
Multi-View Discriminant
Canonical Correlation Analysis:
Regularization, Scalability to Adaptability

A thesis submitted to Indian Statistical Institute
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

by

Ankita Mandal
Senior Research Fellow

Under the supervision of
Dr. Pradipta Maji, Professor

Machine Intelligence Unit
Indian Statistical Institute, Kolkata

December 2022





To the source of my endurance:
Baba and Maa.



ii



Acknowledgements

Apart from a thesis with several research works, a Ph.D. is a journey of ex-
perience and memories of ups and downs. Looking back to the time, I realize
that I am blessed for having continuous support from several kind-hearted peo-
ple. They had given me the confidence and endurance to complete this journey
successfully.

A profound sense of gratitude binds me to my thesis supervisor and mentor Prof.
Pradipta Maji. He has been the backbone in molding my research enhancement
since my post-graduate days. I am fortunate to have him as my teacher, who
has guided me not only in my research work but also taught me life lessons. His
immeasurable support, training, and guidance kept me motivated throughout
this journey. He taught me how to do research work in an organized way. He
had always been available for me, whenever I needed any technical support. I
have learned from him the importance of discipline and honesty in research.
No word of thanks can sum up the gratitude that I owe to him.

I express my sense of indebtedness to the Dean of Studies and the Director of the
Indian Statistical Institute for providing me the research fellowship and grants,
and a peerless infrastructure and environment for research. I owe my sincere
gratitude to all the faculty members of the Machine Intelligence Unit, Indian
Statistical Institute, for their continued support, encouragement, and helpful
suggestions during my Ph.D. tenure. I am also grateful to the authorities of
the institute for providing the facilities, which have helped me to complete my
research smoothly. I would also like to acknowledge all the timely supports that
I have received from the office staffs of our institute throughout the tenure of
my Ph.D.

I would like to express my gratitude to all my Biomedical Imaging and Bioinfor-
matics Lab members and alumni especially, Debamita Kumar, Suman Mahap-
atra, Sankar Mondal, Ekta Shah, Abhirup Banerjee, Aparajita Khan, Gunjan
Gautam, Pratik Dutta, Nabina Dey, Shaswati Roy, Sushmita Paul, Partha
Garai, and Debanjan Chakraborty for creating such a healthy environment to
carry out my thesis work. I also want to thank all my teachers from my child-
hood. Without their priceless blessings and teachings, it would be very difficult
for me to complete this thesis.

Finally, yet importantly, I sought inspiration and I owe a great deal to my
beloved parents, Mr. Ranjit Mandal and Mrs. Maya Mandal, for being the
pillars of my dreams. Their unconditional love, support, and encouragement
give me endurance not only during my Ph.D. journey but also throughout my
life. I am blessed to have Mr. Santi Ranjan Paul and Mrs. Sabita Paul, as



my father-in-law and mother-in-law. Their constant support, encouragement,
and blessings have enabled me to pursue my Ph.D. degree. I would also like to
mention all the well wishes and encouragements that I have received from my
uncles, aunts, cousins, and other family members. Last but certainly not the
least, I must express a deep sense of gratitude to a very special person, Santanu
Paul, my husband, for his constant support during my Ph.D. tenure.

I thank all of them whose names have been missed unintentionally but have
contributed in one way or another to my thesis work.

Ankita Mandal



Abstract

Multi-view learning is an emerging machine learning paradigm that focuses on discov-
ering patterns in data represented by multiple distinct views. One of the important
issues associated with real-life high-dimensional multi-view data is how to integrate
relevant and complementary information from multiple views, while generating dis-
criminative subspaces for analysis. Although the integration of multi-view data is
expected to provide an intrinsically more powerful model than its single-view coun-
terpart, it poses its own set of challenges. The most important problems associated
with multi-view data analysis are presence of noisy, irrelevant and heterogeneous views,
high-dimension low-sample size nature of individual views, and updating the databases
with new views.

In this regard, the thesis addresses the problem of multi-view data integration, for
both static and dynamic data sets, in the presence of high-dimensional noisy and re-
dundant views. The main contribution of the present work is to design some novel
algorithms, based on the theory of canonical correlation analysis (CCA), to extract
informative subspaces for multi-view classification, and theoretically analyze the im-
portant properties of these transformed spaces and new algorithms. The “curse of
dimensionality” problem due to “high-dimension low-sample size” characteristics of
real-life data is addressed, by judiciously integrating the CCA and ridge regression
optimization technique. The relation between CCA and its regularized counterpart is
established, which enables extraction of relevant and significant features sequentially
from bimodal data sets for classification and addresses the scalability issue of real-life
high-dimensional data.

To integrate multi-view data using multiset CCA (MCCA), a new block matrix
representation is introduced. It facilitates generation of discriminative subspaces hav-
ing maximum pairwise correlation, and makes the MCCA model scalable to high-
dimensional multi-view data. Integration of MCCA with multiset ridge regression
model addresses the “curse of dimensionality” problem of individual views. In order
to integrate dynamic multi-view data, a novel adaptive MCCA model is proposed,
which incrementally updates canonical variables when new views are available for the
analysis. The adaptive model ensures selection of relevant and complementary views
during data integration, while discarding irrelevant and redundant ones. To make
the adaptive framework scalable to high-dimensional data, a new model is introduced
under common latent representation. Finally, a graph based approach is judiciously
integrated with this adaptive model to utilize the underlying geometry of the data in
different views.
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Chapter 1

Introduction

Data is a representation of facts, concepts, or instructions in a formalized manner, which
should be suitable for communication, interpretation, or processing by a human or elec-
tronic machine. It can exist in various forms: as numbers or text recorded on paper, as bits
or bytes stored in electronic memory, or as facts living in a person’s mind. In computing,
data is the knowledge that has been translated into a form that is efficient for conditioning
or processing. Relative to present-day computers and transmission media, data is infor-
mation converted into binary digital form. The growth of the web and smartphones over
the past decade led to a surge in digital data creation. Data now includes text, audio, and
video information, as well as log and web activity records. Data streams in from every
picture taken, every file saved, every search query submitted to a search engine, every so-
cial media interaction, and every experiment performed. As data is sprawling across more
devices, applications and cloud platforms, and is available in more formats, it is growing
at an exponential rate with 90% of the world’s data being generated in the last two years
alone. It is predicted that the global data volume will reach 175 zettabytes by 2025 [221].
And, it is not only the volume of the data that has grown drastically, but also the variety
of it. Moreover, having an abundance of data by itself does not make any sense, it is more
important to analyze the data and get the benefit from it.

A pattern gives the knowledge of data. Hence, to analyze the data, one needs to under-
stand or recognize the pattern properly. Pattern recognition is the automated recognition
of patterns and regularities in data [265]. It tries to simulate the human brain’s neural
network capabilities, which further advances artificial intelligence. It uses machine learn-
ing [29,79] algorithms to identify patterns. It analyzes data based on statistical information
or knowledge gained from patterns and their representation. Machine learning is a branch
of artificial intelligence and computer science that focuses on the use of data and algorithms
to imitate the way humans learn; gradually improving its accuracy. Pattern recognition
and machine learning is a versatile practice that has found their way into many different
industries and social contexts.

In pattern recognition and machine learning, a feature is an individual measurable
property or attribute used to characterize a data set. Features can be in the raw form
of data that cannot be used in all types of real-life problems. For example, a color can
be represented in RGB format or HSV format. Thus, a color can have two different
representations or encodings. Both of these representations or encodings can be used to
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solve different kinds of problems. Some tasks that may be difficult with one representation
can become easy with another. For example, the task “select all red pixels in the image” is
simpler in the RGB format, whereas “make the image less saturated” is simpler in the HSV
format. Machine learning algorithms can be broadly categorized into the following three
groups, namely, supervised learning, unsupervised learning, and semi-supervised learning
[265], depending on the learning strategy.

• Supervised learning is a type of machine learning algorithm where a set of la-
belled data is used to predict the labels of unknown objects. These algorithms use
a two-stage methodology for identifying the patterns. The first stage includes the
development or construction of a model, and the second stage involves the predic-
tion of new or unseen objects using the developed model. One practical example
of supervised learning problems is the text classification problem. Here, the goal is
to predict the class label of a given piece of text. One particularly popular topic
in text classification is to predict the sentiment of a piece of text, like a tweet or a
product review. This is widely used in the e-commerce industry to help companies
to determine negative comments made by the customers.

• In unsupervised learning, the objective is to learn patterns from a data set without
using any prior information. Since the data is not labeled, the machine should learn to
categorize the data based on the similarity and finds patterns in the data. Clustering
is an unsupervised technique where the goal is to find natural groups or clusters by
interpreting the input data. It is commonly used for determining customer segments
to build marketing or other business strategies. For example, an e-commerce site uses
clustering algorithms to implement a user-specific recommendation system. Another
example is grouping subscribers of a YouTube channel. The channel owner has a lot
of data about the subscribers. By using these data, a clustering algorithm can group
the subscribers, which helps the owner to create content of a video for each group.

• In semi-supervised learning, both the labeled and unlabeled data are used to
train the model. In several application domains, acquiring data is easy, but acquiring
labeled data turns out to be expensive. Hence, the combination of a very small
amount of labeled data and a very large amount of unlabeled data may help to learn
a semi-supervised model. An initial model is developed by using the limited set of
training labeled samples and unlabeled data is used to refine the model. An example
of semi-supervised learning is speech analysis. Labeling audio files typically is a
very intensive task that requires a lot of human resources. Applying semi-supervised
learning techniques can help to improve traditional speech analytic models.

Figure 1.1 represents the difference between supervised, unsupervised, and semi-supervised
learning.

The number of input variables or features of a data set is referred to as the dimensional-
ity of the data set. As the dimensionality of the input data set increases, machine learning
algorithms become more complex and more prone to incorrect predictions. This is known as
the “curse of dimensionality” [23,265]. A higher number of dimensions theoretically allows
more information to be stored, but practically it rarely helps due to the higher possibility
of noise and redundancy in the real-world data. If the machine learning model is trained
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Figure 1.1: Difference between supervised, unsupervised, and semi-supervised learning.

on high-dimensional data, it becomes overfit and results in poor generalization to unseen
data in many cases. Dimensionality reduction refers to the techniques that reduce the
number of input variables or features in a data set. Besides eliminating the overfitting and
redundancy problem, dimensionality reduction also leads to better human interpretations
and less computational cost with the simplification of models. It helps machine learning
algorithms to learn the intricate pattern of a data set with lesser cost and more accuracy.
An example of dimensionality reduction is to identify an email as spam or not. This task
can have several features such as the title of an email, whether it is generic or specific, the
contents of the email, whether the email is based on a template, and so on. Many of these
features may also overlap with each other where the dimensionality reduction can be used
to separate spam from important emails. Dimensionality reduction can be performed in
the following two ways, namely, feature selection and feature extraction [87].

• Feature selection reduces the dimensionality of the measurement space by discard-
ing redundant or least information-carrying features.

• Feature extraction is a process of dimensionality reduction where all the informa-
tion contained in the original measurement space are used to obtain a new trans-
formed space, thereby mapping a higher dimensional pattern to a lower dimensional
one.

Both feature selection and feature extraction are processes where each sample or ob-
servation in a high-dimensional measurement space is transformed into a low-dimensional
space. The main objective of feature selection and feature extraction is to retain or gener-
ate the optimum salient characteristics necessary for the recognition process and to reduce
the dimensionality of the measurement space so that effective and easily computable al-
gorithms can be devised for efficient class labels determination. The problem of feature
selection and feature extraction has two aspects, namely, formulating a suitable criterion
to evaluate the goodness of a feature set and searching for the optimal set in terms of the
criterion. In general, those features are considered to have optimal saliencies for which
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interclass (respectively, intraclass) distances are maximized (respectively, minimized). The
criterion for a good feature is that it should be unchanging with any other possible variation
within a class while emphasizing differences that are important in discriminating between
patterns of different types.

There are generally two ways to represent the data for a machine learning algorithm,
namely, feature vector-based data and relational data [180]. In feature vector-based rep-
resentation, n samples are observed in p-dimensional feature space or measurement space,
where each feature can be represented by numerical, textual, or categorical values. For
example, a color image has three color components of a pixel, namely, red, green, and blue.
On the other hand, the pairwise relationships between n samples are measured in relational
data. One practical example of relational data is news article categorization. Here, two
articles or related topics can be considered to be alike if there is a connection between these
articles. A set of n observations or samples, represented by either p-dimensional feature
vectors or by n2 pairwise relationships, is referred to as a “modality” or “view” of a data
set. There are several real-life applications, where a single type of information may fail to
analyze a given problem or distinguish the patterns of a data set completely. For example,
it cannot be claimed that two news articles belong to the same news category if they share
a hyperlink connection. The resemblance between their content has to be assessed before
making such an assertion. On the other hand, multiple views of the same set of observa-
tions can capture complementary information. In this regard, the dimensionality reduction
problem associated with multi-view data sets is addressed in this thesis.

1.1 Multi-View Data Analysis

Multi-view data analysis is one of the emerging areas of machine learning. The main
objective of multi-view learning is to analyze patterns in data represented by multiple
views [251]. Due to the huge evolution in several data collection, measurement, and rep-
resentation techniques, the multi-view data sets are almost everywhere in recent practical-
world applications. During the last decade, the idea of combining knowledge from diverse
sources has taken over the conventional single-view learning models. It becomes an oper-
ational area of study due to the massive success in a broad scope of real-life applications,
such as biomedical imaging, integration of multi-omics data, multi-source text mining,
multi-camera face and facial expression recognition, imaging genetics, multi-source image
retrieval and so on [158, 220, 320]. Some of the various application areas of multi-view
learning are demonstrated in Figure 1.2.

There are various reasons behind the immense success of multi-view learning over the
single-view analyses. Some of these highlights are described next.

• Comprehensive View of the System: Different views have different character-
istics. If the relevant views are combined to analyze a pattern, it provides more
impact on the learning process. For example, multiple cameras capture different
angles and views of a person, which helps to identify the person more conveniently
than a single camera view. As facial appearance may vary due to the various light-
ing condition, light angles, pose, or facial expressions, multiple cameras are able to
capture a significant number of images of a face in different poses and lighting cir-
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Figure 1.2: Various application areas of multi-view data analysis.

cumstances. It provides more robust and precise face recognition outcomes than a
single-camera/single-view analysis.

• Complementary Information: The information associated with different views
may have complementary nature. Integrating this complementary information may
provide more insight into the problem. For example, both copy number variation
and gene expression share the genetic knowledge of an individual. The copy number
variation indicates how many times a particular gene sequence has been replicated
within the DNA, whereas the overexpression or underexpression of a gene is repre-
sented by gene expression data. Integration of both complementary and compatible
views is supposed to increase learning performance.

• Cross-Platform Analysis: As multiple views are available, it is feasible to draw
a connection between variables observed in various views. If the information corre-
sponding to functional magnetic resonance imaging is combined with that of single
nucleotide polymorphism (SNP), then it helps to identify the brain region alterations
which is triggered by corresponding SNP changes in genes.

• Resilience to Noise: It may be possible that a real-life data set has noise. If the
information associated with different views is combined, then there is a chance that
noisy observations in a particular view can be neutralized by the complementary
observations of relevant views.

In spite of having an abundance of benefits in multi-view data analysis, there are
several challenges and hurdles associated with it [320], which are addressed briefly in the
next section.
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1.2 Challenges in Multi-View Data Analysis

Conventional machine learning algorithms are developed to work on single-view data. For
example, support vector machines, artificial neural networks, discriminant analysis, spectral
clustering, and kernel machines are supposed to analyze single-view data. As multi-view
data sets have their own set of challenges, few modifications have to be done to these
algorithms to learn multi-view data sets. The challenges of multi-view data analysis, which
are mostly focused on dimensionality reduction are discussed below.

• Data Heterogeneity: The easiest process to analyze the information of multi-view
data sets using the traditional machine learning algorithms is to join all multiple
views into one single view. But, this naive integration is not good as each modality
has its distinct characteristics. Each view has a different scale, unit, and variance.
Hence, different views may not be compatible with each other. For example, DNA
methylation data is made up of β-values which lie in r0, 1s, while RNA sequence-
based gene expression data is estimated in RPM (reads per million) and represented
by real values in the order of 105. The naive integration of features from these two
heterogeneous views is more likely to be dominated by the view, which has high
variance. Hence, the integration process has to be unbiased so that the inherent
properties are conserved during the learning process.

• Curse of Dimensionality Problem: In real-world applications, data sets consist
of an enormous number of observed variables. For example, an image has nearly
106 pixels, DNA microarrays have almost 20K genes, thousands of words are present
in a document file, and so on. On the contrary, the number of observed samples is
generally very small. Due to the limited number of training samples, the learning
models incline to overfit the data, thus the generalization performance decreases.
The high-dimension low-sample data also have multicollinearity problems. Hence,
the consistency properties of the eigenvalues and the corresponding eigenvectors of
the rank deficient sample covariance matrix are degraded [126]. In high dimensions,
the feature space becomes geometrically sparse, which leads to the non-invertibility
of the covariance matrix.

• Irrelevant and Redundant Views: The observations in various views can be
corrupted by noise due to measurement errors in real-life applications. The noise has
to be taken care of explicitly, otherwise, it may be propagated in distinct views or even
overstated during the data fusion procedure. On the other hand, most of the machine
learning algorithms have an assumption that each view is knowledgeable and obtain
consistent and homogeneous information about the data set. Hence, these algorithms
incorporate all the available views in the learning process. But, in reality, some of the
views may provide redundant, insignificant, or even worse information. Because of
the presence of irrelevant, redundant, and noisy views, the integration of all available
views can reduce the performance of the learning process.

• View Disagreement: Different views are supposed to follow a global class structure
in multi-view data analysis. That means each sample should belong to the same class
in all views. However, in real-world applications, the views are often corrupted by
noise. As a result of that, a set of observations in some views may be corrupted, while
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in other views it may remain unaffected. One practical example of this situation is
view disagreement in multi-sensory data sets. A sensor may have an incorrect state
between two normal states by mistake, which creates confusion between various views.
If there is a disagreement or corruption present in the data set, the classes recognized
in different views would not correlate with each other, which makes the integration
process more difficult [48].

• Noisy and Low-Rank Geometry of Views: The intrinsic geometrical structure
hidden in a data set has the power to enhance the learning performance of dimen-
sionality reduction, data reconstruction, clustering, and classification [22,44,104,105,
125, 227, 237, 261]. In this regard, many approaches have been proposed in recent
years to identify geometrical knowledge of the data by integrating the information
from multiple views. The performance of most of the existing graph-based methods
relies on the predefined graph. If the data is noisy, and has the incomplete and/or
heterogeneous views, then a consensus graph from the data has to be learned. How-
ever, it should be noted that the difference between the nearest and farthest neighbor
points from a certain point is insignificant for high-dimensional data sets [5].

• Updation in Database: Every day, a huge amount of data is being added to the
existing databases. Sometimes new instances may be added to the existing samples
or new modalities may be considered for better analysis. For example, The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov/) updates and releases
the new data, both samples and modalities, twenty-two times in the last five years.
Incremental learning is a machine learning paradigm where the learning process takes
place whenever new data is merged with or deleted from the existing data set and
the solutions already obtained are only modified. Thus, the multi-view learning
algorithms should be adaptive or incremental in nature.

• Incomplete Views: A common assumption of multi-view data analysis algorithms
is all the views have a unique set of samples. But, in practical application, there may
be various failures or faults in collecting and pre-processing the data on different
views. Because of that, a sample may not be observed in one view, which makes the
view incomplete. In effect, this missing sample has to be discarded from all other
views, which reduces the sample size. A small set of training samples may lead to
the overfitting of the data. Hence, by establishing a connection between the views
the missing sample can be restored with the help of the complete views [299] without
discarding the missing sample from all views.

Few of these aforementioned challenges, for example, data heterogeneity, presence of
irrelevant, redundant, and incomplete views, disagreement among different views, and up-
dation in the database, are applicable for multi-view data sets only, while other challenges
like the presence of noise and high-dimension low-sample size characteristic are valid for
both the single-view and multi-view data sets. Thus, some advanced machine learning
algorithms have to be developed that can address these challenges efficiently and extract
latent information from multi-view data sets.
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1.3 Scope and Organization of Thesis

In this context, the thesis presents a set of learning algorithms to address some of the
problems associated with multi-view data analysis. The high-dimension low-sample size
characteristic of individual views is one of the crucial challenges related to multi-view learn-
ing. This leads to ill-conditioning of the sample covariance matrix of the high-dimensional
view. Furthermore, a small subset, among the huge amount of extracted features, is effec-
tive to perform a certain task. Hence, the goal of multimodal data analysis is to extract
a reduced set of most relevant features. Instead of generating all possible features, if each
feature is generated sequentially, the quality of each extracted feature can be evaluated,
and finally, the required number of features can be extracted from the multimodal data
sets. On the other hand, real-life data sets are often plagued with noise. It may also
happen that some of the views provide disparate, redundant, or even worse information.
Moreover, the views may be added with time. So, it is necessary to develop a model that
can generate the new feature from that of the existing modalities and the new modal-
ity without repeating the same procedure with the original data augmented by the new
modality. The key contribution of this thesis is to design some novel algorithms to extract
relevant and significant features from multi-view data sets and theoretically analyze the
salient characteristics of these transformed feature spaces.

Figure 1.3 represents the outline of the thesis. The thesis comprises eight chapters.
The importance of multi-view data analysis is described in Chapter 1. Some challenges
associated with multi-view learning are also discussed in this chapter. A brief study on
existing multi-view data integration algorithms is presented in Chapter 2.

Chapter 3 presents a novel supervised regularized canonical correlation analysis (CCA),
termed as CuRSaR, to extract relevant and significant features from bimodal multidimen-
sional data sets. The proposed algorithm extracts a new set of features from two multi-
dimensional data sets by maximizing the relevance of extracted features with respect to

8



sample categories and significance among them. It integrates judiciously the merits of
regularized CCA and rough hypercuboid approach. An analytical formulation, based on
spectral decomposition, is introduced to establish the relationship between the covariance
matrices of different regularization parameters. It makes the computational complexity of
the proposed algorithm significantly lower than that of the existing methods. The concept
of hypercuboid equivalence partition matrix of rough hypercuboid is used to compute both
relevance and significance of a feature. The equivalence partition matrix offers an efficient
way to find optimum regularization parameters. The superiority of the proposed algo-
rithm over other existing methods, in terms of computational complexity and classification
accuracy, is established extensively on several real-life cancer data sets.

One of the main problems associated with real-life multi-view data sets is how to ex-
tract relevant and significant features sequentially. The algorithm presented in Chapter 3
extracts relevant and significant features simultaneously from two multidimensional data
sets. In general, a huge number of irrelevant and insignificant features may be present in
the extracted feature set, which may degrade the classification accuracy by reducing the
useful information. Thus, if the features are extracted sequentially, then the required num-
ber of features can be generated by evaluating the quality of each feature. In this regard,
a fast and robust feature extraction algorithm, termed as FaRoC, is presented in Chapter
4, integrating judiciously the merits of CCA and rough sets. The proposed algorithm ex-
tracts new features sequentially from two multidimensional data sets by maximizing their
relevance with respect to class labels and significance with respect to already-extracted fea-
tures. To generate canonical variables sequentially, an analytical formulation is introduced
to establish the relation between regularization parameters and CCA. The formulation
enables the proposed algorithm to extract required number of correlated features sequen-
tially with lesser computational cost as compared to existing methods. To compute both
significance and relevance measures of a feature, the concept of hypercuboid equivalence
partition matrix of a rough hypercuboid approach is used. It also provides an efficient way
to find optimum regularization parameters employed in CCA. The efficacy of the proposed
FaRoC algorithm, along with a comparison with other existing methods, is extensively
established on several real-life cancer data sets.

Both CuRSaR and FaRoC, presented in Chapter 3 and Chapter 4, respectively, can
only account for two sets of variables. The multiset CCA (MCCA) is a well-known sta-
tistical method for multi-view data integration. It finds a linear subspace that maximizes
the correlations among different views. However, the existing methods to find the multiset
canonical variables are computationally very expensive, which restricts the application of
the MCCA in real-life big data analysis. The covariance matrix of each high-dimensional
view may also suffer from the singularity problem due to the limited number of samples.
Moreover, the MCCA based existing feature extraction algorithms are, in general, unsu-
pervised in nature. In this regard, a new supervised feature extraction algorithm, termed
as ReDMiCA, is presented in Chapter 5, which integrates multimodal multidimensional
data sets by solving the maximal correlation problem of the MCCA. A new block ma-
trix representation is introduced to reduce the computational complexity of computing the
canonical variables of the MCCA. The analytical formulation enables efficient computation
of the multiset canonical variables under the supervised ridge regression optimization tech-
nique. It deals with the “curse of dimensionality” problem associated with high-dimensional
data and facilitates the sequential generation of relevant features with significantly lower
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computational cost. The effectiveness of the proposed multiblock data integration algo-
rithm, along with a comparison with other existing methods, is demonstrated on several
benchmark and real-life cancer data sets.

One of the major problems in real-life multiblock dynamic data analysis is that all
the modalities may not be available initially. The databases are generally updated incre-
mentally. New modalities may be added to the existing modalities. So, it is necessary to
develop a model that can generate the new features from that of the existing modalities
and the new modality without repeating the same procedure with the original data aug-
mented by the new modality. Moreover, it may also happen that some of the views have
noisy or even inconsistent information with respect to other views. So, it is necessary to
evaluate the quality of a new modality before considering it for feature extraction. In this
regard, a new MCCA, termed as incremental MCCA (IMCCA), is presented in Chapter 6.
When a new modality is available for the analysis, the IMCCA generates the new canonical
variables from that of the earlier modalities, without repeating the same procedure with
the original data augmented by the new modality. The proposed IMCCA deals with the
“curse of dimensionality” problem associated with multidimensional data sets, by using the
ridge regression optimization technique. Using the proposed IMCCA model, a new feature
extraction algorithm, termed as SeFGeIM is introduced, which considers a new modal-
ity for the analysis if it has relevant and significant information with respect to existing
modalities. The proposed algorithm starts with the two most relevant modalities, and the
remaining modalities are added sequentially according to their relevance. The optimum
regularization parameters for the proposed algorithm are estimated based on the supervised
information of sample categories. The effectiveness of the proposed algorithm, along with
a comparison with state-of-the-art multimodal data integration methods, is established on
several real-life multiblock data sets.

Both the ReDMiCA algorithm presented in Chapter 5 and the SeFGeIM algorithm
presented in Chapter 6 are based on the sum of correlations (SUMCOR) criterion of the
MCCA. The SUMCOR is an NP-hard problem, whereas the maximum variance (MAX-
VAR) criterion of the MCCA reduces the number of constraints that are associated with
SUMCOR to a single constraint. Thus, MAXVAR provides a conceptually simple alge-
braic solution, which reduces the computational cost. Also, in real-life high-dimensional
data analysis, the geometry of the multi-view data can provide structural information about
the data sets, which facilitates efficient extraction of significant and relevant features from
a multi-view source. However, the MCCA based approaches, namely, ReDMiCA and Se-
FGeIM, do not exploit the geometry of the data set. In this regard, a new supervised
feature extraction algorithm, termed as GraDiM, is presented in Chapter 7, which inte-
grates dynamic multi-view data sets by using the MAXVAR criterion and the knowledge of
the graph. The proposed algorithm is dynamic in nature, that is, it incrementally updates
the existing solutions, whenever a new view is available for the analysis. On the other
hand, the algorithm is designed in such a way that if all the views are present at the be-
ginning of the data analysis, the algorithm starts with the three most relevant modalities,
and the remaining modalities are added sequentially according to their relevance. The
proposed GraDiM algorithm addresses the singularity issue of the covariance matrices by
using the ridge regression optimization technique. The optimum regularization parameters
for the proposed algorithm are estimated based on the supervised information of sample
categories. An analytical formulation demonstrates that the proposed algorithm can gener-
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ate the required number of relevant and significant features from multi-view dynamic data
sets, without extracting all possible features. In fact, all the views may not be required
to extract different features. If the new view has relevant and significant information with
respect to earlier views, then only the new view is incorporated in the integration pro-
cess. The effectiveness of the proposed multi-view data integration algorithm, along with
a comparison with other existing algorithms, is demonstrated on several benchmarks and
real-life cancer data sets.

Finally, the thesis is concluded in Chapter 8, where the future directions and improve-
ments of the proposed research work are also discussed.
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Chapter 2

Survey on Multi-View Data Analysis

This chapter presents the basic notions of multi-view data analysis, along with a brief
literature survey.

2.1 Multi-View Data

Recent years have spotted a growing interest in searching for various complementary data
associated with a specific problem. Different data sources are likely to contain distinct and
thus partly independent information. Combining those complementary pieces of informa-
tion can be expected to enhance the total information about the problem. The effective
integration and utilization of multiple data sources become an increasingly important prob-
lem in many applications. On the other hand, unimodal-based pattern recognition systems
usually provide insufficient pattern representation due to the radical variation and noisy
nature of the acquired signals. Combining data derived from multiple sources has the po-
tential to significantly increase the intrinsic characteristics of the pattern, which leads to
improved system performance compared to a single modality [151]. For example, a large
number of diverse complementary biomedical data streams are being routinely acquired
as part of the standard clinical workflow for patients. This research area leads to the
direction of the future of personalized medicine, which will be dependent on leveraging
the vast amount of medical data available to us to predict better treatments for patients.
The integration of orthogonal features from a wide range of modalities can result in bet-
ter predictors of disease aggressiveness and patient outcome, compared to any individual
modality [41, 134, 190, 207]. In this background, there has been an increasing interest in
data integration methods in recent times, both for supervised learning [92, 146, 151, 166]
and unsupervised learning [6, 121, 224, 233]. Throughout the thesis, the term “modality”
and “view” are used interchangeably. Thus, the “multimodal data set” is also mentioned as
a “multi-view data set”.

The modalities or views are represented in either relational form or feature vector-based
form. There are M matrices tXi P ℜmi ˆnuM

i“1 to represent M modalities in feature vector-
based representation, where n is the number of samples and mi denotes the dimension of
the i -th modality. Each matrix Xi may have different scale, unit, variance, dimension, and
data distribution. On the other hand, M similarity matrices tWi P ℜnˆnuM

i“1 represent M
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views in the case of relational data.
The easiest process to analyze the information of multi-view data sets using traditional

machine learning algorithms is to join all multiple views into one single view. But, the
naive integration of different views can create a concatenated feature set, which intensifies
the “curse of dimensionality” problem [225]. Any feature extraction methods, like prin-
cipal component analysis (PCA) [111] or linear discriminant analysis (LDA) [78], can be
applied to this concatenated feature set. Both PCA and LDA are dimensionality reduction
methods that jointly project the different attribute vectors into a low dimensional space
of eigenvectors. However, PCA has two limitations, firstly, it assumes that the individ-
ual data streams lie on a linear manifold or subspace, and secondly, the data which has
more variation may dominate other multidimensional datasets. On the other hand, LDA
works efficiently when the assumption of equal population covariance structures for classes
is satisfied.

The combination of the data interpretations approach [225], which is dependent on
the decisions obtained from classifiers, is also used as another way of data fusion. The
similarity matrices created by multiple data clusterings are used to combine various types
of information in the evidence accumulation [80] problem. The information used to combine
different views is lost due to the conversion of an input feature vector to a class label or
decision attribute. Thus, the integration of interpretations approach may not be sufficient
to establish a relation between different modalities [154,270].

2.2 Multi-View Data Integration Approaches

Conventional machine learning algorithms, such as support vector machines, kernel ma-
chines, spectral clustering, and discriminant analysis concatenate all multiple views into
one single view to adapt to the learning setting. However, this naive integration of different
views intensifies the “curse of dimensionality” problem [225]. The small number of training
samples causes the overfitting of the model. As each view has a unique statistical prop-
erty, naive integration of multiple views does not have any physical meaning. Moreover,
multi-view learning judiciously integrates relevant and non-redundant views by discarding
noisy ones. Hence, it has been receiving increased recognition in recent years. The existing
algorithms can be roughly grouped into five categories, namely, subspace learning, multiple
kernel learning, co-training, embedding, and deep multi-view learning.

2.2.1 Subspace Learning

The main objective of subspace learning-based methods is to obtain a latent subspace
shared by multiple modalities, where each input view can be generated from this latent
subspace. The subspace learning effectively addresses the “curse of dimensionality” prob-
lem, as the latent subspace has lower dimensionality than that of any input view. Canonical
correlation analysis (CCA) [112] finds linear relationships between two multidimensional
views. It obtains two-directional weight vectors, also termed as basis vectors, and the em-
pirical correlation between the respective projections onto these weight vectors is maximum.
The CCA has been widely applied in many important scientific fields, such as brain MRI
data analysis [194, 218], integration of omics data [91, 174], imaging genomics [116, 139],
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facial expression recognition, text mining [62, 157, 323] and image retrieval [88, 96]. There
are several variants of CCA that exist in the literature, which are discussed below.

• Regularized CCA: CCA suffers from a computational issue due to a large number
of features and the relatively small number of samples present in real-life data sets.
The maximum correlation is 1 when the dimension of the feature is large. Thus,
the recovering of canonical subspaces is not possible. Moreover, when the dimension
of the features increases, all the features become highly correlated. This leads to
ill-conditioned covariance matrices of different views. Because of this reason, their
inverses are no longer reliable, resulting in an invalid computation of CCA and an
unreliable meta-space. Regularized CCA (RCCA) [93, 156, 278] addresses this colin-
earity issue of each view by considering an adaptation of the ridge regression model
to CCA. Moreover, real-life data sets are often plagued with noise. RCCA is used to
correct these noises.

• Constrained CCA: In constrained CCA, some penalties are added to the basis vec-
tors. According to the problem statement, these penalties are added to either one of
the basis vectors or both of them. Thus, the constrained CCA problem can be formu-
lated in terms of the constrained optimization problem. As analytical solutions do not
exist, some numerical solutions through iterative optimization techniques are used to
solve the constrained optimization CCA problem. Multiple optimization techniques,
such as, the augmented-Lagrangian algorithm, sequential quadratic programming,
Broyden-Fletcher-Goldfarb-Shanno algorithm, and reduced gradient method can be
applied. In [309,327], the solving of constrained CCA problems through optimization
techniques is reported. Constrained CCA has been used to establish the association
between neuropsychological, behavioral, or clinical data with brain imaging data
in [59, 95]. Some relations between brain imaging data and task design have been
established in [52,53,66,82,327,328] using constrained CCA.

• Sparse CCA: The L1-norm penalty added to one of the basis vectors is the most fre-
quently used penalty in constrained CCA. As the L1-norm penalty instigates sparsity
on canonical coefficients, this constrained optimization problem is termed as sparse
CCA. It performs reasonably with high-dimensional co-linear data by removing non-
informative features. The penalty function working on individual views forms the
element-level sparse CCA [257, 294], while the penalty function acting on the data
group structure produces the group-level sparse CCA [46, 159, 160, 316, 322]. Sparse
CCA can be further modified to structure sparse CCA, according to the known prior
information about observations or features, such as characterizing connections be-
tween features [139] or categorizing features into different groups [159]. Although
sparse CCA is widely used in emotion recognition [322], data fusion [195], and data
clustering [42], originally it has been introduced to analyze omics data where the num-
ber of features is very large compared to the number of samples [208, 209, 294, 295].
In [322], the group sparse CCA has been used to select electroencephalogram (EEG)
channels and to recognize EEG-based emotion. To preserve the spatial structure of
images, a multimodal data fusion model has been developed in [195] by using struc-
tured and sparse CCA. A sparsity-aware CCA framework has been introduced to
cluster sensor measurements [42].
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• Discriminant CCA: CCA is generally unsupervised in nature, it does not take
class information during the learning process. To learn the correlation matrix, dis-
criminative CCA uses the label information by utilizing intra-class and inter-class
similarity, thus it enhances the classification performance [15,70,119,252]. According
to whether the local scattering is explored, the discriminative CCA models can be
divided into two groups, namely, the local discriminative CCA [215,241,330] and the
global discriminative CCA [140,255,256]. A discriminant model has been developed
in [15] to address the face-sequence matching problem. In [252], a deep learning
based multi-view linear discriminant analysis algorithm has been introduced, where
both between-view and within-view class structures are preserved. In [70], a deep
discriminative CCA has been proposed to classify speech-based emotion data. To
preserve the inter-class and intra-class discriminative structure, a CCA based local
discriminant embedding model has been developed in [119].

• Kernel CCA: If the two input views are non-linear, the correlation coefficient tends
to be small, as the classical CCA finds the linear combination of input views. The ker-
nel CCA (KCCA) [8] is an extension of the classical linear CCA to a general non-linear
setting via a kernelization procedure. It maps the non-linear views into a higher di-
mensional Hilbert feature space. There are two types of KCCA that exist in the liter-
ature, namely, regularized KCCA [30,102] and non-regularized KCCA [118,323,326].
The KCCA has been widely applied in many important scientific fields, such as speech
recognition [16], domain adaption [188], public surveillance [162, 163], and neurosci-
entific field [28]. In [16], an incremental singular value decomposition approach has
been introduced that makes computations of KCCA feasible to recognize the phonetic
frame with typical speech data size. To address the domain adaption problem with
semi-paired data, a regularized semi-paired KCCA model has been proposed in [188].
The problem of person re-identification in multicamera networks is addressed in [163],
where the exponential KCCA model has been used. An algorithm based on KCCA
that computes a multivariate temporal filter that links the correlation between brain
activity and functional magnetic resonance imaging has been proposed in [28] to ad-
dress the dynamic time-delay problem. The KCCA has been further developed in
the finite sample and consistency analysis [34,75,86,101].

