would like to focus on some problems related to classical vertex coloring of graphs1.

Several real world practical problems such as storage/packing problems, time-tableling/scheduling

problems, frequency assignment problems and register allocation problems can be modeled as

applications of vertex coloring problems in graphs (see [78, 133] for more). Thus given a general

graph, the computation of its chromatic number algorithmically is of interest. This leads to the

following decision problems.

1The contents of this chapter are appearing in “A.Char and T.Karthick. χ-boundedness and related problems on graphs
without long induced paths: A survey. Submitted for publication.”

1
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Coloring

Instance: A graph G and a positive integer k.

Question: Is G k-colorable?

k-Coloring

Instance: A graph G.

Question: Is G k-colorable?

Also, we consider the following optimization version of the vertex coloring problem.

Chromatic Number

Instance: A simple graph G.

Question: What is the chromatic number of G?

These problems play a significant role in the theory of algorithms. By a classical and an early

result of Karp [97], for any fixed k ≥ 3, k-Coloring is known to be NP-complete for an arbitrary

class of graphs. Khanna and Linial [107] showed that coloring 3-colorable graphs with 4-colors is

NP-hard. It is also known that [128] there exists a fixed constant ϵ > 0 such that approximating

the chromatic number of an arbitrary graph within a factor of nϵ is NP-hard. Feige and Kilian [65]

proved that the chromatic number cannot be approximated within a factor of O(n1−ϵ), for any

ϵ > 0, unless NP ⊆ ZPP, and thus improving an earlier stated result of Lund and Yannakakis [128].

These algorithmic issues motivated the study of k-Coloring for some fixed values of k.

While it is well-known that 2-Coloring can be solved in polynomial time, 3-Coloring

remains NP-complete even when the graphs are restricted to planar graphs with degree at most 4

or triangle-free graphs; see [130]. But for the class of perfect graphs, k-Coloring can be solved in

polynomial time [80]. These results further motivated the study of k-Coloring for certain special

classes of graphs, viz the class of H-free graphs, for some graph H. We refer to an excellent work

of Golovach, Johnson, Paulusma and Song [77] for a survey of the current status of the problem,

and several other related problems.

Kamiński and Lozin [96] and independently Král, Kratochv́ıl, Tuza, and Woeginger [119] showed

that, for any fixed k ≥ 3 and g ≥ 3, k-Coloring is NP-complete for graphs with girth at least

g. From this result, it follows that, if H contains a cycle, then k-Coloring is NP-complete for

the class of H-free graphs. Also from results of Holyer [88] and Leven and Galil [123], if H is a

forest with δ(H) ≥ 3, then k-Coloring is NP-complete for the class of H-free graphs. Thus we

conclude that k-Coloring is NP-complete for the class of H-free graphs, if H is not isomorphic to

the union of disjoint paths. Král, Kratochv́ıl, Tuza, and Woeginger [119] proved that Coloring

can be solved in polynomial time for the class of H-free graphs, whenever H is an induced (not

necessarily proper) subgraph of a P4 or a P3 +K1; otherwise, the problem is NP-complete.

The computational complexity issues discussed above are the primary motivations of the current

research on finding the chromatic number for restricted classes of graphs, finding lower and upper
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bounds for the chromatic number in terms of various other parameters of the given graph, and in

finding approximation algorithms for the chromatic number. Unfortunately, for a general graph

G, the computations of parameters ω(G) and α(G) are NP-hard. In this thesis, we mainly focus

on lower and upper bounds for the chromatic number for some classes of graphs. Some of the

important and useful lower and upper bounds for the chromatic number are given below.

� In any coloring of a graph G which uses χ(G) colors, since each color class has at most α(G)

vertices, we have χ(G) ≥ |V (G)|
α(G)

.

� Given a graph G, in any coloring of G, clearly the vertices of any clique in G require distinct

colors. So for any graph G, if H is an induced subgraph of G, then χ(H) ≥ ω(H). In particular,

for any graph G, ω(G) is an obvious lower bound for χ(G), and χ(G) = 1 if and only if

ω(G) = 1.

� By using a simple ‘greedy algorithm’, the vertices of a given graph G can be colored in

polynomial time using at most ∆(G)+1 colors. Hence every graph G satisfies χ(G) ≤ ∆(G)+1.

Obviously if G is a complete graph or an odd hole, then χ(G) = ∆(G) + 1. A well-known

theorem of Brooks [25] states that if G is not a complete graph or an odd hole, then G satisfies

χ(G) ≤ ∆(G). In other words, he showed that every graph G with ∆(G) ≥ 3 and ω(G) ≤ ∆(G)

satisfies χ(G) ≤ ∆(G).

1.2 Chromatic number and clique number

Bounding the chromatic number of a given graph by its clique number has attracted several

researchers. Recall that given a hereditary class of graphs G, χ(G) ≥ ω(G), for each G ∈ G. An
important hereditary class of graphs for which the equality holds is one among the well explored

classes of graphs in graph coloring theory that has a long history starting from the classical ‘König’s

theorem on matchings’, and is given below.

1.2.1 Perfect graphs

Recall that a graph G is said to be perfect if χ(H) = ω(H), for every induced subgraph H of G,

else it is called imperfect. Motivated from a question of Shannon [161] on communication channels,

Berge [6] initiated the study of the class of perfect graphs. We refer to [140] for more details.

Some well-known instances of perfect graphs are: bipartite graphs and their complement graphs,

comparability graphs, chordal graphs and the class of P3-free graphs. We refer to [89] for many

more classes of perfect graphs. Perfect graphs have been broadly studied because of a couple of

celebrated conjectures posed by Claude Berge in 1961 [6]

The first conjecture of Berge [6] was settled by Lovász [125] in 1972 (see also [70]). Indeed,

Lovász gave different proofs for Theorem 1.1; see [125, 126], and we refer to Gasparian [71] for a

simple and elegant proof.
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Theorem 1.1 ([125, 126]) (Perfect Graph Theorem) Given a graph G, the following statements

are equivalent: (i) G is perfect. (ii) G is perfect. (iii) Every induced subgraph H of G satisfies

α(H) · ω(H) ≥ |V (H)|.

The second conjecture of Berge [6] asserted for a characterization of the class of perfect graphs

without certain induced subgraphs, is shown to be true by Chudnovsky, Seymour, Robertson and

Thomas [42], and is given below.

Theorem 1.2 ([42]) (Strong Perfect Graph Theorem) A graph G is perfect if and only if G does

not contain an odd hole or an odd antihole.

Chudnovsky et al. [37] gave a polynomial time recognition algorithm for the class of perfect

graphs. Moreover, several algorithmic graph theory problems which are well-known to be NP-

complete in general can be solved in polynomial time when restricted to the class of perfect graphs;

see [78]. In particular, using linear programming techniques, Grötschel, Lovász and Schrijver [80]

showed that given a perfect graph G, the parameters χ(G), ω(G) and α(G) can be computed in

polynomial time. The books of Golumbic [78], and Ramirez-Alfonsin and Reed [141] provide an

excellent survey of results on perfect graphs and their applications.

1.2.2 The difference χ − ω can be arbitrarily large

Given a class of graphs G, while every graph G ∈ G satisfies χ(G) ≥ ω(G), the following question

arises naturally: Is it possible to find an upper bound for χ(G) in terms of ω(G), for all G ∈ G ? In

other words, for a graph G ∈ G, how large the difference χ(G)−ω(G) can be? The difference χ−ω

can be arbitrarily large in general. This was shown independently by several authors. Descartes

[54] constructed a k- chromatic graph with girth at least 6, for every k ≥ 4. By means of an

excellent recursive construction procedure, Mycielski [135] in 1955 proved the following.

Theorem 1.3 ([135]) For each k ∈ N, there exists a triangle-free graph Gk with χ(Gk) = k.

Note that for k ≥ 2, the graph Gk in Theorem 1.3 has 3× 2k−2− 1 vertices, which is exponential

in k. Erdös [58] proved that for each k ∈ N, there exists a triangle-free k-chromatic graph with

at most k50 vertices via a geometric construction. Later in 1959, Erdös [59] proved the following

remarkable theorem using non-constructive probabilistic methods.

Theorem 1.4 ([59]) For all g ≥ 4 and for sufficiently large k, there exists a k-chromatic graph G

with |V (G)| ≤ kcg (where 0 < c ≤ 2 is a constant) and girth at least g.

1.3 Beyond perfect graphs: The class of χ-bounded graphs

From Theorem 1.4, it follows that for a general class of graphs G, there does not exist a function

f : N → N (where f(1) = 1 and f(x) ≥ x, for all x ∈ N) such that χ(G) ≤ f(ω(G)), for all G ∈ G.
But, for a restricted class of graphs such a function may exist. For instance, a result of Wagon
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[168] states that for ℓ ∈ N, every ℓP2-free graph G satisfies χ(G) ≤ 1
2ℓ−1 (ω(G) + 1)ω(G)2ℓ−3. This

motivated Gyárfás to introduce the notion of ‘χ-bounded graphs’ in [81].

Let G be a hereditary class of graphs. A function f : N → N such that f(1) = 1 and f(x) ≥ x,

for all x ∈ N is called a χ-binding function for G if χ(G) ≤ f(ω(G)), for each G ∈ G. The class

G is called χ-bounded if there exists a χ-binding function for G, is linearly χ-bounded if f is a

linear function, and is polynomially χ-bounded if f is a polynomial function. The smallest/optimal

χ-binding function f ∗ for G is defined as f ∗(x) := max{χ(G) | G ∈ G and ω(G) = x}.
If G is the class of graphs which is {Kt, L1, L2, . . . , Lk}-free (where t is fixed), and if χ(G) ≤ k,

for all G ∈ G where k ≥ t− 1, then we say that the bound is tight if there is a graph H ∈ G such

that χ(H) = k.

Let G be the class of {L1, L2, . . . , Lk}-free graphs where Li ≇ Kt, for each i and fixed t. If every

G ∈ G satisfies χ(G) ≤ f(ω(G)), we say that the bound is tight if there is a graph H ∈ G such

that ω(H) = ℓ and χ(G) = f(ℓ) for infinitely many values of ℓ.

Note that the class of perfect graphs is a class of χ-bounded graphs with identity function

f(x) = x as the smallest χ-binding function. So the notion of χ-boundedness extend the concept

of perfection. A graph class G is said to satisfy the Vizing bound if χ(G) ≤ ω(G) + 1, for all G ∈ G.
The notion of χ-boundedness is well studied in the literature, and it is reflected in several

published papers and theses; see for instance [62, 74, 134, 142] and the references therein. Several

notions analogous to χ-boundedness were introduced and studied in the literature; see for instance

[30, 82, 98]. In this thesis, we restrict our attention to χ-boundedness for some hereditary class of

graphs.

The class of χ-bounded graphs has received much attention especially due to several problems

and conjectures which were posed by Gyárfás [81], and other related interesting conjectures and

problems in graph (coloring) theory. In particular, in the same paper, Gyárfás [81] raised the

following.

Meta problem ([81]) For the given hereditary class of graphs G:
• Does there exist a χ-binding function for G?
• Does there exist a polynomial χ-binding function for G?
• Does there exist a linear χ-binding function for G?
• What is the smallest χ-binding function for G?

The answers to the above problems led to the introduction of several new definitions and graph

operations which in turn contributed to the evolution of modern graph theory, and initiated the

study of several interesting new classes of graphs beyond perfect graphs. A plenty of innovative

proof approaches are developed that include deep structure/decomposition theorems which are

also useful in other topics of graph theory.

In view of algorithmic graph theory perspective, as pointed out by Gyárfás [81], if a class of

graphs G admits a polynomial χ-binding function, say f , then there is an polynomial approximation



CHAPTER 1. INTRODUCTION 6

algorithm for Chromatic Number with performance ratio at most f(ω(G))
ω(G)

. In particular, if G
admits a linear χ-binding function, then there is a constant factor approximation algorithm for

Chromatic Number; see [81] for more details.

Recall that not all hereditary class of graphs are χ-bounded, since the class of triangle-free

graphs is not χ-bounded, by Theorem 1.3. Also it is long-known that not all polynomially χ-

bounded classes of graphs are linearly χ-bounded. For instance, the class of (P5, P5)-free graphs

admits a quadratic χ-binding function, and no linear χ-binding function exist for such a class of

graphs [68]. Esperet [62] in his thesis asked the following intriguing question:

Is every χ-bounded class of graphs polynomially χ-bounded?

Recently Briański, Davies and Walczak [23] proved that the answer to this question is ‘No’

in general, by showing that there exist hereditary classes of graphs that are χ-bounded but not

polynomially χ-bounded. In fact, they proved the following.

Theorem 1.5 ([23]) For every function f : N → N∪{∞} with f(1) = 1 and f(n) ≥
(
3n+1

3

)
, there

exists a hereditary class of graphs G such that f(x) = max{χ(G) : G ∈ G and ω(G) = x}, for every
x ∈ N.

In the following, we present some strategic tools to obtain a χ-binding function (if exists) for a

hereditary class of graphs which are available in the literature.

� Perfect k-coloring: We say that a graph G admits a perfect k-coloring [26] if its vertex-set can

be partitioned into k sets, say V1, V2, . . . , Vk, such that each Vi induces a perfect graph. Clearly

a graph is perfect if and only if it admits a perfect 1-coloring. Note that a perfect k-coloring

of G is also a perfect k-coloring of G, by Theorem 1.1. Perfect coloring of graphs provides

a measure for graph’s imperfection, and can be used as a tool to obtain a linear χ-binding

function (if exists) for a given hereditary class of graphs, and is given below.

Proposition 1.6 ([32]) Let k be a fixed positive integer. If G is a hereditary class of graphs such

that every G ∈ G admits a perfect k-coloring, then G and G are linearly χ-bounded. In particular,

χ(G) ≤ k · ω(G) and χ(G) ≤ k · ω(G), for every G ∈ G.

� Perfect divisibility: A graph G is said to be perfectly divisible [85] if for all induced subgraphs

H of G, V (H) can be partitioned into two sets X and Y such that H[X] is perfect and

ω(H[Y ]) < ω(H). Clearly perfect graphs are perfectly divisible. The notion of perfect

divisibility is useful in finding (quadratic) χ-binding functions (if exist) for some classes of

graphs. Indeed, it is not hard to prove the following.

Proposition 1.7 ([49]) The class of perfectly divisible graphs is χ-bounded with f(x) =
(
x+1
2

)
as

the χ-binding function. That is, every perfectly divisible graph G satisfies χ(G) ≤
(
ω(G)+1

2

)
.
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� 2-divisibility: A graph G is said to be 2-divisible [87], if for all (non-empty) induced subgraphs

H of G, V (H) can be partitioned into two sets, say X and Y such that ω(G[X]) < ω(H) and

ω(G[Y ]) < ω(H). By using induction on the number of vertices, it is easy to show the following.

Proposition 1.8 ([49]) The class of 2-divisible graphs is χ-bounded with f(x) = 2x−1 as the

χ-binding function. That is, every 2-divisible graph G satisfies χ(G) ≤ 2ω(G)−1.

Before we proceed further, we need the following.

Let G be a given graph and let X1 and X2 be two disjoint proper subsets of V (G). We say that

X1 is complete to X2 if each vertex of X1 is adjacent to every vertex of X2, and X1 is anticomplete

to X2 if each vertex of X1 is non-adjacent to every vertex of X2. The distance between X1 and X2

is defined as min{dist(x1, x2) | x1 ∈ X1, x2 ∈ X2}.

We say that two vertex subsets, say S and T of a graph meets if S ∩ T ̸= ∅, and meets k times

if |S ∩ T | = k.

Given a graph H, we say that a graph G contains a dominating-H, if there is a subset S ⊆ V (G)

which induces H and every vertex in V (G) \S is adjacent to some vertex in S. Also, we say that a

graph G contains a non-dominating-H, if there is a subset S ⊆ V (G) which induces H, and there

is a vertex v ∈ V (G) \ S such that {v} is anticomplete to S.

Given a graph G, we say that a graph G is nice if it has three pairwise disjoint stable sets, say

S1, S2 and S3, such that ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2.

Note that a graph G is (H1, H2, . . . , Hk)-free if and only if G is (H1, H2, . . . , Hk)-free.

� Graph expansions/substitutions: Let G be a given graph on n vertices, say v1, v2, . . . , vn. Let

H1, H2, . . . , Hn be vertex-disjoint graphs. Then an expansion ofG, denoted byG[H1, H2, . . . , Hn],

is the graph constructed from G by replacing each vertex vi of G by Hi, and for all i, j ∈
{1, 2, . . . , n} and i ̸= j, if vi and vj are adjacent (resp. non-adjacent) in G, then V (Hi) is

complete (resp. anticomplete) to V (Hj). An expansion is also referred to as a substitution [41].

If Hi = H for each i, then an expansion G[H,H, . . . , H] is the usual lexicographic product of G

and H, and is denoted G[H]. If each Hi is F -free, for a graph F , then an expansion of G is

called an F -free expansion of G. A 2K1-free expansion of G is called a clique expansion of G

(and is also called a blow-up of G [72, 102]). A clique expansion of a C5 is called a complete buoy

in [68]. A K2-free expansion of a C5 is called a 5-ring in [63]. Note that a K2-free expansion

of a K2 is a complete bipartite graph, and a K2-free expansion of a Kt, t ≥ 3 is a complete

multipartite graph. Importantly, Lovász [125] proved that if G and H1, H2, . . . , Hn are perfect,

then G[H1, H2, . . . , Hn] is perfect, and is now known as the Substitution lemma/Replication

lemma.
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1.4 The class of Pt-free graphs

The class of Pt-free graphs is an extensively studied graph class that also received a wide attention

among the researchers for the past few decades. It is a well-known fact that Chromatic Number

can be solved in polynomial time for the class of P4-free graphs [53]. Recall that Coloring is

NP-complete for the class of Pt-free graphs when t ≥ 5. Since the decision problem is NP-complete,

Chromatic Number for the class of Pt-free graphs is NP-hard, for t ≥ 5. So one is lead to study

k-Coloring for the class of Pt-free graphs. Here we give a brief summary of the known results.

� k-Coloring for the class of P5-free graphs: Bacsó and Tuza [4] showed that every connected

P5-free graph has a dominating-complete graph or a dominating-P3. Using this result, Hoàng,

Kamiński, Lozin, Sawada and Shu [86] showed that k-Coloring for the class of P5-free graphs

can be solved in polynomial time.

� 3-Coloring for the class of Pt-free graphs, where t ≥ 6: Randerath and Schiermeyer [143]

showed that given a P6-free graph, 3-Coloring can be solved in O(nκm)-time, where 2 < κ <

2.36. In [12], it is shown that List 3-Coloring for the class of P7-free graphs can be solved

in polynomial time which immediately implies that 3-Coloring for the class of P7-free graphs

can be solved in polynomial time. Later, the existence of better algorithms with improved

time complexity for 3-Coloring for some subclasses of P7-free graphs, namely for the class of

(P7, K3)-free graphs and for the class of (P7, odd hole)-free graphs were given by Bonomo et

al. [13]. However, the problem of determining the computational complexity of 3-Coloring

for the class of Pt-free graphs is still open, for t ≥ 8.

� k-Coloring for the class of Pt-free graphs, where t ≥ 7 and k ≥ 4 or t = 6 and k ≥
5: Woeginger and Sgall [170] showed that 4-Coloring for the class of P12-free graphs and

5-Coloring for the class of P8-free graphs are NP-complete. Le, Randerath and Schiermeyer

[122] extended the result for 4-Coloring and showed that 4-Coloring for the class of P9-free

graphs is NP-complete. Furthermore, Broersma, Golovach, Paulusma and Song [24] showed

that 4-Coloring remains NP-complete for the class of P8-free graphs. Finally, Huang [90]

extended all the above results and proved that 5-Coloring for the class of P6-free graphs and

4-Coloring for the class of P7-free graphs are NP-complete, and conjectured that 4-Coloring

for the class of P6-free graphs can be solved in polynomial time. Recently, Chudnovsky, Spirkl

and Zhong [50] showed that Huang’s conjecture is true.

In this thesis, we would like to focus on the ‘meta questions’ of Gyárfás [81] related to χ-boundedness

for the class of Pt-free graphs.
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1.5 χ-bounded Pt-free graphs

Gyárfás [81] in 1987 showed that the class of Pt-free graphs is χ-bounded with χ-binding function

f which satisfies the inequality

R(⌈t/2⌉, x+ 1)− 1

⌈t/2⌉ − 1
≤ f(x) ≤ (t− 1)x−1.

Randerath and Schiermeyer [144] slightly improved this upper bound for the class of (Pt, K3)-free

graphs, and proved that every (Pt, K3)-free graph is (t− 2)-colorable. In 2003, Gravier, Hoàng and

Maffray [79] improved the general upper bound of Gyárfás, and established that for t ≥ 4 and

ω(G) ≥ 2, every Pt-free graph G satisfies χ(G) ≤ (t − 2)ω(G)−1. A fascinating open question is

whether this upper bound can be reduced to a polynomial function in ω(G). This was posed by

Trotignon and Pham [164] (see also [155]):

Problem 1 ([164]) Is it true that, for every t ≥ 5, the class of Pt-free graphs is polynomially

χ-bounded?

In 2007, Choudum, Karthick and Shalu [32] suggested a stronger statement in view of Problem 1

for t = 5, and is given below.

Conjecture 1 ([32]) There is constant c > 0 such that every P5-free graph G satisfies χ(G) ≤
c ω(G)2.

Using the notion of ‘online coloring’, Kierstead, Penrice and Trotter [110] claimed (without

proof) that they have an improvement to the bound of Gravier et al. to 2ω(G), when t = 5. Esperet,

Lemoine, Maffray, Morel [63] studied the class of P5-free graphs with small cliques, and proved the

following.

Theorem A ([63]) If G is a (P5, K3)-free graph, then each component of G is either bipartite or

a 5-ring. In particular, χ(G) ≤ 3. Moreover, the bound is tight.

Theorem B ([63]) Every (P5, K4)-free graph G satisfies χ(G) ≤ 5, and the bound is tight.

More generally, they showed that every P5-free graph G with ω(G) ≥ 3 satisfies χ(G) ≤
5× 3ω(G)−3. So every (P5, K5)-free graph G satisfies χ(G) ≤ 15, and the problem of finding a tight

χ-bound for the class of (P5, K5)-free graphs is open. Recently, Scott, Seymour and Spirkl [156]

showed that every P5-free graph G with ω(G) ≥ 4 satisfies χ(G) ≤ ω(G)log2 ω(G). The problem

of reducing this quasi-polynomial upper bound to a polynomial function in ω(G) seems to be

difficult. In other words, Problem 1 is open even for the class of P5-free graphs. It is known that

the class of P5-free graphs does not admit a linear χ-binding function [68]. The existence of a

polynomial χ-binding function for the class of P5-free graphs implies the Erdös-Hajnal conjecture

[61] for the class of P5-free graphs; see Section 1.6.4. So the researchers are interested in finding

(smallest) polynomial χ-binding functions for some subclasses of Pt-free graphs and for the class of

(Pt, H)-free graphs, where t ≥ 5 and H is a small graph.
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Brandt [19] proved that for ℓ ≥ 3, if G is a (ℓP2, K3)-free graph, then χ(G) ≤ 2ℓ−2. Schiermeyer

and Randerath [153] showed that for every t ≥ 5, the class of (Pt, K1∨P4)-free graphs is linearly χ-

bounded. That is, every (Pt, K1∨P4)-free graph G satisfies χ(G) ≤ (t−2)(ω(G)−1). Unfortunately,

Problem 1 is open even for a subclass of P5-free graphs, namely the class of (P5, C5)-free graphs.

The best known upper bound for such a class of graphs is exponential in nature which is due to

Chudnovsky and Sivaraman [49]. Indeed, they proved that every (P5, C5)-free graph G is 2-divisible,

and hence χ(G) ≤ 2ω(G)−1, by Proposition 1.8. The problem of finding a polynomially χ-binding

function for the class of (P5, C5)-free graphs is still open, and this problem seems equally hard as

Problem 1 for t = 5.

From the above mentioned result of Gravier et al. [79], every P6-free graph G with ω(G) ≥ 3

satisfies χ(G) ≤ 4× 3ω(G)−1. This is the best known upper bound for the class of P6-free graphs.

However, better bounds are known for some subclasses of P5-free graphs, and for some subclasses

of P6-free graphs which we present in the next two sections below. In particular, we pay more

attention on structural/decomposition theorems (if exist) which are used in proving polynomial

χ-boundedness for such classes of graphs. The graphs in Table 1 is useful to justify the tightness

of the bound for some classes of graphs.

Obs. Graph G Property of G ω(G) χ(G) Ref.

1 C5[tK1] +Kl (2P2, paw, K1 ∨ P4)-free max{2, l} max{3, l}

2 C5[Kt] (3K1, C4, K1 ∨ P4)-free 2t
⌈
5
2 t
⌉

[33, 34]

3 Kt[C5] (3K1, 2P2,K1 +K3, P5)-free 2t 3t [33, 91]

4 Kt[C5] ∨K1 (3K1, 2P2,K1 +K3, P5)-free 2t+ 1 3t+ 1 [33, 91]

5 C5[K1, C5,K1,K1, C5] (P5,K4)-free 3 5 [63, 144]

6 Grötzsch Graph (P2 + P3, 3P2,K3)-free 2 4 [144]

7 Co-Clebsch graph (P2 + P3, P2 + P3, P5)-free 5 8 [92]

8 Schläfli graph (P2 + P3, P2 + P3)-free 6 9 [45, 105]

9 Co-Schläfli graph (P2 + P3,K4 − e)-free 3 6 [105]

Table 1: Some extremal graphs, where t, p ∈ N.

Proposition 1.9 ([68]) Let G1
∼= C5, and for k ∈ N, let Gk+1

∼= C5[Gk]. Then for each k, Gk is

(P5, P5, bull)-free with ω(Gk) = 2k and χ(Gk) ≥ (5
2
)k.

1.5.1 Polynomially χ-bounded P5-free graphs

In this section, we present some subclasses of P5-free graphs which are polynomially χ-bounded.
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Some important basic subclasses of P5-free graphs:

� The class of P4-free graphs: An early result of Seinsche [159] gives a characterization for

the class of P4-free graphs (also called cographs or complement reducible graphs). It states that

a non-trivial graph G is P4-free if and only if for every subset X of vertices either G[X] is

disconnected or G[X] is disconnected. Corneil, Perl and Stewert [53] showed that any P4-free

graph can be constructed from a K1 by means of the union and join operations, and that the

class of P4-free graphs can be recognized in linear time. Furthermore, the class of P4-free graphs

is the smallest class of graphs that includes K1 and is closed under the join and union; see [53].

From above results, one can deduce that every P4-free graph is perfect.

� The class of split graphs: A split graph is a graph whose vertex-set can be partitioned into

a stable set (possibly empty) and a clique (possibly empty). A well-known result of Földes and

Hammer [66] gives a characterization for the class of split graphs. Indeed they showed that

given a graph G, the following three statements are equivalent: (i) G is a split graph. (ii) G is

a (2P2, C4, C5)-free graph. (iii) G and G are chordal. It is easy to show that every split graph

is a perfect graph.

� The class of pseudo-split graphs: A graph is a pseudo-split graph if it is (2P2, C4)-free.

Pseudo-split graphs were introduced by Maffray and Preissmann [129] as a generalization of

the class of split graphs. They proved that pseudo-split graphs can be recognized in linear

time by using a characterization based on a ‘degree sequence’. Moreover they showed that (see

also [9]) a graph is (2P2, C4)-free if and only if its vertex-set can be partitioned into three sets

V1, V2, and V3 such that V1 induces a C5 or is empty, V2 is a clique, V3 is a stable set, V1 is

complete to V2, and V1 is anticomplete to V3. Gyárfás [81] (and independently Blászik et al.

[9]) proved that the class of (2P2, C4)-free graphs is linearly χ-bounded with smallest χ-binding

function defined by f(x) = x + 1. Indeed, they showed that every such a graph G satisfies

χ(G) ≤ ω(G) + 1, and the equality holds if and only if G is not a split graph.

� The class of 2P2-free graphs: The class of 2P2-free graphs generalizes the class of split

graphs and the class of pseudo-split graphs. Using a construction of Erdös and Hajnal [60],

Wagon [168] established that f(x) =
(
x+1
2

)
is a suitable χ-binding function for the class of

2P2-free graphs (see [138] for the class of ℓP2-free graphs). As noted by Wagon, this function is

not the smallest χ-binding function for such a class of graphs. Indeed, Nagy and Szentmiklóssy

(unpublished), and Gaspers and Huang [73] showed that every (2P2, K4)-free graph G satisfies

χ(G) ≤ 4, and the graph C5 ∨K1 shows that the bound is tight. Thus when G is a 2P2-free

graph with ω(G) = 3, Wagon’s bound is not tight. Recently Geißer [74] slightly improved the

bound of Wagon by using the same approach of Wagon and proved that every 2P2-free graph G

satisfies χ(G) ≤
(
ω(G)+1

2

)
− 2

⌊
ω(G)
3

⌋
, and that the bound is tight for ω(G) ≤ 3. From a result of

Chung [51], it is also known that there is a 2P2-free graph G such that χ(G) ≥ 1
3
(ω(G) + 1)1+ϵ

for every ϵ > 0. However, the problem of finding the smallest χ-binding function for the class
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of 2P2-free graphs is open (see Problem 2.16 in [81]).

Apart from pseudo-split graphs, linear χ-binding functions were proved for subclasses of the

class of 2P2-free graphs by many researchers, and we state here a few of them (see [22] and

[104] and the references therein for more). Fouquet et al. [68] showed that every (2P2, P5)-free

graph G satisfies χ(G) ≤
⌊
3
2
ω(G)

⌋
, and that the bound is tight (see Obs. 3 and Obs. 4 of

Table 1 for tight examples). Brause et al. [22] proved that every (2P2, K1 ∨ P4)-free graph

G satisfies χ(G) ≤ max{3, ω(G)} which is tight, by Obs. 1 of Table 1. In [104], Karthick and

Mishra proved that every (2P2,P2 + P3)-free graph G satisfies χ(G) ≤ ω(G) + 1 and that the

bound is tight. In the same paper, they also showed that every (2P2, 4-wheel)-free graph G

satisfies χ(G) ≤ ω(G) + 5, and that every (2P2, HVN)-free graph G satisfies χ(G) ≤ ω(G) + 3.

� The class of 3K1-free graphs: Note that this class is also a subclass of the class of claw-free

graphs which is well-studied in the literature (see [64] for a survey). Chudnovsky and Seymour

[46] proved that if G is a connected claw-free graph with α(G) ≥ 3, then χ(G) ≤ 2ω(G), and

that the bound is ‘asymptotically tight’. We call a graph G with α(G) ≤ 2 as a 3K1-free graph.

From a more general result of Gyárfás [81], it is known that the smallest χ-binding function

f ∗ for the class of 3K1-free graphs satisfies 1
2
R(3, x + 1) ≤ f ∗(x) ≤ R(3, x). A celebrated

result of Kim [113] states that this special Ramsey number R(3, x) has order of magnitude

O( x2

log x
). Thus one can conclude that if G is a 3K1-free graph, then χ(G) is bounded both sides

by O( ω(G)2

logω(G)
). It is also known that the class of (3K1, 2P2)-free graphs, which is subclass of

the class of 3K1-free graphs, does not admit a linear χ-binding function [22]. However, the

problem of finding the smallest χ-binding function for the class of 3K1-free graphs is open, and

seems to be hopelessly difficult (see [19]). On the other hand, (linear) χ-binding functions were

proved for several subclasses of the class of 3K1-free graphs, and we mention here a few of them.

Kierstead [111] showed that if G is a (3K1, K5 − e)-free graph, then χ(G) ≤ ω(G) + 1. From a

result of Hoàng and McDiarmid [87], every (3K1, C5)-free graph G satisfies χ(G) ≤ ω(G)3/2.

Henning et al. [84] proved that if G is a (3K1, K1 +K4)-free graph, then χ(G) ≤ 3
2
ω(G), and

that the bound is tight (see Obs. 3 and Obs. 4 of Table 1). Later, Joos [94] generalized this

result and showed that every (3K1, K1+K5)-free graph G satisfies χ(G) ≤ 7
4
ω(G). Choudum et

al. [33] proved a structure theorem and deduced that every (3K1, 4-wheel)-free graph satisfies

χ(G) ≤ 2ω(G), and they also proved tight chromatic bounds for the class of (3K1,F )-free

graphs, where F ∈ {flag, kite, K1 ∨ P4, P5} using structure theorems.

The class of (P5,H)-free graphs, where |V (H)| = 4 and α(H) = 2:

� The class of (P5, paw)-free graphs: From a result of Olariu [136], it is known that if a graph

is paw-free, then either it is triangle-free or it is a complete multipartite graph. Since a complete

multipartite graph is a perfect graph, and since every (P5, triangle)-free graph H satisfies

χ(H) ≤ 3 [63], it follows that every (P5, paw)-free graph G satisfies χ(G) ≤ max{3, ω(G)}.
Clearly this bound is tight, by Obs. 1 of Table 1.
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� The class of (P5, C4)-free graphs: Fouquet et al. [68] examined the class of (P5, C4)-free

graphs and proved a decomposition theorem for such a class of graphs. Using that result,

they deduced that every (P5, C4)-free graph G satisfies χ(G) ≤ 3
2
ω(G). From a decomposition

theorem of Fouquet et al. [68], one can easily deduce that if G is a connected (P5, C4)-free

graph, then either G has a universal vertex or G has a clique cut-set or G is a clique expansion

of a C5. It is known that [28] if G is a clique expansion of a C5, then χ(G) ≤
⌈
5
4
ω(G)

⌉
. From

these results, it not hard to show that every (P5, C4)-free graph G satisfies χ(G) ≤
⌈
5
4
ω(G)

⌉
,

by using induction on the number of vertices (see also [32]). Moreover the bound is tight, by

Obs. 2 of Table 1.

� The class of (P5,K4−e)-free graphs: Brandstädt [14] studied the structure of (P5, K4− e)-
free graphs using the concept of ‘prime graphs’ and ‘modular decomposition’ of graphs, and

proved that several algorithmic graph problems can be solved in linear time. Shiermeyer and

Randerath [153] showed that every (P5, K4 − e)-free graph G satisfies χ(G) ≤ ω(G) + 1. In [30],

Choudum and Karthick gave a characterization for the class of (P5, K4 − e)-free graphs. Using

their characterization, it not difficult to show that if G is a connected (P5, K4 − e)-free graph,

then either G is perfect or G has a clique cut-set or G has twins or χ(G) ≤ 3. Now it is easy

to prove that every (P5, K4 − e)-free graph G with ω(G) ≥ 2 satisfies χ(G) ≤ max{3, ω(G)},
by using induction on the number of vertices (see also [74]). Moreover the bound is tight, by

Obs. 1 of Table 1.

The class of (P5,H)-free graphs, where |V (H)| = 5, α(H) = 2 and H is 2P2-free:

� The class of (P5, P5)-free graphs: In 1993, Fouquet [67] proved a decomposition theorem

which states that if G is a (P5, P5)-free graph, then either G has a homogeneous set, or G is

isomorphic to C5, or G is C5-free. (See Chudnovsky et al. [38] for a refinement of this result

which gives a characterization for such a class of graphs.) Using this, he proved that this

class of graphs can be recognized in O(n3) time. Later, in 1995, Fouquet et al. [68] showed

that every (P5, P5)-free graph G has a vertex-subset T such that G − T is a perfect graph

and ω(G[T ]) ≤ ω(G) − 1. From this, the authors deduced that every (P5, P5)-free graph G

satisfies χ(G) ≤
(
ω(G)+1

2

)
. They also established that there is no linear χ-binding function for

the class of (P5, P5)-free graphs. Indeed they constructed a class of (P5, P5)-free graphs L such

that χ(G) ≥ ω(G)log2 5−1, for all G ∈ L (see Proposition 1.9). These results provide a partial

solution for the 35 years old open problem of Gyárfás which asks for the smallest χ-binding

function for the class of (P5, P5)-free graphs (see Problem 4.8 in [81]).

� The class of (P5, K1 ∨ P4)-free graphs: Bodlaender et al. [10] investigated this class of

graphs and proved that many well-known NP-complete problems can be solved in linear time.

They also showed a linear time algorithm for the recognition of such graphs. On the lines of

Bacsó and Tuza [5], Choudum et al. [32] in 2007 proved a decomposition theorem for the class

of (P5, K1 ∨ P4)-free graphs. It states that if G is a connected (P5, K1 ∨ P4)-free graph, then
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V (G) can be partitioned into two sets V1 and V2 such that G[V1] contains a dominating-C5 or

V1 = ∅, and G[V2] is a perfect graph. Moreover, G[V2] is P4-free, if V1 ≠ ∅. As a consequence of

this result, they established that every (P5, K1 ∨ P4)-free graph G admits a perfect 4-coloring,

and hence every such a graph G satisfies χ(G) ≤ 4ω(G), by Proposition 1.6. In 2019, Randerath

and Schiermeyer [153] improved this bound and showed that every (P5, K1 ∨ P4)-free graph G

satisfies χ(G) ≤ 3ω(G)− 3. Later in 2019, Cameron, Huang and Merkel [28] proved that every

(P5, K1 ∨ P4)-free graph G satisfies χ(G) ≤ 3
2
ω(G) via a structure theorem for such a class of

graphs based on prime graphs and modular decomposition which was proven by Brandstädt

and Kratsch [16]. Moreover they claimed that the bound is tight. But the bound is not tight

except for ω(G) = 2. Recently Chudnovsky et al. [39] proved a structure theorem for the class

of (P5, K1 ∨ P4)-free graphs which states that if such a graph is connected, then either it is

a perfect graph, or it can be obtained from one of the 10 basic graphs (see Fig. 2 of [39])

each contains a C5 by expanding each vertex of them by a P4-free graph, or it belongs to a

well-defined specific class of graphs. From this result, they showed that every (P5, K1 ∨P4)-free

graph G satisfies χ(G) ≤
⌈
5
4
ω(G)

⌉
. Moreover the bound is tight, by Obs. 2 of Table 1.

� The class of (P5, P2 + P3)-free graphs: Brandstädt and Hoàng [15] showed that if G is a

(P5, P2 + P3)-free graph which has no clique cut-set, no universal vertex and no twins, then

either G is G∗ or every C5 in G is dominating (see [92] for the graph G∗). Huang and Karthick

[92] extended this result and established that if G is a (P5, P2 + P3)-free graph which has

no clique cut-set, no universal vertex and no twins, then either G is an induced subgraph of

the complement of the Clebsch graph, or G is a P3-free expansion of a C5, or G has a stable

set S such that either ω(G − S) ≤ ω(G) − 1 or G − S is perfect, or it belongs to a special

class of graphs. From this result, they deduced that every (P5, P2 + P3)-free graph G satisfies

χ(G) ≤
⌈
3
2
ω(G)

⌉
, and that the bound is attained by the complement of the 5-regular Clebsch

graph on 16 vertices (see Obs. 7 of Table 1). They also proved a complete characterization of a

(P5, P2 + P3)-free graph G that satisfies that satisfies χ(G) > 3
2
ω(G), and constructed a class

of (P5, P2 + P3)-free graphs B such that every graph G ∈ B satisfies χ(G) =
⌈
3
2
ω(G)

⌉
− 1.

� The class of (P5, kite)-free graphs: Brandstädt and Mosca [18] studied the structure of

‘prime’ (P5, kite)-free graphs and showed that Weighted Independent Set can be solved

efficiently. Recently, Brause and Geißer [21] showed that every (P5, kite)-free graph G satisfies

χ(G) ≤ 3 (if ω(G) ≤ 2) and χ(G) ≤ 2ω(G) − 2 (if ω(G) ≥ 3). This implies that every (P5,

kite, K6)-free graph G satisfies χ(G) ≤ 8, and that every (P5, kite, K7)-free graph G satisfies

χ(G) ≤ 10. These bounds do not seem to be tight, and hence the function f(x) = 2x− 2 for

x ≥ 3 does not seem to be the smallest χ-binding for the class of (P5, kite)-free graphs. Indeed,

the problem of finding the smallest χ-binding function for the class of (2P2, K1+K3)-free graphs

(which is a subclass of the class of (P5, kite)-free graphs) is open. Huang, Ju and Karthick [91]

proved that every (P5, kite)-free graph G with ω(G) ≤ 6 satisfies χ(G) ≤
⌊
3
2
ω(G)

⌋
, and that

the bound is tight. Further, they showed that every (P5, kite)-free graph G with ω(G) ≥ 6
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satisfies χ(G) ≤ 2ω(G)− 3, and they proposed the following.

Conjecture 2 ([91]) Every (P5, kite)-free graph G satisfies χ(G) ≤
⌊
3
2
ω(G)

⌋
.

If the conjecture is true, then the bound is tight, by Obs. 3 and Obs. 4 of Table 1.

Since the class of K4-free graphs is a subclass of the class of (HVN, K1 +K4)-free graphs, the

next two subclasses of P5-free graphs generalize the class of (P5, K4)-free graphs. So if H ∈ {HVN,
K1 +K4} and if G is a (P5, H)-free graph with ω(G) ≤ 3, then χ(G) ≤ 5, and the bound is tight

[63]. Below we present the status of the smallest χ-binding function for these classes of graphs

when ω ≥ 4.

The class of (P5, HVN)-free graphs: In 2016, Malyshev [131] proved that every (P5, HVN)-free

graph G satisfies χ(G) ≤ max{16, ω(G) + 1}. Clearly the bound given by Malyshev is not tight.

Geißer [74] showed that given a critical (P5, HVN)-free graph G, if G is C5-free, then either G

is perfect or G ∼= C7, and if G contains a C5 with ω(G) ≥ 4, then χ(G) ≤ ω(G) + 1. Using this

result, he proved that every (P5, HVN)-free graph G with ω(G) ≥ 4 satisfies χ(G) ≤ ω(G) + 1.

Moreover, the bound is tight.

The class of (P5,K1+K4)-free graphs: It can be easily shown that if G is a (P5, K1+K4)-free

graph, then χ(G) ≤ 5ω(G). This can proved by induction on ω(G) using the fact that every

(P5, K4)-free graph is 5-colorable [63] as follows: For any v ∈ V (G), we have χ(G) ≤ χ(G[N(v)]) +

χ(G[{v} ∪N(v)]). Now since the set of non-neighbors of any vertex in G induces a (P5, K4)-free

graph and since ω(G[N(v)]) ≤ ω(G)−1, we observe that χ(G) ≤ 5ω(G[N(v)])+χ(G[{v}∪N(v)]) ≤
5(ω(G)− 1) + 5 = 5ω(G). Clearly this bound is not tight. There are examples of such graphs G

with ω(G) = k and χ(G) =
⌊
3
2
k
⌋
, for each k ∈ N (see Obs. 3 and Obs. 4 of Table 1). The problem

of finding the smallest χ-binding function for the class of (P5, K1 +K4)-free graphs is open.

The class of (P5,H)-free graphs, where α(H) ≥ 3 or H contains a 2P2:

First observe that since the class of (3K1, 2P2)-free graphs does not admit a linear χ-binding

function [22], for any H1 and H2, if each Hi contains either a 3K1 or a 2P2, then the class of

(H1, H2)-free graphs does not admit a linear χ-binding function. So the class of (P5, H)-free graphs,

where α(H) ≥ 3 or H contains a 2P2 does not admit a linear χ-binding function. The problem of

finding the smallest χ-binding function for the class of (P5, H)-free graphs (where α(H) ≥ 3 or H

contains a 2P2) is wide open. We give below some known partial results.

� Chudnovsky and Sivaraman [49] proved that every (P5, bull)-free graph G is perfectly divisible,

and so χ(G) ≤
(
ω(G)+1

2

)
, by Proposition 1.7.

� Karthick, Kaufmann and Sivaraman [99] showed that every (P6,chair)-free graph is perfectly

divisible. This implies that every (P6,chair)-free graph G satisfies χ(G) ≤
(
ω(G)+1

2

)
, by Propo-

sition 1.7. Hence for F ∈ {K1 + P3, 2K1 + P2}, every F -free graph is perfectly divisible, and

hence every such a graph G satisfies χ(G) ≤
(
ω(G)+1

2

)
. These results partially settled a problem

of Gyárfás; see Problem 2.20 of [81].
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� Karthick, Maffray and Pastor [103] proved that if G is a (P5, banner)-free graph, then either

G has a homogeneous set or G is 3K1-free or G is perfect. Geißer [74] proved that every (P5,

banner)-free graph G satisfies χ(G) ≤ g(ω(G)), where g(x) is the smallest χ-binding function

for the class of 3K1-free graphs.

� Schiermeyer [152] showed that every (P5, butterfly)-free graph G satisfies χ(G) ≤ c ω(G)3 for

some fixed c > 0. This cubic bound has been improved to a quadratic bound by Dong et al.

[56]. They claimed that if G is (P5, butterfly)-free, then χ(G) ≤ 3
2
(ω(G)2 − ω(G)).

� Schiermeyer [152] established that every connected (P5, (K1 + P4) ∨K1)-free graph G satisfies

χ(G) ≤ ω(G)2. Since the graph (P5, (K1 + P4)∨K1) contains both dart and cricket, f(x) = x2

is also a χ-binding function for the class of (P5, dart)-free graphs and for the class of (P5,

cricket)-free graphs. Later Brause and Geißer [21] proved that every (P5, dart)-free graph G

satisfies χ(G) ≤ g(ω(G)), where g(x) is the smallest χ-binding function for the class of 3K1-free

graphs.

� If G is a (P5, Co-banner)-free graph, then it is shown that χ(G) ≤
(
ω(G)+1

2

)
[22]. However, a

better argument for such a class of graphs has been given by Geißer [74]. He proved that every

(P5, Co-banner)-free graph G satisfies χ(G) ≤ ϕ(ω(G)), where ϕ(x) is the smallest χ-binding

function for the 2P2-free graphs.

� Brause et al. [20] showed that if G is a (P5, K2,3)-free graph, then χ(G) ≤ c ω(G)3, for some

fixed c > 0. An improvement to this bound was given by Dong, Xu and Xu [55] recently. They

proved that for such a graph G, we have χ(G) ≤ 2ω(G)2 − ω(G)− 3.

� If G is a (P5, K2+K3)-free graph, then one can easily show that χ(G) ≤ ω(G)+3
(
ω(G)
2

)
, by using

the Wagon’s technique [168] as follows: Let G be a (P5, K2 +K3)-free graph with ω(G) = ω.

Let K be a maximum clique in G, and say K := {v1, v2, . . . , vω}. For i, j ∈ {1, 2, . . . , ω}, define
Ki := {v ∈ V (G) \K | K \ N(v) = {vi}}, and for i ̸= j, Ki,j := {v ∈ V (G) \K | {vi, vj} ⊈
K ∩N(v)}. Then it is easy to see that each Ki ∪ {vi} is a stable set (otherwise, we get a clique

of size ω + 1), and that each G[Ki,j] is K3-free (otherwise, G induces a K2 +K3). Now since

every (P5, K3)-free graph is 3-colorable, it follows that χ(G) ≤ ω(G) + 3
(
ω(G)
2

)
.

� LetH := K1+H
∗, whereH∗ ∈ {K1+K3, paw, K4−e, C4} and let ψ(x) be the smallest χ-binding

function for the class of (P5, H
∗)-free graphs. Then for any (P5, H)-free graph G, we have

χ(G) ≤ ω(G)ψ(ω(G)) which can be seen as follows: Let K be a maximum clique in G. Then

every vertex in V (G) \K has a non-neighbor in K. Since for any v ∈ K, G[{v}∪N(v)] induces

a (P5, H
∗)-free graph, we see that χ(G) ≤ ω(G)ψ(ω(G)). For instance, since every (P5, K4 − e)-

free graph G′ satisfies χ(G′) ≤ max{3, ω(G′)}, we see that every (P5, K1 + (K4 − e))-free graph

G satisfies χ(G) ≤ max{3ω(G), ω(G)2}.
� Wu and Xu [171] showed that every (P5, crown)-free graph G satisfies χ(G) ≤ 3

2
(ω(G)2−ω(G)).
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1.5.2 Polynomially χ-bounded P6-free graphs

In this section, we present some subclasses of P6-free graphs which are polynomially χ-bounded.

The class of (P2 + P3)-free graphs: Two subclasses of P6-free graphs are well-explored in

the literature with respect to χ-boundedness, one is the class of P5-free graphs which we have

presented in detail in the last section, and the other is the class of (P2 + P3)-free graphs. The class

of P2 + P3-free graphs includes both the class of 3K1-free graphs and the class of 2P2-free graphs.

Bharathi and Choudum [8] showed that (P2 + P3)-free graph G satisfies χ(G) ≤
(
ω(G)+2

3

)
. Clearly

this bound is not tight. Several classes of (P2 + P3)-free graphs have been shown to admit better

(linear/smallest) χ-binding functions, and we list some of them below.

� Let G be a (P2 + P3, K4 − e)-free graph with ω(G) ≥ 2. Bharathi and Choudum [8] showed

that if ω(G) = 2, then χ(G) ≤ 4 (and that the bound is tight, by Obs. 6 of Table 1), and

if ω(G) ≥ 5, then G is perfect. Karthick and Mishra [105] showed that if ω(G) = 3, then

χ(G) ≤ 6, and that the bound is tight (see Obs. 9 of Table 1). Prashant et al. [139] showed

that if ω(G) = 4, then χ(G) = 4.

� In [31], Choudum and Karthick derived a decomposition theorem for the class of (P2 + P3, C4)-

free graphs, and showed that every such graph G satisfies χ(G) ≤
⌈
5
4
ω(G)

⌉
. Furthermore the

bound is tight (see Obs. 2 of Table 1 for the tight examples).

� Wu and Xu [171] proved that if G is a (P2 + P3, crown)-free graph, then χ(G) ≤ 1
2
ω(G)2 +

3
2
ω(G)+1. Clearly this bound is not tight. However it is known that, since the class of (P2+P3,

crown)-free graphs includes the class of 3K1-free graphs which does not admit a linear χ-binding

function [22], the class of (P2 + P3, crown)-free graphs too does not admit a linear χ-binding

function.

The class of (K1 + P4)-free graphs: Randerath and Schiermeyer [144] proved that the

class of (K1 + P4)-free graphs is χ-bounded, and the smallest χ-binding function f ∗(x) satisfies
1
2
R(3, x + 1) ≤ f ∗(x) ≤

(
x+1
2

)
. The class of (K1 + P4, K1 + P4)-free graphs is a subclass of the

class of (K1 + P4)-free graphs, which is well-studied by the researchers. Rao [146] studied the

structure of (K1 + P4, K1 + P4)-free graphs, and Brandstädt, Le and Mosca [17] showed that such

graphs has bounded clique-width. With respect to χ-boundedness, if G is a (K1+P4, K1 + P4)-free

graph, since the neighborhood (similarly, the non-neighborhood) of any vertex induces a P4-free

subgraph, and since every P4-free graph is perfect, it is easy to prove by induction on |V (G)|
that χ(G) ≤ 2ω(G)− 1. In [101], Karthick and Maffray established the best possible bound for

the class of (K1 + P4, K1 + P4)-free graphs. Indeed they proved a structure theorem for the class

of (K1 + P4, K1 + P4)-free graphs which states that any (K1 + P4, K1 + P4)-free graph is either

a perfect graph or it can be obtained from one of the 10 basic graphs (see Fig. 1 of [101]) each

contains a C5, by expanding each vertex of them by a P4-free graph or it belongs to a well-defined

class of graphs, namely H (see [101] for the definition of H). From this result, they deduced that
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every (K1 + P4, K1 + P4)-free graph G satisfies χ(G) ≤ ⌈5
4
ω(G)⌉. Moreover the bound is tight (by

Obs. 2 of Table 1).

The class of (P6,H)-free graphs, for various H :

� The class of (P6, triangle)-free graphs: Let G be a (P6, K3)-free graph. Randerath,

Schiermeyer and Tewes [145] showed that χ(G) ≤ 4. Further they showed that if χ(G) = 4

with no twins, then either G contains a Mycielski’s 4-chromatic triangle-free graph or G is

an induced subgraph of a 16-vertex Clebsch graph. Recently Chudnovsky et al. [47] gave

an explicit construction for all (P6, K3)-free graphs, and it is based on the 16-vertex Clebsch

graph, the 8-vertex Möbius ladder, and the graph obtained from a complete bipartite graph by

subdividing each edge of a perfect matching.

� The class of (P6, paw)-free graphs: From an earlier mentioned result of Olariu [136], if G is a

(P6, paw)-free graph, then either it is (P6, triangle)-free or it is a complete multipartite graph. So

from the above item, it follows that every (P6, paw)-free graph G satisfies χ(G) ≤ max{4, ω(G)}.
� The class of (P6, K4 − e)-free graphs: Karthick and Maffray [100] established that if G

is a (P6, E,K4 − e)-free graph, then χ(G) ≤ ω(G) + 1 (here, E is the graph which contains

a P5 plus a pendant vertex attached to the mid-vertex of P5). Karthick and Mishra [105]

proved that the chromatic number of a (P6, K4 − e, K4)-free graph is at most 6, and that

the complement of the 16-regular Schläfli graph on 27 vertices attains the bound (see Obs. 8

of Table 1). In the same paper, they showed that every (P6, K4 − e)-free graph G satisfies

χ(G) ≤ 2ω(G) + 5, and conjectured that every such a graph G satisfies χ(G) ≤ ω(G) + 3. In

[27], Cameron, Huang and Merkel confirmed that the conjecture is true in general, and later

Goedgebeur, Huang, Ju and Merkel [76] showed that every (P6, K4 − e)-free graph G with

ω(G) ≥ 3 satisfies χ(G) ≤ max{6, ω(G)}, and that the bound is tight.

� The class of (P6, C4)-free graphs: Brandstädt and Hoàng [15] showed that if a (P6, C4)-free

graph G has no clique cut-set, then the vertex-set of every C5 in G is a dominating set, and

if G contains a C6 which is not dominating, then G is the join of a clique expansion of the

Petersen graph and a (possibly empty) clique. Gaspers and Huang [72] extended this result

on the same lines and showed that if a (P6, C4)-free graph G has no clique cut-set, either G

contains a vertex with degree at most 3
2
ω(G)− 1, or G contains a universal vertex, or G is a

clique expansion of the Petersen graph or the graph F (see Figure 1 of [72] for the graph F ).

As a corollary, they proved that every (P6, C4)-free graph G satisfies χ(G) ≤ 3
2
ω(G). Later,

Karthick and Maffray [102] explored the structure of (P6, C4)-free graphs further in detail and

showed that if G is a (P6, C4)-free graph that has no clique cut-set or an universal vertex, then

G is either a clique expansion of some special graphs or belongs to several special classes of

graphs. As a consequence of this result, they deduced that every (P5, C4)-free graph G satisfies

χ(G) ≤
⌈
5
4
ω(G)

⌉
. Moreover, the bound is tight, by Obs. 2 of Table 1.
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� The class of (P6, K1 ∨ P4)-free graphs: Choudum, Karthick and Shalu [32] proved a

decomposition theorem which states that if G is a connected (P6, K1 ∨ P4)-free graph, then

its vertex-set can be partitioned into three sets, say V1, V2 and V3 such that G[V1] contains a

dominating induced giant wheel (if V1 ̸= ∅), and G[V2] and G[V3] are perfect graphs. (Here, a

giant wheel is either a C5 or the graph which consists of a kC5 plus a vertex which is adjacent

to exactly three non-consecutive vertices in each C5.) Using this result, they showed that every

(P6, K1 ∨ P4)-free graph admits a perfect 8-coloring which implies that every (P6, K1 ∨ P4)-free

graph G satisfies χ(G) ≤ 8ω(G). The current best known upper bound for such a class of

graphs follows from a more general result of Schiermeyer and Randerath [153]. That is, every

(P6, K1 ∨ P4)-free graph G satisfies χ(G) ≤ 4(ω(G)− 1).

The problem of finding the smallest χ-binding function for the class of (P6, H)-free graphs, where

|V (H)| ≥ 3 and H /∈ {K3, P4, K4 − e, C4, paw} is open.

1.6 χ-boundedness and famous conjectures

In this section, we present the relation between χ-boundedness and some interesting conjectures in

graph coloring theory.

1.6.1 Gyárfás-Sumner Conjecture

Let L := {L1, L2, . . . , Lt} be a finite family of graphs. Since there are graphs with arbitrarily

large chromatic number and high girth (by Theorem 1.4), if G is a class of L-free graphs which

is χ-bounded, then one of the graphs in L must be a forest. Gyárfás [81] and Sumner [163]

independently conjectured that the converse is also true:

Conjecture 3 ([81, 163]) If L is a finite family of graphs that contains a forest, then the class

of L-free graphs is χ-bounded.

Observe that it is enough to prove Conjecture 3, when L is a singleton set, say {F}, where F
is a forest. Kierstead and Penrice [109], and independently Sauer [150] proved that if F is a forest,

then the class of F -free graphs is χ-bounded if and only if the class of T -free graphs is χ-bounded

for every component T of F . Hence, to prove Conjecture 3, it is enough to prove the following.

Conjecture 4 ([81, 163]) If T is any tree, then the class of T -free graphs is χ-bounded.

Besides the class of Pt-free graphs, the class of K1,t-free graphs [81], the class of T -free graphs,

when T is a tree of radius two [109] or T is a subdivision of star [154] or T is a particular tree

of radius three tree [112], and the class of t-broom-free graphs (where a t-broom is the graph

constructed from the K1,t+1 by subdividing an edge once) [124] are known to be χ-bounded.

Recently due to the pioneering work of Chudnovsky, Scott and Seymour, the conjecture has been

verified for some special classes of trees which generalize several previously known results; see

[48, 158]. Despite several partial contributions, Conjecture 4 is still open.
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1.6.2 Hadwiger Conjecture

If G is a graph, then any graph obtained from a subgraph of G by contracting edges is called a

minor of G [149]. Kuratowski’s theorem [121] says that planar graphs are precisely the graphs

that do not contain K5 or K3,3 as a minor. So from the Four color theorem, we conclude that

every graph with no K5 or K3,3 minor are 4-colorable. Clearly, if a graph G has no K2 minor, then

G is an empty graph and hence it is 1-colorable; and if a graph G has no K3 minor, then G is a

forest, and hence it is 2-colorable. In 1943, Hadwiger [83] showed that every graph with no K4

minor is 3-colorable, and posed the following.

Conjecture 5 ([83]) For any integer t ≥ 0, every graph with no Kt+1 minor is t-colorable.

For t = 4, Wagner [167] showed that Conjecture 5 is equivalent to the Four Color Theorem

[1, 2], and so Conjecture 5 holds. When t = 5, Robertson, Seymour and Thomas [149] showed

that Conjecture 5 holds with the aid of the Four color theorem. For t ≥ 6, Conjecture 5 is open.

But for several hereditary classes of graphs Conjecture 5 is shown to be true; see [29]. We refer to

Seymour [160], Kawarabayashi [106], and Cameron and Vušković [29] for surveys on Hadwiger’s

conjecture. In [29], Cameron and Vušković established a relationship between χ-boundedness and

Conjecture 5 which is given below.

Theorem 1.10 ([29]) If G is a hereditary class of graphs that satisfies the Vizing bound (i.e.

every G ∈ G satisfies χ(G) ≤ ω(G) + 1), then Conjecture 5 holds for G.

By Theorem 1.10, Conjecture 5 hold for the following classes of graphs since they satisfy the

Vizing bound for the chromatic number: Perfect graphs, line graphs of simple graphs [166], the

class of (chair, HVN)-free graphs [142], the class of (chair, K5 − e)-free graphs [142], the class

of (even-hole, K4 − e)-free graphs [117], the class of (P5, K4 − e)-free graphs, the class of (P6,

paw)-free graphs, the class of (P6, E,K4 − e)-free graphs [100] and many more; see [29, 153, 165].

1.6.3 Reed Conjecture

In 1998, Reed [147] suggested that the chromatic number of a graph can be upper bounded by a

convex combination of its clique number and its maximum degree plus 1, and is given below.

Conjecture 6 ([147]) For any graph G, we have χ(G) ≤
⌈
∆(G)+ω(G)+1

2

⌉
.

Odd holes, the Chvatal’s 4-regular, 4-chromatic triangle-free graph [52] and C5[Kt] (see Obs. 2

of Table 1) show that the ‘rounding up’ in Conjecture 6 is necessary. Conjecture 6 is obvious for

graphs G with ω(G) ∈ {∆(G),∆(G) + 1}, and for graphs G with ω(G) = ∆(G)− 1, by Brooks’

theorem [25]. Using probabilistic methods, Reed [147] verified Conjecture 6 for graphs G which

have sufficiently large ∆(G) and ω(G) is sufficiently close to ∆(G). He also showed that there is

some k > 0 such that every graph G satisfies χ(G) ≤ ⌈kω(G) + (1− k)(∆(G) + 1)⌉. Furthermore,

Conjecture 6 has been verified for some special classes of graphs such as: Line graphs of multigraphs
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[116], the class of almost-split graphs [118], the class of K1,3-free graphs [114], the class of (odd

hole)-free graphs [3], some subclasses of chair-free graphs [3], graphs with disconnected complements

[140], and for graphs with restrictions on ∆ and χ; see [118, 140]. However, Conjecture 6 is still

open in general, and seems a lot harder even for the class of triangle-free graphs. Kostochka (cf.

[93]) showed that if G is a triangle-free graph, then χ(G) ≤ 2
3
(∆(G) + 2).

In 2008, Gernet and Rabern [75] was the first to explore the relation between χ-boundedness

and Conjecture 6. Indeed, they proved the following.

Theorem 1.11 ([75]) If G is a hereditary class of graphs such that every G ∈ G satisfies

χ(G) ≤ ω(G) + 2, then Conjecture 6 holds for G.

This implies that the class of graphs which satisfies the Vizing bound satisfies Conjecture 6.

We refer to the last paragraph of Section 1.6.2 for several such classes of graphs. In 2018,

Karthick and Maffray [101], by using a result of King [115] which states that every graph H

with ω(H) > 2
3
(∆(H) + 1) has a stable set which meets every maximum clique of H, showed the

following:

Theorem 1.12 ([101]) If G is a hereditary class of graphs such that every G ∈ G satisfies

χ(G) ≤
⌈
5
4
ω(G)

⌉
, then Conjecture 6 holds for G.

Since the class of (P6, C4)-free graphs and the class of (K1 + P4, K1 + P4)-free graphs have

f(x) =
⌈
5
4
x
⌉
as the χ-binding function, it follows that Conjecture 6 holds for such classes of graphs,

by Theorem 1.12. The converse of Theorem 1.12 is not true in general. For instance, the class of

(P5, P5)-free graphs satisfies Conjecture 6 [69], but it is known that no linear χ-binding function

exists for such a class of graphs [68].