• Multiset CCA: Multiset canonical correlation analysis (MCCA) [110] extends the
CCA for more than two views by finding a linear subspace that maximizes the correla-
tions among all the views. Based on the definition of cross-view correlation for multi-
view learning, the MCCA models can be divided into two groups, namely, pairwise-
correlation or zero-order-correlation based models [17, 37, 83, 110, 135, 229, 276] and
high-order-correlation based models [169].

1. Pairwise-Correlation or Zero-Order-Correlation Based Models: While
correlation-based MCCA methods [109, 110, 135] consider only between-block
information, covariance-based methods [61, 99, 100, 262, 263] take into account
both the between-block and within-block information. There are several ways to
measure the correlation in multi-view learning, such as maximization of the sum
of all elements (SUMCOR) or the sum of squares of all elements (SSQCOR) in
the correlation matrix, maximization of the largest eigenvalue (MAXVAR) or
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minimization of the smallest eigenvalue (MINVAR) of the correlation matrix,
minimization of the determinant (GENVAR) of the correlation matrix [110,135].
Another criterion, namely, sum of absolute value correlations (SABSCOR), has
also been considered in [99]. The sum of covariance (SUMCOV) criterion has
been proposed in [61]. In [100], sum of squared covariance (SSQCOV) crite-
rion has also been introduced. Some modifications of SUMCOR, SSQCOR, and
SABSCOR have been proposed in [262], which take into account some hypothe-
ses on the connections between sets of variables. The sum of absolute value
covariances (SABSCOV) has also been considered in this article. The SUM-
COR, MAXVAR, SSQCOR, MINVAR, GENVAR, and SABSCOR are based on
maximizing a function of the correlation between canonical variates [263], while
the analysis of SUMCOV, SSQCOV, and SABSCOV is based on covariance
between canonical variates [263].

2. High-Order-Correlation Based Models: A tensor is the extension of matrix
factorization in multi-view data analysis. It is used to capture higher-order
correlations among multiple views [47,297,298]. Tensor based generalization of
CCA (TCCA) for more than two views has been introduced in [169]. Instead of
calculating the pairwise correlation matrix, TCCA estimates the correlation of
all views by constructing a covariance tensor.

MCCA has been extended into deep learning framework [24], probabilistic model
[57,144,280], and kernel approach [18,228].

• Probabilistic CCA: The classical CCA model provides a linear algebraic solu-
tion, while the probabilistic CCA approach has a probabilistic interpretation of
that solution [19, 33]. In [19], a theoretical analysis has been given, which proves
that posterior expectations of the maximum likelihood estimation for a latent vari-
able are identical to the subspaces derived from CCA. Based on the observation
reported in [19], several extensions are done using prior distributions of Bayesian
analysis [141–143, 279, 281, 283]. There are two main contributions associated with
Bayesian analysis, these models are robust toward small sample size and modifica-
tion is easy when the assumption of distribution is changed. The algorithms proposed
in [141, 283] introduced the automatic relevance determination model using inverse
Wishart distribution. The probabilistic CCA is widely used in biomedicine data anal-
ysis, such as prioritization of cancer genes [143], a study of drug responses [281], and
analysis of rare diseases [121]. A dynamic probabilistic CCA model has been proposed
in [204] to identify the temporal dependencies on latent subspaces both for individual
and shared information of views. In [325], a bilinear extension of probabilistic CCA
has been reported for photo-sketch and face matching.

• Locality Preserving CCA: The locality preserving CCA (LPCCA) has been pro-
posed in [254], where similarity matrices are incorporated in CCA to identify the
local manifold structure. The basic idea of LPCCA is that the data points are closed
in the low-dimensional projected subspace if they are close enough in the input high-
dimensional space [130, 254, 268, 284, 305]. According to the analysis, LPCCA can
be divided into two groups. One of them obtains a local neighbor graph by provid-
ing cross-correlation information between neighbors [268,284], while the other group
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discards the trivial correlation between non-neighbors and provides a local manifold
structure [130, 254, 305]. In [305], a supervised LPCCA model has been developed
to improve the classification performance. The neighborhood information is incorpo-
rated to improve the robustness of the model in [284].

• Deep CCA: Both LPCCA and KCCA are non-linear extensions of CCA, but their
representation is bounded to either local information or a predefined kernel. Deep
CCA (DCCA) obtain more complex non-linear transformations of different views by
passing them through a deep network, such as, convolutional neural networks (CNN)
[306,307], auto-encoder [38,287], and deep neural networks [14,168,288,289,304]. In
recent years, DCCA has achieved immense success in representation learning [25],
cross-domain retrieval [238], word embedding [168], and image annotation [196].
In [25], generalized CCA is combined with DCCA to make a deep generalized CCA
model. It has been applied for three tasks, namely, articulatory measurements, pho-
netic transcription, and information recommendation for Twitter users. A hypergraph
regularizer-based DCCA model has been developed in [238], where the image-to-text
or text-to-image retrieval problem is addressed. A multilingual non-linear correlation
problem has been addressed in [168] using the DCCA model to improve the standard
of word embeddings. In [196], a DCCA-based model has been developed to study
the image-tag annotation problem, where the tag is generated using Word2Vec net-
work [191] and deep CNN is used to extract features from the image. A deep MCCA
algorithm has been proposed in [244], where feed-forward networks have been used
to map the input views to a shared subspace. In [55], a DMCCA model has been
introduced that focuses on task-driven objectives using CCA.

The CCA has also been used in multi-view regression [127] and clustering [39] fields.
A generalization of Fisher’s discriminant analysis has been proposed in [64] to explore
the latent subspace spanned by a multimodal data set. This generalization is supervised
although CCA does not incorporate the class information. Multi-view metric learning [219,
313] has been developed to construct projections from multi-view data. The latent subspace
is used to infer another view from the observation view. To establish the connections
between the two views through latent subspaces, the Markov network [45], maximization
of mutual information [189], and Gaussian process [242] have been used. In [124, 230], a
latent subspace is used to factorize private and shared information from different views.
The main objective of factor analysis is to obtain latent factors, which summarize the input
data. Inter-battery factor analysis (IBFA) [273], a model closely related to CCA, extends
this notion in multi-view learning. In recent years, several multi-view learning algorithms
have been developed based on IBFA [58,60,123,234].

Partial least squares (PLS) [296] is another popular statistical technique that has been
used to find fundamental relations between two views. There exist three types of PLS
methods in literature, namely, partial least squares correlation (PLSC) [329], partial least
squares regression (PLSR) [51, 226], and partial least squares path modeling (PLS-PM)
[264]. PLSC is a correlational model that analyzes associations between two views, while
PLSR is a regression model that predicts one view from another. On the other hand, PLS-
PM is a variance-based structural equation modelling that can be used to model complex
relationships among different views.
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2.2.2 Multiple Kernel Learning

The main objective of multiple kernel learning (MKL) is to control the search space ca-
pacity of possible kernel matrices to achieve good generalization. The kernels in MKL
correspond to different views, and the integration of different kernels may improve the
learning performance. Thus, MKL is widely used to analyze multi-view data sets. Over
the past few years, MKL has become one of the important techniques to analyze multi-
view data sets. It achieves attention due to the utilization of various optimization tech-
niques [7,11,152,245] as well as the recognization ability by exploring possible combinations
of base kernels [145,275,301,324]. MKL techniques are further extended to several models,
such as, localized MKL [98], sample-adaptive MKL [167], Bayesian MKL [67], multiple
empirical kernel learning [73,292], two-stage MKL [54,200,285,286], and function approx-
imation MKL [147, 240]. In [152], MKL has been formulated as a semi-definite program-
ming problem. MKL is used to develop a dual formulation of the quadratically-constrained
quadratic program as a second-order cone program problem in [20], where a sequential min-
imal optimization algorithm has been developed to efficiently obtain the optimal solution.
Some efficient semi-infinite linear programs have been proposed in [245, 246], where MKL
addresses large-scale problems.

2.2.3 Co-training

Co-training [31] is one of the earliest models to integrate multimodal data. It learns al-
ternately by maximizing the mutual correspondence between two unlabeled views. There
are many modifications which have been done in the recent past. In [206], generalized
expectation-maximization has been done, where adjustable probabilistic labels are assigned
to unlabeled data. Some robust semi-supervised learning algorithms have been proposed
in [197–199], where active learning is combined with co-training. In [311, 312], Bayesian
undirected graphical models are developed for co-training and a novel co-training kernel
for Gaussian process classifiers. A graph-based and disagreement-based semi-supervised
learning has been proposed in [290], where the co-training process is viewed as a combi-
native label propagation over two views. In [243], a co-regularization framework has been
introduced where classifiers are learned in each view through forms of multi-view regu-
larization. Some co-training based multi-view clustering algorithms have been proposed
in [26, 148, 149]. There are mainly three reasons behind the success of co-training algo-
rithms, namely, each view is self-sufficient to classify the patterns properly, there is a high
probability that both the views predict the same labels, and each view is conditionally in-
dependent given the label. But, in real-world applications, it is very difficult to satisfy the
conditional independence of views. Hence, several weaker alternatives have been proposed
in [4, 21,291].

2.2.4 Embedding

To overcome the representational differences, an alternative transformed representation
has to be created for each view. An algorithm has been proposed in [154], where each
view is projected into a homogeneous meta-space. The dimension of the projected space
is the same for each view with the same scale. In [282], consensus embedding has been
introduced, where according to the minimum predictive value, embeddings selected from
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different views have to be combined. The boosted embedding concatenation has been
reported in [270], where supervised information is used in the fusion process. In [81], an
algorithm of boosted embedding concatenation has been proposed based on the Adaboost
classifier, which evaluates and provides weight on each embedding to integrate different
views. However, these methods may provide redundant and noisy latent features, which
deteriorate the final outcome [91]. High-dimensional kernels are also used to combine
embeddings of different views [150].

2.2.5 Deep Multi-View Learning

Due to the powerful feature extraction capability, deep learning methods have gained at-
tention in recent years. By using multiple hierarchical layers, deep learning models can
learn non-linear, subtle, complex, and abstract representations of the target data from
multiple views. Several deep multi-view learning algorithms exist in the literature, such as
multi-view convolutional neural network [77,132,153,186,249,308], multi-view auto-encoder
[76, 108, 203, 317], multi-view generative adversarial network [65, 117, 267, 271], multi-view
graph neural network [74,103,138,302], multi-view deep belief net [9,12,247,259,315], and
multi-view recurrent neural network [3, 231]. Apart from CCA other conventional learn-
ing methods are also extended into the deep framework, such as, deep multi-view matrix
factorization [318], deep multi-view spectral learning network [120], and deep multi-view
information bottleneck [10].

• Multi-View Convolutional Neural Network: In [308], a hybrid framework of
multi-view convolutional neural network and extreme learning machine auto-encoder
has been proposed to learn features for classification and retrieval of three-dimensional
objects. Another three-dimensional multi-view convolutional neural network has
been introduced in [132], which is based on the multi-view-one-network strategy.
Both directed acyclic graph architecture and chain architecture are used includ-
ing three-dimensional Inception-ResNet and three-dimensional Inception. A neuro-
physiologically inspired multi-view convolutional neural network has been proposed
in [186] to classify motor imagery from electroencephalography signals. A group-view
convolutional neural network has been reported in [77], where hierarchical view-
group-shape architecture is used to identify three-dimensional objects.

• Multi-View Auto-Encoder: A model involving correspondence auto-encoder has
been proposed in [76] for cross-modal retrieval problems. The human pose recovery
problem based on video has been addressed in [108], where a multi-layered deep neural
network has been used to construct low-rank hypergraph Laplacian. A discriminative
margin-sensitive auto-encoder has been introduced in [317] to diagnose Alzheimer’s
disease and for recognition of protein folds accurately. In [203], a novel bimodal
auto-encoder has been proposed to reconstruct both video and audio views.

• Multi-View Generative Adversarial Network: In [271], a disentangled repre-
sentation learning-generative adversarial network has been proposed to synthesize
images. The encoder-decoder structure of the generator makes the architecture effec-
tive. Generally, a generative adversarial network does not bother to learn the inverse
mapping, but a bidirectional generative adversarial network has been reported in [65],
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where inverse mapping has been done. A two-pathway generative adversarial network
has been proposed in [267] to preserve the completeness of the learned embedding
space. In [117], another two-pathway generative adversarial network has been intro-
duced where two distinct encoder-decoder structures have been used to capture both
local and global information.

• Multi-View Graph Neural Network: A multi-view learning algorithm using
a graph neural network followed by a multi-layer perceptron has been introduced
in [103]. In [74], a novel task-guided multi-view graph auto-encoder clustering frame-
work has been reported, which can learn node embeddings by applying the content
information. To analyze the global poverty problem, a graph structure based on the
convolutional network has been proposed [138]. This model can be applied to predict
whether a person is living below the poverty line, to predict the adoption of eco-
nomic inclusion, or to predict the gender of mobile phone subscribers. A redesigned
graph neural network, collaborated with a convolutional neural network, has been
introduced in [302], to obtain a feature representation of multi-view images.

• Multi-View Deep Belief Net: The deep belief net (DBN) [106] adopts the re-
stricted Boltzmann machine (RBM) as its fundamental component. A hybrid model
based on RBM has been reported in [12], and cross-modality as well as inter-modality
features are extracted to detect the sequential event. A multi-view face recognition
approach has been proposed in [9] based on DBN to capture the complementary
representation of deep and local features. In [247], a multimodal deep Boltzmann
machine has been introduced to learn a joint density model over the space of multi-
view data set. Another multimodal deep Boltzmann machine algorithm has been
proposed in [259], where several patient phenotypes and gene expression data are
processed simultaneously to identify the importance of different genes. In [315], a
multi-view DBN has been introduced, where RBM is used to model each view.

• Multi-View Recurrent Neural Network: The recurrent neural network (RNN)
[258] is used to deal with the time series data. In [3], a multi-view RNN model has
been presented to address the indoor scene recognition problem. An algorithm based
on multi-view RNN has been proposed in [231], which detects the wake and sleep
state of a person by analyzing the data generated from his/her smartphones and
wearable technologies.

2.3 Conclusion

One of the important challenges associated with multi-view data integration is to extract
the most relevant and significant set of features from multiple views. In this context, the
next chapter presents a novel algorithm that judiciously integrates the merit of supervised
regularized CCA and the theory of rough sets, to extract a set of new features from two
views by maximizing their relevance with respect to the class labels and significance among
them.
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Chapter 3

Supervised Canonical Correlation
Analysis Using Max Relevance-Max
Significance Criterion

3.1 Introduction

In present days, there is a scope of getting complementary multiple data corresponding
to a given problem or task, and the main challenge is to extract features, which are most
relevant, significant, and nonredundant for the given problem. The effective utilization
and integration of multiple data sources or multimodal information are becoming an in-
creasingly important problem in many applications. Due to the noisy nature and drastic
variation of the acquired signals, unimodal based pattern recognition and analysis systems
usually provide low level of performance, which leads to inaccurate and insufficient pattern
representation of the perception of interest. On the other hand, multimodal data contains
more information. The integration of multimodal data is expected to provide potentially a
more discriminatory and complete description of the intrinsic characteristics of the pattern,
which leads to improved system performance compared to a single modality [151].

The simultaneous analysis of multimodal data is an important task in integrative sys-
tems biology approach, which gives a better understanding of the relationships among
different biological functional levels [321]. For example, integration of heterogeneous omics
data, namely, transcriptomics, metabolomics, and proteomics, may provide a better under-
standing of biological systems. The Cancer Genome Atlas (TCGA) (https://cancergeno
me.nih.gov/) helps to provide multiple types of data from the same individual. In TCGA,
gene and microRNA expression arrays, copy number variation, DNA methylation data, and
protein expression array are obtained from most of the tumor samples. By using multiple
types of data of unique samples, it is possible to make the linkages between attributes
within each type of data. It maximizes the information content and makes a model, which
uses all the available data. It is intrinsically more powerful than the models that use only
single data type. Given this background, there has been an increasing interest in data inte-
gration methods in biomedical sciences, both for supervised learning [92,129,146,151,166]
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and unsupervised learning [6, 121,224,233].
Canonical correlation analysis (CCA) [112] provides an efficient way of measuring the

linear relationship between two multidimensional data sets. For two multidimensional vari-
ables, it finds the best linear transformation to achieve the maximum correlation between
them. The CCA has been widely applied in many important scientific fields, such as brain
MRI data analysis [194,218], integration of omics data [91,174], imaging genomics [116,139],
facial expression recognition, text mining [62, 157, 323] and image retrieval [88, 96]. In re-
cent years, some variants of CCA, such as generalized CCA [216], kernel CCA [323], sparse
CCA [49], and locality preserving CCA [254] have also been developed. The CCA is also
popular for integration of different omics data [35]. To map genes or proteins onto the
Euclidean space, kernel CCA has been used in [303]. On the other hand, sparse CCA
has been used in [36, 160] to study the mutual relation among different types of omics
data. Besides the integration of two data sets, CCA can help to analyze gene expression
dynamics geometrically [223]. Phylogenetic CCA [222], another variant of CCA, gives con-
tinuous valued character data obtained from biological species related by a phylogenetic
tree. Hence, CCA can be used to capture the underlying genetic background of a complex
disease, by associating two data sets containing information about a patient’s phenotypical
and genetic details. It gives those relevant variables or features from both data types,
which are related to each other and provide more insight into the biological experimental
hypotheses.

However, CCA suffers from a computational issue due to ‘large p (number of features)
and small n (number of samples)’. Let X1 and X2 be two multivariate data sets having m1

and m2 number of features, respectively, and n is the number of samples in both X1 and
X2. The features in X1 and X2 tend to be highly collinear if n ăă m1 and n ăă m2. This
leads to ill-conditioned covariance matrices of X1 and X2, that is, C11 and C22. Because
of this, their inverses are no longer reliable, resulting in an invalid computation of CCA
and an unreliable meta-space. The covariance matrices C11 and C22 will be invertible if
n ě m1 `m2 ` 1 [68]. However, this condition is usually not possible in the bioinformatics
domain, where number of samples ‘n’ is usually limited. On the other hand, modern
technology has enabled very high dimensional data streams to be routinely acquired, which
results in very high dimensional feature spaces m1 and m2. To overcome this problem, a
regularized version of CCA has been introduced in [94]. Regularized CCA (RCCA) [93,278]
is an improved version of CCA. It uses a ridge regression optimization scheme to prevent
over-fitting of insufficient training data [27]. It works by adding small positive quantities
to the diagonals of C11 and C22 to guarantee their invertibility [107]. The RCCA has
been successfully used to study gene expressions in liver cells and compare them with
concentrations of hepatic fatty acids in mice [93]. Regularized sparse CCA is used in
expression quantitative trait loci to detect genetic loci mapped to a disease [133]. However,
RCCA is computationally very expensive because of this regularization process. Also, both
CCA and RCCA are unsupervised in nature and fail to take complete advantage of available
class label information.

To perform the regularization process, supervised RCCA (SRCCA) uses a supervised
feature selection algorithm [91]. The available class label information is included in SRCCA
to select maximally correlated features. In SRCCA, regularization is done by considering
the most discriminatory score of the first pair of canonical variables, based on a feature
selection method, and then the remaining dimensions are adjusted [91]. One of the im-
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portant applications of SRCCA in functional genomics is to classify samples, such as to
classify cancer versus normal samples or to classify different types or subtypes of cancer,
according to the maximally correlated features or biomarkers. The SRCCA also helps in
developing diagnostic tools for delivering precise, reliable, and interpretable results. With
the supervised feature selection results, the cost of biological experiment and decision can
be greatly reduced by analyzing only maximally correlated relevant biomarkers. However,
existing SRCCA considers only correlation of the first pair of canonical variables. But, it
may happen that other canonical variable pairs have insignificant relation with the first
pair of canonical variables, or there may be some irrelevant features in the whole extracted
feature set, which should not be considered in further processing [173].

In integrative omics data analysis, another important problem is uncertainty. This
uncertainty may arise from vagueness in response variables of samples and imprecision
in computations. The t-test, Wilcoxon rank sum test or Wilks’s lambda test, used to
capture supervised class information in existing SRCCA [91], are unable to handle this
uncertainty. To model and propagate this uncertainty, the theory of rough sets has become
successful, which can deal with incompleteness and vagueness [214]. It is proposed for
indiscernibility in classification according to some relation and acts as an effective means
for dimensionality reduction of discrete valued data [176]. Rough set theory has also been
used for analyzing omics data [171,175–179,211,212]. Usually, there are continuous valued
data in real world applications. In rough set theory, the continuous valued features are
divided into several discrete partitions for feature selection. However, the inherent error
that exists in the discretization process is of major concern in the feature selection. The
hypercuboid equivalence partition matrix [172] of rough hypercuboid approach is found
to be suitable for feature selection of numerical data. It has been applied successfully for
analyzing omics data [173,174,210].

In this regard, this chapter presents a new feature extraction algorithm, termed as CuR-
SaR (CCA using maximum Relevance-maximum Significance criterion and Rough sets),
from two multidimensional data sets. It judiciously integrates the merits of SRCCA and
the theory of rough sets. The proposed algorithm extracts a set of new features by maxi-
mizing their relevance with respect to the class labels and significance among them [177].
Both the relevance and significance measures are computed based on the concept of hyper-
cuboid equivalence partition matrix of rough hypercuboid approach [172]. In the proposed
algorithm, the regularization parameters do not only depend on the first pair of canonical
variables, rather the whole extracted feature set is considered to optimize the regularization
parameters. An analytical formulation is presented to establish the relation between the
covariance matrices of different regularization parameters, which makes the computational
cost of the proposed algorithm significantly lower than that of the existing algorithms. The
effectiveness of the proposed algorithm, along with a comparison with other algorithms, is
demonstrated on several real-life cancer data sets. Some of the results of this chapter are
reported in [174,182].

The rest of this chapter is organized as follows: Section 3.2 outlines the basic principles
of CCA, RCCA, and SRCCA. Section 3.3 presents the proposed algorithm. A theoretical
analysis is presented in this section to establish the relation between the covariance ma-
trices of different regularization parameters, which drastically reduces the computational
complexity of existing RCCA. The effectiveness of the proposed data integration algorithm,
along with a comparative performance analysis with state-of-the-art algorithms on different
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data sets, is presented in Section 3.4. Concluding remarks are provided in Section 3.5.

3.2 Basics of Canonical Correlation Analysis and its Variants

This section presents the fundamental concepts in the theories of CCA, RCCA, and SR-
CCA.

3.2.1 CCA: Canonical Correlation Analysis

Canonical correlation analysis (CCA) [112] obtains a linear relationship between two mul-
tidimensional variables. The objective of CCA is to extract latent features from two data
sets X1 P ℜm1ˆn and X2 P ℜm2ˆn, which are most correlated, where each column in X1

and X2 corresponds to one of the n samples, and each row represents one variable. Let us
assume that each variable is centered to have zero mean across the samples. CCA obtains
two directional weight vectors, also termed as basis vectors, w1 P ℜm1 and w2 P ℜm2 such
that the empirical correlation between the respective projections onto these weight vectors,
that is, between X T

1 w1 and X T
2 w2 is maximum. The correlation coefficient ρ̃ is given as

follows:

ρ̃ “ max
w1,w2

E
“

wT
1 X1X T

2 w2

‰

b

E
“

wT
1 X1X T

1 w1

‰

b

E
“

wT
2 X2X T

2 w2

‰

“ max
w1,w2

wT
1 C12w2

b

wT
1 C11w1wT

2 C22w2

(3.1)

where Erf s denotes empirical expectation of function f , C12 P ℜm1ˆm2 is the cross-
covariance matrix of X1 and X2, which is given as follows:

rC12sm1ˆm2 “ rX1sm1ˆnrX T
2 snˆm2 ; (3.2)

while C11 P ℜm1ˆm1 and C22 P ℜm2ˆm2 are the covariance matrices of X1 and X2, respec-
tively, and are as follows:

rC11sm1ˆm1 “ rX1sm1ˆnrX T
1 snˆm1 ; (3.3)

rC22sm2ˆm2 “ rX2sm2ˆnrX T
2 snˆm2 . (3.4)

Since ρ̃ is invariant to the scaling of w1 and w2, CCA can be formulated equivalently as

max
w1,w2

wT
1 C12w2;

subject to wT
1 C11w1 “ 1; and wT

2 C22w2 “ 1. (3.5)

To calculate w1 and w2, the eigenvectors of ΣΣT and ΣTΣ are needed, where the matrix
Σ P ℜm1ˆm2 is given as follows:

Σ “ C ´1{2
11 C12C ´1{2

22 . (3.6)
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Without loss of generality, it is assumed that m1 ď m2. Suppose ρ1 ě ¨ ¨ ¨ ě ρt ě

¨ ¨ ¨ ě ρm1 be the eigenvalues of ΣΣT and ξ11 , ¨ ¨ ¨ , ξ1t , ¨ ¨ ¨ , ξ1m1
are the orthonormalized

eigenvectors corresponding to ρ1, ¨ ¨ ¨ , ρt , ¨ ¨ ¨ , ρm1 . As non-zero eigenvalues of ΣΣT are
same as non-zero eigenvalues of ΣTΣ [89], either ΣΣT or ΣTΣ is enough to calculate
the eigenvectors. Furthermore, let say, ρ1 ě ¨ ¨ ¨ ě ρt ě ¨ ¨ ¨ ě ρm1 are the m1 largest
eigenvalues of ΣTΣ with orthonormalized eigenvectors ξ21 , ¨ ¨ ¨ , ξ2t , ¨ ¨ ¨ , ξ2m1

. Then, the
t -th pair of basis vectors are given by

w1t “ C ´1{2
11 ξ1t ; and w2t “ C ´1{2

22 ξ2t . (3.7)

As ξ1t and ξ2t are the t -th eigenvectors of ΣΣT and ΣTΣ, respectively, with eigenvalue ρt ,
the characteristic polynomials of ΣΣT and ΣTΣ can be written as

ΣΣT ξ1t “ ρtξ1t

ñ pC ´1{2
11 C12C ´1{2

22 qpC ´1{2
11 C12C ´1{2

22 qT ξ1t “ ρtξ1t

ñ C ´1{2
11 C12C ´1{2

22 C ´1{2
22 CT

12C ´1{2
11 ξ1t “ ρtξ1t

ñ C ´1{2
11 C12C ´1

22 C21C ´1{2
11 ξ1t “ ρtξ1t

ñ C ´1{2
11 C ´1{2

11 C12C ´1
22 C21C ´1{2

11 ξ1t “ ρt C ´1{2
11 ξ1t

ñ C ´1
11 C12C ´1

22 C21w1t “ ρt w1t ; (3.8)

and ΣTΣξ2t “ ρtξ2t

ñ C ´1
22 C21C ´1

11 C12w2t “ ρt w2t . (3.9)

From (3.2.1) and (3.2.1), it can be seen that the basis vectors w1t and w2t are the eigen-
vectors of matrix H and H̃ , respectively, with eigenvalue ρt , where

H “ C ´1
11 C12C ´1

22 C21; and H̃ “ C ´1
22 C21C ´1

11 C12. (3.10)

The t -th pair of canonical variables tU1t ,U2t u is as follows:

U1t “ wT
1t

X1; and U2t “ wT
2t

X2. (3.11)

Here, tU11 ,U21u is the first pair of canonical variables, which provides the maximum
correlation ρ̃ “

?
ρ
1
. The t -th pair of canonical variables tU1t ,U2t u is the linear combina-

tions of t -th basis vectors and data set. It maximizes the correlation among all possible
linear combinations and is uncorrelated with the previous (t ´ 1) canonical variable pairs.
From (3.11), the t -th feature Ft is extracted as follows:

Ft “ U1t ` U2t ; (3.12)

where @t P t1, 2, ¨ ¨ ¨ ,Du and D ď minpm1,m2q.

27



3.2.2 RCCA: Regularized CCA

Real-life data sets are often plagued with noise. Regularized CCA (RCCA) [93,156,278] is
used to correct these noises in X1 and X2. Let us assume that X1 and X2 are contaminated
with Gaussian, independent and identically distributed noise N1 P ℜm1ˆn and N2 P ℜm2ˆn.
As these noises are Gaussian, independent and identically distributed, all possible combi-
nations of the covariances of the m1 and m2 rows of N1 and N2, respectively, will be 0
except the covariance of a particular row vector with itself. Let the variances of each row
of N1 and N2 be r1 and r2, respectively, which are known as regularization parameters.
The cross-covariance matrix C12 of X1 and X2 will not be affected. But, the matrices C11

and C22 become rC11 ` r1I s and rC22 ` r2I s, respectively, where I is the identity matrix of
appropriate order. So, (3.10) becomes

H “ rC11 ` r1I s´1C12rC22 ` r2I s´1C21; (3.13)

and H̃ “ rC22 ` r2I s´1C21rC11 ` r1I s´1C12. (3.14)

In RCCA, the regularization parameters are varied in a certain range rmin ď r1, r2 ď rmax
and chosen by a grid search optimization technique [97]. Every pair of r1 and r2 will produce
a pair of first canonical variables, which are maximally correlated. The optimal parameters
r1 and r2 are considered for which the Pearson’s correlation is maximum, that is,

max
r1,r2

wT
1 C12w2

b

wT
1 pC11 ` r1I qw1wT

2 pC22 ` r2I qw2

. (3.15)

3.2.3 SRCCA: Supervised RCCA

Both CCA and RCCA are unsupervised in nature. They do not incorporate the infor-
mation of class label or sample category even if it is present in the given data sets. To
overcome this limitation of both CCA and RCCA, Golugula et al. [91] introduced the con-
cept of supervised RCCA (SRCCA), which is a supervised version of RCCA. Similar to
RCCA, SRCCA chooses the optimal regularization parameters r1 and r2 using grid search
optimization by a feature selection method based on either t-test, Wilks’s lambda test, or
Wilcoxon rank sum test. The optimal regularization parameters are obtained by maximiz-
ing the discriminatory score of the feature corresponding to first pair of canonical variables,
and then the remaining dimensions are extracted for the optimal parameters.

3.3 Proposed Method

This section presents a new feature extraction algorithm, termed as CuRSaR, integrating
judiciously the information of two multidimensional data sets. Prior to describing the
proposed algorithm for multimodal data analysis, some important analytical formulations
are introduced next, which reduce the computational complexity of existing RCCA.
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3.3.1 Covariance Matrices for Different Regularization Parameters

The spectral decomposition [269] can be used to calculate rC11`r1I s´1 and rC22`r2I s´1 for
the computation of the H matrix of (3.13). The spectral decomposition can be described in
terms of eigenvalue-eigenvector pairs of rC11 ` r1I s and rC22 ` r2I s. An m1 ˆm1 symmetric
matrix rC11 ` r1I s can be expressed in terms of its m1 eigenvalue-eigenvector pairs (Λ1,Ψ1)
as follows [269]:

rC11 ` r1I s “ Ψ1Λ1Ψ
T
1 “

m1
ÿ

i“1

λ1iψ1iψ
T
1i
; (3.16)

where the i -th element λ1i of diagonal matrix Λ1 denotes the i -th eigenvalue of the matrix
rC11 ` r1I s. The i -th column of matrix Ψ1 represents the orthonormalized eigenvector ψ1i

corresponding to eigenvalue λ1i , @i P t1, 2, ¨ ¨ ¨ ,m1u, and

Ψ1Ψ
T
1 “ ΨT

1 Ψ1 “ I . (3.17)

The computation of the inverse of matrix rC11 ` r1I s is performed as follows [122]:

rC11 ` r1I s´1 “ Ψ1Λ
´1
1 ΨT

1 “

m1
ÿ

i“1

1

λ1i

ψ1iψ
T
1i
. (3.18)

In RCCA and SRCCA, the regularization parameters r1 and r2 are varied within a
specified range rrmin , rmax s, where rmin ď r1, r2 ď rmax . It can be assumed that these regular-
ization parameters follow an arithmetic progression. Each parameter starts with an initial
value rmin . After every iteration, a constant value or a common difference is added with the
previous value, and finally, it reaches rmax . Let us assume that d1 and d2 are the common
differences for r1 and r2, respectively. So, the arithmetic progression series can be thought
as follows:

r1, r1 ` d1, ¨ ¨ ¨ , r1 ` id1, ¨ ¨ ¨ , r1 ` pt1 ´ 1qd1

r2, r2 ` d2, ¨ ¨ ¨ , r2 ` jd2, ¨ ¨ ¨ , r2 ` pt2 ´ 1qd2 (3.19)

where initially r1 “ rmin and r2 “ rmin and at final step r1 ` pt1 ´ 1qd1 “ rmax and r2 ` pt2 ´

1qd2 “ rmax . The parameters t1 and t2 denote the number of possible values of regularization
parameters r1 and r2, respectively. It is clearly seen that the diagonal elements of the
covariance matrices are only changed by adding regularization parameters. Let us assume
that rC11 ` r1I s has dominant eigenvalue λ11 and the corresponding eigenvector ψ11 . So,

rC11 ` r1I sψ11 “ λ11ψ11 . (3.20)

Let us also assume that a scalar d1 is added on the diagonal elements of the matrix rC11 `

r1I s. Multiplying this new matrix by the vector ψ11 , we get

rC11 ` pr1 ` d1qI sψ11 “ rC11 ` r1I sψ11 ` d1Iψ11
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“ λ11ψ11 ` d1ψ11 “ pλ11 ` d1qψ11 . (3.21)

Hence, if a regularization parameter is added on the diagonal elements of the covariance
matrix, the eigenvalues are changed, but the eigenvectors remain same.

Let Λ11 , ¨ ¨ ¨ ,Λ1pi`1q
, ¨ ¨ ¨ ,Λ1t1

be the diagonal matrices, where diagonal elements are the
eigenvalues of rC11 ` r1I s, ¨ ¨ ¨ , rC11 ` pr1 ` id1qI s, ¨ ¨ ¨ , rC11 ` pr1 ` pt1 ´ 1qd1qI s. Similarly,
Λ21 , ¨ ¨ ¨ ,Λ2pj`1q

, ¨ ¨ ¨ ,Λ2t2
are the diagonal matrices with eigenvalues of rC22`r2I s, ¨ ¨ ¨ , rC22`

pr2 ` jd2qI s, ¨ ¨ ¨ , rC22 ` pr2 ` pt2 ´ 1qd2qI s on the diagonal elements. The corresponding
orthonormal eigenvectors are in the columns of Ψ1 and Ψ2. So, eigenvalue-eigenvector
equations can be written as follows:

rC11 ` pr1 ` pi ´ 1qd1qI sΨ1 “ Ψ1Λ1i ; (3.22)

and rC22 ` pr2 ` pj ´ 1qd2qI sΨ2 “ Ψ2Λ2j ; (3.23)

where @i P t1, 2, ¨ ¨ ¨ , t1u and @j P t1, 2, ¨ ¨ ¨ , t2u. From (3.22), we get

rC11 ` r1I sΨ1 ` pi ´ 1qd1IΨ1 “ Ψ1Λ1i

ñ Ψ1Λ11 ` pi ´ 1qd1Ψ1 “ Ψ1Λ1i

ñ Ψ1pΛ1i ´ Λ11 ´ pi ´ 1qd1I q “ 0

ñ Λ1i “ Λ1 ` pi ´ 1qd1I ; (3.24)

where Λ1 “ Λ11 . Similarly, from (3.23), we get

Λ2j “ Λ2 ` pj ´ 1qd2I ; (3.25)

where Λ2 “ Λ21 . Combining (3.22), (3.3.1) and (3.23), (3.25), we get

rC11 ` pr1 ` id1qI sΨ1 “ Ψ1pΛ1 ` id1I q; (3.26)

and rC22 ` pr2 ` jd2qI sΨ2 “ Ψ2pΛ2 ` jd2I q. (3.27)

From (3.26) and (3.27), it is clearly seen that there is no need to calculate eigenvalue of
the covariance matrices corresponding to every pair of regularization parameters r1 and r2.
It is sufficient to calculate eigenvalues Λ1 and Λ2 of the covariance matrices corresponding
to the initial values of r1 and r2, respectively. The eigenvalues of the covariance matrices
corresponding to other values of r1 and r2 can be computed from the initial values using
(3.3.1) and (3.25). On the other hand, relations (3.3.1), (3.26), and (3.27) establish the
fact that eigenvectors of the covariance matrices remain unchanged irrespective of the
values of regularization parameters. So, the eigenvalues and eigenvectors of the covariance
matrices can be used to compute eigenvalues and eigenvectors of the covariance matrices
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corresponding to other values r1 and r2, using (3.3.1), (3.25), (3.26), and (3.27).
Based on the above analysis, it can be shown that if the regularization parameters r1

and r2 follow an arithmetic progression, the matrix H of (3.13) and the matrix H̃ of (3.14)
become

Hij “ rC11 ` pr1 ` pi ´ 1qd1qI s
´1 C12rC22 ` pr2 ` pj ´ 1qd2qI s´1C21; (3.28)

and H̃ij “
“

C22 ` pr2 ` pj ´ 1qd2qI
‰´1 C21rC11 ` pr1 ` pi ´ 1qd1qI s´1C12. (3.29)

Combining (3.18), (3.26), (3.27), and (3.28), we get

Hij “ Ψ1rΛ1 ` pi ´ 1qd1I s´1ΨT
1 C12Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT

2 C21. (3.30)

Similarly, combining (3.18), (3.26), (3.27), and (3.29), we get

H̃ij “ Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21Ψ1rΛ1 ` pi ´ 1qd1I s´1ΨT

1 C12. (3.31)

Suppose ρ1 ě ¨ ¨ ¨ ě ρt ě ¨ ¨ ¨ ě ρD are the eigenvalues of Hij and w11 , ¨ ¨ ¨ ,w1t , ¨ ¨ ¨ ,w1D

are the orthonormalized eigenvectors corresponding to ρ1, ¨ ¨ ¨ , ρt , ¨ ¨ ¨ , ρD . Furthermore, let
say, D ď minpm1,m2q and ρ1 ě ¨ ¨ ¨ ě ρt ě ¨ ¨ ¨ ě ρD are the D largest eigenvalues of H̃ij
with orthonormalized eigenvectors w21 , ¨ ¨ ¨ ,w2t , ¨ ¨ ¨ ,w2D . So,

Hij w1t “ ρt w1t

ñ Ψ1rΛ1 ` pi ´ 1qd1I s´1ΨT
1 C12Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT

2 C21w1t “ ρt w1t

ñ Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21Ψ1rΛ1 ` pi ´ 1qd1I s´1ΨT

1 C12Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21w1t

“ ρtΨ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21w1t

ñ H̃ijΨ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21w1t “ ρtΨ2rΛ2 ` pj ´ 1qd2I s´1ΨT

2 C21w1t

ñ H̃ij w2t “ ρt w2t ; (3.32)

The t -th eigenvector w2t of H̃ij is proportional to Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21w1t , that is,

w2t “ Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21w1t . From (3.3.1), it can also be seen that either Hij or

H̃ij is enough to calculate the eigenvector of Hij and H̃ij .
Assuming p “ minpm1,m2q, p eigenvalue-eigenvector pairs of Hij and H̃ij , which are

the basis vectors, can be calculated using Jacobi method [90]. Then, p pairs of canonical
variables are computed using (3.11). Finally, p features can be extracted using (3.12). The
computational complexity of Jacobi method to compute p eigenvalue-eigenvector pairs is
Opp3q.
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3.3.2 CuRSaR: Proposed Algorithm

One of the main problems in real life high dimensional multimodal data analysis is how to
extract relevant and significant features. In general, the extracted feature set may contain
a huge number of irrelevant and insignificant features. The presence of such features may
lead to a reduction in the useful information and degrade the prediction capability. Thus,
the extracted feature subset should contain the features which have high relevance and high
significance in the feature set. Such features are expected to be able to predict the classes
of the samples. Accordingly, a measure is required that can assess the effectiveness of a
feature set. In this work, hypercuboid equivalence partition matrix of rough hypercuboid
approach [172] is used to select relevant and significant features, which are extracted from
two multidimensional data sets by calculating their maximum correlation and variation.