Conjecture 6 is open for the class of P5-free graphs. Schiermeyer [151] showed that if G is

a connected P5-free graph with ω(G) ≥ 3 and with at least 10ω(G) × 3ω(G)−3 vertices, then

Conjecture 6 holds for G. From earlier sections, for L1 ∈ {K4 − e, paw, HVN}, since every

(P5, L1)-free graph G satisfies χ(G) ≤ ω(G) + 2, it follows that Conjecture 6 holds for the class

of (P5, L1)-free graphs, by Theorem 1.11. Also for L2 ∈ {C4, K1 ∨ P4}, since every (P5, L2)-free

graph G satisfies χ(G) ≤
⌈
5
4
ω(G)

⌉
, Conjecture 6 holds for the class of (P5, L2)-free graphs, by

Theorem 1.12. Recently Geißer [74] verified Conjecture 6 for the class of (P5, banner)-free graphs

and for the class of (P5, dart)-free graphs. We refer to [69, 151] for more partial contributions to

Conjecture 6 for the class of P5-free graphs.

1.6.4 Erdös-Hajnal Conjecture

From a result of Erdös [57] on Ramsey theory, it is known that every graph on n vertices contains a

clique or stable set of size at least 1
2
log n. If G is perfect graph, since α(G)ω(G) ≥ |V (G)|, we see

that G has either a clique or a stable set of size at least
√

|V (G)|. Erdös and Hajnal [61] showed

that given a graph H, there exists a constant c > 0 such that every H-free graph G has either a
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clique or a stable set of size at least ec
√

log |V (G)|. We say that a hereditary class of graphs G satisfies

the Erdös-Hajnal property if there exists a constant c > 0 such that every graph G ∈ G has either

a clique or a stable set of size at least |V (G)|c. (In other words, max{ω(G), α(G)} ≥ |V (G)|c.) In

1989, Erdös and Hajnal [61] suggested the following.

Conjecture 7 ([61]) For any graph H, the class of H-free graphs has the Erdös-Hajnal property.

Some partial contributions are available in the literature, and we mention here a few of them.

Note that the conjecture is trivially true for H is P2 or 2K1, and that the class of H-free graphs has

the Erdös-Hajnal property if and only if the class of H-free graphs has the Erdös-Hajnal property.

By a result of Kim [113], since the Ramsey number R(3, t) has order of magnitude O( t2

log t
), every

triangle-free graph on n vertices has independence number at least O(
√
n log n), and so the class

of triangle-free graphs has the Erdös-Hajnal property. If H ∈ {K1 + P2, P3, P4}, then since every

H-free graph is perfect, the class of H-free graphs has the Erdös-Hajnal property. In fact, all

graphs on at most four vertices are known to satisfy Conjecture 7; see [44]. Chudnovsky and

Safra [43] showed that Conjecture 7 holds when H is a bull. More precisely, they showed that

every bull-free graph G has a clique or a stable set of size at least |V (G)| 14 . Reed asked whether

the class of (P5, C5)-free graphs has the Erdös-Hajnal property (see Problem 38 of [162]). Very

recently, Chudnovsky, Scott, Seymour and Spirkl [44] showed that Conjecture 7 is true for the

class of C5-free graphs, and hence the class of (P5, C5)-free graphs has the Erdös-Hajnal property.

However the conjecture is open when H is P5 or P5. We refer to a survey of Chudnovsky [35] for

more details and related results.

In [155], Scott and Seymour established the connection between χ-boundedness and the Erdös-

Hajnal conjecture.

Theorem 1.13 ([155]) If G is a hereditary class of graphs that admits a polynomial χ-binding

function, then G has the Erdös-Hajnal property.

Indeed, if every graph G ∈ G is such that χ(G) ≤ ω(G)k, for some integer k ≥ 1, then since

|V (G)| ≤ χ(G)α(G) ≤ ω(G)kα(G), G has a clique or a stable set of size |V (G)| 1
k+1 . Clearly the

converse of Theorem 1.13 is not true in general. For instance, the class of triangle-free graphs has

the Erdös-Hajnal property, but is not χ-bounded.

1.7 Outline of the thesis

In this thesis, we study the (smallest) χ-binding function for the class of (P2 + P3, P2 + P3)-free

graphs, the class of (P5, 4-wheel)-free graphs, the class of (P5, K5 − e)-free graphs, and for the class

of (P5, flag)-free graphs. Our results generalize/improve several previously known results in the

literature which were stated in the earlier sections. We give below a chapter-wise summary for

each of the remaining chapters.
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Chapter 2: Coloring (P2 + P3, P2 + P3)-free graphs

For a fixed forest F , the problem of finding the smallest χ-binding function for the class of

(F, F )-free graphs is open [81] and seems to be hard even when F is a simple type of forest such as

a long path or a subdivided claw. So it is interesting to look for some special cases, in particular,

when F is a forest on at most five vertices. In this chapter, we are interested in finding the smallest

χ-binding function for the class of (P2 + P3, P2 + P3)-free graphs.

From a result of Randerath, Schiermeyer and Tewes [145], it is known that every (P2 +

P3, P2 + P3)-free graph G with ω(G) = 2 satisfies χ(G) ≤ 4, and that the bound is tight (see Obs.6

of Table 1). However, no smallest χ-binding function is known for the class of (P2 + P3, P2 + P3)-

free graphs in general. In this chapter, we show that the function g : N → N defined by

g(1) = 1, g(2) = 4, and g(x) = max
{
x+ 3,

⌊
3x
2

⌋
− 1

}
, for x ≥ 3, is the smallest χ-binding (or

θ-binding) function for the class of (P2 +P3, P2 + P3)-free graphs. Our result improves/generalizes

the earlier mentioned results known for the class of (2P2,C4)-free graphs, the class of (P2 + P3,

C4)-free graphs, the class of (P2 + P3, paw)-free graphs, and the class of (P2 + P3, K4 − e)-free

graphs.

Chapter 3: Coloring (P5, 4-wheel)-free graphs

The class of (P5, 4-wheel)-free graphs generalizes the class of: (2P2, 4-wheel)-free graphs, (3K1, 4-

wheel)-free graphs, (P5,C4)-free graphs, and (P5, K4−e)-free graphs. Recall that every (P5, C4)-free

graph H satisfies χ(H) ≤
⌈
5
4
ω(H)

⌉
. In [32], Choudum et al. proved a decomposition theorem

which states that if G is a connected (P5, 4-wheel)-free graph, then V (G) can be partitioned into

two sets V1 and V2 such that G[V1] contains a dominating C4 or V1 = ∅, and G[V2] is (P5, C4)-free.

Using these two results, Choudum et al. [32] deduced that every (P5, 4-wheel)-free graph G satisfies

χ(G) ≤ 5
⌈
5
4
ω(G)

⌉
. Obviously this bound is not tight.

In this chapter, we explore the structure of (P5, 4-wheel)-free graphs in detail and prove that if

G is a connected (P5, 4-wheel)-free graph which has no clique cut-set, then either G is a perfect

graph, or G is a quasi-line graph, or G has three disjoint stable sets S1, S2 and S3 whose union

meets each maximum clique of G at least twice and the other maximal cliques of G at least once.

It is known that every quasi-line graph H satisfies χ(H) ≤ 3
2
ω(H) [40]. As a consequence of these

results, we prove that every (P5, 4-wheel)-free graph G satisfies χ(G) ≤ 3
2
ω(G). We also provide

infinitely many (P5, 4-wheel)-free graphs H with χ(H) ≥ 10
7
ω(H).

Chapter 4: Coloring (P5, K5 − e)-free graphs

In this chapter, we investigate the class of (P5, K5 − e)-free graphs which generalizes the class

of (P5, K4)-free graphs and the class of (P5, K4 − e)-free graphs. Malyshev and Lobanova [132]

explored this class of graphs and proved that if G is a connected (P5, K5 − e)-free graph with no

clique cut-set, then either ω(G) ≤ 3× 67 or G is 3K1-free. Kierstead [108] (see also [111]) showed

that every (3K1, K5 − e)-free graph H satisfies χ(H) ≤ ω(H) + 1. From these results, it follows

that if G is a connected (P5, K5 − e)-free graph with ω(G) > 3× 67 and has no clique cut-set, then
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χ(G) ≤ ω(G) + 1. In 2024, Xu [173] claimed that if G is a connected (P5, K5 − e)-free graph that

contains a C5 and has no clique cut-set, then G satisfies χ(G) ≤ max{13, ω(G) + 1}.

Here, we study the structure of a (P5, K5 − e)-free graph G with ω(G) ≥ 5 in detail and prove

that either G is the complement of a bipartite graph or G has a clique cut-set or χ(G) ≤ 7. Based

on this structural result, we show that if G is a connected (P5, K5 − e)-free graph with ω(G) ≥ 7,

then either G is the complement of a bipartite graph or G has a clique cut-set. Furthermore,

there is a connected (P5, K5 − e)-free imperfect graph H with ω(H) = 6 and has no clique cut-

set. Using these results, we prove that if G is a (P5, K5 − e)-free graph with ω(G) ≥ 4, then

χ(G) ≤ max{7, ω(G)}, and that the bound is tight when ω(G) /∈ {4, 5, 6}.

Since k-Coloring for the class of P5-free graphs can be solved in polynomial time for every

fixed positive integer k ≤ 6 [86], it follows from our result and an observation of Ju and Huang [95]

that Chromatic Number for the class of (P5, K5 − e)-free graphs can be solved in polynomial

time.

Chapter 5: Coloring (P5, flag)-free graphs

In this chapter, we are interested in the class of (P5, flag)-free graphs which generalizes the class

of (P5, K4)-free graphs and the class of (P5, paw)-free graphs. Recall that every (P5, K4)-free graph

G satisfies χ(G) ≤ 5 and that the bound is tight. Recently Dong et al. in [55] showed that every

(P5, flag)-free graph G satisfies χ(G) ≤ 3ω(G) + 11, and later in [56], the same authors improved

their bound, and proved that every (P5, flag)-free graph G satisfies χ(G) ≤ max{15, 2ω(G)}. This
implies that if G is a (P5, flag, K5)-free graph, then χ(G) ≤ 15. However, even the improved

function f(x) = max{15, 2x} does not seem to be the smallest χ-binding function for such a class

of graphs.

Here, we prove that every (P5, flag, K5)-free graph G that contains a K4 satisfies χ(G) ≤ 8,

every (P5, flag, K6)-free graph G satisfies χ(G) ≤ 8, and that every (P5, flag, K7)-free graph G

satisfies χ(G) ≤ 9. We also gave examples to show that the given bounds are tight. Moreover we

prove that every (P5, flag)-free graph G with ω(G) ≥ 4 satisfies χ(G) ≤ max{8, 2ω(G)− 3}, and
that the bound is tight for ω(G) ∈ {4, 5, 6}.



Chapter 2

Coloring (P2 + P3, P2 + P3)-free graphs

2.1 Introduction

In this chapter1, we are interested in some self-complementary classes of graphs which are χ-

bounded. Let C be a hereditary class of graphs. A function ϕ : N → N such that ϕ(1) = 1 and

ϕ(x) ≥ x, for all x ∈ N is called a θ-binding function for C if θ(G) ≤ ϕ(α(G)), for each G ∈ C.
The class C is called θ-bounded if there exists a θ-binding function for C. The smallest/optimal

θ-binding function ϕ∗ for C is defined as ϕ∗(x) := max{θ(G) | G ∈ C and α(G) = x}. Clearly, a
self-complementary hereditary class of graphs C is χ-bounded if and only if C is θ-bounded. In

particular, if C is χ-bounded, then the smallest χ-binding function for C is the same as the smallest

θ-binding function for C. For instance, by a result of Lovász [125], the class of perfect graphs

is a self-complementary class of χ-bounded (θ-bounded) graphs where ϕ(x) = x is the smallest

χ-binding function as well the smallest θ-binding function.

Among other conjectures and problems (some of them are stated in Chapter 1), Gyárfás [81]

proposed the following.

Problem 2 ([81]) For a fixed forest F , assuming that the class of (F, F )-free graphs F is χ-bounded,

what is the smallest χ-binding function for F?

Problem 2 is open and seems to be hard even when F is a simple type of forest such as a long

path or a subdivided claw. Moreover, in general, for several known χ-bounded classes of graphs,

it is often difficult to find smallest χ-binding functions; see [153, 155, 156] for instances. So it is

interesting to look at Problem 2 for some special cases, in particular, when F is a forest on at most

five vertices. (See Figure 7 for all five-vertex forests.)

Since each forest on at most five vertices is an induced subgraph of a P9 or a 4-broom, and

since the class of P9-free graphs and the class of 4-broom-free graphs are χ-bounded [81, 124, 157],

clearly the class of (F, F )-free graphs F is χ-bounded when F is a forest on at most five vertices.

1The results of this chapter are appearing in “A.Char and T.Karthick. Optimal chromatic bound for (P2+P3, P2 + P3)-free
graphs. Journal of Graph Theory 105 (2024) 149—178. https://doi.org/10.1002/jgt.23009”
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5K1 3K1 +P2 K1 + 2P2 2K1 +P3 P5

K1 +P4 P2 +P3 K1 +K1,3 K1,4 Chair

Figure 7: Forests on five vertices.

While smallest χ-binding functions for the class of (F, F )-free graphs when F is a forest on at

most four vertices are known, except when F = K4 [81], only three classes of graphs were studied

for Problem 2 when F is a five-vertex forest. We give below some non-trivial known results for

Problem 2 when F is a forest on four or five vertices. In this regard, we recall the following known

results from Chapter 1.

� Every P4-free graph is perfect [159]. The function f(x) = x + 1 is the smallest χ-binding

function for the class of (2P2, C4)-free graphs [9, 81]. Gyárfás [81] showed that if F ∈
{2K1 + P2, K1 + P3}, then f(x) = max{3, x} is the smallest χ-binding function for the class

of (F, F )-free graphs. He also showed that f(x) =
⌊
3x
2

⌋
is the smallest χ-binding function for

the class of (K1,3, K1,3)-free graphs.

� Every (P5, P5)-free graph G satisfies χ(G) ≤
(
ω(G)+1

2

)
, and there are (P5, P5)-free graphs G

with χ(G) ≥ ω(G)k, where k = log2 5− 1 [67]. Karthick and Maffray [101] showed that every

(K1 + P4, K1 + P4)-free graph G satisfies χ(G) ≤
⌈
5
4
ω(G)

⌉
, and that the bound is tight.

Recently, Chudnovsky, Cook and Seymour [36] showed that every (chair, Co-chair)-free graph G

satisfies χ(G) ≤ 2ω(G), and that the bound is ‘asymptotically tight’. In 2023, Prashant and Raj

[137] showed that every (2K1+P3, 2K1 + P3)-free graph G with ω(G) ̸= 3 satisfies χ(G) ≤ ω(G)+1

and that the bound is tight. Furthermore, they showed that every (2K1 +P3, 2K1 + P3)-free graph

G with ω(G) = 3 is 7-colorable. Thus Problem 2 is open and not even attempted for the remaining

six pairwise non-isomorphic forests on five vertices. In this chapter, we focus on Problem 2 when

F = P2 + P3. Randerath, Schiermeyer and Tewes [145] studied the class of (P2 + P3, P2 + P3)-free

graphs which are triangle-free, and showed the following.

Theorem C ([145]) Every (P2 + P3, P2 + P3)-free graph G with ω(G) = 2 satisfies χ(G) ≤ 4.

The well-known Mycielski’s 4-chromatic triangle-free graph or Grötzsch Graph (see Obs. 6

of Table 1) shows that the bound given in Theorem C is tight. However, no smallest χ-binding

function is known for the class of (P2 + P3, P2 + P3)-free graphs in general.
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In this chapter, we show that every (P2 + P3, P2 + P3)-free graph G with ω(G) ≥
3 satisfies χ(G) ≤ max{ω(G) + 3,

⌊
3
2
ω(G)

⌋
− 1}, and for any k ∈ N and k ≥

3, there is a (P2 + P3, P2 + P3)-free graph G such that ω(G) = k and χ(G) =

max
{
k + 3,

⌊
3k
2

⌋
− 1

}
. More precisely, we show that the function g : N → N defined

by

g(1) = 1, g(2) = 4, and g(x) = max

{
x+ 3,

⌊
3x

2

⌋
− 1

}
, for x ≥ 3,

is the smallest χ-binding (or θ-binding) function for the class of (P2 + P3, P2 + P3)-

free graphs.

A vertex v in a graph G is a nice vertex if dG(v) ≤ ω(G) + 2. (We drop the subscript G when

the relevant graph is unambiguous.) Recall that a graph G is nice if it has three pairwise disjoint

stable sets, say S1, S2 and S3, such that ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2.

We say that a graph G is good, if at least one of the following hold: (a) G has twins. (b) G has

a universal vertex. (c) G has a nice vertex. (d) G is a nice graph. (e) χ(G) ≤ ω(G) + 3.

Since P2 + P3 is an induced subgraph of a P6, we use the following result of Karthick and

Maffray [102] which solves the case whenever a (P2 + P3, P2 + P3)-free graph does not contain a

C4:

Theorem D ([102]) Every (P6, C4)-free graph G satisfies χ(G) ≤
⌈
5
4
ω(G)

⌉
.

So to prove our smallest χ-binding function for the class of (P2 + P3, P2 + P3)-free graphs, it

is enough to consider (P2 + P3, P2 + P3)-free graphs that contain a C4. The proof of our result

follows from our structural result for the class of (P2 + P3, P2 + P3)-free graphs that contain a C4.

Indeed, we show that whenever a (P2 + P3, P2 + P3)-free graph contains a C4, then it is a good

graph.

To prove our structural result, first we prove some structural properties of (P2+P3, P2 + P3)-free

graphs that contain a C4.

2.2 Properties of (P2 + P3, P2 + P3)-free graphs that contain a C4

Let G be a (P2 + P3, P2 + P3)-free graph. Suppose that G contains a C4, say with vertex-

set C := {v1, v2, v3, v4} and edge-set {v1v2, v2v3, v3v4, v4v1}. For i ∈ {1, 2, 3, 4}, i mod 4 and

j ∈ {1, 2}, we let:

Ai := {v ∈ V (G) \ C | N(v) ∩ C = {vi}},
Bi := {v ∈ V (G) \ C | N(v) ∩ C = {vi, vi+1}},
Xj := {v ∈ V (G) \ C | N(v) ∩ C = {vj, vj+2}},
D := {v ∈ V (G) \ C | N(v) ∩ C = C}, and
T := {v ∈ V (G) \ C | N(v) ∩ C = ∅}.
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We let A := A1 ∪ A2 ∪ A3 ∪ A4, B := B1 ∪ B2 ∪ B3 ∪ B4, and X := X1 ∪X2. From now on and

throughout this chapter, our indices of A, B, X and v are taken arithmetic modulo 4 (unless

stated otherwise). Since G does not induce a P2 + P3, no vertex in V (G) \C is adjacent to exactly

three vertices in C, and hence V (G) \ C = A ∪ B ∪D ∪X ∪ T . Further, the graph G has more

properties which give in Lemmas 2.1 to 2.6.

Lemma 2.1 For i ∈ {1, 2, 3, 4}, the following hold:

(i) Ai ∪ T is a stable set.

(ii) Any vertex in Ai ∪Bi has at most one non-neighbor in Ai+2 ∪Bi+1. Likewise, any vertex in

Ai+1 ∪Bi has at most one non-neighbor in Bi−1 ∪ Ai−1.

(iii) For any vertex p ∈ Ai ∪ Bi ∪ T , N(p) ∩ (D ∪ Bi+2) is a clique. Likewise, for any p ∈
Ai, N(p) ∩ Bi+1 is a clique. Moreover, for any p ∈ Ai, |N(p) ∩ Bi+2| ≤ 1. Likewise,

|N(p) ∩Bi+1| ≤ 1.

(iv) For j ∈ {1, 2}, if there are adjacent vertices, say p ∈ Ai and q ∈ Ai+1, then any vertex in Xj

is adjacent to exactly one of p and q.

(v) Further assume that G is K2,3-free. Then any vertex in Bi has at most one neighbor in

Ai−1 ∪Bi+2. Likewise, any vertex in Bi has at most one neighbor in Ai+2 ∪Bi+2.

Proof. (i): If there are adjacent vertices in Ai ∪ T , say p and q, then {p, q, vi+1, vi+2, vi+3} induces

a P2 + P3. So Lemma 2.1:(i) holds.

(ii): Let p ∈ Ai ∪ Bi. If p has two non-neighbors in Ai+2 ∪ Bi+1, say q and r, then since

{p, vi, q, vi+2, r} does not induce a P2 + P3, we have qr ∈ E(G), and then {q, r, p, vi, vi+3} induces

a P2 + P3. So Lemma 2.1:(ii) holds, since p is arbitrary.

(iii): If there are non-adjacent vertices in N(p)∩(D∪Bi+2), say d1 and d2, then {p, d1, vi+2, d2, vi+3}
induces a P2 + P3. So the first assertion of Lemma 2.1:(iii) holds. Next if there are vertices, say

b, b′ ∈ N(p) ∩Bi+2, then by the first assertion, {p, vi, vi+3, b, b
′} induces a P2 + P3. So the second

assertion Lemma 2.1:(iii) holds.

(iv): We prove for j = 1. For any x ∈ X1, if px, qx ∈ E(G), then {q, x, vi, vi+1, p} induces a P2 + P3,

and if px, qx /∈ E(G), then {p, q, x, vi+2, vi+3} induces a P2 + P3. So x is adjacent to exactly one of

p and q.

(v): If there is a vertex, say p ∈ Bi, which has two neighbors in Ai−1 ∪ Bi+2, say q and r, then

{p, vi, vi−1, q, r} induces a K2,3 or a P2 + P3. So Lemma 2.1:(v) holds.

Lemma 2.2 For j ∈ {1, 2}, the following hold:

(i) If there are adjacent vertices, say b ∈ Bj and b′ ∈ Bj+2, then N(b) ∩ (Bj+1 ∪ Bj−1 ∪D) =

N(b′) ∩ (Bj+1 ∪Bj−1 ∪D).

(ii) Xj is a stable set.

(iii) Any vertex in Aj ∪ Aj+2 has at most one neighbor in Xj.
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Proof. (i): If there is a vertex, say v ∈ N(b)∩(Bj+1∪Bj−1∪D) such that v /∈ N(b′)∩(Bj+1∪Bj−1∪D),

then we may suppose (up to symmetry) that v ∈ Bj+1 ∪D, and then {b, vj+1, vj+2, b
′, v} induces a

P2 + P3. So Lemma 2.2:(i) holds.

(ii): If there are adjacent vertices in Xj, say p and q, then {vj, vj+1, vj+2, p, q} induces a P2 + P3.

So Lemma 2.2:(ii) holds.

(iii): If there is a vertex, say a ∈ Aj ∪ Aj+2, which has two neighbors in Xj, say x and x′, then

{vj, x, vj+2, x
′, a} induces a P2 + P3 (by Lemma 2.2:(ii)). So Lemma 2.2:(iii) holds.

Lemma 2.3 The following hold:

(i) B is anticomplete to X.

(ii) G[D] is (K1 +K2)-free, and hence perfect. Moreover, χ(G[D]) = ω(G[D]) ≤ ω(G)− 2.

(iii) X is complete to D.

Proof. (i): By symmetry, it is enough to show that B1 ∪B2 is anticomplete to X1. Now if there are

adjacent vertices, say b ∈ B1 ∪B2 and x ∈ X1, then {v1, v2, v3, x, b} induces a P2 + P3. So B1 ∪B2

is anticomplete to X1.

(ii): If there are vertices, say p, q and r inD such that {p, q, r} induces aK1+K2, then {p, q, r, v2, v4}
induces a P2 + P3; so G[D] is (K1+K2)-free. Hence G[D] is perfect. This proves the first assertion

of Lemma 2.3:(ii). Since D is complete to {v1, v2}, clearly ω(G[D]) ≤ ω(G)− 2, and hence from

the first assertion, we have χ(G[D]) = ω(G[D]) ≤ ω(G)− 2. This proves the second assertion of

Lemma 2.3:(ii).

(iii): If there are non-adjacent vertices, say d ∈ D and x ∈ X, then we may suppose that x ∈ X1,

and then {v1, v2, v3, x, d} induces a P2 + P3. So Lemma 2.3:(iii) holds.

Lemma 2.4 Let j, k ∈ {1, 2} and j ̸= k. Assume that there are adjacent vertices, say p ∈ Aj and

q ∈ Aj+2. Then:

(i) At most one vertex in Aj+1 is anticomplete to {p, q}. Likewise, at most one vertex in Aj−1 is

anticomplete to {p, q}.
(ii) At most one vertex in Xk is complete to {p, q}.
(iii) Each vertex in D ∪Xk is adjacent to at least one of p, q.

Proof. We proof the lemma for j = 1 and k = 2.

(i): If there are vertices, say r, s ∈ A2, such that {r, s} is anticomplete to {p, q}, then {p, q, r, v2, s}
induces a P2 + P3 (by Lemma 2.1:(i)). So at most one vertex in A2 is anticomplete to {p, q}.
Likewise, at most one vertex in A4 is anticomplete to {p, q}.

(ii): If there are vertices, say x, x′ ∈ X2, such that {x, x′} is complete to {p, q}, then {p, x, v2, x′, q}
induces a P2 + P3 (by Lemma 2.2:(ii)). So Lemma 2.4:(ii) holds.

(iii): If there is a vertex, say r ∈ D ∪X2, such that pr, qr /∈ E(G), then {p, q, v2, r, v4} induces a

P2 + P3. So Lemma 2.4:(iii) holds.



CHAPTER 2. COLORING (P2 + P3, P2 + P3)-FREE GRAPHS 30

Lemma 2.5 Further if G is (K2 +K3)-free, then for i ∈ {1, 2, 3, 4}, the following hold:

(i) Any vertex in Ai ∪Bi has at most one non-neighbor in Bi+1 ∪Bi+2. Likewise, any vertex in

Ai+1 ∪Bi has at most one non-neighbor in Bi−1 ∪Bi+2.

(ii) Any vertex in Ai ∪ Bi ∪ T has at most one neighbor in Ai+1 ∪ Bi. Likewise, any vertex in

Ai+1 ∪Bi has at most one neighbor in Ai ∪Bi ∪ T .

Proof. (i): If there is a vertex, say p ∈ Ai ∪Bi, which has two non-neighbors in Bi+1 ∪Bi+2, say q

and r, then {p, vi, q, vi+2, r} induces a K2 +K3 or a P2 + P3. So Lemma 2.5:(i) holds.

(ii): If there is a vertex, say p ∈ Ai ∪Bi ∪ T , which has two neighbors in Ai+1 ∪Bi, say q and r,

then {vi+2, vi+3, p, q, r} induces a K2 +K3 or a P2 + P3. So Lemma 2.5:(ii) holds.

v1
x∗

v3

v4

v2

v1
v2

v3v4

a∗

u5 u2

u4 u3

u1

u∗

u5u2

u4u3

u6

u1

Figure 8: Labelled graphs I: A K2,3, a banner, an H2 and an H3 (left to right).

Lemma 2.6 Further if G is Co-banner-free (see Figure 2), then for i ∈ {1, 2, 3, 4}, the following

hold:

(i) Ai ∪Bi and Ai+1 ∪Bi are stable sets.

(ii) Ai ∪Bi ∪ Ai+1 is complete to Bi+2. Moreover, if Ai ∪Bi ∪ Ai+1 ̸= ∅, then |Bi+2| ≤ 1.

Proof. (i): If there are adjacent vertices in Ai ∪Bi, say p and q, then {p, q, vi, vi+3, vi+2} induces a

Co-banner. So Ai ∪Bi is a stable set. Likewise, Ai+1 ∪Bi is a stable set. So Lemma 2.6:(i) holds.

(ii): If there are non-adjacent vertices, say p ∈ Ai ∪ Bi ∪ Ai+1 and q ∈ Bi+2, then {q, vi+2, vi+3,

vi, p} or {q, vi+2, vi+3, vi+1, p} induces a Co-banner; so Ai ∪ Bi ∪ Ai+1 is complete to Bi+2. This

proves the first assertion of Lemma 2.6:(ii). Now since Bi+2 is a clique (by Lemma 2.1:(iii)),

|Bi+2| ≤ 1 (by Lemma 2.6:(i)). So the second assertion of Lemma 2.6:(ii) holds.

2.3 (P2 + P3, P2 + P3)-free graphs that contain a K2,3

In this section, we show that if our graph contains a K2,3, then it is a good graph. In particular,

we prove the following.

Theorem 2.7 If G is a (P2 + P3, P2 + P3)-free graph that contains a K2,3, then χ(G) ≤ ω(G) + 3.

Proof. Let G be a (P2 + P3, P2 + P3)-free graph that contains a K2,3. We may consider a K2,3

with vertices and edges as shown in Figure 8. Let C := {v1, v2, v3, v4}. We partition V (G) \ C as
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in Section 2.2, and we use the lemmas in Section 2.2. Note that by the definition of X1, x
∗ ∈ X1;

so X1 ̸= ∅. First suppose that ω(G) = 2. Then since G is triangle-free, clearly we have B ∪D = ∅,
A1 is anticomplete to X1, and A2 is anticomplete to X2. Now we let S1 := A1 ∪ X1 ∪ {v2, v4},
S2 := A2 ∪X2 ∪ {v1, v3}, S3 := A3 ∪ T and S4 := A4. Then V (G) =

4∪
i=1

Si. Clearly S1, S2, S3 and

S4 are stable sets (by Lemma 2.1:(i) and Lemma 2.2:(ii)). Thus χ(G) ≤ 4 ≤ ω(G) + 3, and we are

done. So suppose that ω(G) ≥ 3. Now we have the following claims:

2.7.1 For i ∈ {1, 2, 3, 4}, Bi is a stable set.

Proof of 2.7.1. If there are adjacent vertices in Bi, say p and q, then {p, q, x∗, vi+2, vi+3} induces a

P2 + P3 (by Lemma 2.3:(i)). So 2.7.1 holds.

2.7.2 A2 is anticomplete to B1 ∪B2, and A4 is anticomplete to B3 ∪B4.

Proof of 2.7.2. Using symmetry, we prove that A2 is anticomplete to B1 in the first assertion.

Suppose there are adjacent vertices, say a ∈ A2 and b ∈ B1. By Lemma 2.3:(i), bx∗ /∈ E(G). Now

since {a, b, x∗, v3, v4} does not induce a P2 + P3, we have ax∗ ∈ E(G), and then {a, x∗, v1, v2, b}
induces a P2 + P3. So A2 is anticomplete to B1.

First suppose that ω(G[D]) ≤ ω(G)− 3. Now we let S1 := A1 ∪ T ∪ {v2, v4}, S2 := B1 ∪X1,

S3 := A2 ∪B2, S4 := A3 ∪ {v1}, S5 := B3 ∪X2 and S6 := A4 ∪B4 ∪ {v3}. Then V (G) \D =
6∪

i=1
Si.

Also from Lemma 2.1:(i), Lemma 2.2:(ii), Lemma 2.3:(i), and from 2.7.1 and 2.7.2, we conclude

that S1, S2, . . . , S6 are stable sets. Hence χ(G) ≤ χ(G[D]) + 6 ≤ (ω(G)− 3) + 6 = ω(G) + 3 (by

Lemma 2.3:(ii)), and we are done. So assume that ω(G[D]) = ω(G)− 2 (by Lemma 2.3:(ii)). Then

since ω(G) ≥ 3, D ≠ ∅. Let A′
1 := {a ∈ A1 | a has a neighbor in X1}, and we claim the following.

2.7.3 A′
1 is anticomplete to X2.

Proof of 2.7.3. Suppose to the contrary that there exist adjacent vertices, say a ∈ A′
1 and x ∈ X2.

By the definition of A′
1, there is a vertex x′ ∈ X1 such that ax′ ∈ E(G). Recall that D is complete

to X (by Lemma 2.3:(iii)) and ω(G[D]) = ω(G) − 2. Also for any d ∈ D, since {a, v1, v2, x, d}
does not induce a P2 + P3, we observe that D is complete to {a}, and so D is a clique (by

Lemma 2.1:(iii)). Then D∪{a, v1, x′} is a clique of size ω(G)+1, a contradiction. So 2.7.3 holds.

2.7.4 B1 is anticomplete to B2. Likewise B3 is anticomplete to B4.

Proof of 2.7.4. Suppose to the contrary that there exist adjacent vertices, say b1 ∈ B1 and b2 ∈ B2.

Note that for any d ∈ D, since {b1, b2, x∗, d, v4} does not induce a P2 + P3 (by Lemma 2.3:(i) and

Lemma 2.3:(iii)), d is adjacent to one of b1 and b2. We let D1 := {d ∈ D | db1 ∈ E(G), db2 /∈ E(G)},
D2 := {d ∈ D | db2 ∈ E(G), db1 /∈ E(G)} and D3 := {d ∈ D | db1, db2 ∈ E(G)} so that

D = D1 ∪ D2 ∪ D3. Now if there are adjacent vertices, say d1 ∈ D1 and d2 ∈ D2, then

{b1, d1, d2, b2, v3} induces a P2 + P3; so D1 is anticomplete to D2. Moreover, by Lemma 2.1:(iii), it

follows that D1∪D3 (= N(b1)∩D) and D2∪D3 (= N(b2)∩D) are cliques. Thus we conclude that
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any maximum clique in G[D] is either D1∪D3 or D2∪D3; so max{|D1∪D3|, |D2∪D3|} = ω(G)−2.

Then since D1 ∪D3 ∪ {b1, v1, v2} and D2 ∪D3 ∪ {b2, v2, v3} are cliques, at least one of them is a

clique of size (ω(G)− 2) + 3 = ω(G) + 1, a contradiction. This proves 2.7.4.

Now we let S1 := A2 ∪ B1 ∪ B2 ∪ {v4}, S2 := A4 ∪ B3 ∪ B4 ∪ {v2}, S3 := A′
1 ∪ X2 ∪ {v3},

S4 := (A1 \ A′
1) ∪X1 and S5 := A3 ∪ T ∪ {v1}. Then V (G) \D =

5∪
i=1

Si. Also, from 2.7.1, 2.7.2

and 2.7.3, and from Lemma 2.1:(i) and Lemma 2.2:(ii), we see that S1, S2, . . . , S5 are stable sets.

So χ(G) ≤ χ(G[D]) + χ(G[V (G) \D]) ≤ (ω(G)− 2) + 5 ≤ ω(G) + 3 (by Lemma 2.3:(ii)).
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Figure 9: Labelled graphs II: An H1, H1, H2, and an H3 (left to right).

By Theorem 2.7, it is enough to show that given a graph G which is (P2+P3, P2 + P3, K2,3)-free,

G is a good graph. We will show that G is a good graph based on a sequence of partial results

which depend on some special graphs; see Figures 8 and 9. More precisely, given a (P2 + P3,

P2 + P3, K2,3)-free graph G, we will show that the following hold:

(a) If G contains a banner, then G is a good graph (Theorem 2.13).

(b) If G is banner-free and contains an H2, then G is a good graph (Theorem 2.14).

(c) If G is (banner, H2)-free and contains an H3, then G is a good graph (Theorem 2.26).

(d) If G contains a C4, then G is a good graph (Theorem 2.30).

2.4 (P2 + P3, P2 + P3, K2,3)-free graphs that contain some special

graphs

2.4.1 (P2 + P3, P2 + P3, K2,3)-free graphs that contain a banner

In this section, we prove that if G is a (P2 + P3, P2 + P3, K2,3)-free graph that contains a banner,

then G is a good graph. As an intermediate step, we prove that if our graph contains an H1, then

it is a good graph.

We start with the following. Let G be a (P2+P3, P2 + P3, K2+K3)-free graph that contains an

H1. We may consider an H1 with vertices and edges as shown in Figure 9. Let C := {v1, v2, v3, v4}.
We partition V (G) \ C as in Section 2.2, and we use the lemmas in Section 2.2. Clearly a1 ∈ A1,

a2 ∈ A2 and a3 ∈ A3. To proceed further, we partition the vertex-set A4 as follows:
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L1 := {a ∈ A4 | aa2 ∈ E(G) and N(a) ∩ {a1, a3} ≠ ∅},
L2 := {a ∈ A4 | aa2 ∈ E(G) and N(a) ∩ {a1, a3} = ∅}, and
L3 := {a ∈ A4 | aa2 /∈ E(G)}.

Then clearly A4 = L1 ∪ L2 ∪ L3, |L2| ≤ 1 (by Lemma 2.4:(i)), and |L3| ≤ 1 (by Lemma 2.1:(ii)).

So if L1 = ∅, then |A4| ≤ 2. Moreover, the graph G has some more properties which we give in

Lemmas 2.8 to 2.11 below.

Lemma 2.8 The following hold:

(i) A1 \ {a1} is complete to {a3}. Likewise, A3 \ {a3} is complete to {a1}.
(ii) (A1 \ {a1}) ∪ (A3 \ {a3}) is anticomplete to {a2}, and is complete to (A2 \ {a2}) ∪ L2.

(iii) If (A2 \ {a2}) ∪ L2 ̸= ∅, then |A1 \ {a1}| ≤ 1 and |A3 \ {a3}| ≤ 1.

(iv) X2 is an empty set. Likewise, if L1 ̸= ∅, then X1 is an empty set.

Proof. (i): For any a′1 ∈ A1 \ {a1}, by Lemma 2.5:(ii), a2a
′
1 /∈ E(G), and then since {a2, a3, a′1, v1,

v4} does not induce a P2 + P3, we have a′1a3 ∈ E(G); so A1 \ {a1} is complete to {a3}. So

Lemma 2.8:(i) holds.

(ii): Clearly the first assertion of Lemma 2.8:(ii) follows from Lemma 2.5:(ii). If there are non-

adjacent vertices, say a′1 ∈ A1 \ {a1} and a′2 ∈ A2 \ {a2}, then {a′2, v2, a1, a3, a′1} induces a P2 + P3

(by Lemma 2.5:(ii) and Lemma 2.8:(i)); so A1 \ {a1} is complete to A2 \ {a2}. Likewise, A3 \ {a3}
is complete to A2 \ {a2}. If there are non-adjacent vertices, say a′ ∈ A1 \ {a1} and a ∈ L2, then

{a, v4, a1, a3, a′1} induces a P2 + P3 (by Lemma 2.8:(i)); so A1 \ {a1} is complete to L2. Likewise,

A3 \ {a3} is complete to L2. So Lemma 2.8:(ii) holds.

(iii): The proof of Lemma 2.8:(iii) follows from Lemma 2.8:(ii) and Lemma 2.5:(ii).

(iv): Suppose to the contrary that there is a vertex, say x ∈ X2. By Lemma 2.4:(iii), we may

suppose that a1x ∈ E(G). Then a2x /∈ E(G) and a3x ∈ E(G) (by Lemma 2.1:(iv)), and then

{a1, a2, v2, x, a3} induces a P2 + P3, a contradiction; so X2 = ∅. So Lemma 2.8:(iv) holds.

Lemma 2.9 The following hold:

(i) B1 is anticomplete to {a1, a2}, and B2 is anticomplete to {a2, a3}. Moreover, B1 is complete

to {a3}, and B2 is complete to {a1}; so |B1| ≤ 1 and |B2| ≤ 1.

(ii) |B3| ≤ 2 and |B4| ≤ 2. Further, if |B3| = 2, then |B4| ≤ 1 and vice versa.

(iii) D is complete to {a1, a2, a3}, and D is a clique.

Proof. (i): The first statement follows from Lemma 2.5:(ii). Now for any b ∈ B1, since {a2, a3, b, v1,
v4} does not induce a P2 + P3, B1 is complete to {a3}; so |B1| ≤ 1 (by Lemma 2.1:(iii)). Likewise,

B2 is complete to {a1}, and |B2| ≤ 1. So Lemma 2.9:(i) holds.

(ii): Clearly a2 has at most one non-neighbor in B3 ∪B4 (by Lemma 2.1:(ii)), and has at most one

neighbor in B3 (by Lemma 2.1:(iii)). Also a2 has at most one neighbor in B4 (by Lemma 2.1:(iii)).

So |B3| ≤ 2 and |B4| ≤ 2, and if |B3| = 2 then |B4| ≤ 1 and vice versa. This proves Lemma 2.9:(ii).
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(iii): Let d ∈ D be arbitrary. Then since {v1, a1, a2, v2, d} does not induce a P2 + P3, we have

da1, da2 /∈ E(G) or da1, da2 ∈ E(G). If da1, da2 /∈ E(G), then {a1, a2, d, v3, v4} induces a K2 +K3.

So we have da1, da2 ∈ E(G). Since {a2, a3, v3, v2, d} does not induce a P2 + P3, we have da3 ∈ E(G).

Hence D is complete to {a1, a2, a3}, and so D is a clique (by Lemma 2.1:(iii)). This proves

Lemma 2.9:(iii), since d is arbitrary.

Lemma 2.10 The following hold:

(i) θ(G[B ∪ C]) ≤ 3.

(ii) θ(G[L3 ∪B ∪ C ∪D ∪ {a1, a2, a3}]) ≤ 4.

Proof. (i): We restrict ourselves to the graph G[B ∪ C], and we apply Lemma 2.9. From

Lemma 2.9:(ii), we have |B4| ≤ 1. First assume that there are non-adjacent vertices, say b3 ∈ B3

and b2 ∈ B2. Then {b2} is complete to (B3\{b3})∪B4 (by Lemma 2.5:(i)), and then B4 is complete

to (B3 \ {b3}) (by Lemma 2.2:(i)). So {b2} ∪ (B3 \ {b3}) ∪ B4, {b3, v3, v4} and B1 ∪ {v1, v2} are

cliques, and thus θ(G[B ∪ C]) ≤ 3. Hence suppose that B3 is complete to B2 ∪B4. Then clearly

θ(G[B2 ∪B3 ∪B4 ∪ {v3, v4}]) ≤ 2, and since B1 ∪ {v1, v2} is a clique, we have θ(G[B ∪ C]) ≤ 3.

(ii): If L3 = ∅, then since D ∪ {a1, a2, a3} is a clique (by Lemma 2.9:(iii)), we see that θ(G[L3 ∪
B ∪ C ∪ D ∪ {a1, a2, a3}]) ≤ θ(G[B ∪ C]) + 1 ≤ 4 (by Lemma 2.10:(i)), and we are done. So

L3 ≠ ∅, and let L3 := {a∗}. Then since {a1, a2, a∗, v4, v3} does not induce a P2 + P3, a1a
∗ ∈ E(G).

Likewise, a3a
∗ ∈ E(G). Since a3a

∗ ∈ E(G), {a∗} is anticomplete to B3 (by Lemma 2.5:(ii)). Then

since for any b ∈ B3, {a1, a∗, b, v3, v2} does not induce a P2 + P3, {a1} is complete to B3. Likewise,

{a∗} is complete to B1. Also since a2a
∗ /∈ E(G), {a2} is complete to B3 ∪B4 (by Lemma 2.1:(ii)).

So |B3| ≤ 1 and |B4| ≤ 1 (by Lemma 2.1:(iii)). Also if there are non-adjacent vertices, say d ∈ D

and b ∈ B3, then {b, a1, d, v4, v1} induces a P2 + P3 (by Lemma 2.9:(iii)); so D is complete to B3.

Thus from Lemma 2.9, {a∗} ∪ B1 ∪ {a3}, B3 ∪D ∪ {a1, a2}, B2 ∪ {v2, v3} and B4 ∪ {v1, v4} are

cliques, and hence θ(G[L3 ∪B ∪ C ∪D ∪ {a1, a2, a3}]) ≤ 4.

Lemma 2.11 If L1 ̸= ∅, then θ(G) ≤ α(G) + 3.

Proof. Let a4 ∈ L1. We may suppose that a1a4 ∈ E(G). Then we have X1 ∪ X2 = ∅ (by

Lemma 2.8:(iv)). So, by Lemma 2.10:(i), it is enough to show that θ(G[A∪D∪T ]) ≤ α(G). Recall

that D ∪ {a1, a2, a3} is a clique. Since for any d ∈ D, {a1, a4, v4, v1} does not induce a P2 + P3, D

is complete to {a4}. Also:
2.11.1 We may assume that (A2 \ {a2}) ∪ (A4 \ {a4}) ̸= ∅.

Proof of 2.11.1. If (A2 \ {a2}) ∪ (A4 \ {a4}) = ∅, then since A1 ∪ A3 ∪ T induces a bipartite graph

(by Lemma 2.1:(i)), and is anticomplete to {v2, v4}, we have θ(G[A1 ∪ A3 ∪ T ]) ≤ α(G)− 2, and

since D ∪ {a2, a4} is a clique, we conclude that θ(G[A ∪D ∪ T ]) ≤ α(G), and we are done.

Note that A1 \ {a1} is anticomplete to {a2, a4} (by Lemma 2.5:(ii)), and so |A1 \ {a1}| ≤ 1 (by

Lemma 2.4:(i)). Next we claim the following.
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2.11.2 |A3| ≤ 2.

Proof of 2.11.2. If |A3| ≥ 3, then from 2.11.1 and Lemma 2.8:(iii), it follows that A4 \{a4} ≠ ∅, and
so for any a ∈ A4 \ {a4}, by Lemma 2.5:(ii), there are vertices p, q ∈ A3 such that ap, aq /∈ E(G),

and hence again by Lemma 2.5:(ii) and Lemma 2.8:(i), {a, v4, p, a1, q} induces a P2 + P3, a

contradiction. So |A3| ≤ 2.

2.11.3 D is complete to A1 \ {a1}. Likewise, D is complete to A3 \ {a3}.

Proof of 2.11.3. If there exist non-adjacent vertices, say a′1 ∈ A1 \ {a1} and d ∈ D, then

{v1, a1, a3, a′1, d} induces a P2 + P3 (by Lemma 2.8:(i) and Lemma 2.1:(i)). So D is complete

to A1 \ {a1}. Likewise, D is complete to A3 \ {a3}.

Hence by 2.11.2, 2.11.3, Lemma 2.8:(i) and Lemma 2.9:(iii), θ(G[A1 ∪ A3 ∪ D]) ≤ 2. Also

since A2 ∪ A4 ∪ T induces a bipartite graph (by Lemma 2.1:(i)) which is anticomplete to {v1, v3},
θ(G[A2 ∪ A4 ∪ T ]) ≤ α(G)− 2. Thus θ(G[A ∪D ∪ T ]) ≤ α(G). This proves Lemma 2.11.

Theorem 2.12 If G∗ is a (P2 + P3, P2 + P3, K2,3)-free graph that contains an H1, then χ(G
∗) ≤

ω(G∗) + 3.

Proof. To prove the theorem, we start with the complement graph of G∗, say G, and show that

θ(G) ≤ α(G) + 3. Now G is a (P2 + P3, P2 + P3, K2 +K3)-free graph that contains an H1. We

may consider an H1 with vertices and edges as shown in Figure 9. Let C := {v1, v2, v3, v4}. We

partition V (G) \ C as in Section 2.2, and we use the lemmas in Section 2.2. We further partition

the set A4 as in the beginning of this section, and we use Lemmas 2.8 to 2.11. Recall that X2 = ∅
(by Lemma 2.8:(iv)). From Lemma 2.4 and Lemma 2.5:(ii), we have |A2| ≤ 2. By Lemma 2.11, we

may suppose that L1 = ∅; so |A4| ≤ 2. Now we prove the theorem in two cases as follows:

Case 1 The set L2 ∪ (A2 \ {a2}) is non-empty.

First suppose that (A1 \ {a1}) ∪ (A3 \ {a3}) = ∅. Let us define X ′
1 := {x ∈ X1 | a1x ∈ E(G)}.

Then it follows from Lemma 2.1:(iv) that X ′
1 is complete to {a3}; so |X ′

1| ≤ 1 (by Lemma 2.2:(iii)).

Note that T ∪ (X \X ′
1) induces a bipartite graph (by Lemma 2.1:(i) and Lemma 2.2:(ii)), and is

anticomplete to {a1, v2, v4}; so θ(G[T ∪ (X \X ′
1)]) ≤ α(G)− 3. Since |A2| ≤ 2 and |A4| ≤ 2, we

have θ(G[A2 ∪A4]) ≤ 2 (by Lemma 2.1:(ii)). Also θ(G[A1 ∪A3 ∪D∪X ′
1]) ≤ 1 (by Lemma 2.3:(iii)

and Lemma 2.9:(iii)). Hence by Lemma 2.10:(i), θ(G) ≤ α(G) + 3, and we are done.

Next suppose that (A1 \ {a1}) ∪ (A3 \ {a3}) ̸= ∅. Then |A1 \ {a1}| ≤ 1 and |A3 \ {a3}| ≤ 1 (by

Lemma 2.8:(iii)). Thus (A2\{a2})∪(A3\{a3}) and (A1\{a1})∪L2 are cliques (by Lemma 2.8:(ii)).

So θ(G[A ∪B ∪ C ∪D]) ≤ 6 (by Lemma 2.10:(ii)). Next we claim that:

2.12.1 X1 is anticomplete to {a1}.
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Proof of 2.12.1. Suppose to the contrary that there is a vertex x ∈ X1 such that xa1 ∈ E(G).

By Lemma 2.1:(iv), a2x /∈ E(G) and a3x ∈ E(G). Let a′ ∈ (A1 \ {a1}) ∪ (A3 \ {a3}). Then

since {a1, v1, a′, a3, x} or {a1, a3, v3, a′, x} does not induce a P2 + P3 (by Lemma 2.8:(i)), we have

a′x ∈ E(G). Then by Lemma 2.8:(ii) and by Lemma 2.1:(iv), {x} is anticomplete to (A2\{a2})∪L2.

But then for any a∗ ∈ (A2 \{a2})∪L2, one of {a∗, v2, a1, a3, x}, {a∗, v4, a1, a3, x} induces a K2+K3.

So X1 is anticomplete to {a1}.

Since T ∪ X1 induces a bipartite graph (by Lemma 2.1:(i) and Lemma 2.2:(ii)), and is

anticomplete to {a1, v2, v4} (by 2.12.1), clearly θ(G[T ∪ X1]) ≤ α(G) − 3. Hence θ(G) ≤
θ(G[A ∪ B ∪ C ∪D]) + θ(G[T ∪X1]) ≤ 6 + (α(G)− 3) = α(G) + 3. This complete the proof in

Case 1.

Case 2 The set L2 ∪ (A2 \ {a2}) is empty.

If (A1 \ {a1}) ∪ (A3 \ {a3}) is a stable set, then since A1 \ {a1} ∪ (A3 \ {a3}) ∪ T ∪X1 induces

a bipartite graph (by Lemma 2.1:(i) and Lemma 2.2:(ii)), and is anticomplete to {v2, v4}, we see

that θ(G) ≤ θ(G[A1 \ {a1} ∪ (A3 \ {a3}) ∪X1 ∪ T ]) ≤ α(G)− 2, and the proof follows by using

Lemma 2.10:(ii). So suppose that there are adjacent vertices, say a′1 ∈ A1 \{a1} and a′3 ∈ A3 \{a3}
(by Lemma 2.1:(i)). Next we claim that:

2.12.2 X1 is complete to {a2} ∪ L3. Moreover, |X1| ≤ 2.

Proof of 2.12.2. Suppose that there is a vertex x ∈ X1 such that xa2 /∈ E(G). Then a1x, a3x ∈ E(G)

(by Lemma 2.1:(iv)). Then since {v1, a1, a3, a′1, x} does not induce a P2 + P3 (by Lemma 2.1:(i)

and Lemma 2.8:(i)), a′1x ∈ E(G). But then {a2, v2, a′1, x, a′3} induces a K2 +K3 or a P2 + P3 (by

Lemma 2.8:(ii)); so X1 is complete to {a2}. Hence if there are non-adjacent vertices, say x ∈ X1

and a ∈ L3, then {a, v4, x, a2, v2} induces a P2 + P3; so X1 is complete to L3. This proves the first

assertion of 2.12.2. Next if |X1| ≥ 3, then there is a vertex x ∈ X1 such that xa′1, xa
′
3 /∈ E(G) (by

Lemma 2.2:(iii)), and then {a′1, a′3, x, a2, v2} induces a P2 + P3 (by Lemma 2.8:(ii)); so |X1| ≤ 2.

By using 2.12.2, Lemma 2.3:(iii) and Lemma 2.9:(iii), we have θ(G[A2 ∪ L3 ∪D ∪X1]) ≤ 2.

Also since A1∪A3∪T induces a bipartite graph (by Lemma 2.1:(i)), and is anticomplete to {v2, v4},
clearly θ(G[A1 ∪ A3 ∪ T ]) ≤ α(G)− 2, and hence the theorem follows from Lemma 2.10:(i).

Now we prove the main result of this section.

Theorem 2.13 If G is a (P2 + P3, P2 + P3, K2,3)-free graph that contains a banner, then G is a

good graph.

Proof. Let G be a (P2 + P3, P2 + P3, K2,3)-free graph that contains a banner. We may consider

a banner with vertices and edges as shown in Figure 8. Let C := {v1, v2, v3, v4}. We partition

V (G) \ C as in Section 2.2, and we use the lemmas in Section 2.2. Since G is K2,3-free, clearly

X = ∅. Recall that, by the definition of A1, we have a∗ ∈ A1, and so A ≠ ∅. We may assume that
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G does not have twins. Moreover, by Theorem 2.12, we may suppose that G is H1-free. Note that

if χ(G[V (G) \D]) ≤ 5, then χ(G) ≤ ω(G) + 3 (by Lemma 2.3:(ii)). Now we have the following

claim.

2.13.1 If A4 ̸= ∅, then the set A1∪A4∪B1∪{v3} can be partitioned into two stable sets. Likewise,

if A4 ̸= ∅, then the set A3 ∪ A4 ∪B2 ∪ {v1} can be partitioned into two stable sets.

Proof of 2.13.1. If A4 is anticomplete to B1, then from Lemma 2.1:(ii), |A4| = 1 and |B1| ≤ 1,

and so A1 ∪ {v3} and A4 ∪ B1 are stable sets, and we are done. So there are adjacent vertices,

say a4 ∈ A4 and b1 ∈ B1. Then from Lemma 2.1:(iii) and Lemma 2.1:(v), {a4} is anticomplete to

B1 \ {b1}, and A4 \ {a4} is anticomplete to {b1}. So (A4 \ {a4}) ∪ {b1} is a stable set, and from

Lemma 2.1:(ii), |B1 \ {b1}| ≤ 1. Now we show that A1 ∪ (B1 \ {b1}) ∪ {a4, v3} is a stable set.

First if there is a vertex, say a1 ∈ A1, such that a1a4 ∈ E(G), then {a1, a4, v4, v1, b1} induces a

P2 + P3 or a K2,3; so A1 ∪ {a4} is a stable set. Next if there are adjacent vertices, say a ∈ A1 and

b ∈ B1 \ {b1}, then {a4, v4, a, b, v2} induces a P2 + P3. Thus A1 ∪ (B1 \ {b1}) ∪ {a4, v3} is a stable

set.

Now we split the proof into two cases based on the subsets of B.

Case 1 Suppose that Bi and Bi+2 are non-empty, for some i ∈ {1, 2, 3, 4}.

We let i = 1, and we claim the following:

2.13.2 B1 is complete to B3, and B2 is complete to B4.

Proof of 2.13.2. Suppose there are non-adjacent vertices, say b ∈ B1 and b′ ∈ B3. Then since

{b′, v3, a∗, v1, b} does not induce a P2 + P3, either ba
∗ ∈ E(G) or b′a∗ ∈ E(G). If ba∗ ∈ E(G), then

since {b′, v4, a∗, b, v2} does not induce a P2 + P3, we have b′a∗ ∈ E(G), and then {a∗, b, b′} ∪ C

induces an H1, a contradiction to our assumption that G is H1-free; so ba
∗ /∈ E(G) and b′a∗ ∈ E(G).

But then {b, v2, a∗, b′, v4} induces a P2 + P3. So B1 is complete to B3. Likewise, B2 is complete to

B4. So 2.13.2 holds.

From Lemma 2.1:(v) and 2.13.2, we have |B1| = 1 = |B3|, A1 is anticomplete to B3, and A3 is

anticomplete to B1. Thus S1 := A1 ∪B3 ∪ {v2}, S2 := A3 ∪B1 ∪ {v4} and S3 := A2 ∪ T ∪ {v1, v3}
are stable sets (by Lemma 2.1:(i)). Now, if B2 and B4 are non-empty or if B2 ∪B4 = ∅, then as

in the previous argument, B4 and A4 ∪ B2 are stable sets, and hence χ(G[V (G) \ D]) ≤ 5, we

are done. So B2 ̸= ∅ and B4 = ∅. If A4 ̸= ∅, then from 2.13.1, A4 ∪ B2 can be partitioned into

two stable sets, so χ(G[V (G) \D]) ≤ 5, and again we are done. So A4 = ∅. Now note that, since

A4 ∪B4 = ∅, we have V (G) \ (S1 ∪ S2 ∪ S3) = B2 ∪D. Then since {v2, v3} is complete to B2 ∪D,

we have ω(G[B2∪D]) ≤ ω(G)− 2, and hence G is a nice graph. This proves the theorem in Case 1.
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Case 2 For each i ∈ {1, 2, 3, 4}, suppose that one of Bi, Bi+2 is empty.

We may assume that B3 ∪ B4 = ∅. Since N(v2) = A2 ∪ B1 ∪ B2 ∪D ∪ {v1, v3} and N(v4) =

A4 ∪ D ∪ {v1, v3}, and since G does not have twins, we have A4 ̸= ∅, and let a4 ∈ A4. Now if

A2 = ∅, then since T ∪{v2, v4} is a stable set (by Lemma 2.1:(i)), from 2.13.1, χ(G[V (G) \D]) ≤ 5,

and we are done. So A2 ̸= ∅. First suppose that either {a4} is anticomplete to A2 or {a4} is

anticomplete to B1.

2.13.3 We may assume that there are vertices a2 ∈ A2 and b1 ∈ B1 such that a2a4, a4b1 ∈ E(G).

Proof of 2.13.3. If {a4} is anticomplete to A2, then from Lemma 2.1:(ii), {a4} is complete to B1,

and so from Lemma 2.1:(v), |B1| ≤ 1. Also if {a4} is anticomplete to B1, then from Lemma 2.1:(ii),

again we have |B1| ≤ 1. In both cases, A2∪B1∪{v3} induces a bipartite graph (by Lemma 2.1:(i)).

Since A1 ∪ T ∪ {v2, v4} is a stable set (by Lemma 2.1:(i)), from 2.13.1, χ(G[V (G) \D]) ≤ 5, and

we are done. So there are vertices a2 ∈ A2 and b1 ∈ B1 such that a2a4, a4b1 ∈ E(G).

Then, by 2.13.3, B1 \ {b1} is a stable set (by Lemma 2.1:(ii)). Now, for any d ∈ D, since

{a4, b1, v1, v4, d} does not induce a P2 + P3, {b1} is anticomplete to D \N(a4), and {b1} is complete

to N(a4) ∩D. By Lemma 2.4:(iii), D \N(a4) is complete to {a2}, and hence by Lemma 2.1:(iii),

D\N(a4) andN(a4)∩D are cliques. So sinceN(a4)∩D is complete to {b1, v1, v2}, χ(G[N(a4)∩D]) ≤
ω(G)− 3. Also if there are vertices, say d, d′ ∈ D \N(a4), then {a2, a4, v4, d, d′} induces a P2 + P3;

so |D \N(a4)| ≤ 1. Thus (D \N(a4))∪ {b1} is a stable set. Since A1 ∪ T ∪ {v2, v4}, B1 \ {b1} and

A2 ∪ {v3} are stable sets (by Lemma 2.1:(i)), from 2.13.1, χ(G[V (G) \ (N(a4) ∩D)]) ≤ 6, and we

conclude that χ(G) ≤ 6 + (ω(G)− 3) = ω(G) + 3. So G is a good graph.

2.4.2 (P2 + P3, P2 + P3, K2,3, banner)-free graphs that contain an H2

Theorem 2.14 If G is a (P2 + P3, P2 + P3, K2,3, banner)-free graph that contains an H2, then G

is a good graph.

Proof. This follows from Theorem 2.15 given below.

Theorem 2.15 If G is a (P2 + P3, P2 + P3, K2 +K3, Co-banner)-free graph that contains an H2,

then G is a good graph.

Proof. Let G be a (P2 + P3, P2 + P3, K2 +K3, Co-banner)-free graph that contains an H2. We

may consider an H2 with vertices and edges as shown in Figure 9. Let C := {v1, v2, v3, v4}. We

partition V (G) \ C as in Section 2.2, and we use the lemmas in Section 2.2. Then clearly b1 ∈ B1

and b2 ∈ B2. So from Lemma 2.6:(ii), we have |B3| ≤ 1 and |B4| ≤ 1. Moreover, if there is a vertex,

say a1 ∈ A1, then by Lemma 2.6:(i), a1b1 /∈ E(G), and by Lemma 2.6:(ii), a1b2 ∈ E(G), and then

{a1, v1, v2, b2, b1} induces a P2 + P3; so A1 = ∅. Likewise, A3 = ∅. Hence A = A2 ∪ A4. Next if

there are vertices, say x, x′ ∈ X2, then {b1, b2, x, v4, x′} induces a P2 + P3 (by Lemma 2.2:(ii) and

Lemma 2.3:(i)); so |X2| ≤ 1. Moreover, we have the following claim:



CHAPTER 2. COLORING (P2 + P3, P2 + P3)-FREE GRAPHS 39

2.15.1 θ(G[C ∪ A ∪X1 ∪ T ]) ≤ α(G).

Proof of 2.15.1. If there are adjacent vertices, say a ∈ A2 and a′ ∈ A4, then {a, a′, b1, v2, b2}
induces a P2 + P3 (by Lemma 2.6:(i) and Lemma 2.6:(ii)); so A2 is anticomplete to A4. Hence

A2∪A4∪T∪{v1, v3} is a stable set (by Lemma 2.1:(i)). Moreover, X1∪{v2, v4} is also a stable set (by
Lemma 2.2:(ii)). So G[C∪A∪X1∪T ] is a bipartite graph, and hence θ(G[C∪A∪X1∪T ]) ≤ α(G).

This proves 2.15.1.

We may suppose that G does not have twins or a universal vertex. So, to prove the theorem, it

is enough to show that either v2 is a nice vertex in G or θ(G[B ∪D ∪X2]) ≤ 3 (by 2.15.1). Note

that |NG(v2)| = |{v4}∪A4∪T ∪X1|+ |B3|+ |B4| ≤ |{v4}∪A4∪T ∪X1|+2. If |X1| ≤ 1, then since

{v1, v3}∪A4∪T is a stable set (by Lemma 2.1:(i)), we see that |NG(v2)| ≤ (α(G)−2)+4 = α(G)+2,

and hence v2 is a nice vertex in G. So |X1| ≥ 2, and say x1, x
′
1 ∈ X1. We consider two cases based

on the set A4.