Let X1 P ℜm1ˆn and X2 P ℜm2ˆn be two multidimensional data sets with m1 and m2

variables or attributes, respectively, and n samples. Let us assume that each variable is
centered to have zero mean across the samples. Let t1 and t2 be the number of possible
values of regularization parameters r1 and r2, respectively. The value of each regularization
parameter is varied within a certain range rrmin , rmax s as per (3.3.1), where rmin ď r1, r2 ď

rmax . Let Ft ij be the t -th extracted feature with pi , jq-th regularization parameters of r1 and
r2 and γFt pDq be the relevance of the feature Ft with respect to the class labels D. Define
σtFt ,Fl upD,Ft q as the significance of the feature Ft with respect to another feature Fl P S,
where S is the set of D selected features and D ď minpm1,m2q. The change in dependency
when a feature is removed from the set of features, is a measure of the significance of the
feature. To what extent a feature is contributing to the dependency on class labels can
be determined by the significance of that feature. The significance of the feature Ft with
respect to the feature set tFt ,Fl u is given by

σtFt ,Fl upD,Ft q “ γtFt ,Fl upDq ´ γFl pDq. (3.33)

Hence, the higher the change in dependency, the more significant the feature Ft is. If
significance is 0, then the feature is dispensable. Therefore, the total relevance of all
selected features for pi , jq-th regularization parameters of r1 and r2 is given by

Rpi , jq “
ÿ

Ft ij PS
γFt ij pDq, (3.34)

while the total significance among the selected features is as follows:

Spi , jq “
ÿ

Ft ij ‰Fl ij PS
σtFt ij ,Fl ij u

pD,Ft ij q ` σtFt ij ,Fl ij u
pD,Fl ij q. (3.35)

Therefore, the problem of extracting a set S of relevant and significant features from
all possible combinations of regularization parameters r1 and r2 is equivalent to maximize
both Rpi , jq and Spi , jq, that is, to maximizing the objective function Jpi , jq, where

Jpi , jq “ ω ˆ
Rpi , jq

D
` p1 ´ ωq ˆ

Spi , jq
DpD ´ 1q

(3.36)
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where ω is a weight parameter. The criterion combining the above two constraints is called
maximum relevance-maximum significance [172, 177]. The problem of generating a set of
most significant and relevant feature set S from two multiblock data sets is addressed by
Algorithm 3.1.

Algorithm 3.1 CuRSaR: Supervised CCA Using Max Relevance-Max Significance Crite-
rion
Input: Two multidimensional variables X1 and X2.
Output: A set S of D selected features.

1: Calculate the cross-covariance matrix C12 P ℜm1ˆm2 of X1 and X2 using (3.2).
2: Calculate the covariance matrix C11 P ℜm1ˆm1 and C22 P ℜm2ˆm2 of X1 and X2 using

(3.3) and (3.4), respectively.
3: Calculate the eigenvalues Λ1 P ℜm1 and Λ2 P ℜm2 of C11 and C22, along with corre-

sponding eigenvectors Ψ1 and Ψ2 using Jacobi method.
4: Initialize S Ð H and Joptimal “ 0.
5: for each pi , jq-th regularization parameters, of r1 and r2, where @i P t1, 2, ¨ ¨ ¨ , t1u and

@j P t1, 2, ¨ ¨ ¨ , t2u do

(I) If m1 ď m2 (respectively, m1 ą m2), calculate Hij using (3.30) (respectively, H̃ij

using (3.31)).

(II) Calculate the eigenvectors w1ij (respectively, w2ij ) of Hij (respectively, H̃ij ) using
Jacobi method and take first D eigenvectors.

(III) Calculate w2ij “ Ψ2rΛ2 ` pj ´ 1qd2I s´1ΨT
2 C21w1ij (respectively, w1ij “ Ψ1rΛ1 ` pi ´

1qd1I s´1ΨT
1 C12w2ij ).

(IV) Calculate D pairs of canonical variables tU1ij ,U2ij u using (3.11).

(V) Extract D features tFij u corresponding to pi , jq-th pair of regularization parameters
using (3.12) and store them in C.

(VI) Compute the objective function Jpi , jq using (3.36).

(VII) If Jpi , jq ą Joptimal, then S Ð C, and Joptimal “ Jpi , jq.

6: end for
7: Stop.

3.3.3 Computation of Relevance and Significance

Generally, anm-dimensional hypercuboid or hyperrectangle is defined in them-dimensional
Euclidean space, where the space is defined by the m variables measured for each sample
or object. In geometry, a hypercuboid or hyperrectangle is the generalization of a rectangle
for higher dimensions, formally defined as the Cartesian product of orthogonal intervals. A
d-dimensional hypercuboid with d attributes as its dimensions is defined as the Cartesian
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product of d orthogonal intervals. It encloses a region in the d-dimensional space, where
each dimension corresponds to a certain attribute. The value domain of each dimension
is the value range or interval that corresponds to a particular class. For all hypercuboids,
any two objects belonging to a same class hypercuboid are said to be indiscernible with
respect to that particular class.

Let U “ tO1, ¨ ¨ ¨ ,Oj , ¨ ¨ ¨ ,Onu be the set of n samples or objects with condition attribute
or feature set C “ tF1, ¨ ¨ ¨ ,Ft , ¨ ¨ ¨ ,FDu, where D ď minpm1,m2q is the total number of
extracted candidate features, for each regularization parameters r1 and r2, having non-zero
significance values with respect to the already-selected features of S. Let D be the class
label or decision attribute set. If U{D “ tβ1, ¨ ¨ ¨ , βi , ¨ ¨ ¨ , βcu denotes c equivalence classes
or granules of the universe U created by the equivalence relation induced from D, then
c information granules of U can also be created by the equivalence relation induced from
each condition attribute Ft P C. If U{Ft “ tδ1, ¨ ¨ ¨ , δi , ¨ ¨ ¨ , δcu denotes c equivalence classes
or information granules of U induced by the condition attribute Ft and n is the number of
objects in U, then c-partitions of U are the sets of (cn) values thij pFt qu, which are arrayed
as a matrix HpFt q “ rhij pFt qscˆn. The matrix HpFt q is termed as hypercuboid equivalence
partition matrix of the condition attribute Ft [172], where

hij pFt q “

"

1 if Li ď Oj pFt q ď Ui
0 otherwise (3.37)

represents the membership of object Oj in the i -th equivalence partition or class βi satisfying
following two conditions:

1 ď

n
ÿ

j“1

hij pFt q ď n,@i ; 1 ď

c
ÿ

i“1

hij pFt q ď c,@j . (3.38)

Here, rLi ,Ui s represents the interval of i -th class βi according to the class labels D.
The interval rLi ,Ui s is spanned by the objects with class βi with respect to the condition
attribute Ft . In other words, the value of each object Oj P βi with respect to Ft falls
within rLi ,Ui s. A c ˆ n hypercuboid equivalence partition matrix HpFt q represents the
c-hypercuboid equivalence partitions of the universe generated by an equivalence relation.
Each row of this matrix represents a hypercuboid equivalence class or partition. The i -th
hypercuboid partition is represented as follows [172]:

βi “ thi1pFt q{O1 ` hi2pFt q{O2 ` ¨ ¨ ¨ ` hinpFt q{Onu. (3.39)

However, every two intervals or hypercuboids may intersect with each other. These
intersections form the implicit hypercuboids, which encompass objects those are misclassi-
fied. The degree of dependency of a condition attribute or a subset of attributes on decision
attribute is estimated based on the cardinality of implicit hypercuboids. The misclassified
objects belonging to implicit hypercuboids are identified using the confusion vector, which
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is defined based on hypercuboid equivalence partition matrix as follows [172]:

VpFt q “ rv1pFt q, v2pFt q, ¨ ¨ ¨ , vnpFt qs (3.40)

where vj pFt q “ mint1,
c
ÿ

i“1

hij pFt q ´ 1u. (3.41)

In other words, vj pFt q “ 1 if the j -th object Oj belongs to the implicit hypercuboid,
which represents the boundary region of more than one classes. On the other hand, if the
object Oj is encompassed by the lower approximation of any class, then vj pFt q “ 0 and
the object Oj does not belong to the lower or upper approximations of any other classes.
Hence, the confusion vector and hypercuboid equivalence partition matrix corresponding
to feature Ft can be used for defining upper and lower approximations of the class βi . Let
βi Ď U. The information of the attribute Ft can be used to approximate βi , by constructing
R -lower approximation and R -upper approximation of βi :

R pβi q “ tOj | hij pFt q “ 1 and vj pFt q “ 0u; (3.42)

R pβi q “ tOj | hij pFt q “ 1u; (3.43)

where the attribute Ft induces equivalence relation R . Hence, the cardinality of lower
approximation of class βi is computed as follows:

|R pβi q| “

n
ÿ

j“1

hij pFt qr1 ´ vj pFt qs. (3.44)

Based on the definition of lower approximation of rough sets, the positive region of decision
attribute set D is defined as:

POSR pDq “
ď

βi PU{D
R pβi q. (3.45)

The positive region, POSR pDq, contains all objects of U that can be classified to classes
of U{D using the knowledge in attribute Ft . Combining (3.37), (3.40), and (3.45), the
cardinality of positive regions of decision attribute D, in terms of hypercuboid equivalence
partition matrix and confusion vector of condition attribute Ft , is given by

|POSR pDq| “

c
ÿ

i“1

n
ÿ

j“1

hij pFt qr1 ´ vj pFt qs. (3.46)

Hence, the dependency between condition attribute Ft and decision attribute D is as follows:

γFt pDq “
1

n

c
ÿ

i“1

n
ÿ

j“1

hij pFt qr1 ´ vj pFt qs “ 1 ´
1

n

n
ÿ

j“1

vj pFt q (3.47)

where γFt pDq P r0, 1s. If D depends totally on Ft , then γFt pDq “ 1; if D depends partially
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on Ft , then γFt pDq P p0, 1q; and if D does not depend on Ft , then γFt pDq “ 0.
The relevance of a feature Ft with respect to the class label or decision attribute D is

computed using (3.47), while the joint relevance γtFt ,Fl upDq is to be computed to calculate
the significance of the feature Ft with respect to the set tFt ,Fl u using (3.33). The joint
relevance depends on the cˆn hypercuboid equivalence partition matrix corresponding to
the set tFt ,Fl u, which is computed from two c ˆ n equivalence partition matrices HpFt q

and HpFl q as follows:
HptFt ,Fl uq “ HpFt q X HpFl q; (3.48)

where hij ptFt ,Fl uq “ hij pFt q ˆ hij pFl q. (3.49)

3.3.4 Complexity Analysis

Let X1 and X2 be the two data sets with n samples and c classes, and m1 and m2 represent
the number of features in X1 and X2, respectively. Let us assume that the regulariza-
tion parameters r1 and r2 have t1 and t2 possible values. Let q “ maxpm1,m2q and p “

minpm1,m2q, where the number of extracted features D ăă p. The computational com-
plexity to calculate cross-covariance matrix C12 is Oppqnq, whereas that of covariance ma-
trices C11 and C22 is Opp2n`q2nq. In step 3, the eigenvalues Λ1 and Λ2 with corresponding
eigenvectors Ψ1 and Ψ2 can be calculated with complexity Opp3`q3q using Jacobi method.
Hence, the total time complexity of these three steps is Oppqn`p2n`q2n`p3`q3q « Opq3q.
Step 4 has constant time complexity, which is Op1q.

There is a loop in step 5, which is executed pt1 ˆ t2q times. The computational com-
plexity to calculate Hij using (3.30) is Opp3 ` p2q ` pq2 ` q3q « Opq3q. The computational
complexity to calculate first D eigenvectors in step 5.(II) is OpDp2q. Step 5.(III) has com-
plexity Opq3`pq2`Dpqq. The canonical variables U1 and U2 have total OpDpn`Dqnq time
complexity. The computational complexity to extract first D features tF u is OpDnq. The
time complexity to compute both relevance and significance of a feature is the same, which
is Opcnq. In effect, the total complexity to compute both relevance and significance of D
features is OpDcnq. Hence, step 5.(VI) has computational complexity OpDq. Finally, step
5.(VII) has OpDnq time complexity. Hence, the total complexity to execute the loop pt1ˆt2q

times is Opt1t2pq3`Dp2`pq2`Dpq `Dpn`Dqn`Dn`Dcn`D ` Dnqq « Opt1t2qpq2`Dnqq.
Hence, the overall computational complexity of the proposed algorithm to extract rel-

evant and significant features, which are linearly correlated, is Opq3 ` t1t2qpq2 ` Dnqq «

Opt1t2qpq2 ` Dnqq. On the other hand, the existing CCA, RCCA, and SRCCA algorithms
have time complexity Opp!q, Opt1t2np!q, and Opt1t2p!q, respectively, based on the analysis
reported in [91].

3.4 Performance Analysis

In this section, the performance of the proposed feature extraction algorithm, termed as
CuRSaR, is extensively studied and compared with that of some existing CCA based
algorithms..
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3.4.1 Data Sets and Experimental Setup

Five multimodal omics data sets, namely, glioblastoma multiforme (GBM), lung (LUNG),
kidney (KIDNEY), lower grade glioma (LGG), and ovarian serous cystadenocarcinoma
(OV), are used in the current research work. In Chapter 3 and Chapter 4, two modalities,
namely, DNA methylation (mDNA) and RNA, are used, while in Chapter 5, Chapter 6,
and Chapter 7, other modalities are used to validate the effectiveness of different multi-view
data integration algorithms. The details of the gene (RNA) have been taken from RNA
sequences in LUNG, KIDNEY, and LGG data sets, while gene expression provides gene-
related information in the GBM and OV data sets. These data sets are downloaded from
The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/). All five data
sets with RNA and mDNA modalities are summarized in Table 3.1 and all modalities are
encapsulated in Table 5.2 of Chapter 5. A detailed description of the data sets is reported
in Appendix A.

Table 3.1: Description of Omics Data Sets Used

Different Number of
Data Sets Classes Samples RNAs mDNAs

GBM 5 213 12042 21422
LUNG 2 546 20502 294668

KIDNEY 2 305 20502 300451
LGG 3 374 11973 293965
OV 4 206 12042 20311

The performance of the proposed algorithm is compared with that of principal compo-
nent analysis (PCA), CCA, RCCA, and several variants of SRCCA using t-test (SRCCATT)
[91], Wilcoxon rank sum test (SRCCAWR) [91], Wilks’s lambda test (SRCCAWL) [91], mu-
tual information (SRCCAMI), and rough hypercuboid (SRCCARH). The performance of
rough hypercuboid (RH) approach is also compared with that of mutual information (MI)
in the proposed feature extraction framework. The value of ω in (3.36) is set to 0.5, while r1
and r2 are varied within r0.0, 1.0s with 0.1 as common difference. The proposed algorithm
is implemented in C language and run in Ubuntu 14.04 LTS having machine configuration
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHzˆ8 and 32 GB RAM. The source code of the
CuRSaR algorithm is available at https://www.isical.ac.in/~bibl/results/cursar
/cursar.html.

To evaluate the performance of different algorithms, support vector machine (SVM)
[274] is used in the current study. Being a maximum margin classifier, the SVM defines
the boundary between data samples of different classes by drawing an optimal hyperplane.
The hyperplane leads to good generalization properties as it maximizes the margin between
different classes. In the current work, linear kernels are used. Both 10-fold cross-validation
(CV) and training-testing are performed to assess the performance of different algorithms.
To analyze the statistical significance of the derived results in 10-fold CV, paired-t test
(one-tailed), Wilcoxon signed rank test (one-tailed), and Friedman test (one-tailed), with
a 95% confidence level, are used to compute the p-values. For training-testing, the randomly
selected 50% samples from each class are used for training and the rest are used for testing
purposes for each of the data sets. For each data set, 25 top-ranked correlated features are
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selected for the analysis, as in most of the cases the accuracy does not increase with the
increase in number of features after 18-20 features. Thus, 25 features are taken to compare
the accuracy and statistical significance analysis in the tables.
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Figure 3.1: Variation of classification accuracy with respect to number of extracted features
obtained using the PCA on individual modalities and concatenated data matrix (NvInt),
and the proposed (CuRSaR) algorithm for 10-fold CV.
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Figure 3.2: Variation of classification accuracy with respect to number of extracted features
obtained using the PCA on individual modalities and concatenated data matrix (NvInt),
and the proposed (CuRSaR) algorithm for training-testing.
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3.4.2 Effectiveness of Proposed Algorithm

This section presents the performance of the proposed data integration algorithm, termed as
CuRSaR, and its comparison with that of PCA on individual modalities and concatenated
data matrix. Corresponding results are reported in Figure 3.1 and Figure 3.2 considering
both 10-fold CV and training-testing, respectively. From the results reported in Figure 3.1
and Figure 3.2, it is observed that the classification accuracy of multiple modalities using
naive integration (NvInt) is better than that of a single modality on GBM and OV data
sets, while this is not the case for LUNG, KIDNEY, and LGG data sets. These results
also infer that the integration of multiple modalities may provide better performance than
a single modality if the integration is done efficiently.

Figure 3.3 shows the scatter plots, along with the class separability index (CSI) on
five data sets. The x-axis and y-axis of each plot represent the first and second extracted
features, respectively. The class separability index (CSI) is defined as

CSI “
trpSbq
trpSwq

; (3.50)

where trpAq represents the trace of matrix A. Sb and Sw indicate the between-class scatter
matrix and within-class scatter matrix, respectively. A larger value of between-class scatter
and smaller value of within-class scatter signifies better separation between the classes.
Hence, the higher value of CSI indicates more separation. The value of the CSI is reported
at the top of each figure. The qualitative results in Figure 3.3 show that PCA on individual
modalities and concatenated data matrix cannot separate the classes properly. The CSI of
PCA on single view and naive integrated matrix is lower compare to that of the proposed
CuRSaR algorithm. All the results show that the naive integration, by direct concatenation
of multiple modalities, is not sufficient for integrating the knowledge of all the modalities.
Because of the radical imbalance and noisy nature of different modalities, naive integration
does not perform well. Moreover, multiple modalities of a unique sample may provide
complementary knowledge. The different modalities of the unique sample can make a
connection between the characteristics of each sample. Hence, the combination of different
modalities of a unique sample would have more discriminatory and absolute knowledge
of the intrinsic properties of that sample than a single modality. Thus, to integrate the
knowledge acquired in different modalities, an appropriate fusion method is required.

3.4.3 Importance of Rough Hypercuboid Approach

In the proposed CuRSaR algorithm, both the relevance and significance of an extracted
feature are calculated based on the theory of hypercuboid equivalence partition matrix
of rough hypercuboid approach. The relevance of a feature with respect to the class
labels is calculated using (3.47), while the significance of a feature with respect to the
already-extracted features is computed using (3.33). However, other measures such as
mutual information can also be used to compute both relevance and significance of a fea-
ture [170, 177, 213]. In order to establish the importance of rough hypercuboid approach
over mutual information, extensive experimental results are reported in Figure 3.4 and Fig-
ure 3.5 considering five data sets. Subsequent discussions analyze the results with respect
to the classification accuracy of both the 10-fold CV and training-testing. All the results
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Figure 3.3: Scatter plots for PCA on individual modalities and concatenated data matrix
(NvInt), and proposed (CuRSaR) algorithm, along with class separability index (top to
bottom: GBM, LUNG, KIDNEY, LGG, OV).

reported in Figure 3.4 and Figure 3.5 confirm that the performance of the hypercuboid
equivalence partition matrix is better than that of mutual information in all the cases,
irrespective of the data sets used.
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Figure 3.4: Variation of classification accuracy with respect to number of extracted features
using mutual information and rough hypercuboid in the proposed algorithm for 10-fold CV.
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Figure 3.5: Variation of classification accuracy with respect to number of extracted features
using mutual information and rough hypercuboid in the proposed algorithm for training-
testing.

Figure 3.6 presents the scatter plots, along with the CSI for five data sets, where both
rough hypercuboid equivalence partition matrix (RH) and mutual information (MI) are
used to compute both significance and relevance of an extracted feature. From the results
reported in Figure 3.6, it is noticeable that the CSI of the extracted features using mutual
information is lower compared to that of hypercuboid equivalence partition matrix. Analyz-
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Figure 3.6: Scatter plots for mutual information (top row) and rough hypercuboid (bottom
row) in the proposed framework, along with class separability index.

ing the results of Figure 3.6, it is evident that the rough hypercuboid approach outperforms
mutual information in the proposed framework. The significantly better performance of
the rough hypercuboid based approach is obtained due to the fact that the quality of an
extracted feature set, in rough hypercuboid approach, is evaluated by the hypercuboid
equivalence partition matrix that makes use of supervised information of sample categories
in the granulation process. Also, it provides an efficient way to calculate relevance and
significance in approximation spaces. In effect, a reduced set of features having maximum
relevance and significance is being obtained using the proposed CuRSaR algorithm.

Table 3.2: Classification Accuracy and Execution Time for Mutual Information and Rough
Hypercuboid

Data Measure Accuracy Accuracy and Significance Analysis for 10-Fold CV Time
Sets (Train-Test) Mean Median StdDev Paired-t:pWilcoxon:pFriedman:p(in sec.)

GBM MI 0.476 0.400 0.354 0.174 7.80E-05 2.50E-03 1.57E-03 2996.0
RH 0.724 0.750 0.750 0.079 - - - 2989.5

LUNG MI 0.656 0.725 0.705 0.139 7.91E-04 3.82E-03 2.70E-03 2914.3
RH 0.868 0.921 0.920 0.040 - - - 2781.2

KIDNEY MI 0.671 0.906 0.968 0.172 3.16E-01 8.57E-01 1.57E-01 3519.1
RH 0.888 0.935 0.935 0.034 - - - 2352.2

LGG MI 0.349 0.379 0.408 0.153 1.03E-03 4.65E-03 1.14E-02 3027.6
RH 0.742 0.639 0.632 0.061 - - - 3029.5

OV MI 0.745 0.482 0.500 0.169 1.75E-02 2.96E-02 2.06E-01 3597.0
RH 0.784 0.614 0.682 0.221 - - - 2331.5

Table 3.2 compares the classification accuracy, computed using rough hypercuboid ap-
proach and mutual information. The mean, median, and standard deviation of 10-fold CV
are also reported in Table 3.2. To perform the statistical significance analysis, the p-values
computed using different tests are reported in Table 3.2. Comparing the results reported in
Table 3.2, it is evident that the proposed algorithm with rough hypercuboid attains higher
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mean and median accuracy than with the mutual information, in almost all cases. The
mutual information has achieved higher median accuracy (0.968) than rough hypercuboid
on the KIDNEY data set only. Out of total 15 cases, the proposed CuRSaR algorithm,
where hypercuboid equivalence partition matrix is used to compute both significance and
relevance of an extracted feature, achieves significantly better (marked in bold) p-values
than the mutual information based approach in 11 cases. On the other hand, the proposed
algorithm provides better but not significant (marked in italics) p-values in only 4 cases,
for all three significant tests on the KIDNEY data set and Friedman test on the OV data
set.

3.4.4 Comparative Performance Analysis

Finally this section presents the comparative performance analysis of the proposed CuRSaR
algorithm and various state-of-the-art data integration algorithms, namely, CCA, RCCA,
SRCCATT, SRCCAWR, SRCCAWL, SRCCAMI, and SRCCARH, on five data sets, namely,
GBM, LUNG, KIDNEY, LGG, and OV. Corresponding results are reported in Figure 3.7
and Figure 3.8, along with Table 3.3 and Table 3.4. From the results reported in Figure
3.7 and Figure 3.8, it is seen that the classification accuracy of the proposed CuRSaR
algorithm is significantly higher than that of the existing data integration algorithms.
Figure 3.9 shows the scatter plots of several existing algorithms on five data sets. The
value of the CSI is also reported at the top of each figure.
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Figure 3.7: Variation of classification accuracy with respect to number of extracted features
for several existing algorithms and the proposed (CuRSaR) algorithm using 10-fold CV.

From the results reported in Figure 3.9, it is observable that the CSI of the extracted
features using the proposed CuRSaR algorithm are higher than that of the several existing
algorithms. Comparing the results of Figure 3.9, it is also noticeable that the proposed
algorithm is able to separate different classes of GBM and KIDNEY data sets using the first
two extracted features only, which is also evident from the corresponding class separability
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Figure 3.8: Variation of classification accuracy with respect to number of extracted fea-
tures for several existing algorithms and the proposed (CuRSaR) algorithm using training-
testing.

index values; though there is some overlap between the classes on LUNG, LGG, and OV
data sets. On the other hand, the classes are hardly separable using all existing algorithms
on each data set.

All the results reported in Table 3.3 confirm that the proposed CuRSaR algorithm
attains the highest mean and median accuracy, in almost all the cases. The SRCCARH has
achieved higher median accuracy of 0.737 than the proposed CuRSaR on the LGG data set
only. To perform the statistical significance analysis, the p-values computed using different
tests are reported in Table 3.4. The proposed algorithm attains significantly better p-values
(marked in bold) than several existing data integration algorithms in 93 cases, out of a total
of 105 cases, considering 95% confidence level. On the other hand, the proposed CuRSaR
algorithm provides better but not significant (marked in italics) p-values in only 12 cases.
The significantly better performance of the proposed CuRSaR algorithm is achieved due
to the fact that the CuRSaR algorithm extracts features by maximizing the relevance
and significance of the features. Both relevance and significance measures depend on the
information of sample categories. On the other hand, CCA and RCCA extract features
from two different modalities without considering the supervised information of class labels.
In effect, the proposed algorithm is able to extract more relevant and significant features
from a pair of modalities.

The existing SRCCA algorithms consider only the correlation of the first pair of canon-
ical variables [91]. In effect, other canonical variable pairs may have insignificant relation
with the first pair of canonical variables or may introduce some irrelevant features in the
whole extracted feature set, which may degrade the prediction capability of the classifiers
used. Also, the existing SRCCA algorithms fail to address the problem of uncertainty
associated with data analysis. On the other hand, the proposed algorithm considers both
relevance and significance measures of all extracted features while optimizing the regular-
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Table 3.3: Classification Accuracy and Execution Time of Different Algorithms

Different Data Accuracy Accuracy for 10-Fold CV Time
Algorithms Sets (Train-Test) Mean Median StdDev (in sec.)

CCA

G
B

M

0.314 0.313 0.292 0.086 2130.2
RCCA 0.286 0.296 0.271 0.093 3061.4

SRCCATT 0.286 0.275 0.250 0.110 3086.0
SRCCAWL 0.286 0.279 0.250 0.100 3041.8
SRCCAWR 0.286 0.279 0.250 0.100 3018.1
SRCCAMI 0.352 0.417 0.313 0.283 3044.6
SRCCARH 0.381 0.467 0.396 0.273 3039.7
CuRSaR 0.724 0.750 0.750 0.079 2989.5

CCA

LU
N

G

0.714 0.670 0.661 0.118 2054.4
RCCA 0.645 0.691 0.714 0.097 2924.5

SRCCATT 0.645 0.696 0.696 0.117 2914.0
SRCCAWL 0.645 0.689 0.643 0.112 2915.8
SRCCAWR 0.645 0.684 0.679 0.117 2880.7
SRCCAMI 0.813 0.716 0.723 0.108 2925.0
SRCCARH 0.817 0.729 0.732 0.116 2895.9
CuRSaR 0.868 0.921 0.920 0.040 2781.2

CCA

K
ID

N
E

Y

0.645 0.668 0.710 0.139 2159.7
RCCA 0.625 0.739 0.790 0.155 3618.6

SRCCATT 0.605 0.745 0.790 0.129 3494.0
SRCCAWL 0.605 0.745 0.790 0.129 2984.6
SRCCAWR 0.605 0.745 0.790 0.129 3609.9
SRCCAMI 0.625 0.729 0.774 0.140 3599.1
SRCCARH 0.684 0.758 0.790 0.155 3630.3
CuRSaR 0.888 0.935 0.935 0.034 2352.2

CCA

LG
G

0.403 0.429 0.421 0.079 2116.7
RCCA 0.516 0.432 0.421 0.060 3216.1

SRCCATT 0.435 0.426 0.408 0.063 3149.6
SRCCAWL 0.435 0.455 0.461 0.045 3184.6
SRCCAWR 0.435 0.455 0.461 0.045 3218.3
SRCCAMI 0.559 0.511 0.461 0.187 3102.0
SRCCARH 0.554 0.576 0.737 0.283 3096.3
CuRSaR 0.742 0.639 0.632 0.061 3029.5

CCA

O
V

0.373 0.405 0.386 0.124 2164.3
RCCA 0.343 0.400 0.409 0.098 3019.2

SRCCATT 0.343 0.400 0.409 0.111 3679.4
SRCCAWL 0.265 0.400 0.409 0.111 3643.0
SRCCAWR 0.265 0.400 0.409 0.111 3457.7
SRCCAMI 0.392 0.455 0.432 0.132 3529.8
SRCCARH 0.441 0.486 0.477 0.174 3627.7
CuRSaR 0.784 0.614 0.682 0.221 2331.5

ization parameters. The rough hypercuboid approach, employed in the proposed algorithm,
can also efficiently handle the uncertainty due to imprecision in computation and vague-
ness in the class definition. In effect, the proposed algorithm provides significantly better
results as compared to existing algorithms in most of the cases. Moreover, the analytical
formulation introduced in this chapter makes the computational complexity of the proposed
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Table 3.4: Statistical Significance Analysis of Different Algorithms

Different Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman

CCA

G
B

M

3.31E-07 2.50E-03 1.57E-03
RCCA 5.33E-08 2.46E-03 1.57E-03

SRCCATT 2.97E-07 2.50E-03 1.57E-03
SRCCAWL 3.61E-08 2.45E-03 1.57E-03
SRCCAWR 3.61E-08 2.45E-03 1.57E-03
SRCCAMI 1.17E-03 5.86E-03 4.68E-03
SRCCARH 3.36E-03 7.58E-03 1.96E-02

CCA
LU

N
G

4.36E-05 2.52E-03 1.57E-03
RCCA 5.25E-05 2.52E-03 1.57E-03

SRCCATT 1.43E-04 2.50E-03 1.57E-03
SRCCAWL 2.70E-05 2.53E-03 1.57E-03
SRCCAWR 7.94E-05 2.52E-03 1.57E-03
SRCCAMI 2.40E-04 2.52E-03 1.57E-03
SRCCARH 2.91E-04 2.52E-03 1.57E-03

CCA

K
ID

N
E

Y

2.15E-04 2.53E-03 1.57E-03
RCCA 3.21E-03 3.98E-03 1.14E-02

SRCCATT 1.22E-03 2.52E-03 1.57E-03
SRCCAWL 1.22E-03 2.52E-03 1.57E-03
SRCCAWR 1.22E-03 2.52E-03 1.57E-03
SRCCAMI 1.21E-03 3.79E-03 2.70E-03
SRCCARH 4.54E-03 4.58E-03 1.14E-02

CCA

LG
G

8.38E-05 3.76E-03 2.70E-03
RCCA 7.31E-05 2.50E-03 1.57E-03

SRCCATT 6.72E-05 2.50E-03 1.57E-03
SRCCAWL 1.33E-04 2.52E-03 1.57E-03
SRCCAWR 1.33E-04 2.52E-03 1.57E-03
SRCCAMI 2.31E-02 2.32E-02 2.06E-01
SRCCARH 2.61E-01 3.80E-01 5.27E-01

CCA

O
V

9.35E-03 2.06E-02 2.06E-01
RCCA 4.85E-03 1.04E-02 9.56E-02

SRCCATT 2.04E-03 6.23E-03 5.78E-02
SRCCAWL 2.04E-03 6.23E-03 5.78E-02
SRCCAWR 2.04E-03 6.23E-03 5.78E-02
SRCCAMI 1.21E-02 2.52E-02 3.17E-01
SRCCARH 3.52E-02 6.93E-02 3.17E-01

CuRSaR algorithm significantly lower than the existing RCCA and SRCCA.

3.5 Conclusion

This chapter presents a new feature extraction algorithm, termed as CuRSaR, for two mul-
tidimensional data sets. The merits of CCA and rough sets have been integrated judiciously
to develop the proposed algorithm. To establish the relation between the covariance ma-
trices of different regularization parameters, a theoretical formulation has been presented.
It helps the proposed CuRSaR algorithm to extract correlated features, which are relevant
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Figure 3.9: Scatter plots for the proposed (CuRSaR) algorithm and several existing algo-
rithms, along with class separability index (top to bottom: GBM, LUNG, KIDNEY, LGG,
OV).

with respect to the class label and significant among them. The hypercuboid equivalence
partition matrix has been used to compute both relevance and significance of a feature. The
optimum regularization parameters of CCA have been determined using the equivalence
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partition matrix. The effectiveness of the proposed algorithm, along with a comparison
with other algorithms, has been demonstrated considering two different modalities, namely,
RNA and mDNA. The concept of hypercuboid equivalence partition matrix is found to be
successful in extracting relevant and significant features from multimodal high dimensional
real-life data sets.

One of the main problems associated with high dimensional multimodal real-life data
sets is how to extract relevant and significant features sequentially. Instead of producing
all canonical variables simultaneously, if each variable is computed sequentially, the quality
of each generated feature can be evaluated independently, and eventually, a reduced set of
features can be selected based on their quality. In this regard, a new feature extraction
algorithm is presented in the next chapter, which extracts new features sequentially from
two multidimensional data sets by maximizing their relevance with respect to the class label
and significance with respect to already-extracted features. An analytical formulation is
introduced, which enables the proposed algorithm to extract required number of correlated
features sequentially with lesser computational cost as compared to existing algorithms.

48



Chapter 4

Fast and Robust Supervised CCA

4.1 Introduction

Due to the drastic variation and noisy nature of the acquired signals, unimodal based
pattern analysis and recognition systems usually afford low level of performance, which
leads to insufficient and inaccurate pattern representation of the perception of interest.
On the other hand, multimodal data contain more information. By using multiple types
of data of a unique sample, it is possible to make the linkages between attributes within
each type of data. The combination of multimodal data may potentially provide a more
complete and discriminatory description of the intrinsic characteristics of the pattern by
producing improved system performance than single modality only.

As mentioned in Chapter 3, canonical correlation analysis (CCA) [112] is a bivariate
feature extraction method, which provides an efficient way of measuring the linear rela-
tionship between two multidimensional variables. The goal of CCA is to find the best
linear transformation for two multidimensional data sets so that the maximum correlation
between them can be achieved. Regularized CCA (RCCA) [93,278] is an improved version
of CCA. It prevents over-fitting of insufficient training data by using a ridge regression
optimization scheme [27]. It works by adding small positive quantities to the diagonals of
two covariance matrices C11 and C22 of two data sets X1 and X2 having m1 and m2 fea-
tures, respectively, to guarantee their invertibility [107]. In [56], an alternative method to
the existing RCCA has been presented, which is based on the estimates of the correlation
matrices that minimize the mean squared error risk function. An et al. [13] proposed a ro-
bust CCA, which uses shrinkage estimation and smoothing technique to estimate the data
covariance matrices with limited samples. However, RCCA is computationally very expen-
sive because of this regularization process. Also, both CCA and RCCA are unsupervised
and fail to take complete advantage of available class label information [91].

Supervised RCCA (SRCCA) incorporates a supervised feature selection scheme to per-
form the regularization [91,155]. It includes the information of available class label to select
maximally correlated features. In SRCCA, regularization is done by embedding component
with the most discriminatory score as chosen by feature selection scheme and then adjusted
for the remaining dimensions [91,155]. However, existing SRCCA considers only correlation
of first pair of canonical variables. It may happen that other canonical variable pairs have
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insignificant relation with first pair of canonical variables, or there may be some irrelevant
features in the whole extracted feature set, which should not be considered for further
processing [173]. In this regard, a new supervised RCCA, termed as CuRSaR (CCA using
maximum Relevance-maximum Significance criterion and Rough sets), has been proposed
recently in [174] and presented in Chapter 3, where whole extracted feature set is used to
optimize the regularization parameters. However, both existing SRCCA and CuRSaR of
Chapter 3 extract all possible features (minpm1,m2q), which may not be needed at all. If
features are extracted sequentially, then only the required number of relevant, significant,
and nonredundant features can be extracted. In effect, it will be computationally less ex-
pensive. Moreover, uncertainty in omics data analysis is one of the major concerns. Some
of the sources of this uncertainty include imprecision in computation and vagueness in class
definition. Rough set theory has gained popularity in modeling and propagating uncer-
tainty. It deals with vagueness and incompleteness, and is proposed for indiscernibility in
classification, according to some similarity.

In this regard, this chapter presents a fast and robust feature extraction algorithm,
termed as FaRoC (Fast and Robust CCA), for two multidimensional data sets. It integrates
judiciously the merits of SRCCA and the theory of rough sets. While SRCCA addresses
the problem of integrating heterogeneous sources of data, the rough hypercuboid approach
of rough sets deals with vagueness in sample categories. The proposed algorithm extracts
a new feature by maximizing the relevance with respect to sample categories or class
labels and significance with respect to already-extracted features. Both the significance
and relevance measures are computed based on the concept of hypercuboid equivalence
partition matrix. In the proposed algorithm, the relevance and/or significance do not
depend only on the first pair of canonical variables, rather the whole extracted feature set
is considered to calculate these measures. A theoretical analysis is presented to establish the
relation between CCA and RCCA, which drastically reduces the computational complexity
of existing RCCA and helps to extract correlated features sequentially. As the features are
extracted sequentially, only the required number of significant and relevant features can be
generated without generating all possible features. In effect, the proposed algorithm has
lower computational cost as compared to existing approaches. The efficacy of the proposed
FaRoC algorithm, as well as comparative performance analysis with existing algorithms, is
shown on real-life data sets. Some of the results of this chapter are reported in [181,183].

The rest of the chapter is organized as follows: Section 4.2 presents the proposed algo-
rithm. A theoretical analysis is presented in this section to establish the relation between
CCA and RCCA, which drastically reduces the computational complexity of existing RCCA
and helps to extract correlated features sequentially. The effectiveness of the proposed data
integration algorithm, along with a comparative performance analysis with state-of-the-art
algorithms on different data sets, is presented in Section 4.3. Concluding remarks are
provided in Section 4.4.

4.2 Proposed Method

This section presents a fast and robust feature extraction algorithm, termed as FaRoC,
integrating judiciously the information of two multidimensional data sets. Some important
analytical formulations are reported next prior to describing the proposed algorithm.
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4.2.1 Relation Between CCA and RCCA

Let X1 P ℜm1ˆn and X2 P ℜm2ˆn be two multivariate data sets having m1 and m2 number
of features, respectively, and n is the number of samples in both X1 and X2. Let us assume
that each multivariate data is centered to have zero mean across the samples. As explained
in Section 3.2 of Chapter 3, the objective of CCA is to extract latent features from X1

and X2, which are most highly correlated. CCA obtains two directional weight vectors,
also termed as basis vectors, w1 P ℜm1 and w2 P ℜm2 such that the empirical correlation
between the respective projections onto these weight vectors, that is, between X T

1 w1 and
X T
2 w2 is maximum. The correlation coefficient ρ is given in (3.1) of Chapter 3. The basis

vectors w1 and w2 are the eigenvectors of matrices H and H̃ , respectively, with eigenvalue
ρ. The matrix H and H̃ are defined in (3.10) of Chapter 3.

To deal with the singularity issue of the covariance matrices C11 and C22 of X1 and
X2, respectively, regularization parameters r1 and r2 are added to the diagonal of C11 and
C22, respectively. Hence, H and H̃ become (3.13) and (3.14) of Chapter 3, respectively.
In general, the regularized parameters r1 and r2 of both RCCA and SRCCA are varied
within a specified range rrmin , rmax s. Let us assume that these r1 and r2 follow an arithmetic
progression, with common differences d1 and d2, respectively, as mentioned in (3.3.1) of
Chapter 3. Let the parameters t1 and t2 be the number of possible values of r1 and r2,
respectively. As explained in Section 3.3.1 of Chapter 3, the spectral decomposition [269]
can be used to calculate rC11 ` r1I s´1 and rC22 ` r2I s´1 for the computation of H and H̃ .
Hence, Hij and H̃ij become (3.30) and (3.31) of Chapter 3, respectively, @i P t1, 2, ¨ ¨ ¨ , t1u

and @j P t1, 2, ¨ ¨ ¨ , t2u. Here, each element of the diagonal matrices Λ1 and Λ2 are the
eigenvalues of the matrices rC11 ` r1I s and rC22 ` r2I s, respectively, where each column of
the matrices Ψ1 and Ψ2 represent the corresponding orthonormalized eigenvectors.

Now, rΛ1`pi ´1qd1I s is a non-singular diagonal matrix, which is obtained by adding two
diagonal matrices, namely, Λ1 and rpi ´ 1qd1I s. The diagonal elements of Λ1 represent the
eigenvalues of matrix C11, while that of rpi ´1qd1I s are pi ´1qd1. As Λ1 and rΛ1`pi ´1qd1I s

are non-singular matrices, and rpi ´ 1qd1I s has rank m1 for i ą 1, the inverse of matrix
rΛ1`pi ´1qd1I s can be calculated using the inverse of matrix Λ1 [192]. As matrix rpi ´1qd1I s

has rank m1, the matrix rΛ1 ` pi ´ 1qd1I s can be written as

Gm1`1 “ Λ1 ` pi ´ 1qd1I “ Λ1 ` rpi ´ 1qd1I s1 ` rpi ´ 1qd1I s2 ` ¨ ¨ ¨ ` rpi ´ 1qd1I sm1 , (4.1)

where each rpi ´ 1qd1I sr,@r “ 1, 2, ¨ ¨ ¨ ,m1, has rank 1. So, the inverse of Gm1`1 can be
expressed as follows:

G´1
m1`1 “ G´1

m1
` gm1G´1

m1
rpi ´ 1qd1I sm1G´1

m1
“ Λ´1

1 `

m1
ÿ

r“1

grG´1
r rpi ´ 1qd1I srG´1

r (4.2)

considering G1 “ Λ1, where

gr “
1

1 ` trace
`

G´1
r rpi ´ 1qd1I sr

˘ . (4.3)
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Similarly, the matrix rΛ2 ` pj ´ 1qd2I s can be written as

G̃m2`1 “ Λ2 ` pj ´ 1qd2I “ Λ2 ` rpj ´ 1qd2I s1 ` rpj ´ 1qd2I s2 ` ¨ ¨ ¨ ` rpj ´ 1qd2I sm2 , (4.4)

where the matrix rpj ´1qd2I s has rank m2 for j ą 1 and each rpj ´1qd2I ss ,@s “ 1, 2, ¨ ¨ ¨ ,m2,
has rank 1. So, the inverse of G̃m2`1 can be expressed, considering G̃1 “ Λ2, as follows:

G̃´1
m2`1 “ Λ´1

2 `

m2
ÿ

s“1

g̃s G̃´1
s rpj ´ 1qd2I ss G̃´1

s , (4.5)

where g̃s “
1

1 ` trace
`

G̃´1
s rpj ´ 1qd2I ss

˘ . (4.6)

Hence, using (4.2) and (4.5), the matrix Hij of (3.30) in Chapter 3 becomes

Hij “ Ψ1pΛ´1
1 `

m1
ÿ

r“1

grG´1
r rpi ´1qd1I srG´1

r qΨT
1 C12Ψ2pΛ´1

2 `

m2
ÿ

s“1

g̃s G̃´1
s rpj ´1qd2I ss G̃´1

s qΨT
2 C21

ñ Hij “ Ψ1Λ
´1
1 ΨT

1 C12Ψ2Λ
´1
2 ΨT

2 C21 ` Bij “ H11 ` Bij , (4.7)

where Bij “ ΘiΨ2Λ
´1
2 ΨT

2 C21`Ψ1Λ
´1
1 ΨT

1 C12Φj `ΘiΦj “ Θi C ´1
22 C21`C ´1

11 C12Φj `ΘiΦj ; (4.8)

Θi “ Ψ1

m1
ÿ

r“1

grG´1
r rpi ´ 1qd1I srG´1

r ΨT
1 C12; (4.9)

and Φj “ Ψ2

m2
ÿ

s“1

g̃s G̃´1
s rpj ´ 1qd2I ss G̃´1

s ΨT
2 C21. (4.10)

Similarly, using (4.2) and (4.5), the matrix H̃ij of (3.31) in Chapter 3 becomes

H̃ij “ Ψ2pΛ´1
2 `

m2
ÿ

s“1

g̃s G̃´1
s rpj ´1qd2I ss G̃´1

s qΨT
2 C21Ψ1pΛ´1

1 `

m1
ÿ

r“1

grG´1
r rpi ´1qd1I srG´1

r qΨT
1 C12

ñ H̃ij “ Ψ2Λ
´1
2 ΨT

2 C21Ψ1Λ
´1
1 ΨT

1 C12 ` B̃ij “ H̃11 ` B̃ij , (4.11)

where B̃ij “ ΦjΨ1Λ
´1
1 ΨT

1 C12 ` Ψ2Λ
´1
2 ΨT

2 C21Θi ` ΦjΘi “ Φj C ´1
11 C12 ` C ´1

22 C21Θi ` ΦjΘi .
(4.12)

From (4.2.1) and (4.2.1), it is clear that if eigenvalues and eigenvectors of C11 and C22

are calculated to compute H11 and H̃11 matrices for initial values of r1 and r2, there is no
need to compute eigenvalues and eigenvectors for computing Hij and H̃ij at other values of
r1 and r2, as initial eigenvalues and eigenvectors can be used to compute different Hij and
H̃ij matrices. Also, if the minimum value of r1 and r2 is set to 0, then H and H̃ of CCA
can be used to compute different Hij and H̃ij matrices of RCCA corresponding to different
values of regularization parameters.
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4.2.2 Sequential Generation of Canonical Variables

From (3.2.1) and (3.2.1) of Chapter 3, it is evident that the non-zero eigenvalues of ΣΣT ,
ΣTΣ, H , and H̃ are same [89]. So, either H or H̃ is computed using (4.2.1) or (4.2.1),
respectively, corresponding to a pair of regularization parameters r1 and r2 depending
on whether m1 ď m2 or m1 ą m2. Let us assume that H has t -th eigenvalue ρt and
corresponding eigenvector is w1t . So,

Hw1t “ ρt w1t

ñ C ´1
11 C12C ´1

22 C21w1t “ ρt w1t

ñ C ´1
22 C21C ´1

11 C12C ´1
22 C21w1t “ ρt C ´1

22 C21w1t

ñ H̃ w2t “ ρt w2t ; where w2t “ C ´1
22 C21w1t . (4.13)

So, the t -th eigenvector w2t of H̃ is proportional to C ´1
22 C21 and can be obtained from

the t -th eigenvector w1t of H using (4.2.2). So, from (4.2.2), it is also clear that either
H or H̃ is enough to calculate the eigenvectors of H and H̃ . Assuming p=minpm1,m2q,
p eigenvalue-eigenvector pairs can be calculated using Jacobi method [90]. Then, p pairs
of basis vectors and p pairs of canonical variables are computed using (3.2.1) or (3.2.1)
and (3.11) of Chapter 3, respectively. Finally, p features can be extracted using (3.12)
of Chapter 3. The computational complexity of Jacobi method to compute p eigenvalue-
eigenvector pairs is Opp3q.

However, the value of p is large for real life high dimensional multimodal data analysis.
So, a small fraction, among the huge amount of extracted features, is effective to perform a
certain task. Furthermore, a small subset of extracted features is advisable to develop tools
for delivering interpretable, reliable, and precise results. Hence, the goal of multimodal data
analysis is to identify a reduced set of most relevant extracted features. This is referred to as
feature selection, and an important problem in machine learning. So, instead of generating
all p eigenvalue-eigenvector pairs using Jacobi method, if each eigenvalue-eigenvector pair
of H is generated sequentially, the quality of each extracted feature can be evaluated, and
finally, D features can be extracted for multimodal data analysis, where D ăă p. In the
proposed algorithm, each eigenvalue-eigenvector pair of H is calculated sequentially by
using the Power method [90]. The t -th eigenvalue-eigenvector pair can be calculated with
the help of the first eigenvalue-eigenvector pair as explained below. Following analysis
establishes that there is a direct relation between t -th and pt `1q-th eigenvalue-eigenvector
pairs, and using this relation, all correlated features can be extracted sequentially. Let us
assume that ρt and w1t be the t -th eigenvalue and corresponding eigenvector, respectively,
of H matrix. So,

Hw1t “ ρt w1t

ñ Hw1t wT
1t

“ ρt w1t wT
1t
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ñ H ´ Hw1t wT
1t

“ H ´ ρt w1t wT
xt

ñ
`

H ´ Hw1t wT
1t

˘

w1pt`1q
“
`

H ´ ρt w1t wT
1t

˘

w1pt`1q

ñ Hw1pt`1q
´ Hw1t wT

1t
w1pt`1q

“
`

H ´ ρt w1t wT
1t

˘

w1pt`1q

ñ Hw1pt`1q
“
`

H ´ ρt w1t wT
1t

˘

w1pt`1q
; (4.14)

where w1pt`1q
is the pt `1q-th eigenvector of H corresponding to the eigenvalue ρpt`1q, that

is,
Hw1pt`1q

“ ρpt`1qw1pt`1q
. (4.15)

Hence, from (4.2.2) and (4.15), we get

`

H ´ ρt w1t wT
1t

˘

w1pt`1q
“ ρpt`1qw1pt`1q

. (4.16)

Hence, from (4.16), it is proved that the pt`1q-th eigenvalue-eigenvector pair
!

ρpt`1q,w1pt`1q

)

of the matrix H is same as first eigenvalue-eigenvector pair of the matrix
`

H ´ ρt w1t wT
1t

˘

.
For calculating pt ` 1q-th eigenvalue-eigenvector pair, the matrices H and H̃ can be calcu-
lated, based on Deflation method [293], as follows:

H pt ` 1q “ H ptq ´ ρt w1t wT
1t

“ H p1q ´

t
ÿ

l “1

ρl w1l wT
1l
; (4.17)

H̃ pt ` 1q “ H̃ ptq ´ ρt w2t wT
2t

“ H̃ p1q ´

t
ÿ

l “1

ρl w2l wT
2l
. (4.18)

Therefore, ρpt`1q and w1pt`1q
can be calculated with the help of previously calculated

eigenvalue-eigenvector pairs, that is, ρl and w1l , @l “ 1, 2, ¨ ¨ ¨ , t . Hence, using (4.17),
each eigenvalue-eigenvector pair of matrix H can be calculated sequentially. So, for RCCA
with pi , jq-th regularization parameters of r1 and r2, to compute pt `1q-th basis eigenvector,
the matrices Hij and H̃ij can be calculated by using (4.2.1), (4.17) and (4.2.1), (4.18) as
follows:

Hij pt ` 1q “ Hij p1q ´

t
ÿ

l “1

ρlij w1lij
wT
1lij

“ H11 ` Bij ´

t
ÿ

l “1

ρlij w1lij
wT
1lij
; (4.19)

and H̃ij pt ` 1q “ H̃ij p1q ´

t
ÿ

l “1

ρlij w2lij
wT
2lij

“ H̃11 ` B̃ij ´

t
ÿ

l “1

ρlij w2lij
wT
2lij
; (4.20)

where @t P t1, 2, ¨ ¨ ¨ , pu, p “ minpm1,m2q, @i P t1, 2, ¨ ¨ ¨ , t1u, and @j P t1, 2, ¨ ¨ ¨ , t2u.
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4.2.3 Relevance and Significance for Regularization

In the current work, significant and relevant features are extracted from two multidimen-
sional data sets using the concept of hypercuboid equivalence partition matrix [172] of
rough hypercuboid approach, described in Chapter 3. The regularization parameters are
optimized through computing these two measures. Let X1 P ℜm1ˆn and X2 P ℜm2ˆn be
two multidimensional data sets with m1 and m2 variables or attributes, respectively, and
n samples. Let us assume that each attribute is centered to have zero mean across the
samples. Let t1 and t2 be the number of possible values of regularization parameters r1 and
r2, respectively. The value of each regularization parameter is varied within a certain range
rrmin , rmax s, where rmin ď r1, r2 ď rmax . Let Ftij be the t -th extracted feature with pi , jq-th
regularization parameters of r1 and r2 and γFt pDq is the relevance of the feature Ft with
respect to the class labels D, which is given in (3.47) of Chapter 3. Define σtFt ,Fl upD,Ft q as
the significance of the feature Ft with respect to another feature Fl P S, where S is the set
of D selected features and D ď minpm1,m2q. The change in joint relevance or dependency
when a feature is discarded from the set of features, is a measure of the significance of the
feature. To what extent a feature contributes for computing the dependency on class labels
can be computed by the significance of the feature. The significance σtFt ,Fl upD,Ft q of the
feature Ft with respect to the feature set tFt ,Fl u is given in (3.33) of Chapter 3.

Hence, the problem of extracting a relevant and significant feature set S from all possible
combinations of regularization parameters r1 and r2 is equivalent to maximizing the average
relevance of all extracted features as well as maximizing the average significance among
them. The problem of generating the set S from two multiblock data sets is addressed by
Algorithm 4.1.

4.2.4 Complexity Analysis

Let X1 and X2 be the two datasets with n samples and c classes, where m1 and m2 rep-
resent the number of features in X1 and X2, respectively. Let us assume that the reg-
ularization parameters r1 and r2 have t1 and t2 possible values. Let q “ maxpm1,m2q

and p “ minpm1,m2q, where the number of extracted features D ăă p. The computa-
tional complexity to calculate cross-covariance matrix C12 is Oppqnq, whereas the total time
complexity to compute covariance matrices C11 and C22 is Opp2n ` q2nq. In step 3, the
eigenvalues Λ1 and Λ2, along with corresponding eigenvectors Ψ1 and Ψ2, can be calculated
with complexity Opp3`q3q using Jacobi method. Hence, the total time complexity of these
three steps is Oppqn` p2n` q2n` p3 ` q3q « Opq3q. The total time complexity to compute
C ´1
11 and C ´1

22 is Opp3 ` q3q. So, step 4, for computing the matrix H11, has computational
complexity Opp3 ` p2q ` pq2 ` q3q « Opq3q. Step 5 has constant time complexity, which is
Op1q.

There is a loop in step 6, which is executed D times. The first step of this loop has
constant complexity of Op1q and the next step has another loop, which is executed pt1 ˆ t2q

times. The computational complexity to calculate Bij or B̃ij is Opp2 ` q2 ` p2q ` pq2q «

Oppq2q. Hence, the total complexity of step 6(b)(i) is Oppq2 ` p2q « Oppq2q. The next
step has Opp2q time complexity to calculate the eigenvalue and corresponding eigenvector
(which is a basis vector) using the Power method. On the other hand, another basis vector
can be calculated with time complexity Oppq2 ` pqq. So, step 6(II)(ii) has total complexity
Opp2 ` pq2 ` pqq « Oppq2q. The total time complexity for computing canonical variables
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Algorithm 4.1 FaRoC: Fast and Robust Supervised CCA
Input: Two multidimensional variables X1 and X2.
Output: A set S of D selected features.
1: Calculate the cross-covariance matrix C12 P ℜm1ˆm2 of X1 and X2 using (3.2) of Chapter

3.
2: Calculate the covariance matrices C11 P ℜm1ˆm1 and C22 P ℜm2ˆm2 of X1 and X2 using

(3.3) and (3.4) of Chapter 3, respectively.
3: Calculate the eigenvalues Λ1 P ℜm1 and Λ2 P ℜm2 of C11 and C22, along with corre-

sponding eigenvectors Ψ1 and Ψ2 using Jacobi method.
4: If m1 ď m2, calculate H11 using (3.30) of Chapter 3, otherwise calculate H̃11 using

(3.31) of Chapter 3.
5: Initialize S Ð H and t “ 1.
6: for each t ď D do

(I) Initialize C Ð H.

(II) for each pi , jq-th regularization parameters of r1 and r2, where @i P t1, 2, ¨ ¨ ¨ , t1u

and @j P t1, 2, ¨ ¨ ¨ , t2u; if m1 ď m2 (respectively, m1 ą m2) do

(i) If t “ 1, calculate Hij ptq using (4.2.1) (respectively, H̃ij ptq using (4.2.1)),
otherwise using (4.19) (respectively, using (4.20)).

(ii) Calculate largest eigenvalue ρtij and eigenvector w1tij
(respectively, w2tij

) of
matrix Hij ptq (respectively, H̃ij ptq) using Power method and (4.2.2), where
w1tij

and w2tij
are the t -th basis vectors.

(iii) Calculate the t -th pair of canonical variables tU1tij
,U2tij

u using (3.11) of Chap-
ter 3.

(iv) Compute the t -th extracted feature Ftij corresponding to pi , jq-th pair of reg-
ularization parameters using (3.12) of Chapter 3.

(v) Calculate the relevance γFtij
pDq of Ftij using (3.47) of Chapter 3.

(vi) Calculate the significance σtFtij ,Fl upD,Ftij q of Ftij with respect to each Fl of the
already-selected features of S using (3.33) of Chapter 3.

(vii) Add Ftij to C if its significance is non-zero with respect to all of the selected
features of S. In effect, C “ C

Ť

Ftij .

(III) end for

(IV) If C ‰ H, select a feature as t -th feature Ft from all the features of C, which
maximizes the following condition:

γFtij
pDq if k “ 1

γFtij
pDq ` 1

t´1

ÿ

Fl PS
σtFtij ,Fl upD,Ftij q otherwise. (4.21)

As a result of that, S “ S
Ť

Ft and t “ t ` 1.

7: end for
8: Stop.

56



U1 and U2 in step 6(II)(iii) is Oppn ` qnq. The computational complexity to extract a
feature F is Opnq. The time complexity to compute both relevance and significance of a
feature is same, which is Opcnq. Hence, the total complexity to execute the loop pt1 ˆ t2q

times is Opt1t2ppq2 ` pq2 ` pn` qn`n` cnqq « Opt1t2pq2q. The selection of a feature from
pt1 ˆ t2q candidate features by maximizing relevance and significance, which is carried out
in step 6(IV), has complexity Opt1t2q. Hence, the total complexity to execute the loop D
times is OpDpt1t2pq2 ` t1t2qq « OpDt1t2pq2q. Hence, the overall computational complexity
of the proposed algorithm is Opq3 ` Dt1t2pq2q « Opq2pq ` Dt1t2pqq.

4.3 Performance Analysis

The performance of the proposed feature extraction algorithm, termed as FaRoC, is exten-
sively studied and compared with that of some existing CCA based algorithms. The algo-
rithms compared are CCA, RCCA, several variants of SRCCA using t-test (SRCCATT) [91],
Wilcoxon rank sum test (SRCCAWR) [91], Wilks’s lambda test (SRCCAWL) [91], mutual
information (SRCCAMI), rough hypercuboid (SRCCARH), and CuRSaR [174] presented
in Chapter 3. The performance of the rough hypercuboid approach is also compared
with that of mutual information in the proposed feature extraction framework. The
support vector machine (SVM) [274] with linear kernels is used to compute this error.
All the algorithms are implemented in C language and run in Ubuntu 14.04 LTS hav-
ing machine configuration Intel(R) Core(TM) i7-4790 CPU @ 3.60GHzˆ8 and 32 GB
RAM. Both r1 and r2 are varied within r0.0, 1.0s with 0.1 as common difference. The
source code of the proposed FaRoC algorithm, written in C language, is available at
https://www.isical.ac.in/~bibl/results/faroc/faroc.html.

Both 10-fold cross-validation (CV) and training-testing are performed to assess the
performance of different algorithms. To analyze the statistical significance of the derived
results in 10-fold CV, paired-t test (one-tailed), Wilcoxon signed rank test (one-tailed)
and Friedman test (one-tailed), with a 95% confidence level, are used to compute the p-
values. For training-testing, the randomly selected 50% samples from each class are used
for training and the rest are used for testing purpose for each of the data sets. For each
data set, 25 top-ranked correlated features are selected for the analysis.

Five multimodal data sets, namely, glioblastoma multiforme (GBM), lung (LUNG),
kidney (KIDNEY), lower grade glioma (LGG), and ovarian serous cystadenocarcinoma
(OV), are used in the current research work, each having two different modalities, namely,
DNA methylation (mDNA) and RNA. The other hand, the details of the gene (RNA)
have been taken from RNA sequences in LUNG, KIDNEY, and LGG data sets, while gene
expression provides gene-related information in the GBM and OV data sets. These data
sets are downloaded from TCGA (https://cancergenome.nih.gov/). All five data sets
are summarized in Table 3.1 of Chapter 3 and briefly described in Appendix A.

4.3.1 Importance of Rough Hypercuboid Approach

In the proposed FaRoC algorithm, both relevance and significance measures of an extracted
feature are computed based on the concept of hypercuboid equivalence partition matrix.
The relevance of an extracted feature with respect to decision attribute set or class labels is
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calculated as per (3.47) of Chapter 3, while the significance of a feature is calculated using
(3.33) of Chapter 3 with respect to the already-extracted features. In this regard, it should
be noted that other measures like mutual information can also be employed for computing
both the significance and relevance of a feature. Figure 4.1 and Figure 4.2 establish the
importance of the rough hypercuboid approach over mutual information considering all five
data sets using both 10-fold CV and training-testing. All the results reported in Figure 4.1
and Figure 4.2 confirm that the performance of hypercuboid equivalence partition matrix
of rough hypercuboid approach is significantly better than that of mutual information,
irrespective of the data sets used and number of extracted features.
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Figure 4.1: Variation of classification accuracy with respect to number of extracted features
using mutual information and rough hypercuboid in the proposed framework for 10-fold
CV.

Table 4.1: Classification Accuracy and Execution Time for Mutual Information and Rough
Hypercuboid

Data Measure Accuracy Accuracy and Significance Analysis for 10-Fold CV Time
Sets (Train-Test) Mean Median StdDev Paired-t:pWilcoxon:pFriedman:p(in sec.)

GBM MI 0.343 0.442 0.458 0.145 4.43E-05 2.47E-03 1.57E-03 3057.4
RH 0.771 0.788 0.792 0.050 - - - 3116.7

LUNG MI 0.758 0.748 0.768 0.107 7.28E-05 2.47E-03 1.57E-03 3006.3
RH 0.872 0.954 0.946 0.034 - - - 2340.3

KIDNEY MI 0.618 0.710 0.694 0.126 1.71E-04 3.42E-03 1.14E-02 3952.9
RH 0.974 0.952 0.935 0.023 - - - 3576.0

LGG MI 0.624 0.650 0.618 0.145 5.31E-03 6.31E-03 1.96E-02 3150.7
RH 0.860 0.782 0.803 0.074 - - - 2803.3

OV MI 0.402 0.427 0.432 0.205 3.33E-04 5.81E-03 4.68E-03 3365.6
RH 0.951 0.768 0.773 0.045 - - - 2921.0
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Figure 4.2: Variation of classification accuracy with respect to number of extracted features
using mutual information and rough hypercuboid in the proposed framework for training-
testing.
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Figure 4.3: Scatter plots for mutual information (top row) and rough hypercuboid (bottom
row) in the proposed framework, along with class separability index.

Moreover, Figure 4.3 compares the performance of the rough hypercuboid approach
and mutual information using the scatter plots and class separability index, on five data
sets. The x-axis and y-axis of each plot represent the first and second extracted features.
The value of the class separability index (CSI) is also reported at the top of each figure.
From the results reported in Figure 4.3, it is evident that the CSI of the extracted features
using mutual information is lower compared to that of hypercuboid equivalence partition
matrix. The qualitative results in Figure 4.3 show that the relevant and significant features
extracted using mutual information cannot separate the classes properly, particularly for
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the OV data set. On the other hand, the results reported in Figure 4.3 demonstrate
that the features which are most relevant and significant according to rough hypercuboid
equivalence partition matrix can separate the classes properly, even on the OV data set.

Table 4.1 compares the performance of hypercuboid equivalence partition matrix and
mutual information in terms of the classification accuracy, both for training-testing and
10-fold CV. To perform the statistical significance analysis, the p-values computed using
different tests are also reported in Table 4.1. Comparing the results in Table 4.1, it is
apparent that rough hypercuboid approach attains higher mean and median accuracy than
mutual information, irrespective of the data sets used. In all 15 cases, the hypercuboid
equivalence partition matrix achieves significantly better (marked in bold) p-values than
mutual information.

All the results reported in Figure 4.1, Figure 4.2, Figure 4.3, and Table 4.1 demonstrate
that the hypercuboid equivalence partition matrix determines more relevant and significant
features than mutual information does. The significantly better performance of the rough
hypercuboid based proposed approach is obtained due to the fact that the quality of an
extracted feature set, in rough hypercuboid approach, is evaluated by the hypercuboid
equivalence partition matrix that makes use of supervised information of sample categories
in the granulation process. Also, it provides an efficient way to calculate relevance and
significance in approximation spaces. The proposed FaRoC algorithm, in effect, is able to
generate a reduced set of significant and relevant features from multimodal data sets.

4.3.2 Importance of Sequential Feature Generation

The proposed FaRoC algorithm extracts D features sequentially from five multidimensional
data sets, based on their individual relevance with respect to class label and significance
with respect to the already-extracted features. However, D features can be extracted si-
multaneously by the maximum relevance-maximum significance criterion as done in CuR-
SaR [174], presented in Chapter 3. In order to establish the importance of sequential
feature generation of the proposed FaRoC algorithm over simultaneous feature generation
by CuRSaR, extensive experimental results are reported in Figure 4.4 and Figure 4.5. The
results reported in Figure 4.4 and Figure 4.5 establish the fact that the FaRoC outperforms
CuRSaR in almost all the cases, irrespective of the data sets and the number of extracted
features. Comparing the bottom row of Figure 3.6 of Chapter 3 with the bottom row of
Figure 4.3, it is evident that the FaRoC can separate the classes more accurately than
CuRSaR. Also, the features extracted using FaRoC have higher CSI values than that of
CuRSaR, except for GBM data set.

Table 4.2 reports the statistical significance analysis of CuRSaR with respect to FaRoC.
The proposed FaRoC algorithm attains significantly better p-values (marked in bold) than
CuRSaR in 10 cases, out of total 15 cases, considering 95% confidence level. On the other
hand, the FaRoC provides better but not significant (marked in italics) p-values in only 5
cases, for Friedman test on all data sets except the LGG data and paired-t test on GBM
data set. The better performance of the FaRoC algorithm over CuRSaR is achieved due to
the fact that the FaRoC considers different pairs of regularization parameters for different
features, while the CuRSaR extracts a set of features for a fixed pair of parameters. In
effect, the extracted features are more relevant and significant for the FaRoC than the
CuRSaR.
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Figure 4.4: Variation of classification accuracy with respect to number of extracted features
for CuRSaR and FaRoC in case of 10-fold CV.
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Figure 4.5: Variation of classification accuracy with respect to number of extracted features
for CuRSaR and FaRoC in case of training-testing.

4.3.3 Comparative Performance Analysis

Finally, Figure 4.6 and Figure 4.7, and Table 4.2 compare the performance of the proposed
FaRoC algorithm with that of several existing SRCCA algorithms, namely, SRCCATT [91],
SRCCAWR [91], SRCCAWL [91], SRCCAMI, and SRCCARH. Results are reported in Fig-
ure 4.6 and Figure 4.7 for different number of extracted features on all five data sets, while
Table 4.2 reports the p-values to analyze the statistical significance of the results obtained
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Table 4.2: Statistical Significance Analysis of Different Algorithms

Different Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman

CCA

G
B

M

2.36E-07 2.50E-03 1.57E-03
RCCA 2.93E-07 2.46E-03 1.57E-03

SRCCATT 6.28E-07 2.50E-03 1.57E-03
SRCCAWL 1.77E-07 2.49E-03 1.57E-03
SRCCAWR 1.77E-07 2.49E-03 1.57E-03
SRCCAMI 7.23E-04 2.52E-03 1.57E-03
SRCCARH 2.02E-03 7.19E-03 5.78E-02
CuRSaR 5.40E-02 4.49E-02 5.88E-02

CCA

LU
N

G

1.85E-05 2.50E-03 1.57E-03
RCCA 1.11E-05 2.53E-03 1.57E-03

SRCCATT 6.62E-05 2.52E-03 1.57E-03
SRCCAWL 8.17E-06 2.53E-03 1.57E-03
SRCCAWR 4.20E-05 2.52E-03 1.57E-03
SRCCAMI 4.50E-05 2.53E-03 1.57E-03
SRCCARH 7.84E-05 2.52E-03 1.57E-03
CuRSaR 1.76E-02 1.71E-02 5.88E-02

CCA

K
ID

N
E

Y

1.05E-04 2.52E-03 1.57E-03
RCCA 1.16E-03 3.79E-03 2.70E-03

SRCCATT 5.12E-04 2.49E-03 1.57E-03
SRCCAWL 5.12E-04 2.49E-03 1.57E-03
SRCCAWR 5.12E-04 2.49E-03 1.57E-03
SRCCAMI 4.11E-04 2.49E-03 1.57E-03
SRCCARH 1.78E-03 3.42E-03 1.14E-02
CuRSaR 4.79E-02 4.78E-02 1.03E-01

CCA

LG
G

9.35E-07 2.50E-03 1.57E-03
RCCA 2.39E-08 2.50E-03 1.57E-03

SRCCATT 5.51E-08 2.50E-03 1.57E-03
SRCCAWL 1.61E-07 2.39E-03 1.57E-03
SRCCAWR 1.61E-07 2.39E-03 1.57E-03
SRCCAMI 1.68E-03 6.23E-03 1.14E-02
SRCCARH 1.91E-02 3.31E-02 2.06E-01
CuRSaR 6.86E-04 3.92E-03 1.14E-02

CCA

O
V

7.62E-06 2.53E-03 1.57E-03
RCCA 8.12E-07 2.52E-03 1.57E-03

SRCCATT 4.67E-07 2.53E-03 1.57E-03
SRCCAWL 4.67E-07 2.53E-03 1.57E-03
SRCCAWR 4.67E-07 2.53E-03 1.57E-03
SRCCAMI 2.12E-05 3.82E-03 2.70E-03
SRCCARH 5.03E-04 5.40E-03 1.96E-02
CuRSaR 2.03E-02 2.92E-02 1.57E-01

using existing algorithms with respect to the proposed FaRoC algorithm. Comparing Table
3.3 of Chapter 3 with Table 4.1, it is evident that the proposed FaRoC algorithm attains
highest mean and median accuracy, irrespective of the data sets. The proposed algorithm
attains significantly better p-values (marked in bold) than several existing data integration
algorithms in 103 cases of total 105 cases, considering 95% confidence level. On the other
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Figure 4.6: Variation of classification accuracy with respect to number of extracted features
for several existing algorithms and the proposed (FaRoC) algorithm on 10-fold CV.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

GBM

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

LUNG

CCA

RCCA

SRCCATT

SRCCAWL

SRCCAWR

SRCCAMI

SRCCARH

FaRoC

0.50

0.60

0.70

0.80

0.90

1.00

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

KIDNEY

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

LGG

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

OV

Figure 4.7: Variation of classification accuracy with respect to number of extracted features
for several existing algorithms and the proposed (FaRoC) algorithm on training-testing.

hand, the proposed FaRoC algorithm provides better but not significant (marked in italics)
p-values in only 2 cases. Comparing the scatter plots at bottom row of Figure 4.3 and the
first seven columns of Figure 3.9 of Chapter 3, it is noticeable that the proposed algorithm
is able to separate different classes using the first two extracted features only for all five
data sets, which is also evident from the corresponding class separability index values. On
the other hand, the classes are hardly separable using all existing algorithms.
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4.4 Conclusion

This chapter presents a new feature extraction algorithm, termed as FaRoC, for two multi-
dimensional data sets. The merits of CCA and rough sets have been integrated judiciously
to develop the proposed algorithm. To establish the relation between regularization pa-
rameters and CCA, a theoretical formulation has been presented based on spectral de-
composition, which helps the proposed FaRoC algorithm to extract the required number
of correlated features sequentially. The proposed algorithm extracts a new feature from
two multidimensional data sets by maximizing its relevance with respect to class label and
significance with respect to already-extracted features. The hypercuboid equivalence par-
tition matrix of rough hypercuboid approach has been used to compute both the relevance
and significance of a feature. The optimum regularization parameters of CCA have been
determined using the equivalence partition matrix. The effectiveness of the proposed algo-
rithm, along with a comparison with other algorithms, has been demonstrated considering
two different modalities, namely, RNA and mDNA. The hypercuboid equivalence partition
matrix is found to be successful in extracting relevant and significant features from mul-
timodal high dimensional real-life data sets. The current formulation shows the utility of
rough hypercuboid approach and canonical correlation analysis with respect to knowledge
discovery tasks.