Case 1 Suppose that the set A4 is non-empty.

Say a4 ∈ A4. Then by Lemma 2.6:(ii), |B1| = 1 and |B2| = 1, and so B1 = {b1} and B2 = {b2}.
Next we claim that:

2.15.2 D is a clique.

Proof of 2.15.2. Suppose to the contrary that there exist non-adjacent vertices in D, say d1 and

d2. Then by Lemma 2.1:(iii), we may suppose that a4d1 /∈ E(G). If there is a vertex, say

x ∈ X1 such that a4x ∈ E(G), then {a4, v4, v1, x, d1} induces a P2 + P3 (by Lemma 2.3:(iii)); so

{a4} is anticomplete to X1. Then {a4, b1, x1, v3, x′1} induces a P2 + P3 (by Lemma 2.6:(ii) and

Lemma 2.3:(i)), a contradiction. So 2.15.2 holds.

Now since |X2| ≤ 1, from Lemma 2.3:(iii) and 2.15.2, D ∪X2 is a clique. Also since |Bi| ≤ 1,

for each i, by Lemma 2.6:(ii), B3 ∪ {b1} and B4 ∪ {b2} are cliques. So θ(G[B ∪D ∪X2]) ≤ 3, and

we are done.

Case 2 Suppose that the set A4 is empty.

If T is empty, then by Lemma 2.2:(ii), we have |NG(v2)| ≤ α(G) + 2, and hence v2 is a nice

vertex in G. So suppose that T is non-empty, and say t ∈ T . Then:

2.15.3 {t} is complete to B.

Proof of 2.15.3. Suppose to the contrary that there is a vertex, say b ∈ B such that bt /∈ E(G). We

may assume that b ∈ B1. Recall that, by Lemma 2.3:(i), B is anticomplete to X. Now, for any

x′ ∈ X1, since {b, v1, v2, t, x′} does not induce a Co-banner, {t} is anticomplete to X1. Likewise, {t}
is anticomplete to X2. Next if t has a neighbor in some Bi, say b

′, then {b′, t, vi+2, vi+3, x1} induces

a P2 + P3; so {t} is anticomplete to B. Since {t} is anticomplete to C ∪ A ∪B ∪X, and since G
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does not have a universal vertex, t must have a neighbor in D, say d. Then by Lemma 2.1:(iii),

NG(t) is a clique. Thus NG(d) ⊆ V (G) \ (NG(t) ∪ {t}) = NG(t); and so NG(d) ⊆ NG(t). Hence, d

and t are twins in G which is a contradiction. This proves 2.15.3.

2.15.4 B1 = {b1}, B2 = {b2}, and B is complete to D.

Proof of 2.15.4. By 2.15.3 and Lemma 2.5:(ii), we have B1 = {b1}. Likewise, B2 = {b2}. Next if
there are non-adjacent vertices, say b ∈ Bi and d ∈ D, then by Lemma 2.1:(iii), dt /∈ E(G), and

then {b, t, d, vi+2, vi+3} induces a K2 +K3, by 2.15.3. So B is complete to D. This proves 2.15.4.

Now since |B3| ≤ 1, |B4| ≤ 1 and |X2| ≤ 1, from 2.15.4, Lemma 2.1:(iii) and Lemma 2.6:(ii),

clearly B1 ∪B3 ∪D, B2 ∪B4 and X2 are cliques. So θ(G[B ∪D ∪X2]) ≤ 3.

2.4.3 (P2 + P3, P2 + P3, K2,3, banner, H2)-free graphs that contain an H3

We start with the following. Let G be a (P2 + P3, P2 + P3, K2 +K3, Co-banner, H2)-free graph

contains an H3 such that G does not have twins or a universal vertex. Let us assume that G

contains an H3 with vertices and edges as shown in Figure 9. Let C := {v1, v2, v3, v4}. We partition

V (G)\C as in Section 2.2, and we use the lemmas in Section 2.2. Clearly b∗ ∈ B1 and t
∗ ∈ T . Also

since b∗t∗ ∈ E(G), B is not anticomplete to T . Moreover, the graph G has some more properties,

and they are given in Lemmas 2.16 to 2.24 below.

Lemma 2.16 The following hold:

(i) For i ∈ {1, 2, 3, 4}, Bi ∪Bi+1 is a stable set.

(ii) B is complete to T .

(iii) For i ∈ {1, 2, 3, 4}, |Bi| ≤ 1, and |T | = 1.

(iv) B is complete to D. Moreover, D is a clique.

(v) θ(G[B ∪D ∪ T ]) ≤ 2 and θ(G[B ∪ C ∪D ∪ T ]) ≤ 3.

Proof. (i): By Lemma 2.6:(i), it is enough to show that Bi is anticomplete to Bi+1. Now if there are

adjacent vertices, say b ∈ Bi and b
′ ∈ Bi+1, then C ∪ {b, b′} induces an H2. So Bi is anticomplete

to Bi+1.

(ii): Suppose to the contrary that there exist non-adjacent vertices, say b ∈ B and t ∈ T . We

may assume that b ∈ B1. Now, if t has a neighbor in X, say x, then {t, x, v1, v2, b} induces

a Co-banner (by Lemma 2.3:(i)), and if t has a neighbor in B2 ∪ B4, say b′ ∈ B2, then from

Lemma 2.16:(i), bb′ /∈ E(G), and then {b′, t, b, v1, v4} induces a P2 + P3. These contradictions

together with Lemma 2.1:(i) show that {t} is anticomplete to C ∪ A ∪ B2 ∪ B4 ∪ X. Since G

has no universal vertices, t must have a neighbor in B1 ∪ B3 ∪ D, say p. By Lemma 2.1:(iii)

and Lemma 2.6:(ii), NG(t) is a clique. Thus NG(p) ⊆ V (G) \ (NG(t) ∪ {t}) = NG(t), and so

NG(p) ⊆ NG(t). Hence, p and t are twins in G which is a contradiction. So Lemma 2.16:(ii)

holds.
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(iii): By Lemma 2.5:(ii) and Lemma 2.16:(ii), clearly |Bi| ≤ 1. Next if there are vertices, say

t, t′ ∈ T , then from Lemma 2.16:(ii) and Lemma 2.1:(i), {v3, v4, t, b∗, t′} induces a P2 + P3; so

|T | ≤ 1. Since T ̸= ∅, we have |T | = 1. This proves Lemma 2.16:(iii).

(iv): If there are non-adjacent vertices, say b ∈ Bi and d ∈ D, then {b, t∗, d, vi+2, vi+3} induces

a K2 +K3 (by Lemma 2.1:(iii), Lemma 2.16:(ii) and Lemma 2.16:(iii)), a contradiction. So B

is complete to D. This proves the first assertion of Lemma 2.16:(iv). Since B ̸= ∅, the second

assertion follows from the first assertion and from Lemma 2.1:(iii). So Lemma 2.16:(iv) holds.

(v): We use Lemma 2.6:(ii), Lemma 2.16:(iii), and Lemma 2.16:(iv). Since B1 ∪ B3 ∪ T and

B2 ∪B4 ∪D are cliques, clearly θ(G[B ∪D ∪ T ]) ≤ 2. Also since B1 ∪B3 ∪ T , B2 ∪D ∪ {v2, v3}
and B4 ∪ {v1, v4} are cliques, we have θ(G[B ∪ C ∪D ∪ T ]) ≤ 3. This proves Lemma 2.16:(v).

Lemma 2.17 The following hold:

(i) X is complete to T .

(ii) Let j, k ∈ {1, 2} and j ̸= k. Then for any a ∈ Aj ∪ Aj+2, we have |Xk \NG(a)| ≤ 1, and for

any x ∈ Xk, we have |Aj \NG(x)| ≤ 1 and |Aj+2 \NG(x)| ≤ 1.

Proof. (i): If there are non-adjacent vertices, say x ∈ X and t ∈ T , then for any b ∈ B, say b ∈ Bi,

from Lemma 2.16:(ii) and Lemma 2.3:(i), {b, t, x, vi+2, vi+3} induces a P2 + P3. So Lemma 2.17:(i)

holds.

(ii): We prove for j = 1. By symmetry, we may suppose that a ∈ A1. If there are vertices, say

x2, x
′
2 ∈ X2\NG(a), then from Lemma 2.1:(i), Lemma 2.2:(ii) and Lemma 2.17:(i), {a, v1, x2, t∗, x′2}

induces a P2+P3; so |X2 \NG(a)| ≤ 1. Next if there are vertices, say a1, a
′
1 ∈ A1 \N(x), then again

from Lemma 2.1:(i) and Lemma 2.17:(i), {t∗, x, a1, v1, a′1} induces a P2 + P3; so |A1 \NG(x)| ≤ 1.

Likewise, |A3 \NG(x)| ≤ 1. This proves Lemma 2.17:(ii).

Lemma 2.18 If one of Ai, Ai+2 is empty, for each i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. We may assume that A3 ∪ A4 = ∅. Also:

2.18.1 We may assume that A1 ∪X1 and A2 ∪X2 are not stable sets.

Proof of 2.18.1. If A1 ∪X1 is a stable set, then since A1 ∪B4 ∪X1 is a stable set (by Lemma 2.6:(i)

and Lemma 2.3:(i)), from Lemma 2.16:(iii), |NG(v2)| = |A1 ∪ B4 ∪ X1| + |B3| + |T | + |{v4}| ≤
(α(G)− 1) + 3 = α(G) + 2; so v2 is a nice vertex in G, and we are done. Hence we may assume

that A1 ∪X1 is not a stable set. Likewise, we may assume that A2 ∪X2 is not a stable set.

2.18.2 We may assume that |A1| ≥ 2 and |A2| ≥ 2.

Proof of 2.18.2. If |A1| ≤ 1, then since B3∪B4∪X1 is a stable set (by Lemma 2.3:(i), Lemma 2.16:(i)),

from Lemma 2.16:(iii), |NG(v2)| = |B3∪B4∪X1|+ |A1|+ |T |+ |{v4}| ≤ (α(G)−1)+3 = α(G)+2;

so v2 is a nice vertex in G, and we are done. Hence we may assume that |A1| ≥ 2. Likewise, we

may assume that |A2| ≥ 2.
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2.18.3 We may assume that |X1| ≥ 2 and |X2| ≥ 2.

Proof of 2.18.3. If |X1| ≤ 1, then since A1 ∪ T ∪ {v4} is a stable set (by Lemma 2.1:(i)), from

Lemma 2.16:(iii), |NG(v2)| = |A1 ∪ T ∪ {v4}|+ |B3 ∪B4|+ |X1| ≤ (α(G)− 1) + 3 = α(G) + 2; so

again v2 is a nice vertex in G, and we are done. Hence we may assume that |X1| ≥ 2. Likewise, we

may assume that |X2| ≥ 2.

By 2.18.1, there are adjacent vertices, say a1 ∈ A1 and x1 ∈ X1. Moreover, we claim the

following:

2.18.4 |A1| ≤ 3, and |A2| ≤ 3.

Proof of 2.18.4. Suppose that |A1| ≥ 4. Then since |X2| ≥ 2, by Lemma 2.17:(ii), there is a vertex

in X2, say x2, such that a1x2 ∈ E(G). Again, by Lemma 2.17:(ii) and by the pigeonhole principle,

there are vertices, say a′1, a
′′
1 ∈ A1\{a1}, such that a′1x2, a

′′
1x2 ∈ E(G). Now, since {x1, x2, v1, v2, a1}

does not induce a P2 + P3, we have x1x2 /∈ E(G). Then since {a′1, x1, a1, x2, v1} does not induce a

P2 + P3, a
′
1x1 /∈ E(G). Likewise a′′1x1 /∈ E(G). But now {v3, x1, a′1, x2, a′′1} induces a P2 + P3. So

|A1| ≤ 3. Likewise, |A2| ≤ 3. This proves 2.18.4.

2.18.5 |X1| ≤ 3, and |X2| ≤ 3.

Proof of 2.18.5. Suppose that |X2| ≥ 4. Then since |A1| ≥ 2 (by 2.18.2), let a′1 ∈ A1 \ {a1}.
Then by Lemma 2.17:(ii) and by the pigeonhole principle, there are vertices, say x, x′ ∈ X2 such

that {a1, a′1} is complete to {x, x′}. Also since {a1, x, a′1, x1, v1} does not induce a P2 + P3 (by

Lemma 2.1:(i)), we have a′1x1 /∈ E(G). If xx1 ∈ E(G), then {a1, v1, v2, x, x1} induces a P2 + P3;

so we have xx1 /∈ E(G). Likewise, x′x1 /∈ E(G). Then {v3, x1, x, a′1, x′} induces a P2 + P3. So

|X2| ≤ 3. Likewise, |X1| ≤ 3. This proves 2.18.5.

2.18.6 θ(G[A1 ∪X2]) ≤ 3 and θ(G[A2 ∪X1]) ≤ 3.

Proof of 2.18.6. The proof follows from Lemma 2.1:(i), Lemma 2.2:(ii) and Lemma 2.17:(ii), and

from 2.18.4 and 2.18.5.

Now from 2.18.6 and Lemma 2.16:(v), we conclude that θ(G) ≤ 9. Also from 2.18.2 and

Lemma 2.1:(i), since A1 ∪ T ∪ {v2, v4} is a stable set, we have α(G) ≥ 5. If α(G) ≥ 6, then

θ(G) ≤ α(G)+3, and we are done. So we may conclude that α(G) = 5. Since A1∪T ∪{v2, v4} is a

stable set (by Lemma 2.1:(i)), from 2.18.2, |A1| = 2. Likewise, |A2| = 2. Now, if |X1| = 2, then by

Lemma 2.17:(ii), θ(G[A2 ∪X1]) ≤ 2, and so by 2.18.6 and Lemma 2.16:(v), θ(G) ≤ 8 = α(G) + 3.

So we may suppose that |X1| = 3 and |X2| = 3. Since X1 ∪ B1 ∪ B2 ∪ {v4} is a stable set

and since B1 ̸= ∅, clearly B2 = ∅. Then as in 2.18.6, we have θ(G[A2 ∪ (X1 \ {x1})]) ≤ 2, and

θ(G[A1 ∪X2 ∪ {v2}]) ≤ 3. Also D ∪ {v3, x1} is a clique (by Lemma 2.16:(iv) and Lemma 2.3:(iii)),

B4 ∪ {v1, v4} is a clique (by Lemma 2.16:(iii)), and B1 ∪ B3 ∪ T is a clique (by Lemma 2.6:(ii),

Lemma 2.16:(ii) and Lemma 2.16:(iii)). So we conclude that θ(G) ≤ 8 = α(G) + 3. This proves

Lemma 2.18.
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Lemma 2.19 If Ai is anticomplete to Ai+2, for each i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. First we observe the following:

2.19.1 If there are vertices, say p ∈ Ai, q ∈ Ai+1, and r ∈ Ai+2, then pq, qr ∈ E(G) or

pq, qr /∈ E(G).

Proof of 2.19.1. If pq ∈ E(G) and qr /∈ E(G) (say), then {r, vi+2, vi, p, q} induces a P2 + P3. So

2.19.1 holds.

By Lemma 2.18, we may suppose that A1, A3 ̸= ∅. Then by Lemma 2.1:(ii), we let A1 := {a1}
and A3 := {a3}. First suppose that {a1} is complete to A2 ∪ A4. Then by Lemma 2.5:(ii), we

have |A2| ≤ 1 and |A4| ≤ 1. Also {a3} is complete to A4 (by 2.19.1). So by Lemma 2.6:(ii),

Lemma 2.16:(ii) and Lemma 2.16:(iii), A2∪B3∪{a1}, A4∪B1∪{a3}, and B2∪B4∪T are cliques.

Also from Lemma 2.2:(ii), Lemma 2.3:(iii) and Lemma 2.16:(iv), it follows that G[X1∪X2∪C∪D]

is a perfect graph, as it is the join of a bipartite graph and a complete graph. Thus θ(G) ≤ α(G)+3,

and we are done. So we may conclude that {a1} is not complete to A2 ∪ A4, and let a2 ∈ A2 be

such that a1a2 /∈ E(G). So {a1, a2, a3} is a stable set (by 2.19.1). We consider two cases based on

the set A4.

Case 1 The set A4 is non-empty.

By Lemma 2.1:(ii), A2 \ {a2} = ∅ and |A4| = 1. Let A4 := {a4}. So A = {a1, a2, a3, a4} is a

stable set (by 2.19.1). Next we claim that:

2.19.2 |X1| ≤ 3 and |X2| ≤ 3. Hence θ(G[X2 ∪ {a1, a3}]) ≤ 3 and θ(G[X1 ∪ {a2, a4}]) ≤ 3.

Proof of 2.19.2. Suppose that |X1| ≥ 4. Then by Lemma 2.17:(ii), there are vertices p, q, r ∈ X1

such that {a2} is complete to {p, q, r}. By Lemma 2.2:(iii), we may suppose that pa3, qa3 /∈ E(G).

But then from Lemma 2.2:(ii), Lemma 2.3:(i), Lemma 2.6:(i) and Lemma 2.6:(ii), {b∗, a3, a2, p, q}
induces P2 + P3; so |X1| ≤ 3. Likewise, |X2| ≤ 3. This proves the first assertion of 2.19.2. The

second assertion follows from the first assertion and from Lemma 2.17:(ii).

By Lemma 2.16:(v) and 2.19.2, we have θ(G) ≤ 9. If α(G) ≥ 6, then θ(G) ≤ α(G) + 3. So we

may suppose that α(G) ≤ 5. Since T ∪ {a1, a3, v2, v4} is a stable set of size 5 (by Lemma 2.1:(i)),

α(G) = 5. Then we claim that:

2.19.3 θ(G[X1 ∪ {a1, a3, v1, v3}]) ≤ 3. Likewise, θ(G[X2 ∪ {a2, a4, v2, v4}]) ≤ 3.

Proof of 2.19.3. Since X1 ∪ {v2, v4} is a stable set (by Lemma 2.2:(ii)), and since α(G) = 5, clearly

|X1| ≤ 3. If |X1| ≤ 1, then since {a1, v1}, {a3, v3} and X1 are cliques, θ(G[X1∪{a1, a3, v1, v3}]) ≤ 3;

so we may suppose that |X1| ≥ 2. Say x1, x
′
1 ∈ X1. Since {a1, a3, v2, v4, x1, x′1} is a stable set

of size 6, we may suppose that a1x1 ∈ E(G). Then since {a1, v1, x1, v3, a3} does not induce a

Co-banner, a3x1 ∈ E(G). So by Lemma 2.2:(iii), {a1, a3} is anticomplete to X1 \ {x1}. Since
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(X1\{x1})∪{a1, a3, v2, v4} is a stable set of size at most 5, |X1\{x1}| = 1, and so X1\{x1} = {x′1}.
Then since {a1, v1, x1}, {a3, v3} and {x′1} are cliques, θ(G[X1 ∪ {a1, a3, v1, v3}]) ≤ 3. This proves

2.19.3.

So by 2.19.3 and Lemma 2.16:(v), we have θ(G) ≤ 8 = α(G) + 3.

Case 2 The set A4 is empty.

Let A′
2 := {a ∈ A2 | aa1 ∈ E(G)}; so a2 ∈ A2 \ A′

2. By Lemma 2.5:(ii), |A′
2| ≤ 1. Next we

claim the following:

2.19.4 We may assume that |X1| ≥ 2.

Proof of 2.19.4. If |X1| ≤ 1, then since T ∪ {a1, a3, v4} is a stable set (by Lemma 2.1:(i)), by

Lemma 2.16:(iii), |NG(v2)| = |X1|+ |T ∪{a1, a3, v4}|+ |B3 ∪B4| ≤ α(G) + 2; so v2 is a nice vertex

in G, and we are done. Hence we may assume that |X1| ≥ 2.

2.19.5 |X1 ∪ {a1, a3, v4}| ≤ α(G).

Proof of 2.19.5. If X1 ∪ {a1, a3, v4} is a stable set, then we are done. So we may assume that, by

Lemma 2.2:(ii), there is a vertex, say x ∈ X1 such that a1x ∈ E(G). Then since {a1, a3, v1, x, v3}
does not induce a Co-banner, a3x ∈ E(G). Also by Lemma 2.2:(iii), {a1, a3} is anticomplete

to X1 \ {x}. So by Lemma 2.2:(ii), (X1 \ {x}) ∪ {a1, a3, v4} is a stable set, and since {v2} is

anticomplete to (X1 \ {x})∪ {a1, a3, v4}, we have |(X1 \ {x})∪ {a1, a3, v4}| ≤ α(G)− 1, and hence

|X1 ∪ {a1, a3, v4}| ≤ α(G). This proves 2.19.5.

2.19.6 We may assume that both B3 and B4 are non-empty.

Proof of 2.19.6. If one of B3 and B4 is empty, then by Lemma 2.16:(iii), |B3 ∪B4| ≤ 1, and then

by 2.19.5 and Lemma 2.16:(iii), |NG(v2)| = |X1 ∪ {a1, a3, v4}|+ |B3 ∪B4|+ |T | ≤ α(G) + 2; so v2

is a nice vertex in G, and we are done. So we may conclude that both B3 and B4 are non-empty.

2.19.7 θ(G[(A2 \ A′
2) ∪X1]) ≤ α(G)− 3.

Proof of 2.19.7. First, since X is anticomplete to B (by Lemma 2.3:(i)), from Lemma 2.16:(i) and

Lemma 2.2:(ii), X1 ∪ B3 ∪ B4 ∪ {v2} is a stable set, and so by 2.19.6, |X1| ≤ α(G) − 3. Now,

if A2 \ A′
2 = {a2}, then from 2.19.4 and Lemma 2.17:(ii), {a2} is not anticomplete to X1, and

hence θ(G[(A2 \ A′
2) ∪ X1]) ≤ |X1| ≤ α(G) − 3. So we may suppose that |A2 \ A′

2| ≥ 2. For

integers r ≥ 2 and k ≥ 2, let X1 := {p1, p2, . . . pr} and A2 \ A′
2 := {q1, q2, . . . , qk}. If r ≥ k,

then by Lemma 2.17:(ii), we may suppose that pjqj ∈ E(G), where j ∈ {1, 2, . . . , k}, and then

θ(G[(A2 \ A′
2) ∪X1]) ≤ |X1| ≤ α(G)− 3; so suppose that r < k. Then again by Lemma 2.17:(ii),

we may suppose that pjqj ∈ E(G), where j ∈ {1, 2, . . . , r}, and hence θ(G[(A2 \ A′
2) ∪X1]) ≤ k =

|A2 \A′
2|. Now since {a3} is anticomplete to A2 \A′

2 (by 2.19.1), (A2 \A′
2)∪ {a1, a3, v4} is a stable

set, and so |A2 \ A′
2| ≤ α(G)− 3. Thus we conclude that θ(G[(A2 \ A′

2) ∪X1]) ≤ α(G)− 3. This

proves 2.19.7.
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2.19.8 θ(G[A′
2 ∪X2 ∪ {a1, a3}]) ≤ 3.

Proof of 2.19.8. To prove the claim, we further partition X2 as follows:

X ′
2 := {x ∈ X2 | xa2 ∈ E(G)},

X ′′
2 := {x ∈ X2 | xa1 ∈ E(G), xa2 /∈ E(G)}, and

X ′′′
2 := {x ∈ X2 | xa1, xa2 /∈ E(G)}.

By Lemma 2.2:(iii), |X ′
2| ≤ 1, and by Lemma 2.17:(ii), |X ′′′

2 | ≤ 1. By Lemma 2.1:(iv), A′
2 ∪X ′′′

2 is

a clique. Since for any x ∈ X ′
2, {x, a2, v2, v3, a3} does not induce a Co-banner, X ′

2∪{a3} is a clique.

Also if there are vertices, say x, x′ ∈ X ′′
2 , then for any b ∈ B4, by Lemma 2.2:(ii), Lemma 2.3:(i),

Lemma 2.6:(i) and Lemma 2.6:(ii), {a2, b, x, a1, x′} induces a P2 + P3; so |X ′′
2 | ≤ 1, and hence

X ′′
2 ∪ {a1} is a clique. So we conclude that θ(G[A′

2 ∪X2 ∪ {a1, a3}]) ≤ 3. This proves 2.19.8.

Now, by 2.19.7 and 2.19.8, we have θ(G[A ∪ X]) ≤ α(G), and so from Lemma 2.16:(v), we

conclude that θ(G) ≤ α(G) + 3. This proves Lemma 2.19.

Lemma 2.20 If Ai ∪ Ai+2 induces a K2,2, for some i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. We may assume that i = 1. By Lemma 2.1:(i), we may suppose that there are vertices, say

p1, p2 ∈ A1 and q1, q2 ∈ A3 such that {p1, p2} is complete to {q1, q2}. Then we claim the following.

2.20.1 A2 ∪ A4 is an empty set.

Proof of 2.20.1. Suppose, up to symmetry, there is a vertex, say a ∈ A2. By Lemma 2.5:(ii), we may

suppose that ap1, aq1 /∈ E(G). Then since {a, v2, p1, q1, p2} does not induce a P2 + P3, ap2 ∈ E(G).

Likewise, aq2 ∈ E(G). But then {a, p2, q2, v3, v4} induces a Co-banner. So A2 = ∅. This proves

2.20.1.

2.20.2 X2 is an empty set.

Proof of 2.20.2. Suppose there is a vertex, say x ∈ X2. By Lemma 2.17:(ii), we may suppose

that xp1, xq1 ∈ E(G). Also by Lemma 2.4:(iii), we may suppose that xp2 ∈ E(G). Then

{p1, v1, p2, q1, x} induces a P2 + P3. So X2 = ∅. This proves 2.20.2.

Now, by 2.20.1 and 2.20.2, |NG(v1)| = |A3 ∪ T ∪ B2 ∪ B3 ∪ {v3}|. Since A3 ∪ T ∪ {v2, v4}
is a stable set (by Lemma 2.1:(i)), |A3 ∪ T | ≤ α(G) − 2. So by Lemma 2.16:(iii), |NG(v1)| =
|A3 ∪ T |+ |B2 ∪B3|+ |{v3}| ≤ (α(G)− 2) + 3 < α(G) + 2. This implies that v1 is a nice vertex in

G, and hence G is a good graph. This proves Lemma 2.20.

Lemma 2.21 If Ai ∪ Ai+2 induces a K1,3, for some i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. We may assume that i = 1. By Lemma 2.1:(i), we may suppose that there are vertices,

say p1 ∈ A1 and q1, q2, q3 ∈ A3 such that {p1} is complete to {q1, q2, q3}. By Lemma 2.20, we may

suppose that G[A1 ∪ A3] is K2,2-free. Then we claim the following.
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2.21.1 A1 \ {p1} is an empty set.

Proof of 2.21.1. If there is a vertex, say p2 ∈ A1 \ {p1}, then by Lemma 2.1:(ii), we may suppose

that p2q1, p2q2 ∈ E(G), and then {p1, p2, q1, q2} induces a K2,2 in G[A1 ∪ A3], a contradiction. So

2.21.1 holds.

2.21.2 {p1} is complete to A2. Likewise, {p1} is complete to A4.

Proof of 2.21.2. If there is a vertex, say a ∈ A2 such that ap1 /∈ E(G), then by Lemma 2.5:(ii), we

may suppose that aq1, aq2 /∈ E(G), and then {a, v2, q1, p1, q2} induces a P2 +P3. So 2.21.2 holds.

2.21.3 |X2| ≤ 1.

Proof of 2.21.3. If there are vertices, say x2, x
′
2 ∈ X2, then by Lemma 2.17:(ii), we may suppose

that p1x2 ∈ E(G) and q1x2, q2x2 ∈ E(G), and then {p1, q1, v3, q2, x2} induces a P2 + P3. So 2.21.3

holds.

From 2.21.2 and Lemma 2.5:(ii), |A2| ≤ 1 and |A4| ≤ 1. So from 2.21.1, 2.21.2, Lemma 2.6:(ii)

and Lemma 2.16:(iii), A1 ∪ A2 ∪ B3 and A4 ∪ B1 are cliques. Also from Lemma 2.16:(iii)

and Lemma 2.16:(iv), B2 ∪ D ∪ {v2, v3} and B4 ∪ {v1, v4} are cliques. So we conclude that

θ(G− (A3 ∪T ∪X1)) ≤ 5, by 2.21.3. Moreover, by Lemma 2.1:(i) and Lemma 2.2:(ii), A3 ∪T ∪X1

induces a bipartite graph, and is anticomplete to {v2, v4}; so θ(G[A3 ∪T ∪X1]) ≤ α(G)− 2. Hence

θ(G) ≤ θ(G[A3 ∪ T ∪X1]) + 5 ≤ α(G) + 3. This proves Lemma 2.21.

Lemma 2.22 For i, j ∈ {1, 2} and i ̸= j, if Ai is not anticomplete to Ai+2 and G[Ai ∪ Ai+2] is

K1,3-free, then θ(G[Ai ∪ Ai+2 ∪Xj]) ≤ 3.

Proof. We will show for i = 1. Suppose there are adjacent vertices, say a1 ∈ A1 and a3 ∈ A3. Now

we partition A1 \ {a1} and A3 \ {a3} as follows:

A′
1 := {a ∈ A1 \ {a1} | aa3 ∈ E(G)},

A′′
1 := {a ∈ A1 \ {a1} | aa3 /∈ E(G)},

A′
3 := {a ∈ A3 \ {a3} | aa1 ∈ E(G)}, and

A′′
3 := {a ∈ A3 \ {a3} | aa1 /∈ E(G)}.

Since G[Ai ∪ Ai+2] is K1,3-free, |A′
1| ≤ 1 and |A′

3| ≤ 1. By Lemma 2.1:(ii), |A′′
1| ≤ 1 and |A′′

3| ≤ 1.

By Lemma 2.1:(ii), |A′′
1| ≤ 1 and |A′′

3| ≤ 1. By Lemma 2.4:(iii), we partition X2 as follows:

X ′
2 := {x ∈ X2 | a1x, a3x ∈ E(G)},

X ′′
2 := {x ∈ X2 | a1x ∈ E(G), a3x /∈ E(G)}, and

X ′′′
2 := {x ∈ X2 | a3x ∈ E(G), a1x /∈ E(G)}.

Now if there are vertices, say x, x′ ∈ X ′
2, then {a1, x, v2, x′, a3} induces a P2 + P3 (by Lemma 2.2:(ii));

so |X ′
2| ≤ 1, and hence X ′

2 ∪ {a1, a3} is a clique. Also by Lemma 2.17:(ii), |X ′′
2 | ≤ 1 and |X ′′′

2 | ≤ 1.
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Moreover, for any x ∈ X ′′
2 and a ∈ A′′

3, since {a, v3, x, a1, v1} does not induce a P2 + P3, A
′′
3 is

complete to X ′′
2 . So by Lemma 2.1:(ii) and Lemma 2.4:(iii), A′

1 ∪ A′′
3 ∪X ′′

2 is a clique. Likewise,

A′′
1 ∪ A′

3 ∪X ′′′
2 is also a clique. Hence θ(G[A1 ∪ A3 ∪X2]) ≤ 3. This proves Lemma 2.22.

Lemma 2.23 If α(G) ≤ 5 and for each i ∈ {1, 2, 3, 4}, G[Ai ∪ Ai+2] is K2,2-free, then θ(G) ≤ 8.

Proof. For each i ∈ {1, 2}, since Xi ∪ {vi+1, vi−1} is a stable set (by Lemma 2.2:(ii)), we have

|Xi| ≤ 3. Also for each i ∈ {1, 2, 3, 4}, since Ai ∪ {vi+1, vi−1, t
∗} is a stable set (by Lemma 2.1:(i))

we have |Ai| ≤ 2. Now for each j ∈ {1, 2}, if θ(G[Aj ∪ Aj+2 ∪ Xj ∪ {vj, vj+2}]) ≤ 3, then by

Lemma 2.16:(v), we have θ(G) ≤ 8. So we assume that θ(G[A1 ∪ A3 ∪X1 ∪ {v1, v3}]) ≥ 4. Also:

2.23.1 We may assume that X1 and X2 are non-empty.

Proof of 2.23.1. Since |A2| ≤ 2 and |A4| ≤ 2, we have θ(G[A2∪A4]) ≤ 2 (by Lemma 2.1:(ii)). Then

by Lemma 2.16:(v) and Lemma 2.22, θ(G) ≤ θ(G[A2∪A4])+θ(G[A1∪A3∪X2])+θ(G[B∪C∪X2]) ≤
2 + 3 + 3 = 8. Hence we may assume that X1 ̸= ∅. Likewise, we may assume X2 ̸= ∅.

By 2.23.1, let x1 ∈ X1 and x2 ∈ X2. Now we will show that θ(G[A2 ∪ A4 ∪X1)] ≤ 2 using a

sequence of claims given below.

2.23.2 A1 and A3 are non-empty.

Proof of 2.23.2. Suppose not. Since |X1| ≤ 3, we may suppose A1 ̸= ∅ and A3 = ∅. Let

a ∈ A1. Since θ(G[A1 ∪ A3 ∪ X1 ∪ {v1, v3}]) ≥ 4, we have |X1| ≥ 2. Let x ∈ X1 \ {x1}.
First suppose that |X1| = 3. Let x′ ∈ X1 \ {x1, x}. Then since X1 ∪ (A1 \ {a}) ∪ {a, v2, v4}
is not a stable set of size 6 (by Lemma 2.1:(i) and Lemma 2.2:(ii)), we may suppose that

ax1 ∈ E(G) and A1\{a} is complete to {x} (by Lemma 2.2:(iii)). Hence θ(G[A1∪X1∪{v1, v3}]) ≤
θ(G[{a, x1, v1}])+θ(G[{x, v3}])+θ(G[(A1\{a})∪{x}]) = 3, a contradiction to our assumption that

θ(G[A1∪A3∪X1∪{v1, v3}]) ≥ 4. So we assume that |X1| = 2 and thus |A1| = 2. Let a′ ∈ A1 \{a}.
Now since {a′, a, x1, x, v2, v4} is not a stable set of size 6, we may suppose ax1 ∈ E(G). Since

θ(G[(A1 \ {a}) ∪ (X1 \ {x}) ∪ {v1, v3}]) ≤ 2, we have θ(G[A1 ∪X1 ∪ {v1, v3}]) ≤ 3, a contradiction

to our assumption that θ(G[A1 ∪ A3 ∪ X1 ∪ {v1, v3}]) ≥ 4. So A1 and A3 are non-empty. This

proves 2.23.2.

2.23.3 Let a ∈ A1 and a′ ∈ A3 be non-adjacent vertices. Then NG(a) ∩X1 = NG(a
′) ∩X1 and

|X1| ≤ 2. Moreover, if |X2| = 2, there is a vertex in X1 which is complete to {a, a′}.

Proof of 2.23.3. Since for any x ∈ NG(a)∩X1, {a, v1, x, v3, a′} does not induce a Co-banner, we have

x ∈ NG(a
′)∩X1; so NG(a)∩X1 ⊆ NG(a

′)∩X1. Also since for any x′ ∈ NG(a
′)∩X1, {a′, v3, x′, v1, a}

does not induce a Co-banner, we have x′ ∈ NG(a) ∩ X1; so NG(a
′) ∩ X1 ⊆ NG(a) ∩ X1. Hence

NG(a) ∩X1 = NG(a
′) ∩X1. Now if |X1| = 3, then G[X1 ∪ {a, a′, v2, v3}] has a stable set of size

6 (by Lemma 2.1:(i), Lemma 2.2:(ii) and Lemma 2.2:(iii)), a contradiction. So |X1| ≤ 2. This

proves the first assertion of 2.23.3. Since X1 ∪ {a, a′, v2, v3} is not a stable set of size 6, there is a

vertex in X1 which is complete to {a, a′}. This proves 2.23.3.
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2.23.4 G[A1 ∪ A3] is P3-free.

Proof of 2.23.4. Suppose not. Let p, q, r ∈ A1 ∪A3 be such that pq, qr ∈ E(G) and pr /∈ E(G). By

Lemma 2.1:(i), we may suppose that p, r ∈ A1 and q ∈ A3. Since for any x ∈ X1, {p, q, r, x, t∗}
does not induce a P2 +P3, every vertex of X1 has a neighbor in {p, q, r}. Thus by Lemma 2.2:(iii),

θ(G[X1 ∪ {p, q, r, v1, v3}]) ≤ 3. So we assume that A3 \ {q} ≠ ∅. Let s ∈ A3 \ {q}. So A3 = {q, s}.
Since G[A1 ∪A3] is K2,2-free, we may suppose that rs ∈ E(G) and ps /∈ E(G) (by Lemma 2.1:(ii)).

So |X1| ≤ 2 (by 2.23.3). Suppose p has a neighbor in X1, say x
′. Then by 2.23.3, sx′ ∈ E(G). Also

X1 \{x′} is either complete to {q} or {r} (by Lemma 2.2:(iii)). If X1 \{x′} is complete to {q}, then
{p, x′, v1}, (X1\{x′})∪{q, v3} and {r, s} are three cliques, otherwise {s, x′, v3}, (X1\{x′})∪{r, v1}
and {p, q} are three cliques; so θ(G[A1∪A3∪X1∪{v1, v3}]) ≤ 3, a contradiction to our assumption

that θ(G[A1 ∪A3 ∪X1 ∪{v1, v3}]) ≥ 4. So we assume that {p} is anticomplete to X1. So by 2.23.3,

X1 = {x1} and {s} is anticomplete to X1. Now if qx1 ∈ E(G), then {p, v1}, {q, v3, x1} and {r, s}
are three cliques, otherwise {p, q}, {r, v1, x1} and {s, v3} are three cliques, a contradiction to our

assumption that θ(G[A1 ∪A3 ∪X1 ∪ {v1, v3}]) ≥ 4. So G[A1 ∪A3] is P3-free. This proves 2.23.4.

2.23.5 G[A1 ∪ A3] induces a 2P2.

Proof of 2.23.5. Suppose not. Then by 2.23.2 and 2.23.4, Lemma 2.1:(i) and Lemma 2.1:(ii),

we may suppose that G[A1 ∪ A3] is isomorphic to one of 2K1, P2 and K1 + K2. Suppose that

A1 is not complete to A3. Let p ∈ A1 and q ∈ A3 be non-adjacent vertices. We may assume

that A1 \ {p} = ∅. Since A3 \ {q} is complete to {p} (by Lemma 2.1:(ii)), we may suppose that

|X1| = 2 (by 2.23.3). Let x′ ∈ X1 \ {x1}. By 2.23.3, we may suppose that px′, qx′ ∈ E(G). Now

{q, x′, v3}, {x1, v1} and (A3 \ {q}) ∪ {p} are three cliques, a contradiction to our assumption that

θ(G[A1 ∪ A3 ∪X1 ∪ {v1, v3}]) ≥ 4. So we assume that A1 is complete to A3. Hence G[A1 ∪ A3] is

isomorphic to P2. So |X1| = 3. Since θ(G[A1∪A3∪X1∪{v2, v4}]) ≥ 4, either A1 is anticomplete to

X1 or A3 is anticomplete to X1. We may assume A1 is anticomplete to X1. Then A1∪X1∪{v2, v4}
is a stable set of size 6 (by Lemma 2.1:(i) and Lemma 2.2:(ii)]), a contradiction. This proves

2.23.5.

So by 2.23.5, we may suppose that there are vertices, say p1, p2 ∈ A1 and q1, q2 ∈ A3 such that

p1q1, p2q2 ∈ E(G) and p1q2, p2q1 /∈ E(G). Next we claim the following:

2.23.6 |X1| = 1. Moreover, X1 is anticomplete to A1 ∪ A3.

Proof of 2.23.6. First we will show that |X1| = 1. Suppose not, by 2.23.3, we may suppose that

{x} = X1 \ {x1}. Then by 2.23.3, we may suppose that p1x1 ∈ E(G). Since {b∗, v2, p1, x1, p2} does

not induce a P2 + P3 (by Lemma 2.1:(i), Lemma 2.3:(i) and Lemma 2.6:(i)), we have p2x1 /∈ E(G).

Then by 2.23.3, we have p2x, q1x ∈ E(G). Then A1 ∪ A3 ∪X1 ∪ {v1, v3} can be partitioned into

three cliques, namely {p1, x1, v1}, {q1, x, v3} and {p2, q2}, a contradiction to our assumption that

θ(G[A1 ∪ A3 ∪X1 ∪ {v1, v3}]) ≥ 4. So |X1| = 1. This proves the first assertion of 2.23.6. Now if
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X1 is not anticomplete to A1 ∪ A3, then we may suppose that p1x1 ∈ E(G) and as in the first

assertion we partition A1 ∪A3 ∪X1 ∪ {v1, v3} into three cliques, a contradiction to our assumption

that θ(G[A1 ∪ A3 ∪X1 ∪ {v1, v3}]) ≥ 4. This proves 2.23.6.

Now if A2 ∪ A4 is complete to X1, then θ(G[A2 ∪ A4 ∪ X1]) ≤ 2 (by Lemma 2.1:(ii) and

2.23.6). So we assume that there is a vertex in A2, say a2 such that a2x1 /∈ E(G). Then

a2p1, a2p2, a2q1, a2q2 /∈ E(G) (by Lemma 2.1:(iv) and 2.23.6). Next we claim the following:

2.23.7 A2 \ {a2} is an empty set. Moreover, {a2} is complete to A4.

Proof of 2.23.7. First we will show that A2 \ {a2} = ∅. Suppose to the contrary there is a vertex in

A2 \{a2}, say a. By Lemma 2.5:(ii), we may suppose that ap1 /∈ E(G). Since {a, p1, q2, v3, v4} does

not induce a P2 + P3, we have aq2 /∈ E(G). Then {a, a2, p1, q2, v4, t∗} is a stable set of size 6 (by

Lemma 2.1:(i)), a contradiction. So we have A2 \ {a2} = ∅. This proves the first assertion of 2.23.7.

Now suppose to the contrary that a2 has a non-neighbor in A4, say a4. Since {a2, v2, p1, a4, v4} does

not induce a P2 + P3, we have a4p1 /∈ E(G). Similarly, a4p2 /∈ E(G). Then {a2, a4, p1, p2, v3, t∗} is

a stable set of size 6 (by Lemma 2.1:(i)), a contradiction. So {a2} is complete to A4. This proves

2.23.7.

So by 2.23.7 and Lemma 2.4:(iii), we have A4 is complete to X1. Thus θ(G[A2 ∪A4 ∪X1]) ≤ 2.

Now θ(G) ≤ θ(G[A1 ∪A3 ∪X2]) + θ(G[A2 ∪A4 ∪X1]) + θ(G[B ∪C ∪D ∪ T ]) ≤ 2 + 3 + 3 = 8 (by

Lemma 2.22 and Lemma 2.16:(v)). This proves Lemma 2.23.

Lemma 2.24 If Ai is not anticomplete to Ai+2, for some i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. We may assume that i = 1, and there are adjacent vertices, say a1 ∈ A1 and a3 ∈ A3.

By Lemma 2.21, |A′
1| ≤ 1 and |A′

3| ≤ 1. By Lemma 2.1:(ii), |A′′
1| ≤ 1 and |A′′

3| ≤ 1. Also

by Lemma 2.20 and Lemma 2.21, we may suppose that for each j ∈ {1, 2}, G[Aj ∪ Aj+2] is

(K1,3, K2,2)-free. So by Lemma 2.23, if α(G) = 5, then θ(G) ≤ 8 = α(G) + 3; hence G is a good

graph. So we assume that either α(G) ≥ 6 or α(G) ≤ 4. Now we claim the following:

2.24.1 θ(G[A2 ∪ A4 ∪X1]) ≤ 3.

Proof of 2.24.1. We may assume that A2 is anticomplete to A4 (by Lemma 2.22). We partition X1

as follows:
X ′

1 := {x ∈ X1 | a1x ∈ E(G)},
X ′′

1 := {x ∈ X1 | a1x /∈ E(G), a3x ∈ E(G)}, and
X ′′′

1 := {x ∈ X1 | a1x, a3x /∈ E(G)}.

By Lemma 2.2:(iii), |X ′
1| ≤ 1 and |X ′′

1 | ≤ 1. If there are vertices, say x, x′ ∈ X ′′′
1 , then

{a1, a3, x, t∗, x′} induces a P2 + P3 (by Lemma 2.2:(ii) and Lemma 2.17:(i)); so |X ′′′
1 | ≤ 1. Hence

|X1| ≤ 3. If A2, A4 ̸= ∅, then by Lemma 2.1:(ii), we have |A2| ≤ 1 and |A4| ≤ 1, and so by

Lemma 2.17:(ii), θ(G[A2 ∪A4 ∪X1]) ≤ 3, and we are done. If A4 = ∅ (up to symmetry), then from
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Lemma 2.4:(i) and Lemma 2.5:(ii), |A2| ≤ 3, and again by Lemma 2.17:(ii), θ(G[A2∪A4∪X1]) ≤ 3.

This proves 2.24.1.

Now from Lemma 2.16:(v), Lemma 2.22 and 2.24.1, θ(G) ≤ 9. If α(G) ≥ 6, then θ(G) ≤ α(G)+3.

So it is enough to prove the lemma for α(G) ≤ 4 . Since T ∪ {a1, v2, v4} is a stable set of size 4 (by

Lemma 2.1:(i) and since T ̸= ∅), α(G) ≥ 4. Recall that X1 ∪ {v2, v4} and X2 ∪ {v1, v3} are stable

sets (by Lemma 2.2:(ii)), and Ai ∪ T ∪ {vi+1, vi−1} is a stable set, for each i (by Lemma 2.1:(i)).

So we may assume that α(G) = 4. Since α(G) = 4, clearly |X1| ≤ 2, |X2| ≤ 2, and |Ai| ≤ 1

for each i. For j ∈ {1, 2}, if there are non-adjacent vertices a ∈ Aj and a′ ∈ Aj+2, then since

T ∪ {a, a′, vj+1, vj−1} is a stable set of size of at least 5 (by Lemma 2.1:(i)), Aj is complete to

Aj+2. Then from Lemma 2.4:(iii), θ(G[A1 ∪ A3 ∪X2]) ≤ 2 and θ(G[A2 ∪ A4 ∪X1]) ≤ 2. So by

Lemma 2.16:(v), we conclude that θ(G) ≤ 7 = α(G) + 3. Hence G is a good graph. This proves

Lemma 2.24.

Lemma 2.25 If G is a (P2 + P3, P2 + P3, K2 +K3, Co-banner, H2)-free graph that contains an

H3, then G is a good graph.

Proof. Let G be a (P2 + P3, P2 + P3, K2 +K3, Co-banner, H2)-free graph that contains an H3.

We may assume that G does not have twins or a universal vertex. Suppose that G contains an H3

with vertices and edges as shown in Figure 9. Let C := {v1, v2, v3, v4} and we partition V (G) \ C
as in Section 2.2. We split the proof into two cases depending on edges between Ai and Ai+2,

where i ∈ {1, 2, 3, 4}, and the lemma follows from Lemma 2.19 and Lemma 2.24.

Theorem 2.26 If G is a (P2 + P3, P2 + P3, K2,3, banner, H2)-free graph that contains an H3,

then G is a good graph.

Proof. The proof follows from Lemma 2.25.

2.5 (P2 + P3, P2 + P3, K2,3)-free graphs that contain a C4

We start with the following. Let G be a (P2 + P3, P2 + P3, K2,3, banner, H2, H3)-free graph which

does not have twins or a universal vertex. Suppose that G contains a C4, say with vertex-set

C := {v1, v2, v3, v4} and edge-set {v1v2, v2v3, v3v4, v4v1}. We partition V (G) \ C as in Section 2.2,

and we use the lemmas in Section 2.2. Clearly since G is K2,3-free, X = ∅, and since G is banner-

free, A = ∅. Moreover, the graph G has some more properties which we give in Lemmas 2.27

to 2.29 below.

Lemma 2.27 For i ∈ {1, 2, 3, 4}, the following hold:

(i) Bi is complete to Bi+1 ∪Bi−1.

(ii) If Bi+1 ̸= ∅, then Bi is a clique.

Proof. (i): If there are non-adjacent vertices, say b ∈ Bi and b′ ∈ Bi+1 ∪ Bi−1, then C ∪ {b, b′}
induces an H3. So Lemma 2.27:(i) holds.
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(ii): If there are non-adjacent vertices in Bi, say b and b
′, then for any b′′ ∈ Bi+1, by Lemma 2.27:(i),

{b, vi, b′, b′′, vi−1} induces a banner. So Lemma 2.27:(ii) holds.

Lemma 2.28 If Bi and Bi+2 are empty, for some i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. We may assume that B2∪B4 = ∅. If B1 is anticomplete to B3, then we define S1 := {v1, v3},
S2 := {v2} and S3 := T ∪ {v4}. Then by Lemma 2.1:(i), clearly S1, S2 and S3 are stable sets such

that ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2, and G is a nice graph. So we may suppose that, there are

adjacent vertices, say b1 ∈ B1 and b3 ∈ B3. Now we claim the following:

2.28.1 B1 is a clique. Likewise, B3 is a clique.

Proof of 2.28.1. Suppose to the contrary that there are non-adjacent vertices, say b, b′ ∈ B1.

If b, b′ ̸= b1, then by Lemma 2.1:(v), {b3, v4, b, v2, b′} induces a P2 + P3, and if b = b1, then

{b1, b3, v4, v1, b′} induces a banner or a K2,3; so we conclude that B1 is a clique. Likewise, B3 is a

clique. This proves 2.28.1.

Now if D = ∅, then by Lemma 2.1:(v), G[B1 ∪B3 ∪ C] is the complement of a bipartite graph,

and then by Lemma 2.1:(i), we have χ(G) ≤ ω(G) + 3 and we are done; so D ̸= ∅. If there is a

vertex, say d ∈ D such that {d} is complete to either B1 or B3, then we let S1 := {d}, otherwise
let S1 be a maximum stable set in G[B1 ∪B3 ∪D] such that D ∩ S1 ̸= ∅ and (B1 ∪B3) ∩ S1 ̸= ∅.
Let S2 := T ∪ {v1, v3} and S3 := {v2, v4}. Then S1, S2 and S3 are stable sets. Next we claim the

following:

2.28.2 For any maximum clique Q in G− (S1 ∪ S2 ∪ S3), we have |Q| ≤ ω(G)− 2.

Proof of 2.28.2. Suppose not, and let K be a maximum clique in G − (S1 ∪ S2 ∪ S3) such that

|K| ≥ ω(G)− 1. Since {v1, v2} is complete to B1 ∪D, and {v3, v4} is complete to B3 ∪D, we may

assume that, K ∩B1, K ∩B3 ̸= ∅. By Lemma 2.1:(v), we let K ∩B1 := {b′1} and K ∩B3 := {b′3}. If
D∩S1 is not anticomplete to K, then for any d′ ∈ (D∩S1)∩N(b′1), clearly (K \ {b′3})∪{d′, v1, v2}
is a clique of size at least ω(G) + 1 (by Lemma 2.2:(i)), a contradiction; so D ∩ S1 is anticomplete

to K. Moreover, if B1 ∩ S1 = ∅, then by Lemma 2.1:(v), S1 ∪ {b′1} is a stable set which contradicts

the choice of S1; so B1 ∩ S1 ̸= ∅. Likewise, B3 ∩ S1 ≠ ∅. Then for any p ∈ B1 ∩ S1, q ∈ B3 ∩ S1

and r ∈ D ∩ S1, {q, b′3, p, v1, r} induces a P2 +P3 (by Lemma 2.1:(v)), a contradiction. This proves

2.28.2.

So by 2.28.2, ω(G−(S1∪S2∪S3)) ≤ ω(G)−2, andG is a nice graph. This proves Lemma 2.28.

Lemma 2.29 If Bi is complete to Bi+2, for each i ∈ {1, 2, 3, 4}, then G is a good graph.

Proof. Since N(vi) = Bi ∪ Bi−1 ∪ D ∪ {vi+1, vi−1}, and since vi and vi+2 are not twins, we may

suppose that B1 and B3 are non-empty. Then by Lemma 2.1:(v), |B1| = 1 and |B3| = 1. By

Lemma 2.28, we may suppose that B2 ̸= ∅. So by Lemma 2.27:(ii), we may suppose that Bi is a
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clique, for each i. First suppose that B4 ̸= ∅. So again by Lemma 2.1:(v), |Bi| = 1, for each i. For

i ∈ {1, 2, 3, 4}, we define Wi := Bi ∪ {vi+2} and W5 := T . Then clearly Wi’s are stable sets, and

hence χ(G) ≤ ω(G) + 3 (by Lemma 2.3:(ii)), and we are done. So we may conclude that B4 = ∅,
and we define S1 := B1 ∪ {v3}, S2 := B3 ∪ {v1} and S3 := T ∪ {v2, v4}. Then S1, S2 and S3 are

three stable sets. Now if there is a clique, say Q ∈ G− (S1 ∪ S2 ∪ S3) such that |Q| > ω(G)− 2,

then Q ∩ (B2 ∪ D) ̸= ∅, and then Q ∪ {v2, v3} is a clique of size ω(G) + 1, a contradiction. So

ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2, and hence G is a nice graph. This proves Lemma 2.29.

Now we prove the main result of this section, and is given below.

Theorem 2.30 If G is a (P2 + P3, P2 + P3, K2,3)-free graph that contains a C4, then G is a good

graph.

Proof. Let G be a (P2 + P3, P2 + P3, K2,3)-free graph. Suppose that G contains a C4, say with

vertex-set C := {v1, v2, v3, v4} and edge-set {v1v2, v2v3, v3v4, v4v1}. We partition V (G) \ C as

in Section 2.2, and we use the lemmas in Section 2.2. By Theorem 2.13, Theorem 2.14 and

Theorem 2.26, we may suppose that G is (banner, H2, H3)-free. As earlier, since G is K2,3-free,

X = ∅, and since G is banner-free, A = ∅. Also T is a stable set (by Lemma 2.1:(i)). We may

assume that G does not have twins or a universal vertex, and we use Lemmas 2.27 to 2.29. Recall

that, by Lemma 2.27:(i), for each i ∈ {1, 2, 3, 4}, Bi is complete to Bi+1. By Lemmas 2.28 and 2.29,

we may suppose that there are vertices b1 ∈ B1, b2 ∈ B2 and b3 ∈ B3 such that b1b2, b2b3 ∈ E(G)

and b1b3 /∈ E(G). Then by Lemma 2.27:(ii), for each i ∈ {1, 2, 3, 4}, Bi is a clique. If D = ∅, then
since B1 ∪ B2 ∪ {v2} and B3 ∪ B4 ∪ {v4} are cliques, B ∪ {v2, v4} induces the complement of a

bipartite graph, and hence χ(G) ≤ χ(G[B ∪ {v2, v4}]) +χ(G[T ∪ {v1, v3}]) ≤ ω(G) + 1. So we may

suppose that D ̸= ∅, and we claim the following:

2.30.1 Any vertex in D which is complete to {b1, b3}, is complete to B2 ∪B4. Also any vertex in

D which is anticomplete to {b1, b3}, is anticomplete to B2 ∪B4.

Proof of 2.30.1. Let d ∈ D. If db1, db3 ∈ E(G), and there is a vertex b ∈ B2 (up to symmetry)

such that db /∈ E(G), then {b1, b, v3, d, b3} induces a P2 + P3. If db1, db3 /∈ E(G), and there is a

vertex b′ ∈ B2 (up to symmetry) such that db′ ∈ E(G), then {b1, b′, d, v1, b3} induces a banner.

This proves 2.30.1.

Let B′ := {b1, b2, b3}. To proceed further, we let:

D1 := {d ∈ D | N(d) ∩B′ = {b1}}, D′
1 := {d ∈ D | N(d) ∩B′ = {b3}},

D2 := {d ∈ D | N(d) ∩B′ = {b1, b2}}, D′
2 := {d ∈ D | N(d) ∩B′ = {b2, b3}},

D3 := {d ∈ D | N(d) ∩B′ = B′}, and D′
3 := {d ∈ D | N(d) ∩B′ = ∅}.

Then by 2.30.1, D =
3∪

j=1
Dj ∪D′

j and by Lemma 2.1:(iii), D1, D
′
1, D2, D

′
2 and D3 are cliques.

Moreover:

2.30.2 D1 ∪D′
2 is a stable set. Likewise, D2 ∪D′

1 is a stable set.
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Proof of 2.30.2. If there are vertices, say d, d′ ∈ D1, then {b1, b2, v3, d, d′} induces a P2 + P3; so

|D1| ≤ 1. By using a similar argument, we conclude that |D′
2| ≤ 1. If there are adjacent vertices,

say d ∈ D1 and d′ ∈ D′
2, then {b1, d, d′, b2, v1} induces a P2 + P3. So D1 ∪ D′

2 is a stable set.

Likewise, D2 ∪D′
1 is also a stable set. This proves 2.30.2.

2.30.3 |D′
3| ≤ 1.

Proof of 2.30.3. If there are vertices, say d, d′ ∈ D′
3, then since {d, d′, b1, b2, b3} does not induce

a P2 + P3, we have d1d2 /∈ E(G), and then {b1, b2, d, v4, d′} induces a P2 + P3; so |D′
3| ≤ 1. This

proves 2.30.3 .

Now we prove the theorem in three cases as follows:

Case 1 Suppose that the set D1 ∪D′
1 is non-empty.

We may assume, up to symmetry, that there is a vertex, say d ∈ D1. Then:

2.30.4 |B2| ≤ 2 and |B4| ≤ 2. Moreover, χ(G[B2 ∪B4]) ≤ 2.

Proof of 2.30.4. If there are vertices, say b, b′ ∈ B2 \ {b2}, then since {b, b3, v4, d, b′} does not induce

a P2 + P3, we may suppose that bd /∈ E(G), and then {b1, b2, v3, d, b} induces a P2 + P3; so |B2| ≤ 2.

If there are vertices, say p, q, r ∈ B4, then since {b3, v3, d, p, q} does not induce a P2 + P3, we may

suppose that pd /∈ E(G), and then we get a similar contradiction as in the proof for |B2| ≤ 2. So

|B4| ≤ 2. This proves the first assertion. The second assertion follows from the first assertion and

from Lemma 2.1:(v). This proves 2.30.4.

Case 1.1 Suppose that the set B1 \ {b1} is non-empty.

Then we have the following claim:

2.30.5 χ(G[B1 ∪ B3 ∪ D3 ∪ D′
3]) ≤ ω(G) − |B2| − 1. Likewise, χ(G[B1 ∪ B3 ∪ D3 ∪ D′

3]) ≤
ω(G)− |B4| − 1.

Proof of 2.30.5. For any b ∈ (B1 \ {b1}) ∪ (B3 \ N(b1)), since {b1, b2, v3, d, b} does not induce a

P2 + P3, {d} is anticomplete to (B1 \ {b1}) ∪ (B3 \N(b1)). Now if there are non-adjacent vertices,

say b′ ∈ B1 \ {b1} and b′′ ∈ B3 \ N(b1), then {b1, b2, v3, d, b′, b′′} induces an H3; so B1 \ {b1} is

complete to B3 \ N(b1). Then since b3 ∈ B3 \ N(b1), by Lemma 2.1:(v), |B1 \ {b1}| = 1 (so

|B1| = 2), and B3 \ N(b1) = {b3}. Hence D3 is complete to B1 \ {b1} (by Lemma 2.2:(i)),

and so D3 ∪ B1 ∪ B2 ∪ {v2} is a clique (by 2.30.1). By 2.30.3, D′
3 ∪ {b1, b3} is a stable set.

By Lemma 2.1:(v), (B1 \ {b1}) ∪ (B3 \ {b3}) is a stable set. These conclusions imply that

χ(G[B1 ∪ B3 ∪ D3 ∪ D′
3]) ≤ ω(G[D3]) + χ(G[D′

3 ∪ {b1, b3}]) + χ(G[(B1 \ {b1}) ∪ (B3 \ {b3})]) =
(ω(G[D3∪B1∪B2∪{v2}])−|B1|− |B2|−1)+2 ≤ ω(G)−2−|B2|+1 = ω(G)−|B2|−1. Likewise,

χ(G[B1 ∪B3 ∪D3]) ≤ ω(G)− |B4| − 1. This proves 2.30.5.

By 2.30.2, χ(G[D1 ∪D′
1 ∪D2 ∪D′

2]) ≤ 2. So by 2.30.5, χ(G[B1 ∪B3 ∪D]) ≤ ω(G)− |B2|+ 1

and χ(G[B1 ∪ B3 ∪D]) ≤ ω(G) − |B4| + 1. Now if |B2| = 1 and |B4| ≤ 1, then since B2 ∪ {v1},
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B4 ∪ {v3} and T ∪ {v2, v4} are stable sets, we conclude that χ(G) ≤ ω(G) + 3. So by 2.30.4, we

may suppose that either |B2| = 2 or |B4| = 2. In any case, χ(G[B1 ∪B3 ∪D]) ≤ ω(G)− 1. Then

since T ∪ {v2, v4} and {v1, v3} are stable sets, and χ(G[B2 ∪ B4]) ≤ 2 (by 2.30.4), we see that

χ(G) ≤ ω(G) + 3.

Case 1.2 Suppose that the set B1 \ {b1} is empty.

If B3 \ {b3} = ∅, then since {b1, v3}, {b3, v1} and T ∪ {v2, v4} are stable sets, and since

χ(G[B2 ∪B4]) ≤ 2 (by 2.30.4), clearly χ(G) ≤ χ(G−D) + χ(G[D]) ≤ 5 + (ω(G)− 2) = ω(G) + 3

(by Lemma 2.3:(ii). So we may suppose that B3 \ {b3} ≠ ∅. Now if there is a vertex, say d1 ∈ D′
1,

then b3d1 ∈ E(G), b1d1, b2d1 /∈ E(G) and B3 \ {b3} ≠ ∅, and thus this case (up to relabeling) is

similar to Case 1.1, and we proceed in Case 1.1 to complete the proof. So we may assume that

D′
1 = ∅. Also:

2.30.6 We may assume that |B4| ≤ 1.

Proof of 2.30.6. If there are vertices, say b4, b
′
4 ∈ B4, then by Lemma 2.1:(v), we may suppose that

b2b4 /∈ E(G), and then since {b1, b2, b3, b4, d} does not induce a banner, b4d ∈ E(G). Now since

b3d, b2d, b2b4 /∈ E(G) and B4 \ {b4} ≠ ∅, this case (up to relabeling) is similar to Case 1.1, and we

proceed in Case 1.1 to complete the proof. So we may conclude that |B4| ≤ 1.