Both CuRSaR and FaRoC, presented in Chapter 3 and Chapter 4, respectively, can
only account for two sets of variables. The multiset canonical correlation analysis (MCCA)
is a well-known statistical method for multi-view data integration. However, the existing
algorithms to find the multiset canonical variables are computationally very expensive,
which restricts the application of the MCCA in real-life big data analysis. The covariance
matrix of each high-dimensional view may also suffer from the singularity problem due to
the limited number of samples. Moreover, the MCCA based existing feature extraction
algorithms are, in general, unsupervised in nature. In this regard, a new supervised fea-
ture extraction algorithm is introduced in the next chapter, which integrates multimodal
multidimensional data sets by solving maximal correlation problem of the MCCA. The an-
alytical formulation enables efficient computation of the multiset canonical variables under
supervised ridge regression optimization technique.
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Chapter 5

Regularized Discriminant
Multiset CCA

5.1 Introduction

As mentioned in Chapter 3 and Chapter 4, there has been a growing interest in multi-view
learning in recent years. In many real-world applications, multiple views or modalities pro-
vide relevant and complementary information about a specific problem. The integration of
relevant and non-redundant features from a wide range of modalities is expected to result
in better predictors, as compared to any individual modality [85,128,158,247,250,300]. The
naive integration of multiblock data generates a concatenated feature set, which intensifies
the “curse of dimensionality” problem. To overcome the issues associated with dimension-
ality, scale, and kernel-based weighting, canonical correlation analysis (CCA) [112] can be
used to analyze the inter-dependency between two multidimensional variables. In real-
world data analysis, the dimension of feature space p is significantly higher compared to
the limited number of samples n. This ‘large p and small n’ problem makes the features of
a data set highly collinear, which leads to ill-conditioning of the covariance matrix of the
multidimensional variable. To deal with the singularity issue of covariance matrices, reg-
ularized CCA (RCCA) has been introduced in [278]. However, both CCA and RCCA fail
to take complete advantage of available information of sample categories, as they are un-
supervised in nature [266]. To achieve better classification performance, both discriminant
CCA [253] and supervised RCCA [91,174,183] utilize the supervised class information.

The CCA [112], RCCA [278], and different variants of supervised CCA [91, 174, 183,
253,266] can only account for two sets of variables. Multiset canonical correlation analysis
(MCCA) [110] extends the CCA for more than two views by finding a linear subspace
which maximizes the correlations between all the views. The objective of the MCCA
is to find linear relationships among several blocks of variables. While correlation-based
MCCA methods [109,110, 135] consider only between-block information, covariance-based
methods [61, 100, 262, 263] take into account both the between-block and within-block
information. In [100, 135, 262], several criteria have been studied to extend the CCA
for three or more sets of variables. Among all these criteria, the sum of correlations
(SUMCOR) is widely used to integrate more than two sets of multidimensional vari-
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ables [84, 131, 205], although the maximum variance (MAXVAR) criterion has also been
used in [83] to address the nonnegativity and sparsity on the canonical components. In [43],
a novel graph-regularized MCCA (GMCCA) algorithm has been proposed to minimize the
distance among the canonical variables based on MAXVAR criterion. The importance
of the kernel in the GMCCA has been established in [43], where graph-regularized ker-
nel MCCA (GMKCCA) has been introduced. There exist several important scientific
fields [63, 69, 164, 239, 260] where the MCCA has been successfully applied to integrate
the information of several multidimensional variables. In recent years, the deep learning
framework has been used to learn non-linear transformations from different modalities by
computing the canonical variables of the MCCA [40,55,165,244].

Regularized generalized CCA (RGCCA) is a generalization of the regularized CCA for
three or more sets of variables [262]. It combines the power of multiblock data analysis
methods and flexibility of partial least squares path modeling. To deal with the singularity
issue of the covariance matrix of each multidimensional variable, an optimal shrinkage
parameter is estimated for each variable, which reduces the values of off-diagonal elements
of each covariance matrix, while diagonal elements remain same [262]. Instead of reducing
the off-diagonal elements of a covariance matrix, if the diagonal elements could be increased
by adding a regularization parameter, the search space for finding the canonical variables
will increase. This may help to improve the performance of multimodal data analysis.
Moreover, all the MCCA based methods reported earlier are unsupervised in nature and
do not utilize the available class label information. The Horst-Jacobi algorithm [110], which
has Jacobi type recurrence structure, is the earliest iterative algorithm to solve the basis
vectors of the MCCA. In [50], an improvement of the Horst-Jacobi algorithm, known as
Gauss-Seidel algorithm, has been developed by adopting the Gauss-Seidel type iteration.
However, both of these algorithms [50, 110] compute the basis vectors for each block in
every iteration, which makes them computationally expensive.

In this regard, this chapter presents a new supervised feature extraction algorithm,
termed as ReDMiCA (Regularized Discriminant Multi-View CCA), for multimodal data
sets. It integrates multi-view multidimensional data sets by solving the maximal corre-
lation problem (MCP). A new block matrix representation is introduced to compute the
basis vectors of the MCCA, which reduces the computational cost for solving the canonical
variables. The proposed algorithm deals with the ‘large p and small n’ issue of multidi-
mensional data sets by using ridge regression optimization, where regularization parameters
are optimized using the supervised information of available sample categories. A theoret-
ical analysis is presented, which helps to compute the multiset canonical variables under
ridge regression from the canonical variable of the modality having lowest dimension. The
analysis also ensures that the proposed algorithm can generate sequentially the required
number of relevant and significant features, without extracting all plausible features. The
proposed algorithm, in turn, has significantly lesser complexity than the existing methods.
The effectiveness of the proposed algorithm, along with a comparison with state-of-the-art
methods, is established on several benchmark and real-life multiblock data. Some of the
results of this chapter are reported in [185].

The rest of the chapter is organized as follows: Section 5.2 outlines the basic principles
of MCCA. Section 5.3 presents the proposed multi-view algorithm. The effectiveness of
the proposed multi-view data integration algorithm, along with a comparative performance
analysis with state-of-the-art algorithms on different multi-view benchmark and omics data
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sets, is presented in Section 5.4. Concluding remarks are provided in Section 5.5.

5.2 Basics of Multiset CCA

The CCA, proposed by Hotelling [112], refers to the MCP, where the goal is to find the linear
combination of one set of variables that correlates maximally with the linear combination of
another set of variables. If the maximal correlation can be satisfactorily established, then
one set of variables can be used to predict the other one. The MCCA [110] is a well-known
statistical method, which is used to analyze the linear relations among more than two sets
of multidimensional variables. It extracts most correlated latent features from M data sets,
X1 P ℜm1ˆn, X2 P ℜm2ˆn, ¨ ¨ ¨ , and XM P ℜmM ˆn, by solving the MCP. Each column in Xi
represents one of the n samples, whereas each row corresponds to one of the mi variables,
where mi is the dimension of each sample of the i -th variable Xi . Without loss of generality,
it is assumed that each multidimensional variable is centered to have zero mean across the
samples, that is, ErXi s “ 0,@i P t1, 2, ¨ ¨ ¨ ,M u.

The main objective of the MCCA is to find the optimal basis vectors w1 P ℜm1 , w2 P

ℜm2 , ¨ ¨ ¨ , and wM P ℜmM that maximize some merit functions under certain constraints.
Some of the constraints are as follows:

i) the basis vectors are unit vectors within each set, that is, wi
T wi “ 1;

ii) the sum of the variances of the canonical variables is unity, that is,
M
ř

i“1
Ui Ui

T “

M
ř

i“1
wi

T Cii wi “ 1;

where AT denotes the transpose of the matrix A, Ui “ wi
T Xi is the i -th canonical variable

and Cii “ Xi Xi
T P ℜmi ˆmi denotes the covariance matrix of Xi . Generally, the following

constrained optimization problem is considered to maximize the sum of correlations across
all pairs of modalities [110,205]:

max
twi u

M
i“1

M
ÿ

i“1

M
ÿ

j“1
j‰i

wi
T Cij wj ; (5.1)

subject to
M
ÿ

i“1

wi
T Cii wi “ 1; (5.2)

where Cij “ Xi Xj
T P ℜmi ˆmj is the cross-covariance matrix of Xi and Xj . The above approach

is known as the SUMCOR. The Lagrangian of this problem is given by [205]

L “

M
ÿ

i“1

M
ÿ

j“1
j‰i

wi
T Cij wj ´ ρ

˜

M
ÿ

i“1

wi
T Cii wi ´ 1

¸

; (5.3)

where ρ is the Lagrange multiplier. Differentiating L with respect to wi , and setting the
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vectors of derivative to zero, we obtain the following equation [50,314]:

M
ÿ

j“1
j‰i

Cii
´1Cij wj “ ρwi , @i P t1, 2, ¨ ¨ ¨ ,M u;

ñ

»

—

—

—

–

0rm1s C ´1
11 C12 ¨ ¨ ¨C ´1

11 C1M

C ´1
22 C21 0rm2s ¨ ¨ ¨C ´1

22 C2M
...

...
. . .

...
CMM

´1CM 1 CMM
´1CM 2 ¨ ¨ ¨ 0rmM s

fi

ffi

ffi

ffi

fl

»

—

—

—

–

w1

w2
...

wM

fi

ffi

ffi

ffi

fl

“ ρ

»

—

—

—

–

w1

w2
...

wM

fi

ffi

ffi

ffi

fl

ñ AM WM “ ΓWM ; (5.4)

where AM P ℜ
M
ř

i“1
mi ˆ

M
ř

i“1
mi

and WM P ℜ
M
ř

i“1
mi

, and Γ is a diagonal matrix with same (“ ρ)
diagonal elements.

Either Horst-Jacobi [110] or Gauss-Seidel algorithm [50] can be used to solve the basis
vectors of the MCCA. Both the algorithms compute M basis vectors tw1,w2, ¨ ¨ ¨ ,wM u for
M blocks in every iteration, which makes these algorithms computationally very expensive.
The computational complexity to calculate each basis vector is Opm2

Mn`mMmM ´ 1n`

m3
M `m2

MmM ´1`mMmM ´1q « Opm3
M q, where mM ě mM ´1 ě ¨ ¨ ¨ ě m1. Hence, each

iteration has the time complexity OpMm3
M q to compute all the basis vectors. If η denotes

the maximum number of iterations required to converge, each algorithm has OpηMm3
M q

time complexity.

5.3 ReDMiCA: Proposed Algorithm

This section presents a new sequential feature extraction algorithm, termed as ReDMiCA,
which integrates the information of multidimensional multimodal data sets. To establish
the importance of the proposed algorithm, some important analytical formulations are
presented in this section.

5.3.1 Block Matrix to Solve Basis Vectors of MCCA

To find the basis vectors of the MCCA, either Horst-Jacobi or Gauss-Seidel algorithm can
be used, which are iterative in nature, and hence time consuming. A new approach, using
the properties of block matrix, is proposed in this regard to evaluate the basis vectors. Let
us consider from (5.4) that

AM “

»

—

—

—

–

0rm1s a12 ¨ ¨ ¨ a1M

a21 0rm2s ¨ ¨ ¨ a2M
...

...
. . .

...
aM 1 aM 2 ¨ ¨ ¨ 0rmM s

fi

ffi

ffi

ffi

fl

;
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where aij “ Cii
´1Cij . Now,

AM “

»

—

—

—

—

—

–

»

—

—

—

–

0rm1s a12 ¨ ¨ ¨ a1pM ´1q

a21 0rm2s ¨ ¨ ¨ a2pM ´1q

...
...

. . .
...

apM ´1q1 apM ´1q2 ¨ ¨ ¨ 0rmM ´1s

fi

ffi

ffi

ffi

fl

»

—

—

—

–

a1M
a2M
...

apM ´1qM

fi

ffi

ffi

ffi

fl

“

aM 1 aM 2 ¨ ¨ ¨ aM pM ´1q

‰

0rmM s

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

ApM ´1q 0
r

M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

0rmM s

fi

ffi

ffi

fl

`

»

–0
r

M ´1
ř

i“1
mi s

ΘpM´1q

ΦpM ´1q 0rmM s

fi

fl ; (5.5)

where ΘpM ´1q “

»

—

—

–

a1M
a2M
¨ ¨ ¨

apM ´1qM

fi

ffi

ffi

fl

; (5.6)

and ΦpM ´1q “
“

aM 1 aM 2 ¨ ¨ ¨ aM pM ´1q

‰

; (5.7)

0rk s and 0rk ,l s denote the square null matrix with dimension k and rectangular null matrix
with dimension k ˆ l , respectively. Let us assume that

pBpM ´1q “

»

– 0
r

M ´1
ř

i“1
mi s

ΘpM ´1q

ΦpM ´1q 0rmM s

fi

fl

has eigenvectors Ψ “ rΨ1, Ψ2, ¨ ¨ ¨ , Ψps with corresponding eigenvalues λ1, λ2, ¨ ¨ ¨ , λp, where

Ψt “

„

ψ1t
ψ2t

ȷ

and ψ1t P ℜm1`m2`¨¨¨`mpM ´1q

ψ2t P ℜmM

@t P t1, 2, ¨ ¨ ¨ , pu and p “ minpm1,m2, ¨ ¨ ¨ ,mM q.

Hence, pBpM ´1qΨ “ ΨΛ; (5.8)

where Λ is a diagonal matrix with diagonal elements λ1, λ2, ¨ ¨ ¨ , λp. So,

pBpM ´1qΨt “ λtΨt ; ñ

»

– 0
r

M ´1
ř

i“1
mis

ΘpM ´1q

ΦpM ´1q 0rmM s

fi

fl

„

ψ1t
ψ2t

ȷ

“ λt

„

ψ1t
ψ2t

ȷ

. (5.9)

From (5.9), we get

ΘpM ´1qψ2t “ λtψ1t ñ ψ1t “
1

λt
ΘpM ´1qψ2t ; (5.10)
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and ΦpM ´1qψ1t “ λtψ2t ñ ψ2t “
1

λt
ΦpM ´1qψ1t . (5.11)

Using (5.10) and (5.11), we get

ΘpM ´1qΦpM ´1qψ1t “ λ2t ψ1t ; (5.12)

and ΦpM ´1qΘpM ´1qψ2t “ λ2t ψ2t . (5.13)

Combining (5.12) and (5.13), we get

»

—

—

–

ΘpM ´1qΦpM ´1q 0
r

M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

ΦpM ´1qΘpM ´1q

fi

ffi

ffi

fl

„

ψ1t
ψ2t

ȷ

“ λ2t

„

ψ1t
ψ2t

ȷ

ñ rBpM ´1qΨt “ λ2t Ψt ;

ñ rBpM ´1qΨ “ ΨΛ2; (5.14)

where rBpM ´1q “

»

—

—

–

ΘpM ´1qΦpM ´1q 0
r

M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

ΦpM ´1qΘpM ´1q

fi

ffi

ffi

fl

;

and Λ2 is a diagonal matrix with diagonal elements λ21, λ22, ¨ ¨ ¨ , λ2p . Hence, (5.8) and (5.3.1)
lead to the conclusions that both the matrices pBpM ´1q and rBpM ´1q have same eigenvectors
Ψ “ rΨ1, Ψ2, ¨ ¨ ¨ , Ψps. However, the eigenvalues of the matrix rBpM ´1q are the square of the
corresponding eigenvalues of the matrix pBpM ´1q. So,

pBpM ´1q “ ΨΛΨT and rBpM ´1q “ ΨΛ2ΨT . (5.15)

Now, combining (5.8) and (5.15), we get

rBpM ´1q “ ΨΛΛΨT “ pBpM ´1qΨΛΨT “ pBpM ´1q
pBpM ´1q

ñ pBpM ´1q “ rB1{2
pM ´1q

. (5.16)

Using (5.3.1), the matrix AM of (5.3.1) becomes

AM “

»

—

—

–

ApM ´1q 0
r

M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

0rmM s

fi

ffi

ffi

fl

`

»

—

—

–

rΘpM ´1qΦpM ´1qs
1{2 0

r
M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

rΦpM ´1qΘpM ´1qs
1{2

fi

ffi

ffi

fl
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“

»

—

—

–

ApM ´1q ` rΘpM ´1qΦpM ´1qs
1{2 0

r
M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

rΦpM ´1qΘpM ´1qs
1{2

fi

ffi

ffi

fl

. (5.17)

According to (5.4), the eigenvectors of AM are the basis vectors w1,w2, ¨ ¨ ¨ ,wM of M
multidimensional variables, that is,

»

—

—

–

ApM ´1q ` rΘpM ´1qΦpM ´1qs
1{2 0

r
M ´1
ř

i“1
mi ,mM s

0
rmM ,

M ´1
ř

i“1
mi s

rΦpM ´1qΘpM ´1qs
1{2

fi

ffi

ffi

fl

„

WpM ´1q

wM

ȷ

“ ρ

„

WpM ´1q

wM

ȷ

; (5.18)

where WpM ´1q “

»

—

—

—

–

w1

w2
...

wpM ´1q

fi

ffi

ffi

ffi

fl

. (5.19)

From (5.18), it is evident that the eigenvectors of the matrices rApM ´1q`rΘpM ´1qΦpM ´1qs
1{2s

and rΦpM ´1qΘpM ´1qs
1{2 are WpM ´1q and wM , respectively, with corresponding eigenvalue ρ,

that is,
”

ApM ´1q ` rΘpM ´1qΦpM ´1qs
1{2

ı

WpM ´1q “ ρWpM ´1q; (5.20)

and rΦpM ´1qΘpM ´1qs
1{2wM “ ρwM . (5.21)

Using (5.21), it can be proved that the basis vector of the M -th multidimensional variable
is the eigenvector of the matrix rΦpM ´1qΘpM ´1qs with corresponding eigenvalue ρ2, as

rΦpM ´1qΘpM ´1qswM “ rΦpM ´1qΘpM ´1qs
1{2ρwM “ ρ2wM . (5.22)

Now,

ΦpM ´1qΘpM ´1q “

M ´1
ÿ

j“1

aMj ajM “

M ´1
ÿ

j“1

CMM
´1CMj Cjj

´1CjM ; (5.23)

and M ě 2. Hence, the basis vector of the i -th multidimensional variable is the eigenvector
of the following matrix

Hi “

M
ÿ

j“1
j‰i

Cii
´1Cij Cjj

´1Cji ; @i P t1, 2, ¨ ¨ ¨ ,M u. (5.24)

Using (5.24), it is now possible to find a basis vector by maximizing the correla-
tions among all the modalities. This is not the case for the conventional implementa-
tion of the MCCA as mentioned in (5.4), where the pairwise correlations are considered
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to find the basis vectors. The relation (5.24) also implies that the basis vector of the
i -th multidimensional variable is independent of the basis vectors of other canonical vari-
ables. It makes the proposed algorithm scalable. Unlike (5.4), as the relation (5.24) is
not iterative in nature, there is no need to calculate the eigenvectors of the matrix re-
peatedly to compute each basis vector. Without loss of generality, if we assume that
mM ě mM ´ 1 ě ¨ ¨ ¨ ě m1, the computational complexity to calculate the matrix Hi
becomes Opm2

Mn ` m3
M ` m2

M ´1n ` m3
M ´1 ` mMmM ´1n ` m2

MmM ´1 ` mMm
2
M ´1q «

Opm2
M pmM `mM ´1qq. On the other hand, the time complexity to calculate each basis vec-

tor is Opm3
M `m2

M pmM `mM ´1qq « Opm3
M q. Hence, all M basis vectors can be computed

with complexity OpMm3
M q, which is lesser than that of both Horst-Jacobi and Gauss-Seidel

algorithms.

5.3.2 Multiset Ridge Regression Model

From (5.24), it is seen that the inverse of the covariance matrix Cii is needed to compute
the basis vector wi ,@i P t1, 2, ¨ ¨ ¨ ,M u. If n ! mi , the covariance matrix Cii becomes non-
invertible. The singularity problem of the covariance matrix may also arise due to the
presence of noise in multimodal data [68]. In effect, it leads to the invalid computation
of the canonical variables. To overcome this problem, either the values of off-diagonal
elements of each covariance matrix could be reduced by a shrinkage parameter [262], or
the diagonal elements could be increased by adding a regularization parameter [278]. In
the proposed algorithm, a ridge regression optimization scheme is used by adding a small
positive quantity ri , known as regularization parameter, to the diagonals of the covari-
ance matrix Cii . It facilitates increased search space of finding the appropriate canonical
variables, which may help to improve the performance of multimodal data analysis.

Let us assume that the l -th dimension of the i -th multidimensional variable Xi rl s

is contaminated with noise εi rl s, @l P t1, 2, ¨ ¨ ¨ ,mi u and @i P t1, 2, ¨ ¨ ¨ ,M u, such that
Erεi rl ss “ 0, Erεi rl sεi rk sT s “ 0 for l ‰ k , Erεi rl sXi rl s

T
s “ 0 and Erεi rl sεi rl sT s “ ri ě 0.

Under these assumptions, the cross-covariance matrix of Xi and Xj is Cij , while the covari-
ance matrix of Xi becomes rCii `ri I s. To estimate the basis vector wi , the covariance matrix
Cii needs to be replaced by rCii ` ri I s. This modification is similar to the ridge regression
modification [278]. The optimal set of regularization parameters can be estimated in such
a way that the correlation between multiset canonical variables becomes maximum. To
estimate the optimal set of regularization parameters, a grid search optimization is per-
formed, where each regularization parameter ri follows an arithmetic progression and is
varied within a specified range rrmin , rmax s. Let di be the common difference for regular-
ization parameter ri , while the parameter ti indicates the number of possible values of ri .
Hence, to compute the matrix Hi of (5.24), the inverse of the covariance matrix of each
multidimensional variable has to be computed ti times. According to [174], as the diagonal
elements of Cii are only changed by adding ri , the eigenvalues of rCii ` pri ` ki di qI s are
changed, but the corresponding eigenvectors remain same @ki P t0, 1, ¨ ¨ ¨ , pti ´ 1qu. Also,
there exists a relation between the eigenvalues of rCii ` ri I s and that of rCii ` pri ` ki di qI s,
which is given by [248]

∆i ki “ ∆i ` ki di I ; (5.25)

where ∆i ki is the diagonal matrix, whose diagonal elements are the eigenvalues of rCii `pri `
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ki di qI s, ∆i “ ∆i 0 and I is the identity matrix of appropriate order. Let the corresponding
eigenvectors of the matrix rCii ` pri ` ki di qI s be the columns of Ωi . Based on spectral
decomposition, the covariance matrix rCii ` pri ` ki di qI s can be expressed as follows [269]:

rCii ` pri ` ki di qI s “ Ωi∆i kiΩ
T
i “ Ωi r∆i ` ki di I sΩT

i “

mi
ÿ

l “1

pδi l ` ki di qωi l ωi
T
l ; (5.26)

and the inverse covariance matrix rCii ` pri ` ki di qI s´1 can be computed as follows:

rCii ` pri ` ki di qI s´1 “

mi
ÿ

l “1

1

pδi l ` ki di q
ωi l ωi

T
l ; (5.27)

where the l -th element δi l of the diagonal matrix ∆i denotes the l -th eigenvalue of the
matrix rCii ` ri I s. The l -th column of the matrix Ωi represents the orthogonalized eigen-
vector ωi l corresponding to the eigenvalue δi l , @l P t1, 2, ¨ ¨ ¨ ,mi u. From (5.27), it can be
observed that there is no need to compute the eigenvalue for every regularization parameter
ri of each multidimensional variable Xi . It is sufficient to calculate the eigenvalues δi l and
eigenvectors ωi l of the covariance matrix corresponding to the initial value of ri . Moreover,
as the regularization parameters follow an arithmetic progression, the l -th element of each
diagonal matrix r∆i ` ki di I s is in arithmetic progression. Hence, the l -th element of each
diagonal matrix r∆i ` ki di I s´1 follows harmonic progression, that is, the l -th element of
all diagonal matrices r∆i ` ki di I s´1 be 1

δi l
, 1
δi l `di

, 1
δi l `2di

, ¨ ¨ ¨ , 1
δi l `pti ´1qdi

. Now,

1

δi l ` ki di
“

1

δi l
´

ki
ÿ

j“1

di
pδi l ` pj ´ 1qdi qpδi l ` jdi q

. (5.28)

Let us assume that Vi ki P ℜmi be a row vector, where

Vi ki “

»

—

—

—

—

–

di
pδi 1`pki ´1qdi qpδi 1`ki di q

di
pδi 2`pki ´1qdi qpδi 2`ki di q

...
di

pδi mi `pki ´1qdi qpδi mi `ki di q

fi

ffi

ffi

ffi

ffi

fl

T

;

@ki P t1, 2, ¨ ¨ ¨ , pti ´1qu. Let pCl and xDl be a column vector and a square matrix of dimension
mi , respectively, where

pCl rj s “

#

1 if l “ j ,
0 otherwise;

and xDl rj , t s “

#

1 if l “ j “ t ,
0 otherwise;
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@l , j , t P t1, 2, ¨ ¨ ¨ ,mi u. Hence, the diagonal matrix r∆i ` ki di I s´1 can be expressed as

r∆i ` ki di I s´1 “ ∆´1
i ´

mi
ÿ

l “1

ki
ÿ

j“1

pCl Vi j xDl . (5.29)

Using (5.29), the inverse covariance matrix of (5.27) can be expressed as

rCii ` pri ` ki di qI s´1 “ Ωi

»

–∆´1
i ´

mi
ÿ

l “1

ki
ÿ

j“1

pCl Vi j xDl

fi

flΩT
i

“ Ωi

»

–∆´1
i ´

mi
ÿ

l “1

ki ´1
ÿ

j“1

pCl Vi j xDl

fi

flΩT
i ´ Ωi

«

mi
ÿ

l “1

pCl Vi ki
xDl

ff

ΩT
i

“ rCii ` pri ` pki ´ 1qdi qI s´1 ´ Υi ki

“ rCii ` ri I s´1 ´

ki
ÿ

s“1

Υi s

“ Ωi∆
´1
i ΩT

i ´

ki
ÿ

s“1

Υi s (5.30)

where Υi ki “ Ωi

«

mi
ÿ

l “1

pCl Vi ki
xDl

ff

ΩT
i .

From (5.3.2), it is observed that the covariance matrix of each multidimensional variable Xi ,
corresponding to every regularization parameter ri , can be computed from the covariance
matrix corresponding to initial value of ri . Hence, the matrix Hi of (5.24) can be expressed
as

Hi r “

M
ÿ

j“1
j‰i

rCii ` pri ` ki di qI s´1Cij rCjj ` prj ` kj dj qI s´1Cji

“

M
ÿ

j“1
j‰i

prCii ` pri ` pki ´ 1qdi qI s´1 ´ Υi ki qCij prCjj ` prj ` pkj ´ 1qdj qI s´1 ´ Υj kj
qCji

“ Hi pr´1q ´ G̃i r ´ Ĝi r ` Ḡi r

“ Hi 1 `

r
ÿ

s“1

Ḡi s ´ G̃i s ´ Ĝi s
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“

M
ÿ

j“1
j‰i

Ωi∆
´1
i ΩT

i CijΩj∆
´1
j ΩT

j Cji `

r
ÿ

s“1

Ḡi s ´ G̃i s ´ Ĝi s (5.31)

where G̃i r “ Υi ki

M
ÿ

j“1
j‰i

Cij rCjj ` prj ` pkj ´ 1qdj qI s´1Cji “ Υi ki

M
ÿ

j“1
j‰i

CijΩj r∆j ` pkj ´ 1qdj I s´1ΩT
j Cji ;

(5.32)

Ĝi r “ rCii `pri `pki ´1qdi qI s´1
M
ÿ

j“1
j‰i

CijΥj kj
Cji “ Ωi r∆i `pki ´1qdi I s´1ΩT

i

M
ÿ

j“1
j‰i

CijΥj kj
Cji ; (5.33)

and Ḡi r “ Υi ki

M
ÿ

j“1
j‰i

CijΥj kj
Cji ; (5.34)

@ki P t1, 2, ¨ ¨ ¨ , pti ´ 1qu and @r P t2, 3, ¨ ¨ ¨ , T u, where T “
M
ś

l “1

tl represents the number

of all possible combinations of regularization parameters. From (5.3.2), it is clear that if
the eigenvalues and eigenvectors of rCii ` ri I s are calculated to compute Hi 1 for the initial
value of ri , there is no need to compute the eigenvalues and eigenvectors at other values
of ri for computing Hi r, as the eigenvalues and eigenvectors corresponding to the initial
regularization parameter can be used to compute different Hi r. Also, if the minimum value
rmin of ri is set to 0, then the eigenvalues and eigenvectors of the MCCA can be used to
compute the Hi r.

According to (5.22), (5.23) and (5.24), the basis vector wi r is the eigenvector of the
matrix Hi r, @i P t1, 2, ¨ ¨ ¨ ,M u and @r P t1, 2, ¨ ¨ ¨ , T u. So, the eigenvectors of the matrices
Hi r have to be computed for each regularization combination of each multidimensional
variable. Let say, Hi r has t -th eigenvalue ρ2rptq and corresponding eigenvector is wi rptq,
@t P t1, 2, ¨ ¨ ¨ , pu, where p “ minpm1,m2, ¨ ¨ ¨ ,mM q. Hence,

Hi rwi rptq “ ρ2rptqwi rptq. (5.35)

The cross-covariance matrix of Xi and Xj is Cij “ Xi Xj
T ; @i , j P t1, 2, ¨ ¨ ¨ ,M u. Without loss

of generality, it is assumed that n ! mi and the matrix Xi is a full rank matrix, which
implies that Xi has linearly independent columns. Thus, the pseudoinverse of Xi is Xi

: “
`

Xi
T Xi

˘´1 Xi
T and Xi

:Xi “ Xi
T pXi

T q
:

“ I . Now the inverse of the covariance matrix of Xi

is given by Cii
´1 “

`

Xi Xi
T
˘´1

“
`

Xi
T
˘:Xi

:. Hence, the matrix C ´1
pi`1qpi`1q

Cpi`1qi C
´1
ii Cij C ´1

jj Cji
can be written as

C ´1
pi`1qpi`1q

Cpi`1qi C
´1
ii Cij C ´1

jj Cji “ C ´1
pi`1qpi`1q

“

Xi`1Xi
T
‰“

pXi
T q

:
Xi

:
‰“

Xi Xj
T
‰“

pXj
T q

:
Xj

:
‰“

Xj Xi
T
‰

“ Cpi`1qpi`1q
´1Xi`1Xi

T
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“ Cpi`1qpi`1q
´1Xi`1

“

Xj
T pXj

T q
:‰“

X :
j Xj

‰“

X T
i`1pX T

i`1q
:‰“

Xi`1
:Xi`1

‰

Xi
T

“ C ´1
pi`1qpi`1q

“

Xi`1Xj
T
‰“

pXj
T q:Xj

:
‰“

Xj X T
i`1

‰“

pX T
i`1q

:
X :

i`1

‰“

Xi`1Xi
T
‰

“ C ´1
pi`1qpi`1q

Cpi`1qj Cjj
´1Cjpi`1qC ´1

pi`1qpi`1q
Cpi`1qi ; (5.36)

@i P t1, 2, ¨ ¨ ¨ , pM ´ 1qu and @j P t1, 2, ¨ ¨ ¨ ,M u and i ‰ j . Hence, using (5.35) and (5.3.2),
we get

M
ÿ

j“1
j‰i

rCpi`1qpi`1q`prpi`1q`kpi`1qdpi`1qqI s´1Cpi`1qi rCii `pri `ki di qI s´1Cij rCjj `prj `kj dj qI s´1Cji wi rptq

“ ρ2rptqrCpi`1qpi`1q ` prpi`1q ` kpi`1qdpi`1qqI s´1Cpi`1qi wi rptq

ñ

M
ÿ

j“1
j‰i

rCpi`1qpi`1q ` prpi`1q ` kpi`1qdpi`1qqI s´1Cpi`1qj rCjj ` prj ` kj dj qI s´1Cjpi`1qrCpi`1qpi`1q

`prpi`1q ` kpi`1qdpi`1qqI s´1Cpi`1qi wi rptq

“ ρ2rptqrCpi`1qpi`1q ` prpi`1q ` kpi`1qdpi`1qqI s´1Cpi`1qi wi rptq

ñ Hpi`1qr
wpi`1qr

ptq “ ρ2rptqwpi`1qr
ptq; (5.37)

where wpi`1qr
ptq “ rCpi`1qpi`1q ` prpi`1q ` kpi`1qdpi`1qqI s´1Cpi`1qi wi rptq; (5.38)

ñ wpi`1qr
ptq “

i´1
ź

j“0

rCpi`1´jqpi`1´jq ` prpi`1´jq ` kpi`1´jqdpi`1´jqqI s´1Cpi`1´jqpi´jqw1rptq;

(5.39)
@i P t1, 2, ¨ ¨ ¨ , pM ´ 1qu. So, the t -th eigenvector wpi`1qr

ptq of Hpi`1qr
is proportional to

rCpi`1qpi`1q ` prpi`1q ` kpi`1qdpi`1qqI s´1Cpi`1qi and can be derived from the t -th eigenvector
wi rptq of Hi r using (5.38). From (5.39), it is evident that H1r matrix is enough to calculate
the eigenvectors of all Hi r matrices, @i P t2, 3, ¨ ¨ ¨ ,M u and @r P t1, 2, ¨ ¨ ¨ , T u. On the
other hand, according to (5.3.2), H1r matrix can be computed using H11 matrix. Hence,
H11 matrix is enough to compute the basis vectors of all the modalities corresponding to
all possible combinations of the regularization parameters.

5.3.3 Sequential Generation of Canonical Variables

For each Hi r, p eigenvectors can be computed simultaneously using the Jacobi method [248],
with a computational complexity Opp3q. These eigenvectors are the basis vectors of Hi r.
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The corresponding canonical variables can be computed from these basis vectors. Finally, p
features can be extracted simultaneously for each combination of regularization parameters.
One of the major goals in data science is how to extract a compact set of most relevant
features. This is an important problem in machine learning and termed as feature selection.
Instead of producing all p eigenvectors simultaneously using the Jacobi method, if each
eigenvector of Hi r matrix is computed sequentially, the quality of each generated feature
can be evaluated independently, and eventually, D features can be selected based on their
quality, where D ď p. Moreover, for real-world multimodal high-dimensional data analysis,
the value of p is large, while a small fraction D ă p is typically enough to deal with a
problem.

In order to address the above problems, the proposed algorithm uses the Power method
[248] to compute the eigenvectors of Hi r matrix sequentially. The first eigenvalue-eigenvector
pair is enough to compute any t -th eigenvalue-eigenvector pair as described below. The
analytical formulations reported next establish the correlation between t -th and pt ` 1q-
th eigenvalues and corresponding eigenvectors, which help to generate correlated features
sequentially. Also, it is clear that the t -th eigenvalue of the matrix H1r is ρ2rptq and corre-
sponding eigenvector is w1rptq. Using the Deflation method [293], we get

H1rw1rptq “ ρ2rptqw1rptq

ñ H1rw1rptqw1rptqT “ ρ2rptqw1rptqw1rptqT

ñ H1r ´ H1rw1rptqw1rptqT “ H1r ´ ρ2rptqw1rptqw1rptqT

ñ rH1r ´ H1rw1rptqw1
T
r ptqsw1rpt ` 1q “ rH1r ´ ρ2rptqw1rptqw1

T
r ptqsw1rpt ` 1q

ñ H1rw1rpt ` 1q ´ H1rw1rptqw1
T
r ptqw1rpt ` 1q “ rH1r ´ ρ2rptqw1rptqw1

T
r ptqsw1rpt ` 1q

ñ H1rw1rpt ` 1q “ rH1r ´ ρ2rptqw1rptqw1
T
r ptqsw1rpt ` 1q; (5.40)

@t P t1, 2, ¨ ¨ ¨ , pD ´1qu, where D ď p and @r P t1, 2, ¨ ¨ ¨ , T u. On the other hand, w1rpt `1q

is the pt ` 1q-th eigenvector of H1r, corresponding to the eigenvalue ρ2rpt ` 1q, that is,

H1rw1rpt ` 1q “ ρ2rpt ` 1qw1rpt ` 1q. (5.41)

Comparing (5.3.3) and (5.41), we get,

rH1r ´ ρ2rptqw1rptqw1
T
r ptqsw1rpt ` 1q “ ρ2rpt ` 1qw1rpt ` 1q. (5.42)

From (5.42), it is evident that the pt `1q-th eigenvalue ρ2rpt `1q and corresponding eigenvec-
tor w1rpt `1q of the matrix H1r are the maximum eigenvalue and corresponding eigenvector
of the matrix rH1r ´ ρ2rptqw1rptqw1

T
r ptqs. To calculate the pt ` 1q-th eigenvalue and corre-
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sponding eigenvector, the matrix H1r can be calculated as follows:

H1rpt ` 1q “ H1rptq ´ ρ2rptqw1rptqw1
T
r ptq “ H1r ´

t
ÿ

l “1

ρ2rpl qw1rpl qw1
T
r pl q; (5.43)

where H1r “ H1rp1q. Hence, to compute pt ` 1q-th eigenvector sequentially, the matrix
H1rpt ` 1q can be computed by combining (5.3.2) and (5.43) as follows:

H1rpt ` 1q “

M
ÿ

j“2

Ω1∆
´1
1 ΩT

1 C1jΩj∆
´1
j ΩT

j Cj1 `

r
ÿ

s“1

Ḡ1s ´ G̃1s ´ Ĝ1s ´

t
ÿ

l “1

ρ2rplqw1rpl qw1
T
r pl q;

(5.44)
where @r P t2, 3, ¨ ¨ ¨ , T u, @t P t1, 2, ¨ ¨ ¨ , pD ´ 1qu and D ď p. Hence, using (5.39), the t -th
multiset canonical variables can be computed sequentially as

Upi`1qr
ptq “ wpi`1q

T
r

ptqXpi`1q

“ w1
T
r ptq

»

–

i`1
ź

j“2

Cpj´1qj rCjj ` prj ` kj dj qIs´1

fi

flXpi`1q

“ w1
T
r ptq

»

–

i`1
ź

j“2

Cpj´1qj

˜ mj
ÿ

l “1

1

pδj l ` kj dj q
ωj l ωj

T
l

¸

fi

flXpi`1q; (5.45)

@i P t1, 2, ¨ ¨ ¨ , pM ´ 1qu, @t P t1, 2, ¨ ¨ ¨ ,Du, and @r P t1, 2, ¨ ¨ ¨ , T u

and U1rptq “ w1
T
r ptqX1. (5.46)

Finally, D features can be extracted sequentially as follows:

Frptq “

M
ÿ

i“1

Ui rptq. (5.47)

5.3.4 Selection of Optimum Regularization Parameter

Let us assume that each attribute is centered to have zero mean across the samples. Each
regularization parameter ri is bounded rrmin , rmax s, where rmin ď ri ď rmax . Let the number of
all plausible values of ri is denoted by ti , @i P t1, 2, ¨ ¨ ¨ ,M u within that range. Let Frptq be
the t -th feature, extracted from the M multidimensional data sets with r-th combination
of regularization parameters of tri u. The relevance of the feature Frptq with respect to the
sample categories D is denoted by γFrptqpDq. Let σtFrptq,Fl upD,Frptqq denote the significance
of the feature Frptq with respect to the already-selected feature Fl P S, where S denotes
the set of selected features and initially S Ð H. The optimal regularization parameters
for each extracted feature can be selected by using the relevance and significance of that
feature. Let us assume that all the t -th extracted features which are computed by using
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all r-th combinations of tri u, are contained in the set C, where @t P t1, 2, ¨ ¨ ¨ ,D ď pu and
@r P t1, 2, ¨ ¨ ¨ , T u. For t “ 1, the most relevant feature is picked up from C and is put into
S, that is,

F ptq “ arg max
FrptqPC

␣

γFrptqpDq
(

; (5.48)

while for t ą 1, the feature that has the highest relevance among the features of C and the
significance with respect to the features of S is chosen as follows:

F ptq “ arg max
FrptqPC

#

γFrptqpDq`
1

t ´ 1

ÿ

Fl PS
σtFrptq,Fl upD,Frptqq

+

. (5.49)

Thus, the problem of generating a set of most significant and relevant features S from
a multiblock data set, based on all possible combinations of tri u, can be addressed by
Algorithm 5.1.

In the current research work, both significance and relevance of an extracted feature
are computed by using the concept of the rough hypercuboid approach [172]. It helps to
optimize the regularization parameters.

5.3.5 Complexity Analysis

This section presents the time and space complexity of the proposed algorithm.

5.3.5.1 Time Complexity

Let X1 P ℜm1ˆn, X2 P ℜm2ˆn, ¨ ¨ ¨ , XM P ℜmM ˆn be the M multidimensional data sets with
c classes, n samples, and dimensions m1,m2, ¨ ¨ ¨ ,mM , respectively, where m1 ď m2 ď

¨ ¨ ¨ ď mM . Let us assume that the regularization parameter ri has ti possible values,
@i P t1, 2, ¨ ¨ ¨ ,M u. In Step 1, all the cross-covariance matrices tCij u are computed with
complexity Op

ř

iăj
mimjnq « OpmMmM ´1nq; whereas the total time complexity to compute

all the covariance matrices tCii u in Step 2 is Op
ř

i
m2

i nq « Opm2
Mnq. All the eigenvalues δi l ,

along with corresponding eigenvectors ωi l , are computed with computational complexity
Op

ř

i
m3

i q « Opm3
M q; @l P t1, 2, ¨ ¨ ¨ ,mi u, in Step 3. On the other hand, Step 4 and Step 5

have constant time complexity of Op1q. Thus, the total computational complexity of these
five steps is OpmMmM ´ 1n`m2

Mn`m3
M q « Opm3

M q as n ăă mM .
In Step 6, there is a loop that has to be executed D times. The loop is started with

constant time complexity Op1q, followed by another loop that has to be implemented T
times. The complexity to compute H1rptq is Op

ř

i
m3

1`m3
i `m2

1mi `m1m
2
i `T p

ř

i
m3

1`m3
i `

m2
1mi `m1m

2
i q`Dm2

1q « OpT m3
M q. The eigenvector of the matrix H1rptq can be calculated

with computational complexity Opm2
1q. In Step 6(II)(iii), the canonical variable Ui rptq

can be computed with complexity Op
ř

i
minq « OpmMnq. Hence, a feature Frptq can be

extracted with computational complexity Opnq. Both relevance and significance of a feature
have identical time complexity, which is given as Opcnq. Thus, the total time complexity to
execute the loop T times is OpT m3

M `m2
1 `mMn`n` cnq « OpT m3

M q. The selection of a
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Algorithm 5.1 ReDMiCA: Regularized Discriminant Multiset CCA
Input: M multidimensional variables X1,X2, ¨ ¨ ¨ ,XM .
Output: A set S of D selected features.
1: Calculate the cross-covariance matrix Cij of Xi and Xj , @i P t1, 2, ¨ ¨ ¨ ,M u and @j P

t1, 2, ¨ ¨ ¨ ,M u and i ‰ j and i ă j .
2: Calculate the covariance matrix Cii of Xi , @i P t1, 2, ¨ ¨ ¨ ,M u.
3: Calculate the eigenvalues δi l and corresponding eigenvectors ωi l of Cii , @l P

t1, 2, ¨ ¨ ¨ ,mi u and @i P t1, 2, ¨ ¨ ¨ ,M u.
4: Compute the diagonal matrix ∆i P ℜmi ˆmi , whose diagonal elements are δi l , and

the square matrix Ωi P ℜmi ˆmi , whose l -th column is ωi l , @l P t1, 2, ¨ ¨ ¨ ,mi u and
@i P t1, 2, ¨ ¨ ¨ ,M u.

5: Initialize S “ H and t “ 1.
6: for each t ď D do

(I) Initialize C “ H.

(II) for each r-th combinations of regularization parameters tri u, where @r P

t1, 2, ¨ ¨ ¨ , T u and @i P t1, 2, ¨ ¨ ¨ ,M u. do

(i) Calculate H1rptq using (5.3.2) if t “ 1, otherwise using (5.44).
(ii) Calculate largest eigenvalue ρ2rptq and eigenvector w1rptq of the matrix H1rptq,

where w1rptq is the t -th basis vector of first multidimensional variable.
(iii) Calculate the t -th canonical variable Ui rptq using (5.46) if i “ 1, otherwise

using (5.3.3).
(iv) Extract the t -th feature Frptq corresponding to r-th combination of tri u using

(5.47).
(v) Compute the relevance γFrptqpDq of the feature Frptq with respect to the class

labels D.
(vi) Calculate the significance σtFrptq,Fl upD,Frptqq of the feature Frptq with respect

to each Fl P S.
(vii) Add Frptq to C if its significance is non-zero with respect to each of the

selected features of S. In effect, C “ C
Ť

Frptq.

(III) end for

(IV) If C ‰ H, choose a feature as t -th feature Frptq from C, which maximizes the
condition (5.48) when t “ 1, otherwise (5.49). In effect, S “ S

Ť

Frptq and
t “ t ` 1.

7: end for
8: Stop.
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feature from T candidate features by maximizing both relevance and significance, which is
carried out in Step 6(IV), has complexity OpT q. Thus, the total complexity to execute the
loop D times is OpDpT m3

M `T qq « OpDT m3
M q. So, the proposed sequential multiblock data

integration algorithm has computational complexity of Opm3
M ` DT m3

M q « OpDT m3
M q.

5.3.5.2 Space Complexity

In Step 1, all cross-covariance matrices tCij u can be computed with space complexity
Op

ř

iăj
mimj q « OpmMmM ´1q; whereas the total space complexity to compute all the co-

variance matrices tCii u is Op
ř

i
m2

i q « Opm2
M q. All the eigenvalues δi l , along with corre-

sponding eigenvectors ωi l , are computed with space complexity Op
ř

i
mi `m2

i q « Opm2
M q;

@l P t1, 2, ¨ ¨ ¨ ,mi u, in Step 3. On the other hand, Step 4 has Opm2
M q space complexity.

Step 5 has constant space complexity of Op1q. Thus, the total space complexity of these
five steps is OpmMmM ´ 1 `m2

M `m2
M `m2

M q « Opm2
M q.

In Step 6, there is a loop that has to be executed D times. The loop is started with
constant space complexity Op1q, followed by another loop that has to be implemented T
times. The space complexity to compute H1rptq is OpDT p

ř

i
m2

1`m2
1`m1mi `m1mi `m2

i `

m2
i `m1mi `m2

1 `m2
1 `m2

1 `m2
1qq « OpDT m2

M q. The eigenvalues and eigenvectors of the
matrix H1rptq can be stored with complexity OpD ` Dm1q. In Step 6(II)(iii), the canonical
variable Ui rptq can be computed with space complexity OpDn ` mMn ` mMmM ´ 1q.
Hence, a feature Frptq can be stored with space complexity Opnq. Both relevance and
significance of a feature have identical space complexity, which is Opcnq. So, for T candidate
features, this is given as OpT cnq. Thus, the total space complexity to execute the Step
6(II)(iv)-(vi) is OpDpn ` T cnqq. The selection of a feature from T candidate features
by maximizing both relevance and significance, which is carried out in Step 6(IV), has
constant space complexity Op1q. Thus, the total space complexity to execute the Step 6 is
OpDT m2

M `D`Dm1`Dn`mMn`mMmM ´1`Dn`DT cnq « OpDT m2
M q, as n, c ăă mM .

Thus, the proposed algorithm has space complexity of Opm2
M ` DT m2

M q « OpDT m2
M q.

5.4 Performance Analysis

The performance of the proposed sequential feature extraction algorithm, termed as ReD-
MiCA, is extensively studied and compared with that of several existing multimodal data
integration algorithms. To evaluate the performance of different algorithms, support vector
machine with linear kernels is used. Each regularization parameter is varied in between 0.0
and 1.0, with a difference of 0.1. Five benchmark data sets, namely, CiteSeer, Handwrit-
ten, NUS-WIDE-OBJECT (NW-OBJECT), Reuters, and Caltech; and five cancer data
sets, namely, glioblastoma multiforme (GBM), lung (LUNG), kidney (KIDNEY), lower
grade glioma (LGG) and ovarian serous cystadenocarcinoma (OV), are used in the current
research work. All the data sets are summarized in Table 5.1 and Table 5.2 and briefly
described in Appendix A. The proposed algorithm is implemented in C language and run
in Ubuntu 14.04 LTS having machine configuration Intel(R) Core(TM) i7-4790 CPU @
3.60GHzˆ8 and 32 GB RAM. The source code of the proposed algorithm, written in C
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language, is available at https://www.isical.ac.in/~bibl/results/redmica/redmica.
html.

Table 5.1: Description of Benchmark Data Sets Used

Different Number of Cardinality of Different Views
Data Sets Classes Samples m1 m2 m3 m4 m5 m6

CiteSeer 6 3309 3312 3312 3312 3703 - -
NW-OBJECT 31 30000 64 73 128 144 225 -

Reuters 6 18758 11547 15506 21531 24892 34251 -
Handwritten 10 2000 6 47 64 76 216 240

Caltech 20 2386 40 48 254 512 928 1984

Table 5.2: Description of Omics Data Sets Used

Different Number of Cardinality of Different Views
Data Sets Classes Samples RNA mDNA miRNA CNS RPPA

GBM 5 213 12042 21422 534 4070 -
LUNG 2 546 20502 294668 216 49230 180

KIDNEY 2 305 20502 300451 209 9059 174
LGG 3 374 11973 293965 139 6261 181
OV 4 206 12042 20311 129 4332 195

The randomly selected 50% samples from each class are used for training and the rest
are used for testing purposes for each of the data sets. The 10-fold cross-validation is
also performed on each data sets to assess the performance of the proposed algorithm
statistically. To analyze the statistical significance of the derived results, paired-t test
(one-tailed), Wilcoxon signed rank test (one-tailed) and Friedman test (one-tailed), with a
95% confidence level, are used to compute the p-values. For each data set, 25 top-ranked
correlated features are selected for the analysis.

5.4.1 Importance of Various Criteria of MCCA

Table 5.3, Table 5.4, and Table 5.5 compare the performance of the proposed ReDMiCA
algorithm with that of different criteria of the MCCA, namely, SUMCOR, MAXVAR,
generalized variance (GENVAR), minimum variance (MINVAR), and sum of squared cor-
relations (SSQCOR) [135]; and several existing algorithms. These tables present the clas-
sification accuracy on each data set in case of training-testing. The mean, median, and
standard deviation of 10-fold cross-validation are also reported in Table 5.3, Table 5.4,
and Table 5.5 for both the benchmark and omics data sets. To perform the statistical
significance analysis, the p-values computed using different tests are reported in Table 5.6,
Table 5.7, and Table 5.8. Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4 compare the
performance of the proposed algorithm with that of various criteria of the MCCA.
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Table 5.7: Statistical Significance Analysis of Different Algorithms on Handwritten, NW-
OBJECT, LUNG, and KIDNEY Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR

H
an

dw
ri

tt
en

1.93E-08 2.50E-03 1.57E-03

LU
N

G

4.72E-12 2.50E-03 1.57E-03
GENVAR 3.91E-11 2.52E-03 1.57E-03 8.64E-05 2.46E-03 1.57E-03
MAXVAR 2.22E-13 2.52E-03 1.57E-03 1.28E-06 2.52E-03 1.57E-03
MINVAR 1.11E-12 2.50E-03 1.57E-03 1.38E-05 2.49E-03 1.57E-03
SSQCOR 1.26E-14 2.52E-03 1.57E-03 1.09E-05 2.38E-03 1.57E-03

RGCCA 1.56E-05 3.82E-03 2.70E-03 8.42E-06 2.46E-03 1.57E-03
GMCCA 8.74E-15 2.47E-03 1.57E-03 1.78E-07 2.49E-03 1.57E-03

GMKCCA 9.23E-13 2.53E-03 1.57E-03 2.20E-03 3.82E-03 2.70E-03
LasCCA 1.12E-15 2.46E-03 1.57E-03 9.24E-05 2.50E-03 1.57E-03
DisCCA 3.03E-12 2.50E-03 1.57E-03 3.92E-08 2.52E-03 1.57E-03
BsMCCA 7.94E-12 2.52E-03 1.57E-03 1.52E-02 1.39E-02 9.56E-02
MvDA 1.34E-03 2.42E-03 1.57E-03 2.26E-01 1.30E-01 1.57E-01

MvDA-VC 2.47E-02 2.30E-02 5.78E-02 4.16E-01 3.98E-01 7.06E-01

M
C

C
A

SUMCOR

N
W

-O
B

JE
C

T

3.44E-10 2.53E-03 1.57E-03
K

ID
N

E
Y

5.60E-09 2.38E-03 1.57E-03
GENVAR 8.17E-14 2.53E-03 1.57E-03 6.64E-03 1.28E-02 1.43E-02
MAXVAR 4.85E-16 2.53E-03 1.57E-03 1.41E-06 2.50E-03 1.57E-03
MINVAR 9.57E-14 2.53E-03 1.57E-03 2.34E-06 2.52E-03 1.57E-03
SSQCOR 1.80E-15 2.53E-03 1.57E-03 2.77E-06 2.50E-03 1.57E-03

RGCCA 7.25E-15 2.53E-03 1.57E-03 1.89E-03 4.49E-03 1.14E-02
GMCCA 4.80E-15 2.53E-03 1.57E-03 1.64E-06 2.52E-03 1.57E-03

GMKCCA 1.93E-12 2.53E-03 1.57E-03 4.21E-05 2.50E-03 1.57E-03
LasCCA 4.84E-15 2.53E-03 1.57E-03 7.98E-04 2.49E-03 1.57E-03
DisCCA 4.41E-13 2.52E-03 1.57E-03 1.19E-07 2.40E-03 1.57E-03
BsMCCA 1.81E-14 2.52E-03 1.57E-03 1.45E-03 2.20E-03 1.57E-03
MvDA 1.51E-10 2.52E-03 1.57E-03 2.56E-03 8.18E-03 8.15E-03

MvDA-VC 7.07E-10 2.53E-03 1.57E-03 9.36E-03 1.05E-02 1.96E-02

5.4.1.1 Performance on Benchmark Data

The results presented in Figure 5.1 and Figure 5.2 convey that the SUMCOR provides
the highest accuracy irrespective of the features among different criteria of the MCCA on
both the Handwritten and Caltech data sets. However, the performance of the proposed
algorithm is significantly higher as compared to that of various criteria of the MCCA,
irrespective of the generated features and data sets used. The results reported in Table
5.3, Table 5.4, and Table 5.5 demonstrate that the SUMCOR attains highest accuracy of
0.581, 0.870, 0.303, and 0.575 on CiteSeer, Handwritten, NW-OBJECT, and Reuters data
sets, respectively; and MAXVAR provides the highest classification accuracy of 0.732573
on Caltech data set, among five criteria of the MCCA. The results reported in Table
5.6, Table 5.7, and Table 5.8 establish that the proposed ReDMiCA algorithm attains
significantly better p-values than the different five criteria of the MCCA, irrespective of
the significance analysis and data sets used in all 75 cases. However, the proposed algorithm
achieves the highest classification accuracy on both data sets. The scatter plots of the first
two extracted features using different criteria of the MCCA and proposed algorithm on
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Table 5.8: Statistical Significance Analysis of Different Algorithms on Reuters, Caltech,
LGG, and OV Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR
R

eu
te

rs
7.01E-08 2.53E-03 1.57E-03

LG
G

2.17E-08 2.49E-03 1.57E-03
GENVAR 4.06E-13 2.53E-03 1.57E-03 1.39E-06 2.25E-03 1.57E-03
MAXVAR 1.94E-13 2.53E-03 1.57E-03 2.45E-08 2.46E-03 1.57E-03
MINVAR 2.20E-16 2.52E-03 1.57E-03 5.49E-09 2.50E-03 1.57E-03
SSQCOR 5.57E-12 2.53E-03 1.57E-03 1.21E-08 2.50E-03 1.57E-03

RGCCA 5.22E-15 2.53E-03 1.57E-03 1.90E-07 2.52E-03 1.57E-03
GMCCA 2.61E-13 2.53E-03 1.57E-03 1.09E-07 2.53E-03 1.57E-03

GMKCCA 4.92E-13 2.53E-03 1.57E-03 2.43E-12 2.34E-03 1.57E-03
LasCCA 7.45E-12 2.53E-03 1.57E-03 1.89E-08 2.46E-03 1.57E-03
DisCCA 2.79E-08 2.53E-03 1.57E-03 3.41E-08 2.50E-03 1.57E-03
BsMCCA 1.35E-12 2.53E-03 1.57E-03 2.91E-05 2.50E-03 1.57E-03
MvDA 4.52E-11 2.53E-03 1.57E-03 1.81E-03 5.66E-03 4.68E-03

MvDA-VC 3.85E-10 2.52E-03 1.57E-03 9.27E-02 1.20E-01 2.06E-01

M
C

C
A

SUMCOR

C
al

te
ch

1.34E-05 2.50E-03 1.57E-03

O
V

2.18E-08 2.49E-03 1.57E-03
GENVAR 3.35E-08 2.53E-03 1.57E-03 5.80E-07 2.52E-03 1.57E-03
MAXVAR 7.85E-06 2.53E-03 1.57E-03 5.16E-06 2.52E-03 1.57E-03
MINVAR 1.44E-06 2.53E-03 1.57E-03 1.03E-02 1.42E-02 9.56E-02
SSQCOR 6.63E-07 2.53E-03 1.57E-03 3.63E-02 4.61E-02 2.06E-01

RGCCA 3.38E-13 2.49E-03 1.57E-03 3.69E-03 5.66E-03 4.68E-03
GMCCA 1.68E-14 2.52E-03 1.57E-03 6.82E-06 2.52E-03 1.57E-03

GMKCCA 1.40E-14 2.53E-03 1.57E-03 1.83E-05 2.52E-03 1.57E-03
LasCCA 8.22E-15 2.53E-03 1.57E-03 2.09E-08 2.47E-03 1.57E-03
DisCCA 2.55E-10 2.53E-03 1.57E-03 4.85E-07 2.52E-03 1.57E-03
BsMCCA 1.27E-02 1.20E-02 1.96E-02 3.65E-02 4.52E-02 2.57E-01
MvDA 8.70E-02 8.64E-02 3.17E-01 1.35E-01 1.99E-01 4.80E-01

MvDA-VC 7.41E-02 1.31E-01 1.00E+00 8.30E-03 1.08E-02 5.78E-02

benchmark data sets are reported in Figure 5.5, which also establish the superiority of
the proposed ReDMiCA algorithm over different criteria of the MCCA. The value of the
class separability index (CSI) is also reported at the top of each figure. From the results
reported in Figure 5.5, it is evident that the CSI of the extracted features using different
criteria of the MCCA is higher compared to that of the proposed ReDMiCA algorithm.

5.4.1.2 Performance on Omics Data

All the results reported in Figure 5.3, and Figure 5.4 demonstrate that the classification
accuracy of the proposed algorithm is significantly higher compared to that of various
criteria of the MCCA, irrespective of the generated features, data sets and experimental
setup used. All the results reported in Table 5.3, Table 5.4, and Table 5.5 confirm that the
proposed algorithm attains highest mean and median accuracy, irrespective of the data sets.
Out of total 75 cases, ReDMiCA achieves significantly better (marked in bold) p-values than
different criteria of the MCCA in 73 cases, with 0.05 significance level. On the other hand,
the proposed algorithm provides better but not significant (marked in italics) p-values in

87



0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

CiteSeer

0.00

0.20

0.40

0.60

0.80

1.00

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Handwritten

SUMCOR

GENVAR

MAXVAR

MINVAR

SSQCOR

ReDMiCA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

NUS-WIDE-OBJECT

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Reuters

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Caltech

Figure 5.1: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (ReDMiCA) algorithm on benchmark data
sets for 10-fold CV.
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Figure 5.2: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (ReDMiCA) algorithm on benchmark data
sets for training-testing.

only 2 cases, for MINVAR and SSQCOR using the Friedman test on OV data set. Figure
5.6 shows the scatter plots, along with the CSI, of the first two extracted features using
different criteria of the MCCA and the proposed algorithm. From the results reported in
Figure 5.6, it is evident that the CSI of the extracted features using different criteria of the
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Figure 5.3: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (ReDMiCA) algorithm on omics data sets
for 10-fold CV.
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Figure 5.4: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (ReDMiCA) algorithm on omics data sets
for training-testing.

MCCA is higher compared to that of the proposed ReDMiCA algorithm. It shows that the
proposed algorithm is able to separate different classes of LUNG and KIDNEY using the
first two extracted features only. For the LGG data set, the proposed algorithm isolates
almost all the samples of one class properly, but there is an overlap between the samples
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Figure 5.5: Scatter plots for different criteria of the MCCA and proposed (ReDMiCA)
algorithm on benchmark data sets, along with class separability index (top to bottom:
CiteSeer, Handwritten, NW-OBJECT, Reuters, Caltech), each Oi denotes the i-th object
class.

of the other two classes. Moreover, almost all the samples of four classes of OV data are
well segregated using the proposed data integration algorithm. On the other hand, various
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Figure 5.6: Scatter plots for different criteria of the MCCA and proposed (ReDMiCA)
algorithm on omics data sets, along with class separability index (top to bottom: GBM,
LUNG, KIDNEY, LGG, OV).

criteria of the MCCA cannot separate the classes properly using the first two extracted
features.

Moreover, all five criteria of MCCA cannot handle the ‘large p and small n’ issue of mul-
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Figure 5.7: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (ReDMiCA) algorithm on benchmark data
sets for 10-fold CV.
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Figure 5.8: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (ReDMiCA) algorithm on benchmark data
sets for training-testing.

tidimensional data sets. On the other hand, the proposed ReDMiCA algorithm addresses
this issue by using ridge regression optimization. Also, the significantly better performance
of ReDMiCA is obtained due to the consideration of the supervised information of sample
categories.
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Figure 5.9: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (ReDMiCA) algorithm on omics data sets
for 10-fold CV.
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Figure 5.10: Variation of classification accuracy with respect to number of extracted fea-
tures for different existing algorithms and proposed (ReDMiCA) algorithm on omics data
sets for training-testing.

5.4.2 Comparative Performance Analysis

Finally, Figure 5.7, Figure 5.8, Figure 5.9, and Figure 5.10; Table 5.3, Table 5.4, Table 5.5,
Table 5.6, Table 5.7, Table 5.8, Table 5.9, Table 5.11, and Table 5.10 analyze the perfor-
mance of the proposed multimodal data integration algorithm with that of various state-
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Figure 5.11: Scatter plots for state-of-the-art multimodal data integration algorithms (GMCCA,
GMKCCA, LasCCA, and DisCCA) and proposed (ReDMiCA) algorithm on benchmark data sets,
along with class separability index (top to bottom: CiteSeer, Handwritten, NW-OBJECT, Reuters,
Caltech), each Oi denotes the i-th object class.

of-the-art MCCA based methods, namely, RGCCA [262], GMCCA [43], GMKCCA [43],
large-scale generalized CCA (LasCCA) [84], distributed generalized CCA (DisCCA) [84],
and block sparse MCCA (BsMCCA) [235]; two popular multidimensional data integration
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Figure 5.12: Scatter plots for state-of-the-art multimodal data integration algorithms (GMCCA,
GMKCCA, LasCCA, and DisCCA) and proposed (ReDMiCA) algorithm on omics data sets, along
with class separability index (top to bottom: GBM, LUNG, KIDNEY, LGG, OV).

algorithms, namely, multi-view discriminant analysis (MvDA) [128] and multi-view dis-
criminant analysis with view-consistency (MvDA-VC) [129]; and three deep learning-based
algorithms, namely, deep multiset canonical correlation analysis (dMCCA) [244], task-
optimal CCA (TOCCA) [55], and multimodal deep Boltzmann machines (MDBM) [247].
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Figure 5.13: Scatter plots for state-of-the-art multimodal data integration algorithms (RGCCA,
BsMCCA, MvDA, and MvDA-VC) and proposed (ReDMiCA) algorithm on benchmark data sets,
along with class separability index (top to bottom: CiteSeer, Handwritten, NW-OBJECT, Reuters,
Caltech), each Oi denotes the i-th object class.

On the other hand, Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 show the scatter
plots, along with the CSI using the first two extracted features of aforementioned algorithms
on each data sets.
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Figure 5.14: Scatter plots for state-of-the-art multimodal data integration algorithms (RGCCA,
BsMCCA, MvDA, and MvDA-VC) and proposed (ReDMiCA) algorithm on omics data sets, along
with class separability index (top to bottom: GBM, LUNG, KIDNEY, LGG, OV).

5.4.2.1 MCCA Based Methods

Figure 5.7, Figure 5.8, Figure 5.9, and Figure 5.10; Table 5.3, Table 5.4, Table 5.5, Table
5.6, Table 5.7, and Table 5.8 demonstrate that the accuracy of the proposed ReDMiCA
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multimodal data integration algorithm is significantly higher as compared to that of existing
MCCA based methods on both omics and benchmark data sets. All the results reported
in Table 5.3, Table 5.4, and Table 5.5 confirm that the proposed algorithm attains the
highest mean and median accuracy, irrespective of the data sets. Out of total 180 cases,
the proposed algorithm attains significantly better (marked in bold) p-values than existing
MCCA based methods in 177 cases, and better but not significant (marked in italics) p-
values in 3 cases. From Figure 5.11, Figure 5.12 and the first two columns of Figure 5.13,
Figure 5.14 it can be seen that the separation among various classes using the first two
extracted features of the proposed algorithm is significantly better than that of the existing
algorithms on omics and benchmark data sets.

Table 5.9: Classification Accuracy and Execution Time of Different Deep Learning Algo-
rithms on Omics Data Sets

Data Different Accuracy Accuracy for 10-Fold CV Time
Sets Algorithms (Train-Test) Mean Median StdDev (in sec.)

GBM

dMCCA 0.448 0.440 0.440 0.138 245.9
TOCCA 0.381 0.406 0.367 0.116 235.6
MDBM 0.581 0.435 0.419 0.134 13309.0

ReDMiCA 0.714 0.717 0.729 0.047 2150.7

LUNG

dMCCA 0.593 0.607 0.589 0.051 11473.8
TOCCA 0.571 0.571 0.571 0.000 940.2
MDBM 0.879 0.613 0.429 0.238 9022.3

ReDMiCA 0.949 0.957 0.955 0.032 6162.4

KIDNEY

dMCCA 0.862 0.690 0.677 0.041 44408.4
TOCCA 0.684 0.713 0.677 0.070 585.5
MDBM 0.691 0.710 0.677 0.102 13957.0

ReDMiCA 0.961 0.971 0.968 0.028 6774.5

LGG

dMCCA 0.624 0.508 0.474 0.072 61032.4
TOCCA 0.457 0.450 0.461 0.064 675.7
MDBM 0.651 0.276 0.184 0.149 24204.6

ReDMiCA 0.946 0.850 0.842 0.035 5958.2

OV

dMCCA 0.343 0.377 0.358 0.090 59090.0
TOCCA 0.275 0.434 0.374 0.130 2213.1
MDBM 0.373 0.445 0.418 0.127 31830.1

ReDMiCA 0.941 0.709 0.727 0.075 8641.2

5.4.2.2 Others Multi-View Learning Algorithms

From Figure 5.7, Figure 5.8, Figure 5.9, and Figure 5.10, it is seen that the classification
accuracy of the proposed algorithm is significantly higher, irrespective of the number of
extracted features, as compared to that of both MvDA and MvDA-VC on five benchmark
data, and GBM, LUNG, KIDNEY and OV data sets. In case of LGG data set, MvDA and
MvDA-VC provide higher mean accuracy for 10-fold cross-validation than the proposed
algorithm for lower number (ď8) of extracted features. But, for higher number (ą8) of
features, the performance of the proposed algorithm improves drastically. As shown in
Table 5.6, Table 5.7, and Table 5.8, out of the total 60 cases, the proposed algorithm
attains significantly better (marked in bold) p-values than others two data integration
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methods in 34 cases, and better but not significant (marked in italics) p-values in 23 cases.
The proposed algorithm is not significantly better than MvDA according to Friedman
test on the GBM data set and MvDA-VC according to Friedman test on the Caltech and
LUNG data sets. From the last three columns of Figure 5.13 and Figure 5.14, it is evident
that different classes are remarkably separable using the first two extracted features of the
proposed algorithm than these two existing multi-view learning algorithms on omics as well
as benchmark data sets.

Table 5.10: Classification Accuracy and Execution Time of Different Deep Learning Algo-
rithms on Benchmark Data Sets

Different dMCCA TOCCA MDBM ReDMiCA
Data Sets AccuracyTime (sec)AccuracyTime (sec)AccuracyTime (sec)AccuracyTime (sec)
CiteSeer 0.212 21731.3 0.396 72415.7 0.178 54114.5 0.646 447.6

Handwritten 0.100 39127.7 0.965 1439.9 0.100 1812.7 0.963 1615.0
NW-OBJECT 0.178 250790.4 0.336 650417.0 0.261 1873753.2 0.377 1344.7

Reuters 0.517 109004.2 0.574 537830.2 0.468 1296693.8 0.662 11434.1
Caltech 0.337 1267362.4 0.802 58589.8 0.025 72458.5 0.852 8882.1

Table 5.11: Statistical Significance Analysis of Different Deep Learning Algorithms on
Omics Data Sets

Data Different p-values for 10-Fold CV
Sets Algorithms Paired-t Wilcoxon Friedman

GBM
dMCCA 3.50E-05 2.52E-03 1.57E-03
TOCCA 4.40E-06 2.53E-03 1.57E-03
MDBM 9.05E-05 2.53E-03 1.57E-03

LUNG
dMCCA 3.48E-10 2.46E-03 1.57E-03
TOCCA 1.35E-11 2.42E-03 1.57E-03
MDBM 5.15E-04 2.49E-03 1.57E-03

KIDNEY
dMCCA 1.97E-09 2.36E-03 1.57E-03
TOCCA 2.46E-07 2.36E-03 1.57E-03
MDBM 1.46E-05 3.19E-03 1.14E-02

LGG
dMCCA 1.94E-07 2.38E-03 1.57E-03
TOCCA 1.10E-08 2.49E-03 1.57E-03
MDBM 5.40E-07 2.45E-03 1.57E-03

OV
dMCCA 2.28E-06 2.53E-03 1.57E-03
TOCCA 1.06E-04 3.46E-03 1.14E-02
MDBM 1.20E-04 2.53E-03 1.57E-03

5.4.2.3 Deep Learning-Based Methods

Finally, Table 5.9 and Table 5.10 compares the classification accuracy and execution time
of the proposed algorithm with that of three deep learning-based methods on each data
sets. The results presented in Table 5.9 and Table 5.10 demonstrate that the classification
accuracy of the proposed algorithm is significantly higher as compared to that of various
deep learning-based methods on all data sets, except Handwritten data, while its execution
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time is significantly lower. The TOCCA achieves 96.5% accuracy on Handwritten data set,
whereas the proposed algorithm attains 96.3% accuracy. Although TOCCA performs well
on benchmark data sets, it fails to achieve judicious results on omics data sets. The
MDBM and dMCCA obtain 87.9% and 86.2% accuracy on LUNG and KIDNEY data sets,
respectively, whereas both of them perform moderately on the GBM and LGG data sets.
On the other hand, none of the deep learning-based methods performs better on the OV
data set. Both MDBM and dMCCA provide poor performance on Handwritten, Caltech,
and NW-OBJECT data sets due to the over training of these models. The results reported
in Table 5.11 establish that the proposed algorithm attains significantly better p-values than
the three deep learning-based methods, irrespective of the significance analysis and omics
data sets used. All the results, reported here, establish the effectiveness of the proposed
multiblock data integration algorithm over state-of-the-art approaches. The sequential
extraction of relevant features from multiblock data enables the proposed algorithm to
perform significantly better than existing methods.

5.5 Conclusion

A novel supervised sequential feature extraction algorithm has been proposed in this chap-
ter. It integrates multimodal multidimensional data sets by solving the maximal correlation
problem. A new block matrix representation has been introduced to determine the basis
vectors of the MCCA. The proposed algorithm has addressed the ‘large p and small n’ is-
sue of real-world multi-view data sets by using the ridge regression optimization technique,
where regularization parameters have been varied within a certain range which helped to
increase the search space of finding canonical variables. A theoretical analysis has been
reported to manifest the connection between all canonical variables for each regularization
parameter, which reduced the computational complexity as well as helped to generate cor-
related features sequentially. The proposed algorithm computes the canonical variable for a
single modality having the lowest dimension with initial regularization parameter, and this
canonical variable can be used to compute the canonical variables of all other modalities
at different regularization parameter combinations.

The optimum values of regularization parameters have been estimated by computing
the relevance and significance of the corresponding feature. To consider the supervised
information, both relevance and significance measures have been computed based on the
concept of the rough hypercuboid approach. The proposed algorithm can extract the
desired number of relevant and significant features sequentially, without producing the
complete set of possible features. The effectiveness of the proposed algorithm, along with a
comparison with other algorithms, has been demonstrated on several omics and benchmark
data sets.

One of the major problems in real-life multiblock dynamic data analysis is that all
the modalities may not be available initially. The databases are generally updated incre-
mentally. New modalities may be added to the existing modalities. So, it is necessary to
develop a model that can generate the new feature from that of the existing modalities
and the new modality without repeating the same procedure with the original data aug-
mented by the new modality. In this regard, a new MCCA, termed as incremental MCCA
(IMCCA) is proposed in the next chapter.
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Chapter 6

Adaptive Generalized Multiset
CCA for Incrementally Updated
Multiblock Data

6.1 Introduction

A wide variety of applications from the brain-computer interface [161] to imaging ge-
nomics [155] have used multiset canonical correlation analysis (MCCA) for feature extrac-
tion. These applications involve either non-stationary or big data sets. The databases are
generally updated continuously. They can be incremented in many ways. New instances
may be added with the existing samples or new modalities may be considered for better
analysis. For example, TCGA updates and releases the new data, both samples and modal-
ities, twenty-two times in the last five years. Every day, a huge amount of data is being
added to the existing databases. In such contexts, the algorithms for solving canonical cor-
relation analysis (CCA) should be adaptive or incremental in nature. Incremental learning
is a machine learning paradigm where the learning process takes place whenever new data
is merged with or deleted from the existing data set and the solutions already obtained are
only modified. In [310], an adaptive CCA based on matrix manifold has been presented,
while a learning algorithm has been reported in [277] for adaptive CCA of several data
sets. Both of them are applicable to the situation when new samples are being added with
the existing samples and all the covariance matrices are required to update. However, they
are not applicable when a new modality is available for the augmentation with the exist-
ing modalities. In [114], a one-pass learning approach has been introduced to address the
problem of learning associated with incremental and decremental features. Recently, a safe
classification approach has been proposed for exploiting augmented features or views [113].
However, none of these methods [113,114] considers the covariance of individual modality
as well as cross-covariance among different modalities. In [187], an incremental general-
ized CCA has been proposed for incremental updates of existing solutions based on new
modalities, although it leads to approximate solutions. Moreover, all the adaptive CCA
algorithms reported in [187,277,310] are unsupervised in nature.
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In this regard, a new MCCA, termed as incremental MCCA (IMCCA), is introduced
to integrate judiciously the information of sequentially arriving multidimensional variables.
The proposed IMCCA incrementally updates the existing solutions, whenever a new modal-
ity is available for the analysis. The theoretical analysis presented in this chapter establishes
that, unlike [187], the proposed model generates the exact solutions while updating canoni-
cal variables incrementally. The proposed IMCCA deals with the “large p-small n” problem
of multidimensional data sets by using the ridge regression optimization technique. A the-
oretical analysis is presented, which helps to compute multiset canonical variables under
ridge regression in an iterative way. Using the proposed IMCCA model, a new feature
extraction algorithm, termed as SeFGeIM (Sequential Feature Generation using IMCCA),
is introduced. The proposed SeFGeIM algorithm considers a new modality for the inte-
gration if it has relevant and significant information with respect to earlier modalities.
It starts with the two most relevant modalities, and the remaining modalities are added
sequentially according to their relevance. The optimum regularization parameters for the
proposed algorithm are estimated based on the supervised information of sample categories.
An analytical formulation enables the proposed algorithm generation of the required num-
ber of relevant and significant features from the multiblock dynamic data sets, without
extracting all possible features. In fact, all the modalities may not be required to extract
different features. The effectiveness of the proposed multiblock data integration approach,
along with a comparative performance analysis with the state-of-the-art methods, is estab-
lished on several real-life multiblock data. Some of the results of this chapter are reported
in [184].