By 2.30.6 and Lemma 2.1:(i), {b1, v4}, B4 ∪ {v2} and T ∪ {v1, v3} are stable sets. By 2.30.2,

D1 ∪ {b2} is a stable set. By 2.30.1, 2.30.3 and 2.30.4, (B2 \ {b2}) ∪ D′
3 is a stable set. Hence

χ(G[B1∪B2∪B4∪D1∪D′
3]) ≤ 5. SinceD\(D1∪D′

3) is complete to {b2}, D\(D1∪D′
3) is a clique (by

Lemma 2.1:(iii)). Thus G[B3∪ (D\ (D1∪D′
3))] is the complement of a bipartite graph, and hence a

perfect graph. Since {v3, v4} is complete toB3∪(D\(D1∪D′
3)), χ(G[B3∪(D\(D1∪D′

3))]) ≤ ω(G)−2.

Hence χ(G) ≤ ω(G) + 3and so G is a good graph. This proves the theorem in Case 1.

Case 2 Suppose that the set D1 ∪D′
1 is empty and the set D2 ∪D′

2 is non-empty.

We may assume, up to symmetry, that there is a vertex, say d ∈ D2. Then b1d, b2d ∈ E(G),

and b3d /∈ E(G). Also:

2.30.7 We may assume that B2 = {b2}.

Proof of 2.30.7. If there is a vertex, say b′2 ∈ B2 \ {b2}, then since {b2, b3, v4, d, b′2} does not induce

a P2 + P3, b
′
2d /∈ E(G). Now, we see that there is a vertex d ∈ D such that b1d ∈ E(G) and

b′2d, b3d /∈ E(G), and this case (up to relabeling) is similar to Case 1, and we proceed as in Case 1

to complete the proof. So we may conclude that B2 = {b2}.

2.30.8 We may assume B4 is complete to {b2}.

Proof of 2.30.8. Suppose there is a vertex, say b4 ∈ B4 such that b2b4 /∈ E(G). Then since

{b1, b2, b3, b4, d} does not induce a P2 + P3, b4d /∈ E(G). Now, we see that there is a vertex d ∈ D



CHAPTER 2. COLORING (P2 + P3, P2 + P3)-FREE GRAPHS 55

such that b2d ∈ E(G) and b3d, b4d /∈ E(G), and this case (up to relabeling) is similar to Case 1,

and we proceed as in Case 1 to complete the proof. So we may assume B4 is complete to {b2}.

2.30.9 We may assume that B1 ∪B3 is anticomplete to D′
3.

Proof of 2.30.9. Suppose there are adjacent vertices, say b ∈ B1 and d
′ ∈ D′

3. Then by Lemma 2.2:(i),

bb3 /∈ E(G). Now, we see that there is a vertex d′ ∈ D such that bd′ ∈ E(G) and b2d
′, b3d′ /∈ E(G),

and this case (up to relabeling) is similar to Case 1, and we proceed as in Case 1 to complete the

proof. So we may conclude that B1 is anticomplete to D′
3. Likewise, we may assume that B3 is

anticomplete to D′
3. So we may assume that B1 ∪B3 is anticomplete to D′

3.

2.30.10 {d} is complete to (B1 \N(b3)) ∪ (B3 \ {b3}) ∪ (D \ {d}).

Proof of 2.30.10. Suppose there is a vertex, say p ∈ (B1 \N(b3)) ∪ (B3 \ {b3}) ∪ (D \ {d}) such
that pd /∈ E(G). If p ∈ B1 \N(b3), then {p, b2, d, v1, b3} induces a banner. If p ∈ B3 \ {b3}, then
{b2, b3, v4, d, p} induces a P2 + P3. Since {b2} is complete to D \D′

3, by Lemma 2.1:(iii), D \D′
3

is a clique; so {d} is complete to D \D′
3. So we conclude that p ∈ D′

3. But then {d, v1, p, v3, b3}
induces a banner. So 2.30.10 holds.

2.30.11 We may assume that B4 is empty.

Proof of 2.30.11. By Lemma 2.1:(v) and 2.30.8, |B4| = 1. By Lemma 2.2:(i) and 2.30.8, B4

is complete to D \ D′
3. Now we define three stable sets, say W1 := {b2, v4}, W2 := B4 ∪ {v2}

and W3 := T ∪ {v1, v3}. We claim that for any maximum clique Q in G − (W1 ∪ W2 ∪ W3),

|Q| ≤ ω(G) − 2. Suppose not, and let K be a maximum clique in G − (W1 ∪W2 ∪W3) such

that |K| ≥ ω(G) − 1. Since for j ∈ {1, 3}, {vj, vj+1} is complete to Bj ∪ D, we may suppose

that K ∩ B1 ̸= ∅ and K ∩ B3 ̸= ∅. Then by 2.30.9, K ∩D′
3 = ∅. Since B4 ∪ {b2} is complete to

B1 ∪ B3 ∪ (D \D′
3), we see that K ∪ B4 ∪ {b2} is a clique of size ω(G) + 1, a contradiction. So

ω(G− (W1 ∪W2 ∪W3) ≤ ω(G)− 2, and hence G is a nice graph. So we may assume that B4 = ∅.

Now we define three stable sets, say S1 := {b3, d}, S2 := {b2, v1}, and S3 := T ∪ {v2, v4}, and
we claim the following:

2.30.12 For any maximum clique Q in G− (S1 ∪ S2 ∪ S3), we have |Q| ≤ ω(G)− 2.

Proof of 2.30.12. Suppose not, and let K be a maximum clique in G− (S1 ∪ S2 ∪ S3) such that

|K| ≥ ω(G)− 1. If K ∩B1 = ∅, then by 2.30.10, K ∪ {v4, d} is a clique of size at least ω(G) + 1, a

contradiction; so K ∩B1 ̸= ∅. If K ∩B3 ̸= ∅, then K ∩B3 is complete to {d} (by 2.30.10), K ∩B1

is complete to {d} (by Lemma 2.2:(i)), and then K ∪ {b2, d} is a clique of size at least ω(G) + 1,

a contradiction; so K ∩ B3 = ∅. Then |K ∪ {v1, v2}| ≥ ω(G) + 1, a contradiction. This proves

2.30.12.

Hence by 2.30.12, G is a good graph.
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Case 3 Suppose that the set D1 ∪D′
1 ∪D2 ∪D′

2 is empty.

Suppose that there are non-adjacent vertices, say b ∈ B1 and d ∈ D3, then by Lemma 2.1:(v),

bb3 /∈ E(G). Now, we see that there is a vertex d ∈ D such that b2d, b3d ∈ E(G) and bd /∈ E(G),

and this case (up to relabeling) is similar to Case 2, so we proceed as in Case 2 to complete the

proof. So we may assume that B1 is complete to D3. Likewise, we may assume that B3 is complete

to D3. Since B1 ∪B2 and B3 ∪B4 are cliques, G[B] induces the complement of a bipartite graph.

Also by 2.30.1, D3 is complete to B. So G[B ∪ D3] induces a perfect graph. By 2.30.3, since

D′
3, {v2, v4} and T ∪ {v1, v3} are stable sets, we conclude that χ(G) ≤ ω(G) + 3. So G is a good

graph.

2.6 (P2 + P3, P2 + P3)-free graphs that contain a C4

Theorem 2.31 If G is a (P2 + P3, P2 + P3)-free graph that contains a C4, then G is a good graph.

Proof. If G contains a K2,3 then the theorem follows from Theorem 2.7. So we assume that G is

K2,3-free, and then the theorem follows from Theorem 2.30.

2.7 Chromatic bound for (P2 + P3, P2 + P3)-free graphs

In this section, we prove the smallest χ-binding function for the class of (P2 + P3, P2 + P3)-free

graphs. We first prove few lemmas.

Lemma 2.32 If G is a nice graph with ω(G) ≥ 3, then χ(G) ≤
⌊
3
2
ω(G)

⌋
− 1.

Proof. Let G be a nice graph. Then G has three pairwise disjoint stable sets, say S1, S2 and

S3, such that ω(G − (S1 ∪ S2 ∪ S3)) ≤ ω(G) − 2. Let S := S1 ∪ S2 ∪ S3. We prove the lemma

by induction on |V (G)|. Since χ(G) ≤ χ(G − S) + χ(G[S]), by induction hypothesis, χ(G) ≤
(
⌊
3
2
ω(G− S)

⌋
− 1) + 3 ≤ (

⌊
3
2
(ω(G)− 2)

⌋
− 1) + 3 ≤

⌊
3
2
ω(G)

⌋
− 1. This proves Lemma 2.32.

Lemma 2.33 If a graph G has a nice vertex with ω(G) ≥ 3, then χ(G) ≤ ω(G) + 3.

Proof. Suppose that the graph G has a nice vertex, say u. We prove the lemma by induction

on |V (G)|. Now since dG(u) ≤ ω(G) + 2, we can take any χ(G)-coloring of G− u and extend it

to a χ(G)-coloring of G, using for u a color (possibly new) that does not appear in NG(u). So

χ(G) ≤ ω(G) + 3. This proves Lemma 2.33.

Lemma 2.34 If G is a good graph with ω(G) ≥ 3, then χ(G) ≤ max{ω(G) + 3,
⌊
3
2
ω(G)

⌋
− 1}.

Proof. Let G be a good graph. If χ(G) ≤ ω(G) + 3 or if G is a nice graph or if G has a nice

vertex, then the lemma follows from Lemmas 2.32 and 2.33. So we may suppose that either

G has twins or a universal vertex. Now we prove the lemma by induction on |V (G)|. If G

has a universal vertex, say u, then ω(G − u) = ω(G) − 1, and then χ(G) = χ(G − u) + 1 ≤
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max{ω(G− u) + 3,
⌊
3
2
ω(G− u)

⌋
− 1}+ 1 ≤ max{ω(G) + 3,

⌊
3
2
ω(G)

⌋
− 1}, we are done. Finally,

suppose that G has twins, say u and v. Then we may suppose that NG(u) ⊆ NG(v), and so

χ(G) = χ(G− u) and ω(G) = ω(G− u). Now we can take any χ(G)-coloring of G− u and extend

it to a χ(G)-coloring of G, using for u the color of v. This proves Lemma 2.34.

Theorem 2.35 Every (P2+P3, P2 + P3)-free graph G with ω(G) ≥ 3 satisfies χ(G) ≤ max{ω(G)+

3,
⌊
3
2
ω(G)

⌋
− 1}.

Proof. Let G be a (P2 + P3, P2 + P3)-free graph. By Theorem D, if G is C4-free, then χ(G) ≤⌈
5
4
ω(G)

⌉
≤ max{ω(G) + 3,

⌊
3
2
ω(G)

⌋
− 1}. So we may suppose that G contains a C4. Then G is a

good graph (by Theorem 2.31), and then the proof follows from Lemma 2.34.

To prove that the bound given in Theorem 2.35 is tight, we first consider the following (P2 +P3,

P2 + P3)-free graphs, where t ∈ N:

(A) Let L be the 16-regular Schläfli graph on 27 vertices (see Figure 5). Then:

� χ(L) = 9 and ω(L) = 6.

� χ(L) = 6 and ω(L) = 3 (see Figure 6).

� χ(L ∨Kt) = t+ 9 and ω(L ∨Kt) = t+ 6.

� χ(L ∨Kt) = t+ 6 and ω(L ∨Kt) = t+ 3.

(B) Let H be the complement of the Clebsch graph on 16 vertices (see Figure 4). Then:

� χ(H) = 8 and ω(H) = 5 (see Figure 4).

� If H∗ = H − v, for any v ∈ V (H), then χ(H∗) = 8 and ω(H∗) = 5 (see Figure 4).

� χ(H ∨Kt) = t+ 8 and ω(H ∨Kt) = t+ 5.

� χ(H∗ ∨Kt) = t+ 8 and ω(H∗ ∨Kt) = t+ 5.

We refer to Chudnovsky and Seymour [45] for a precise definition of the Schläfli graph and its

properties. It is interesting to note that the set of neighbors of any vertex in the 16-regular Schläfli

graph on 27 vertices induces the complement of the Clebsch graph on 16 vertices. The following

theorem shows that the bound given in Theorem 2.35 is tight.

Theorem 2.36 For every ℓ ∈ N and ℓ ≥ 3, there is a (P2+P3, P2 + P3)-free graph G with ω(G) = ℓ

and χ(G) = max{ℓ+ 3,
⌊
3
2
ℓ
⌋
− 1}.

Proof. Let L be the 16-regular Schläfli graph on 27 vertices, H be the complement of the Clebsch

graph on 16 vertices, and H∗ be the complement of the Clebsch graph on 16 vertices after

deleting a vertex. For ℓ ∈ {3, 4, . . . 9}, consider the graphs G given in Table 2. Clearly each G is

(P2 + P3, P2 + P3)-free with ω(G) = ℓ and χ(G) = ℓ+ 3.
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a1

a2

aℓ

b1

b2

bℓ

s1 s2 sℓ

Q1 Q2

S

Figure 10: Schematic representation of the graph Gℓ. (The vertices in a box form a clique.)

ω(G) = ℓ G χ(G)

3 L 6

4 L ∨K1 7

5 L ∨ P2 or H or H∗ 8

6 L or L ∨K3 or H ∨K1 or H∗ ∨K1 9

ℓ ∈ {7, 8, 9} L ∨Kℓ−6 or L ∨Kℓ−3 or H ∨Kℓ−5 or H∗ ∨Kℓ−5 ℓ+ 3

Table 2: Extremal (P2 + P3, P2 + P3)-free graphs G for ω(G) ∈ {3, 4, . . . 9}.

So we may suppose that ℓ ≥ 10. Consider the graph Gℓ [92] defined as follows (see Figure 10):

◦ V (Gℓ) := Q1 ∪ Q2 ∪ S, where Q1 := {a1, a2, . . . , aℓ−1}, Q2 := {b1, b2, . . . , bℓ−1}, and S :=

{s1, s2, . . . , sℓ−1} are cliques.

◦ For each i ∈ {1, 2, . . . , ℓ− 1}, ai is adjacent to bi, and {ai} is anticomplete to Q2 \ {bi}.
◦ For each i ∈ {1, 2, . . . , ℓ− 1}, {si} is anticomplete to {ai, bi}, and complete to (Q1 ∪Q2) \
{ai, bi}.

◦ No other edges in Gℓ.

It is easy to verify that the graph Gℓ is (P2 + P3, P2 + P3)-free, |V (Gℓ)| = 3ℓ− 3, ω(Gℓ) = ℓ,

and α(Gℓ) = 2; see also [92]. Also by Lemma 4 of [92], we have χ(Gℓ) ≤
⌈
3
2
(ℓ− 1)

⌉
. Moreover,

since χ(Gℓ) ≥ |V (Gℓ)|
α(Gℓ)

and χ(Gℓ) ≤
⌈
3
2
(ℓ− 1)

⌉
, we conclude that χ(Gℓ) =

⌊
3
2
ℓ
⌋
−1. Since for ℓ ≥ 10,

max{ℓ+ 3,
⌊
3
2
ℓ
⌋
− 1} =

⌊
3
2
ℓ
⌋
− 1, the graph Gℓ is our desired graph G.

Theorem 2.37 The function g : N → N defined by g(1) = 1, g(2) = 4, and g(x) = max{x +

3,
⌊
3
2
x
⌋
− 1}, for x ≥ 3, is the smallest χ-binding (or θ-binding) function for the class of (P2 + P3,

P2 + P3)-free graphs.

Proof. The proof follows from Theorem C, Theorem 2.35 and Theorem 2.36.
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2.8 Conclusion

In this chapter, we have obtained the smallest χ-binding function for the class of (P2+P3, P2 + P3)-

free graphs via structure theorems by using some intermediate results which rely on certain special

graphs. This partially answers a long-standing open problem of Gyárfás, namely Problem 2 when

F = P2 + P3. Also, we note that our result generalizes/improves several previously mentioned

known results in literature which are given in Table 3.

Graph Class G χ-bound for G ∈ G References

(2P2, C4)-free graphs ω(G) + 1 [9, 81, 129]

(2P2, paw)-free graphs max{3, ω(G)} [63, 136]

(2P2, K4 − e)-free graphs max{3, ω(G)} [74]

(2P2, P2 + P3)-free graphs ω(G) + 1 [104]

(3K1, C4)-free graphs
⌈
5
4ω(G)

⌉
[34]

(3K1, paw)-free graphs max{3, ω(G)} [63, 136]

(3K1, K4 − e)-free graphs max{3, ω(G)} [74]

(3K1, P2 + P3)-free graphs 2ω(G) [33]

(P2 + P3, C4)-free graphs
⌈
5
4ω(G)

⌉
[31]

(P2 + P3, paw)-free graphs max{4, ω(G)} [136, 145]

(P2 + P3, K4 − e)-free graphs max{6, ω(G)} [76, 105]

Table 3: Known chromatic bounds for some subclasses of (P2 + P3, P2 + P3)-free graphs.



Chapter 3

Coloring (P5, 4-wheel)-free graphs

3.1 Introduction

In this chapter1, we are interested in finding the tight chromatic bound for the class of (P5, 4-wheel)-

free graphs. The class of (P5, 4-wheel)-free graphs generalizes the class of: (2P2, 4-wheel)-free

graphs, (3K1, 4-wheel)-free graphs, (P5,C4)-free graphs, and (P5, K4 − e)-free graphs. Recall that

every (P5, C4)-free graph [32] H satisfies χ(H) ≤
⌈
5
4
ω(H)

⌉
. Choudum, Karthick and Shalu [32]

studied the class of (P5, 4-wheel)-free graphs, and showed a decomposition theorem for such a class

of graphs. As a corollary of that result they proved a linear χ-binding function for the class of

(P5, 4-wheel)-free graphs. Indeed, they showed the following:

Theorem E ([32]) Let G be a connected (P5, 4-wheel)-free graph. Then the vertex-set of G can be

partitioned into two sets, say V1 and V2, such that

(i) G[V1] contains a dominating-C4.

(ii) G[V2] is (P5, C4)-free.

Corollary F ([32]) If G is a (P5, 4-wheel)-free graph, then χ(G) ≤ 5
⌈
5
4
ω(G)

⌉
.

The bound given in Corollary F is clearly not tight. Recall that a graph G is nice if it has three

pairwise disjoint stable sets, say S1, S2 and S3, such that ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2. Here,

we explore the structure of (P5, 4-wheel)-free graphs in detail and prove that if G is a connected

(P5, 4-wheel)-free graph which has no clique cut-set, then either G is a perfect graph, or G is a

quasi-line graph, or G is a nice graph. As a consequence of this result, we prove that every (P5,

4-wheel)-free graph G satisfies χ(G) ≤ 3
2
ω(G). We also provide infinitely many (P5, 4-wheel)-free

graphs H with χ(H) ≥ 10
7
ω(H).

The remainder of this chapter is organized as follows. In Section 3.2, we give some preliminaries.

In Section 3.3, we present some useful structural properties of (P5, 4-wheel)-free graphs that

contain a C5, and in Section 3.4, we prove our main structural decomposition theorem. Finally, in

Section 3.5 we prove our chromatic bound for the class of (P5, 4-wheel)-free graphs.
1The results of this chapter are appearing in “A.Char and T.Karthick. Coloring of (P5, 4-wheel)-free graphs. Discrete

Mathematics (345) 2022. Article no.: 112795. https://doi.org/10.1016/j.disc.2022.112795”
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https://doi.org/10.1016/j.disc.2022.112795
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3.2 Some preliminaries

We say an index i ∈ [k], if i ∈ {1, 2, . . . , k}, i modulo k.

For a vertex subset U of G, let RU denote a maximum stable set of U, if U ̸= ∅, otherwise let

RU := ∅.
Let G be any graph. Suppose X is a subset of V (G) that induces a P3-free graph in G. Then:

◦ Each component of G[X] is a complete subgraph of G, and so the set X can be written as a

disjoint union of (non-empty) cliques; each such clique is a maximal clique of G[X] and we

refer to ‘X-clique’.

◦ We say that a set S ⊆ V (G) \X is complete to exactly one X-clique, if there is an X-clique,

say K, such that S is complete to K, and S is anticomplete to X \K.

◦ Let v ∈ V (G) \ X be any vertex. We say that the vertex v is good with respect to X if it

satisfy the following two conditions: (a) If v has a neighbor in an X-clique, say K, then {v}
is complete to K, and (b) {v} is complete to at least one X-clique.

We use the following simple observations often.

Observation 1 Let G be any P5-free graph. Let A, B1 and B2 be three non-empty, pairwise

disjoint and mutually anticomplete subsets of V (G). Let x and y be two non-adjacent vertices in

V (G) \ (A ∪ B1 ∪ B2) such that x and y have a common neighbor in A, x has a neighbor in B1,

and y has a neighbor in B2. Then x and y must have a common neighbor either in B1 or in B2.

Observation 2 Let G be any 4-wheel-free graph, and let S be a subset of V (G). If there are

non-adjacent vertices, say u and v in V (G) \ S such that {u, v} is complete to S, then S induces a

P3-free graph.

Observation 3 Let G be any graph. Let D1, D2 and D3 be three disjoint non-empty subsets

of V (G) such that each induces a P3-free graph. Suppose that each Di-clique is either complete

or anticomplete to a Dj-clique, where i, j ∈ {1, 2, 3} and i ̸= j. If M is a maximal clique in G

containing vertices from both D1 and D2, then RD1 ∪RD2 meets M twice.

Proof. If M ∩D3 = ∅, then clearly the assertion holds. So we may assume that M ∩D3 ̸= ∅. Then
by our assumption, M is of the form

3∪
i=1

D∗
i , where D

∗
i is a Di-clique. Since RD1 contains a vertex

from D∗
1, and RD2 contains a vertex from D∗

2, we conclude that RD1 ∪RD2 meets M twice. This

proves Observation 3.

Next we prove a structure theorem for a subclass of (P5, 4-wheel)-free graphs, namely the class

of ( 3K1, 4-wheel)-free graphs, and use it later.
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Lemma 3.1 If G is a ( 3K1, 4-wheel)-free graph, then G is either a quasi-line graph or a nice

graph.

Proof. Let G be a (3K1, 4-wheel)-free graph, and let v ∈ V (G) be arbitrary. First suppose that

G[N(v)] is chordal. Since the complement graph of a 3K1-free chordal graph is a (K3, 2P2, C5)-free

graph (which is a bipartite graph), we see that N(v) can be expressed as a union of two cliques.

Hence G is a quasi-line graph, since v is arbitrary. So we may assume that G[N(v)] is not chordal.

Then since G does not contain a 4-wheel, G[N(v)] contains a Ck for some k ≥ 5. Since, for k ≥ 6,

Ck contains a 3K1, G[N(v)] contains a C5, say C. Hence G contains a 5-wheel, induced by the

vertices V (C) ∪ {v}. Then it is shown in [33] that G is a clique expansion of a 5-wheel. More

precisely, V (G) can be partitioned into six non-empty cliques, say A1, A2, . . . , A5 and B such

that for each i ∈ {1, 2, . . . 5}, i mod 5, Ai is complete to Ai+1 ∪ Ai−1 ∪B and is anticomplete to

Ai+2 ∪Ai−2. Now we define S1 := RA1 ∪RA3 , S2 := RA2 ∪RA4 and S3 := RA5 . Then clearly S1, S2

and S3 are three stable sets in G such that ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2, and so G is nice.

This proves Lemma 3.1.

We will also use the following lemma proved by Karthick and Maffray [102].

Lemma 3.2 ([102]) Let G be any graph. Let A and B be two disjoint cliques such that G[A ∪B]

is C4-free. If every vertex in A has a neighbor in B, then some vertex in B is complete to A.

Recall that a graph G is a quasi-line graph if for any vertex v, N(v) can be expressed as a

union of two cliques. Chudnovsky and Seymour [45] proved a structure theorem for the class of

quasi-line graphs. Using this structural result, Chudnovsky and Ovetsky [40] showed the following.

Theorem G ([40]) Every quasi-line graph G satisfies χ(G) ≤ 3
2
ω(G).

While proving our structural decomposition theorem, we have several intermediate graphs;

we give sketches of them (in most cases) for reader’s convenience, and we use the following

representations: The shapes (circles or ovals) represent a collection of sets into which the vertex-set

of the graph is partitioned. The sets inside an oval form a partition of that set. Each shaded

shape represents a non-empty clique, and other shapes induce a P3-free subgraph. A solid line

between any two shapes represents that the respective sets are complete to each other. A dashed

line between any two shapes represents that the adjacency between these sets are arbitrary, but

are restricted with some conditions. The absence of a line between any two shapes represents that

the respective sets are anticomplete to each other.

3.3 Structural properties of (P5, 4-wheel)-free atoms that contain a C5

In this section, we present some important and useful structural properties of (P5, 4-wheel)-free

atoms which contain a C5, and use them in Section 3.4. Let G be a connected (P5, 4-wheel)-

free atom. Suppose that G contains a C5 with vertex-set {v1, v2, v3, v4, v5} and the edge-set
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{v1v2, v2v3, v3v4, v4v5, v5v1}. Then we may assume that there are five non-empty and pairwise

disjoint sets A1, A2, . . . , A5 such that for each i modulo 5 the set Ai is complete to Ai−1 ∪ Ai+1

and anticomplete to Ai−2 ∪ Ai+2 and let vi ∈ Ai. Let A := A1 ∪ · · · ∪ A5. We choose these sets

such that A is maximal. From now on, in Section 3.3, every subscript is understood modulo 5. For

i ∈ [5] we let:

Xi := {x ∈ V (G) \ A | ∀j ∈ {i, i+ 2, i− 2}, N(x) ∩ Aj ̸= ∅ and N(x) ∩ (Ai−1 ∪ Ai+1) = ∅},
Yi := {x ∈ V (G) \ A | ∀j ∈ [5] and j ̸= i, N(x) ∩ Aj ̸= ∅ and N(x) ∩ Ai = ∅},
Z := {x ∈ V (G) \ A | ∀j ∈ [5], N(x) ∩ Aj ̸= ∅}, and
T := {x ∈ V (G) \ A | N(x) ∩ A = ∅}.

Let X := X1 ∪ · · · ∪X5 and Y := Y1 ∪ · · · ∪ Y5. Then we immediately have the following:

Lemma 3.3 V (G) = A ∪X ∪ Y ∪ Z ∪ T .

Proof. Suppose to the contrary that there is a vertex, say p ∈ V (G) \ (A ∪X ∪ Y ∪ Z ∪ T ). Since
p /∈ T , p has a neighbor in A. Then since p /∈ X ∪ Y ∪ Z, up to symmetry, we have two cases.

(1) Suppose p has a neighbor ai ∈ Ai, and anticomplete toAi−1∪Ai−2∪Ai+2. Then {p,ai,vi−1,vi−2,vi+2}
induces a P5, a contradiction.

(2) Suppose p has neighbors ai−1 ∈ Ai−1 and ai+1 ∈ Ai+1, and anticomplete to Ai−2 ∪ Ai+2.

Then {p} is complete to Ai−1 for otherwise for any non-neighbor of p in Ai−1, say bi−1,

{bi−1,vi−2,vi+2,ai+1,p} induces a P5, a contradiction. Likewise, {p} is complete to Ai+1. But

then p can be added to Ai contradicting the maximality of A.

The above contradictions show that Lemma 3.3 holds.

Moreover, we observe that our graph G has several interesting properties which we give in

Lemmas 3.4 to 3.11 below:

Lemma 3.4 The following hold, for each i:

(i) G[Ai] is P3-free. So G[A] is a P3-free expansion of a C5.

(ii) Xi is complete to Ai.

(iii) If K is an Ai+2-clique (or an Ai−2-clique), then any x ∈ Xi which has a neighbor in K is

complete to K. In particular, if Ai+2 is a clique, then Xi is complete to Ai+2. Likewise, if

Ai−2 is a clique, then Xi is complete to Ai−2.

(iv) Each vertex in Xi is good with respect to Ai+2, and Ai−2.

(v) Each vertex in Xi is complete to either Ai+2 or Ai−2.

Proof. (i): If G[Ai] contains a P3 with the vertex-set, say {u1, u2, u3}, then {u1, vi+1, u3, vi−1, u2}
induces a 4-wheel, a contradiction. So Lemma 3.4:(i) holds.

(ii): If there are non-adjacent vertices, say x ∈ Xi and p ∈ Ai, then for any neighbor of x in Ai+2,

say ai+2, we see that {vi−1, p, vi+1, ai+2, x} induces a P5 So Lemma 3.4:(ii) holds.
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(iii): By symmetry, it is enough to prove the assertion for Ai+2. If there is a vertex in Xi, say x

such that {x} is not complete to K, then by our assumption, there are vertices, say a, b in K such

that ab, ax ∈ E(G) and bx /∈ E(G). But then by Lemma 3.4:(ii), {b, a, x, vi, vi−1} induces a P5, a

contradiction. So {x} is complete to K. This proves Lemma 3.4:(iii).

(iv): The proof of Lemma 3.4:(iv) follows from the definition ofXi, Lemma 3.4:(i) and Lemma 3.4:(iii).

(v): Let x ∈ Xi, and suppose that the assertion is not true. Then there are vertices, say p ∈ Ai+2

and q ∈ Ai−2 such that {x} isanticomplete to {p, q}. By the definition of Xi, x has a neighbor in

Ai+2, say r. Then by Lemma 3.4:(i) and Lemma 3.4:(iii), pr /∈ E(G). But then by Lemma 3.4:(ii),

{p, q, r, x, vi} induces a P5, a contradiction. So Lemma 3.4:(v) holds.

Lemma 3.5 The following hold, for each i:

(i) Any two non-adjacent vertices in Xi have a common neighbor in both Ai+2 and Ai−2.

(ii) If Xi has two non-adjacent vertices which are complete to Ai+2 ∪ Ai−2, then Ai+2 ∪ Ai−2 is a

clique.

(iii) If some x ∈ Xi has a neighbor in T , then {x} is complete to Ai−2 ∪ Ai+2.

(iv) G[Xi] is P3-free.

(v) Xi is complete to Xi+1 ∪Xi−1.

Proof. (i): The proof of Lemma 3.5:(i) follows from the definition of Xi, Lemma 3.4:(i) to

Lemma 3.4:(iii), and by Observation 1.

(ii): Suppose there are non-adjacent vertices in Ai+2, say a and a′. Let x and x′ be two non-

adjacent vertices in Xi which are complete to Ai+2 ∪Ai−2. Then for any a′′ ∈ Ai−2, {x, a, x′, a′, a′′}
induces a 4-wheel, a contradiction. So Ai+2 is a clique. Likewise, Ai−2 is a clique. This proves

Lemma 3.5:(ii).

(iii): Let t ∈ T be a neighbor of x. By Lemma 3.4:(ii) and Lemma 3.4:(v), we may assume that

{x} is complete to Ai ∪Ai−2. If x has a non-neighbor in Ai+2, say p, then {p,vi+1,vi,x,t} induces a

P5, a contradiction. So {x} is complete to Ai+2. This proves Lemma 3.5:(iii).

(iv): Suppose to the contrary that G[Xi] induces a P3 with vertex-set, say {a1, a2, a3}. Then

by Lemma 3.4:(v) and by the pigeonhole principle, we may assume that {a1, a2} is complete to

Ai−2. Also by the definition of Xi, a3 has a neighbor in Ai−2, say p. Then by Lemma 3.4:(ii),

{vi, a1, a2, a3, p} induces a 4-wheel, a contradiction. This proves Lemma 3.5:(iv).

(v): Let x ∈ Xi and x
′ ∈ Xi+1, and suppose that x and x′ are non-adjacent. Using the definition of

Xi, pick a neighbor of x′ in Ai−1, say p, and a neighbor of x in Ai+2, say q. Then by Lemma 3.4:(ii),

{p, x′, vi+1, q, x} induces a P5, a contradiction. So Xi is complete to Xi+1. Likewise, Xi is complete

to Xi−1. This proves Lemma 3.5:(v).

Lemma 3.6 Let K be an Xi-clique.

(i) Suppose that there is a vertex, say x ∈ Xi+2 which is anticomplete to K, and Q is an

Ai−2-clique such that N(K) ∩Q ̸= ∅. Then K is complete to Q.
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(ii) Suppose that there is a vertex, say x ∈ Xi−2 which is anticomplete to K, and Q′ is an

Ai+2-clique such that N(K) ∩Q′ ̸= ∅. Then K is complete to Q′.

Proof. We prove Lemma 3.6:(i), and the proof of Lemma 3.6:(ii) is similar. Suppose that the

assertion is not true. Then there are vertices, say p ∈ K and r ∈ Q such that pr /∈ E(G).

By assumption, there is a vertex, say q ∈ K such that q has a neighbor in Q, and hence by

Lemma 3.4:(iii), qr ∈ E(G). Then for any neighbor of x in Ai−1, say a, we see that {p, q, r, a, x}
induces a P5, a contradiction. So Lemma 3.6:(i) holds.

Lemma 3.7 Suppose K is an Xi-clique and K ′ is an Xi+2-clique such that K is complete to K ′.

Then the following hold:

(i) K is anticomplete to Xi+2 \ K ′ (likewise, K ′ is anticomplete to Xi \ K), and Xi \ K is

anticomplete to Xi+2 \K ′.

(ii) K is complete to exactly one Ai+2-clique. Likewise, K
′ is complete to exactly one Ai-clique.

(iii) K is anticomplete to Xi−2. Likewise, K
′ is anticomplete to Xi−1.

Proof. (i): Suppose to the contrary that K is not anticomplete to Xi+2 \ K ′. Then there are

vertices, say u ∈ K, v ∈ K ′ and w ∈ Xi+2 \K ′ such that uv, uw ∈ E(G) and vw /∈ E(G). Then

by Lemma 3.5:(i), v and w have a common neighbor in Ai, say p. But then for any neighbor of

u in Ai+2, say q, by Lemma 3.4:(ii), {p, v, q, w, u} induces a 4-wheel, a contradiction. So K is

anticomplete to Xi+2 \K ′. Likewise, K ′ is anticomplete to Xi \K. This proves the first assertion

of Lemma 3.7:(i).

To prove the second assertion of Lemma 3.7:(i), suppose there are adjacent vertices, say

u′ ∈ Xi \K and v′ ∈ Xi+2 \K ′. Then for any v ∈ K ′, since vv′ /∈ E(G), by Lemma 3.5:(i), v and

v′ have a common neighbor in Ai−1, say p. But then for any u ∈ K, by using the first assertion of

Lemma 3.7:(i), we see that {u, v, p, v′, u′} induces a P5, a contradiction. This proves the second

assertion of Lemma 3.7:(i).

(ii): First we show that each vertex in K is complete to exactly one Ai+2-clique. Suppose not. Then

by Lemma 3.4:(iv), there are vertices, say p ∈ K and a, a′ ∈ Ai+2 such that pa, pa′ ∈ E(G) and

aa′ /∈ E(G). But then for any q ∈ K ′, and for any neighbor of p in Ai−2, say r, by Lemma 3.4:(ii),

{r, a, q, a′, p} induces a 4-wheel, a contradiction. So each vertex in K is complete to exactly one

Ai+2-clique. Now we show that K is complete to exactly one Ai+2-clique. Suppose not. Then by

Lemma 3.4:(iii) and by the earlier argument, there are vertices, say u, v ∈ K and p ∈ Ai+2 such

that up ∈ E(G) and vp /∈ E(G). Then by Lemma 3.4:(v), {v} is complete to Ai−2. But then for

any neighbor of u in Ai−2, say a, and for any q ∈ K ′, by Lemma 3.4:(ii), {a, v, q, p, u} induces a

4-wheel, contradiction. So Lemma 3.7:(ii) holds.

(iii): Let u ∈ K and v ∈ Xi−2, and suppose u and v are adjacent. Let r ∈ K ′. By Lemma 3.5:(v),

v and r are adjacent. Now pick any neighbor of u in Ai+2, say p, and in Ai−2, say q. Then by

Lemma 3.4:(ii), {p, q, v, r, u} induces a 4-wheel, a contradiction. So Lemma 3.7:(iii) holds.
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Lemma 3.8 Let K be an Xi-clique and K ′ be an Xi−1-clique. If Q is an Ai+2-clique such that

N(K) ∩Q ̸= ∅ and N(K ′) ∩Q ̸= ∅, then K ∪K ′ is complete to Q.

Proof. We prove the assertion for i = 1. Suppose that K is not complete to Q. Then there are

vertices p ∈ K and r ∈ Q such that pr /∈ E(G). By assumption, there is a vertex, say q ∈ K such

that q has a neighbor in Q, and so by Lemma 3.4:(iii), qr ∈ E(G). Also by our assumption, there

is a vertex, say w ∈ K ′ such that w has a neighbor in Q, and again by Lemma 3.4:(iii), wr ∈ E(G).

Since {p} is not complete to A3, {p} is complete to A4, and so p and q share a common neighbor in

A4, say x. Then since X1 is complete to X5 (by Lemma 3.5:(v)), we see that {w, r, x, p, q} induces

a 4-wheel, a contradiction. So K is complete to Q. Likewise, K ′ is complete to Q. This proves

Lemma 3.8.

For each i ∈ [5], if Xi ̸= ∅, let Wi be the set {X∗ ∪ A∗ | X∗ is an Xi-clique and A∗ is an

Ai-clique such that |X∗ ∪ A∗| = ω(G)}, otherwise let Wi := ∅. Next we have the following:

Lemma 3.9 Let K be an Xi-clique and K ′ be an Xi+1-clique, and let A∗
i be an Ai-clique and A∗

i+1

be an Ai+1-clique. Suppose that K ∪ A∗
i ∈ Wi and K

′ ∪ A∗
i+1 ∈ Wi+1. Then for any Ai+2-clique

Di−2, K ∪K ′ ∪Di−2 is not a clique.

Proof. By Lemma 3.5:(v), K ∪ K ′ is a clique. Suppose there is an Ai−2-clique, say D, such

that K ∪ K ′ ∪ D is a clique. Let q := ω(G). Then |K ∪ K ′| < q (since D ̸= ∅). Then since

|K ∪ A∗
i | + |K ′ ∪ A∗

i+1| = 2q, we have 2q = |A∗
i ∪ A∗

i+1| + |K ∪K ′| < |A∗
i ∪ A∗

i+1| + q, and hence

|A∗
i ∪ A∗

i+1| > q, which is a contradiction to the fact that A∗
i ∪ A∗

i+1 is a clique. This proves

Lemma 3.9.

Lemma 3.10 The following hold, for each i:

(i) Let Q be the vertex-set of a component of G[T ]. Then each vertex in Xi is either complete or

anticomplete to Q.

(ii) For j ∈ {i− 1, i+ 1}, if Aj is not a clique, then Yi is complete to Aj.

(iii) Each vertex in Yi is complete to either Ai−1 or Ai+1.

(iv) Let Q be the vertex-set of a component of G[T ]. Then each vertex in Yi is either complete or

anticomplete to Q.

(v) If Z = ∅, then G[T ] is P3-free.

Proof. (i): Otherwise, there are adjacent vertices, say q, q′ in Q, and a vertex x ∈ Xi such

that xq ∈ E(G) and xq′ /∈ E(G); but then by Lemma 3.4:(ii), {q′, q, x, vi, vi−1} induces a P5, a

contradiction. So Lemma 3.10:(i) holds.

(ii): We may assume, up to symmetry, that j = i+ 1. Let y ∈ Yi. Then by the definition of Yi, y

has a neighbor in Ai+1, say p. Let K be the Ai+1-clique containing p. Since Ai+1 is not a clique,

Ai+1 \ K ≠ ∅. Now if y is non-adjacent to some q ∈ Ai+1 \ K (say), then for any neighbor of

y in Ai−2, say r, we see that {q, vi, p, y, r} induces a P5, a contradiction; so {y} is complete to
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Ai+1 \K. By the same argument, since Ai+1 \K is non-empty, {y} is complete to K. This proves

Lemma 3.10:(ii), since y is arbitrary.

(iii): Let y ∈ Yi . Suppose y has a non-neighbor in each Ai−1 and Ai+1, say a and a′ respectively.

So by Lemma 3.10:(ii), Ai−1 and Ai+1 are cliques. Now by the definition of Yi, pick any neighbor of

y in each Ai−1 and Ai+1, say b and b
′ respectively. Then {a, b, y, b′, a′} induces a P5, a contradiction.

So Lemma 3.10:(iii) holds.

(iv): Otherwise, there are adjacent vertices, say q and q′ in Q, and a vertex, say y ∈ Yi such that

yq ∈ E(G) and yq′ /∈ E(G); but then for any neighbor of y in Ai+1, say a, we see that {q′, q, y, a, vi}
induces a P5, a contradiction. So Lemma 3.10:(iv) holds.

(v): Suppose that there is a component of G[T ] which has an induced P3 with the vertex-set,

say {t1, t2, t3}, and let Q be the vertex-set of that component. Since G is connected and since

N(Q)∩(X∪Y ) is not a clique cut-set, there are non-adjacent vertices in N(Q)∩(X∪Y ), say u and

v. Then by Lemma 3.10:(i) and Lemma 3.10:(iv), {u, v} is complete to Q; but then {u, t1, v, t3, t2}
induces a 4-wheel, a contradiction. So Lemma 3.10:(v) holds.

So if Z = ∅, then, by Lemma 3.10:(i), Lemma 3.10:(iv) and Lemma 3.10:(v), each vertex in

X ∪ Y is either anticomplete to T or good with respect to T .

Lemma 3.11 Suppose there are vertices, say t ∈ T , u ∈ Xi and v ∈ Xi−2∪Xi+2∪Yi∪Yi+1∪Yi−1∪Z
such that ut ∈ E(G) and uv /∈ E(G). Let K be the Xi-clique containing u. Then the following

hold:

(i) t is adjacent to v.

(ii) If {v} is anticomplete to K, then {t} is complete to K. Moreover, if T ∗ is the component of

T containing t, then T ∗ is complete to K.

Proof. First note that v has a neighbor in one of Ai−1, Ai+1. We may assume, up to symmetry,

that v has a neighbor in Ai−1, say p. So v /∈ Xi−2 ∪ Yi−1.

(i): Suppose t is non-adjacent to v. If v is non-adjacent to some vertex in Ai, say q, then, by

Lemma 3.4:(ii), {v, p, q, u, t} induces a P5, a contradiction; so {v} is complete to Ai. Thus v /∈ Yi,

and so v ∈ Xi+2 ∪ Yi+1 ∪ Z. Then since ut ∈ E(G), by Lemma 3.5:(iii), {u} is complete to Ai+2,

and so u and v have a common neighbor in Ai+2, say r. But then {t, u, r, v, p} induces a P5, a

contradiction. So Lemma 3.11:(i) holds.

(ii): If there is a vertex, say u′ ∈ K such that u′t /∈ E(G), then by Lemma 3.11:(i), {u′, u, t, v, p}
induces a P5, a contradiction. So the first assertion of Lemma 3.11:(ii) holds. The second assertion

of Lemma 3.11:(i) follows from Lemma 3.10:(i).
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3.4 Structure of (P5, 4-wheel)-free atoms

While proving our structure decomposition theorem, in most cases we show that our graph G is

nice, and to do the same it is enough to find three stable sets S1, S2, and S3 such that S1 ∪ S2 ∪ S3

meets each maximum clique of G at least twice, and meet other maximal cliques of G at least once.

3.4.1 Structure of (P5, 4-wheel)-free atoms that contain a 5-wheel

Let G be a connected (P5, 4-wheel)-free atom which contains a 5-wheel, say with the 5-cycle with

vertex-set {v1, v2, v3, v4, v5} and the edge-set {v1v2, v2v3, v3v4, v4v5, v5v1} plus a vertex z∗ that is

adjacent to vi, for all i ∈ [5]. Then we define the sets A, X, Y , Z and T as in Section 3.3 with

vi ∈ Ai for each i ∈ [5], and we use the lemmas in Section 3.3. Note that z∗ ∈ Z. Moreover, the

graph G has some more structural properties, and are given in Lemmas 3.12 to 3.14 below.

Lemma 3.12 The following hold, for each i:

(i) Let K be an Ai-clique. If a vertex in Z has a neighbor in K, then it is complete to K and

anticomplete to Ai \K. More precisely, each vertex in Z is complete to exactly one Ai-clique.

(ii) There is an index j ∈ [5] such that Aj, Aj−2 and Aj+2 are cliques.

(iii) Z is a clique.

(iv) There is an Ai-clique, say A
∗
i , such that Z is complete to A∗

i and anticomplete to Ai \ A∗
i .

(v) RAi+2
∪RAi−2

meets each maximal clique of G in G[Z ∪ Ai+2 ∪ Ai−2] twice.

Proof. (i): Let z ∈ Z, and suppose z has a neighbor in K, say p. Pick a neighbor of z in each Ai+1

and Ai−1, say a and a′ respectively. If there is a vertex, say q ∈ K which is non-adjacent to z, then

since K is a clique, pq ∈ E(G), and then {a, z, a′, q, p} induces a 4-wheel, a contradiction; so {z}
is complete to K. Next if there is a vertex, say r ∈ Ai \K which is adjacent to z, then clearly

pr /∈ E(G), and then {p, a, r, a′, z} induces a 4-wheel, a contradiction; so {z} is anticomplete to

Ai \K. This proves Lemma 3.12:(i).

(ii): We first show that, for i ∈ [5], each vertex in Z is complete to either Ai or Ai+1. Suppose not.

Then there are vertices, say b ∈ Ai and b
′ ∈ Ai+1 such that zb, zb′ /∈ E(G). Now pick a neighbor of

z in each Ai and Ai−2, say a and a′, respectively. Then by Lemma 3.12:(i), ab /∈ E(G); but then

{b, b′, a, z, a′} induces a P5, a contradiction. So each vertex in Z is complete to either Ai or Ai+1.

Then for i ∈ [5], since z∗ ∈ Z is complete to exactly one Ai-clique (by Lemma 3.12:(i)), we see

that either Ai or Ai+1 is a clique, and so Lemma 3.12:(ii) holds.

(iii): Suppose there are non-adjacent vertices, say z1 and z2 in Z. Then by Lemma 3.12:(ii), we

may assume that A1 and A3 are cliques. So by Lemma 3.12:(i), {z1, z2} is complete to A1 ∪ A3.

Also, by the definition of Z, Observation 1 and by Lemma 3.12:(i), it follows that z1 and z2 have

a common neighbor in A2, say p. Then {v1, z1, v3, z2, p} induces a 4-wheel, a contradiction. So

Lemma 3.12:(iii) holds.
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(iv): By Lemma 3.12:(ii), we may assume that A1, A3 and A4 are cliques. So by Lemma 3.12:(i),

for j ∈ {1, 3, 4}, Aj is our required A
∗
j . This implies that Z is complete to Aj, for j ∈ {1, 3, 4}.

Next we prove that A∗
2 and A∗

5 exist. Suppose, up to symmetry, A∗
2 does not exist. Then by

Lemma 3.12:(i), there are vertices, say z1, z2 ∈ Z, and a vertex, say p ∈ A2 such that z1p ∈ E(G)

and z2p /∈ E(G). By Lemma 3.12:(iii), z1z2 ∈ E(G). Then {v1, p, v3, z2, z1} induces a 4-wheel, a

contradiction. So A∗
2 exists. So Lemma 3.12:(iv) holds.

(v): The proof follows from Lemma 3.4:(i), Lemma 3.12:(iii) and Lemma 3.12:(iv).

Throughout this subsection, for i ∈ [5], A∗
i is an Ai-clique as in Lemma 3.12:(iv). Note that by

Lemma 3.12:(iv), since z∗ ∈ Z and vi ∈ A∗
i , we see that Z is complete to {v1, v2, . . . , v5}, and if Ai

is a clique, then Ai = A∗
i and Z is complete to Ai.

Lemma 3.13 The following hold, for each i:

(i) Xi is anticomplete to Z.

(ii) For j ∈ {i− 2, i+ 2}, Xi is complete to A∗
j , and anticomplete to Aj \ A∗

j .

(iii) RAi+2
∪RAi−2

meets each maximum clique of G in G[Xi ∪ Ai+2 ∪ Ai−2] twice.

(iv) Xi is anticomplete to Xi+2 ∪Xi−2.

(v) Y is empty.

(vi) If a vertex in Xi has a neighbor in T , then Ai−2 and Ai+2 are cliques.

Proof. (i): Let x ∈ Xi and z ∈ Z, and suppose x and z are adjacent. By Lemma 3.4:(ii) and

Lemma 3.4:(v), we may assume that {x} is complete to Ai∪Ai+2. Then {vi, vi+1, vi+2, x, z} induces

a 4-wheel, a contradiction. So Lemma 3.13:(i) holds.

(ii): By Lemma 3.12:(ii), we may assume that Ai−2 is a clique; so Ai−2 = A∗
i−2. Then by

Lemma 3.4:(iii), Xi is complete to Ai−2. Next we prove for j = i+ 2. Pick any x ∈ Xi. Then by

Lemma 3.13:(i), z∗x /∈ E(G). Also by Lemma 3.4:(ii), x and z∗ have a common neighbor in Ai.

Then by our definitions of Xi and Z, Lemma 3.12:(iv), and by Observation 1, x and z∗ must have

a common neighbor in A∗
i+2, say p. So by Lemma 3.4:(iii), {x} is complete to A∗

i+2. Next, if x is

adjacent to some vertex in Ai+2 \ A∗
i+2, say q, then {q, x, p, z∗, vi−1} induces a P5, a contradiction.

So {x} isanticomplete to Ai+2 \ A∗
i+2. This proves Lemma 3.13:(ii), since x ∈ Xi is arbitrary.

(iii): Since RAi+2
contains a vertex of A∗

i+2, and RAi−2
contains a vertex of A∗

i−2, the proof follows

from Lemma 3.4:(i), Lemma 3.5:(iv), and from Lemma 3.13:(ii).

(iv): Let x ∈ Xi and x′ ∈ Xi+2, and suppose x and x′ are adjacent. By Lemma 3.13:(i), z∗ is

non-adjacent to both x and x′, and by Lemma 3.12:(iv) and Lemma 3.13:(ii), {vi−2} is complete to

{x, z∗}. But now {vi+1, z
∗, vi−2, x, x

′} induces a P5, a contradiction. This proves Lemma 3.13:(iv).

(v): Suppose not, and let y ∈ Yi. Then by Lemma 3.10:(ii) and Lemma 3.12:(iv), y and z∗

have a common neighbor in both Ai+1 and Ai−1, say p and q, respectively. If z∗y ∈ E(G), then

{y, q, vi, p, z∗} induces a 4-wheel, a contradiction; so we may assume that z∗y /∈ E(G). Then by
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Figure 11: Sketch of the graph G in Theorem 3.15: (a) When T = ∅. (b) Case 1. (c) Case 2.

our definitions of Yi and Z, Lemma 3.10:(ii), Lemma 3.12:(iv) and by Observation 1, z∗ and y

must have a common neighbor in A∗
i+2, say b, and in Ai−2, say a. Then {p, y, a, z∗, b} induces a

4-wheel, a contradiction. So Lemma 3.13:(v) holds.

(vi): Let x ∈ Xi be a vertex such that x has a neighbor in T . Then by Lemma 3.5:(iii), {x} is

complete to Ai−2 ∪ Ai+2. Now the conclusion follows from Lemma 3.13:(ii).

Lemma 3.14 The following hold:

(i) Let Q be the vertex-set of a component of G[T ]. Then there is an index j ∈ [5] such that

N(Q)∩Xj is non-empty, and is complete to Q. In particular, every vertex in T has a neighbor

in X.

(ii) Z is complete to T .

(iii) G[T ] is P3-free.

Proof. (i): We know, by Lemma 3.13:(v), that Y = ∅. Since Z is a clique (by Lemma 3.12:(iii)),

and since N(Q)∩Z is not a clique cut-set, we see that N(Q)∩X ≠ ∅. So there is an index j ∈ [5]

such that N(Q) ∩Xj ̸= ∅. Pick any x ∈ N(Q) ∩Xj . Then, by Lemma 3.10:(i), {x} is complete to

Q. This proves Lemma 3.14:(i).

(ii): Since X is anticomplete to Z (by Lemma 3.13:(i)), the proof follows from Lemma 3.14:(i) and

Lemma 3.11:(i).

(iii): Suppose not. Let Q be the vertex-set of a component of G[T ]. Suppose to the contrary that

G[Q] contains a P3 with the vertex-set, say {p, q, r}. Then by Lemma 3.14:(i), for some j ∈ [5],

there is a vertex, say x ∈ Xj such that {x} is complete to Q. But then by Lemma 3.13:(i) and

Lemma 3.14:(ii), {p, z∗, r, x, q} induces a 4-wheel, a contradiction. So Lemma 3.14:(iii) holds.
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Now we give our main result of this subsection.

Theorem 3.15 If a connected (P5, 4-wheel)-free atom G contains a 5-wheel, then G is nice.

Proof. Let G be a connected (P5, 4-wheel)-free atom that contains a 5-wheel, say with the 5-cycle

with vertex-set {v1, v2, v3, v4, v5} and the edge-set {v1v2, v2v3, v3v4, v4v5, v5v1} plus a vertex z∗ that

is adjacent to vi, for all i ∈ [5]. Then we define the sets A, X, Y , Z and T as in Section 3.3 with

vi ∈ Ai for each i ∈ [5]. We use the lemmas in Section 3.3, and the properties in Lemmas 3.12

to 3.14. Let M denote the set of maximum cliques in G. To prove the theorem, it is enough to find

three stable sets S1, S2, and S3 such that S1 ∪ S2 ∪ S3 meets each maximum clique of G at least

twice, and meet other maximal cliques of G at least once. Recall that Xi is complete to Xi+1∪Xi−1

(by Lemma 3.5:(v)) and anticomplete to Xi+2 ∪Xi−1 (by Lemma 3.13:(iv)). First suppose that

T = ∅. (See Figure 11:(a) for a sketch of G.) By Lemma 3.12:(ii) and up to relabeling, we may

assume that A3 is a clique. Then, by Lemma 3.9, one of W1,W5 is empty. We may assume that

W5 = ∅, and so either X5 = ∅ or no maximum clique of G is in G[X5 ∪ A5].

Now we let S1 := RA1 ∪RA3 ∪RX2 , S2 := RA2 ∪RA4 ∪RX3 and S3 := RA5 ∪RX1 ∪RX4 , and let

S := S1 ∪S2 ∪S3. Clearly S1, S2 and S3 are stable sets. By Lemma 3.13:(ii) and Lemma 3.13:(iii),

S meets each maximal clique of G in G[A ∪X] twice. Also, by Lemma 3.12:(v), S meets each

maximal clique of G in G[A ∪ Z] twice. So, by Lemma 3.13:(i), we see that S1, S2 and S3 are the

required stable sets. Hence we may assume that T ≠ ∅. By Lemma 3.14:(iii), we know that G[T ]

is P3-free. Let L be the set that consists of one vertex from each T -clique. Let L′ be the set that

consists of one vertex (which is not in L) from each non-trivial T -clique; otherwise we let L′ := ∅.
Moreover:

3.15.1 Let Q be a T -clique and let K be an Xi-clique. Then Q is either complete or anticomplete

to K.

Proof of 3.15.1. Since Z ̸= ∅, the proof follows from Lemma 3.13:(i) and from Lemma 3.11:(ii).

So any maximal clique of G containing vertices from both an Xi-clique X
∗
i and a T -clique T ∗

is X∗
i ∪ T ∗.

3.15.2 If T ∗ is a T -clique such that Z ∪ T ∗ ∈ M or X∗
i ∪ T ∗ ∈ M, where X∗

i is an Xi-clique,

then |T ∗| ≥ 2.

Proof of 3.15.2. If Z ∪ T ∗ ∈ M, then since Z ∪ A∗
1 ∪ A∗

2 is a clique (by Lemma 3.12:(iii) and

Lemma 3.12:(iv)), we have |Z ∪ T ∗| ≥ |Z ∪ A∗
1 ∪ A∗

2|, and thus |T ∗| ≥ 2. Now if X∗
i ∪ T ∗ ∈ M,

then since X∗
i ∪ Ai+2 ∪ Ai−2 is a clique (by Lemma 3.13:(ii) and Lemma 3.13:(vi)), we have

|X∗
i ∪ T ∗| ≥ |X∗

i ∪ Ai+2 ∪ Ai−2|, and so |T ∗| ≥ 2. This proves 3.15.2.

Now we prove the theorem in two cases based on the set X.
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Case 1 Suppose there is an index j ∈ [5] such that Xj, Xj+2 and Xj−2 are non-empty.

Then by Lemma 3.11, Lemma 3.13:(iv) and Lemma 3.14:(i), we see that T is complete to X. So

by Lemma 3.13:(vi), for each i ∈ [5], Ai is a clique (so Ai = A∗
i ), and so by Lemma 3.4:(iii), Xi is

complete to Ai−2 ∪ Ai+2. See Figure 11:(b) for a sketch of G. First suppose that for any T -clique

T ∗, Z ∪ T ∗ /∈ M. Now if Wi ≠ ∅, then we let k = i, otherwise we let k = j. Then since for each

i ∈ [5], Ai is a clique, by Lemma 3.9, Wk−1 and Wk+1 are empty. So we let S1 := RAk
∪RAk+2

∪RT ,

S2 := RAk+1
∪RAk−2

∪RXk+2
and S3 := RAk−1

∪RXk
∪RXk−2

. Then, since RT ∪RXk
∪RXk+2

∪RXk−2

meets each maximum clique of G in G[X ∪ Z ∪ T ] twice, and meets the other maximal cliques

in G[X ∪ Z ∪ T ] once, by Lemma 3.12:(v) and Lemma 3.13:(iii), we see that S1, S2 and S3 are

the desired stable sets. So suppose that there is a T -clique T ∗ such that Z ∪ T ∗ ∈ M. Then,

by 3.15.2, |T ∗| ≥ 2. Now for any Xi-clique X
∗
i , and for any Xi+1-clique X

∗
i+1, by Lemma 3.5:(v),

|Z ∪ T ∗| ≥ |X∗
i ∪X∗

i+1 ∪ T ∗|, and thus |Z| ≥ |X∗
i ∪X∗

i+1|. So the following hold:

(a) For each i ∈ [5], since Z ∪ Ai ∪ Ai+1 is a larger clique than X∗
i ∪ Ai, we have Wi = ∅.

(b) For each i ∈ [5], since Z ∪ Ai+2 ∪ Ai−2 is a larger clique than X∗
i ∪ X∗

i+1 ∪ Ai−2, we have

X∗
i ∪X∗

i+1 ∪ Ai−2 /∈ M.

(c) If there is a T -clique T1 such that X∗
i ∪X∗

i+1 ∪ T1 ∈ M, then since |Z| ≥ |X∗
i ∪X∗

i+1|, we
have Z ∪ T1 ∈ M; so |T1| ≥ 2 (by 3.15.2).

Now, by 3.15.2 and (c), L∪L′ meets each maximum clique of G in G[X ∪Z ∪ T ] twice, and meets

the other maximal cliques in G[X ∪ Z ∪ T ] once. So we let S1 := RA1 ∪RA3 , S2 := RA2 ∪RA5 ∪ L,
and S3 := RA4 ∪ L′. Then, by (a), (b), Lemma 3.12:(v) and Lemma 3.13:(iii), we see that S1, S2

and S3 are the required stable sets.

Case 2 For each j ∈ [5], at least one of Xj, Xj+2, Xj−2 is empty.

Then there is an index i ∈ [5] such that Xi ̸= ∅ and X \ Xi = ∅ or Xi−1, Xi ∪ Xi+1 ≠ ∅ and

X \ (Xi−1 ∪Xi ∪Xi+1) = ∅, say i = 1. By Lemma 3.11, Lemma 3.13:(vi) and Lemma 3.14:(i),

we may assume that A3 is a clique. By 3.15.1, any T -clique T ∗ that is anticomplete to X1, is

complete to an X2-clique or an X5-clique (or to both, if X2 ∪ X5 ̸= ∅, by Lemma 3.11); so by

Lemma 3.13:(vi), A4 is a clique (if X2 ̸= ∅), and |T ′| ≥ 2 (by 3.15.2). See Figure 11:(c). Now if

W1 ̸= ∅, then by Lemma 3.9, W2∪W5 = ∅, and we let S1 := RA2 ∪RA5 ∪RX1 , S2 := RA1 ∪RA4 ∪L
and S3 := RA3 ∪ L′, and if W1 = ∅, then we let S1 := RA1 ∪RX2 ∪RX5 , S2 := RA2 ∪RA4 ∪ L and

S3 := RA3 ∪ RA5 ∪ L′. Then, as earlier by using Lemma 3.13:(iii), it is not hard to verify that

S1, S2 and S3 are the desired stable sets.

This completes the proof of Theorem 3.15.

3.4.2 (P5, wheel)-free atoms that contain a C5

Since each k-wheel, for k ≥ 6 has a P5, by Theorem 3.15, we consider only (P5, wheel)-free atoms.

Let G be a connected (P5, wheel)-free atom that contains a C5, say with vertex-set {v1, v2, v3, v4, v5}
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and the edge-set {v1v2, v2v3, v3v4, v4v5, v5v1}. Then we define the sets A, X, Y , Z and T as in

Section 3.3 with vi ∈ Ai, for each i, and we use the lemmas in Section 3.3. Let M be the set

of maximum cliques of G. Since G is 5-wheel-free, clearly Z = ∅. Thus, if T ̸= ∅, then G[T ] is
P3-free (by Lemma 3.10:(v)), and recall that by Lemma 3.10:(i) and Lemma 3.10:(iv), each vertex

in X ∪ Y is either anticomplete to T or good with respect to T . Let L be the set that consists

of one vertex from each T -clique; otherwise let L := ∅, and let L′ be the set that consists of one

vertex (which is not in L) from each non-trivial T -clique; otherwise let L′ := ∅. Moreover, the

graph G has some more structural properties, and are given in Lemmas 3.16 to 3.24 below.

Lemma 3.16 The following hold, for each i:

(i) Suppose that Xi and Xi+1 are non-empty. If there is a vertex, say p ∈ Ai−2 such that {p} is

complete to Xi ∪Xi+1, then Xi ∪Xi+1 is a clique.

(ii) Suppose K is an Xi-clique and K ′ is an Xi+2-clique. Then K is complete to K ′ or K is

anticomplete to K ′.

(iii) Let K be an Xi-clique and let K ′ be an Xi+2-clique such that K is anticomplete to K ′. Then

either K is complete to Ai+2 or K ′ is complete to Ai.

(iv) If Xi+1 ̸= ∅, then Xi is anticomplete to Xi+2.

(v) No vertex in T has neighbors in three consecutive Xi’s.

Proof. (i): If Xi and Xi+1 are cliques, then by Lemma 3.5:(v), the assertion holds. So, up to

symmetry, suppose that there are non-adjacent vertices in Xi, say x and x′. Let x′′ ∈ Xi+1.

Then by Lemma 3.5:(v), {x′′} is complete to {x, x′}. Also, by our assumption, {p} is complete

to {x, x′, x′′}. Moreover, by Lemma 3.5:(i), x and x′ have a common neighbor in Ai+2, say q.