The rest of this chapter is organized as follows: Section 6.2 presents a new multiset
CCA algorithm. In Section 6.3, a new feature extraction algorithm is presented for in-
crementally updated multiblock data. The effectiveness of the proposed multi-view data
integration algorithm, along with a comparative performance analysis with state-of-the-art
algorithms on different multi-view benchmark and omics data sets, is presented in Section
6.4. Concluding remarks are provided in Section 6.5.

6.2 Proposed Multiset CCA

This section presents a new multiset CCA, termed as incremental multiset CCA (IMCCA).
It judiciously integrates the information of multidimensional multimodal data sets that are
available sequentially one after another. When a new modality is available for the same
set of samples, the proposed model generates a new set of features based on the new
modality as well as the features extracted from the earlier modalities. It does not repeat
the same procedure with the original data augmented by the new modality. Some important
analytical formulations are reported next to explain the proposed multiset CCA model.

6.2.1 IMCCA: Incremental Multiset CCA

Let X1 P ℜm1ˆn,X2 P ℜm2ˆn,¨ ¨ ¨ ,XM P ℜmM ˆn be M multidimensional data sets with
m1,m2, ¨ ¨ ¨ ,mM variables, respectively, and n represents the number of common samples.
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Here, superscript M of w M
i denotes that all M multidimensional variables are considered

for the computation of the basis vector of i -th multidimensional variable. Now, a new
multidimensional variable XpM `1q P ℜmpM `1qˆn is available. The basis vector w M `1

pM `1q
corre-
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0rk ,l s denotes a rectangular null matrix with dimension k ˆ l . According to (6.1), the
eigenvectors of ApM `1q are the basis vectors w M `1
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From (6.2.1), it is seen that the basis vector w M `1
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of new multidimensional variable
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where A: denotes the pseudoinverse of A.
When the new multidimensional variable XpM `1q is added with the existing variables, the
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(6.1), we get
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is the updated basis vectors w M `1
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w M `1
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M , which can be computed by using the previous basis vectors w M
1 ,w M

2 , ¨ ¨ ¨ ,

w M
M of the preceding M multidimensional variables X1,X2, ¨ ¨ ¨ ,XM and the basis vector

w M `1
pM `1q

of the newly added multidimensional variable XpM `1q. Hence, when a new multi-
dimensional variable is added, there is no need to compute the extracted feature set from
the initial stage. The new features can be computed by using preceding features.

6.2.2 Validation of Proposed IMCCA

The proposed model is designed in such a way that, when a new data XpM `1q arrives, the
algorithm will not repeat the same steps with the original data X1,X2, ¨ ¨ ¨ ,XM augmented
by the new data XpM `1q. Rather, it starts with the basis vectors obtained using the previous
set of data, and generates the new basis vectors. In fact, if the initial set of modalities and
the new modality come together, then the proposed method generates the same set of basis
vectors. To establish this characteristic, let us consider that all pM ` 1q multidimensional
data arrive simultaneously. Hence, the eigenvectors of ApM `1q are the basis vectors of
X1,X2, ¨ ¨ ¨ ,XpM `1q, that is,
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Next, let us assume that initially M number of multidimensional variables X1,X2, ¨ ¨ ¨ ,XM
are available, and their corresponding basis vectors have already been computed. Now, a
new multidimensional variable XpM `1q is added with the existing M variables. Accord-
ing to (6.2.1), the eigenvector of rΦM ΘM s is the basis vector w M `1

pM `1q
of XpM `1q. On the

other hand, it can be observed from (6.5) and (6.9) that the basis vectors of preceding M
multidimensional variables can be updated by using previously obtained basis vectors of
them and the basis vector of the newly added multidimensional variable. Let the updated

basis vectors be W M `1
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To establish the characteristics of the proposed method, we need to show that W M `1
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pM `1q
,xW M `1

pM `1q
xW M `1

pM `1q
xW M `1

pM `1q

}UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

´ pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

}2F ; (6.10)

subject to

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

”

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

ıT
“ pUM `1

pM `1q
pUM `1

pM `1q
pUM `1

pM `1q

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
“ I ;

where I is the identity matrix with appropriate order. Now,

}UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

´ pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

}2F “ 2I ´ 2UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
. (6.11)

Hence, using (6.11), the objective function of (6.10) can be reformulated as

max
W M `1

pM `1q
W M `1

pM `1q
W M `1

pM `1q
,xW M `1

pM `1q
xW M `1

pM `1q
xW M `1

pM `1q

trace

ˆ

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
˙

; (6.12)

subject to

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

”

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

ıT
“ pUM `1

pM `1q
pUM `1

pM `1q
pUM `1

pM `1q

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
“ I .

Now,

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

”

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

ıT
“ I ñ UM `1

pM `1q
UM `1

pM `1q
UM `1

pM `1q
“

„

”

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

ıT
ȷ´1

ñ UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
“

„

”

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

ıT
ȷ´1

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
. (6.13)

Hence, using (6.2.2), it is possible to prove that (6.12) will be maximum when

„

”

UM `1
pM `1q

UM `1
pM `1q

UM `1
pM `1q

ıT
ȷ´1

”

pUM `1
pM `1q

pUM `1
pM `1q

pUM `1
pM `1q

ıT
“ I ñ UM `1

pM `1q
UM `1

pM `1q
UM `1

pM `1q
“ pUM `1

pM `1q
pUM `1

pM `1q
pUM `1

pM `1q
.

So, the projected subspaces are same, that means, the proposed method extracts same set
of basis vectors if all pM ` 1q multidimensional variables are available simultaneously.
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6.2.3 IMCCA Under Ridge Regression Model

To compute the basis vectors, the inverse of the covariance matrix Cii is needed; @i P

t1, 2, ¨ ¨ ¨ , pM `1qu. If n ! mi , the covariance matrix Cii becomes non-invertible, which leads
to the invalid computation of MCCA [68]. Both shrinkage and regularization parameters
are used to overcome this problem. The shrinkage parameter si is used to take care of the
singularity problem of Cii by reducing the off-diagonal elements, which can be computed
as follows:

si “

ř

k ‰l
V̂prCii skl q

ř

k ‰l
rC2

ii skl
(6.14)

where V̂prCii skl q is the unbiased empirical variance of rCii skl . Hence, to deal with the
singularity issue, the covariance matrices can be redefined as follows:

rC̃ii skl “

#

p1 ´ si qrCii skl ; if k ‰ l
rCii skl ; otherwise.

(6.15)

Moreover, a ridge regression optimization scheme is used to overcome the above problem,
where a small positive quantity ri , known as regularization parameter, is added to the
diagonals of covariance matrix C̃ii . Let us assume that the l -th dimension of the i -th
multidimensional variable Xi rl s is contaminated with noise εi rl s, @l P t1, 2, ¨ ¨ ¨ ,mi u, such
that Erεi rl ss “ 0,Erεi rl sεi rk sT s “ 0 for l ‰ k , Erεi rl sXi rl s

T
s “ 0 and Erεi rl sεi rl sT s “

ri ě 0. Under these assumptions, the cross-covariance matrix of Xi and Xj is Cij and
the covariance matrix of Xi becomes rC̃ii ` ri I s. To estimate the basis vector wi , the
covariance matrix C̃ii needs to be replaced by rC̃ii ` ri I s. This is similar to the ridge
regression modification [278].

To estimate the optimal set of regularization parameters, a grid search optimization
is performed, where each regularization parameter ri follows an arithmetic progression
and is varied within a specified range. The optimal set of regularization parameters can
be estimated in such a way that the correlation between multiset canonical variables is
maximum. Let ti be the number of possible values of regularization parameter ri , while di
indicates the common difference for ri . As ri is varied within a specified range rrmin , rmax s,
the inverse of covariance matrix of each multidimensional variable has to be computed ti
times. As the diagonal elements of C̃ii are only changed by adding ri , the eigenvalues of
rC̃ii ` pri ` ki di qI s, @ki P t0, 1, ¨ ¨ ¨ , pti ´1qu, are changed, but the corresponding eigenvectors
remain same [183]. Also, there exists a relation between the eigenvalues of rC̃ii ` ri I s and
that of rC̃ii ` pri ` ki di qI s, which is given by,

∆i ki “ ∆i ` ki di I ; (6.16)

where ∆i ki is the diagonal matrix, whose diagonal elements are the eigenvalues of rC̃ii `pri `

ki di qI s, ∆i “ ∆i 0. Let the corresponding eigenvectors of the matrix rC̃ii `pri `ki di qI s be the
columns of Ωi . Based on spectral decomposition, the covariance matrix rC̃ii ` pri ` ki di qI s
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can be expressed as follows [269]:

rC̃ii ` pri ` ki di qI s “ Ωi∆i kiΩ
T
i “ Ωi r∆i ` ki di I sΩT

i “

mi
ÿ

l “1

pδi l ` ki di qωi l ωi
T
l ; (6.17)

and the inverse covariance matrix rC̃ii ` pri ` ki di qI s´1 can be computed as follows:

rC̃ii ` pri ` ki di qI s´1 “

mi
ÿ

l “1

1

pδi l ` ki di q
ωi l ωi

T
l ; (6.18)

where the l -th element δi l of diagonal matrix ∆i denotes the l -th eigenvalue of the matrix
rC̃ii ` ri I s. The l -th column of the matrix Ωi represents the orthogonalized eigenvector ωi l
corresponding to the eigenvalue δi l , @l P t1, 2, ¨ ¨ ¨ ,mi u. From (6.18), it can be observed
that there is no need to compute the eigenvalue for every ri of each Xi . It is sufficient to
calculate the eigenvalues δi l and eigenvectors ωi l of covariance matrix corresponding to the
initial value of ri .

Moreover, the l -th element of each diagonal matrix r∆i ` ki di I s is in arithmetic pro-
gression, as the regularization parameters follow an arithmetic progression. Hence, the
l -th element of each diagonal matrix r∆i ` ki di I s´1 follows harmonic progression, that is,
the l -th element of all diagonal matrices r∆i ` ki di I s´1 be 1

δi l
, 1
δi l `di

, 1
δi l `2di

, ¨ ¨ ¨ , 1
δi l `pti ´1qdi

.
Now,

1

δi l ` ki di
“

1

δi l
´

ki
ÿ

j“1

di

pδi l ` pj ´ 1qdi qpδi l ` jdi q
. (6.19)

So, using (5.3.2) of Chapter 5, the inverse covariance matrix of (6.18) can be expressed as

rC̃ii ` pri ` ki di qI s´1 “ rC̃ii ` pri ` pki ´ 1qdi qI s´1 ´ Υi ki

“ rC̃ii ` ri I s´1 ´

ki
ÿ

j“1

Υi j “ Ωi∆
´1
i ΩT

i ´

ki
ÿ

j“1

Υi j (6.20)

where Υi ki “ Ωi

«

mi
ÿ

l “1

pCl Vi ki
xDl

ff

ΩT
i ;

and Vi ki P ℜmi be a row vector, where

Vi ki “

»

—

—

—

—

–

di
pδi 1`pki ´1qdi qpδi 1`ki di q

di
pδi 2`pki ´1qdi qpδi 2`ki di q

...
di

pδi mi `pki ´1qdi qpδi mi `ki di q

fi

ffi

ffi

ffi

ffi

fl

T

;

@ki P t1, 2, ¨ ¨ ¨ , pti ´ 1qu; pCl and xDl be a column vector and a square matrix of dimension
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mi , respectively, where

pCl rj s “

#

1 if l “ j ,
0 otherwise;

and xDl rj , t s “

#

1 if l “ j “ t ,
0 otherwise;

@l , j , t P t1, 2, ¨ ¨ ¨ ,mi u. From (6.2.3), it is observed that the covariance matrix of each
Xi , corresponding to every ri , can be computed from the covariance matrix correspond-
ing to initial value of ri . Hence, the matrix rΦM ΘM s of (6.2.1), corresponding to r-th
regularization parameter of pM ` 1q-th modality, can be expressed as

rΦM ΘM sr “

M
ÿ

i“1

“

C̃pM `1qpM `1q ` prpM `1q ` kpM `1qdpM `1qqI
‰´1

CpM `1qi
“

C̃ii ` pri ` ki di qI
‰´1 CipM `1q

“

M
ÿ

i“1

´

“

C̃pM `1qpM `1q ` prpM `1q ` pkpM `1q ´ 1qdpM `1qqI
‰´1

´ ΥpM `1qkpM `1q

¯

CpM `1qi

´

“

C̃ii ` pri ` pki ´ 1qdi qI
‰´1

´ Υi ki

¯

CipM `1q

“ rΦM ΘM spr´1q ´ G̃pM `1qr ´ ĜpM `1qr ` ḠpM `1qr

“ rΦM ΘM s1 `

r
ÿ

j“1

´

ḠpM `1qj ´ G̃pM `1qj ´ ĜpM `1qj

¯

(6.21)

where ḠpM `1qr “ ΥpM `1qkpM `1q

M
ÿ

i“1

CpM `1qiΥi ki CipM `1q; (6.22)

G̃pM `1qr “ ΥpM `1qkpM `1q

M
ÿ

i“1

CpM `1qiΩi r∆i ` pki ´ 1qdi I s´1ΩT
i CipM `1q; (6.23)

and ĜpM `1qr
“ ΩpM `1qr∆i ` pkpM `1q ´ 1qdpM `1qI s´1ΩT

pM `1q

M
ÿ

i“1

CpM `1qiΥi ki CipM `1q; (6.24)

@ki P t1, 2, ¨ ¨ ¨ , pti ´ 1qu and @r P t1, 2, ¨ ¨ ¨ , tpM `1qu represents the number of all possible
values of regularization parameter of pM ` 1q-th multidimensional variable.
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From (6.2.1) and (6.2.3), we get the following relation:

rΦM ΘM sr “

”

ρM `1
1 ptq

ı2 ”

w M `1
pM `1q1

ptq

ı ”

w M `1
pM `1q1

ptq

ıT
`

r
ÿ

j“1

´

ḠpM `1qj ´ G̃pM `1qj ´ ĜpM `1qj

¯

.

(6.25)
From (6.25), it is clear that the eigenvalues and eigenvectors of rC̃pM `1qpM `1q ` rpM `1qI s

are enough to compute rΦM ΘM sr. There is no need to compute the eigenvalues and eigen-
vectors of rC̃pM `1qpM `1q ` prpM `1q ` kpM `1qdpM `1qqI s corresponding to each value of rpM `1q

for computing rΦM ΘM sr. Hence, when a new multidimensional variable is added, the
eigenvectors of rC̃pM `1qpM `1q ` rpM `1qI s have to be computed only to get the basis vec-
tor corresponding to any regularization parameter. Moreover, it is necessary to update
the previously obtained basis vectors of preceding multidimensional variables. The rela-
tion between basis vectors, corresponding to r-th and initial regularization parameters,
of pM ` 1q-th multidimensional variable is shown in (6.25). So, at first, the basis vector
of pM ` 1q-th multidimensional variable corresponding to initial regularization parameter
has to be computed. Then, the basis vectors of preceding multidimensional variables are
updated according to (6.9).

6.3 Proposed Feature Extraction Algorithm

This section presents some analytical formulations required for the sequential generation
of canonical variables when a new modality arrives. Moreover, in real-life data analysis,
all the available modalities may not be relevant, some of them may provide even noisy
and inconsistent information. Hence, the proposed method is designed in such a way that
it considers multidimensional variables incrementally if they have relevant and significant
information with respect to previously considered modalities.

6.3.1 Sequential Generation of Canonical Variables

When a new multidimensional variable is added, it is possible to extract all p number of fea-
tures, where p “ mintm1,m2, ¨ ¨ ¨ ,mpM `1qu, by computing the eigenvalue-eigenvector pairs
of rΦM ΘM sr using the Jacobi method, with a computational complexity Opp3q. However,
in real-life high dimensional multimodal data analysis, the value of p is large, while a small
fraction D ăă p is enough to deal with a certain problem. In multimodal data analysis,
the goal is thus to extract a reduced set of most relevant features. This is an important
problem in machine learning and termed as feature selection. So, in place of generating all
p eigenvalue-eigenvector pairs using the Jacobi method, if each eigenvalue-eigenvector pair
corresponding to matrix rΦM ΘM sr is extracted sequentially, the quality of each generated
feature can be evaluated, eventually, D features can be generated.

In the proposed algorithm, the Power method is used to compute each eigenvalue-
eigenvector pair of rΦM ΘM sr sequentially. The first eigenvalue-eigenvector pair is enough
to compute any t -th eigenvalue-eigenvector pair as described below. The analytical formula-
tion reported next establishes the relation between t -th and pt `1q-th eigenvalue-eigenvector
pairs, which helps to generate correlated features sequentially. Now, the t -th eigenvalue of
the matrix rΦM ΘM sr is

“

ρM `1
r ptq

‰2 and the corresponding eigenvector is w M `1
pM `1qr

ptq. So,
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using the Deflation method, we get
„

rΦM ΘM sr ´

”

ρM `1
r ptq

ı2 ”

w M `1
pM `1qr

ptq

ı ”

w M `1
pM `1qr

ptq

ıT
ȷ

”

w M `1
pM `1qr

pt ` 1q

ı

“

”

ρM `1
r pt ` 1q

ı2 ”

w M `1
pM `1qr

pt ` 1q

ı

. (6.26)

Hence, from (6.3.1), it is proved that the pt ` 1q-th eigenvalue-eigenvector pair
!

“

ρM `1
r pt ` 1q

‰2
,
”

w M `1
pM `1qr

pt ` 1q

ı)

of the matrix rΦM ΘM sr is same as the first eigenvalue-

eigenvector pair of the matrix
„

rΦM ΘM sr ´
“

ρM `1
r ptq

‰2
”

w M `1
pM `1qr

ptq

ı ”

w M `1
pM `1qr

ptq

ıT
ȷ

. For

calculating pt ` 1q-th eigenvalue-eigenvector pair, the matrix rΦM ΘM sr can be calculated
as follows:

rΦM ΘM srpt ` 1q “ rΦM ΘM sr ´

t
ÿ

l “1

”

ρM `1
r pl q

ı2 ”

w M `1
pM `1qr

pl q

ı ”

w M `1
pM `1qr

pl q

ıT

“ rΦM ΘM s1`

r
ÿ

j“1

´

ḠpM `1qj ´ G̃pM `1qj ´ ĜpM `1qj

¯

´

t
ÿ

l “1

”

ρM `1
r pl q

ı2 ”

w M `1
pM `1qr

pl q

ı ”

w M `1
pM `1qr

pl q

ıT

(6.27)
where rΦM ΘM sr “ rΦM ΘM srp1q,@r P t2, 3, ¨ ¨ ¨ , tpM `1qu,@t P t1, 2, ¨ ¨ ¨ , pD ´ 1qu and D ď p.
From (6.3.1), it is clear that, when a new multidimensional variable XpM `1q is added, the
first basis vector corresponding to the initial regularization parameter has to be computed
and using that basis vector it is possible to compute any t -th basis vector correspond-
ing to any regularization parameter of XpM `1q,@t P t2, 3 ¨ ¨ ¨ ,Du. The previous basis vec-
tors of preceding multidimensional variables X1,X2, ¨ ¨ ¨ ,XM have to be updated for each
regularization parameter of XpM `1q. The update of basis vectors is also done sequen-
tially. Hence, from (6.9), it can be established that the pt ` 1q-th updated basis vectors
of preceding multidimensional variables will be the pt ` 1q-th eigenvector of the matrix
„

ρM W M
M W M

M
T

` ρM `1ΘM w M `1
pM `1q

”

w M `1
pM `1q

ıT
Θ:

M

ȷ

r

. Hence,

„

ρM W M
M W M

M
T

` ρM `1ΘM w M `1
pM `1q

”

w M `1
pM `1q

ıT
Θ:

M

ȷ

r

pt ` 1q

“

„

ρM W M
M W M

M
T

` ρM `1ΘM w M `1
pM `1q

”

w M `1
pM `1q

ıT
Θ:

M

ȷ

r

´

t
ÿ

l “1

”

ρM `1
r pl q

ı2 ”

W M `1
M r

pl q

ı ”

W M `1
M r

pl q

ıT
. (6.28)

From (6.3.1), it is seen that the update of the t -th basis vectors of preceding multidimen-
sional variables can be done by using all previously updated basis vectors of preceding
multidimensional variables. Hence, the basis vectors of preceding multidimensional vari-
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ables can be updated sequentially.
Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu be the ordered list of pM `1q multidimensional data sets. The

proposed IMCCA based feature generation algorithm starts with first two multidimensional
variables tX1,X2u and computes the largest eigenvalue

“

ρ2rptq
‰2 and eigenvector w2

2 rptq of

the matrix rΦ1Θ1srptq, where w2
2 rptq is the t -th basis vector of X2; @r P t1, 2, ¨ ¨ ¨ ,

2
ś

l “1

tl u.

On the other hand, the t -th basis vector w2
1 rptq of X1 can be computed as

w2
1 rptq “

˜

Ω1∆
´1
1 ΩT

1 ´

k1
ÿ

s“1

Υ1s

¸

C12w2
2 rptq. (6.29)

The algorithm to compute the basis vector w j`1

pj`1q
of newly added multidimensional variable

Xpj`1q and to update of the basis vectors of preceding all j (@j P t2, 3, ¨ ¨ ¨ ,M u) multidimen-
sional variables, is presented in Algorithm 6.1.

Algorithm 6.1 Algorithm for dynamic multiblock data
Input: Cross-covariance matrix Cipj`1q of Xi and Xj`1, eigenvalues ∆pj`1q of covariance
matrix C̃pj`1qpj`1q, along with corresponding eigenvectors Ωpj`1q, and the optimal solution
tρj ,W j

j u of preceding j multidimensional variables; @i P t1, 2, ¨ ¨ ¨ , ju.

Output: The t -th basis vectors w j`1
i rptq of all pj ` 1q-th multidimensional variables cor-

responding to r-th regularization parameter, @i P t1, 2, ¨ ¨ ¨ , pj ` 1qu.
1: for each r-th regularization parameters, where @r P t1, 2, ¨ ¨ ¨ , tpj`1qu for each t -th

extracted feature do

(i) Calculate rΦjΘj srptq using (6.2.3) if t “ 1, otherwise using (6.3.1).

(ii) Calculate largest eigenvalue
”

ρ
j`1
r ptq

ı2
and eigenvector w j`1

pj`1qr
ptq of the matrix

rΦjΘj srptq, where w j`1

pj`1qr
ptq is the t -th basis vector of pj ` 1q-th multidimensional

variable.

(iii) Update the t -th basis vector w j`1
l r

ptq of the preceding multidimensional variables
using (6.3.1), where @l P t1, 2, ¨ ¨ ¨ , ju.

2: end for

6.3.2 Selection of Multidimensional Variables

The proposed feature extraction algorithm, termed as SeFGeIM, is designed in such a way
that it considers the relevance of multidimensional variables while adding them sequentially.
The largest eigenvalue of the covariance matrix of a modality represents its relevance value.
It is the variance in the direction of the largest spread of the data. So, if the data is projected
towards the direction of the largest spread or first principal axis, then the eigenvalue of the
covariance matrix represents the variance of the data in that direction. As both eigenvalues
and eigenvectors of each covariance matrix have to be computed to calculate the inverse of
the covariance matrix for each multidimensional variable, the multidimensional variables
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Algorithm 6.2 Proposed Algorithm: SeFGeIM
Input: pM ` 1q multidimensional variables X1,X2, ¨ ¨ ¨ ,XpM `1q.
Output: A set SM `1 of D selected features.
1: Calculate the cross-covariance matrix Cij of Xi and Xj , @i , j P t1, 2, ¨ ¨ ¨ , pM ` 1qu and

i ă j .
2: Calculate the covariance matrix C̃ii of Xi ,@i P t1, 2, ¨ ¨ ¨ , pM ` 1qu.
3: Calculate eigenvalues δi l of C̃ii , along with corresponding eigenvectors ωi l ,@i P

t1, 2, ¨ ¨ ¨ , pM ` 1qu, @l P t1, 2, ¨ ¨ ¨ ,mi u.
4: Construct the diagonal matrix ∆i , whose diagonal elements are δi l , and the square

matrix Ωi , whose each column is ωi l .
5: Order the multidimensional variables according their largest eigenvalues of the covari-

ance matrices. Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu be the order list.
6: for each i “ 2, ¨ ¨ ¨ , pM ` 1q do

(I) Initialize Si “ H and t “ 1.

(II) for each t ď D do

(i) Initialize Ci “ H.
(ii) Compute the t -th basis vector w i

k r
ptq using (6.29) if i “ 2; otherwise, using

Algorithm 6.1; @j P t1, 2, ¨ ¨ ¨ , pi ´ 1qu and @k P t1, 2, ¨ ¨ ¨ , iu.
(iii) for each r-th combinations of regularization parameters, where @r P

t1, 2, ¨ ¨ ¨ ,
i
ś

l “1

tl u if i “ 2; otherwise, for all r-th regularization parameters,

where @r P t1, 2, ¨ ¨ ¨ , ti u do
(a) Calculate the t -th canonical variable Uj rptq; @j P t1, 2, ¨ ¨ ¨ , iu using (6.30).
(b) Extract the t -th feature F i

r ptq using (6.31).
(c) Calculate the relevance γF i

rptqpDq of the feature F i
r ptq.

(d) If t ą 1, calculate the significance σtF i
rptq,F i

l upD,F i
r ptqq of the extracted

feature F i
r ptq.

(e) Add F i
r ptq to Ci if its significance is non-zero with respect to all of the

selected features of Si . In effect, Ci “ Ci ŤF i
r ptq.

(iv) end for
(v) If Ci ‰ H, select a feature as t -th feature F i

r ptq from all the features of Ci ,
which maximizes the condition (6.32) when t “ 1, otherwise (6.33). As a
result of that, Si “ Si ŤF i

r ptq.
(vi) For i ą 2, if the value of objective function ((6.32) for t “ 1 and (6.33)

otherwise) of the t -th feature of Si´1 is greater than that of Si , then Si “

Si ŤF i´1
r ptq.

(vii) Set t “ t ` 1.

(III) end for

7: end for
8: Stop.
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are arranged, in descending order, according to their largest eigenvalues of the covariance
matrices.

Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu be the ordered list of pM `1q multidimensional data sets, where
each Xi P ℜmi ˆn; mi and n represent the number of features and samples, respectively,
@i P t1, 2, ¨ ¨ ¨ , pM ` 1qu. Let us assume that each attribute is centered to have zero mean
across the samples, and each regularization parameter ri is bounded by rrmin , rmax s. Let ti
denote the number of all possible values of ri within that range. Let the t -th canonical
variable

Uj rptq “

”

w i
j r

ptq

ıT
Xj ; (6.30)

@j P t1, 2, ¨ ¨ ¨ , iu, where w i
j r

ptq denotes the t -th basis vector of the j -th multidimensional
variable and

F j
r ptq “

j
ÿ

l “1

Ul rptq (6.31)

be the t -th extracted feature with r-th combination of regularization parameters of trk u,
@k P t1, 2, ¨ ¨ ¨ , ju, where all j multidimensional variables are considered, @j P t2, 3, ¨ ¨ ¨ , iu.
The relevance of the feature F j

r ptq with respect to the sample categories D is denoted by
γF j

rptq
pDq. Let σ

tF j
rptq,F j

l u
pD,F j

r ptqq denote the significance of the feature F j
r ptq with respect

to already-selected feature F j
l P Sj ,Sj being the set of D selected features where all j

multidimensional variables are considered and initially Sj Ð H. The optimal regularization
parameters for each extracted feature can be selected by using the relevance and significance
of that feature. Let us assume that the set Cj contains all the t -th extracted features
which are computed by using all r-th combinations of regularization parameters, @t P

t1, 2, ¨ ¨ ¨ ,Du where all j multidimensional variables are considered. For t “ 1, the most
relevant feature is selected from the set Cj and is included to Sj , that is,

F j ptq “ argmax
F j
rptqPCj

!

γF j
rptq

pDq

)

; (6.32)

while for t ą 1, the feature which has maximum relevance among the features of Cj and
significance with respect to the features of Sj is selected as follows:

F j ptq “ argmax
F j
rptqPCj

$

’

&

’

%

γF j
rptq

pDq `
1

t ´ 1

ÿ

F j
l PSj

σ
tF j

rptq,F j
l u

pD,F j
r ptqq

,

/

.

/

-

. (6.33)

The proposed algorithm starts with first two multidimensional variables X1 and X2 from
the ordered list, and produces a feature set S2. Then, other modalities are considered se-
quentially one after another. If the t -th feature of Sj has higher relevance and significance
value than that of Sj`1, @j P t2, 3, ¨ ¨ ¨ ,M u, then the t -th feature of Sj is considered instead
of Sj`1. So, if a multidimensional variable Xpj`1q is relevant in extracting the t -th feature,
then only it is considered, otherwise, the multidimensional variables X1,X2, ¨ ¨ ¨ ,Xj are in-
tegrated to extract the t -th feature. So, each feature is extracted by integrating different
number of multidimensional variables. The problem of generating a set of most significant
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and relevant feature set SM `1 from the selected multiblock data sets is addressed by Al-
gorithm 6.2. In the current research work, both significance and relevance of an extracted
feature are computed by using the concept of rough hypercuboid approach [172].

6.3.3 Complexity Analysis

Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu be the pM ` 1q multidimensional data sets, with c classes and n
samples, where each Xi P ℜmi ˆn and mi represents the number of features in Xi . Let us
assume that the regularization parameter ri has ti possible values. Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu

is the order list, which is rearranged according their largest eigenvalues of covariance ma-
trices. Let q “ maxtm1,m2, ¨ ¨ ¨ ,mpM `1qu, p “ mintm1,m2, ¨ ¨ ¨ ,mpM `1qu, and y denotes
the second largest dimension among tm1,m2, ¨ ¨ ¨ ,mpM `1qu, where the number of extracted

features D ăă p. Let τ “ t1t2 `

pM `1q
ř

l “3

tl .

All the cross-covariance matrices tCij u can be computed with a complexity Op
ř

iăj
mimjnq «

Opqynq; whereas the total time complexity to compute all the covariance matrices tCii u is
Op

ř

i
m2

i nq « Opq2nq, @i , j P t1, 2, ¨ ¨ ¨ , pM ` 1qu. All the eigenvalues δi l , along with cor-

responding eigenvectors ωi l , are computed with computational complexity Op
ř

i
m3

i q «

Opq3q; @l P t1, 2, ¨ ¨ ¨ ,mi u, in step 3. On the other hand, step 4 and step 5 have constant
time complexity of Op1q. Thus, the total computational complexity of these five steps is
Opqyn` q2n` q3q « Opq3q as n ăă q .

In step 6, there is a loop which is executed M times. The first step of this loop has
constant time complexity, which is given as Op1q and the next step has another loop, which
is executed D times. Again the first step of this loop has constant time complexity, which
is given by Op1q. The complexity to compute rΦi´1Θi´1srptq is Opq3`τq3q « Opτq3q. The
eigenvector of the matrix rΦi´1Θi´1srptq can be calculated with computational complexity
Opm2

i q. If i “ 2, the t -th basis vector w i
j r

ptq of j -th multidimensional variable can be
computed with time complexity Opm2

j q, otherwise updation of the t -th basis vector w i
j r

ptq

of the preceding multidimensional variables can be done with complexity Opp

j
ř

k
mk q3q,

where @j P t1, 2, ¨ ¨ ¨ , pi ´ 1qu. The next step has another loop, which is executed
i
ś

l “1

tl

times if i “ 2; otherwise, ti times, @i P t2, 3, ¨ ¨ ¨ , pM ` 1qu. In step 6(II)(iii)(a), the t -
th canonical variable Uj rptq can be computed with time complexity Op

ř

i
minq « Opqnq.

Hence, a feature F i
r ptq can be extracted with computational complexity Opnq. The step to

compute both significance and relevance of a feature has same time complexity, which is
given by Opcnq. Step 6(II)(iii)(e) has constant time complexity of Op1q. The selection of
a feature from t1t2 candidate features, for i “ 2, otherwise pτ ´ t1t2q candidate features,
by maximizing both relevance and significance, has complexity Opτq. The last step of the
loop has constant time complexity of Op1q. So, the total complexity to execute the loop D

times is OpDpτq3`m2
i `m2

j `p

j
ř

k
mk q3`qn`n`cn`τqq « OpDτq3q. Hence, the proposed
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multi-block data integration algorithm has computational complexity of Opq3 ` Dτq3q «

OpDτq3q.

6.4 Performance Analysis

The performance of the proposed IMCCA based sequential feature generation algorithm,
termed as SeFGeIM, is extensively studied and compared with that of several state-of-
the-art multi-view data integration algorithms. To evaluate the performance of different
algorithms, support vector machine with linear kernels is used. Five benchmark data
sets, namely, CiteSeer, Handwritten, NUS-WIDE-OBJECT (NW-OBJECT), Reuters, and
Caltech; and five cancer data sets, namely, glioblastoma multiforme (GBM), lung (LUNG),
kidney (KIDNEY), lower grade glioma (LGG) and ovarian serous cystadenocarcinoma
(OV), are considered in the current research work. All ten data sets are summarized in
Table 5.1 and Table 5.2 of Chapter 5 and briefly described in Appendix A. Each of the
regularization parameters of the proposed SeFGeIM algorithm is bounded in between 0.0
and 1.0 and varied with a difference of 0.1. The proposed algorithm is implemented in C
language and run in Ubuntu 14.04 LTS having machine configuration Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHzˆ8 and 32 GB RAM. The source code of the proposed algorithm
is available at https://www.isical.ac.in/~bibl/results/sefgeim/sefgeim.html.

Both 10-fold cross-validation (CV) and training-testing are performed to assess the
performance of different algorithms. To analyze the statistical significance of the derived
results in 10-fold CV, paired-t test (one-tailed), Wilcoxon signed rank test (one-tailed)
and Friedman test (one-tailed), with 95% confidence level, are used to compute the p-
values. For training-testing, the randomly selected 50% samples from each class are used
for training and the rest are used for testing purpose for each of the data sets. For each
data set, 25 top-ranked correlated features are selected for the analysis.

6.4.1 Gain in Execution Time

When a new modality is available for the analysis, the existing MCCA based method gen-
erates the canonical variables for all the modalities considering the original data augmented
by the new modality. One of the important features of the proposed SeFGeIM algorithm
is that it is based on the IMCCA model. The proposed IMCCA can generate the new

Table 6.1: Gain in Execution Time

Approach/Data CiteSeer Handwritten NW-OBJECT Reuters Caltech
MCCA 6932.4 114.4 90.8 13922.7 19819.1
IMCCA 19.5 48.5 69.5 596.0 243.8

Approach/Data GBM LUNG KIDNEY LGG OV
MCCA 2562.5 37931.0 5940.9 12578.5 997.2
IMCCA 139.7 251.4 219.4 287.6 284.1

canonical variables as well as modify the existing variables from the knowledge of canon-
ical variables of the earlier modalities and the new modality only, without repeating the
same procedure like existing MCCA. In effect, a significant gain in execution time can be
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achieved by the IMCCA when the number of features in a modality is high. Table 6.1 com-
pares the performance of MCCA and IMCCA with respect to execution time (in second)
on ten data sets. From the results, it can be seen that the IMCCA needs significantly lesser
execution time than the MCCA, particularly for the data sets having modalities with large
number of features.

6.4.2 Performance With Multiple Modalities

The superiority of the IMCCA over MCCA is its ability to handle dynamic data. In order to
establish the relationship between the performance of the IMCCA based proposed SeFGeIM
algorithm and the number of data modalities, extensive experimentation is carried out on
five benchmark and five omics data sets. Figure 6.1 presents the variation of classification
accuracy obtained by the proposed SeFGeIM algorithm with respect to the number of
modalities or views, both for benchmark and omics data sets. The results are reported for
10-fold CV.
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Figure 6.1: Variation of classification accuracy with respect to number of modalities /
views (left: benchmark data; right: omics data).