Now {x, q, x′, x′′, p} induces a 4-wheel, a contradiction. So Xi is a clique, and by Lemma 3.5:(v),

Xi ∪Xi+1 is a clique. This proves Lemma 3.16:(i).

(ii): It is enough to show that if a vertex in K has a neighbor in K ′, then it is complete to K ′.

Suppose not. Then there are vertices, say u ∈ K and v, w ∈ K ′ such that uv, vw ∈ E(G) and

uw /∈ E(G). If v and w have a common neighbor in Ai, say p, then for any neighbor of u in Ai+2,

say q, by Lemma 3.4:(ii), {p, u, q, w, v} induces a 4-wheel, a contradiction. So we may assume that

v and w do not share a common neighbor in Ai. So by the definition of Xi+2 and Lemma 3.4:(v),

both v and w are complete to Ai−1. Also there is a vertex, say r ∈ Ai such that rv ∈ E(G) and

rw /∈ E(G). But then for any neighbor of u in Ai+2, say a, by Lemma 3.4:(ii), {u, r, vi−1, w, a, v}
induces a 5-wheel, a contradiction. So Lemma 3.16:(ii) holds.

(iii): Suppose there are vertices, say x ∈ K, a ∈ Ai+2, a
′ ∈ Ai and x

′ ∈ K ′ such that xa, x′a′ /∈
E(G). Let a′′ ∈ Ai+2 be a neighbor of x. Then by Lemma 3.4:(iii), aa′′ /∈ E(G). But then by

Lemma 3.4:(ii), {a, x′, a′′, x, a′} induces a P5, a contradiction. This proves Lemma 3.16:(iii).

(iv): Let x ∈ Xi and x
′ ∈ Xi+2, and suppose x and x′ are adjacent. Let u ∈ Xi+1. By Lemma 3.4:(v),

we may assume that {u} is complete to Ai−2. Now pick a neighbor of x in Ai+2, say p, and a
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neighbor of x in Ai−2, say q. Then by Lemma 3.4:(ii) and Lemma 3.5:(v), {q, u, x′, p, x} induces a

4-wheel, a contradiction. So Lemma 3.16:(iv) holds.

(v): Suppose there is a vertex, say t ∈ T which has neighbors, say x1 ∈ X1, x2 ∈ X2 and

x3 ∈ X3. By Lemma 3.16:(iv), x1x3 /∈ E(G). Pick any a ∈ A4 and a′ ∈ A5. Then by

Lemma 3.5:(iii), x1a, x2a
′, x3a′ ∈ E(G), and then {t, x1, a, a′, x3, x2} induce a 5-wheel, a con-

tradiction. So Lemma 3.16:(v) holds.

Lemma 3.17 For i ∈ [5], let j, k ∈ {i+ 2, i− 2} and j ̸= k, and let H be the subgraph induced by

Xi ∪ Ai+2 ∪ Ai−2. Then the following hold.

(i) If M is a maximum clique in H such that M ∩Ai+2 ≠ ∅ and M ∩Ai−2 ̸= ∅, then RAi+2
∪RAi−2

meets M twice.

(ii) Let X∗ ⊆ Xi be a non-empty clique. If every vertex in Aj has a non-neighbor in X∗, then Ak

is a clique.

(iii) If M is a maximum clique in H with M ∩ Aj = ∅, then M ∩ Xi ≠ ∅, Ak is a clique, and

M ∩ Ak = Ak. Moreover, RXi
∪RAi+2

∪RAi−2
meets each maximum clique in H twice, and

RAi+2
∪RAi−2

meets each maximal clique in H at least once.

(iv) If Y = ∅ and if there is a maximum clique M in H with |M | = ω(G) and M ∩ Ai−2 = ∅ (or

M ∩ Ai+2 = ∅), then G is a nice graph.

Proof. (i): If M ∩ Xi = ∅, then, by Lemma 3.4:(i), clearly the assertion holds; so assume that

M ∩Xi ̸= ∅. Let K be an Ai+2-clique such that M ∩ Ai+2 ⊆ K. We claim that M ∩ Ai+2 = K.

Suppose not, and let b ∈ K \ (M ∩ Ai+2). Since K is a clique, {b} is complete to M ∩ Ai+2. By

Lemma 3.4:(iii),M ∩Xi is complete to {b}. By the definition of A, {b} is complete toM ∩Ai−2. So

{b} is complete to M , and hence M ∪ {b} is a larger clique in G[Xi ∪Ai+2 ∪Ai−2], a contradiction;

so M ∩ Ai+2 is an Ai+2-clique. By Lemma 3.4:(i), RAi+2
contains a vertex from each Ai+2 clique,

and RAi−2
contains a vertex from each Ai−2 clique, we see that RAi+2

∪RAi−2
meets M twice. This

proves Lemma 3.17:(i).

(ii): Suppose that i = 1, j = 4, and there are non-adjacent vertices in A3, say a, a
′. Since v4 ∈ A4,

v4 has a non-neighbor in X∗, say x. Let p be a neighbor of x in A4, and let x′ be a non-neighbor of

p in X∗. Then, by Lemma 3.4:(v), {x, x′} is complete to {a, a′}, and then {p, a, x′, a′, x} induces a

4-wheel, a contradiction. So Lemma 3.17:(ii) holds.

(iii): To prove the first assertion, we let j = i − 2. Since Ai−2 is complete to Ai+2, clearly

M ∩ Xi ̸= ∅. Since M ∩ Ai−2 = ∅, every vertex in Ai−2 has a non-neighbor in M ∩ Xi, and

hence, by Lemma 3.17:(ii), Ai+2 is a clique. Then, by Lemma 3.4:(iii), M ∩ Xi is complete to

Ai+2; so M ∩ Ai+2 = Ai+2. To prove the second assertion, let M ′ be a maximum clique in H. By

Lemma 3.17:(i), we may assume that one of M ′ ∩ Ai+2 = ∅, M ′ ∩ Ai−2 = ∅. If M ′ ∩ Ai−2 = ∅,
then by the first assertion, since Ai+2 is a clique, M ′ = X∗ ∪Ai+2, where X

∗ is an Xi-clique. Thus

RXi
∪RAi+2

meets M ′ twice, and RAi+2
meets M ′ at least once. Likewise, if M ′ ∩ Ai+2 = ∅, then

RXi
∪RAi−2

meets M ′ twice, and RAi−2
meets M ′ at least once. This proves Lemma 3.17:(iii).
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(iv): To prove the assertion, we let i = 1, and suppose that M ∩ A4 = ∅. As shown in the proof of

second assertion of Lemma 3.17:(iii), M = X∗ ∪ A3, where X
∗ is an X1-clique. Let x ∈ X∗, and

let a ∈ A4 be a neighbor of x. Then a has a non-neighbor in X∗, say x′. Then:

(a) For any p ∈ X5, by Lemma 3.4:(iii) and Lemma 3.5:(v), M ∪ {p} is a clique, a contradiction;

so X5 = ∅.
(b) If there is a vertex, say p ∈ X3, for any neighbor of p in A5, say q, since {p,q,a,x,x′} does not

induce a P5, p is adjacent to one of x, x′, then, by Lemma 3.16:(ii), {p} is complete to X∗,

and then, by Lemma 3.4:(ii), M ∪ {p} is a clique, a contradiction; so X3 = ∅.
(c) Suppose there is a vertex, say p ∈ X4. Then for any neighbor of p in A2, say q, {q,p,a,x,x′}

does not induce a P5, p is adjacent to one of x, x′. Let K be the X4-clique containing p.

Then, by Lemma 3.16:(ii), K is complete to X∗, and then, by Lemma 3.7, X∗ is complete to

exactly one A4-clique, say K
′. Then since M ∪K ′ is a clique, a contradiction. So X4 = ∅.

(d) If there are adjacent vertices, say t ∈ T and x2 ∈ X2, and if K is the X2-clique containing

x2, and Q is the A4-clique containing a, then by Lemma 3.5:(iii), {x} is complete to A4, and

then since N(K) ∩Q ̸= ∅ and N(X∗) ∩Q ̸= ∅, by Lemma 3.8, ax′ ∈ E(G), a contradiction;

so X2 is anticomplete to T .

(e) If M ′ is a maximal clique in G such that M ′ ∩ T ̸= ∅, then since G is an atom, by

(d), M ′ ∩ X1 ̸= ∅, then, by Lemma 3.5:(iii), for any A3-clique D, and any A4-clique D
′,

|(M ′ ∩X1) ∪D ∪D′| ≤M . Hence |M ′ ∩ T | ≥ 2.

Now by Lemma 3.4:(ii), Lemma 3.10:(i) and Lemma 3.17:(iii), the sets S1 := RA2 ∪RA5 ∪RX1 ,

S2 := RA1 ∪ RA3 ∪ RX2 ∪ L and S3 := RA4 ∪ L′ are the required stable sets. So G is nice. This

proves Lemma 3.17:(iv).

Lemma 3.18 If Y is empty, and if there is an i ∈ [5] such that Xi is not anticomplete to Xi+2,

then G is nice.

Proof. We may assume that i = 1. Then there are vertices, say x1 ∈ X1 and x3 ∈ X3 such that

x1x3 ∈ E(G). Then by Lemma 3.16:(iv), X2 = ∅; so X = X1 ∪ X3 ∪ X4 ∪ X5. Let Q1 be the

X1-clique containing x1, and let Q3 be the X3-clique containing x3. Then by Lemma 3.7 and

Lemma 3.16:(ii), Q1 is complete to Q3, and anticomplete to (X3 \Q3) ∪X4, Q3 is anticomplete to

(X1 \Q1) ∪X5, and X1 \Q1 is anticomplete to X3 \Q3. By Lemma 3.7, let A∗
1 be the A1-clique

such that Q3 is complete to A∗
1, and anticomplete to A1 \ A∗

1, and let A∗
3 be the A3-clique such

that Q1 is complete to A∗
3, and anticomplete to A3 \ A∗

3. By Lemma 3.4:(iv) and Lemma 3.5:(i),

X1 is complete to A∗
3, and X3 is complete to A∗

1.

Note that any maximal clique containing at least one vertex from each X1 and X3 is either

A∗
1 ∪Q1 ∪Q3 or A∗

3 ∪Q1 ∪Q3. By Lemma 3.7, any maximal clique containing at least one vertex

from each X1 and X4 is of the form D1 ∪X∗
1 ∪X∗

4 or D4 ∪X∗
1 ∪X∗

4 , where D1, D4, X
∗
1 and X∗

4

are A1, A4, X1 and X4-cliques respectively, and X
∗
1 ̸= Q1. Also, any maximal clique containing at
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least one vertex from each X3 and X5 is of the form D3 ∪X∗
3 ∪X∗

5 or D5 ∪X∗
3 ∪X∗

5 , where D3,

D5, X
∗
3 , X

∗
5 are A3, A5, X3 and X5-cliques respectively, and X

∗
3 ̸= Q3.

By Lemma 3.17:(iv), we may assume that each maximal clique of G in G[Xi ∪Ai+2 ∪Ai+2] has

non-empty intersection with both Ai+2 and Ai−2; and by Lemma 3.17:(iii), RAi+2
∪ RAi−2

meet

rest of the maximal cliques in G[Xi ∪ Ai+2 ∪ Ai+2] at least once.

First suppose that T = ∅. Also assume that Q1 is either complete or anticomplete to every

A4-clique, and Q3 is either complete or anticomplete to every A5-clique. Now suppose there is

an A2-clique, say D2, such that either A∗
1 ∪D2 ∈ M or A∗

3 ∪D2 ∈ M. Up to relabeling, we may

assume that A∗
1 ∪D2 ∈ M. Then since |A∗

1 ∪D2| ≥ |A∗
1 ∪Q1 ∪Q3|, we have |D2| > |Q1|. Further,

we have the following:

(a) Any maximal clique that contain at least one vertex from each A4 and Q1 is of the form

A∗
3 ∪Q1 ∪D4, where D4 is an A4-clique.

(b) For any A1-clique D1, since |D2| > |Q1|, we have D1 ∪Q1 /∈ M.

(c) If X5 ̸= ∅, since X5 is anticomplete to Q3, by Lemma 3.6, each X5-clique is either complete

or anticomplete to an A3-clique. So for any X5-clique X
∗
5 which is anticomplete to A∗

3,

by Lemma 3.4:(v), X∗
5 is complete to D2, and |Q1 ∪ X∗

5 | < |D2 ∪ X∗
5 | which implies that

Q1 ∪X∗
5 /∈ M. Moreover, for any X5-clique X

∗∗
5 which is complete to A∗

3, any maximal clique

that contain at least one vertex from each X∗∗
5 and Q1 is of the form A∗

3 ∪Q1 ∪X∗∗
5 .

By (a), (b) and (c), it is not hard to verify that S1 := RA2 ∪RX1\Q1 ∪RX3 , S2 := RA3 ∪RA5 ∪RX4

and S3 := RA1 ∪RA4 ∪RX5 are the required stable sets. So we assume that for any A2-clique D2,

A∗
1 ∪D2, A

∗
3 ∪D2 /∈ M. Next we claim the following:

3.18.1 Either for each W ∈ W1, W ∩ A∗
1 = ∅ or for each W ′ ∈ W3, W

′ ∩ A∗
3 = ∅.

Proof of 3.18.1. Suppose there is an X1-clique K such that K ∪A∗
1 ∈ W1, and there is an X3-clique

K ′ such that K ′ ∪A∗
3 ∈ W3. Note that K ̸= Q1 and K ′ ̸= Q3. Then K is anticomplete to K ′. Let

D5 be an A5-clique such that N(K ′) ∩D5 ̸= ∅. Then, by Lemma 3.6, K ′ is complete to D5. Now

|A∗
1 ∪K| ≥ |A∗

1 ∪D5 ∪K ′|, and so |K| > |K ′|. Then A∗
3 ∪K is a clique, and |A∗

3 ∪K| > |A∗
3 ∪K ′|

which is a contradiction. So 3.18.1 holds.

By 3.18.1, we may assume, up to symmetry, that for each W ∈ W1, we have W ∩ A∗
1 = ∅.

Now if for each A5-clique D5, D5 ∪ A∗
1 /∈ M, then clearly S1 := RA1\A∗

1
∪ RA4 ∪ RQ3 ∪ RX5 ,

S2 := RA2 ∪RX1 ∪RX3\Q3 and S3 := RA3 ∪RA5 ∪RX4 are the required stable sets. So suppose that

there is an A5-clique, say D5, such that D5 ∪ A∗
1 ∈ M. Then since Q3 ∪D5 ∪ A∗

1 is not a clique,

Q3 is anticomplete to D5. Then, by Lemma 3.4:(v), Q3 is complete to A1; so A1 = A∗
1, and hence

W1 = ∅. Also, if X5 ̸= ∅, then since Q3 is anticomplete to X5, by Lemma 3.16:(iii), X5 is complete

to A3. Thus, by Lemma 3.8, any maximum clique containing at least one vertex from each X1

and X5 is of the form D3 ∪X∗
1 ∪X∗

5 , where X
∗
1 , X

∗
5 and D3 are X1-clique, X5-clique and A3-clique

respectively. Now we let S1 := RA2 ∪ RA4 ∪ RX3 , S2 := RA3 ∪ RA5 ∪ RX4 and S3 := RA1 ∪ RX5 ,

and we conclude that S1, S2 and S3 are the required stable sets. So suppose that, up to relabeling,



CHAPTER 3. COLORING (P5, 4-WHEEL)-FREE GRAPHS 77

there is an A5-clique, say D5, such that Q3 is neither complete nor anticomplete to D5. Then since

(X1 \Q1) ∪X5 is anticomplete to Q3, by Lemma 3.6, (X1 \Q1) ∪X5 = ∅. So X1 = Q1 and X1 is

anticomplete to X4 (by Lemma 3.7). Now we let S1 := RA5 ∪RX1 ∪RX4 , S2 := RA2 ∪RA4 ∪RX3

and S3 := RA1 ∪RA3 . Then clearly S1, S2 and S3 are the required stable sets.

A4 A3

A2

A1

A5

A∗
3

A∗
1

T1

X4

X5
T2

Q1

Q3

X1

X3

(a)(a)(a)
A4 A3

A2

A1

A5

Q1 Q′
1

X3 X4

T

(b)(b)(b)
A4 A3

A2

A1

A5

A∗
3

A∗
1

X4

T

Q1

Q3

X1

X3

(c)(c)(c)

Figure 12: Sketch of the graph G in Lemma 3.18 when T ̸= ∅, and: (a) X4, X5 ̸= ∅. (b) X1 is not
anticomplete to X4. (c) X1 is anticomplete to X4.

So we may assume that T ̸= ∅. (We refer to Figure 12 for a sketch of the graph G.) Recall that

each vertex in X is either anticomplete to T or good with respect to T . First suppose X4, X5 ̸= ∅.
So, by Lemma 3.16:(iv), X1 is anticomplete to X4, and X3 is anticomplete to X5. Let T1 denote

the union of T -cliques which are complete to X1 ∪X4, and anticomplete to X3 ∪X5, and let T2

denote the union of T -cliques which are complete to X3∪X5, and anticomplete to X1∪X4. Clearly

T1 ∩ T2 = ∅. Moreover:

3.18.2 T = T1 ∪ T2.

Proof of 3.18.2. Let t ∈ T , and let T ′ be the T -clique containing t. Since every vertex in T has

a neighbor in X, first assume that t has a neighbor in X1 ∪ X4. Since X1 is anticomplete to

X4, by Lemma 3.11, {t} is complete to X1 ∪X4. So by Lemma 3.16:(v), {t} is anticomplete to

X5, and since X3 is anticomplete to X5, by Lemma 3.11, {t} is anticomplete to X3. Thus, by

Lemma 3.10:(i), T ′ is complete to X1∪X4, and anticomplete to X3∪X5, and so T ′ ∈ T1. Similarly,

if t has a neighbor in X3 ∪X5, then T
′ is complete to X3 ∪X5, and anticomplete to X1 ∪X4, and

so T ′ ∈ T2. This proves 3.18.2.

Since T ̸= ∅, by Lemma 3.5:(iii), for j ∈ {3, 4, 5}, either Xj is complete to Aj−2 or Xj+1 is

complete to Aj−2; so any maximal clique containing at least one vertex from each Xj and Xj+1

must be complete to Aj−2 (by Lemma 3.8). Since at least one of X4 and X5 is complete to

A2, by Lemma 3.8 and Lemma 3.9, one of W4 and W5 is empty. Moreover, if T ∗ ∪ X∗ ∈ M
for a T -clique T ∗, and an Xi-clique X

∗, where i ∈ {1, 3, 4, 5}, then by Lemma 3.5:(iii), for any

p ∈ Ai+2 and q ∈ Ai−2, |T ∗ ∪X∗| ≥ |X∗ ∪ {p, q}|, and thus |T ∗| ≥ 2. Now, if W5 = ∅, then we let

S1 := RA5 ∪RX1 ∪RX4 ∪ (L∩T2), S2 := RA2 ∪RA4 ∪RX3 ∩ (L∩T1) and S3 := RA1 ∪RA3 ∪ (L′∩T2),
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and if W4 = ∅, then we let S1 := RA4 ∪ RX3 ∪ RX5 ∪ (L ∩ T1), S2 := RA2 ∪ RA5 ∪ RX1 ∪ (L ∩ T2)
and S3 := RA1 ∪RA3 ∪ (L′ ∩ T1). Then we observe that S1, S2, and S3 are the required stable sets.

Next we assume that one of X4 and X5 is empty, say X5 = ∅. First suppose that X1 is not

anticomplete to X4. So there are vertices, say x′1 ∈ X1, x4 ∈ X4 such that x′1x4 ∈ E(G). So

X = X1 ∪X3 ∪X4. Let Q
′
1 be the X1-clique containing x′1, and let Q4 be the X4-clique containing

x4. Then by Lemma 3.7 and Lemma 3.16:(ii), Q1 ̸= Q′
1, Q

′
1 is complete to Q4, Q

′
1 is anticomplete

to X4 \Q4, Q4 is anticomplete to X1 \Q′
1, X1 \Q′

1 is anticomplete to X4 \Q4. By Lemma 3.7, let

A∗∗
1 be the A1-clique such that Q4 is complete to A∗∗

1 and anticomplete to A1 \ A∗∗
1 , and let A∗

4 be

the A4-clique such that Q′
1 is complete to A∗

4, and anticomplete to A4 \ A∗
4. By Lemma 3.4:(iv)

and Lemma 3.5:(i), X4 is complete to A∗∗
1 . By Lemma 3.11, each vertex in T has a neighbor in X1.

Further we claim the following:

3.18.3 A1, X3 and X4 are cliques. Moreover, T is complete to exactly one of X3 and X4.

Proof of 3.18.3. We first show that, if {x3} is not anticomplete to T , then {x4} is anticomplete

to T , and vice versa. Suppose not, and let t, t′ ∈ T be such that x3t, x4t
′ ∈ E(G). If x4t ∈ E(G),

then, by Lemma 3.11, x1t ∈ E(G), and then by Lemma 3.5:(iii), for any a ∈ A1, {a, x1, t, x4, x3}
induces a 4-wheel, a contradiction; so x4t /∈ E(G). Likewise, x3t

′ /∈ E(G). Also, by Lemma 3.10:(i),

tt′ /∈ E(G), and by Lemma 3.11, x1t
′, x′1t ∈ E(G) and x1t, x

′
1t

′ /∈ E(G). But then {t, x′1, x4, t′, x1}
induces a P5, a contradiction. By symmetry, we may assume that {x3} is not anticomplete to T .

Then {x4} is anticomplete to T . Then, by Lemma 3.11, T is anticomplete to X1 \Q′
1. Since each

vertex in T has a neighbor in X1, each vertex in T has a neighbor in Q′
1. So by Lemma 3.10:(i)

and Lemma 3.11, T is complete to Q′
1 ∪Q3. By Lemma 3.5:(iii), A1 = A∗

1 = A∗∗
1 is a clique. So

by Lemma 3.16:(i), X3 ∪X4 is a clique, and hence X3 = Q3 and X4 = Q4 are cliques. Since T is

anticomplete to X1 \Q′
1, by Lemma 3.11, T is anticomplete to Q4 = X4. This proves 3.18.3.

By 3.18.3, we may assume that T is complete to X3 (= Q3), and anticomplete to X4 (= Q4).

Then by Lemma 3.11, it follows that, T is complete to Q′
1 (and anticomplete to X1 \Q′

1). Then by

Lemma 3.5:(iii), Q′
1 is complete to A4, and hence A4 = A∗

4 is a clique. Since Q′
1 ∪ Q4 ∪ A4 is a

larger clique than Q4 ∪ A4, we conclude that W4 = ∅, and RT ∪RX3 ∪RQ′
1
meets each maximal

clique of G in G[X ∪ T ] twice. Now we see that S1 := RA2 ∪ RA5 ∪ RX1 , S2 := RA4 ∪ RX3 and

S3 := RA1 ∪RA3 ∪RT are the required stable sets.

Finally we assume that either X1 is anticomplete to X4 or X4 = ∅. We claim the following:

3.18.4 Each T -clique is complete to either Q1 or Q3.

Proof of 3.18.4. Suppose not. Then there is a T -clique, say T ∗, and vertices x ∈ Q1, x
′ ∈ Q3, and

t, t′ ∈ T ∗ such that xt, xt′ /∈ E(G). Then by Lemma 3.10:(i), T ∗ is anticomplete to {x, x′}. So by

Lemma 3.7 and Lemma 3.11, T ∗ is anticomplete to (X1 \Q1) ∪ (X3 \Q3) ∪X4. Since each vertex

of T has a neighbor in X, N(T ∗) ∩X ⊆ Q1 ∪Q3 which is a clique cut-set of G, a contradiction.

So 3.18.4 holds.
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Moreover, if there is a T -clique T ∗ such that N(T ∗)∩ (X4∪ (X3 \Q3)) ̸= ∅, then by Lemma 3.11,

T ∗ is complete to Q1, and hence T ∗ is complete to X4∪(X3\Q3). Now we let S1 := RA5∪RX1∪RX4 ,

S2 := RA2 ∪RA4 ∪RX3 and S3 := RA1 ∪RA3 ∪RT . Then by 3.18.4, we conclude that S1, S2 and

S3 are the desired stable sets. This completes the proof of Lemma 3.18.

Lemma 3.19 If X is non-empty and Y is empty, then G is a nice graph.

Proof. By Lemma 3.17:(iv), we may assume that each maximal clique of G in G[Xi ∪Ai+2 ∪Ai+2]

has non-empty intersection with both Ai+2 and Ai−2; and by Lemma 3.17:(iii), RAi+2
∪ RAi−2

meets rest of the maximal cliques in G[Xi ∪ Ai+2 ∪ Ai+2] at least once. Recall that each vertex in

X is either anticomplete to T or good with respect to T . First suppose that X \X1 = ∅. If T ∗ is a

T -clique such that T ∗ ⊂M ∈ M, then since each vertex in X1 is either anticomplete to T or good

with respect to T , M = T ∗ ∪X∗
1 where X∗

1 is a subset of some X1-clique. Since N(T ∗) ∩X1 is not

a clique cut-set of G, there are non-adjacent vertices in N(T ∗) ∩X1. Then by Lemma 3.5:(ii) and

Lemma 3.5:(iii), A3∪A4 is clique, and so A3∪A4∪X∗
1 is a clique. Hence |T ∗∪X∗

1 | ≥ |A3∪A4∪X∗
1 |,

and thus |T ∗| ≥ 2. Then clearly S1 := RX1 ∪RA2 ∪RA5 , S2 := RA1 ∪RA3 ∪ L and S3 := RA4 ∪ L′

are the desired stable sets. Let J denote the set {i ∈ [5] | Xi ̸= ∅}, and we may assume that

|J | ≥ 2. By Lemma 3.18, we may assume that for each i ∈ [5], Xi is anticomplete to Xi+2. See

Figure 13:(a) and Figure 13:(b). First we claim the following.

A4 A3

A2

A1

A5

X4X3

X2

X1

X5

(a)(a)(a)

A4 A3

A2

A1

A5

X4X3

X2

X1

T

(b)(b)(b)
A4 A3

A2

A1

A5

B4 B3

B2

B1

B5

Y4Y3

Y2

Y1

Y5

(c)(c)(c)

Figure 13: Sketch of the graph G in: (a) Lemma 3.19 when T = ∅. (b) Lemma 3.19 when T ̸= ∅ and
ℓ = 5. (c) Lemma 3.24 when Yi is anticomplete to Yi+2 ∪ Yi−2, for each i ∈ [5].

3.19.1 There is an index ℓ ∈ [5] such that Wℓ = ∅, and for p ∈ {ℓ+1, ℓ−1}, RXp ∪RA1 ∪· · ·∪RA5

meets each maximum clique of G in G[A ∪Xℓ ∪Xp] at least twice.

Proof of 3.19.1. If there is an index i ∈ [5] such that Xi = ∅, we choose ℓ = i, and by Lemma 3.17:(i),

we are done; so for each i ∈ [5], Xi ̸= ∅. First suppose there is an index i ∈ [5], Xi and Xi+1 is

not complete to Ai−2, say i = 1. Then by Lemma 3.16:(iii), X4 is complete to A1 ∪ A2, and, up

to relabeling, X3 is complete to A5. Since X4 is complete to A1, by Lemma 3.9, one of W3 and

W4 is empty. Now if W3 = ∅, then we choose ℓ = 3, otherwise we choose ℓ = 4. Note that, by

Lemma 3.8, for k ∈ {2, 3, 4}, any maximal clique containing at least one vertex from each Xk and
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Xk+1 must contain a vertex from RAk−2
. Thus, by Lemma 3.17:(i), we conclude the proof. So we

may assume that for each i ∈ [5], one of Xi or Xi+1 is complete to Ai−2. Then by Lemma 3.8 and

Lemma 3.9, there is an index k ∈ [5] such that Wk = ∅. Since by Lemma 3.8, for i ∈ [5], any

maximal clique containing at least one vertex from each Xi and Xi+1 must contain a vertex from

RAi−2
, by Lemma 3.17:(i), we conclude that ℓ = k is our desired index. This proves 3.19.1.

3.19.2 If T ̸= ∅, then there is an index j ∈ [5] such that Xj−1 = ∅ (so Wj−1 = ∅), and each

T -clique is complete to Xj ∪Xj+2 ∪Xj−2, and anticomplete to Xj+1.

Proof of 3.19.2. Let t ∈ T . Let T ∗ be the T -clique containing t. By Lemma 3.20:(vi), there is

an i ∈ [5] such that N(T ∗) ∩ Xi ̸= ∅. Suppose N(T ∗) ∩ Xi+1 ̸= ∅. Then by Lemma 3.10:(i),

Lemma 3.11 and Lemma 3.16:(v), we may assume that Xi+2 and Xi−1 are empty. If Xi−2 = ∅,
then by Lemma 3.5:(iii) and Lemma 3.16:(i), Xi ∪Xi+1 is a clique, and so N(T ∗) ∩ (Xi ∪Xi+1)

is a clique cut-set, a contradiction; so Xi−2 ̸= ∅. Then by Lemma 3.11, T ∗ is complete to

Xi ∪ Xi+1 ∪ Xi−2. So we take j = i − 2 and we are done. Thus, by Lemma 3.10:(i), we may

assume that N(T ∗) ∩ (Xi−1 ∪ Xi+1) = ∅. We claim that Xi−2 ∪ Xi+2 ̸= ∅. Suppose not. Since

|J | ≥ 2, we may assume that Xi+1 ̸= ∅. Then since N(T ∗) ∩ Xi is not a clique cut-set of G,

there are non-adjacent vertices, say u, v ∈ Xi such that u, v ∈ N(T ∗). Then by Lemma 3.5:(ii)

and Lemma 3.5:(iii), Ai−2 is a clique, and so Xi ∪Xi+1 is complete to Ai−2 (by Lemma 3.4:(iii)).

But then, by Lemma 3.16:(i), Xi is a clique, a contradiction. Thus Xi−2 ∪ Xi+2 ̸= ∅. Then by

Lemma 3.11, T ∗ is complete to Xi ∪Xi+2 ∪Xi−2. Also, by Lemma 3.16:(v), T ∗ is anticomplete to

Xi+1. So we take j = i. This proves 3.19.2.

By 3.19.1, let ℓ ∈ [5] be the index such thatWℓ = ∅, and for p ∈ {ℓ+1, ℓ−1}, RXp∪RA1∪· · ·∪RA5

meets each maximum clique of G in G[A ∪ Xℓ ∪ Xp] at least twice. If T ̸= ∅, then we choose

ℓ = j − 1 (by 3.19.2). Now we let S1 := RXℓ−1
∪ RAℓ

∪ RXℓ+1
, S2 := RAℓ+1

∪ RXℓ+2
∪ RAℓ−2

∪ RT

and S3 := RAℓ+2
∪RXℓ−2

∪RAℓ−1
. Clearly S1, S2 and S3 are stable sets. By 3.19.2, RXj−2

∪RXj
∪

RXj+1
∪ RXj+2

∪ RT meets each maximum clique of G in G[X ∪ T ] at least twice. Also, using

Lemma 3.8 and Lemma 3.17:(i), we see that (
5∪

k=1
RAk

)∪RXℓ−2
∪RXℓ−1

∪RXℓ+1
∪RXℓ+2

meets each

maximum clique of G in G[A∪ (X \Xℓ)] twice. So, by 3.19.1, we conclude that S1 ∪ S2 ∪ S3 meets

each maximum clique of G at least twice, and meets other maximal cliques of G at least once. So

G is nice. This completes the proof of Lemma 3.19.

Lemma 3.20 The following hold, for each i:

(i) If K is an Ai+2-clique (or an Ai−2-clique), then any vertex in Yi which has a neighbor in K

is complete to K.

(ii) For j ∈ {i− 2, i+ 2}, each vertex in Yi is complete to exactly one Aj-clique.

(iii) If a vertex in Yi is not complete to Ai−1 (or Ai+1), then it is complete to Ai+2 ∪Ai−2, and so

Ai+2 ∪ Ai−2 is a clique.

(iv) Yi is a clique.

(v) Yi is complete to Yi+1 ∪ Yi−1.
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(vi) Every vertex in T has a neighbor in X.

Proof. (i): By symmetry, it is enough to prove the assertion for Ai+2. If there is a vertex in Yi, say

y such that {y} is not complete to K, then by assumption, there are vertices, say a, b in K such

that ab, ay ∈ E(G) and by /∈ E(G). But then for any neighbor of y in Ai−1, say c, {b, a, y, c, vi}
induces a P5, a contradiction. So Lemma 3.20:(i) holds.

(ii): We may assume, up to symmetry, that j = i + 2. Let y ∈ Yi. By Lemma 3.20:(i), it is

enough to show that y has a neighbor in exactly one Ai+2-clique. Suppose not. Then there are

non-adjacent vertices, say a and b in Ai+2 such that y is adjacent to both a and b. Then pick a

neighbor of y in each Ai−2 and Ai+1, say p and q respectively; but then {p, a, q, b, y} induces a

4-wheel which is a contradiction. So Lemma 3.20:(ii) holds.

(iii): Let y ∈ Yi. We may assume, up to symmetry, that {y} is not complete to Ai−1, and let p

be a non-neighbor of y in Ai−1. So by Lemma 3.10:(ii), Ai−1 is a clique. Suppose to the contrary

that y has a non-neighbor in Ai−2 ∪ Ai+2, say q. If q ∈ Ai−2, then for any neighbor of y in Ai+1,

say r, we see that {q, p, vi, r, y} induces a P5, a contradiction; so q ∈ Ai+2. Pick a neighbor of y in

each Ai−1 and Ai+1, say a and b respectively. Since Ai−1 is a clique, pa ∈ E(G). Now we see that

{p, a, y, b, q} induces a P5, a contradiction. So the first assertion of Lemma 3.20:(iii) holds, and

the second assertion follows from Lemma 3.20:(ii).

(iv): Let y, y′ ∈ Yi, and suppose y and y′ are non-adjacent. By Lemma 3.10:(iii), we may assume

that {y} is complete to Ai−1. Then by the definition of Yi, clearly y and y′ have a common neighbor

in Ai−1, say p. So by the definition of Yi and by Observation 1, y and y′ have a common neighbor

in Ai+2, say q. By the same argument, if y and y′ have a common neighbor in Ai+1, then they

have a common neighbor in Ai−2. If y and y′ do not share a common neighbor in Ai+1, then by

Lemma 3.20:(iii), Ai−2 is a clique, and so by Lemma 3.20:(i), y and y′ have a common neighbor in

Ai−2. In either case, y and y′ have a common neighbor in Ai−2, say r. Then {p, y, q, y′, r} induces

a 4-wheel, a contradiction. So Lemma 3.20:(iv) holds.

(v): Let y ∈ Yi and y
′ ∈ Yi+1, and suppose y and y′ are non-adjacent. Let p be a neighbor of y in

Ai−2. If py
′ /∈ E(G), then for any neighbor of y′ in Ai, say a, and for any neighbor of y in Ai+1,

say b, {p, y, b, a, y′} induces a P5, a contradiction; so we may assume that py′ ∈ E(G). Also it

follows from the definition of Yi+1, and by Lemma 3.10:(ii) and Lemma 3.20:(i), that y and y′ have

a common neighbor in Ai−1, say q, and by the same argument, y and y′ have a common neighbor

in Ai+2, say r. But then {y′, q, y, r, p} induces a 4-wheel, a contradiction. So Yi is complete to Yi+1.

Likewise, Yi is complete to Yi−1. So Lemma 3.20:(v) holds.

(vi): Suppose there is a vertex, say t ∈ T which has no neighbor in X. Let Q be the vertex-set of

the component of G[T ] containing t. Then by Lemma 3.10:(i), Q is anticomplete to X. Then since

G is connected, N(Q)∩ Y ̸= ∅. Since N(Q)∩ Y is not a clique cut-set between A and Q, there are

non-adjacent vertices, say y, y′ ∈ N(Q) ∩ Y . Then by Lemma 3.20:(iv) and Lemma 3.20:(v), we
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may assume that y ∈ Y2 and y′ ∈ Y5. Now pick a neighbor of y in A5, say a, and a neighbor of y′

in A2, say a
′. But then {a, y, t, y′, a′} induces a P5, a contradiction. So Lemma 3.20:(vi) holds.

Lemma 3.21 For each i ∈ [5], Yi ∪ Yi+1 is complete to exactly one Ai−2-clique.

Proof. First we show that for each i, Yi is complete to exactly one Ai−2-clique. Suppose not.

Then by Lemma 3.20:(i), Lemma 3.20:(ii) and Lemma 3.20:(iv), there are adjacent vertices, say

y and y′ in Yi, and non-adjacent vertices, say a and b in Ai−2 such that ya, y′b ∈ E(G) and

yb, y′a /∈ E(G). Then by Lemma 3.20:(iii), {y, y′} is complete to Ai+1 and Ai−1. Now if y and y′

have a common neighbor in Ai+2, say p, then {p, y, vi−1, b, y
′} induces a 4-wheel, a contradiction;

so we may assume that there is a vertex, say q ∈ Ai+2 such that yq ∈ E(G) and y′q /∈ E(G).

But then {vi+1, q, a, vi−1, y
′, y} induces a 5-wheel, a contradiction. So for each i, Yi is complete to

exactly one Ai−2-clique.

Now suppose that the lemma is not true. Then by our preceding argument, there are Ai−2-

cliques, say B and D, such that B ∩D = ∅, Yi is complete to B, and anticomplete to Ai−2 \B, and

Yi+1 is complete to D, and anticomplete to Ai−2 \D. Then clearly Ai−2 is not a clique, and so by

Lemma 3.20:(iii), Yi is complete to Ai−1, and Yi+1 is complete to Ai+2. Now pick a vertex y ∈ Yi,

and a neighbor of y in Ai+2, say a. Also, pick a vertex y′ ∈ Yi+1, and neighbor of y′ in Ai−1, say a
′.

But now for any b ∈ B, by Lemma 3.20:(v), {y′, a, b, a′, y} induces a 4-wheel, a contradiction. So

Lemma 3.21 holds.

If Y ̸= ∅, by Lemma 3.21, for i ∈ [5], let Bi−2 be the Ai−2-clique such that Yi ∪ Yi+1 is complete

to Bi−2, and anticomplete to Ai−2 \ Bi−2, and let Bi+2 be the Ai+2-clique such that Yi ∪ Yi−1 is

complete to Bi+2, and anticomplete to Ai+2 \Bi+2.

Lemma 3.22 The following hold, for each i:

(i) For j ∈ {i− 1, i+ 1}, each Aj-clique has a vertex which is complete to Yi.

(ii) Yi+1 is anticomplete to Xi ∪Xi+2.

(iii) At least one of Xi, Yi+2 ∪ Yi−2 is empty.

(iv) Each y ∈ Yi+1 and x ∈ Xi have a common neighbor in each Ai, Ai+2 and Ai−2, and each

y ∈ Yi+1 and x ∈ Xi+2 have a common neighbor in each Ai, Ai+2 and Ai−1.

(v) If Xi ̸= ∅, then Yi+1 ∪ Yi−1 is complete to Ai.

(vi) If X ̸= ∅, then Yi is anticomplete to Yi+2 ∪ Yi−2.

(vii) If X ̸= ∅, then no vertex in T has neighbors in both Yi−1 and Yi+1.

Proof. (i): We prove the statement for j = i+1. If Ai+1 is not a clique, then by Lemma 3.10:(ii), Yi

is complete to Ai+1, and Lemma 3.22:(i) holds; so assume that Ai+1 is a clique. Now if G[Yi∪Ai+1]

contains a C4, say with vertex-set {p, q, r, s}, then for any a ∈ Bi+2, {p, q, r, s, a} induces a 4-wheel,

a contradiction; so G[Yi ∪Ai+1] is C4-free. Since Yi is a clique (by Lemma 3.20:(iv)) and since each

vertex in Yi has a neighbor in Ai+1 (which is a clique), by Lemma 3.2, Ai+1 has a vertex which is

complete to Yi. This proves Lemma 3.22:(i).
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(ii): Suppose, up to symmetry, there are adjacent vertices, say y ∈ Yi+1 and x ∈ Xi. Pick a neighbor

of y in each Ai−1 and Ai, say p and q respectively. If x and y have a common neighbor in Ai−2, say

r, then, by Lemma 3.4:(ii), {q, x, r, p, y} induces a 4-wheel, a contradiction; so there is a vertex,

say w ∈ Ai−2 such that yw ∈ E(G) and xw /∈ E(G). Then by Lemma 3.4:(v), {x} is complete to

Ai+2. Now pick any neighbor of y in Ai+2, say s. Then, by Lemma 3.4:(ii), {p, q, x, s, w, y} induces

a 5-wheel, a contradiction. So Yi+1 is anticomplete to Xi. Likewise, Yi+1 is anticomplete to Xi+2.

This proves Lemma 3.22:(ii).

(iii): Suppose not. Let x ∈ Xi and, up to symmetry, let y ∈ Yi+2. Pick any neighbor of y in Ai−1,

say p. It follows from Lemma 3.4:(iii) and Lemma 3.10:(ii) that x and y have a common neighbor

in Ai−2, say a. Now if xy ∈ E(G), then for any neighbor of y in Ai, say a
′, by Lemma 3.4:(ii),

{p, a, x, a′, y} induces a 4-wheel, a contradiction; so we may assume that xy /∈ E(G). Then pick a

neighbor of y in Ai+1, say b, and a neighbor of x in Ai+2, say b
′; but then {p,y,b,b′,x} induces a P5

which is a contradiction. So Lemma 3.22:(iii) holds.

(iv): We prove the first assertion, and the proof of the other is similar. Suppose y ∈ Yi+1 and

x ∈ Xi. By Lemma 3.4:(ii), {x} is complete to Ai, and so by the definition of Yi+1, x and y have

a common neighbor in Ai. By Lemma 3.22:(ii), we know that yx /∈ E(G). Now x and y have a

common neighbor in each Ai+2 and Ai−2, by Observation 1. This proves Lemma 3.22:(iv).

(v): Let x ∈ Xi. Let y ∈ Yi+1 and a ∈ Ai, and suppose y and a are non-adjacent. By Lemma 3.22:(ii),

xy /∈ E(G), and by Lemma 3.22:(iv), x and y have a common neighbor in Ai−2, say a
′. Then by

Lemma 3.4:(ii), {y,a′,x,a,vi+1} induces a P5, a contradiction. So Yi+1 is complete to Ai. Likewise,

Yi−1 is complete to Ai. This proves Lemma 3.22:(v).

(vi): Suppose not. We may assume that there are adjacent vertices, say y ∈ Yi and y
′ ∈ Yi+2. Since

Yi, Yi+2 ≠ ∅, by Lemma 3.22:(iii), Xj = ∅, for j ≠ i+1. Now we claim that Xi+1 = ∅. Suppose not.
Let x ∈ Xi+1. Then by Lemma 3.22:(ii), {y, y′} is anticomplete to {x}, and by Lemma 3.22:(v),

{y, y′} is complete to {vi+1}. If y and y′ have a common neighbor in Ai−2, say a, then for any

neighbor of y in Ai+2, say a
′, {a, a′, vi+1, y

′, y} induces a 4-wheel, a contradiction. So we may

assume that y and y′ do not share a common neighbor in Ai−2. Now by Lemma 3.22:(iv), x and

y have a common neighbor in Ai−2, say p. But then for any neighbor of y′ in Ai, say q, we see

that {x,p,y,y′,q} induces a P5, a contradiction; so Xi+1 = ∅. Thus we conclude that X = ∅, a
contradiction to our assumption that X ̸= ∅. So Lemma 3.22:(vi) holds.

(vii): We prove the assertion for i = 1. If some vertex in T , say t, has neighbors in both Y2 and Y5,

say y and y′, respectively. Then by Lemma 3.22:(vi), yy′ /∈ E(G). Now pick a neighbor of y in A5,

say a, and a neighbor of y′ in A2, say a
′, and then {a,y,t,y′,a′} induces a P5, a contradiction. So

Lemma 3.22:(vii) holds.

For i ∈ [5], if Yi ∪ Yi+2 ̸= ∅ and if there is a vertex in each Ai+1-clique which is complete to

Yi ∪ Yi+2, then we pick one such vertex, and let Ai+1 be the union of those vertices; otherwise, we



CHAPTER 3. COLORING (P5, 4-WHEEL)-FREE GRAPHS 84

let Ai+1 := RAi+1
. (In any case, Ai+1 is a maximum independent set of Ai+1.)

Lemma 3.23 The set Ai−1 ∪ Ai−2 meets each maximal clique of G in G[Ai−1 ∪ Ai−2 ∪ Yi ∪ Yi+1]

twice. Likewise, Ai+1 ∪ Ai+2 meets each maximal clique of G in G[Ai+1 ∪ Ai+2 ∪ Yi ∪ Yi−1] twice.

Proof. By Lemma 3.20:(iv) and Lemma 3.20:(v), Yi∪Yi+1 is a clique. Also, we know that Yi∪Yi+1 is

complete to Bi−2, and anticomplete to Ai−2\Bi−2. Also, Yi+1 is complete to Bi−1, and anticomplete

to Ai−1 \Bi−1. Let M be a maximal clique in G[Ai−2 ∪Ai−1 ∪ Yi ∪ Yi+1]. If M has no vertex from

Yi, clearly the assertion holds. So M ∩Yi ̸= ∅. If M has no vertex from Yi+1, then M is of the form

Yi ∪ Bi−2 ∪Di−1, where Di−1 is a subset of some Ai−1-clique A
∗, and is the set of vertices in A∗

which are complete to Yi (by Lemma 3.22:(i)). Since Ai−2 ∪ Ai−1 contains vertices from both Bi−2

and Di−1, the claim holds. Finally, if M ∩ Yi+1 ̸= ∅, then by Lemma 3.20:(v), M is of the form

Yi ∪ Yi+1 ∪Bi−2 ∪Di−1, where Di−1 is a subset of Bi−1, and is the set of vertices in Bi−1 which are

complete to Yi (by Lemma 3.22:(i)). So again, as earlier, Ai−2 ∪ Ai−1 meets M twice. This proves

Lemma 3.23.

Lemma 3.24 If Y is non-empty, and X is empty, then G is either a nice graph or a quasi-line

graph.

Proof. Since X is empty, by Lemma 3.20:(vi), T = ∅. Now:

3.24.1 If there is an i ∈ [5] such that Yi and Yi+2 are not complete to Ai+1, then Ai is a clique,

for all i ∈ [5].

Proof of 3.24.1. Since Yi is not complete to Ai+1, by Lemma 3.10:(ii), Ai+1 is a clique, and

by Lemma 3.20:(iii), Ai+2 ∪ Ai−2 is a clique. Likewise, since Yi+2 is not complete to Ai+1, by

Lemma 3.20:(iii), Ai−1 ∪Ai is a clique. Thus we conclude that Ai is a clique, for all i. This proves

3.24.1.

3.24.2 If Ai is a clique, for all i ∈ [5], then G is 3K1-free.

Proof of 3.24.2. Suppose that G contains a 3K1 with vertex-set, say {u, v, w}. Since G[A] is

3K1-free, we may assume that u ∈ Yj, for some j. Then by Lemma 3.10:(iii) and Lemma 3.20:(i),

{u} is complete to either Aj+1 ∪Aj+2 ∪Aj−2 or Aj+2 ∪Aj−1 ∪Aj−2; we may assume, without loss

of generality, that {u} is complete to Aj+1 ∪ Aj+2 ∪ Aj−2. Since Aj ∪ Aj−1 ∪ Yj+2 is a clique (by

Lemma 3.20:(i)), and since Yj is complete to Yj+1 ∪ Yj−1 (by Lemma 3.20:(v)), one of v, w belongs

to Yj−2; and we may assume that v ∈ Yj−2. Then by Lemma 3.20:(i), {v} is complete to Aj ∪Aj+1.

So w ∈ Aj−1. But then for any neighbor of u in Aj−2, say a, and for any neighbor of v in Aj, say

b, we see that {u,a,w,b,v} induces a P5, a contradiction. So 3.24.2 holds.

First suppose that there is an i ∈ [5] such that Yi is not anticomplete to Yi+2. Let y ∈ Yi and

y′ ∈ Yi+2 be adjacent. Suppose y and y′ share a common neighbor in Ai+1, say a. We know, by

Lemma 3.10:(ii) and Lemma 3.20:(i), that y and y′ share a common neighbor in Ai−1, say a
′. Then
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for a neighbor of y′ in Ai, say a
′′, {a, y, a′, a′′, y′} induces a 4-wheel, a contradiction; so suppose

that y and y′ do not share a common neighbor in Ai+1. Thus y and y′ are not complete to Ai+1,

hence Yi and Yi+2 are not complete to Ai+1. Then by 3.24.1, Ai is a clique for all i ∈ [5], and then,

by 3.24.2, G is 3K1-free. So, by Lemma 3.1, G is either a quasi-line graph or a nice graph, and we

are done.

Next we may assume that for each i ∈ [5], Yi is anticomplete to Yi+2∪Yi−2. By Lemma 3.20:(v),

Yi is complete to Yi+1 ∪ Yi−1. See Figure 13:(c) for a sketch of G. Also, we may assume that if

Yi and Yi+2 are non-empty, then at least one of Yi, Yi+2 is complete to Ai+1 (for, otherwise, by

3.24.1 and 3.24.2, G is 3K1-free, and we conclude using Lemma 3.1). Now we define three sets

S1 := A1 ∪ A3, S2 := A2 ∪ A4 and S3 := A5. Then S1, S2 and S3 are stable sets. Clearly, for

i ∈ [5], by Lemma 3.20:(iv) and Lemma 3.21, Ai+2 ∪ Ai−2 meets each maximal clique of G in

G[Yi ∪ Ai+2 ∪ Ai−2] twice, and by Lemma 3.23, Ai+1 ∪ Ai+2 meets each maximal clique of G in

G[Yi ∪ Yi−1 ∪Ai+1 ∪Ai+2] twice. So we conclude that S1 ∪ S2 ∪ S3 meets each maximum clique of

G at least twice, and meets other maximal cliques of G at least once, and hence G is nice. This

completes the proof of Lemma 3.24.

Now we prove our main result of this subsection, and is given below.

Theorem 3.25 If a connected (P5, wheel)-free atom G contains a C5, then G is either a nice graph

or a quasi-line graph.

Proof. Let G be a connected (P5, wheel)-free atom that contains a C5, say with vertex-set

{v1, v2, v3, v4, v5} and the edge-set {v1v2, v2v3, v3v4, v4v5, v5v1}. Then we define the sets A, X,

Y , Z and T as in Section 3.3 with vi ∈ Ai, for each i, and we use the lemmas in Section 3.3, and

properties in Lemmas 3.16 and 3.17 and Lemmas 3.20 to 3.23. Since Z = ∅, if T ̸= ∅, then G[T ]
is P3-free (by Lemma 3.10:(v)). Let M be the set of maximum cliques of G. Let L be the set

that consist of one vertex from each T -clique, otherwise let L := ∅, and let L′ be the set that

consist of one vertex (which is not in L) from each non-trivial T -clique, otherwise let L′ := ∅.
By Lemma 3.8, for j ∈ [5], if Xj, Xj+1 ̸= ∅, RXj

∪ RXj+1
∪ RAj−2

meets each maximal clique

of G in G[Xj ∪ Xj+1 ∪ Aj−2] at least twice. Now if X ∪ Y = ∅, then since G is connected, by

Lemma 3.20:(vi), T = ∅, and then the sets S1 := RA1 ∪RA3 , S2 := RA2 ∪RA4 and S3 := RA5 are

the desired stable sets, and we are done. If one of X, Y is empty, then the theorem follows from

Lemmas 3.19 and 3.24. So we may assume that both X and Y are non-empty. Now if Yi+1 ̸= ∅,
then by Lemma 3.4:(iii) and Lemma 3.22:(iv), Xi is complete to Bi−2, and Xi+2 is complete to

Bi−1. Recall that since X ̸= ∅, by Lemma 3.22:(vi), Yi is anticomplete to Yi+2 ∪Yi−2. Now we split

the proof into two cases.

Case 1 For each i ∈ [5], one of Xi, Yi is empty.

Since Y ̸= ∅, let Y2 ̸= ∅; so X2 = ∅. By Lemma 3.22:(iii), X4 ∪ X5 = ∅. Since X ≠ ∅,
X1 ∪X3 ̸= ∅; we may assume that X1 ̸= ∅; so Y1 = ∅. Again by Lemma 3.22:(iii), Y3 ∪ Y4 = ∅.
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By Lemma 3.22:(v), Y2 ∪ Y5 is complete to A1. By Lemma 3.22:(ii), Y2 ∪ Y5 is anticomplete to

X1 ∪X3. Recall that Y2 is complete to B4 ∪B5, and anticomplete to (A4 \B4) ∪ (A5 \B5), and

since Y2 ̸= ∅, X1 is complete to B4. Moreover, we have the following:

3.25.1 If T ̸= ∅, then the following hold: (a) T is complete to Y2. (b) For j ∈ {1, 3}, given an

Xj-clique, say X
∗
j , each T -clique is either complete or anticomplete to X∗

j . (c) Y5 = ∅.

Proof of 3.25.1. (a): Let T ′ be a T -clique in G. Then by Lemma 3.20:(vi), N(T ′) ∩ (X1 ∪X3) ̸= ∅.
Since Y2 is anticomplete to X1 ∪X3 (by Lemma 3.22:(ii)), it follows from Lemma 3.11:(i) that T ′

is complete to Y2. This proves (a), since T
′ is arbitrary.

(b): Since Y2 is anticomplete to X1∪X3, (b) follows from (a), Lemma 3.11:(ii) and Lemma 3.20:(vi).

(c): Suppose that Y5 ̸= ∅. Then, by Lemma 3.22:(iii), X3 = ∅. Let t ∈ T . Then by Lemma 3.20:(vi),

t has a neighbor in X1. Since Y2 ∪ Y5 is anticomplete to X1 (by Lemma 3.22:(ii)), it follows from

Lemma 3.11 that t has neighbors in both Y2 and Y5 which is a contradiction to Lemma 3.22:(vii).

This proves (c).

3.25.2 If T ̸= ∅, then Y2 is complete to either A4 or A5. So, if T ̸= ∅, either A4 or A5 is a clique.

Proof of 3.25.2. Suppose not. Then there are vertices, say y ∈ Y2, p ∈ A4 and q ∈ A5 such that

yp, yq /∈ E(G). Let t ∈ T . Then by 3.25.1:(a), yt ∈ E(G). But then since Y2 is complete to A1, for

any neighbor of y in A1, say r, we see that {p,q,r,y,t} induces a P5, a contradiction. So the first

assertion of 3.25.2 holds. The second assertion of 3.25.2 follows from the first assertion of 3.25.2

and Lemma 3.21.

3.25.3 If K is an X1-clique and D is an A3-clique, then either K is complete to D or K is

anticomplete to D. Likewise, if K ′ is an X3-clique and D′ is an A1-clique, then either K ′ is

complete to D′ or K ′ is anticomplete to D′.

Proof of 3.25.3. Suppose that K is not anticomplete to D. Then, there is an x ∈ K which has a

neighbor in D. Let a ∈ D be such that a ∈ A3 (such a vertex exists, by Lemma 3.22:(i)). Then by

Lemma 3.4:(iii), {x} is complete to D; so xa ∈ E(G). Let x′ (̸= x) ∈ K be arbitrary. We claim

that {x′} is complete to D. Suppose not. Then again by Lemma 3.4:(iii), {x′} is anticomplete to

D; so x′a /∈ E(G). But then, for any y ∈ Y2 and b ∈ B5, {x′,x,a,y,b} induces a P5, a contradiction.

So {x′} is complete to D. Since x′ is arbitrary, K is complete to D. This proves 3.25.3.

3.25.4 If K is an X1-clique and D is an A4-clique, then either K is complete to D or K is

anticomplete to D. Likewise, if K ′ is an X3-clique and D′ is an A5-clique, then either K ′ is

complete to D′ or K ′ is anticomplete to D′.

Proof of 3.25.4. Suppose that K is not anticomplete to D. We may assume that D ̸= B4. Then,

there is an x ∈ K which has a neighbor in D, say a. Let x′ ( ̸= x) ∈ K be arbitrary. We claim
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that {x′} is complete to D. Suppose not. Then, by Lemma 3.4:(iii), {x′} is anticomplete to D; so

x′a /∈ E(G). But then, for any y ∈ Y2 and b ∈ B5, {x′,x,a,b,y} induces a P5, a contradiction. So

{x′} is complete to D. Since x′ is arbitrary, K is complete to D. This proves 3.25.4.

Now consider any maximum clique of G in G[Xi ∪ Ai+2 ∪ Ai−2], say M . Then by 3.25.3 and

3.25.4, M ∩ Ai+2,M ∩ Ai−2 ̸= ∅, M ∩ Ai+2 is an Ai+2-clique and M ∩ Ai−2 is an Ai−2-clique.

A4 A3
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A1

A5

B4 B3

B2B5
Y5

Y2

X1

X3

(a)(a)(a)
A4 A3

A2
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A4 A3
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(d)(d)(d)

Figure 14: Sketch of the graph G in Theorem 3.25: (a) Case 1 when T = ∅. (b) Case 1 when T ≠ ∅.
(c) Case 2 when X2 ∪X5 = ∅. (d) Case 2 when X5 ̸= ∅.

See Figure 14:(a) and Figure 14:(b). By Lemma 3.16:(ii) and 3.25.3, we conclude that each

X1-clique is either complete or anticomplete to K, where is K is an A3-clique or an X3-clique.

Likewise, each X3-clique is either complete or anticomplete to K ′, where K ′ is an A1-clique or an

X1-clique. Thus, by Lemma 3.4:(ii) and Observation 3, for j ∈ {1, 3}, RX1 ∪ RX3 ∪ RAj
meets

each maximal clique of G in G[X1 ∪X3 ∪ Aj] at least twice. Also, by Lemma 3.16:(ii), 3.25.1:(b),

and by Observation 3, RX1 ∪RX3 ∪RT meets each maximal clique of G in G[X1 ∪X3 ∪ T ] at least
twice. Clearly RA1 ∪ RA5 meets each maximal clique of G in G[Y2 ∪ A1 ∪ A5] twice. Likewise,

RA1 ∪RA2 meets each maximal clique of G in G[Y5 ∪ A1 ∪ A2] twice.

Now if T = ∅, then using Lemma 3.17:(i) and by Lemma 3.23, we see that the sets S1 :=

RA2 ∪RA5 ∪RX1 , S2 := RA1 ∪A3 and S3 := A4∪RX3 are the desired stable sets. So we may assume

that T ̸= ∅. By 3.25.1, Y5 = ∅. By 3.25.2, up to relabeling, we may assume that A5 is a clique.

Now we let S1 := RA2 ∪RA5 ∪RX1 , S2 := RA1 ∪ A3 ∪RT and S3 := RA4\B4 ∪RX3 ∪RY2 . Clearly,

S1, S2 and S3 are stable sets. Let S := S1 ∪ S2 ∪ S3. To justify that S meets each maximum clique

of G that has vertices from A3 ∪B4, at least twice, we need the following.

3.25.5 If M ∈ M has vertices from both B4 and an A3-clique A
∗
3, and no vertex from Y2, then M

is of the form X∗
1 ∪B4 ∪ A∗

3, where X
∗
1 is an X1-clique, and B4 ∪ A∗

3 /∈ M.

Proof of 3.25.5. If X∗
1 is complete to A∗

3, then M is of the form X∗
1 ∪B4 ∪A∗

3, and we are done. So,

we may assume, by 3.25.3, that X∗
1 is anticomplete to A∗

3. Then, by Lemma 3.4:(iii), A3 is not a
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clique, and then by Lemma 3.10:(ii), A3 is complete to Y2. But now since Y2 ∪B4 ∪ A∗
3 is a larger

clique than B4 ∪ A∗
3, we have B4 ∪ A∗

3 /∈ M. This proves 3.25.5.

Now by Lemma 3.17:(i) and 3.25.5, RX1 ∪RA4\B4 ∪RA3 meets each maximum clique of G in

G[X1 ∪ A3 ∪ A4] twice. Clearly, RA5 ∪ RY2 meets each maximum clique of G in G[Y2 ∪ B4 ∪ A5]

twice, A3 ∪ RY2 meets each maximum clique of G in G[Y2 ∪ A3 ∪ A4] twice (by Lemma 3.23),

RA5 ∪ RA4\B4 meets each maximum clique of G in G[(A4 \ B4) ∪ A5], and RY2 ∪ RT meets each

maximum clique of G in G[Y2 ∪ T ] twice. Thus, we conclude that S meets each maximum clique

of G at least twice, and meets other maximal cliques of G at least once, and that G is nice.

Case 2 There is an index i ∈ [5] such that Xi and Yi are non-empty.

Let i = 1. Then by Lemma 3.22:(iii), X3 ∪X4 ∪ Y3 ∪ Y4 = ∅. Recall that Y1 is anticomplete to

X2 ∪X5 (by Lemma 3.22:(ii)), and complete to Y2 ∪ Y5 (by Lemma 3.20:(v)). Also X1 is complete

to X2 ∪X5 (by Lemma 3.5:(v)). By Lemma 3.21, Y1 ∪ Y2 is complete to B4, and anticomplete

to A4 \ B4; Y1 ∪ Y5 is complete to B3, and anticomplete to A3 \ B3. Also, by Lemma 3.4:(iii)

and Lemma 3.22:(iv), X2 is complete to B4, and X5 is complete to B3. Note that since Y1 ̸= ∅,
B3, B4 ̸= ∅. Since X1 ≠ ∅, by Lemma 3.22:(v), Y2 ∪ Y5 is complete to A1. Recall that since Z = ∅,
each vertex in X ∪ Y is either anticomplete to T or good with respect to T . By Lemma 3.17:(iii),

RXi
∪ RAi+2

∪ RAi−2
meets each maximum clique of G in G[Xi ∪ Ai+2 ∪ Ai−2] twice, and meets

other maximal cliques in G[Xi ∪ Ai+2 ∪ Ai−2] once. To proceed further we claim following:

3.25.6 Suppose x ∈ X1 has a neighbor in (A3 \B3) ∪ (A4 \B4). Then {x} is complete to Y1.

Proof of 3.25.6. We may assume, up to symmetry, that x has a neighbor in A3 \ B3, say p. Let

y ∈ Y1, and suppose x and y are non-adjacent. Now pick a neighbor of y in A5, say a. Then for

any a′ ∈ A1, by Lemma 3.4:(ii), {p,x,a′,a,y} induces a P5, a contradiction. So 3.25.6 holds.

3.25.7 Let M be a maximal clique of G containing at least one vertex from each of X1 and Y1,

and no vertex from T . Then RB3 ∪RB4 ∪RX1 meets M at least twice.

Proof of 3.25.7. Let M ∩ X1 = X∗
1 and let D be the X1-clique such that X∗

1 ⊆ D. Recall that

Y1 is complete to B3 ∪ B4. Now we claim that D is complete to either B3 or B4. Suppose not.

Then by Lemma 3.4:(iv) and Lemma 3.4:(v), there are vertices, say x, x′ ∈ D such that {x} is

anticomplete to B3, and {x′} is anticomplete to B4. Then by the definition of X1, x has a neighbor

in A3 \ B3, and x
′ has a neighbor in A4 \ B4. So, by 3.25.6, {x, x′} is complete to Y1. Then by

3.25.6 and Lemma 3.4:(v), for any y ∈ Y1, b ∈ B3 and b
′ ∈ B4 then {x, b′, b, x′, y} induces a 4-wheel,

a contradiction; so D is complete to either B3 or B4. Now since M is a maximal clique and X∗
1 is

either complete to B3 or B4, we conclude that M ∩ (B3 ∪B4) ̸= ∅. If X∗
1 is complete to B3 ∪B4,

then clearly the assertion holds. So we assume that X∗
1 is not complete to B4, then there is an

x ∈ X∗
1 such that {x} is anticomplete to B4 (by Lemma 3.4:(iii)). So by a previous argument, D

is complete to B3. Next we claim that D is complete Y1. Suppose there are vertices, say x′ ∈ D
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and y ∈ Y1 such that x′y /∈ E(G). By 3.25.6, x ̸= x′, and {x′} is anticomplete to A4 \ B4, so by

the definition of X1, x
′ must have a neighbor in B4. Then by 3.25.6 and Lemma 3.4:(iv), for any

a ∈ B3 and a′ ∈ B4, {a′, x′, x, y, a} induces a 4-wheel, a contradiction. So D is complete Y1. Since

B3 ∪D ∪ Y1 is a clique and M is a maximal clique, we have X∗
1 = D and hence M = B3 ∪D ∪ Y1.

Then clearly RB3 ∪RB4 ∪RX1 meets M at least twice. This proves 3.25.7.

3.25.8 Suppose that X2 ∪ X5 = ∅, and let Q be a T -clique. If there is an M ∈ M such that

Q ⊆M , then |Q| ≥ 2.

Proof of 3.25.8. Recall that each vertex in X ∪ Y is either complete or anticomplete to Q. For

j ∈ {1, 2, 5}, let Y ∗
j := N(Q)∩ Yj . First suppose that (M \Q)∩X = ∅. If M \Q = Y ∗

1 ∪ Y ∗
2 , then

|Y ∗
1 ∪ Y ∗

2 ∪Q| ≥ |B4 ∪ Y1 ∪ Y2 ∪ {b3}|, where b3 ∈ B3 is the vertex such that {b3} is complete to Y2

(by Lemma 3.22:(i)), hence |Q| ≥ 2. Likewise, if M \Q = Y ∗
1 ∪ Y ∗

5 , then |Q| ≥ 2. So we assume

that (M \Q) ∩X ̸= ∅. Then M \Q = X∗
1 ∪ Y ∗

1 where X∗
1 is a subset of some X1-clique such that

N(Q)∩X∗
1 ≠ ∅. Then by Lemma 3.5:(iii), X∗

1 is complete to A3 ∪A4; in particular X∗
1 is complete

to B3 ∪B4. So |X∗
1 ∪ Y ∗

1 ∪Q| ≥ |B3 ∪B4 ∪X∗
1 ∪ Y ∗

1 |, thus |Q| ≥ 2. This proves 3.25.8.

First suppose that X2 ∪X5 = ∅, and we apply 3.25.8. We refer to Figure 14:(c) for a sketch of

the graph G. Then, by Lemma 3.23, ∪5
i=1Ai meets each maximum clique of G in G[A ∪ Y ] twice.

Since X1 is anticomplete to Y2 ∪ Y5, by 3.25.7, and by Lemma 3.23, A3 ∪ A4 ∪ RX1 meets each

maximum clique of G in G[X ∪Y ∪A3 ∪A4] twice, and clearly, by Lemma 3.4:(ii), A1 ∪RX1 meets

each maximum clique of G in G[X1∪A1] twice. Then since each vertex in X ∪Y is either complete

or anticomplete to a T -clique, by 3.25.8, we conclude that S1 := A2 ∪A5 ∪RX1 , S2 := A1 ∪A4 ∪ L
and S3 := A3 ∪ L′ are the required stable sets.

Next suppose that X2 ∪X5 ̸= ∅. We may assume, up to symmetry, that X5 ≠ ∅. Then, by

Lemma 3.22:(iii), Y2 = ∅. Next we claim that X1 is complete to Y1. Suppose to the contrary

that there are non-adjacent vertices, say x ∈ X1 and y ∈ Y1. Then, by 3.25.6, {x} is complete

to B3 ∪ B4. Now pick any x′ ∈ X5, a ∈ B3, a
′ ∈ B4, and pick a common neighbor of x′ and y in

A2, say a
′′ (by Lemma 3.22:(iv)). Then since X5 is complete to B3, we see that {y, a′, x, x′, a′′, a}

induces a 5-wheel, a contradiction; so X1 is complete to Y1. Further, if there are adjacent vertices,

say x ∈ X1 and b ∈ B3, then for any x′ ∈ X5, y ∈ Y1, by Lemma 3.22:(iv), x′ and y have a

common neighbor in A2, say a, and then, by Lemma 3.5:(v), {x, y, a, x′, b} induces a 4-wheel, a

contradiction; so X1 is anticomplete to B3. Likewise, if X2 ̸= ∅, then X1 is anticomplete to B4, a

contradiction to Lemma 3.4:(v); so X2 = ∅. Since X1 is anticomplete to B3, by Lemma 3.22:(iv),

Y5 = ∅, and by Lemma 3.5:(iii), X1 is anticomplete to T . By Lemma 3.20:(vi), each vertex in T

has a neighbor in X5, and so by Lemma 3.11, T is complete to Y1. Hence again by Lemma 3.11,

each T -clique is either complete or anticomplete to an X5-clique. See Figure 14:(d) for a sketch

of the graph G. Moreover, if there is a M ∈ M which has vertices from a T -clique T ∗ and from

Y1, then |Y1 ∪ T ∗| ≥ |Y1 ∪ B3 ∪ B4|, and so |T ∗| ≥ 2. Now we let S1 := A2 ∪ A5 ∪ RX1 ∪ L,

S2 := RA1 ∪RA4 ∪RX5 and S3 := RA3 ∪L′. Then RX5 ∪L∪L′ meets each maximum clique of G in
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G[X∪Y ∪T ] at least twice, and meets other maximal cliques once. Also, by 3.25.7, RA3∪RA4∪RX1

meets each maximum clique of G in G[X1 ∪ Y1 ∪ A3 ∪ A4] twice, and meets other maximal cliques

once. By Lemma 3.8, RX1 ∪ RX5 ∪ RA3 meets each maximal clique of G in G[X1 ∪X5 ∪ A3] at

least twice. Now by using Lemma 3.23, we observe that S1 ∪ S2 ∪ S3 meets each maximum clique

of G at least twice, and meets other maximal cliques at least once. So G is nice. This completes

the proof of Theorem 3.25.

3.4.3 Structure of (P5,C5, 4-wheel)-free graphs that contain a C7

Let C∗ be the C7 with vertices v1, v2, . . . , v7 and edges vivi+1 and vivi+2 for each i modulo 7. Let H∗

be the graph obtained from C∗ by adding two vertices v8 and v9 and edges v8v1, v8v2, v8v5, v9v5, v9v6

and v9v2.

Theorem 3.26 If a connected (P5,C5, 4-wheel)-free graph G contains a C7, then G is a P3-free

expansion of H∗, and hence G is nice.

Proof. For convenience, we consider the complement graph ofG, sayH. SoH is a (P5,C5, 2K2+K1)-

free graph such that H (∼= G) is connected, and contains a C7, say with vertex-set {u1, u2, . . . , u7}
and the edge-set {u1u2, u2u3, . . . , u6u7, u7u1}. So we may assume that there are seven non-empty

and pairwise disjoint sets A1, ..., A7 such that for each imodulo 7 the set Ai is complete to Ai−1∪Ai+1,

and anticomplete to Ai−2 ∪Ai−3 ∪Ai+2 ∪Ai+3 and let ui ∈ Ai. Let A := A1 ∪ · · · ∪A7. We choose

these sets such that A is maximal. For each i ∈ [7], let Bi denote the set {x ∈ V (H) \ A | x has a

neighbor in each Aj , j ∈ {i, i+ 1, i+ 2, i+ 3}, and {x} is anticomplete to Ai−1 ∪Ai−2 ∪Ai−3}. Let
B := B1∪· · ·∪B7. Let D denote the set {x ∈ V (H)\A | x has a neighbor in Ai, for each i ∈ [7]}.
Moreover, the following hold, for each i ∈ [7]:

3.26.1 Let P be a P4 in H, say with vertex-set {a1, a2, a3, a4} and the edge-set {a1a2, a2a3, a3a4}.
Then any vertex in V (H) \ V (P ) which is adjacent to both a1 and a4, is adjacent to both a2 and a3.

Proof of 3.26.1. If there is a vertex, say p ∈ V (H) \ V (P ) such that a1p, a4p ∈ E(G) and {p} is

not adjacent to both a2 and a3, then {a1, a2, a3, a4, p} induces a C5 or P5, a contradiction. So any

vertex in V (H) \ V (P ) which is adjacent to both a1 and a4, is adjacent to both a2 and a3. This

proves 3.26.1.

3.26.2 Each vertex in V (H) \ A has a neighbor in A.

Proof of 3.26.2. If some x ∈ V (H) \ A has no neighbor in A, then {u1, u2, u4, u5, x} induces a

2K2 +K1, a contradiction. So 3.26.2 holds.

3.26.3 Let x ∈ V (H)\ (A∪D). Suppose x has a neighbor in Ai. Then exactly one of N(x)∩Ai−2,

N(x) ∩ Ai+2 is non-empty.
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Proof of 3.26.3. Suppose not, and let i = 1. Let a be a neighbor of x in A1. If N(x) ∩ A3 = ∅ and

N(x) ∩ A6 = ∅, then by 3.26.1, N(x) ∩ A5 = ∅, and then {a, x, u5, u6, u3} induces a 2K2 +K1, a

contradiction; so we may assume that N(x) ∩ A3 ̸= ∅ and N(x) ∩ A6 ̸= ∅. Then by 3.26.1, {x} is

complete to A4 ∪ A5. Then, again by using 3.26.1, we see that {x} is complete to A2 ∪ A7. But

then x ∈ D, a contradiction. So 3.26.3 holds.

3.26.4 V (H) = A ∪B ∪D.

Proof of 3.26.4. Let x ∈ V (H) \ (A ∪D). Then, by 3.26.2, we may assume that x has a neighbor

in Ai, say ai. By 3.26.3, we may assume that N(x) ∩ Ai+2 ̸= ∅ and {x} is anticomplete to Ai−2.

Then, by 3.26.1, {x} is anticomplete Ai−3. Let ai+2 be a neighbor of x in Ai+2. We claim that x

has a neighbor in Ai+1. Suppose {x} is anticomplete to Ai+1. Then, by 3.26.1, {x} is anticomplete

to Ai+3 ∪ Ai−1. Also, if x has a non-neighbor, say a′i, in Ai, then {a′i, ui−1, x, ai+2, ui−3} induces

a 2K2 +K1, a contradiction; so {x} is complete to Ai. Likewise, {x} is complete to Ai+2. But

then x can be added to Ai, contradicting the maximality of A. So we may assume that x has a

neighbor in Ai+1, say ai+1. Then by 3.26.1, x has no neighbors in both Ai+3 and Ai−1. But since

{x, ai+1, ui+3, ui−3, ui−1} does not induce a 2K2 +K1, x has a neighbor in exactly one of Ai+3 and

Ai−1, say x has a neighbor in Ai+3. So x ∈ Bi. This proves 3.26.4.

3.26.5 Ai is a stable set.

Proof of 3.26.5. If there are adjacent vertices in Ai, say p and q, then {p, q, ui+2, ui+3, ui−2} induces

a 2K2 +K1, a contradiction. So 3.26.5 holds.

3.26.6 H[Bi] is (K1 +K2)-free.

Proof of 3.26.6. If there is a K1 + K2 induced by the vertex-set, say {p, q, r}, in Bi, then

{ui−1, ui−2, p, q, r} induces a 2K2 +K1, a contradiction. So 3.26.6 holds.

3.26.7 Bi is complete to Ai ∪ Ai+1 ∪ Ai+2 ∪ Ai+3.

Proof of 3.26.7. Let x ∈ Bi and y ∈ Ai ∪Ai+1 ∪Ai+2 ∪Ai+3, and suppose x and y are non-adjacent.

Let ai+1 and ai+2 be neighbors of x in Ai+1 and Ai+2 respectively. By symmetry, we may assume

that y ∈ Ai ∪Ai+1. Now if y ∈ Ai, then {ui−1, y, x, ai+2, ui−3} induces a 2K2 +K1, a contradiction,

and if y ∈ Ai+1, then, by 3.26.5, yai+1 /∈ E(G), and then {ui−1, ui−2, x, ai+1, y} induces a 2K2+K1,

a contradiction. So 3.26.7 holds.

3.26.8 Bi is complete to Bi+1 ∪Bi−1.

Proof of 3.26.8. Let x ∈ Bi and y ∈ Bi+1 ∪ Bi−1, and suppose x and y are non-adjacent. By

symmetry, we may assume that y ∈ Bi+1. Then by 3.26.7, {x, ui+1, y, ui+4, ui+3} induces a P5, a

contradiction. So 3.26.8 holds.

3.26.9 If Bi ̸= ∅, then Bi−3 ∪Bi−2 ∪Bi+2 ∪Bi+3 is empty.
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Proof of 3.26.9. Let x ∈ Bi. Suppose that there is a vertex, say x′ ∈ Bi+2. If xx′ ∈ E(G), then

by 3.26.7, {x,ui,ui−1,ui−2,x
′,x} induces a C5, a contradiction; so xx′ /∈ E(G), and then, by 3.26.7,

{x, ui+1, x
′, ui−3, ui−1} induces a 2K2 + K1, a contradiction. So Bi+2 = ∅. Likewise, Bi−2 = ∅.

Also, if there is a vertex, say y ∈ Bi+3, then, by 3.26.7, {ui−1, ui, x, ui+3, y} induces a C5 or a P5, a

contradiction. So Bi+3 = ∅. Likewise, Bi−3 = ∅. This proves 3.26.9.

3.26.10 D is complete to A ∪B.

Proof of 3.26.10. Suppose there are non-adjacent vertices, say x ∈ D and a ∈ Ai. Pick neighbors

of x in each Ai+1, Ai+2 and Ai−1, say p, q, and r respectively. Then {a, p, q, r, x} induces a P5,

a contradiction. So D is complete to A. Next, if there are non-adjacent vertices, say x ∈ D

and x′ ∈ Bi, then, by 3.26.7, and by the earlier argument, {x′, ui, ui−1, x, ui+3} induces a P5, a

contradiction. This proves 3.26.10.

Now since H is connected, we have D = ∅. So by above properties, if B = ∅, then G is a clique

expansion of C7. So we may assume that B1 ≠ ∅. Then by 3.26.9, B3 ∪ B4 ∪ B5 ∪ B6 is empty,

and one of B2, B7 is empty. Thus we conclude that G is a P3-free expansion of H∗. Let H∗ be

defined as earlier. By the definition of a expansion, V (G) is partitioned into Qvi , vi ∈ V (H∗), such

that each Qvi induces a P3-free graph. Now we let S1 := RQv1
∪RQv4

∪RQv9
, S2 := RQv2

∪RQv5

and S3 := RQv3
∪RQv7

∪RQv8
. Clearly S1, S2 and S3 are stable sets such that S1 ∪ S2 ∪ S3 meets

each maximal clique of G twice. So G is nice. This completes the proof of Theorem 3.26.

3.4.4 Main structural results

In this section, we state and prove our main structural decomposition theorem which is useful in

proving a near tight chromatic bound for the class of (P5, 4-wheel)-free graphs.

Theorem 3.27 Let G be a connected (P5, 4-wheel)-free atom. If G is imperfect, then one of the

following holds:

(1) If G contains a 5-wheel, then G is a nice graph.

(2) If G is 5-wheel-free and contains a C5, then G is either a nice graph or a quasi-line graph.

(3) If G is C5-free and contains a C7, then G is a nice graph.

Proof. Since each k-wheel, for k ≥ 6 has an induced P5, the proof of each of the item in Theorem 3.27

follows from Theorem 3.15, Theorem 3.25 and Theorem 3.26 respectively.

Theorem 3.28 If G is a connected (P5, 4-wheel)-free atom, then G is either a perfect graph, or a

nice graph, or a quasi-line graph.

Proof. Let G be a connected (P5, 4-wheel)-free atom. We may assume that G is imperfect. Then

since C2k+1 for k ≥ 3 contains a P5, and since C2k+1 for k ≥ 4 contains a 4-wheel, from Theorem 1.2,

G contains a C5 (∼= C5) or a C7. So it satisfies the hypothesis of one of the items of Theorem 3.27

and subsequently it satisfies the conclusion of that item. This proves Theorem 3.28.
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Figure 15: Example of a (P5, 4-wheel)-free graph G∗ with chromatic number 10 and clique number 7
(see also [33]). Here, a bold (or thick) line between two rectangles represents that every vertex inside a
rectangle is adjacent to every vertex in the other. For example, the vertex d3 is adjacent to both a1 and
b1. Likewise, u3 is adjacent to both d4 and u4.

3.5 Chromatic bound for (P5, 4-wheel)-free graphs

In this section, we prove a nearly tight chromatic bound for the class of (P5, 4-wheel)-free graphs.

Indeed, we prove the following.

Theorem 3.29 If G is a (P5, 4-wheel)-free graph, then χ(G) ≤ 3
2
ω(G). Moreover, there is a class

of (P5, 4-wheel)-free graphs L such that every graph H ∈ L satisfies χ(H) ≥ 10
7
ω(H).

Proof. Let G be a (P5, 4-wheel)-free graph. We prove the first assertion by induction on |V (G)|. We

may assume that G is connected and imperfect. First suppose that G has a clique cut-set, say Q. Let

V1 and V2 be a partition of V (G)\Q such that V1 and V2 are non-empty, and V1 is anticomplete to V2.

Then χ(G) = max{χ(G[Q ∪ V1]), χ(G[Q ∪ V2])} ≤ max{3
2
ω(G[Q ∪ V1]), 32ω(G[Q ∪ V2])} ≤ 3

2
ω(G),

and we are done. So we suppose that G is an atom, and we apply Theorem 3.28. Now if G

is a quasi-line graph, then by Theorem G, we have χ(G) ≤ 3
2
ω(G). So suppose that G is nice.

Then G has three stable sets S1, S2 and S3 such that ω(G− (S1 ∪ S2 ∪ S3)) ≤ ω(G)− 2. Hence
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χ(G) ≤ χ(G−(S1∪S2∪S3))+3 and so by induction hypothesis, χ(G) ≤ 3
2
(ω(G−(S1∪S2∪S3)))+3 ≤

3
2
(ω(G)− 2) + 3 = 3

2
ω(G). This proves the first assertion of Theorem 3.29.

To prove the second assertion of Theorem 3.29, we consider the graph H ∼= G∗[Kt]; see Figure 15

for the graph G∗. Then it is shown in [33] that H is (3K1, 4-wheel)-free (and hence (P5, 4-wheel)-

free), and that ω(H) = 7t. Moreover, since H has no stable set of size 3, χ(H) ≥ |V (H)|
2

= 20t
2

= 10t.

This completes the proof of Theorem 3.29.

3.6 Concluding remarks

In this chapter, we studied the structure and coloring of the class of (P5, 4-wheel)-free graphs. In

particular, we showed that if G is a (P5, 4-wheel)-free, then χ(G) ≤ 3
2
ω(G). The bound is tight for

ω = 2. For instance, if G is a K2-free expansion of a C5, then G is (P5, 4-wheel)-free, χ(G) = 3

and ω(G) = 2. Though we do not have a graph G with χ(G) = 3
2
ω(G), where ω(G) ≥ 3, the clique

expansion of G∗ makes us to believe that the bound given in Theorem 3.29 can be improved. So

we propose the following:

Conjecture 8 Every (P5, 4-wheel)-free graph G satisfies χ(G) ≤ ⌈10
7
ω(G)⌉. Moreover, the bound

is tight.

Also we note that our result generalizes/improves several previously mentioned known results

in the literature which are given in Table 4.

Graph Class G χ-bound for G ∈ G References

(2P2, C4)-free graphs ω(G) + 1 [9, 81, 129]

(2P2, K4 − e)-free graphs max{3, ω(G)} [74]

(2P2, 4-wheel)-free graphs ω(G) + 5 [104]

(3K1, C4)-free graphs
⌈
5
4ω(G)

⌉
[34]

(3K1, K4 − e)-free graphs max{3, ω(G)} [74]

(3K1, 4-wheel)-free graphs 2ω(G) [33]

(P5, C4)-free graphs
⌈
5
4ω(G)

⌉
[32]

(P5, K4 − e)-free graphs max{3, ω(G)} [74]

Table 4: Known chromatic bounds for some subclasses of (P5, 4-wheel)-free graphs.



Chapter 4

Coloring (P5, K5 − e)-free graphs

4.1 Introduction

A class of graphs G is said to be near optimal colorable [95] if there is a constant positive integer c

such that every graph G ∈ G satisfies χ(G) ≤ max{c, ω(G)}. In this chapter1, we are interested in

near optimal colorability for some classes of graphs.

Using Lovász theta function [127], Ju and Huang [95] observed that if G is a given hereditary

class of graphs such that every G ∈ G satisfies χ(G) ≤ max{c, ω(G)} for some constant c, and if

k-Coloring for G is polynomial time solvable for every fixed positive integer k ≤ c − 1, then

Chromatic Number for G can be solved in polynomial time.

For instance, since every (2P2, K1 ∨ P4)-free graph satisfies χ(G) ≤ max{3, ω(G)} [22] and

since every (P6, paw)-free graph satisfies χ(G) ≤ max{4, ω(G)} [136, 145], clearly the class of (2P2,

K1 ∨ P4)-free graphs and the class of (P6, paw)-free graphs are near optimal colorable. Moreover,

since k-Coloring can be solved in polynomial time for the class of 2P2-free graphs [86] and

4-Coloring can be solved in polynomial time for P6-free graphs [50], hence Chromatic Number

can be solved in polynomial time for such classes of graphs. Hence the study on near optimal

colorability for the class of (H1, H2)-free graphs, for various H1 and H2, is of interest.

For any two graphs H1 and H2, Ju and Huang [95] gave a characterization for the near optimal

colorability of (H1, H2)-free graphs with three exceptional cases. The three exceptional cases are

that when H1 is a forest and H2 ∈ {Kt, Kt − e, paw}, and we are interested in the following:

Problem 3 ([95]) Decide whether the class of (F,Kt − e)-free graphs is near optimal colorable

when F is a forest and t ≥ 4.

Problem 3 seems to be difficult in general even when F = Pℓ, ℓ ≥ 5. Recall that every

(P5, K4 − e)-graph G satisfies χ(G) ≤ max{3, ω(G)} [74], and that every (P6, K4 − e)-graph G

satisfies χ(G) ≤ max{6, ω(G)} [76]. Thus the class of (P5, K4 − e)-free graphs and the class of

1The results of this chapter are appearing in “A.Char and T.Karthick. On graphs with no induced P5 or K5 − e.
Submitted for publication. Available on: arXiv:2308.08166[math.CO] (2023).”
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(P6, K4 − e)-free graphs are near optimal colorable. However, it is unknown that whether the class

of (Pt, Kt − e)-free graphs (where t ≥ 5) is near optimal colorable or not.

Here we focus on the class of (P5, K5 − e)-free graphs. This class generalizes the class of

(P5, K4)-free graphs and the class of (P5, K4 − e)-free graphs. Recall that if G is a (P5, K5 − e)-free

graph with ω(G) ≤ 3, then χ(G) ≤ 5, and that the bound is tight [63]. Recently, Yian Xu [172]

claimed that every (P5, K5− e)-free graph G satisfies χ(G) ≤ max{13, ω(G)+ 1}, and the bound is

tight when ω(G) ≥ 12. However, the proof of the same seems to have some error as it is based on

the result which states that if a graph G is (P5, C5, K5 − e)-free and is not a complete graph, then

G is 10-colorable (which is obviously not true). For instance, the graph obtained from Kt, t ≥ 11,

by attaching a pendant vertex satisfies all assumptions of the said result, but is not 10-colorable.

Moreover, the tight examples given by Xu [172] for ω ≥ 12 are clearly not (K5 − e)-free. Later in

2024, Yian Xu [173] showed that if G is a (P5, K5 − e)-free graph containing a C5 and having no

clique cut-set, then χ(G) ≤ max{13, ω(G)}.

Moreover, Malyshev and Lobanova [132] showed the following:

Theorem H ([132]) Let G be a connected (P5, K5 − e)-free graph. If G has no clique cut-set, if

ω(G) ≥ 3× 67 = 839808, then G is 3K1-free graph.

Since every (3K1, K5 − e)-free graph H satisfies χ(G) ≤ ω(H) + 1 [108, 111], it follows from

Theorem H that if G is a connected (P5, K5 − e)-free graph with ω(G) ≥ 839808, then either

χ(G) ≤ ω(G) + 1 or G has a clique cut-set. In this chapter, we show the following:

(a) If G is a connected (P5, K5 − e)-free graph with ω(G) ≥ 7, then either G is the complement

of a bipartite graph or G has a clique cut-set. Moreover, there is a connected (P5, K5− e)-free

imperfect graph H with ω(H) = 6 and has no clique cut-set. This strengthens Theorem H.

(b) If G is a (P5, K5 − e)-free graph with ω(G) ≥ 4, then χ(G) ≤ max{7, ω(G)}. Moreover, the

bound is tight when ω(G) /∈ {4, 5, 6}. This together with a result of Esperet et al. [63] imply

that the class of (P5, K5 − e)-free graphs is near optimal colorable which partially answers

Problem 3, improves a result of Xu [172], and also generalizes/improves the result of [173].

While Chromatic Number is known to be NP-hard for the class of P5-free graphs, our results

together with some known results imply that Chromatic Number can be solved in polynomial

time for the class of (P5, K5 − e)-free graphs.

The above results follow from our structural results for such a class of graphs. Indeed, we study

the structure of a (P5, K5 − e)-free graph G with ω(G) ≥ 5 in detail and prove that either G is the

complement of a bipartite graph or G has a clique cut-set or χ(G) ≤ 7. Our proof is based on

some intermediate results using certain special graphs F1, F2 and F3 (see Figure 16).
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Figure 16: Labelled graphs III: Graphs F1, F2, F3, F4 and F5 (left to right). In F4 and F5, the dotted
lines between two vertices mean that such vertices may or may not be adjacent.

4.2 Some preliminaries

In this section, we present some terminology and observations used in this chapter. For a positive

integer t, let Ht be the graph obtained from Kt+3 by adding a new vertex and joining it to exactly

two vertices of Kt+3. Note that the graph H1 is isomorphic to HVN (see Figure 2). We will often

use the following simple observations for a (K5 − e)-free graph G.

Observation 4 For any two adjacent vertices in G, say u and v, G[N(u) ∩N(v)] is P3-free.

Proof. If there is a P3 in G[N(u) ∩N(v)] with vertices, say p, q and r, then {p, q, r, u, v} induces a

K5 − e. So Observation 4 holds.

Observation 5 For any two non-adjacent vertices in G, say u and v, G[N(u) ∩N(v)] is K3-free.

Proof. If there is a K3 in G[N(u) ∩N(v)] with vertices, say p, q and r, then {p, q, r, u, v} induces

a K5 − e. So Observation 5 holds.

Observation 6 If there are four mutually disjoint non-empty subsets of V (G) which are complete

to each other, then their union is a clique.

Proof. This follows from Observation 5.

We will also use the following theorem to prove our results.

Theorem I ([74]) Every (P5, K4 − e)-free graph G satisfies χ(G) ≤ max{3, ω(G)}.

From now on, except for the indices of S, we assume that the arithmetic operations on the

indices are in integer modulo 3.

4.3 Properties of (P5,K5 − e)-free graphs that contain a K3

To prove the class of (P5, K5 − e)-free graphs is near optimal colorable, we begin by proving some

simple properties when a (P5, K5 − e)-free graph contains a K3, and use them in the latter sections.
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Let G be a connected (P5, K5−e)-free graph with vertex-set V (G) and edge-set E(G) that contains

a K3 induced by the vertices, say v1, v2 and v3. Let C := {v1, v2, v3}. For i ∈ {1, 2, 3}, we let:

Xi := {u ∈ V (G) \ C | N(u) ∩ C = {vi}},
Yi := {u ∈ V (G) \ C | N(u) ∩ C = C \ {vi}},
Z := {u ∈ V (G) \ C | N(u) ∩ C = C}, and
L := {u ∈ V (G) \ C | N(u) ∩ C = ∅}.

We let X := X1 ∪X2 ∪X3 and Y := Y1 ∪ Y2 ∪ Y3. Then clearly V (G) = C ∪X ∪ Y ∪ Z ∪ L. The
graphs induced by the subsets defined above have several interesting structural properties which

we give in Lemmas 4.1 to 4.3 below.

Lemma 4.1 The following statements hold:

(i) C ∪ Z is a clique.

(ii) G[Yi] is P3-free, and Y is anticomplete to Z.

(iii) The vertex-set of each component of G[Xi∪L] is a homogeneous set in G[Xi∪Xi+1∪Yi+2∪L].
Likewise, the vertex-set of each component of G[Xi ∪ L] is a homogeneous set in G[Xi ∪
Xi+2 ∪ Yi+1 ∪ L].

(iv) Each vertex in X has at most one neighbor in Z.

Proof. (i): If there are non-adjacent vertices, say z and z′ in Z, then {v1, v2, v3, z, z′} induces a

K5 − e. So Lemma 4.1:(i) holds.

(ii): Since Yi is complete to {vi+1, vi−1}, G[Yi] is P3-free (by Observation 4). Next, if there are

adjacent vertices, say (up to symmetry) y ∈ Y1 and z ∈ Z, then {v2, v3, z, y, v1} induces a K5 − e;

so Y is anticomplete to Z. This proves Lemma 4.1:(ii).

(iii): We prove the assertion for i = 1. Suppose to the contrary that there are vertices, say

p, q ∈ X1 ∪ L and r ∈ X2 ∪ Y3 such that pq, pr ∈ E(G) and qr /∈ E(G). Then {q, p, r, v2, v3}
induces a P5, a contradiction. So Lemma 4.1:(iii) holds.

(iv): If there is a vertex in Xi, say x, which has two neighbors in Z, say z and z′, then zz′ ∈ E(G)

(by Lemma 4.1:(i)), and then {vi, z, z′, vi+1, x} induces a K5 − e. So Lemma 4.1:(iv) holds.

Lemma 4.2 Suppose that there is a vertex t ∈ L which has a neighbor in Xi. Then the following

hold:

(i) {t} is complete to Xi+1 ∪Xi+2.

(ii) Xi is complete to Xi+1 ∪Xi+2.

Proof. We prove the lemma for i = 1. By our assumption, t has a neighbor in X1, say x.

(i): If there is a vertex in X2, say p, such that tp /∈ E(G), then since {t, x, v1, v2, p} does not induce

a P5, we have xp ∈ E(G), and then {t, x, p, v2, v3} induces a P5; so {t} is complete to X2. Likewise,

{t} is complete to X3. This proves Lemma 4.2:(i).
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(ii): If there are non-adjacent vertices, say p ∈ X1 and q ∈ X2 ∪ X3, then qt, pt ∈ E(G) (by

Lemma 4.2:(i)), and then {p, t, q, v2, v3} induces a P5; so Lemma 4.2:(ii) holds.

Lemma 4.3 The following statements hold:

(i) If Z ̸= ∅, then the vertex-set of any big-component of Yi is anticomplete Yi+1 ∪ Yi−1.

(ii) Each vertex in L has at most two neighbors in Z.

(iii) For j ∈ {i + 1, i − 1}, if there are vertices, say p ∈ Xi ∪ Yj, q ∈ Xj ∪ Yi, z ∈ Z and t ∈ L

such that pt ∈ E(G), then either pq ∈ E(G) or qt ∈ E(G). Further if pz, qz, tz /∈ E(G), then

pq, qt ∈ E(G).

(iv) Let S be the vertex-set of a component of G[Yi], and let R be the vertex-set of a component

of G[Xi]. Suppose that there is a vertex, say z ∈ Z, such that {z} is anticomplete to R.

Then S is either complete to R or anticomplete to R. Moreover if S is the vertex-set of a

big-component of Yi, and if R is not anticomplete to S, then G[R] is P3-free.

(v) Further suppose that G is F1-free, and that Yi+1 ∪ Yi−1 ̸= ∅. Then the following hold: If Q is

a component of G[Xi], then for any z ∈ Z, {z} is either complete to V (Q) or anticomplete to

V (Q). Further if there is a vertex, say z′ ∈ Z, such that {z′} is not anticomplete to V (Q),

then Q is P3-free.

Proof. (i): We will show for i = 1. Let z ∈ Z. Suppose that the assertion is not true. Then there

are vertices, say p, q ∈ Y1 and r ∈ Y2 ∪ Y3 such that pq, pr ∈ E(G). We may assume that r ∈ Y2.

Now since {p, q, v3, v2, r} does not induce a K5 − e, we have qr /∈ E(G), and then {q, p, r, v1, z}
induces a P5 (by Lemma 4.1:(ii)), a contradiction. So Lemma 4.3:(i) holds.

(ii): If there is a vertex in L, say t, which has three neighbors in Z, say z1, z2 and z3, then since Z

is a clique (by Lemma 4.1:(i)), {z1, z2, z3, v1, t} induces a K5 − e. So Lemma 4.3:(ii) holds.

(iii): Suppose not. Then either {t, p, vi, vj, q} or {t, p, q, vj, z} induces a P5. So Lemma 4.3:(iii)

holds.

(iv): If there are vertices, say a, b ∈ R and c ∈ S such that ab, ac ∈ E(G) and bc /∈ E(G), then

{b, a, c, vi+1, z} induces a P5 (by Lemma 4.1:(ii)); so R is a homogeneous set in G[R ∪ S]. Also,
if there are vertices, say p, q ∈ S and r ∈ R such that pq, pr ∈ E(G) and qr /∈ E(G), then

{q, p, r, vi, z} induces a P5 (by Lemma 4.1:(ii)); so S is homogeneous set in G[R ∪ S]. This implies

that S is either complete to R or anticomplete to R. This proves the first assertion. The second

assertion follows from the first assertion and from Observation 4. This proves Lemma 4.3:(iv).

(v): Let z ∈ Z and let y ∈ Yi+1 ∪ Yi−1. Suppose to the contrary that there are vertices, say

x, x′ ∈ V (Q) such that xx′, xz ∈ E(G) and x′z /∈ E(G). We may assume that y ∈ Yi+1. Then

since {x′, x, z, vi+2, y} does not induce a P5, we have xy, x′y ∈ E(G) (by Lemma 4.1:(iii)), and

then {x, z, v3, y, v1, x′, v2} induces an F1, a contradiction. This proves the first assertion.

Since V (Q) is complete to {vi}, the second assertion follows from the first assertion and from

Observation 4. This proves Lemma 4.3:(v).
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Next we prove the following crucial and useful theorem.

Theorem 4.4 Let G be a connected (P5, K5 − e)-free graph with ω(G) ≥ t+ 3 where t ≥ 1. If G

is Ht-free, then either G is the complement of a bipartite graph or G has a clique cut-set.

Proof. Let G be a connected (P5, K5 − e)-free graph which has no clique cut-set. We show that G

is the complement of a bipartite graph. We may assume that G is not a complete graph. Since

ω(G) ≥ t + 3, there are vertices, say v1, v2, v3, . . . , vt+3 in V (G) such that {v1, v2, v3, . . . , vt+3}
induces a Kt+3, say K. Let C := {v1, v2, v3}. Then, with respect to C, we define the sets X, Y, Z

and L as above, and we use Lemmas 4.1 and 4.2. Note that {v4, . . . , vt+3} ⊆ Z. Since t ≥ 1, Z ̸= ∅.
Moreover the following hold.

(a) For any y ∈ Y, since K ∪ {y} does not induce an Ht (by Lemma 4.1:(ii)), we have Y = ∅.
(b) If there are adjacent vertices, say x ∈ X and z ∈ Z, then {x} is anticomplete to Z \ {z}

(by Lemma 4.1:(iv)), and then K ∪ {x} induces an Ht; so X is anticomplete to Z.

(c) By (a) and (b), since C is not a clique cut-set separating Z and X, we have L ̸= ∅.
(d) For each i ∈ {1, 2, 3}, since Z ∪ {vi+1, vi−1} is not a clique cut-set separating {vi} and L

(by Lemma 4.1:(i) and (c)), we have Xi ̸= ∅, for each i ∈ {1, 2, 3}.
(e) Since G is connected, and since Z is not a clique cut-set separating {v1} and the vertex-set

of a component of G[L] (by Lemma 4.1:(i) and (c)), the vertex-set of each component of

G[L] is not anticomplete to X. So X is complete to L, and Xi is complete to Xi+1, for each

i ∈ {1, 2, 3} (by Lemma 4.1:(iii) and Lemma 4.2).

Now from (c), (d) and (e), since G[X1 ∪X2 ∪X3 ∪ L] does not contain a K5 − e, it follows from

Observation 6 that X ∪ L is a clique. Also C ∪ Z is a clique (by Lemma 4.1:(i)). Thus from (a),

we conclude that G is the complement of a bipartite graph. This proves Theorem 4.4.

4.4 (P5,K5 − e)-free graphs that contain some special graphs

4.4.1 (P5,K5 − e)-free graphs that contain an F1

Let G be a connected (P5, K5 − e)-free graph which has no clique cut-set. Suppose that G contains

an F1 with vertices and edges as shown in Figure 16. Let C := {v1, v2, v3}. Then, with respect

to C, we define the sets X, Y , L and Z as in Section 4.3, and we use the lemmas in Section 4.3.

Clearly x1 ∈ X1, y2 ∈ Y2, y3 ∈ Y3 and z ∈ Z so that X1, Y2, Y3 and Z are non-empty. Recall

that C ∪ Z is a clique (by Lemma 4.1:(i)), and that Y is anticomplete to Z (by Lemma 4.1:(ii)).

Moreover the graph G has some more properties which we give in Lemmas 4.5 to 4.7 below.

Lemma 4.5 The following hold:

(i) Y2 = {y2}. Likewise, Y3 = {y3}.
(ii) Y1 is anticomplete to {x1} ∪ Y2 ∪ Y3.
(iii) L is anticomplete to {x1} ∪X2 ∪X3.
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(iv) Every vertex in X2 ∪X3 has a neighbor in {y2, y3}.
(v) For j ∈ {2, 3}, {z} is either complete to Xj or anticomplete to Xj.

Proof. (i): Suppose to the contrary that there is a vertex in Y2\{y2}, say p. By Lemma 4.3:(i), py2 /∈
E(G). Then since {x1, y3, v2, v3, p} or {x1, y3, p, v3, z} does not induce a P5 (by Lemma 4.1:(ii)),

px1 ∈ E(G) and py3 ∈ E(G). Then {x1, y3, v1, p, y2} induces a K5 − e, a contradiction. So

Lemma 4.5:(i) holds.

(ii): Suppose to the contrary that there is a vertex in Y1, say p, which has a neighbor in {x1, y2, y3}
(by Lemma 4.5:(i)). Since {v1, x1, y2, y3, p} does not induce a K5 − e, p has a non-neighbor in

{x1, y2, y3}. Now if px1 ∈ E(G), then we may assume (up to symmetry) that py2 /∈ E(G), and

then {y2, x1, p, v2, z} induces a P5, a contradiction; so px1 /∈ E(G). Then we may assume (up

to symmetry) that py2 ∈ E(G), and then {x1, y2, p, v2, z} induces a P5, a contradiction. So

Lemma 4.5:(ii) holds.

(iii): If there is a vertex, say t ∈ L, such that tx1 ∈ E(G), then {x1, y2, y3, t, v1} induces a K5 − e

(by Lemma 4.1:(iii)); so L is anticomplete to {x1}. This implies that L is anticomplete to X2 ∪X3

(by Lemma 4.2:(i)). This proves Lemma 4.5:(iii).

(iv): Suppose to the contrary that there is a vertex in X2 ∪ X3, say p, which is anticomplete

to {y2, y3}. We may assume, up to symmetry, that p ∈ X2. Now since {x1, y2, v3, v2, p} does

not induce a P5, px1 ∈ E(G), and then one of {y3, x1, p, z, v3} or {p, x1, y2, v3, z} induces a P5, a

contradiction. So Lemma 4.5:(iv) holds.

(v): We prove the assertion for j = 2. Suppose to the contrary that there are vertices, say p, q ∈ X2

such that pz ∈ E(G) and qz /∈ E(G). Since one of {x1, y2, v3, v2, q} or {y2, x1, q, v2, z} does not

induce a P5, qx1, qy2 ∈ E(G). Then since {v1, x1, y2, y3, q} does not induce a K5 − e, qy3 /∈ E(G).

Then since {q, x1, v1, z, p} does not induce a P5, either pq ∈ E(G) or px1 ∈ E(G). Now if pq ∈ E(G),

then py3 /∈ E(G) and px1 ∈ E(G) (by Lemma 4.1:(iii)), and then {y3, x1, p, z, v3} induces a P5, a

contradiction. So, we may assume that pq /∈ E(G), and hence px1 ∈ E(G). Then {q, x1, p, z, v3}
induces a P5, a contradiction. So Lemma 4.5:(v) holds.

Lemma 4.6 The set X1 ∪ Y2 ∪ Y3 is a clique.

Proof. By Lemma 4.1:(iii) and Lemma 4.5:(i), it is enough to show that X1 is a clique. Suppose to

the contrary that there are non-adjacent vertices in X1, say p and q. Since {y2, y3, x1, p, q} does not

induce a K5 − e (by Lemma 4.1:(iii)), we may assume that px1 /∈ E(G), and hence X1 \ (N(x1) ∪
{x1}) ̸= ∅. We let X ′

1 := X1 \ (N(x1) ∪ {x1}) and let L′ := {t ∈ L | t has a neighbor in X ′
1}.

Moreover, we have the following.

4.6.1 X ′
1 is anticomplete to {z}.

Proof of 4.6.1. Since for any x ∈ X ′
1, one of {x, z, v3, y2, x1}, {x1, y2, x, z, v2} does not induce a P5,

we have X ′
1 is anticomplete to {z}. This proves 4.6.1.
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4.6.2 X ′
1 is anticomplete to Y ∪ Z.

Proof of 4.6.2. Let x ∈ X ′
1 be arbitrary. If xy2 ∈ E(G), then {y2, y3, v1, x, x1} induces a K5 − e

or {x, y2, y3, v2, z} induces a P5 (by 4.6.1); so xy2 /∈ E(G). Likewise, xy3 /∈ E(G). Hence for any

w ∈ Y1 ∪ Z, since {x,w, v2, y3, y2} does not induce a P5 (by Lemma 4.5:(ii)), {x} is anticomplete

to Y1 ∪ Z. So {x} is anticomplete to Y ∪ Z (by Lemma 4.5:(i)). This proves 4.6.2.

4.6.3 X ′
1 is anticomplete to X2 ∪X3.

Proof of 4.6.3. Suppose not. Then there are adjacent vertices, say x ∈ X ′
1 and a ∈ X2∪X3. Suppose

a ∈ X2. Since {x, a, v2, v3, y2} does not induce a P5, ay2 ∈ E(G). If az /∈ E(G), then {x, a, y2, v3, z}
induces a P5 (by 4.6.2); so we may assume that az ∈ E(G). Now since {v1, x1, y2, y3, a} does

not induce a K5 − e or {x1, y3, a, z, v3} does not induce a P5, we have x1a, ay3 /∈ E(G), and then

{x, a, v2, y3, x1} induces a P5; so {x} is anticomplete to X2. Likewise, {x} is anticomplete to X3.

So X ′
1 is anticomplete to X2 ∪X3. This proves 4.6.3.

4.6.4 X ′
1 is anticomplete to (X1 \X ′

1) ∪ (L \ L′) and L′ is anticomplete to L \ L′.

Proof of 4.6.4. Since y2x1 ∈ E(G), it follows from Lemma 4.1:(iii) that {y2} is complete to X1 \X ′
1.

So it follows from 4.6.2 and Lemma 4.1:(iii) that X ′
1 is anticomplete to X1 \X ′

1. Further X
′
1 ∪ L′

is anticomplete to L \ L′ (by the definition of L′ and by Lemma 4.1:(iii)). This proves 4.6.4.

4.6.5 L′ is anticomplete to (X1 \X ′
1) ∪ Y ∪ Z.

Proof of 4.6.5. By 4.6.2 and Lemma 4.1:(iii), L′ is anticomplete to Y2 ∪ Y3. So L′ is anticomplete

to (X1 ∩N(x1))∪{x1} (by Lemma 4.1:(iii)). Hence X2 ∪X3 = ∅ (by Lemma 4.2:(i)). If t ∈ L′ has

a neighbor in Y1 ∪ Z, say w, then for any neighbor of t in X ′
1, say a

′, we see that {a′, t, w, v3, y2}
induces a P5 (by Lemma 4.5:(ii)); so L′ is anticomplete to Y1 ∪ Z. This proves 4.6.5.

Recall that V (G) \ (X ′
1 ∪ L′ ∪ {v1}) = {v2, v3} ∪ (X \ X ′

1) ∪ Y ∪ Z ∪ (L \ L′). So by above

claims, X ′
1 ∪ L′ is anticomplete to V (G) \ (X ′

1 ∪ L′ ∪ {v1}), and thus v1 is a cut-vertex in G, a

contradiction. This proves Lemma 4.6.

Lemma 4.7 The set L is an empty set.

Proof. Suppose to the contrary that L ̸= ∅. First we assume that N(y2)∩L = ∅ and N(y3)∩L = ∅.
Then L is anticomplete to X (by Lemma 4.5:(iii), Lemma 4.6, and by Lemma 4.1:(iii)). Since Z

is a clique (by Lemma 4.1:(i)) and since Z is not a clique cut-set of G separating L and C (by

Lemma 4.5:(i)), L is not anticomplete to Y1, and so there are adjacent vertices, say y ∈ Y1 and

t ∈ L. Then {y2, y3, v2, y, t} induces a P5 (by Lemma 4.5:(ii)), a contradiction. So we may assume,

up to symmetry, that N(y2)∩L ≠ ∅, and let t ∈ N(y2)∩L. Then tx1 /∈ E(G) (by Lemma 4.5:(iii)).

Next we claim the following.

4.7.1 {z} is anticomplete to L.
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Proof of 4.7.1. Suppose to the contrary that z has a neighbor in L, say p. Then since {x1, y2, p, z, v2}
does not induce a P5 (by Lemma 4.5:(iii)), p ̸= t and y2p /∈ E(G). So tp /∈ E(G) (by

Lemma 4.1:(iii)), and then {t, y2, v1, z, p} induces a P5, a contradiction. So {z} is anticomplete to

L. This proves 4.7.1.

4.7.2 {z} is anticomplete to X.

Proof of 4.7.2. Suppose to the contrary that z has a neighbor in X, say x. If x ∈ X1, then

{t, y2, x, z, v2} induces a P5, a contradiction. If x ∈ X2, then since {t, y2, y3, v2, z} does not

induce a P5, we have ty3 ∈ E(G), and then either {t, y3, v1, z, x} or {t, y3, x, z, v3} induces a P5

(by Lemma 4.5:(iii)), a contradiction. We get a similar contradiction when x ∈ X3. These

contradictions show that {z} is anticomplete to X. This proves 4.7.2.

Thus by Lemma 4.1:(ii) and by above claims, C ∪ (Z \ {z}) is a clique cut-set of G separating

{z} and the rest of the vertices, a contradiction. This proves Lemma 4.7.

Now we prove the main theorem of this subsection, and is given below.

Theorem 4.8 Let G be a connected (P5, K5 − e)-free graph. If G contains an F1, then either G is

the complement of a bipartite graph or G has a clique cut-set or χ(G) ≤ 5.

Proof. Let G be a connected (P5, K5 − e)-free graph. Suppose that G contains an F1 with vertices

and edges as shown in Figure 16. Let C := {v1, v2, v3}. Then, with respect to C, we define the sets

X, Y , L and Z as in Section 4.3, and we use the lemmas in Section 4.3. Clearly x1 ∈ X1, y2 ∈ Y2,

y3 ∈ Y3 and z ∈ Z so that X1, Y2, Y3 and Z are non-empty. We may assume that G has no clique

cut-set, and that G is not the complement of a bipartite graph. We also use Lemmas 4.5 to 4.7. By

Lemma 4.7, L = ∅. Recall that C ∪ Z is a clique (by Lemma 4.1:(i)), and that Y is anticomplete

to Z (by Lemma 4.1:(ii)). We show that χ(G) ≤ 5 using a sequence of claims given below.

4.8.1 X1 = {x1}.

Proof of 4.8.1. Suppose not, and let X1 \{x1} ≠ ∅, say x′1 ∈ X1 \{x1}. By Lemma 4.6, X1∪Y2∪Y3
is a clique. For any x ∈ X2 ∪ X3, since G[{v1, x1, x′1, y2, y3, x}] does not contain a K5 − e (by

Lemma 4.5:(iv) and Lemma 4.1:(iii)), we see that X2 ∪ X3 is anticomplete to X1. Also, since

(X1 \ {x1}) ∪ Y2 ∪ Y3 ∪ {v1} is not a clique cut-set of G (by Lemma 4.5:(ii)) separating {x1} and

Z, there is a vertex in Z, say z′, such that x1z
′ ∈ E(G). Now, we have the following:

(a) For any p ∈ X1 \ {x1}, since {x1, p, v1, z′, y2} does not induce a K5 − e (by Lemma 4.1:(ii)),

we have X1 \ {x1} is anticomplete to {z′}. In particular, x′1z
′ /∈ E(G).

(b) Next, we claim that X2 ∪X3 = ∅. Suppose not, and let q ∈ X2. Then since {x′1, x1, z′, v2, q}
does not induce a P5 (by (a)), qz′ ∈ E(G). Then qz /∈ E(G) (by Lemma 4.1:(iv)). But

then one of {v3, z′, q, y3, x′1} or {x1, y2, q, v2, z} induces a P5 (by Lemma 4.5:(iv) and (a)), a

contradiction. So X2 = ∅. Likewise, X3 = ∅.
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(c) Finally, we claim that Y1 = ∅. Suppose not. Then since {v2, v3} is not a clique cut-set of

Y1 and the rest of the vertices (by (b) and Lemma 4.5:(ii)), X1 \ {x1} is not anticomplete

to Y1. So there are adjacent vertices, say p ∈ X1 \ {x1} and q ∈ Y1. Then {y2, p, q, v2, z′}
induces a P5 (by Lemma 4.1:(ii) and (a)), a contradiction. So Y1 = ∅.

Then, by above arguments, V (G) can be partitioned into two cliques, namely, X1 ∪ Y2 ∪ Y3 and

C ∪Z. Thus G is the complement of a bipartite graph, a contradiction. So X1 = {x1}. This proves
4.8.1.

4.8.2 X ∪ Y = {x1, y2, y3} ∪X2 ∪X3.

Proof of 4.8.2. By 4.8.1 and Lemma 4.5:(i), it is enough to show that Y1 = ∅. First we

show that X2 ∪ X3 is anticomplete to Y1. Suppose to the contrary that there are adjacent

vertices, say p ∈ X2 ∪ X3 and q ∈ Y1. We may assume, up to symmetry, that p ∈ X2. From

Lemma 4.1:(ii) and Lemma 4.5:(ii), {q} is anticomplete to {z, x1, y2, y3}. Then since {y3, v1, v3, q, p}
and {x1, v1, v3, q, p} do not induce P5’s, we have py3, px1 ∈ E(G). Then since {y3, p, q, v3, z} does

not induce a P5, we have pz ∈ E(G), and since {v1, x1, y2, y3, p} does not induce a K5 − e, we have

py2 /∈ E(G). Now {q, p, z, v1, y2} induces a P5, a contradiction. So X2 ∪ X3 is anticomplete to

Y1. Hence from Lemma 4.1:(ii), 4.8.1 and Lemma 4.5:(ii), we conclude that Y1 is anticomplete to

X ∪ Y2 ∪ Y3 ∪ Z ∪ L. Now since {v2, v3} is not a clique cut-set of G separating Y1 and the rest of

the vertices in G, we have Y1 = ∅. This proves 4.8.2.

4.8.3 |Z \ {z}| ≤ 1.

Proof of 4.8.3. Suppose not. Then there is a vertex in Z \ {z}, say z′, such that x1z
′ /∈ E(G) (by

Lemma 4.1:(iv)). By 4.8.2, since C ∪ (Z \ {z′}) is not a clique cut-set of G separating {z′} and

the rest of the vertices, we may assume that z′ has a neighbor in X2, say q. Then qz /∈ E(G) (by

Lemma 4.1:(iv)). Then as in the proof of Lemma 4.5:(v), we have qx1, qy2 ∈ E(G), and qy3 /∈ E(G).

Then {y3, x1, q, z′, v3} induces a P5 (by Lemma 4.1:(ii)), a contradiction. So 4.8.3 holds.

4.8.4 For j ∈ {2, 3}, G[Xj] is the union of K2’s and K1’s.

Proof of 4.8.4. We prove the claim for j = 2. Let Q be a component of G[X2]. It is enough to show

that V (Q) induces a (P3, K3)-free graph. By Lemma 4.5:(v), we have either V (Q) is complete to

{z} or V (Q) is anticomplete to {z}. First suppose that V (Q) is complete to {z}. Then since V (Q)

is complete to {v2, z}, by Observation 4, Q is P3-free. Also, since G[{z, y2, y3} ∪ V (Q)] does not
contain a K5 − e (by Lemma 4.1:(iii) and Lemma 4.5:(iv)), Q is K3-free, and we are done. So we

may assume that V (Q) is anticomplete to {z}. Then as in the proof of Lemma 4.5:(v), we see that

V (Q) is complete to {x1, y2}, by using Lemma 4.1:(iii). Thus Q is P3-free (by Observation 4), and

since G[{x1, v2} ∪ V (Q)] does not contain a K5 − e, Q is K3-free. This proves 4.8.4.

By 4.8.4, for j ∈ {2, 3}, we let Xj := Aj ∪Bj, where Aj and Bj are stable sets such that Bj is

maximal. Then we have the following:
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Figure 17: The graphs G1, G2, G3 and G4 (left to right).

4.8.5 A2 ∪ {y3} is a stable set. Likewise, A3 ∪ {y2} is a stable set.

Proof of 4.8.5. Suppose to the contrary that there is a vertex in A2, say p, such that py3 ∈ E(G).

Then by our definition of A2, since B2 is a maximal stable set, there is a vertex in B2, say q,

such that pq ∈ E(G). Since {p, q, v2, y3, z} does not induce a K5 − e (by Lemma 4.1:(iii)), we

have pz /∈ E(G) (by Lemma 4.5:(v)). Then since {p, y3, y2, v3, z} does not induce a P5, we have

py2 ∈ E(G), and then since {v1, x1, y2, y3, p} does not induce a K5 − e, we have px1 /∈ E(G). But

then {x1, y2, p, v2, z} induces a P5, a contradiction. So 4.8.5 holds.

By 4.8.2, we conclude that V (G) = C∪Z∪A2∪B2∪A3∪B3∪{x1, y2, y3}. Since C∪(Z \{z}) is
not a clique cut-set of G separating {z} and the rest of the vertices in G, z has a neighbor in X2∪X3.

So we may assume that {z} is complete to X2 (by Lemma 4.5:(v)), and hence X2 is anticomplete

to Z \ {z} (by Lemma 4.1:(iv)). Also Z \ {z} is anticomplete to {y3} (by Lemma 4.1:(ii)). Now by

using 4.8.3 and 4.8.5, we define the following stable sets: S1 := A2∪(Z\{z})∪{y3}, S2 := B2∪{v3},
S3 := {x1, z}, S4 := A3∪{y2, v2} and S5 := B3∪{v1}. Clearly V (G) =

5∪
j=1

Sj , and hence χ(G) ≤ 5.

This proves Theorem 4.8.

4.4.2 (P5,K5 − e, F1)-free graphs that contain an F2

Let G be a connected (P5, K5 − e, F1)-free graph which has no clique cut-set. Suppose that G

contains an F2 with vertices and edges as shown in Figure 16. Let C := {v1, v2, v3}. Then with

respect to C, we define the sets X, Y , Z and L as in Section 4.3, and we use the lemmas in

Section 4.3. Clearly y2 ∈ Y2, y3 ∈ Y3 and z1, z2 ∈ Z so that Y2, Y3 and Z are non-empty. Recall

that C ∪ Z is a clique (by Lemma 4.1:(i)), and that Y is anticomplete to Z (by Lemma 4.1:(ii)).

Moreover, the graph G has some more properties which we give below in Lemmas 4.9 to 4.11.

Lemma 4.9 The following hold:

(i) X1 is anticomplete to Y2 ∪ Y3. Likewise, if Y1 ̸= ∅, then for each i ∈ {1, 2, 3}, Xi is

anticomplete to Yi+1 ∪ Yi−1.

(ii) X1 is anticomplete to Z.

(iii) If a vertex in X has a neighbor in Z, then it is adjacent to both y2 and y3.

(iv) X1 is anticomplete to X2 ∪ X3. Likewise, if Y1 ̸= ∅, then for each i ∈ {1, 2, 3}, Xi is

anticomplete to Xi+1 ∪Xi−1.
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(v) For j ∈ {2, 3}, |z ∈ Z : N(z) ∩Xj ̸= ∅| ≤ 1.

Proof. (i): Suppose to the contrary that there are adjacent vertices, say x ∈ X1 and y ∈ Y2 ∪ Y3.
We may assume (up to symmetry) that y ∈ Y2, and we may assume that xz1 /∈ E(G) (by

Lemma 4.1:(iv)). Then since one of {x, y, v3, v2, y3} or {x, y, y3, v2, z1} does not induce a P5,

we have xy3, yy3 ∈ E(G), and then {v1, v2, v3, x, y, y3, z1} induces an F1, a contradiction. So

Lemma 4.9:(i) holds.

(ii): If there are adjacent vertices, say x ∈ X1 and z ∈ Z, then {x, z, v3, y2, y3} induces a P5 (by

Lemma 4.1:(ii) and Lemma 4.9:(i)). So Lemma 4.9:(ii) holds.

(iii): Let x be a vertex in X which has a neighbor in Z, say z. We may assume that z ̸= z1 (by

Lemma 4.1:(iv)). Clearly x /∈ X1 (by Lemma 4.9:(ii)), and we may assume, up to symmetry,

that x ∈ X2. Then xz1 /∈ E(G) (by Lemma 4.1:(iv)). Then since one of {x, z, v3, y2, y3} or

{y2, y3, x, z, z1} does not induce a P5 (by Lemma 4.1:(i)), we have xy2, xy3 ∈ E(G). This proves

Lemma 4.9:(iii).

(iv): Suppose to the contrary that there are adjacent vertices, say x ∈ X1 and x′ ∈ X2 ∪ X3.

We may assume (up to symmetry) that x′ ∈ X2. Also we may assume that x′z1 /∈ E(G) (by

Lemma 4.1:(iv)). Moreover, xz1, xy2, xy3 /∈ E(G) (by Lemma 4.9:(i) and Lemma 4.9:(ii)). Then

one of {x, x′, v2, v3, y2} or {x, x′, y2, v3, z1} induces a P5, a contradiction. So Lemma 4.9:(iv) holds.

(v): We will show for j = 2. Suppose that the assertion is not true. Then there are vertices, say

x, x′ in X2, and z, z
′ in Z such that xz, x′z′ ∈ E(G). Then xz′, x′z /∈ E(G) (by Lemma 4.1:(iv)),

and xy3, x
′y3 ∈ E(G) (by Lemma 4.9:(iii)). Now since {x, y3, x′, z′, v3} does not induce a P5, we

have xx′ ∈ E(G). But then {z, z′, v2, v3, x, x′, y3} induces an F1, a contradiction. So Lemma 4.9:(v)

holds.

Lemma 4.10 For i ∈ {1, 2, 3}, suppose that there are vertices, say p ∈ Xi, y ∈ Yi, z ∈ Z and

t ∈ L such that pt, zt ∈ E(G) and pz /∈ E(G). Then for j ∈ {i+ 1, i− 1}, the following hold:

(i) {p, t} is complete to Yj.

(ii) If y has a neighbor in Yj, then {y} is complete to Yj ∪ {p}.

Proof. We will show for j = i+ 1.

(i): Since for any y′ ∈ Yi+1, {p, t, z, vi−1, y
′} does not induce a P5, {p, t} is complete to Yi+1 (by

Lemma 4.1:(iii)). This proves Lemma 4.10:(i).

(ii): To prove Lemma 4.10:(ii), we pick neighbor of y in Yi+1, say r. Then since {p, r, y, vi+1, z}
does not induce a P5, py ∈ E(G). Hence, for any u ∈ Yi+1, {u, p, y, vi+1, z} does not induce a P5,

{y} is complete to Yi+1. This proves Lemma 4.10.

Lemma 4.11 For any t ∈ L, we have either ty2 ∈ E(G) or ty3 ∈ E(G).

Proof. Suppose not. Let t ∈ L be such that ty2, ty3 /∈ E(G). Let Q be the component of G[L]

such that t ∈ V (Q). Then V (Q) is anticomplete to {y2, y3} (by Lemma 4.1:(iii)). We claim that
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V (Q) is anticomplete to X2 ∪X3 ∪ Y ∪ Z. If not, then there are adjacent vertices, say a ∈ V (Q)

and (up to symmetry) b ∈ Z ∪X2 ∪ Y1. If b ∈ Z, then {a, b, v3, y2, y3} induces a P5; so V (Q) is

anticomplete to Z. If b ∈ X2 ∪ Y1, then we may assume that bz1 /∈ E(G) (by Lemma 4.1:(ii) and

Lemma 4.1:(iv)), and then {a, b, v2, v1, y2} or {a, b, y2, v1, z1} induces a P5; so V (Q) is anticomplete

to X2 ∪ X3 ∪ Y ∪ Z. Now since G is connected, V (Q) is not anticomplete to X1, and so there

are adjacent vertices, say q ∈ V (Q) and x ∈ X1. Then by Lemma 4.2:(i) and Lemma 4.9:(iv),

X2 ∪X3 = ∅. Since X1 is anticomplete to Y2 ∪ Y3 ∪ Z (by Lemma 4.9:(i) and Lemma 4.9:(ii)),

and since C ∪ Z is not a clique cut-set of G (by Lemma 4.1:(i) and Lemma 4.1:(iii)) separating

X1 ∪ V (Q) and Y2 ∪ Y3, X1 is not anticomplete to Y1. So Y1 ̸= ∅, and let y ∈ Y1. But then

one of {q, x, v1, v2, y} or {q, x, y, v2, z1} induces a P5 (by Lemma 4.1:(ii) and Lemma 4.9:(ii)), a

contradiction. So Lemma 4.11 holds.

Now we prove the main theorem of this subsection, and is given below.

Theorem 4.12 Let G be a connected (P5, K5 − e)-free graph. If G contains an F2, then either G

is the complement of a bipartite graph or G has a clique cut-set or χ(G) ≤ 5.

Proof. Let G be a connected (P5, K5 − e)-free graph. Suppose that G contains an F2 with vertices

and edges as shown in Figure 16. Let C := {v1, v2, v3}. Then, with respect to C, we define the sets

X, Y , Z and L as in Section 4.3, and use the lemmas in Section 4.3. Clearly, y2 ∈ Y2, y3 ∈ Y3 and

z1, z2 ∈ Z, so that Y2, Y3 and Z are non-empty. Recall that C ∪ Z is a clique (by Lemma 4.1:(i)),

and that Y is anticomplete to Z (by Lemma 4.1:(ii)). We may assume that G has no clique cut-set,

and that G is not the complement of a bipartite graph. From Theorem 4.8, we may assume that G

is F1-free, and we use Lemma 4.9 and Lemma 4.11. We show that χ(G) ≤ 5 by using a sequence

of claims given below.

4.12.1 X1 is anticomplete to L.

Proof of 4.12.1. This follows from Lemma 4.1:(iii), Lemma 4.9:(i) and Lemma 4.11.

4.12.2 L is complete to Z, and so L induces a bipartite graph.

Proof of 4.12.2. Suppose to the contrary that there are non-adjacent vertices, say t ∈ L and

z ∈ Z. Let Q be the component of G[L] such that t ∈ V (Q). We may assume that ty2 ∈ E(G)

(by Lemma 4.11). Then since {t, y2, y3, v2, z} does not induce a P5 (by Lemma 4.1:(ii)), we have

ty3 ∈ E(G). So V (Q) is complete to {y2, y3} (by Lemma 4.1:(iii)), and hence V (Q) is a clique (by

Observation 4). Moreover, we have the following:

(a) Since for any y ∈ Y3, one of {t, y2, y, v2, z} or {y, v2, v3, y2, t} does not induce a P5, Y3 is

complete to {t, y2}. By using similar arguments, we see that Y2 is complete to Y3 ∪ {t}, and
Y1 is complete to Y2 ∪ Y3 ∪ {t}.
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(b) If X1 ̸= ∅, then since X1 is anticomplete to (X ∪ Y ∪ Z ∪ L) \ (X1 ∪ Y1) (by 4.12.1,

Lemma 4.9:(i), Lemma 4.9:(ii) and Lemma 4.9:(iv) ) and since {v1} is not a cut-vertex

of G separating X1 and rest of the vertices, there are adjacent vertices, say x ∈ X1 and

y ∈ Y1, and then {t, y, x, v1, z} induces a P5 (by Lemma 4.1:(ii) and (a)), a contradiction.

So X1 = ∅.
(c) Now we will show that X is complete to Y2 ∪ Y3 ∪ {t}. Let x ∈ X2. If xz /∈ E(G), then by

using a similar argument as in (a), we see that {x} is complete to Y2∪{t}, and if xz ∈ E(G),

then by using a similar argument as in Lemma 4.9:(iii), we see that {x} is complete to

Y2 ∪ {t}. Also, since for any y ∈ Y3, {x, t, y, v1, v3} does not induce a P5, {x} is complete

to Y3. Since x is arbitrary, X2 is complete to Y2 ∪ Y3 ∪ {t}. Likewise, X3 is complete to

Y2 ∪ Y3 ∪ {t}. So X is complete to Y2 ∪ Y3 ∪ {t} (by (b)).

(d) From (a), (b), (c) and Lemma 4.1:(iii), we conclude that V (Q) is complete to X ∪ Y .

(e) Next we will show that L \ V (Q) = ∅. Suppose not. Let q ∈ L \ V (Q). Since for any

t′ ∈ L \ V (Q) and for j ∈ {2, 3}, {vj, z, t′, yj, t} does not induce a P5 (by Lemma 4.11),

L \ V (Q) is anticomplete to {z}. Likewise, V (Q) is anticomplete to {z}. Then as in (c), the

vertex-set of the component that contains q is complete to X ∪ Y2 ∪ Y3. Since C ∪ (Z \ {z})
is not a clique cut-set of G separating {z} and the rest of the vertices, there is a vertex

in X, say x such that xz ∈ E(G). Then {x, y2, y3, t, q} induces a K5 − e, a contradiction.

Hence L \ V (Q) = ∅.

Now if X2 ∪ X3 ∪ Y1 ̸= ∅, then since Y2, Y3 and L are non-empty, by above arguments and

Observation 6, X ∪ Y ∪ L is a clique, and hence G is the complement of a bipartite graph (by

Lemma 4.1:(i)), a contradiction; so we may assume that X2∪X3∪Y1 = ∅. Then since C ∪ (Z \{z})
is not a clique cut-set separating {z} from the rest of the vertices of G, there is a vertex in

V (Q) \ {t}, say t′, such that t′z ∈ E(G). Now since Y2, Y3, {t} and V (Q) \ {t} are non-empty,

again by above arguments and Observation 6, X ∪ Y ∪ L is a clique. So V (G) can be partitioned

into two cliques, namely C ∪Z (by Lemma 4.1:(i)) and X ∪Y ∪L, and hence G is the complement

of a bipartite graph, a contradiction. This proves the first assertion.

Now since L is complete to {z1, z2}, L induces a P3-free graph (by Observation 4). Moreover,

by using Lemma 4.1:(ii), Lemma 4.1:(iii), Lemma 4.11 and Observation 5, we see that each

component of G[L] is K3-free. So L induces a (P3, K3)-free graph, which is a bipartite graph. This

proves 4.12.2.

4.12.3 Z = {z1, z2}.

Proof of 4.12.3. If L ̸= ∅ then Z = {z1, z2} (by 4.12.2 and Lemma 4.3:(ii)). So we may assume that

L = ∅. Suppose to the contrary that there is a vertex, say z ∈ Z \ {z1, z2}. Then C ∪ (Z \ {z}) is a
clique cut-set of G (by Lemma 4.1:(ii) and Lemma 4.9:(v)), a contradiction. This proves 4.12.3.

4.12.4 G[X2 ∪ Y3] is K3-free. Likewise, G[X3 ∪ Y2], G[X1] and G[Y1] are K3-free.
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Proof of 4.12.4. Suppose not. Let Q be a component of G[X2 ∪ Y3] which contains a K3 with

vertices, say p, q and r. We may assume that V (Q) is anticomplete to {z1} (by Lemma 4.9:(v)).

Moreover, we claim that V (Q) is anticomplete to X1 ∪X3 ∪ Y1 ∪ Y2 ∪ Z ∪ L, and we will prove

using a sequence of arguments given below.

(a) First we will show that V (Q) is a homogeneous set in G[V (Q) ∪ Y1 ∪ Y2]. If not, then

there are vertices, say a, b ∈ V (Q) and c ∈ Y1 ∪ Y2 such that ab, ac ∈ E(G) and bc /∈ E(G),

and then {b, a, c, v3, z1} induces a P5 (by Lemma 4.1:(ii)), a contradiction. So V (Q) is a

homogeneous set in G[V (Q) ∪ Y1 ∪ Y2].
(b) If there is a vertex, say y ∈ Y2, which has a neighbor in V (Q), then {y} is complete to

{p, q, r} (by (I)), and then {p, q, r, v2, y} induces a K5 − e; so V (Q) is anticomplete to Y2.

(c) V (Q) is anticomplete to Z (by (b), Lemma 4.1:(ii) and Lemma 4.9:(iii)), V (Q) is anticom-

plete to Y1 (by (a), Lemma 4.3:(i) and Lemma 4.9:(i)), and V (Q) is anticomplete to X1 (by

Lemma 4.9:(i) and Lemma 4.9:(iv)).

(d) By (c), Lemma 4.1:(ii) and Lemma 4.9:(v), there is a vertex in Z, say z′ such that {z′} is

anticomplete to V (Q) ∪X3. Then by using similar arguments in (a) and (b), we see that

V (Q) is anticomplete to X3.

(e) Finally we show that V (Q) is anticomplete to L. Suppose not. Then there are adjacent

vertices, say t ∈ L and u ∈ V (Q). Now since {t, u, v2, v3, y2} does not induce a P5 (by (b)),

we have ty2 ∈ E(G). Then since G[{p, q, r, v2, v3, y2, t}] does not contain a P5 (by (b)), {t}
is complete to {p, q, r}. But then {p, q, r, t, v2} induces a K5 − e, a contradiction. So V (Q)

is anticomplete to L.

Thus we conclude that V (Q) is anticomplete to X1 ∪X3 ∪ Y1 ∪ Y2 ∪ Z ∪ L, and hence {v1, v2} is a

clique cut-set separating Q from the rest of the vertices of G, a contradiction. So 4.12.4 holds.

4.12.5 If L is not anticomplete to X, then either X1 ∪X2 ∪ Y1 = ∅ or X1 ∪X3 ∪ Y1 = ∅.

Proof of 4.12.5. Since L is not anticomplete to X, there are adjacent vertices, say t ∈ L and

x ∈ X. By Lemma 4.11, each vertex in L is adjacent to one of y2 and y3, and L is complete to

{z1, z2} (by 4.12.2). So x /∈ X1 (by Lemma 4.1:(iii) and Lemma 4.9:(i)), and we may assume that

x ∈ X2. Then X1 = ∅ (by Lemma 4.2:(i)) and xy3 ∈ E(G) (by Lemma 4.10), and hence Y1 = ∅
(by Lemma 4.9:(i)).

Now it is enough to show that X3 = ∅. Suppose not, and let x′ ∈ X3. We show that X∪Y ∪L is

a clique. First we show that X = {x, x′, y2, y3}. Observe that xx′, x′t ∈ E(G) (by Lemma 4.2), and

then x′y2 ∈ E(G) (by Lemma 4.10). So X2 ∪X3 is complete to {t}, and X2 is complete to X3 (by

Lemma 4.2). Thus X2, Y3, {t} and {y2} are complete to each other (by Lemma 4.10); so X2∪Y3 is a
clique (by Observation 6), and hence X2 = {x} and Y3 = {y3} (by 4.12.4). Likewise, X3 = {x′} and

Y2 = {y2}. So X = {x, x′, y2, y3}. Next we will show that L is complete to X. By Lemma 4.1:(iii)

and Lemma 4.2, it is enough to show that L is complete to {x, x′}. Suppose not, and let t′ ∈ L
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be such that {t′} is not complete to {x, x′}. So by Lemma 4.2:(i), {t′} is anticomplete to {x, x′}.
Recall that, by Lemma 4.11, t′ is adjacent to one of y2 and y3. If t

′y2 ∈ E(G), then we may assume

that x′z1 /∈ E(G) (by Lemma 4.1:(iv)), and then {x′, y2, t′, z1, v2} induces a P5 (by 4.12.2); so

t′y2 /∈ E(G) and hence t′y3 ∈ E(G). Then we assume that xz1 /∈ E(G) (by Lemma 4.1:(iv)), and

then {x, y3, t′, z1, v2} induces a P5 (by 4.12.2), a contradiction. So L is complete to {x, x′, y2, y3}.
So by above arguments and by Observation 6, we conclude that X ∪ Y ∪ L is a clique. Thus V (G)

can be partitioned in two disjoint cliques, namely, X ∪ Y ∪ L and C ∪ Z, and hence G is the

complement of a bipartite graph, a contradiction. So 4.12.5 holds.

By 4.12.4 and Theorem A, for i ∈ {1, 2, 3}: we pick a maximum stable set from each 5-ring-

component of G[Xi] (if exists), and let Ai be the union of these sets. So G[Xi \ Ai] is a bipartite

graph. Next, we pick a maximum stable set from each big-component of G[Xi \Ai] (if exists), and

let Bi be the union of these sets. Let X ′
i = Xi \ (Ai ∪Bi). Also, let Y

′
i be a maximal stable set in

G[Yi]. Then Yi \ Y ′
i is a stable set (by 4.12.4 and Lemma 4.1:(ii)). Now we claim the following:

4.12.6 For j, ℓ ∈ {2, 3} and j ̸= ℓ, Aj ∪Bj is anticomplete to Xℓ ∪ Z.

Proof of 4.12.6. We will show for j = 2. Suppose to the contrary there are adjacent vertices,

say a ∈ A2 ∪ B2 and b ∈ X3 ∪ Z. Moreover there is a vertex, say c ∈ X ′
2 \ A2, such that

ac ∈ E(G). Now ay3, cy3 /∈ E(G) (by 4.12.4 and Lemma 4.1:(iii)), and so b ∈ X3, az1, az2 /∈ E(G)

(by Lemma 4.9:(iii)). Also we may assume that bz1 /∈ E(G) (by Lemma 4.9:(v)). Then since

{a, b, v3, v1, y3} does not induce a P5, we have by3 ∈ E(G), and then {a, b, y3, v1, z1} induces a P5,

contradiction. So 4.12.6 holds.

By 4.12.2, L can be partitioned in two stable sets, say L1 and L2, and we may assume

that if L is not anticomplete to X, then X1 ∪ X3 ∪ Y1 = ∅ (by 4.12.5). Now we define the

following sets: S1 := X ′
2 ∪B3 ∪ Y ′

1 ∪ {v1}, S2 := B1 ∪X ′
3 ∪ L2 ∪ {v2}, S3 := X ′

1 ∪B2 ∪ L1 ∪ {v3},
S4 := A1 ∪ A3 ∪ Y ′

2 ∪ (Y1 \ Y ′
1) ∪ (Y3 \ Y ′

3) ∪ {z1} and S5 := A2 ∪ (Y2 \ Y ′
2) ∪ Y ′

3 ∪ {z2}. Then

V (G) =
5∪

j=1
Sj (by 4.12.3), and we claim the following:

4.12.7 S1, S2, . . . , S5 are stable sets.

Proof of 4.12.7. Clearly S1 is a stable set (by 4.12.6 and Lemma 4.9:(i)), and S2 is a stable

set (by 4.12.1, 4.12.5 and Lemma 4.9:(iv)). Now if there are adjacent vertices, say a ∈ B2 and

t ∈ L1, then ay3 ∈ E(G) (by 4.12.2 and Lemma 4.10:(i)), and for any neighbor of a in X ′
2, say

x, we have xy3 ∈ E(G) (by Lemma 4.1:(iii)), and hence {x, a, y3} induces a K3 in G[X2 ∪ Y3], a
contradiction to 4.12.4; so B2 ∪ L1 is a stable set. This implies that S3 is a stable set (by 4.12.1

and Lemma 4.9:(iv)).

Next Y ′
2 ∪ (Y1 \ Y ′

1) ∪ (Y3 \ Y ′
3) ∪ {z1} is a stable set (by Lemma 4.1:(ii), Lemma 4.3:(i) and by

the definition of Y ′
i ), and A1 ∪A3 is anticomplete to (Y1 \ Y ′

1)∪ (Y3 \ Y ′
3)∪ {z1} (by Lemma 4.9:(i),

Lemma 4.9:(ii), Lemma 4.3:(iv) and 4.12.6). Since every vertex of A3 has a neighbor in X ′
3, A3

is anticomplete to Y ′
2 (by Lemma 4.1:(iii) and 4.12.4), and so A1 ∪ A3 is anticomplete to Y ′

2 (by
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Lemma 4.9:(i)). Also A1 is anticomplete to A3 (by Lemma 4.9:(iv)). Thus we conclude that S4 is

a stable set. Likewise, S5 is also a stable set. This proves 4.12.7.

So we conclude that χ(G) ≤ 5 (by 4.12.7). This completes the proof of Theorem 4.12.

We note that the graph G3 (see Figure 17) is an imperfect (P5, K5 − e)-free graph which has no

clique cut-set and contains an F2 with χ(G3) = ω(G3) = 5. Thus, the bound given in Theorem 4.12

is tight.

4.4.3 (P5,K5 − e, F1, F2)-free graphs that contain an F3

Let G be a connected (P5, K5 − e, F1, F2)-free graph which has no clique cut-set. Suppose that

G contains an F3 with vertices and edges as shown in Figure 16. Let C := {v1, v2, v3}. Then,

with respect to C, we define the sets X, Y, Z and L as in Section 4.3, and we use the lemmas in

Section 4.3. Clearly y2 ∈ Y2, y3 ∈ Y3 and z1, z2 ∈ Z so that Y2, Y3 and Z are non-empty. Recall

that C ∪ Z is a clique (by Lemma 4.1:(i)), and that Y is anticomplete to Z (by Lemma 4.1:(ii)).

Further the graph G has some more properties which we give in Lemmas 4.13 and 4.14 below.

Lemma 4.13 For i ∈ {1, 2, 3}, the following hold:

(i) Yi is anticomplete to Yi+1 ∪ Yi−1.

(ii) X1 is anticomplete to Y2∪Y3. Likewise, if Y1 ̸= ∅, then for all i ∈ {1, 2, 3}, Xi is anticomplete

to Yi+1 ∪ Yi−1.

(iii) Either Xi is anticomplete to Yi+1 ∪ Yi−1 or Xi is anticomplete to Yi.

(iv) If a vertex of L has a neighbor in Yi, then it is complete to Y ∪ Z. Moreover, G[Yi] is a

bipartite graph and Z = {z1, z2}.
(v) If one of X2 and X3 is empty, then L is not anticomplete to Y.

Proof. (i): If there are adjacent vertices, say y ∈ Yi and y
′ ∈ Yi+1∪Yi−1, then {v1, v2, v3, y, y′, z1, z2}

induces an F2. So Lemma 4.13:(i) holds.

(ii): Suppose to the contrary that there are adjacent vertices, say x ∈ X1 and y ∈ Y2 ∪ Y3.

We may assume (up to symmetry) that y ∈ Y2, and we may assume that xz1 /∈ E(G) (by

Lemma 4.1:(iv)). Then one of {x, y, v3, v2, y3} or {y, x, y3, v2, z1} induces a P5 (by Lemma 4.1:(ii)

and Lemma 4.13:(i)), a contradiction. So Lemma 4.13:(ii) holds.

(iii): By Lemma 4.13:(ii), it is enough to show for i ∈ {2, 3}. We will show for i = 2. Suppose

to the contrary that the assertion is not true. Then, by using Lemma 4.13:(ii), we may assume

that there are vertices, say x, x′ ∈ X2, y ∈ Y3 and y′ ∈ Y2 such that xy, x′y′ ∈ E(G). Also we may

assume that xz1 /∈ E(G) (by Lemma 4.1:(iv)). Then since {y, x, y′, v3, z1} does not induce a P5,

we have xy′ /∈ E(G); so x ̸= x′. Likewise, x′y /∈ E(G). Then xx′ /∈ E(G) (by Lemma 4.1:(iii)),

and then {x, y, v1, y′, x′} induces a P5 (by Lemma 4.13:(i)), a contradiction. So Lemma 4.13:(iii)

holds.
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(iv): Clearly the first assertion follows from Lemma 4.3:(iii) and Lemma 4.13:(i). Now if a vertex

in L, say t, has a neighbor in Yi, then since {t, vi+1} is complete to Yi, G[Yi] is a bipartite graph

(by Lemma 4.1:(ii) and Observation 5), and since {t} is complete to Z, we have Z = {z1, z2} (by

Lemma 4.3:(ii)). This proves Lemma 4.13:(iv).

(v): We may assume that X2 = ∅. Suppose to the contrary that Y is anticomplete to L.

By Lemma 4.13:(iii), X3 is anticomplete to one of Y2 or Y3. Then by Lemma 4.13:(i) and

Lemma 4.13:(ii), either Y2 is anticomplete to V (G) \ (Y2 ∪ {v1, v3}) or Y3 is anticomplete to

V (G)\ (Y3∪{v1, v2}). But now C is a clique cut-set in G separating one of Y2 or Y3 with the rest of

the vertices in G, a contradiction. So L is not anticomplete to Y . This proves Lemma 4.13:(v).

Lemma 4.14 If there is an i ∈ {1, 2, 3} such that Xi is not anticomplete to Yi+1 ∪ Yi−1, then

χ(G) ≤ 5.

Proof. By Lemma 4.13:(ii), we may assume that i = 2, and there are adjacent vertices, say p ∈ X2

and q ∈ Y1∪Y3. Again, by Lemma 4.13:(ii), we have Y1 = ∅ and so q ∈ Y3. Also, X2 is anticomplete

to Y2 (by Lemma 4.13:(iii)). Moreover, we claim that:

4.14.1 X3 = ∅.

Proof of 4.14.1: Suppose not, and let x ∈ X3. By Lemma 4.1:(iv), we may assume that xz1 /∈ E(G).

Since {v1, v2, v3, z1, z2, p, q} does not induce an F2, pz1 /∈ E(G). Then since {p, q, v1, v3, x} or

{p, q, x, v3, z1} does not induce a P5, we have px, qx ∈ E(G). Thus by Lemma 4.13:(iii), xy2 /∈ E(G).

But then {x, p, v2, v1, y2} induces a P5, a contradiction. So 4.14.1 holds.

By 4.14.1 and by Lemma 4.13:(v), there is a vertex, say t ∈ L, that has a neighbor in Y.

Then by Lemma 4.13:(iv), {t} is complete to Y, G[Y2] is a bipartite graph, and Z = {z1, z2}.
Then since for any x ∈ X2, {t, y2, v3, v2, x} does not induce a P5, {t} is complete to X2. So X2 is

complete to Y3 (by Lemma 4.1:(iii)). Now for any x′ ∈ X2 which has a neighbor in Z, say z1, since

{v1, v2, z1, v3, z2, x′, q} does not induce an F2 (by Lemma 4.1:(ii) and Lemma 4.1:(iv)), we see that

X2 is anticomplete to Z. Thus if there are adjacent vertices, say u and v in X2, then {u, v, y3, v2, t}
induces a K5 − e; so X2 is a stable set. Likewise, Y3 is a stable set. Also by Lemma 4.1:(iii) and

Lemma 4.13:(ii), {t} is anticomplete to X1, and hence X1 = ∅ (by Lemma 4.2:(i)). So we conclude

that X ∪ Y ∪ Z = X2 ∪ Y2 ∪ Y3 ∪ {z1, z2}, and χ(G[X ∪ Y ∪ Z]) ≤ 2. Next we claim that:

4.14.2 L is complete to Y.

Proof of 4.14.2. Suppose to the contrary that there is a component of G[L], say Q, such that V (Q)

is not complete to Y. Thus by Lemma 4.1:(iii) and Lemma 4.13:(iv), V (Q) is anticomplete to Y .

So by Lemma 4.1:(iii) and Lemma 4.2:(i), V (Q) is anticomplete to X ∪ Y , and hence Z is a clique

cut-set in G separating C and V (Q), a contradiction. So 4.14.2 holds.

By 4.14.2, L is complete to {y2, y3}. So by Observation 5 and Theorem A, we conclude that

χ(G[C ∪ L]) ≤ 3, and hence χ(G) ≤ 5. This proves Lemma 4.14.
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Now we prove the main theorem of this subsection, and is given below.

Theorem 4.15 Let G be a connected (P5, K5 − e, F1, F2)-free graph. If G contains an F3, then

either G has a clique cut-set or χ(G) = 5.

Proof. Let G be a connected (P5, K5 − e, F1, F2)-free graph. Suppose that G contains an F3 with

vertices and edges as shown in Figure 16. Let C := {v1, v2, v3}. Then, with respect to C, we define

the sets X, Y, Z and L as in Section 4.3, and we use the lemmas in Section 4.3. Clearly y2 ∈ Y2

and y3 ∈ Y3, and z1, z2 ∈ Z, so that Y2, Y3 and Z are non-empty. Recall that C ∪ Z is a clique (by

Lemma 4.1:(i)), and that Y is anticomplete to Z (by Lemma 4.1:(ii)). We may assume that G has

no clique cut-set. Now since χ(F3) = 5, we have χ(G) ≥ 5, it is enough to show that χ(G) ≤ 5. By

Lemma 4.14, we may assume that for each i ∈ {1, 2, 3}, Xi is anticomplete to Yi+1 ∪ Yi−1. Next we

claim the following:

4.15.1 X is anticomplete to L.

Proof of 4.15.1. Suppose to the contrary there are adjacent vertices, say x ∈ X and t ∈ L. If

x ∈ X2, then by Lemma 4.1:(iii), ty3 /∈ E(G), so {t} is anticomplete to Y (by Lemma 4.13:(iv)),

and then one of {t, x, y2, v1, y3}, {t, x, v2, v3, y2} induces a P5; so x /∈ X2. Likewise, x /∈ X3. Thus

x ∈ X1. So by Lemma 4.2:(i), X2 ∪X3 = ∅. Now let L′ := {t ∈ L | t has a neighbor in X1}. Then
L′ is anticomplete to Y2 ∪ Y3 ∪ (L \ L′) (by Lemma 4.1:(iii)), and for any y′ ∈ Y1, since one of

{t, x, v1, v3, y′}, {t, x, y′, v3, y2} does not induce a P5, we have Y1 = ∅. But, then C ∪ Z is a clique

cut-set separating X1 ∪ L′ and the rest of the vertices in G, a contradiction. So 4.15.1 holds.

4.15.2 L is complete to Y ∪ Z, and G[L] is a bipartite graph.

Proof of 4.15.2. Since C ∪ Z is not a clique cut-set in G, the vertex-set of each component of G[L]

is not anticomplete to Y . So by Lemma 4.13:(iv) and Lemma 4.1:(iii), L is complete to Y ∪ Z. In
particular, L is complete to {y2, y3, z1, z2}. Now the second assertion follows from Observation 4

and Observation 5. This proves 4.15.2.

To prove the our theorem, we first suppose that there is an index j ∈ {1, 2, 3} such that

Xj+1 ∪ Xj−1 = ∅. Then by Lemma 4.13:(v), L ̸= ∅ and let t ∈ L. Thus by Lemma 4.13:(iv)

and 4.15.2, G[Yi] is a bipartite graph for each i, and Z = {z1, z2}. For i ∈ {1, 2, 3}, let Y ′
i be a

maximal stable set in G[Yi]. Next if Yj = ∅, then since Xj is anticomplete to Yj+1 ∪ Yj−1 ∪ L (by

4.15.1), C ∪ Z is a clique cut-set in G separating Xj and the rest of the vertices, a contradiction;

so Yj ̸= ∅. Also for any x ∈ Xj and y ∈ Yj, since {x, vj, vj+1, y, t} does not induce a P5 (by

4.15.2), Xj is complete to Yj. Then since Xj is complete to Yj ∪ {vj}, G[Xj] is K3-free (by

Observation 5). Now by using Theorem A, we pick a maximum stable set from each 5-ring-

component of G[Xj] (if exists), and let S be the union of these sets; so χ(G[Xj \ S]) ≤ 2. Also

S ∪ (Yj \ Y ′
j ) ∪ {z1} is a stable set (by Lemma 4.3:(iv) and Lemma 4.3:(v)). Then from 4.15.1 and

4.15.2, we have χ(G[(Xj \S)∪L∪{vj+1, vj−1}]) = 2, and from Lemma 4.1:(ii) and Lemma 4.13:(i),

we have χ(G[S ∪ (Y \ (Y ′
1 ∪ Y ′

2 ∪ Y ′
3)) ∪ {z1}]) = 1 and χ(G[Y ′

1 ∪ Y ′
2 ∪ Y ′

3 ∪ {z2}]) = 1. So
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we conclude that χ(G) = χ(G[C ∪ Xj ∪ Y ∪ {z1, z2} ∪ L]) ≤ 5, and we are done. So we may

assume that for each j ∈ {1, 2, 3}, either Xj+1 ̸= ∅ or Xj−1 ̸= ∅. To proceed further, we let

M := {x ∈ X1 | N(x) ∩X2 ̸= ∅}. Then:

4.15.3 The following hold:

(i) X2 and X3 are non-empty.

(ii) X2 is complete to X3.

(iii) X2 is complete to Y2. Likewise, X3 is complete to Y3.

Proof of 4.15.3. (i): Suppose not, and let X3 = ∅. Then by our assumption X1, X2 ̸= ∅. By

Lemma 4.13:(v), L ̸= ∅ and let t ∈ L. Since for any x ∈ X1 and x′ ∈ X2, {x, x′, v2, y3, t} does not

induce a P5 (by 4.15.2), X1 is anticomplete to X2. Now by 4.15.1, since C∪Z is not a clique cut-set

in G, X1 is not anticomplete to Y1, and X2 is not anticomplete to Y2. Let p ∈ X1, q ∈ X2, r ∈ Y1

and s ∈ Y2 be such that pr, qs ∈ E(G). Then {p, r, v3, s, q} induces a P5 (by Lemma 4.13:(i)). So

4.15.3:(i) holds.

(ii): Suppose to the contrary there are non-adjacent vertices, say p ∈ X2 and q ∈ X3. Then for any

u ∈ Y2 and v ∈ Y3, since {p, u, v1, v, q} does not induce a P5 (by Lemma 4.13:(i)), we see that either

{p} is anticomplete to Y2 or {q} is anticomplete to Y3. We may assume that {p} is anticomplete to

Y2. Then for any x ∈ X1, since {x, p, v2, v3, y2} does not induce a P5 (by Lemma 4.13:(ii)), {p} is

anticomplete to X1. Likewise, {p} is anticomplete to X3. But now if Q is the component of G[X2]

that contains p, then C ∪ Z is a clique cut-set separating V (Q) and the rest of the vertices in G

(by Lemma 4.1:(iii) and 4.15.1), a contradiction. So 4.15.3:(ii) holds.

(iii): If there are non-adjacent vertices, say x ∈ X2 and y ∈ Y2, then for any x3 ∈ X3 (such a

vertex exists, by (i)), {x3, x, v2, v1, y} induces a P5 (by (ii)); so X2 is complete to Y2. So 4.15.3:(iii)

holds.

4.15.4 The following hold:

(i) X1 \M is complete to X3.

(ii) Each vertex in Z is complete to exactly one of X2 and X3.

(iii) Each vertex in Z is complete to exactly one of X3 and X1 \M .

Proof of 4.15.4. (i): If there are non-adjacent vertices, say x ∈ X1 \M and x′ ∈ X3, then for any

x2 ∈ X2, {x′, x2, v2, v1, x} induces a P5 (by 4.15.3:(i) and 4.15.3:(ii)). So 4.15.4:(i) holds.

(ii): Let z ∈ Z and let z ̸= z1. If {z} is complete to both X2 and X3, then there are vertices,

say x2 ∈ X2 and x3 ∈ X3 such that zx2, zx3 ∈ E(G), and then {z, v2, v3, v1, z1, x2, x3} induces

an F2 (by 4.15.3:(ii)); so {z} is not complete to X2 or X3. Suppose that there is a vertex, say

x ∈ X2 such that zx /∈ E(G). Now if there is a vertex, say x′ ∈ X3 such that x′z /∈ E(G), then

{x, x′, y3, v1, z} induces a P5 (by 4.15.3). So 4.15.4:(ii) holds.

(iii): This follows from a similar argument in 4.15.4:(ii) by using 4.15.4:(i) instead of 4.15.3.
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By 4.15.3:(i), we let x2 ∈ X2 and x3 ∈ X3. From 4.15.4:(ii), we may assume that {z1} is

complete to X2. Then {z2} is anticomplete to X2 (by Lemma 4.1:(iv)). So {z2} is complete to X3

(by 4.15.4:(ii)) and hence anticomplete to X1 \M (by 4.15.4:(iii)). Next we claim that:

4.15.5 M is complete to {z2} ∪X2, and is anticomplete to {z1} ∪X3.

Proof of 4.15.5. Let m ∈M , and let x ∈ X2 be a neighbor of m. Then since {m,x, y2, v3, z2} does

not induce a P5 (by 4.15.3:(iii)), mz2 ∈ E(G); so M is complete to {z2}. Thus M is anticomplete

to {z1} (by Lemma 4.1:(iv)). Now if there are adjacent vertices, say p ∈ X3 and q ∈ M , then

{z2, v1, v3, z1, v2, p, q} induces an F2, a contradiction; so M is anticomplete to X3. Next if there

are non-adjacent vertices, say u ∈M and v ∈ X2, then {x3, v, v2, v1, u} induces P5 (by 4.15.3:(ii))

and since ux3 /∈ E(G) by the previous argument). This proves 4.15.5.

4.15.6 Then following hold:

(i) Z = {z1, z2}.
(ii) Y1 = ∅.
(iii) If X1 ̸= ∅, then L = ∅.

Proof of 4.15.6. (i): If there is a vertex, say z ∈ Z \ {z1, z2}, then {z} is complete to exactly one of

X2 and X3 (by 4.15.4:(ii)) which is a contradiction to Lemma 4.1:(iv). This proves 4.15.6:(i).

(ii): Suppose not. Then since C is not a clique cut-set separating Y1 and the rest of the vertices,

there are adjacent vertices, say y ∈ Y1 and p ∈ X1 ∪ L. Then by 4.15.1, 4.15.3 and 4.15.5, if p ∈ L,

then {x2, x3, v3, y, p} induces P5, if p ∈M , then {y, p, x2, x3, y3} induces a P5, and if p ∈ X1 \M ,

then {y, p, x3, x2, y2} induces a P5 . These contradictions imply that 4.15.6:(ii) holds.

(iii): Otherwise, for any t ∈ L and p ∈ X1, from 4.15.2 and 4.15.5, {p, x2, v2, y3, t} induces a P5 (if

p ∈M), and from 4.15.2 and 4.15.4:(i), {p, x3, v3, y2, t} induces a P5 (if p ∈ X1 \M).

4.15.7 G[Y2], G[Y3], G[X2], G[X3], G[M ] and G[X1 \M ] are bipartite.

Proof of 4.15.7. We show that, up to symmetry, G[Y2], G[X2] and G[M ] are bipartite. Recall

that Y2 is complete to {x2, v1, v3} (by 4.15.3:(iii)), X2 is complete to {x3, v2, z1} (by 4.15.3:(ii)),

and M is complete to {x2, v1, z2} (by 4.15.5). Now the proof follows from Observation 4 and

Observation 5.

By above claims, since G[M ∪ X3 ∪ Y2 ∪ {v2, z1}] and G[(X1 \M) ∪ X2 ∪ Y3 ∪ {v3, z2}] are
bipartite, if X1 ̸= ∅, then χ(G) ≤ 5 (by 4.15.6). So we may assume that X1 = ∅. For j ∈ {2, 3},
let Y ′

j , X
′
j and L′ respectively denote a maximal stable set of G[Yj], G[Xj] and L. Then we

define the following sets: S1 := X ′
2 ∪ Y ′

3 ∪ {z2}, S2 := X ′
3 ∪ Y ′

2 ∪ {v2}, S3 := (X2 \X ′
2) ∪ L′ ∪ {v3},

S4 := (X3\X ′
3)∪(L\L′)∪{v1} and S5 := (Y2\Y ′

2)∪(Y3\Y ′
3)∪{z1}. Then by above arguments, Si’s

are stable sets whose union is V (G). So χ(G) ≤ 5. This completes the proof of Theorem 4.15.

We note that the graph G4 (see Figure 17) is an imperfect (P5, K5 − e)-free graph which has no

clique cut-set and contains an F2 with χ(G3) = ω(G3) = 5. So the assumption that G is F2-free in

Theorem 4.15 cannot be dropped.
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4.5 (P5,K5 − e)-free graphs that contain a K4

In this section, we deal with (P5, K5 − e)-free graphs assuming that G is (F1, F2, F3)-free (see

Figure 16), and ω(G) ≥ 4.

4.5.1 (P5,K5 − e, F1, F2, F3)-free graphs with ω ≥ 5

Theorem 4.16 Let G be a connected (P5, K5 − e, F1, F2, F3)-free graph with ω(G) ≥ 5. Then

either G is the complement of a bipartite graph or G has a clique cut-set or χ(G) ≤ 6.

Proof. Let G be a connected (P5, K5−e, F1, F2, F3)-free graph. We may assume that G has no clique

cut-set, and that G is not the complement of a bipartite graph. By Theorem 4.4, we assume that G

contains an H2, sayK. Let V (K) := {v1, v2, v3, z1, z2, y1} where {v1, v2, v3, z1, z2} induces aK5, and

NK(y1) = {v2, v3}. Let C := {v1, v2, v3}. Then with respect to C, we define the sets X, Y , Z and

L as in Section 4.3, and we use the lemmas in Section 4.3. Clearly y1 ∈ Y1 and z1, z2 ∈ Z so that Y1

and Z are non-empty. Recall that C ∪Z is a clique (by Lemma 4.1:(i)), and that Y is anticomplete

to Z (by Lemma 4.1:(ii)). To proceed further, we let Z1 := {z ∈ Z | {z} is anticomplete to X1}.
We show that χ(G) ≤ 6. First we show that:

4.16.1 The following hold:

(i) Y2 ∪ Y3 = ∅.
(ii) X1 ̸= ∅.
(iii) X2 ∪X3 is anticomplete to Z.

(iv) |Z \ Z1| ≤ 1.

Proof of 4.16.1. (i): If there is a vertex, say y ∈ Y2 ∪ Y3, then {v1, v2, v3, z1, z2, y, y1} induces an F2

or an F3 (by Lemma 4.1:(ii)). So 4.16.1:(i) holds.

(ii): If X1 = ∅, then Z ∪ {v2, v3} is a clique cut-set separating {v1} and the rest of the vertices of

G (by 4.16.1:(i) and Lemma 4.1:(i) ), a contradiction. So 4.16.1:(ii) holds.

(iii): If there are adjacent vertices, say x ∈ X2∪X3 and z
′ ∈ Z (and we may assume that z′ ̸= z1, by

Lemma 4.1:(iv)), then {z′, v2, v3, v1, z1, y1, x} induces an F2 or an F3, a contradiction. So 4.16.1:(iii)

holds.

(iv): If there are vertices, say z, z′ ∈ Z and x, x′ ∈ X1 such that zx, z′x′ ∈ E(G), then

{v1, z, z′, v2, v3, x, x′} induces an F2 or an F3 (by Lemma 4.1:(iv)), a contradiction. So 4.16.1:(iv)

holds.

Since |Z| ≥ 2, we may assume that z1 ∈ Z1 (by 4.16.1:(iv)). Next we claim the following:

4.16.2 Each vertex in Z1 has a neighbor in L, and so L ̸= ∅. Moreover, the vertex-set of each

component of L is not anticomplete to X1 ∪ Y1.
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Proof of 4.16.2. For any z ∈ Z1, since C ∪ (Z \ {z}) is not a clique cut-set separating {z} and the

rest of the vertices of G (by 4.16.1:(iii) and Lemma 4.1:(ii)), we see that each vertex in Z1 has a

neighbor in L. Since z1 ∈ Z1, we have L ̸= ∅. This proves the first assertion.

To prove the second assertion, we let Q be an arbitrary component of G[L]. Since C ∪ Z is

not a clique cut-set separating V (Q) and the rest of the vertices of G, we see that V (Q) is not

anticomplete to X ∪ Y . So from 4.16.1:(i), 4.16.1:(ii) and Lemma 4.2, it follows that V (Q) is not

anticomplete to X1 ∪ Y1. This proves 4.16.2.

4.16.3 Z1 is complete to L.

Proof of 4.16.3. Suppose to the contrary that there is a vertex in Z1, say z, such that L \N(z) ̸= ∅.
We first show that X ∪ Y ∪ L is a clique, and is given below.

(a) First we observe that since every vertex of L \N(z) has a neighbor in X1 ∪ Y1 (by 4.16.2),

X1, Y1 and L \N(z) are complete to each other (by Lemma 4.3:(iii)).

(b) L ∩N(z) is complete to L \N(z): By 4.16.2, let t′ ∈ L ∩N(z) be arbitrary. Then by 4.16.2

and Lemma 4.1:(iii), let u ∈ X1 ∪ Y1 be such that ut′ ∈ E(G). Since for any v ∈ L \N(z),

one of {v2, z, t′, u, v} or {v1, z, t′, u, v} does not induce a P5 (by (I)), {t′} is complete to

L \N(z). Thus L ∩N(z) is complete to L \N(z).

(c) From (a), (b) and from Lemma 4.1:(iii), X1 ∪ Y1 is complete to L, where L ∩N(z) ̸= ∅ and

L \N(z) ̸= ∅.
(d) From (III) and Lemma 4.2:(ii), it follows that X1, X2 and X3 are complete to each other,

and X is complete to L, and hence X2 ∪X3 is complete to Y1 (by Lemma 4.1:(iii)).

From (c) and (d), and from 4.16.1:(i), we see that X, Y , L ∩ N(z) and L \ N(z) are complete

to each other, and since these sets are non-empty, we conclude that X ∪ Y ∪ L is a clique (by

Observation 6). So V (G) can be partitioned into two cliques, namely, X ∪ Y ∪L and C ∪Z. Thus
G is the complement of a bipartite graph, a contradiction. So 4.16.3 holds.

4.16.4 G[L] is K3-free.

Proof of 4.16.4. Let Q be a component of G[L]. By 4.16.2, there is a vertex in X1 ∪ Y1, say a,
which has a neighbor in V (Q). Then {a} is complete to V (Q) (by Lemma 4.1:(iii)). Now since

{a, z1} is complete to V (Q) (by 4.16.3), Q is K3-free (by Observation 5). Since Q is arbitrary,

G[L] is K3-free. This proves 4.16.4.

4.16.5 |Z1| ≤ 2.

Proof of 4.16.5. The proof follows from 4.16.2, 4.16.3 and Lemma 4.3:(ii).

4.16.6 X2 ∪X3 = ∅.
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Proof of 4.16.6. Suppose not. If X2 ∪X3 is anticomplete to X1 ∪ Y1, then X2 ∪X3 is anticomplete

to L (by 4.16.1:(ii) and Lemma 4.2), and then C ∪Z is a clique cut-set separating X2 ∪X3 and the

rest of the vertices (by 4.16.1:(i)), a contradiction. So we may assume that X2 is not anticomplete

to X1 ∪ Y1. To proceed further, we let X ′
2 := {x ∈ X2 | N(x) ∩ (X1 ∪ Y1) ̸= ∅}. We first show that

X ∪ Y1 ∪ L is a clique using a sequence of arguments given below.

(a) X ′
2, X1 and Y1 are complete to each other: Let u ∈ X ′

2. For any y ∈ Y1 ∩ N(u) and for

any x ∈ X1, since {u, y, v3, v1, x} and {u, y, x, v1, z1} do not induce P5’s (by 4.16.1:(iii) and

Lemma 4.1:(ii)), (Y1 ∩ N(u)) ∪ {u} is complete to X1. Likewise, (X1 ∩ N(u)) ∪ {u} is

complete to Y1. Since one of (X1 ∩N(u)) and (Y1 ∩N(u)) is non-empty, it follows that X ′
2

is complete to X1 ∪ Y1, and X1 is complete to Y1 (by Lemma 4.1:(iii)).

(b) X is complete to L and X2 = X ′
2: Suppose not. Then there is a vertex, say t ∈ L such that

t has a non-neighbor in X. By Lemma 4.2:(i), we may assume that {t} is anticomplete to

X. Then for any x ∈ X1 and x′ ∈ X ′
2, since {x, x′, v2, z1, t} does not induce a P5 (by (a),

4.16.1:(iii) and 4.16.3), we see that X is complete to L. This implies that X ′
2 is complete to

X1 (by Lemma 4.2:(ii)) and so X ′
2 = X2.

(c) Since X2 is complete L (by (b)), we have Y1 is complete to L (by Lemma 4.1:(iii)) and

hence again from Lemma 4.1:(iii), Y1 is complete to X3. Also X1 is complete to X3 (by (b)

and Lemma 4.2:(ii)).

By (a), (b) and (c), we conclude that X, Y1 and L are complete to each other. Then since Y, L ̸= ∅
and |X| ≥ 2 (by 4.16.1:(ii) and 4.16.2), it follows from Observation 6 that X ∪ Y1 ∪ L is a clique.

So by 4.16.1:(i), V (G) can be partitioned into two cliques, namely, X ∪ Y ∪ L and C ∪ Z. Thus G
is the complement of a bipartite graph, a contradiction. So 4.16.6 holds.

By 4.16.1 and 4.16.6, V (G) = C ∪X1 ∪ Y1 ∪ Z ∪ L. Now we claim the following:

4.16.7 The vertex-set of each component of G[X1] is a homogeneous set in G[X1 ∪ Y1 ∪ L], and
so G[X1] is K3-free.

Proof of 4.16.7. If there are vertices, say a, b ∈ X1 and p ∈ Y1 ∪ L such that ab, ap ∈ E(G) and

bp /∈ E(G), then {b, a, p, v2, z1} induces a P5 (by 4.16.3 and Lemma 4.1:(ii) ); so the first assertion

holds.

To prove the second assertion, we let Q be a component of G[X1]. Since C ∪ Z is not a clique

cut-set separating V (Q) and the rest of the vertices, V (Q) is not anticomplete to L ∪ Y1. Let

t ∈ L ∪ Y1 be such that {t} is not anticomplete to V (Q). So V (Q) is complete to {t, v1}, by the

first assertion. Then from Observation 5, V (Q) is K3-free. Since Q is arbitrary, G[X1] is K3-free.

This proves 4.16.7.

4.16.8 The vertex-set of each component of G[Y1] is a homogeneous set in G, and so χ(G[Y1]) ≤ 2.
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Proof of 4.16.8. If there are vertices, say a, b ∈ Y1 and p ∈ V (G) \ Y1 such that ab, ap ∈ E(G) and

bp /∈ E(G), then {b, a, p, v1, z1} induces a P5 (by 4.16.3 and Lemma 4.1:(ii)); so the first assertion

holds.

To prove the second assertion, let Q be a component of G[Y1]. Since {v2, v3} is not a clique

cut-set separating V (Q) and the rest of the vertices, V (Q) is not anticomplete to L ∪ X1. Let

q ∈ L ∪X1 be such that {q} is not anticomplete to V (Q). Thus V (Q) is complete to {q, v2, v3},
by the first assertion. Thus by Observation 4 and Observation 5, it follows that Q is (P3, K3)-free,

and hence χ(Q) ≤ 2. This proves 4.16.8, since Q is arbitrary.

Now by using 4.16.7 and Theorem A, we pick a maximum stable set from each 5-ring-component

of G[X1] (if exists), and let A be the union of these sets. Again by using 4.16.4 and Theorem A,

we pick a maximum stable set from each 5-ring-component of G[L] (if exists), and let B be the

union of these sets. Note that A and B are stable sets, χ(G[X1 \A]) ≤ 2 and χ(G[L \B]) ≤ 2 (by

Theorem A). Let Y ′
1 be a maximal stable set of G[Y1]. Next we claim the following:

4.16.9 A ∪B ∪ (Y1 \ Y ′
1) ∪ (Z1 \ {z1}) is a stable set.

Proof of 4.16.9. Clearly A ∪ (Z1 \ {z1}) and (Y1 \ Y ′
1) ∪ (Z1 \ {z1}) are stable sets (by 4.16.5

and Lemma 4.1:(ii)). Suppose to the contrary that there are adjacent vertices, say p, q ∈
A ∪ B ∪ (Y1 \ Y ′

1) ∪ (Z1 \ {z1}). First suppose that p ∈ A. Then q /∈ Z1 \ {z1}. Let Q be the

5-ring-component of G[X1] such that p ∈ V (Q). Since q ∈ B ∪ (Y1 \ Y ′
1), there is a vertex, say

r ∈ (L \B) ∪ Y ′
1 such that qr ∈ E(G). Then by 4.16.7, 4.16.8 and Lemma 4.1:(iii), it follows that

{q, r} is complete to V (Q). So by Observation 4, Q is P3-free, a contradiction.

So we may assume that p ∈ B and q ∈ (Y1 \Y ′
1)∪ (Z1 \{z1}). Let Q′ be the 5-ring-component of

G[L] such that p ∈ V (Q′). If q ∈ Y1 \ Y ′
1 , then there is a vertex in Y ′

1 , say y, such that qy ∈ E(G),

and hence V (Q′) is complete to {q, y} (by 4.16.8 and Lemma 4.1:(iii)); so from Observation 4,

Q′ is P3-free, a contradiction. So q ∈ Z1 \ {z1}. Since V (Q′) is complete to {z1, q} (by 4.16.3), it

follows from Lemma 4.1:(i) and Observation 4 that Q′ is P3-free, a contradiction. So 4.16.9 holds.

So from 4.16.1:(iv), 4.16.8 and 4.16.9, we conclude that χ(G) ≤ χ(G[A ∪B ∪ (Y1 \ Y ′
1) ∪ (Z1 \

{z1})])+χ(G[(X1 \A)∪{z1, v2}])+χ(G[(L\B)∪{v1, v3}])+χ(G[Y ′
1 ∪ (Z \Z1)]) ≤ 1+2+2+1 = 6.

This completes the proof of Theorem 4.16.

4.5.2 (P5,K5 − e, F1)-free graphs with ω = 4

We begin with the following. Let G be a connected (P5, K5 − e, K5, F1)-free graph which has no

clique cut-set. Suppose that ω(G) = 4. So G contains a K4, say K with vertices {v1, v2, v3, z∗}. We

let C := {v1, v2, v3}. Then, with respect to C, we define the sets X, Y, Z and L as in Section 4.3,

and we use the lemmas in Section 4.3. Clearly z∗ ∈ Z, and so Z ̸= ∅. For i ∈ {1, 2, 3}, we let

Wi := {x ∈ Xi | xz∗ ∈ E(G)}, and let L1 := {t ∈ L | N(t)∩X = ∅}. Recall that C ∪Z is a clique

(by Lemma 4.1:(i)), and that Y is anticomplete to (by Lemma 4.1:(ii)). Moreover, the graph G

has some more properties which we give in a few lemmas below.
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Lemma 4.17 For i ∈ {1, 2, 3}, the following hold:

(i) If Yi+1∪Yi−1 ̸= ∅, and if V (Q) is the vertex-set of a component of G[Xi] which is anticomplete

to L, then Q is K3-free.

(ii) The vertex-set of each big-component of Wi is anticomplete to Yi+1 ∪ Yi−1.

(iii) If Q is a 5-ring component of G[Xi] (if exists), then V (Q) is anticomplete to Yi+1 ∪ Yi−1, to

the vertex-set of each big-component of G[Xi+1], and to the vertex-set of each big-component

of G[Xi−1].

(iv) If Xi \ Wi is not anticomplete to Yi+1, then Wi ∪ Yi−1 = ∅. Likewise, if Xi \ Wi is not

anticomplete to Yi−1, then Wi ∪ Yi+1 = ∅.

Proof. We will show for i = 1.

(i): If V (Q) is complete to {z∗}, then since G is K5-free, clearly Q is K3-free. So by Lemma 4.3:(v),

{z∗} is anticomplete V (Q). Then since the set {u ∈ V (G) \ V (Q) | N(u) ∩ V (Q) ̸= ∅} is not a

clique cut-set separating V (Q) and the rest of the vertices, there are non-adjacent vertices, say

p, q ∈ V (G) \ V (Q) such that both p and q has neighbors in V (Q). Then {p, q} is complete to

V (Q) (by Lemma 4.1:(iii) and Lemma 4.3:(iv)). So Q is K3-free (by Observation 5). This proves

Lemma 4.17:(i).

(ii): If there are vertices, say w,w′ ∈ W1 and y ∈ Y2 ∪ Y3 such that ww′, wy ∈ E(G), then

{w,w′, v1, y, z∗} induces a K5 − e (by Lemma 4.1:(iii) and Lemma 4.3:(v)). So Lemma 4.17:(ii)

holds.

(iii): If there is a vertex, say y ∈ Y2 ∪ Y3 such that y has a neighbor in V (Q), then {y} is complete

to V (Q) (by Lemma 4.1:(iii)), and then V (Q) ∪ {v1, y} induces a K5 − e; so V (Q) is anticomplete

to Y2 ∪ Y3. Other assertions follows from Observation 4 and Lemma 4.1:(iii). So Lemma 4.17:(iii)

holds.

(iv): Suppose not, and let w ∈ W1 ∪ Y3. If w ∈ Y3, then G contains either a P5 or an F1 (and

the proof is similar to the proof of Lemma 4.9:(i)). So we assume that w ∈ W1. Since X1 \W1

is not anticomplete to Y2, there are vertices, say x ∈ X1 and y ∈ Y2, such that xy ∈ E(G) and

z∗x /∈ E(G). Then by Lemma 4.3:(v), wx /∈ E(G). Now since {x, y, v3, z∗, w} does not induce a P5,

wy ∈ E(G), and then {x, y, w, z∗, v2} induces a P5, a contradiction. So Lemma 4.17:(iv) holds.

Lemma 4.18 The following hold:

(i) Z = {z∗}.
(ii) For i ∈ {1, 2, 3}, G[Yi] is the union of K2’s and K1’s.

(iii) L \ L1 is anticomplete to L1. Moreover, χ(G[L]) ≤ 3.

(iv) If there is an i ∈ {1, 2, 3} such that Xi, Xi+1 and L \ L1 are non-empty, then χ(G) ≤ 7.

Proof. (i): Since G is K5-free, this follows from Lemma 4.1:(i).

(ii): Since G[Yi ∪{vi+1, vi−1}] does not induce a K5, G[Yi] is K3-free. Also since G[Yi] is P3-free (by

Lemma 4.1:(ii)), we see that G[Yi] is the union of K2’s and K1’s. This proves Lemma 4.18:(ii).
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(iii): Clearly L \ L1 is anticomplete to L1 (by Lemma 4.1:(iii)). To prove the second assertion,

consider a component of G[L], say Q. Then since C ∪Z is not a clique cut-set separating V (Q) and

the rest of the vertices (by Lemma 4.1:(i)), there is a vertex, say p ∈ X ∪Y which has a neighbor in

V (Q). Then {p} is complete to V (Q) (by Lemma 4.1:(iii)), and then since G is (K5, K5 − e)-free,

Q is (K4, K4 − e)-free. Hence χ(Q) ≤ 3, by Theorem I. This proves Lemma 4.18:(iii), since Q is

arbitrary.

(iv): We may assume that i = 1. Clearly χ(G[Y ∪ Z]) ≤ 3 (by Lemma 4.3:(i), Lemma 4.18:(i)

and Lemma 4.18:(ii)), and χ(G[L1]) ≤ 3 (by Lemma 4.18:(iii)). Since L \ L1 ̸= ∅, it follows from
Lemma 4.2 that X1, X2, X3 and L\L1 are complete to each other. Then since G is (K5, K5−e)-free,
it follows from Observation 4 that G[X1], G[X2 ∪X3] and G[L \ L1] are (P3, K3)-free, and hence

bipartite. Also since G is K5-free, at least two of X1, X2 ∪X3 and L \ L1 are stable sets. Then

since {v2} is anticomplete to X1, {v1} is anticomplete to X2 ∪ X3, and {v3} is anticomplete to

L\L1, we conclude that χ(G[C ∪X ∪ (L\L1)]) ≤ 4. Clearly L1 is anticomplete to (L\L1)∪X (by

Lemma 4.1:(iii) and by the definition of L1). So χ(G) ≤ χ(G[Y ∪Z])+χ(G[C∪X∪L]) = 3+4 = 7.

This proves Lemma 4.18:(iv).

Lemma 4.19 For i ∈ {1, 2, 3}: Define, M = Yi if Yi+1 and Yi−1 are non-empty, otherwise let

M = ∅. If L is anticomplete to Xi+1 ∪ Xi−1, and if G[Xi+1] and G[Xi−1] are K3-free, then

G[Xi+1 ∪Xi−1 ∪M ∪ L ∪ {vi}] is 4-colorable.

Proof. Let i = 1. For k ∈ {2, 3}, we pick a maximum stable set from each 5-ring-component of

G[Xk] (by using Theorem A), and let Ak be the union of these sets. So G[X2 \A2] and G[X3 \A3]

are bipartite graphs. For k ∈ {2, 3}, we pick a maximum stable set from each big-component of

G[Xk \Ak], and let Bk be the union of these sets. By Lemma 4.18:(ii), we pick a maximum stable

set from each big-component of G[Y1], and let D be the union of these sets. So X2 \ (A2 ∪ B2),

X3\(A3∪B3) and Y1\D are stable sets. Also A3∪B2 is stable set (by Lemma 4.17:(iii)), B2\W2 is

anticomplete to Y1 (by Lemma 4.17:(iv)), and B2 ∩W2 is anticomplete to Y1 (by Lemma 4.17:(ii)).

So A3 ∪B2 ∪D ∪ {v1} is a stable set (by Lemma 4.17:(iii)). Likewise, A2 ∪B3 ∪ (Y1 \D) is also a

stable set. To proceed further, we let L′ := {t ∈ L | N(t) ∩D ̸= ∅}, and we claim the following:

4.19.1 L′ is complete to the vertex-set of each big-component of G[Y1], and is anticomplete to

L \ L′. Moreover, G[L′] is a bipartite graph.

Proof of 4.19.1. Let Q be a big-component of G[Y1], and so Q = K2 (by Lemma 4.18:(ii)). Suppose

to the contrary that there are non-adjacent vertices, say t ∈ L′ and y ∈ V (Q). Let y′ ∈ D be such

that y′t ∈ E(G). Since Y2 ̸= ∅, we let y2 ∈ Y2. Then since {t, y′, v2, v1, y2} does not induce a P5,

we have y2t ∈ E(G) (by Lemma 4.3:(i)), and then {t, y2, v1, v2, y} induces a P5, a contradiction;

so L′ is complete to V (Q). Then L′ is anticomplete to L \ L′ (by Lemma 4.1:(iii)). Since L′ is

complete to D, there are adjacent vertices, say p, q ∈ Y1 such that {p, q} is complete to L′. So
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G[L′] is P3-free (by Observation 4), and since G is K5-free, G[L
′] is K3-free. Hence G[L′] is a

bipartite graph. This proves 4.19.1.

By 4.19.1, there are stable sets, say L′
1 and L′

2, such that L′ = L′
1 ∪ L′

2. By Lemma 4.18:(iii),

there are three stable sets, say R1, R2 and R3 such that L \ L′ = R1 ∪ R2 ∪ R3. Now define

S1 := (X2 \ (A2 ∪B2))∪L′
1 ∪R1, S2 := (X3 \ (A3 ∪B3))∪L′

2 ∪R2, S3 := A3 ∪B2 ∪D ∪R3 ∪ {v1}
and S4 := A2 ∪B3 ∪ (Y1 \D). Then by above arguments and by 4.19.1, we see that S1, S2, S3 and

S4 are stable sets. So χ(G[X2 ∪X3 ∪M ∪ L ∪ {v1}]) ≤ 4. This proves Lemma 4.19.

Lemma 4.20 If there is an i ∈ {1, 2, 3} such that Yi+1 ∪ Yi−1 ̸= ∅, then χ(G[Yi ∪ L ∪ {vi}]) ≤ 4.

Proof. The proof is similar to the proof of Lemma 4.19, and we omit the details.

Lemma 4.21 If G contains an F4, then χ(G) ≤ 7.

Proof. Suppose that G contains an F4 with vertices and edges as shown in Figure 16. Let

C := {v1, v2, v3}. Then, with respect to C, we define the sets X, Y, Z and L as in Section 4.3,

and we use the lemmas in Section 4.3. We also use Lemmas 4.17 to 4.20. Clearly y2 ∈ Y2

and y3 ∈ Y3 so that Y2 and Y3 are non-empty. For each i, since G[N(vi)] is (K4 − e)-free, by

Theorem I, we have χ(G[N(vi)]) ≤ 3. Recall that V (G) \ N(vi) = {vi} ∪ Xi+1 ∪ Xi+2 ∪ Yi ∪ L.
Now if L = L1, then χ(G) ≤ 7 (by Lemma 4.19) and we are done. So we may assume that

L \ L1 ≠ ∅. Also using Lemma 4.18:(iv), we may assume that there is an index k ∈ {1, 2, 3}
such that Xk+1 and Xk−1 are empty. Then from Lemma 4.20, χ(G[Yk ∪ L ∪ {vk}]) ≤ 4, and so

χ(G) ≤ χ(G[N(vk)]) + χ(G[V (G) \N(vk)]) ≤ 7. This proves Lemma 4.21.

Lemma 4.22 If G is F4-free, and contains an F5, then χ(G) ≤ 7.

Proof. Suppose that G contains an F5 with vertices and edges as shown in Figure 16. Let

C := {v1, v2, v3}. Then, with respect to C, we define the sets X, Y, Z and L as in Section 4.3, and

we use the lemmas in Section 4.3. We also use Lemmas 4.17 to 4.20. Clearly x1 ∈ X1 and y2 ∈ Y2

so that X1 and Y2 are non-empty. For each i, since G[N(vi)] is (K4 − e)-free, by Theorem I, we

have χ(G[N(vi)]) ≤ 3. Now for any y ∈ Y1 ∪ Y3, since {v1, v2, v3, y2, y, z∗} does not induce an F4,

Y1 ∪ Y3 = ∅. Also for any x ∈ X1 ∪X3, since {v1, v2, v3, x, y2, z∗} does not induce an F4, X1 ∪X3

is anticomplete to {z∗}. Since {v1, v3, z∗} is not a clique cut-set separating {v2} and the rest of

the vertices, we have X2 ̸= ∅. Now if L \ L1 ̸= ∅, then χ(G) ≤ 7 (by Lemma 4.18:(iv)) and we are

done. So we may assume that L = L1. Then G[X1] and G[X3] are K3-free (by Lemma 4.17:(i)).

Next we claim the following:

4.22.1 If X1 is not anticomplete to Y2, then G[X2] is K3-free. Likewise, if X3 is not anticomplete

to Y2, then G[X2] is K3-free.

Proof of 4.22.1. Suppose to the contrary that there is a component, say Q, that contains a K3

induced by the vertices, say {p1, p2, p3}. Since G is K5-free, we may assume that p1z
∗ /∈ E(G).
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By our assumption, there are vertices, say x ∈ X1 and y ∈ Y2. Then since one of {x, y, v3, v2, p1}
or {x, y, p1, v2, z∗} does not induce a P5, we have p1x ∈ E(G). Then {p1, p2, p3, x, v2} induces a

K5 − e (by Lemma 4.1:(iii)), a contradiction. So 4.22.1 holds.

Now if X1 ∪ X3 is not anticomplete to Y2, then from 4.22.1, G[X2] is K3-free, and so from

Lemma 4.19, we have χ(G[X1∪X2∪L∪{v3}]) ≤ 4, and hence χ(G) ≤ χ(G[N(v3)])+χ(G[X1∪X2∪
L∪{v3}]) ≤ 7. So we may assume thatX1∪X3 is anticomplete to Y2. Then since χ(G[Y2∪{v2}]) ≤ 2

(by Lemma 4.18:(ii)), from Lemma 4.19, it follows that χ(G[X1 ∪ Y2 ∪X3 ∪ {v2, z∗}]) ≤ 4. Since

N(v2) \ {z∗} = X2 ∪ {v1, v3} (by Lemma 4.18:(i)), we see that N(v2) \ {z∗} is anticomplete to L.

So from Lemma 4.18:(iii), it follows that χ(G[(N(v2) \ {z∗}) ∪ L]) ≤ 3. Hence χ(G) ≤ 7. This

proves Lemma 4.22.

Lemma 4.23 If G contains an HVN, then χ(G) ≤ 7.

Proof. We may assume that G contains an HVN, say K, with vertex-set {v1, v2, v3, z∗, y1} such

that {v1, v2, v3, z∗} induces a K4 and NK(y1) = {v2, v3}. Let C := {v1, v2, v3}. Then, with respect

to C, we define the sets X, Y, Z and L as in Section 4.3, and we use the lemmas in Section 4.3. We

also use Lemmas 4.17 to 4.20. Clearly y1 ∈ Y1 so that Y1 is non-empty. We may assume that, from

Lemma 4.21 and Lemma 4.22, G is (F4, F5)-free. Now for any y ∈ Y2∪Y3, since {v1, v2, v3, z∗, y1, y}
does not induce an F4, we have Y2 ∪ Y3 = ∅. Also for any x ∈ X2 ∪X3, since {v1, v2, v3, z∗, y1, x}
does not induce an F4 or an F5, we have X2 ∪X3 = ∅. Further since {v2, v3, z∗} is not a clique

cut-set separating {v1} and the rest of the vertices, we have X1 ̸= ∅. Next we claim that:

4.23.1 χ(G[X1 ∪ Y1 ∪ {z∗}]) ≤ 4.

Proof of 4.23.1. First suppose that there is a vertex, say x ∈ X1 such that xz∗ ∈ E(G). Then for

any x′ ∈ X1 \ {x}, since {v1, v2, v3, x, z∗, x′} does not induce an F5, we see that X1 is complete to

{z∗}. Since X1 is complete to {v1, z∗} and since G is (K5, K5 − e)-free, G[X1] is (P3, K3)-free; so

χ(G[X1]) ≤ 2. Then from Lemma 4.18:(ii), χ(G[X1∪Y1∪{z∗}]) ≤ 4 (by Lemma 4.1:(ii)), and we are

done. So we may assume that X1 is anticomplete to {z∗}. By Lemma 4.18:(ii), we pick a maximum

stable set from each big-component ofG[Y2], and letD be the union of these sets. To proceed further,

we letX ′
1 := {x ∈ X1|N(x)∩D ≠ ∅}, and consider a component ofG[X ′

1], sayQ. By Lemma 4.3:(iv),

there are adjacent vertices, say a, b ∈ Y1 such that {a, b} is complete to V (Q). Then since G is

(K5, K5 − e)-free, Q is (P3, K3)-free, and so χ(Q) ≤ 2. Hence χ(G[X ′
1 ∪D]) ≤ 3. Since G[X1 \X ′

1]

is complete to {v1}, G[X1 \X ′
1] is (K4− e)-free and hence χ(G[X1 \X ′

1]) ≤ 3 (by Theorem I). Since

Y1 \D is a stable set and since X1 \X ′
1 is anticomplete to X ′

1∪D (by Lemma 4.3:(iv)), we conclude

that χ(G[X1 ∪ Y1 ∪ {z∗}]) ≤ χ(G[(X ′
1 ∪D) ∪ (X1 \X ′

1)]) + χ(G[(Y1 \D) ∪ {z∗}]) ≤ 3 + 1 = 4 (by

Lemma 4.1:(ii)). This proves 4.23.1.

From 4.23.1, and from Lemma 4.18:(i) and Lemma 4.18:(iii), we have χ(G) ≤ χ(G[C ∪ L]) +
χ(G[X1 ∪ Y1 ∪ {z∗}]) ≤ 3 + 4 = 7. This proves Lemma 4.23.
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Now we prove the main theorem of this subsection, and is given below.

Theorem 4.24 Let G be a (P5, K5 − e, F1)-free graphs with ω(G) = 4. Then either G is the

complement of a bipartite graph or G has a clique cut-set or χ(G) ≤ 7.

Proof. Let G be a connected (P5, K5 − e, F1)-free graph with ω(G) = 4. We may assume that G

has no clique cut-set and that G is not the complement of a bipartite graph. By Theorem 4.4, we

may assume that G contains an HVN. Now the theorem follows from Lemma 4.23.

4.6 Chromatic bound for (P5,K5 − e)-free graphs

In this section, we state and prove our main results.

Theorem 4.25 Let G be a connected (P5, K5 − e)-free graph. Then the following hold:

(a) If ω(G) ≥ 5, then either G is the complement of a bipartite graph or G has a clique cut-set

or χ(G) ≤ 6.

(b) If ω(G) = 4, then either G is the complement of a bipartite graph or G has a clique cut-set

or χ(G) ≤ 7.

Proof. Let G be a connected (P5, K5 − e)-free graph with ω(G) ≥ 4. If G contains one of F1, F2

or F3, then the theorem follows from Theorems 4.8, 4.12 and 4.15. So we may assume that G is

(F1, F2, F3)-free. Now if ω(G) ≥ 5, then the theorem follows from Theorem 4.16, and if ω(G) = 4,

then the theorem follows from Theorem 4.24. This completes the proof of Theorem 4.25.

As a corollary of Theorem 4.25, we strengthen Theorem H. Note that any clique expansion

of a C5 is an imperfect (3K1, K5 − e)-free graph which has no clique cut-set (see the graph G1

for example in Figure 17), and we refer to the graph G2 (see Figure 17) for another non-trivial

example.

Figure 18: The graph H∗.

Corollary 1 If G is a connected (P5, K5 − e)-free graph with ω(G) ≥ 7, then either G is the

complement of a bipartite graph or G has a clique cut-set. Moreover, the assumption on the lower

bound of ω is tight. That is, there is a connected (P5, K5− e)-free imperfect graph H with ω(H) = 6

and has no clique cut-set.
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a1

at

a2

K

Figure 19: Schematic representation of a (P5,K5− e)-free graph G with χ(G) = ω(G) = t. (Here a shaded
rectangle represents a non-empty clique of size t. Each square represents disjoint union of cliques with
size at most t− 1 (possibly empty). A thick line between a vertex and a square represents that the vertex
is adjacent to all the vertices of the square.)

Proof. The first assertion is an immediate consequence of Theorem 4.25. For the second assertion,

consider the graph H∗ given in Figure 18. Then H∗ is a connected (P5, K5 − e)-free imperfect

graph with ω(H∗) = 6 and has no clique cut-set.

Further, we have the following theorem.

Theorem 4.26 If G is a (P5, K5 − e)-free graph with ω(G) ≥ 4, then χ(G) ≤ max{7, ω(G)}.
Moreover, the bound is tight when ω(G) /∈ {4, 5, 6}.

Proof. Let G be a (P5, K5− e)-free graph with ω(G) ≥ 4. We prove the first assertion by induction

on |V (G)|. We may assume that G is connected and is imperfect. Then from Theorem 4.25, either

G has a clique cut-set or χ(G) ≤ 7. If χ(G) ≤ 7, then we are done. So we may assume that G

has a clique cut-set, say K. Let A and B be a partition of V (G) \K such that A,B ̸= ∅ and A

is anticomplete to B. Then χ(G) = max{χ(G[K ∪ A]), χ(G[K ∪ B])}, and hence by induction

hypothesis, we have χ(G) ≤ max{max{7, ω(G[K ∪ A])},max{7, ω(G[K ∪B])}} ≤ max{7, ω(G)}.
This proves the first assertion. To prove the second assertion, consider the graph G (see Figure 19)

that consists of a complete graph Kt where t ≥ 7, say Q, such that

(a) Each component of G[V (G) \ V (Q)] is a complete graph with vertex-set of size at most t− 1;

ω(G) = ω(Q) = t.

(b) For each component K in G[V (G) \ V (Q)], there is a unique v ∈ V (Q) such that {v} is

complete to V (K).

(c) no other edges in G.

Clearly G is a (P5, K5 − e)-free perfect graph, and so χ(G) = ω(G) = t. This proves Theorem 4.26.

Next we have the following corollary that partially answers Problem 3. That is, every (P5, K5−e)-
free graph is near optimal colorable.
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Corollary 2 If G is a (P5, K5 − e)-free graph, then χ(G) ≤ max{7, ω(G)}.

Proof. Let G be a (P5, K5−e)-free graph. If ω(G) ≤ 3, then G is (P5, K4)-free, and hence χ(G) ≤ 5

[63]. So we may assume that ω(G) ≥ 4. Now the corollary follows from Theorem 4.26.

4.7 Concluding remarks

In this chapter, we studied the near optimal colorability of (P5, K5 − e)-free graphs via structure

theorems using some intermediate results which rely on certain special graphs. In particular, we

showed that every (P5, K5 − e)-free graph G satisfies χ(G) ≤ max{7, ω(G)}.
While the bound given in Theorem 4.26 is tight for ω(G) ≥ 7, the bound does not seem to be

tight for ω(G) /∈ {4, 5, 6}. In this regard, we have following.

◦ The graph G2 is an imperfect (P5, K5− e)-free graph which has no clique cut-set and contains

an F1. Also χ(G2) ≤ 5 (see Figure 17 for a 5-coloring). It is easy to check that α(G2) = 2,

and hence χ(G2) ≥
⌈
|V (G2)|
α(G2)

⌉
= 5. Thus the bound given in Theorem 4.8 is tight.

◦ The bound given in Theorem 4.25:(b) does not seem to be tight when ω = 4. But there are

(P5, K5 − e)-free graphs with ω = 4 and χ = 5. For instance, consider the graphs G1 and G2

given in Figure 17. We have seen that χ(G2) = 5, and similarly we have χ(G1) = 5. Also it

is easy check that ω(G1) = ω(G2) = 4.

Since k-Coloring for the class of P5-free graphs can be solved in polynomial time for every fixed

positive integer k ≤ 6 [86], we conclude that Chromatic Number for the class of (P5, K5−e)-free
graphs can be solved in polynomial time (see Section 4.1). We remark that this conclusion may

also be obtained from Theorem 4.25 by using clique separator decomposition techniques (see [132])

and a result of Hoàng, Kamiński, Lozin, Sawada and Shu [86].



Chapter 5

Coloring (P5, flag)-free graphs

5.1 Introduction

In this chapter1, we are interested in finding the tight chromatic bound for the class of (P5, flag)-free

graphs. Here, a flag is the graph obtained from a K4 by attaching a pendant vertex (see Figure 2).

Thus, the class of flag-free graphs generalizes the class of K4-free graphs. Recall that, from a result

of Esperet, Lemoine, Maffray and Morel [63], every (P5, K4)-free graph is 5-colorable. Hence every

(P5, flag)-free graph G with ω(G) ≤ 3 satisfies χ(G) ≤ 5. In this chapter, we show that every (P5,

flag)-free graph G with ω(G) ≥ 4 satisfies χ(G) ≤ max{8, 2ω(G)− 3}, and that the bound is tight

for ω(G) ∈ {4, 5, 6}. In particular, we show that every (P5, flag, K5)-free graph that contains a

K4 satisfies χ(G) ≤ 8 and that the bound is tight. We note that our results improve the earlier

mentioned results of Dong, Xu and Xu [55, 56].

H1 H2 H3

v1

a1

t

v2

a2

v3 v2

v1

a1

z

a2

t

v1

a1

t

v3

v2

Figure 20: Labelled graphs IV: Some special graphs.

We will use the following theorem to prove our results.

Theorem J ([91]) Every (P5, K1 +K3)-free graph G with ω(G) ≥ 5 satisfies χ(G) ≤ 2ω(G)− 3.

We will prove our result based on a sequence of partial results which depend on some special

graphs; see Figure 20. We begin by proving some structural properties of (P5, flag)-free graphs

that contain a K3.

1The results of this chapter are appearing in “A.Char and T.Karthick. Improved bounds on the chromatic number of
(P5, flag)-free graphs. Discrete Mathematics (346) 2023. Article no.: 113501. https://doi.org/10.1016/j.disc.2023.
113501”
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https://doi.org/10.1016/j.disc.2023.113501
https://doi.org/10.1016/j.disc.2023.113501
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5.2 Structural properties of (P5, flag)-free graphs that contain a K3

In this section, we prove some structural properties of (P5, flag)-free graphs that contain a K3, and

use them often in the latter sections.

Let G be a connected (P5, flag)-free graph. Suppose that G contains a K3 with vertex-set, say

C := {v1, v2, v3}. For i ∈ {1, 2, 3}, i mod 3, we let:

Ai := {v ∈ V (G) \ C | N(v) ∩ C = {vi}},
Bi := {v ∈ V (G) \ C | N(v) ∩ C = C \ {vi}},
Z := {v ∈ V (G) \ C | N(v) ∩ C = C}, and
T := {v ∈ V (G) \ C | N(v) ∩ C = ∅}.

Clearly V (G) = C ∪ A ∪ B ∪ Z ∪ T . Throughout this section, we assume that the arithmetic

operations on the indices are in modulo 3. Next we give some relations between the subsets of

V (G) in the following lemmas.

Lemma 5.1 The following statements hold:

(i) G[Ai ∪Bi+1] is K3-free. Likewise, G[Ai ∪Bi−1] is K3-free.

(ii) A is complete to Z.

(iii) T is anticomplete to Z.

(iv) For any a ∈ Ai and k ∈ {i+ 1, i− 1}, Bk \N(a) is a stable set.

(v) The vertex-set of each component of G[T ] is a homogeneous set. Moreover, G[T ] is K3-free.

(vi) The vertex-set of each component of Bi is a homogeneous set in G[Ai ∪Bi ∪ T ].

Proof. (i): We will show for i = 1. If there are vertices, say p, q and r in A1 ∪B2 such that {p, q, r}
induces a K3, then {p, q, r, v2, v1} induces a flag, a contradiction. So Lemma 5.1:(i) holds.

(ii): If there are non-adjacent vertices, say a ∈ A1 and z ∈ Z, then {v2, v3, z, a, v1} induces a flag,

a contradiction. So Lemma 5.1:(ii) holds.

(iii): If there are adjacent vertices, say t ∈ T and z ∈ Z, then {v1, v2, v3, t, z} induces a flag, a

contradiction. So Lemma 5.1:(iii) holds.

(iv): If there are adjacent vertices in Bk \N(a), say b and b′, then {b, b′, vk, a, vi} induces a flag, a

contradiction. So Lemma 5.1:(iv) holds.

(v): Suppose not. Then there are vertices, say x, y ∈ T and a ∈ V (G) \ T such that ax, xy ∈ E(G)

and ay /∈ E(G). Since G is connected, by Lemma 5.1:(iii) and up to symmetry, we may assume

that a ∈ A1 ∪B2. Then {v2, v1, a, x, y} induces a P5, a contradiction. Thus the vertex-set of each

component of G[T ] is a homogeneous set. This proves the first assertion of Lemma 5.1:(v).

To prove the second assertion of Lemma 5.1:(v), suppose to the contrary that there are vertices,

say p, q, r ∈ T such that {p, q, r} induces a K3. Since G is connected, and by Lemma 5.1:(iii),

we may assume up to symmetry that there is a vertex, say s ∈ A1 ∪ B2 such that {s} is not
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anticomplete to {p, q, r}. Then by the first assertion, {p, q, r, v1, s} induces a flag, a contradiction.

So, G[T ] is K3-free. This proves Lemma 5.1:(v).

(vi): We will show for i = 1. If there are vertices, say x, y ∈ B1 and a ∈ A1 ∪ T such that ax, xy ∈
E(G) and ay /∈ E(G), then {v2, v3, y, a, x} induce a flag, a contradiction. So Lemma 5.1:(vi)

holds.

Lemma 5.2 Suppose that there is a vertex, say t ∈ T which has a neighbor in Ai, say ai, where

i ∈ {1, 2, 3}. Then the following hold:

(i) Z is a stable set.

(ii) Bi+1 and Bi−1 are stable sets.

(iii) {t} is complete to Ai+1 ∪ Ai−1.

(iv) Ai is complete to Ai+1 ∪ Ai−1.

(v) If G is H1-free, then Ai+1 ∪ Ai−1 = ∅. (See Figure 20 for the graph H1.)

(vi) If Ai+1 ∪ Ai−1 ̸= ∅, then Ai is a stable set.

Proof. We will show the lemma for i = 1. By our assumption, there are adjacent vertices, say

a1 ∈ A1 and t ∈ T .

(i): If there are adjacent vertices, say z1, z2 ∈ Z, then, by Lemma 5.1:(ii), {v1, z1, z2, t, a1} induces

a flag, a contradiction. So Lemma 5.2:(i) holds.

(ii): We will show that B2 is a stable set. Suppose to the contrary that there are adjacent vertices,

say b and b′ in B2. By Lemma 5.1:(iv), we may assume that a1b ∈ E(G), and so by Lemma 5.1:(i),

a1b
′ /∈ E(G). Then since {t, a1, b, v3, v2} does not induce a P5, we have bt ∈ E(G), and since

{b′, v1, v3, t, b} does not induce a flag, we have b′t ∈ E(G). But then {a1, t, b′, v3, v2} induces a P5,

a contradiction. So B2 is a stable set. This proves Lemma 5.2:(ii).

(iii): Suppose not. Then there is a vertex, say p ∈ A2 ∪ A3 such that pt /∈ E(G). We may assume

that p ∈ A2. Then since {t, a1, v1, v2, p} does not induce a P5, we have a1p ∈ E(G), and then

{t, a1, p, v2, v3} induces a P5, a contradiction. So {t} is complete to A2. Likewise, {t} is complete

to A3. This proves Lemma 5.2:(iii).

(iv): If there are non-adjacent vertices, say a ∈ A1 and a′ ∈ A2 ∪ A3, then, by Lemma 5.2:(iii),

a′t ∈ E(G), and again by Lemma 5.2:(iii), at ∈ E(G), and then {a, t, a′, v2, v3} induces a P5, a

contradiction. So Lemma 5.2:(iv) holds.

(v): Suppose to the contrary that there is a vertex, say a′ ∈ A2 ∪ A3. We may assume, up

to symmetry, that a′ ∈ A2. Then, by Lemma 5.2:(iii), a′t ∈ E(G), and by Lemma 5.2:(iv),

a1a
′ ∈ E(G). Then {v1, v2, v3, a1, a′, t} induces a H1, a contradiction. So Lemma 5.2:(v) holds.

(vi): Suppose to the contrary that there are adjacent vertices, say a and a′ in A1. Let p ∈ A2 ∪A3.

We may assume, up to symmetry, that p ∈ A2. Then, by Lemma 5.2:(iii), pt ∈ E(G), and again

by Lemma 5.2:(iii), at, a′t ∈ E(G). Then by Lemma 5.2:(iv) {a, a′, t, v2, p} induces a flag, a

contradiction. So Lemma 5.2:(vi) holds.
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5.3 (P5, flag)-free graphs that contain some special graphs

In this section, we prove that if G is a (P5, flag)-free graph that contains one of H1, H2 or H3 then

G is 8-colorable.

5.3.1 (P5, flag)-free graphs that contain an H1

Theorem 5.3 If G is a connected (P5,flag)-free graph that contains an H1, then G is 8-colorable.

Proof. Let G be a connected (P5, flag)-free graph. Suppose that G contains an H1 with vertices

and edges as shown in Figure 20. Let C := {v1, v2, v3}. Then with respect to C, we define the sets

A, B, T and Z as in Section 5.2, and we use the lemmas in Section 5.2. Since a1 ∈ A1, a2 ∈ A2,

and t ∈ T , we have A1, A2 and T are non-empty. Note that A1 and A2 are not anticomplete to

T . So, by Lemma 5.2:(i), Z is a stable set, and by Lemma 5.2:(ii), B1, B2 and B3 are stable sets.

Also, by Lemma 5.2:(vi), A1, A2 and A3 are stable sets. Then we claim the following:

5.3.1 A3 is empty.

Proof of 5.3.1. Suppose not, and let a3 ∈ A3. Then by Lemma 5.2:(iii), a3t ∈ E(G), and by

Lemma 5.2:(iv), a1a3, a2a3 ∈ E(G). But then {a2, a3, t, v1, a1} induces a flag, a contradiction. So

5.3.1 holds.

Now, we let D1 := A1, D2 := A2, D3 := B1 ∪{v1}, D4 := B2 ∪{v2} and D5 := B3 ∪{v3}. Then
D1, D2 . . . , D5 are stable sets, and V (G) \ (T ∪ Z) = 5∪

j=1
Dj ; so χ(G− (T ∪ Z)) ≤ 5. Moreover, by

Lemma 5.1:(v), Lemma 5.1:(iii) and Theorem A, G[T ∪ Z] is 3-colorable. So χ(G) ≤ 8 and G is

8-colorable.

5.3.2 (P5, flag)-free graphs that contain an H2

Theorem 5.4 If G is a connected (P5,flag)-free graph that contains an H2, then G is 8-colorable.

Proof. Let G be a connected (P5, flag)-free graph. By Theorem 5.3, we may assume that G is

H1-free. Suppose that G contains an H2 with vertices and edges as shown in Figure 20. Let

C := {v1, v2, v3}. Then with respect to C, we define the sets A, B, T and Z as in Section 5.2,

we use the lemmas in Section 5.2. Since a1 ∈ A1, t ∈ T and z ∈ Z, we have A1, T and Z are

non-empty, and that A1 is not anticomplete to T . Then, by Lemma 5.2:(i), Z is a stable set, and

since G is H1-free, by Lemma 5.2:(v), A2 ∪ A3 = ∅.
First suppose that B1 = ∅. Then V (G) = {v1} ∪N(v1) ∪ T . Since G is K5-free, G[N(v1)] is

(P5, K4)-free, and so by Theorem B, G[N(v1)] is 5-colorable. Also, by Lemma 5.1:(v), G[T ] is

K3-free, and thus, by Theorem A, G[T ∪ {v1}] is 3-colorable. Hence G is 8-colorable. So we may

assume that B1 ̸= ∅. Next, we claim the following:

5.4.1 The vertex-set of each component of G[A1] is a homogeneous set in G[A1 ∪B1 ∪ T ].
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Proof of 5.4.1. Suppose not. Then there are vertices, say x, y ∈ A1 and b ∈ B1 ∪ T such that

bx, xy ∈ E(G) and by /∈ E(G). Since, by Lemma 5.1:(ii), {v1, y, z, b, x} does not induce a flag, we

have bz ∈ E(G). Hence, by Lemma 5.1:(iii), b ∈ B1. Then, by Lemma 5.1:(ii), {b, v2, v3, y, z}
induces a flag, a contradiction. So 5.4.1 holds.

5.4.2 If a ∈ A1 and b ∈ B1 are non-adjacent vertices, then N(a) ∩ T = N(b) ∩ T .

Proof of 5.4.2. Since for any t′ ∈ N(a)∩T , {t′, a, v1, v2, b} does not induce a P5, we have N(a)∩T ⊆
N(b) ∩ T . Also, since for any t′ ∈ N(b) ∩ T , {a, v1, v2, b, t′} does not induce a P5, we have

N(b) ∩ T ⊆ N(a) ∩ T . So N(a) ∩ T = N(b) ∩ T . This proves 5.4.2.

5.4.3 For every pair of vertices u, v ∈ A1, we have either N(u) ∩ T ⊆ N(v) ∩ T or N(v) ∩ T ⊆
N(u) ∩ T .

Proof of 5.4.3. Suppose not, and let t1 and t2 ∈ T be such that ut1, vt2 ∈ E(G) and ut2, vt1 /∈ E(G).

By 5.4.1, we have uv /∈ E(G), and by Lemma 5.1:(v), we have t1t2 /∈ E(G). Then {t1, u, v1, v, t2}
induces a P5, a contradiction. So 5.4.3 hols.

5.4.4 For every pair of vertices u, v ∈ A1, we have either N(u)∩B1 ⊆ N(v)∩B1 or N(v)∩B1 ⊆
N(u) ∩B1.

Proof of 5.4.4. Suppose not, and let b, b′ ∈ B1 be such that ub, vb′ ∈ E(G) and ub′, vb /∈ E(G). By

5.4.1, uv /∈ E(G) and by Lemma 5.1:(vi), we have bb′ /∈ E(G). Then {b, u, v1, v, b′} induces a P5, a

contradiction. So 5.4.4 hols.

Now, we let M := {a ∈ A1 | N(a) ∩ T ≠ ∅}. Clearly a1 ∈M , and so M ̸= ∅. By 5.4.3, we let

M1 := {a ∈ M | for each a′ ∈ M with a ≠ a′, we have N(a′) ∩ T ⊆ N(a) ∩ T}. By 5.4.4, we let

a∗ be the vertex in M1 such that for all a ∈M1 with a ̸= a∗, we have N(a) ∩B1 ⊆ N(a∗) ∩B1.

By Lemma 5.1:(vi), if Q is the vertex-set of a component of B1, then Q is either complete to

{a∗} or anticomplete to {a∗}. Let D1 be the set of vertices of big components of G[B1] which

are complete to {a∗}, and let D2 be the set of vertices of big components of G[B1] which are

anticomplete to {a∗}. Then we claim the following:

5.4.5 D1 is anticomplete to N(a∗) ∩ T .

Proof of 5.4.5. Suppose not, and let d ∈ D1 and t′ ∈ N(a∗) ∩ T be adjacent. By the definition of

D1, there is a vertex, say d′ ∈ B1 such that dd′ ∈ E(G). By Lemma 5.1:(vi), d′t′, d′a∗ ∈ E(G).

Now, {d, d′, t′, v1, a∗} induces a flag, a contradiction. So 5.4.5 holds.

5.4.6 D2 is anticomplete to M .

Proof of 5.4.6. Suppose not, and let d ∈ D2 and m ∈ M be adjacent. By the definition of D2,

there is a vertex, say d′ ∈ B1 such that dd′ ∈ E(G). By the definition of M , there is a vertex, say

t′ such that mt′ ∈ E(G). By the choice of a∗, t′a∗ ∈ E(G) and hence by 5.4.2, dt′ ∈ E(G). So, by
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Lemma 5.1:(vi), d′t′, d′m ∈ E(G). Then, by 5.4.1, {d, d′, t′, v1,m} induces a flag, a contradiction.

So 5.4.6 holds.

5.4.7 D2 is anticomplete to Z.

Proof of 5.4.7. Suppose not, and let d ∈ D2 and z′ ∈ Z be adjacent. Then, by Lemma 5.1:(ii) and

Lemma 5.1:(iii), {d, v2, v3, a∗, z′} induces a flag, a contradiction. So 5.4.7 holds.

By Theorem A and Lemma 5.1:(i), there are three stable sets, say S11, S12 and S13 such that

D2 = S11 ∪ S12 ∪ S13. Also, by Theorem A and Lemma 5.1:(v), there are three stable sets, say S21,

S22 and S23 such that T \ N(a∗) = S21 ∪ S22 ∪ S23. Then since S13 ⊆ D2, by 5.4.7, S13 ∪ Z is a

stable set.

Now we split the proof into two subcases based on the adjacency relationship between B2 ∪B3

and T .

Case 3 B2 ∪B3 is anticomplete to T .

We now claim the following:

5.4.8 B2 ∪B3 is anticomplete to M .

Proof of 5.4.8. Suppose not, and let b ∈ B2 ∪B3 and m ∈M be adjacent. We may assume that

b ∈ B2. Let t′ ∈ T be a vertex such that mt′ ∈ E(G). Then, {t′,m, b, v3, v2} induces a P5, a

contradiction. So 5.4.8 holds.

5.4.9 G[(A1 \M) ∪B2 ∪B3 ∪ {v2, v3}] is K3-free.

Proof of 5.4.9. Suppose not. Then there are vertices p1, p2, p3 ∈ (A1 \M)∪B2 ∪B3 ∪ {v2, v3} such

that {p1, p2, p3} induces a K3. By Lemma 5.1:(i) and Lemma 5.2:(ii), p1 ∈ A1 \M , p2 ∈ B2 and

p3 ∈ B3. Then, by 5.4.1, a∗p1 /∈ E(G), and so by 5.4.8, {p1, p2, p3, a∗, v1} induces a flag which is a

contradiction. So 5.4.9 holds.

Recall that, by Theorem A, (P5, K3)-free graphs are 3-colorable. Thus, the following hold:

(i) By Lemma 5.1:(i), there are three stable sets, say S31, S32 and S33, such that D1 = S31 ∪
S32 ∪ S33.

(ii) By Lemma 5.1:(v), there are three stable sets, say S41, S42 and S43, such that N(a∗) ∩ T =

S41 ∪ S42 ∪ S43.

(iii) By Lemma 5.1:(i), there are three stable sets, say S51, S52 and S53, such that M = S51 ∪
S52 ∪ S53.

(iv) By 5.4.9, there are three stable sets, say S61, S62 and S63, such that (A1 \M) ∪ B2 ∪ B3 ∪
{v2, v3} = S61 ∪ S62 ∪ S63.
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Now we defineW1 := S21∪S51∪S61,W2 := S22∪S52∪S62,W3 := S11∪S23∪S53,W4 := S41∪S63,

W5 := S31 ∪ S42 ∪ {v1}, W6 := S32 ∪ S43, W7 := S33 ∪ S12 ∪ (B1 \ (D1 ∪D2)) and W8 := S13 ∪ Z.
Then V (G) =

8∪
j=1

Wj. Moreover, we have the following:

5.4.10 W1 is a stable set. Likewise, W2 is a stable set.

Proof of 5.4.10. Suppose not, and let p, q ∈ W1 be adjacent. First suppose that p ∈ S21 ⊆ T \N(a∗).

Since T is anticomplete to (A1 \M) ∪B2 ∪B3 ∪ {v2, v3}, we have q ∈ S51. Then, by the choice of

a∗, N(q) ⊆ N(a∗), and so pa∗ ∈ E(G), a contradiction. So we may assume that p ∈ S51 ⊆M and

q ∈ S61. Since by 5.4.8, M is anticomplete to B2 ∪ B3 ∪ {v2, v3}, q ∈ A1 \M . By the definition

of M , there is a vertex, say t′ ∈ T such that pt′ ∈ E(G). Then, by 5.4.1, qt′ ∈ E(G) and hence

q ∈M , a contradiction. So W1 is a stable set. This proves 5.4.10.

5.4.11 W3 is a stable set.

Proof of 5.4.11. Suppose not, and let p, q ∈ W3 be adjacent vertices. If p ∈ S11 ⊆ D2, then, since

{a∗} is anticomplete to S23 ⊆ T \ N(a∗), by 5.4.2, we have q /∈ S23, and hence q ∈ S53 ⊆ M

which is a contradiction to 5.4.6; so we may assume that p ∈ S23 and q ∈ S53. Then, since

N(q) ∩ T ⊆ N(a∗) ∩ T , we have pa∗ ∈ E(G), a contradiction. So 5.4.11 holds.

5.4.12 W4 is a stable set.

Proof of 5.4.12. Recall that S41 ⊆ T and S63 ⊆ (A1 \M) ∪ B2 ∪ B3 ∪ {v2, v3}. Now, by our

assumption that T is anticomplete to B2 ∪B3, and by the definitions of M and T , we see that W4

is a stable set. This proves 5.4.12.

5.4.13 W5,W6 and W7 are stable sets.

Proof of 5.4.13. This follows from 5.4.5, and by the definitions of D1 and D2.

Recall that W8 is a stable set. So, by 5.4.10, 5.4.11, 5.4.12 and 5.4.13, we conclude that G is

8-colorable, and this completes the proof in Case 1.

Case 4 B2 ∪B3 is not anticomplete to T .

Let b ∈ B2 ∪ B3 and t′ ∈ T be such that bt′ ∈ E(G). We may assume that b ∈ B2. Now we

claim the following:

5.4.14 If t1 ∈ T has a neighbor in B2 ∪B3, then {t1} is complete to A1.

Proof of 5.4.14. Suppose not, and let a be a vertex A1 be such that at1 /∈ E(G). Let b′

be a vertex in B2 ∪ B3 which is a neighbor of t1. We may assume that b′ ∈ B2. Since by

Lemma 5.1:(iii), {z, v1, v3, t1, b′} does not induce a flag, we have b′z /∈ E(G). So, by Lemma 5.1:(ii)

and Lemma 5.1:(iii), if ab′ ∈ E(G), then {v2, z, a, b′, t1} induces a P5, a contradiction, and if

ab′ /∈ E(G), then {a, z, v3, b′, t1} induces a P5, a contradiction. So {t1} is complete to A1. This

proves 5.4.14.
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5.4.15 A1 is a stable set.

Proof of 5.4.15. Suppose not, and let p, q ∈ A1 be such that pq ∈ E(G). Then, by Lemma 5.1:(i),

we may assume that bp /∈ E(G). Then, by 5.4.14, {p, t′, b, v3, v2} induces a P5, a contradiction. So

5.4.15 holds.

By 5.4.14, we have M = A1. By Lemma 5.2:(ii), B2 and B3 are stable sets. Moreover, we have

the following:

5.4.16 A1 ∪ S11 ∪ S21 is a stable set.

Proof of 5.4.16. Suppose not, let p, q ∈ A1∪S11∪S21 be adjacent. First suppose that p ∈ A1. Since

A1 =M and S11 ⊆ D2, by 5.4.6, we have q ∈ S21. By the definition of a∗, N(p) ∩ T ⊆ N(a∗) ∩ T .
So q ∈ N(a∗) ∩ T , a contradiction. So we may assume that p ∈ S11 and q ∈ S21. Then since

pa∗ /∈ E(G) and qa∗ /∈ E(G), by 5.4.2, pq /∈ E(G), a contradiction. So 5.4.16 holds.

5.4.17 B2 ∪ S22 ∪ {v2} is a stable set. Likewise, B3 ∪ S23 ∪ {v3} is a stable set.

Proof of 5.4.17. Suppose not, and let p, q ∈ B2 ∪ S22 ∪ {v2} be adjacent. We may assume that

p ∈ B2 and q ∈ S22 ⊆ T \N(a∗). Then, by 5.4.14, qa∗ ∈ E(G), a contradiction. So 5.4.17 holds.

5.4.18 S12 ∪ (B1 \ (D1 ∪D2)) ∪ {v1} is a stable set.

Proof of 5.4.18. Since S12 ⊆ D2, the proof follows from the definition of D2.

Since S13 ∪ Z is a stable set, by 5.4.16, 5.4.17 and 5.4.18, we conclude that χ(G[V (G) \
(D1 ∪ (N(a∗) ∩ T ))]) ≤ 5. By 5.4.5, D1 is anticomplete to N(a∗) ∩ T . So by Lemma 5.1:(i) and

Lemma 5.1:(v), D1 ∪ (N(a∗) ∩ T ) induces a K3-free graph. Hence, by Theorem A, χ(G[D1 ∪
(N(a∗) ∩ T )]) ≤ 3. So we have χ(G) ≤ 8 and G is 8-colorable.

5.3.3 (P5, flag)-free graphs that contain an H3

Theorem 5.5 If G is a connected (P5,flag)-free graph that contains an H3, then G is 8-colorable.

Proof. Let G be a connected (P5, flag)-free graph. Suppose that G contains an H3 with vertices

and edges as shown in Figure 20. Let C := {v1, v2, v3}. Then, with respect to C, we define the

sets A, B, T and Z as in Section 5.2, and we use the lemmas in Section 5.2. By Theorem 5.3

and Theorem 5.4, we may assume that G is (H1, H2)-free. Since a1 ∈ A1 and t ∈ T , clearly A1

and T are non-empty. Also we have Z = ∅; otherwise, for any z ∈ Z, by Lemma 5.1:(ii) and

Lemma 5.1:(iii), {v1, v2, v3, a1, t, z} induces an H2, a contradiction. Since A1 is not anticomplete

to T , and since G is H1-free, by Lemma 5.2:(v), A2 ∪ A3 = ∅. Since A1 is not anticomplete to T ,

by Lemma 5.2:(ii), B3 is a stable set. Now we claim the following:

5.5.1 B1 is a stable set.
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Proof of 5.5.1. Suppose not. Then there are adjacent vertices in B1, say b and b
′. By Lemma 5.1:(vi),

we have either a1b, a1b
′ ∈ E(G) or a1b, a1b

′ /∈ E(G). If a1b, a1b
′ /∈ E(G), {b, b′, v2, v1, v3, a1} induces

an H2, a contradiction. So we may assume that a1b, a1b
′ ∈ E(G). Since, by Lemma 5.1:(vi),

{b, b′, t, v1, a1} does not induce a flag, we have bt, b′t /∈ E(G). Then {b, v2, v3, a1, b′, t} induces an

H2, a contradiction. So 5.5.1 holds.

Now, by Lemma 5.1:(i), Lemma 5.1:(v) and Theorem A, χ(G[A1 ∪B2]) ≤ 3 and χ(G[T ]) ≤ 3.

Moreover, since C is anticomplete to T , χ(G[C ∪ T ]) ≤ 3. So, by 5.5.1, χ(G) = χ(G[C ∪A1 ∪B1 ∪
B2 ∪B3 ∪ T ]) ≤ 8 and G is 8-colorable.

5.4 (P5, flag,K5)-free graphs that contain a K4

In this section, we will show that if G is a (P5, flag, K5)-free graph that contains a K4, then G is

8-colorable. Here we assume that all the arithmetic operations on the indices are in modulo 3

unless stated otherwise.

First we prove the case when our graph contains a dominating-K4.

Theorem 5.6 If G is a connected (P5,flag, K5)-free graph that contains a dominating-K4, then G

is 8-colorable.

Proof. Let G be a connected (P5, flag, K5)-free graph. Suppose that G contains a dominating-K4,

say K, induced by the vertex-set {v1, v2, v3, v4}. Let C := {v1, v2, v3}. Then with respect to C,

we define the sets A, B, T and Z as in Section 5.2, and we use the lemmas in Section 5.2. Since

v4 ∈ Z, we have Z ̸= ∅. If T ≠ ∅, then since T is anticomplete to Z (by Lemma 5.1:(iii)), K is

not a dominating-K4 in G, a contradiction; so T = ∅, and hence V (G) = A ∪ B ∪ C ∪ Z. Note
that, since G is (P5, K5)-free, for any i ∈ {1, 2, 3}, G[N(vi)] is (P5, K4)-free, and so by Theorem B,

G[N(vi)] is 5-colorable. For i ∈ {1, 2, 3}, let Li denote the set Ai+1 ∪ Ai−1 ∪Bi, and let L′
i denote

the set Li ∪ {vi}. Then for i ∈ {1, 2, 3}, N(vi) = V (G) \ L′
i. Since {vi} is anticomplete to Li, we

have χ(G[L′
i]) = χ(G[Li]).

Now if there is an index i ∈ {1, 2, 3} such that G[Li] is 3-colorable, say i = 1, then since

χ(G) ≤ χ(G[V (G) \L′
1]) + χ(G[L′

1]) = χ(G[V (G) \L′
1]) + χ(G[L1]) = χ(G[N(v1)]) + 3 ≤ 8, and so

G is 8-colorable and we are done.

So for each i ∈ {1, 2, 3}, we may assume that χ(G[Li]) ≥ 4. Thus by Lemma 5.1:(i) and by

Theorem A, we have, for each i ∈ {1, 2, 3}, both Ai and Bi are non-empty. Moreover, we claim the

following:

5.6.1 Each Ai is a stable set.

Proof of 5.6.1. We will prove the claim for i = 1. Suppose not. Then there are adjacent vertices

in A1, say a1 and a′1. Let a2 ∈ A2. By Lemma 5.1:(ii), since {a1, a′1, v1, a2, v4} does not induce

a flag, we have either a1a2 ∈ E(G) or a′1a2 ∈ E(G). Now, if a1a2, a
′
1a2 ∈ E(G), then, again

by Lemma 5.1:(ii), {a1, a′1, a2, v3, v4} induces a flag, a contradiction. So we may assume that
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a1a2 ∈ E(G) and a′1a2 /∈ E(G). Then {a′1, a1, a2, v2, v3} induces a P5, a contradiction. So 5.6.1

holds.

Also, since for each i ∈ {1, 2, 3}, χ(G[Li]) ≥ 4, we see that, each Bi is not a stable set. Next we

claim the following:

5.6.2 Z is a stable set.

Proof of 5.6.2. If there are adjacent vertices, say z1 and z2 in Z, then {v1, v2, v3, z1, z2} induces a

K5, a contradiction. So 5.6.2 holds.

Next:

5.6.3 For each i ∈ {1, 2, 3}, G[Bi] is a bipartite graph. In particular, for each i ∈ {1, 2, 3}, there
are three stable sets, Ri, Si and Ui, such that the following hold:

(i) Bi = Si ∪Ri ∪ Ui.

(ii) G[Ri ∪ Si] is a connected bipartite graph.

(iii) Ui is anticomplete to Ri ∪ Si.

Proof of 5.6.3. We will prove the claim for i = 1. Let a2 ∈ A2. Since B1 is not a stable set,

there are adjacent vertices in B1, say b and b′. By Lemma 5.1:(iv), we have a2b ∈ E(G), and

so by Lemma 5.1:(i), a2b
′ /∈ E(G). Let Q be the component of G[B1] containing b and b′. By

Lemma 5.1:(i), N(a2)∩ V (Q) is a stable set, and, by Lemma 5.1:(iv), V (Q) \N(a2) is a stable set.

Now, we will show that B1 \ V (Q) is a stable set. If there are adjacent vertices in B1 \ V (Q), say

u and u′, by Lemma 5.1:(iv), we may assume a2u ∈ E(G), and so by Lemma 5.1:(i), a2u
′ /∈ E(G),

and then {b′, b, a2, u, u′} induces a P5, a contradiction; so B1 \ V (Q) is a stable set. Then the sets

R1 := N(a2) ∩ V (Q), S1 := V (Q) \N(a2) and U1 := B1 \ V (Q) are the desired sets. This proves

5.6.3.

Now, using 5.6.3, we claim the following:

5.6.4 We may assume that Ai+1 is not anticomplete to Ri, and Ai+1 is not anticomplete to Si.

Likewise, we may assume that Ai−1 is not anticomplete to Ri, and Ai−1 is not anticomplete to Si.

Proof of 5.6.4. If Ai+1 is anticomplete to Ri, then χ(G[Li]) = χ(G[Ai+1 ∪ Ri]) + χ(G[Si ∪ Ui]) +

χ(G[Ai−1]) = 3, a contradiction. So Ai+1 is not anticomplete to Ri. Likewise, Ai+1 is not

anticomplete to Si. This proves 5.6.4.

Next we claim the following:

5.6.5 For any x ∈ Ai+1 ∪ Ai−1 ∪ Z, if N(x) ∩ Ri ̸= ∅, then {x} is complete to Ri, and {x} is

anticomplete to Si. Likewise, for any x ∈ Ai+1 ∪ Ai−1 ∪ Z, if N(x) ∩ Si ≠ ∅, then {x} is complete

to Si, and {x} is anticomplete to Ri.

Proof of 5.6.5. We will prove the claim for i = 1. Let r ∈ R1 be such that xr ∈ E(G). Let W

denote the set R1 ∪ S1. Note that, if x ∈ A2 ∪ A3, by Lemma 5.1:(i) and Lemma 5.1:(iv), then

N(x) ∩W and W \N(x) are stable sets. We will now show that if x ∈ Z, then N(x) ∩W and
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W \N(x) are stable sets. If there are adjacent vertices, say p, q ∈ N(x) ∩W , then {p, q, v2, v3, x}
induces a K5, a contradiction. So N(x)∩W is a stable set. Now for any two adjacent vertices, say

l,m ∈ W \N(x), and for any a2 ∈ A2, we may assume l ∈ R1 and m ∈ S1, then, by Lemma 5.1:(iv)

and Lemma 5.1:(i), we have a2l ∈ E(G) and a2m /∈ E(G). Then, by Lemma 5.1:(ii), {m, l, a2, x, v1}
induces a P5 in G, a contradiction. This implies that W \N(x) is a stable set.

So the set {q ∈ W | dist(q, r) is odd} is anticomplete to {x}, and the set {q ∈ W | dist(q, r)
is even} is complete to {x}. Since, G[W ] is a bipartite graph (by 5.6.3), {x} is complete to R1,

and {x} is anticomplete to S1. This proves 5.6.5.

5.6.6 Z is either anticomplete to Ri or anticomplete to Si.

Proof of 5.6.6. We will show the claim for i = 1. Suppose not, and let r ∈ R1, s ∈ S1, and z1, z2 ∈ Z

be such that rz1, sz2 ∈ E(G). By 5.6.5, rz2, sz1 /∈ E(G). By 5.6.4, there are vertices, say a2, a
′
2 ∈ A2

and a3, a
′
3 ∈ A3 such that N(a2) ∩ R1, N(a3) ∩ R1, N(a′2) ∩ S1 and N(a′3) ∩ S1 are non-empty.

Then, by 5.6.5, a2r, a3r, a
′
2s, a

′
3s ∈ E(G) and a2s, a3s, a

′
2r, a

′
3r /∈ E(G). Since by Lemma 5.1:(ii),

{a2, a3, r, v1, z1} does not induce a flag, we have a2a3 /∈ E(G). Likewise, a′2a
′
3 /∈ E(G). Also,

since by Lemma 5.1:(ii), {a2, r, v2, a′3, z1} does not induce a flag, we have a2a
′
3 ∈ E(G). Likewise,

a′2a3 ∈ E(G). Then, by 5.6.1, {a2, a′3, v3, a3, a′2} induces a P5, a contradiction. So 5.6.6 holds.

By 5.6.6 and up to relabeling, we may assume that Z is anticomplete to S1 ∪ S2 ∪ S3. If for all

j ∈ {1, 2, 3}, Sj is anticomplete to Sj+1, then, by 5.6.1, 5.6.2 and 5.6.3, we define the following

stable sets: D1 := A1 ∪ {v2}, D2 := A2 ∪ {v3}, D3 := A3 ∪ {v1}, D4 := R1 ∪ U1, D5 := R2 ∪ U2,

D6 := R3 ∪ U3 and D7 := S1 ∪ S2 ∪ S3 ∪ Z. Clearly V (G) =
7∪

k=1
Dk and hence G is 7-colorable.

So we may assume that there is an index j ∈ {1, 2, 3} such that Sj is not anticomplete to Sj+1;

let j = 1. Let s1 ∈ S1 and s2 ∈ S2 be adjacent. We let A′
3 := {a ∈ A3 | N(a) ∩ R1 ̸= ∅}. Then,

by 5.6.5, A′
3 is complete to R1, and is anticomplete to S1. Since for any a ∈ A′

3, {s1, s2, v1, v4, a}
does not induce a P5, by Lemma 5.1:(ii), A′

3 is complete to {s2}. So, by 5.6.5, A′
3 is anticomplete

to R2. Now, by 5.6.3, we define the following stable sets: D1 := A1 ∪ {v3}, D2 := A2 ∪ {v1},
D3 := A′

3∪R2∪{v2}, D4 := (A3 \A′
3)∪R1∪{v1}, D5 := S1∪U1, D6 := S2∪U2, D7 := R3∪U3 and

D8 := S3 ∪ Z. Clearly, V (G) =
8∪

k=1
Dk, and hence G is 8-colorable. This proves Theorem 5.6.

Now we prove the main result of this section.

Theorem 5.7 Every (P5,flag, K5)-free graph that contains a K4 is 8-colorable.

Proof. Let G be (P5, flag, K5)-free graph. Suppose that G contains a K4, say K. We may assume

that G is connected, and by Theorem 5.4, we may assume that G is H2-free. We claim that K is

a dominating-K4 in G. Suppose to the contrary that K is a non-dominating-K4 induced by the

vertices, say v1, v2, v3, and v4. Then there is a vertex in V (G)\{v1, v2, v3, v4} which is anticomplete

to {v1, v2, v3, v4}, say t, such that dist(t, {v1, v2, v3, v4}) is minimum. Let C := {v1, v2, v3}. Then
with respect to C, we define the sets A, B, T and Z as in Section 5.2, and we use the lemmas in

Section 5.2. Since G is connected, by Lemma 5.1:(iii) and Lemma 5.1:(v), there is a vertex, say
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p ∈ A∪B such that pt ∈ E(G). Then, by Lemma 5.1:(ii), since {v1, v2, v3, v4, p, t} does not induce

an H2, we may assume that p ∈ B1 and pv4 ∈ E(G), and then, by Lemma 5.1:(iii), {v2, v3, v4, t, p}
induces a flag, a contradiction. So K is a dominating-K4 in G, and we conclude the theorem by

using Theorem 5.6.

5.5 Chromatic bound for (P5, flag)-free graphs

In this section, we prove our result on chromatic bound for the class of (P5, flag)-free graphs. First

we prove the following.

Theorem 5.8 If G is a connected (P5,flag)-free graph, then either χ(G) ≤ 8 or G is (K1+K3)-free.

Proof. Suppose that G is a connected (P5, flag)-free graph. If G is triangle-free, then, by Theorem A,

G is 3-colorable, and we are done. So we may assume that G contains a triangle. If every triangle

in G is a dominating triangle in G, then clearly G is (K1 +K3)-free, and again we are done. So

we may assume that G contains a non-dominating-triangle. We claim that G is 8-colorable. By

Theorem 5.5, we may assume that G is H3-free. Suppose that G contains a non-dominating K3,

say with vertices v1, v2, and v3. Let C := {v1, v2, v3}. Then with respect to C, we define the sets

A, B, T and Z as in Section 5.2, we use the lemmas in Section 5.2. Since {v1, v2, v3} induces a

non-dominating-K3, we have T ̸= ∅. Since for any a ∈ A and t′ ∈ T , {v1, v2, v3, a, t′} does not

induce an H3, A is anticomplete to T . Since G is connected, by Lemma 5.1:(iii) and Lemma 5.1:(v),

B is not anticomplete to T , and let b∗ ∈ B1 and t ∈ T be such that b∗t ∈ E(G). Now we show that

G is K5-free. So ω(G) ≤ 4, and the theorem follows from Theorem 5.7. Suppose to the contrary

that ω(G) ≥ 5. Let K ⊆ V (G) be such that K induces a K5. Then the following claims hold:

5.8.1 Z = ∅.

Proof of 5.8.1. Suppose not, and let z ∈ Z. Then, by Lemma 5.1:(iii), tz /∈ E(G). Since

{v1, v2, z, b∗, t} does not induce an H3, we have b∗z ∈ E(G). Then {v2, v3, z, t, b∗} induces a flag, a

contradiction. So 5.8.1 holds.

5.8.2 For any t′ ∈ T , we have G[N(t′)] is K4-free. So K ∩ T = ∅.

Proof of 5.8.2. Suppose not, and let V ′ ⊆ N(t′) be such that V ′ induces a K4. Since G is connected,

by Lemma 5.1:(v), there is a vertex, say b ∈ B such that bt′ ∈ E(G). Moreover, there is an index

i ∈ {1, 2, 3} such that bvi+1 ∈ E(G) and bvi /∈ E(G). Since for any p ∈ T ∩ V ′, by Lemma 5.1:(v),

{p, t′, b, vi+1, vi} does not induce an H3, we have V ′ ∩ T = ∅. Then, by Lemma 5.1:(i), we may

assume that, there is an index j ∈ {1, 2, 3}, |V ′ ∩ Bj| = 2 and V ′ ∩ (Bj+1 ∪ Bj−1) ̸= ∅. Let

p, q ∈ V ′ ∩Bj. Then for any r ∈ V ′ ∩ (Bj+1 ∪Bj−1), {p, q, t′, vj, r} induces a flag, a contradiction.

So 5.8.2 holds.

5.8.3 The vertex-set of any big component of G[Bi] is complete to {t}.
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Proof of 5.8.3. Let V ′ be the vertex-set of a big component of G[Bi]. Then there are adjacent vertices

in V ′, say p and q. Suppose to the contrary that the claim is not true. Then by Lemma 5.1:(vi), we

may assume that, V ′ is anticomplete to {t} and hence pt, qt /∈ E(G). If i = 1, then, again by using

Lemma 5.1:(vi), b∗p, b∗q /∈ E(G), and then {p, q, v2, b∗, t} induces an H3, a contradiction. Next, if

i = 2, then since for any v ∈ {p, q}, {t, b∗, v2, v1, v} does not induce a P5, we have b∗p, b∗q ∈ E(G),

and then {p, q, v3, t, b∗} induces a flag, a contradiction. We obtain a similar contradiction when

i = 3. These contradictions show that 5.8.3 holds.

5.8.4 K ∩ C = ∅.

Proof of 5.8.4. Suppose not, and let v1 ∈ K. First, suppose that v2 ∈ K. Then, by above claims,

K ∩ (A∪B1∪B2∪T ∪Z) = ∅. So |K| = |K ∩C|+ |K ∩B3|. Now, if v3 ∈ K, then K ∩B3 = ∅, and
hence |K| = 3, a contradiction, and if v3 /∈ K, then, by Lemma 5.1:(i), |K| ≤ 4, a contradiction.

So we conclude that v2 /∈ K. Likewise, v3 /∈ K. Next, since v1 ∈ K and v2, v3 /∈ K, by above

claims, K ∩ (A2 ∪ A3 ∪B1 ∪ T ∪ Z) = ∅. Also, by 5.8.2 and by 5.8.3, one of |K ∩B2| or |K ∩B3|
is at most 1; say |K ∩B2| ≤ 1. Then, by Lemma 5.1:(i), we see that |K| ≤ 4, a contradiction. So

5.8.4 holds.

5.8.5 K ∩ (C ∪ T ∪ Z) = ∅.

Proof of 5.8.5. This follows from 5.8.1, 5.8.2 and 5.8.4.

5.8.6 For each i, we have |K ∩ Ai| ≤ 1.

Proof of 5.8.6. Suppose not, and let p, q ∈ K ∩Ai. Then, by Lemma 5.1:(i), K ∩ (Bi+1 ∪Bi−1) = ∅,
and K ∩Ai = {p, q}. Since, by Lemma 5.1:(i), |K ∩Bi| ≤ 2, we have K ∩ (Ai+1 ∪Ai−1) ̸= ∅. Then,
for any r ∈ K ∩ (Ai+1 ∪ Ai−1), {p, q, r, vi+1, vi−1} induces an H3, a contradiction. So 5.8.6 holds.

5.8.7 For each i, we have |K ∩ (Ai+1 ∪ Ai−1 ∪Bi)| ≤ 2.

Proof of 5.8.7. Suppose not, and let p, q, r ∈ K ∩ (Ai+1∪Ai−1∪Bi). Then, by 5.8.6, |K ∩Ai+1| ≤ 1.

Likewise, |K ∩ Ai−1| ≤ 1. Since, by Lemma 5.1:(i), |K ∩ (Ai+1 ∪ Bi)| ≤ 2, we conclude that

|K ∩ (Ai+1 ∪ Ai−1 ∪ Bi)| ≤ 3. Then, by 5.8.5, there is a vertex, say s ∈ K ∩ (Ai ∪ Bi+1 ∪ Bi−1),

and then {p, q, r, vi, s} induces a flag, a contradiction. So 5.8.7 holds.

5.8.8 There is an index j ∈ {1, 2, 3} such that |K ∩Bj| = 2.

Proof of 5.8.8. Suppose not, then for each j ∈ {1, 2, 3}, we have |K ∩ Bj| ≤ 1. So |K ∩ B| ≤ 3.

Then, by 5.8.5, |K ∩ A| ≥ 2. Also, by 5.8.7, |K ∩ A| ≤ 3. If |K ∩ A| = 3, then by 5.8.7, for each

i ∈ {1, 2, 3}, K ∩Ai ̸= ∅, and thus, by 5.8.7, K ∩B = ∅ which implies that |K| = 3, a contradiction.

So we have |K ∩A| = 2 and |K ∩B| = 3. So for each r ∈ {1, 2, 3}, K ∩Br ̸= ∅. Since |K ∩A| = 2,

there is an index ℓ ∈ {1, 2, 3} such that K ∩ Aℓ ̸= ∅. Since K ∩ Bℓ+1 ≠ ∅ and K ∩ Bℓ−1 ̸= ∅, by
5.8.7, we have K ∩ (Aℓ+1 ∪ Aℓ−1) = ∅ and |K ∩Aℓ| = 1. So |K ∩A| ≤ 1, a contradiction. So 5.8.8

holds.
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Let K = {r1, r2, r3, r4, r5}. By 5.8.8, we may assume r1, r2 ∈ B1. So, by 5.8.7, {r3, r4, r5} ∩
(A2 ∪ A3) = ∅; hence, by 5.8.5, r3, r4, r5 ∈ A1 ∪ B2 ∪ B3. Also, by 5.8.3, r1t, r2t ∈ E(G). Then,

by 5.8.2, |N(t) ∩ {r3, r4, r5}| ≤ 1. Note that {r3, r4, r5} is complete to {v1}. Since {r4, r5, v1, t, r3}
does not induce a flag, we have {r3, r4, r5} is anticomplete to {t}. Then {r3, r4, r5, t, r1} induces a

flag, a contradiction. Thus ω(G) ≤ 4, and the theorem follows from Theorem 5.7. This completes

the proof of Theorem 5.8.

Theorem 5.9 Every (P5, flag)-free graph G with ω(G) ≥ 4 satisfies χ(G) ≤ max{8, 2ω(G)− 3}.

Proof. Let G be a (P5, flag)-free graph. We may assume that G is connected. If G contains a

K1 +K3, then, by Theorem 5.8, G is 8-colorable. So we may assume that G is K1 +K3-free. Then

the theorem follows from Theorem J and Theorem 5.7.

(a) (b)

Figure 21: (a) The graph C5[C5] with an 8-coloring. (b) The graph 3C5 with a 9-coloring. (Here, the
thick lines between any two C5’s indicate their join.)

We note that the bound in Theorem 5.9 is tight for the ω(G) ∈ {4, 5, 6}. To do that, we need

the following:

Theorem 5.10 The graph H∗ ∼= C5[C5] is (P5, flag)-free with ω(H∗) = 4 and χ(H∗) = 8.

Proof. Recall that V (H∗) can be partitioned into 5 subsets A1, . . . , A5 such that (i) Ai induces a

C5, (ii) for each i mod 5, every vertex in Ai is adjacent to every vertex in Ai+1 ∪ Ai−1 and to no

vertex in Ai+2 ∪Ai−2. It is easy to verify that H∗ is (P5, flag)-free with ω(H∗) = 4 and α(H∗) = 4.

So it is enough to show that χ(H∗) = 8. Since χ(H∗) ≥
⌈
|V (H∗)|
α(H∗)

⌉
=

⌈
25
4

⌉
= 7, we see that at least

7 colors are required to color H∗. Moreover, from Figure 21, we conclude that χ(H∗) is either 7 or

8. Suppose to the contrary that χ(H∗) = 7. Then V (H∗) can be partitioned into 7 stable sets, say

D1, D2, . . . , and D7.
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For i ∈ {1, 2, 3, 4, 5} and i mod 5, we let Li := {j ∈ {1, 2, . . . , 7}|Ai ∩Dj ≠ ∅}. Since for each

i, Ai induces a C5, we have |Li| ≥ 3 and thus |Li| + |Li+1| ≥ 6. Since Ai is complete to Ai+1,

we have Li ∩ Li+1 = ∅ and thus |Li| + |Li+1| ≤ 7. If for each i ∈ {1, 2, 3, 4, 5}, |Li| + |Li+1| = 7,

there is an index k ∈ {1, 2, 3, 4, 5}, k mod 5, such that |Lk| = 4 and |Lk+1| = 4 which implies that

|Lk| + |Lk+1| = 8 which is a contradiction; so there is an index i ∈ {1, 2, 3, 4, 5}, i mod 5, such

that |Li| = 3 and |Li+1| = 3. Without loss of generality, we may assume that L1 = {1, 2, 3} and

L2 = {4, 5, 6}. If 7 /∈ L3, then L3 = {1, 2, 3} and so {1, 2, 3}∩(L4∪L5) = ∅ which is a contradiction

to the fact |L4|+ |L5| ≥ 6; so 7 ∈ L3. Likewise, 7 ∈ L5. Since |L3| ≥ 3 and L2 ∩ L3 = ∅, we have

|L3∩{1, 2, 3}| ≥ 2; so we may assume that {1, 2} ⊆ L3. Likewise, we may assume that {4, 5} ⊆ L5.

Since L4 ∩ (L3 ∪L5) = ∅, we have {1, 2, 4, 5, 7} ∩L4 = ∅ and hence |L4| ≤ 2, a contradiction to the

fact |L4| ≥ 3. So χ(H∗) = 8.

Now we show that the bound given in Theorem 5.9 is tight for ω(G) ∈ {4, 5, 6}.

� For ω(G) = 4, we consider the graph G ∼= C5[C5]. Then by Theorem 5.10, χ(G) = 8.

� For ω(G) = 5, we consider the graph G ∼= C5[C5] + K5. Then by Theorem 5.10, χ(G) =

max{χ(C5[C5]), 5} = 8.

� For ω(G) = 6, we consider the graph G ∼= 3C5 (see Figure 21). Then clearly χ(G) = 9.

5.6 Concluding remarks

In this chapter, we studied the structure of (P5, flag)-free graphs and showed that each such

connected graph is either 8-colorable or K1 + K3-free (see Theorem 5.8). We explored the

coloring of (P5, flag)-free graphs and proved that every such graph G with ω(G) ≥ 4 satisfies

χ(G) ≤ max{8, 2ω(G)− 3} and that the bound is tight for ω(G) ∈ {4, 5, 6}. The bound does not

seem to be tight for ω(G) ≥ 7.

From Theorem 5.8, it follows that, if f ∗ is the smallest χ-binding function for the class of

(P5, K1+K3)-free graphs, then, for x ≥ 4, f(x) = max{8, f ∗(x)} is the smallest χ-binding function

for the class of (P5, flag)-free graphs. We believe that (see also [91]) the function f(x) =
⌊
3x
2

⌋
is

the smallest χ-binding function for the class of (P5, K1 +K3)-free graphs G, since given t ∈ N,
for ω(G) = 2t, we have G = tC5, and for ω(G) = 2t + 1, we have G = tC5 ∨K1 so that G ∈ G
and that χ(G) =

⌊
3ω(G)

2

⌋
. Moreover, to find the smallest χ-binding function for the class of

(P5, K1 + K3)-free graphs, it is enough to find the smallest χ-binding function for the class of

(2P2, K1 +K3, K1 + C5)-free graphs [21].
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