6.4.3 Comparative Performance Analysis

Finally, Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5, Figure 6.8, Figure 6.9, Figure 6.10,
and Figure 6.11 along with Table 6.2, Table 6.3, Table 6.4, Table 6.5, and Table 6.6 an-
alyze the performance of the proposed multimodal data integration algorithm, termed as
SeFGeIM, with that of (i) different criteria of the MCCA, namely, SUMCOR, MAXVAR,
generalized variance (GENVAR), minimum variance (MINVAR), and sum of squared cor-
relations (SSQCOR) [135]; (ii) various state-of-the-art MCCA based methods, namely,
RGCCA [262], GMCCA [43], GMKCCA [43], large-scale generalized CCA (LasCCA) [84],
distributed generalized CCA (DisCCA) [84], block sparse MCCA (BsMCCA) [235], and
ReDMiCA [185] presented in Chapter 5; (iii) two popular multidimensional data integra-
tion algorithms, namely, multi-view discriminant analysis (MvDA) [128] and MvDA with
view-consistency (MvDA-VC) [129]; (iv) three multi-view incremental algorithms, namely,
live generalized canonical correlation analysis (LiveGCANO) [187], one-pass learning with
incremental and decremental features (OPID) [114], and safe classification with augmented
features (SAC) [113]; and (v) three deep learning-based algorithms, namely, deep MCCA
(dMCCA) [244], deep multi-view learning via task-optimal CCA (TOCCA) [55], and mul-
timodal deep Boltzmann machines (MDBM) [247].
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Table 6.3: Statistical Significance Analysis of Different Algorithms on CiteSeer, Handwrit-
ten, GBM, and LUNG Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR
C

it
eS

ee
r

3.59E-05 2.53E-03 1.57E-03

G
B

M

6.62E-06 2.52E-03 1.57E-03
GENVAR 5.58E-10 2.53E-03 1.57E-03 9.84E-06 2.46E-03 1.57E-03
MAXVAR 2.60E-05 2.53E-03 1.57E-03 5.67E-02 5.46E-02 1.96E-02
MINVAR 5.80E-06 2.53E-03 1.57E-03 2.87E-02 3.30E-02 9.56E-02
SSQCOR 1.93E-06 2.53E-03 1.57E-03 2.95E-03 1.77E-02 1.14E-02

RGCCA 3.99E-05 3.82E-03 2.70E-03 1.05E-04 3.79E-03 2.70E-03
GMCCA 4.40E-09 2.52E-03 1.57E-03 1.60E-04 3.42E-03 1.14E-02

GMKCCA 9.00E-11 2.47E-03 1.57E-03 1.75E-05 3.37E-03 1.14E-02
LasCCA 5.60E-10 2.52E-03 1.57E-03 1.73E-02 3.27E-02 1.96E-02
DisCCA 1.95E-11 2.53E-03 1.57E-03 6.73E-06 2.47E-03 1.57E-03
BsMCCA 1.51E-10 2.53E-03 1.57E-03 3.72E-02 2.06E-02 5.78E-02
ReDMiCA 1.29E-01 1.98E-01 1.57E-01 4.04E-01 1.85E-01 3.17E-01

MvDA 6.91E-09 2.53E-03 1.57E-03 2.59E-01 1.29E-01 9.56E-02
MvDA-VC 2.30E-07 2.53E-03 1.57E-03 1.94E-01 6.85E-02 9.56E-02

LiveGCANO 7.49E-09 2.50E-03 1.57E-03 1.07E-02 3.70E-02 1.14E-02
OPID 1.62E-09 2.53E-03 1.57E-03 4.68E-01 2.76E-01 3.17E-01
SAC 3.10E-10 2.53E-03 1.57E-03 1.47E-01 1.71E-01 9.56E-02

M
C

C
A

SUMCOR

H
an

dw
ri

tt
en

9.73E-09 2.52E-03 1.57E-03

LU
N

G

3.81E-12 2.46E-03 1.57E-03
GENVAR 1.93E-06 2.39E-03 1.57E-03 9.88E-07 2.52E-03 1.57E-03
MAXVAR 3.52E-11 2.53E-03 1.57E-03 8.01E-06 2.53E-03 1.57E-03
MINVAR 1.49E-13 2.53E-03 1.57E-03 5.68E-06 2.50E-03 1.57E-03
SSQCOR 8.50E-13 2.52E-03 1.57E-03 2.72E-06 2.53E-03 1.57E-03

RGCCA 3.82E-14 2.52E-03 1.57E-03 3.55E-05 2.50E-03 1.57E-03
GMCCA 3.82E-14 2.52E-03 1.57E-03 4.34E-07 2.52E-03 1.57E-03

GMKCCA 1.96E-15 2.49E-03 1.57E-03 2.54E-03 3.84E-03 2.70E-03
LasCCA 6.04E-13 2.52E-03 1.57E-03 2.10E-04 2.47E-03 1.57E-03
DisCCA 2.20E-16 2.38E-03 1.57E-03 3.59E-08 2.53E-03 1.57E-03
BsMCCA 1.44E-12 2.53E-03 1.57E-03 1.19E-02 8.98E-03 8.15E-03
ReDMiCA 5.00E-01 5.34E-01 7.06E-01 2.17E-01 2.40E-01 6.55E-01

MvDA 1.20E-03 3.71E-03 2.70E-03 6.85E-02 3.80E-02 2.06E-01
MvDA-VC 5.99E-03 8.66E-03 1.96E-02 1.11E-01 6.03E-02 2.57E-01

LiveGCANO 2.01E-13 2.46E-03 1.57E-03 3.35E-09 2.49E-03 1.57E-03
OPID 1.03E-02 1.38E-02 1.14E-02 3.75E-02 3.91E-02 1.80E-01
SAC 8.47E-04 3.98E-03 1.14E-02 5.54E-02 4.24E-02 1.57E-01

The classification accuracy on test samples of each data set in case of training-testing,
as well as the mean, median, and standard deviation of accuracy for 10-fold cross-validation
are reported in Table 6.2, for both benchmark and omics data sets. To analyze the perfor-
mance of the proposed algorithm statistically, the p-values computed using three statistical
tests are also reported in these tables. While both Figure 6.2, Figure 6.4, Figure 6.8, and
Figure 6.10 are with respect to 10-fold CV, the corresponding results for training-testing
are reported in Figure 6.3, Figure 6.5, Figure 6.9, and Figure 6.11. On the other hand,
Figure 6.6 and Figure 6.7 show the scatter plots using the first two extracted features, along
with the class separability index, of the proposed algorithm on five benchmark and five
omics data sets, while the corresponding plots of aforementioned algorithms are reported
in Figure 5.5, Figure 5.6, Figure 5.11, and Figure 5.12, of Chapter 5.
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Table 6.4: Statistical Significance Analysis of Different Algorithms on NW-OBJECT,
Reuters, KIDNEY, and LGG Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR
N

W
-O

B
JE

C
T

1.55E-11 2.53E-03 1.57E-03

K
ID

N
E

Y

5.60E-09 2.36E-03 1.57E-03
GENVAR 2.49E-16 2.53E-03 1.57E-03 9.13E-07 2.46E-03 1.57E-03
MAXVAR 7.83E-14 2.53E-03 1.57E-03 5.12E-06 2.38E-03 1.57E-03
MINVAR 2.20E-16 2.52E-03 1.57E-03 1.70E-06 2.50E-03 1.57E-03
SSQCOR 5.92E-14 2.53E-03 1.57E-03 1.29E-03 3.98E-03 1.14E-02

RGCCA 2.20E-16 2.53E-03 1.57E-03 1.38E-02 1.78E-02 9.56E-02
GMCCA 1.15E-15 2.52E-03 1.57E-03 1.64E-06 2.50E-03 1.57E-03

GMKCCA 1.39E-12 2.53E-03 1.57E-03 7.76E-05 2.49E-03 1.57E-03
LasCCA 2.20E-16 2.53E-03 1.57E-03 3.21E-04 2.52E-03 1.57E-03
DisCCA 1.78E-13 2.53E-03 1.57E-03 2.94E-07 2.38E-03 1.57E-03
BsMCCA 4.16E-15 2.53E-03 1.57E-03 5.27E-04 3.30E-03 2.70E-03
ReDMiCA 6.79E-06 2.53E-03 1.57E-03 5.00E-01 5.00E-01 1.00E+00

MvDA 1.84E-12 2.53E-03 1.57E-03 1.01E-04 2.88E-03 2.70E-03
MvDA-VC 7.49E-11 2.53E-03 1.57E-03 1.93E-03 6.94E-03 8.15E-03

LiveGCANO 2.05E-11 2.53E-03 1.57E-03 3.53E-06 2.50E-03 1.57E-03
OPID 7.23E-13 2.52E-03 1.57E-03 1.72E-01 1.59E-01 3.17E-01
SAC 2.90E-11 2.53E-03 1.57E-03 1.24E-02 1.74E-02 3.39E-02

M
C

C
A

SUMCOR

R
eu

te
rs

1.28E-07 2.53E-03 1.57E-03

LG
G

7.20E-08 2.50E-03 1.57E-03
GENVAR 1.25E-13 2.53E-03 1.57E-03 1.09E-07 2.50E-03 1.57E-03
MAXVAR 5.22E-13 2.53E-03 1.57E-03 1.35E-08 2.52E-03 1.57E-03
MINVAR 3.25E-13 2.53E-03 1.57E-03 2.60E-08 2.50E-03 1.57E-03
SSQCOR 3.62E-15 2.53E-03 1.57E-03 2.19E-07 2.50E-03 1.57E-03

RGCCA 4.23E-12 2.53E-03 1.57E-03 5.17E-06 2.53E-03 1.57E-03
GMCCA 1.11E-13 2.53E-03 1.57E-03 4.22E-07 2.50E-03 1.57E-03

GMKCCA 4.95E-14 2.52E-03 1.57E-03 1.49E-09 2.50E-03 1.57E-03
LasCCA 3.05E-11 2.53E-03 1.57E-03 6.70E-09 2.45E-03 1.57E-03
DisCCA 2.49E-08 2.53E-03 1.57E-03 1.29E-08 2.52E-03 1.57E-03
BsMCCA 1.03E-11 2.53E-03 1.57E-03 4.22E-05 2.50E-03 1.57E-03
ReDMiCA 6.83E-03 1.09E-02 1.14E-02 6.47E-01 4.58E-01 1.00E+00

MvDA 9.56E-10 2.53E-03 1.57E-03 3.99E-04 3.76E-03 2.70E-03
MvDA-VC 6.29E-10 2.53E-03 1.57E-03 1.62E-01 1.53E-01 5.27E-01

LiveGCANO 8.27E-11 2.53E-03 1.57E-03 2.82E-10 2.50E-03 1.57E-03
OPID 5.24E-10 2.53E-03 1.57E-03 5.46E-01 5.56E-01 1.00E+00
SAC 3.70E-09 2.53E-03 1.57E-03 4.30E-01 4.52E-01 7.39E-01

6.4.3.1 Various Criteria of MCCA

Figure 6.2, Figure 6.3, Figure 6.4, and Figure 6.5, show the variation of mean classification
accuracy with respect to the number of extracted features for various criteria of the MCCA
and the proposed algorithm, on both benchmark and omics data sets. All these results
convey that the performance of the proposed feature extraction algorithm is significantly
higher as compared to that of the various criteria of the MCCA, irrespective of the generated
features and data sets used. The results reported in Table 5.3, Table 5.4, and Table 5.5 of
Chapter 5 demonstrate that, among the five criteria of the MCCA, the SUMCOR attains
the highest accuracy of 0.581 on CiteSeer, 0.870 on Handwritten, 0.303 on NW-OBJECT,
and 0.575 on Reuters, while MAXVAR provides the highest classification accuracy of 0.733
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Table 6.5: Statistical Significance Analysis of Different Algorithms on Caltech and OV
Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR
C

al
te

ch
2.58E-07 2.53E-03 1.57E-03

O
V

2.21E-07 2.52E-03 1.57E-03
GENVAR 1.62E-08 2.53E-03 1.57E-03 9.17E-08 2.50E-03 1.57E-03
MAXVAR 2.06E-07 2.52E-03 1.57E-03 5.16E-04 3.71E-03 2.70E-03
MINVAR 7.87E-09 2.52E-03 1.57E-03 2.13E-03 5.86E-03 4.68E-03
SSQCOR 1.19E-07 2.52E-03 1.57E-03 4.05E-03 8.58E-03 3.39E-02

RGCCA 2.20E-16 2.49E-03 1.57E-03 1.63E-07 2.53E-03 1.57E-03
GMCCA 2.20E-16 2.52E-03 1.57E-03 1.93E-08 2.52E-03 1.57E-03

GMKCCA 2.20E-16 2.47E-03 1.57E-03 1.41E-05 2.50E-03 1.57E-03
LasCCA 1.94E-15 2.38E-03 1.57E-03 1.42E-06 2.50E-03 1.57E-03
DisCCA 7.62E-11 2.53E-03 1.57E-03 5.44E-08 2.39E-03 1.57E-03
BsMCCA 7.87E-09 2.52E-03 1.57E-03 5.69E-02 6.95E-02 5.78E-02
ReDMiCA 1.45E-01 1.93E-01 2.06E-01 1.69E-01 1.66E-01 2.06E-01

MvDA 2.79E-03 5.36E-03 1.14E-02 1.89E-02 1.88E-02 9.56E-02
MvDA-VC 3.69E-03 3.79E-03 2.70E-03 2.79E-03 8.30E-03 5.78E-02

LiveGCANO 2.20E-16 2.52E-03 1.57E-03 1.12E-06 2.50E-03 1.57E-03
OPID 1.15E-04 2.53E-03 1.57E-03 1.88E-03 5.76E-03 4.68E-03
SAC 1.05E-03 2.52E-03 1.57E-03 1.73E-02 2.32E-02 5.78E-02
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Figure 6.2: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (SeFGeIM) algorithm on benchmark data
sets for 10-fold CV.

on Caltech data set. However, the proposed algorithm achieves the highest classification
accuracy on all the benchmark data sets reported in Table 6.2. Similarly, for omics data
sets, the proposed SeFGeIM algorithm attains higher classification accuracy than the five
existing criteria of the MCCA. In case of 10-fold CV, the proposed algorithm attains
significantly better p-values (marked in bold) than different criteria of the MCCA in 147
cases, out of total 150 cases, considering 95% confidence level. On the other hand, the
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Figure 6.3: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (SeFGeIM) algorithm on benchmark data
sets for training-testing.
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Figure 6.4: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (SeFGeIM) algorithm on omics data sets
for 10-fold CV.

proposed algorithm provides better but not significant (marked in italics) p-values in only 3
cases, for MAXVAR using paired-t test and Wilcoxon signed rank test, and MINVAR using
Friedman test on GBM data set. As mentioned in Section 5.4.1 of Chapter 5, all five criteria
of MCCA cannot handle the ‘large p and small n’ issue of multidimensional data sets. On
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Figure 6.5: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (SeFGeIM) algorithm on omics data sets
for training-testing.

the other hand, the SeFGeIM addresses this issue by using ridge regression optimization.
As omics data sets suffer from high-dimension low-sample size problem, different criteria of
MCCA do not perform well enough, while SeFGeIM obtains higher classification accuracy.
Also, the significantly better performance of SeFGeIM is obtained due to the consideration
of supervised information of sample categories. Moreover, SeFGeIM considers only the
relevant views for the analysis. Thus, it obtains significantly higher classification accuracy
than the various criteria of MCCA.

6.4.3.2 MCCA Based Methods

Figure 6.8 and Figure 6.10 present the variation of mean classification accuracy with respect
to the number of extracted features for state-of-the-art methods as well as the proposed
algorithm, in case of 10-fold CV on both benchmark and omics data sets, while the cor-
responding results for training-testing are reported in Figure 6.9 and Figure 6.11. The
results reported here demonstrate that the mean accuracy of the proposed sequential fea-
ture generation algorithm is significantly higher as compared to that of the existing MCCA
based methods, namely, RGCCA, GMCCA, GMKCCA, LasCCA, DisCCA, and BsMCCA,
on both benchmark and omics data sets, irrespective of the number of generated features.
All the results reported in Table 5.3, Table 5.4, and Table 5.5 of Chapter 5 and Table 6.2
confirm that the classification accuracy obtained by the proposed algorithm is higher than
that of the six MCCA based algorithms, in case of training-testing, for all benchmark and
omics data sets. In case of 10-fold CV, the proposed algorithm also attains the highest
mean and median accuracy with respect to six MCCA based algorithms, irrespective of
the data sets used. To analyze the performance of the proposed algorithm statistically, the
p-values computed using three statistical tests are also reported in Table 6.3, Table 6.4,
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Figure 6.6: Scatter plots for different incremental learning algorithms (LiveGCANO, OPID,
and SAC) and proposed (SeFGeIM) algorithm on benchmark data sets, along with class
separability index (top to bottom: CiteSeer, Handwritten, NW-OBJECT, Reuters, Cal-
tech), each Oi denotes the i-th object class.

and Table 6.5. Out of the total of 180 cases, the SeFGeIM algorithm attains significantly
better p-values (marked in bold) than existing MCCA based methods in 175 cases. On the
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Figure 6.7: Scatter plots for different incremental learning algorithms (LiveGCANO, OPID,
and SAC) and proposed (SeFGeIM) algorithm on omics data sets, along with class sepa-
rability index (top to bottom: GBM, LUNG, KIDNEY, LGG, OV).

other hand, the proposed algorithm provides better but not significant (marked in italics)
p-value in only 5 cases, with respect to RGCCA using Friedman test on the KIDNEY data
set and BsMCCA using all three significance tests on OV data set and Friedman test on
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Figure 6.8: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (SeFGeIM) algorithm on benchmark data
sets for 10-fold CV.
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Figure 6.9: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (SeFGeIM) algorithm on benchmark data
sets for training-testing.

the GBM data set.
The last column of Figure 6.6 and Figure 6.7 depict the scatter plots with respect

to the first two extracted features, for the proposed algorithm, while the corresponding
results for different criteria of the MCCA are reported in the first five columns of Figure
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Figure 6.10: Variation of classification accuracy with respect to number of extracted fea-
tures for different existing algorithms and proposed (SeFGeIM) algorithm on omics data
sets for 10-fold CV.
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Figure 6.11: Variation of classification accuracy with respect to number of extracted fea-
tures for different existing algorithms and proposed (SeFGeIM) algorithm on omics data
sets for training-testing.

5.5 and Figure 5.6 of Chapter 5. All these results shows that the proposed algorithm is
able to separate different classes of LUNG and OV data sets using the first two extracted
features only, which is also evident from the corresponding class separability index values.
On the other hand, the corresponding results of different criteria indicate that the existing
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MCCA criteria are not able to separate different classes, irrespective of the data sets used.
Moreover, the execution time of the proposed algorithm is significantly lower than that of
most of the criteria of the MCCA, except GENVAR criterion.

Although the execution time of the proposed feature generation algorithm is higher
than that of all the MCCA based methods on the data sets with a smaller number of
samples, the proposed SeFGeIM algorithm needs significantly lower execution time than
RGCCA, GMCCA and GMKCCA, for both NW-OBJECT and Reuters data sets where
the number of samples is huge. Comparing the results of the last column of Figure 6.6 and
Figure 6.7 with the first four columns of Figure 5.11 of Chapter 5 and the first two columns
of Figure 5.12 of Chapter 5, it can be seen that the separation among various classes using
the first two extracted features of the proposed algorithm is significantly better than that of
the existing MCCA algorithms on both omics and benchmark data sets. Also, the existing
algorithms are not incremental in nature.

The algorithm proposed in Chapter 5, termed as ReDMiCA (Regularized Discrimi-
nant Multi-View CCA) [185], is also an MCCA based multi-view learning algorithm. The
comparative performance analysis of ReDMiCA and SeFGeIM are presented in Figure 6.8,
Figure 6.9, Figure 6.10, and Figure 6.11. As the proposed SeFGeIM algorithm considers
only the relevant views for the analysis, it obtains higher classification accuracy than other
existing multi-view learning algorithms. From the results reported in Table 5.3, Table 5.4,
and Table 5.5 of Chapter 5 and Table 6.2, it can be seen that the proposed SeFGeIM
algorithm attains the higher classification accuracy of training-testing in 8 cases, while the
ReDMiCA algorithm achieves it only for the LUNG data set and for LGG data set, both
ReDMiCA and SeFGeIM achieve same classification accuracy. The results corresponding
to 10-fold CV indicate that the proposed algorithm attains the higher mean accuracy in 7
cases out of total 10 cases each. On the other hand, for Handwritten and KIDNEY data
sets the mean accuracy is same. From the results reported in Table 6.3, Table 6.4, and
Table 6.5, it is evident that the proposed SeFGeIM algorithm attains significantly better
p-values (marked in bold) than ReDMiCA in 6 cases, out of the total 30 cases, and better
but not significant p-values (marked in italics) in 15 cases, considering 95% confidence level.

6.4.3.3 Multi-View Learning Algorithms

From Figure 6.8, Figure 6.9, Figure 6.10, and Figure 6.11 it is also seen that the mean clas-
sification accuracy of the proposed SeFGeIM algorithm is significantly higher, irrespective
of the number of extracted features, as compared to that of two existing multimodal data
integration methods, namely, MvDA and MvDA-VC on five benchmark data, and GBM,
LUNG, KIDNEY, and OV data sets. In case of LGG data set, both MvDA and MvDA-
VC provide higher mean accuracy for 10-fold cross-validation than the proposed algorithm
for lower number (ď9) of extracted features. The presence of highly redundant or similar
features at the initial stages of the SeFGeIM algorithm leads to the lower classification
accuracy in some of the folds of the LGG data. However, the proposed algorithm is able to
alleviate this problem by generating relevant and significant features at the latter stages.
In effect, the performance of the SeFGeIM improves drastically for higher number (ą9) of
features.

As shown in Table 5.3, Table 5.4, and Table 5.5 of Chapter 5 and Table 6.2, the pro-
posed algorithm achieves higher accuracy, in case of training-testing, than both MvDA and
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MvDA-VC for all the cases. In case of 10-fold CV, out of the total 60 cases, the SeFGeIM
attains significantly better p-values (marked in bold) than two existing multimodal data
integration methods in 44 cases, better but not significant p-values (marked in italics) in 15
cases, considering 95% confidence level. The proposed algorithm is not significantly better
than MvDA-VC according to Friedman test on the LGG data set. Also, both the methods
need lesser execution time than the proposed algorithm in most of the cases. Comparing
the results of the last column of Figure 6.6 and Figure 6.7 with the 3rd and 4th columns
of Figure 5.12 of Chapter 5, it is evident that different classes are more separable using
the first two extracted features of the proposed algorithm than that of these two existing
multi-view learning algorithms on omics as well as benchmark data sets. Moreover, unlike
the proposed algorithm, both the existing algorithms are not incremental in nature.

6.4.3.4 Multi-View Incremental Learning Algorithms

The results reported in Figure 6.8, Figure 6.9, Figure 6.10, and Figure 6.11 clearly establish
the fact that the proposed SeFGeIM algorithm provides better performance than three
incremental multi-view data integration methods, namely, LiveGCANO, OPID, and SAC,
in most of the cases. However, for the LGG data set, both OPID and SAC attain the
higher mean accuracy than the proposed algorithm for lower number (ď12) of features,
while all of them provide similar performance for higher number (ą12) of features. From
the results presented in Table 6.2, it can be seen that the proposed algorithm attains
the higher classification accuracy of training-testing in 8 cases, while the SAC algorithm
achieves it only for the LUNG and KIDNEY data sets. The results corresponding to
10-fold CV indicate that the proposed algorithm attains the higher mean accuracy in 9
cases and higher median accuracy in 5 cases, out of total 10 cases each. From the results
reported in Table 6.3, Table 6.4, and Table 6.5, it is evident that the proposed SeFGeIM
algorithm attains significantly better p-values (marked in bold) than the three incremental
methods in 71 cases, out of the total 90 cases, and better but not significant p-values
(marked in italics) in 15 cases, considering 95% confidence level. The proposed algorithm
is not significantly better than the SAC according to Friedman test on the LGG data set.
Also, the OPID obtains the higher classification accuracy than the proposed algorithm for
this case. Hence, the p-values with respect to the OPID, computed according to all three
significance tests, are not better on the LGG data set. Although the execution time for the
existing approaches is significantly lower than that of the proposed algorithm on the data
sets having lower number of samples, it is comparable or even significantly higher than
that of the SeFGeIM algorithm when the data sets like Reuters and NW-OBJECT have a
large number of samples. Finally, the comparative analysis of the scatter plots presented
in Figure 6.6 and Figure 6.7 confirm that the proposed algorithm can separate different
classes better than the existing approaches.

6.4.3.5 Deep Learning Based Methods

Finally, the performance of the proposed SeFGeIM algorithm is compared with that of
three deep learning-based methods, namely, dMCCA [244], TOCCA [55], and MDBM [247].
Table 6.6 presents the statistical significance analysis on five omics data sets. The results
reported in Table 6.6 establish that the proposed algorithm attains significantly better p-
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Table 6.6: Statistical Significance Analysis of Different Deep Learning Algorithms on Omics
Data Sets

Data Different p-values for 10-Fold CV
Sets Algorithms Paired-t Wilcoxon Friedman

GBM
dMCCA 2.26E-03 8.30E-03 1.14E-02
TOCCA 3.27E-04 3.46E-03 1.14E-02
MDBM 1.77E-04 2.53E-03 1.57E-03

LUNG
dMCCA 2.17E-10 2.46E-03 1.57E-03
TOCCA 1.17E-12 2.20E-03 1.57E-03
MDBM 5.27E-04 2.40E-03 1.57E-03

KIDNEY
dMCCA 4.49E-10 1.80E-03 1.57E-03
TOCCA 2.46E-07 2.24E-03 1.57E-03
MDBM 1.24E-05 2.83E-03 1.14E-02

LGG
dMCCA 2.49E-06 2.49E-03 1.57E-03
TOCCA 3.38E-08 2.46E-03 1.57E-03
MDBM 1.98E-06 2.46E-03 1.57E-03

OV
dMCCA 7.00E-07 2.53E-03 1.57E-03
TOCCA 1.73E-05 2.53E-03 1.57E-03
MDBM 3.80E-06 2.53E-03 1.57E-03

values than the three deep learning-based methods, irrespective of the significance analysis
and omics data sets used. Also, the results presented in Table 5.9 and Table 5.10 of Chapter
5 and Table 6.2 demonstrate that the classification accuracy of the proposed algorithm is
significantly higher as compared to that of various deep learning-based methods in most
of the cases. The TOCCA algorithm performs well on benchmark data sets, but it fails
to achieve judicious results on omics data sets. The MDBM and dMCCA obtain 87.9%
and 86.2% accuracy on LUNG and KIDNEY data sets, respectively, whereas both of them
perform moderately on the LGG data set. On the other hand, none of the deep learning-
based methods performs well on the OV data set. Both MDBM and dMCCA provide poor
performance on Handwritten, Caltech, and NW-OBJECT data sets due to the over training
of these models. The execution time required for the deep learning-based algorithms is also
significantly higher as compared to that of the proposed algorithm.

All the results, reported here, establish the effectiveness of the proposed incremental
multiblock data integration algorithm over the state-of-the-art data integration approaches.
The better performance of the proposed SeFGeIM algorithm is achieved due to the following
facts.

1. Instead of considering all the given modalities, the proposed algorithm considers only
relevant ones to extract significant and relevant features.

2. The features are extracted sequentially based on the supervised information of sample
categories.

3. The theory of rough hypercuboid approach is used to evaluate the quality of an
extracted feature, in terms of its relevance and significance. It helps to address the
uncertainty associated with real-life multimodal data.

In effect, a desired set of significant and relevant features is being generated sequentially, by
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incrementally incorporating relevant modalities, using the proposed IMCCA based feature
extraction algorithm.

6.5 Conclusion

The main contribution of this chapter is three-fold, namely,

1. introduction of a novel MCCA, termed as incremental MCCA (IMCCA), which can
update its solutions adaptively wherever a new modality is available for the analysis;

2. development of a new feature selection algorithm, based on IMCCA, judiciously in-
tegrating the information of multiblock data sets; and

3. demonstrating its success in benchmark as well as multi-omics data analysis.

The proposed IMCCA model deals with the “curse of dimensionality” problem due to
“large p-small n” characteristics of real-life multimodal data sets, by using ridge regression
optimization technique with shrinkage estimation. The proposed feature extraction algo-
rithm, based on the IMCCA model, considers a new modality for the analysis if it has
relevant and significant information with respect to existing modalities. The quality of the
extracted features depends on the supervised information of sample categories. Analytical
formulation facilitates the generation of relevant and significant features from multiblock
dynamic data sets with significantly lower computational costs. The effectiveness of the
proposed IMCCA based algorithm, along with a comparison with other algorithms, has
been demonstrated on several real-life multiblock data sets.

Both ReDMiCA algorithm presented in Chapter 5 and SeFGeIM algorithm presented
in Chapter 6 are based on SUMCOR criterion. Moreover, both the algorithms do not
exploit the geometry of the data set. On the other hand, the MAXVAR criterion has
lower computational overhead as compared to the SUMCOR criterion. In this regard,
a new supervised feature extraction algorithm, termed as GraDiM, is presented in next
chapter, which integrates dynamic multi-view data sets by using MAXVAR criterion and
the knowledge of the graph.

131



132



Chapter 7

Graph Discriminant Multiset CCA
for Adaptive Multi-View Learning

7.1 Introduction

Over the last few years, a keen interest in using complementary data associated with a
specific problem has been developed. Different data sources are likely to contain distinct
and thus partly independent information. The integration of orthogonal attributes from
a broad range of views is supposed to provide better predictions than any single view
[128, 247]. In this context, there has been a growing interest to integrate multi-view data.
As mentioned in Chapter 5 and Chapter 6, multiset canonical correlation analysis (MCCA)
[110] is an effective method to study the inter-dependence among multiple views. The
goal of MCCA can be achieved by optimizing several criteria. In [61,100,135,262], several
criteria have been studied to extend canonical correlation analysis (CCA) for three or more
sets of views. The commonly used criterion, which is the natural extension of CCA, is the
sum of correlations (SUMCOR), which finds a common structure in multiple views via
imposing pairwise similarities between the canonical variables. Although SUMCOR is NP-
hard [229], it has got maximum attention in recent years [131]. The algorithms developed
in both Chapter 5 and Chapter 6 use the SUMCOR criterion. On the other hand, the
maximum variance (MAXVAR) criterion provides a conceptually simple solution among
different formulations of MCCA [135]. Thus, it has successfully received recognition in the
last few years [43,115]. Instead of considering the pairwise similarity between the canonical
variables, one can seek a common latent representation, which has a minimum dissimilarity
of all views. The MAXVAR reduces the number of constraints that are associated with
SUMCOR to a single constraint. Thus, it provides a conceptually simple algebraic solution,
which reduces the computational cost.

The geometry of the multi-view data can provide the structural information of the
data set. This structural information or prior knowledge of the samples can be encoded
by a graph. The incorporation of the geometrical information along with the categor-
ical knowledge may escalate the performance of the algorithm. Recently, graph-aware
regularizers have manifested propitious achievement across a span of machine learning
applications, such as dimensionality reduction, data reconstruction, clustering, and classi-
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fication [44, 125, 237]. However, the SUMCOR framework of MCCA does not utilize the
geometry of the multi-view data which may be available a priori or can be established using
a certain domain of knowledge. This prior knowledge can be encoded by a graph, and be
invoked as a regularizer to enrich the MAXVAR framework of MCCA. In this context,
CCA with structural information induced by a graph has been reported in [44], but it is
limited to analyzing two views only. In [43], a novel graph-regularized MCCA (GMCCA)
algorithm has been proposed, to minimize the dissimilarity among the views based on the
MAXVAR criterion.

As mentioned in Chapter 6, the brain-computer interface [161] to imaging genomics
[155] involve either non-stationary or big data sets; either new instances may be added
to the existing samples or new views may be considered for better analysis. Thus, the
algorithms which integrate multi-view data should be adaptive or incremental in nature.
The algorithms presented in [277, 310, 319] are applicable to the situation when new in-
stances are being added with the existing samples and all the covariance matrices are
required to update. However, they are not applicable when a new view is available for
the augmentation with existing views. Recently, incremental generalized CCA has been
proposed in [187] for incremental updates of existing solutions based on new modalities,
although it leads to approximate solutions. Moreover, all the adaptive CCA algorithms
reported in [187, 277, 310, 319] are unsupervised in nature. Both [319] and [310] integrate
two views. On the other hand, the CCA generalization considered in [277] is equivalent to
the MAXVAR criterion proposed in [135].

In this regard, the chapter introduces a new feature extraction algorithm, termed as
GraDiM (Graph Discriminant Multi-View CCA), for multi-view data analysis. It incor-
porates the geometrical knowledge along with the categorical information of the data set
using the MAXVAR criterion. The proposed algorithm is dynamic in nature, that is, it
incrementally updates the existing solutions, whenever a new view is available for the anal-
ysis. On the other hand, the algorithm is designed in such a way that if all the views
are present at the beginning of the data analysis, the algorithm starts with the two most
relevant modalities, and the remaining modalities are added sequentially according to their
relevance. The proposed algorithm addresses the singularity issue of the covariance ma-
trices by using the ridge regression optimization technique. The optimum regularization
parameters for the proposed algorithm are estimated based on the supervised information
of sample categories. An analytical formulation demonstrates that the proposed algorithm
can generate the required number of relevant and significant features from multi-view dy-
namic data sets, without extracting all possible features. In fact, all the views may not be
required to extract different features. If the new view has relevant and significant informa-
tion with respect to earlier views, then only the new view is incorporated in the integration
process. The effectiveness of the proposed multi-view data integration algorithm, along
with a comparative performance analysis with state-of-the-art algorithms, is established
on several real-life multi-block data sets.

The rest of the chapter is organized as follows: Section 7.2 outlines the basic principle of
GMCCA. Section 7.3 presents the proposed multi-view adaptive algorithm based on MAX-
VAR criterion. The effectiveness of the proposed multi-view data integration algorithm,
along with a comparative performance analysis with state-of-the-art algorithms on differ-
ent multi-view benchmark and omics data sets, is presented in Section 7.4. Concluding
remarks is provided in Section 7.5.
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7.2 Basics of MAXVAR Criterion and Graph-Regularized

MCCA

This section presents the fundamental concepts in the theories of MCCA using the MAX-
VAR criterion and GMCCA. The objective of the MCCA is to extract the most cor-
related latent features from M ě 3 views of n samples, tXi P ℜmi ˆnuM

i“1, where mi
is the dimension of the i -th view. Without loss of generality, it is assumed that each
multidimensional variable Xi is centered to have zero mean across the samples, that is,
ErXi s “ 0,@i P t1, 2, ¨ ¨ ¨ ,M u. The main objective of the MCCA is to find optimal basis
vectors tWi P ℜmi ˆpuM

i“1 that maximize some merit functions under certain constraints,
where p “ mintmi , nu. Instead of considering the pairwise similarity between the canon-
ical variables as considered in the SUMCOR criterion, one can seek a common latent
representation, which has a minimum dissimilarity with all the multidimensional variables:

min
tWi u

M
i“1,S

M
ÿ

i“1

}Wi
T Xi ´ S}2F “ max

tWi u
M
i“1,S

M
ÿ

i“1

Tr
´

Wi
T Xi ST

¯

;

subject to SST “ I ; (7.1)

where S P ℜpˆn is a common latent representation of the multidimensional variables; AT

and Tr pAq denote the transpose and trace of a matrix A, respectively, and I denotes the
identity matrix with an appropriate order. The above approach is known as the MAXVAR
criterion. From (7.2), it can be seen that the MAXVAR also finds highly correlated reduced-
dimensional views as the SUMCOR does. Moreover, it reduces the number of constraints
which are associated with the SUMCOR, Wi

T Cii Wi “ I ;@i P t1, 2, ¨ ¨ ¨ ,M u to a single
constraint SST “ I , where Cii P ℜmi ˆmi denotes the covariance matrix of Xi . Thus, it
provides a conceptually simple algebraic solution, which reduces the computational cost.
Let us assume that Xi has full row rank and the solution of (7.2) with respect to Wi is

Wi “
“

Xi
:
‰T

ST ; where Xi
: “ Xi

T
`

Xi Xi
T
˘´1

; (7.2)

where A: denotes the pseudoinverse of A. By substituting (7.2) from (7.2), an optimal
solution Sopt can be obtained by solving the following problem:

Sopt “ argmax
S

M
ÿ

i“1

Tr
`

SXi
:Xi ST

˘

“ argmax
S

Tr

«

S

˜

M
ÿ

i“1

Xi
:Xi

¸

ST

ff

; subject to SST “ I . (7.3)

The optimal solution Sopt is the first p principal eigenvectors of pY “
M
ř

i“1
Xi

:Xi P ℜnˆn [90].

In [43], the geometrical knowledge has been consolidated with the MAXVAR criterion
to extract features from the multi-view data sets. Let the Laplacian matrix LG i of a graph
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G of the i -th view be defined as LG i “ Di ´ Wi , where Di P ℜnˆn and Wi P ℜnˆn denote
the degree matrix and the adjacency matrix, respectively. Now, the Laplacian matrix

LG , where all M views are considered, is determined as LG “
M
ř

i“1
LG i . Such additional

geometrical information of the samples can be invoked as a regularizer in the MAXVAR
criterion of the MCCA as follows:

min
tWi u

M
i“1,S

M
ÿ

i“1

}Wi
T Xi ´ S}2F ` γTrpSLG ST q;

subject to SST “ I ; (7.4)

where the coefficient γ ě 0 trades off minimizing the distance between the canonical vari-
ables and smoothness of the samples over the graph G . Specifically, when γ “ 0, (7.2)
reduces to the classical MCCA using the MAXVAR criterion in (7.2) and as γ increases,
(7.2) relies more heavily on the extra graph knowledge to find the canonical variables.
Let us consider each covariance matrix Cii has full rank. Now, the partial derivative of
(7.2) with respect to each Wi , and setting the vectors of derivative to zero, we obtain the
following equation:

Sopt “ argmax
S

Tr

«

S

˜

M
ÿ

i“1

`

Xi
:Xi ´ γLG i

˘

¸

ST

ff

;

subject to SST “ I . (7.5)

Similar to the standard MCCA using the MAXVAR criterion, the optimal solution Sopt be

obtained by the p leading eigenvectors of the matrix Y “
M
ř

i“1

`

Xi
:Xi ´ γLG i

˘

.

In real-world applications, n ! mi , thus the computation of eigenvalue decomposition
(EVD) of pY or Y is easier than the computation associated with the SUMCOR criterion.
Besides, even if the multidimensional variable Xi is sparse, computing

`

Xi Xi
T
˘´1 will cre-

ate a large dense matrix and control the sparsity problem associated with real-life high
dimensional multimodal data sets. But, n ! mi makes the covariance matrix Cii “ Xi Xi

T

non-invertible, which leads to the invalid computation of MCCA.

7.3 GraDiM: Proposed Multiset CCA

This section presents a new sequential feature extraction algorithm, which integrates the
information of multi-view data sets that are available sequentially one after another. When
a new view is available for the same set of samples, the proposed algorithm generates a
new set of features based on the new view as well as the features extracted from the earlier
views. It does not repeat the same procedure with the original data augmented by the
new view. Moreover, the proposed algorithm encodes the geometrical information of the
samples by a graph, and invokes this knowledge as a regularizer to boost the maximum
variance MCCA framework. The prominence of the proposed algorithm can be established
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by some important analytical formulations, which are explained next.

7.3.1 Multiset Ridge Regression Model

Let tXi P ℜmi ˆnuM
i“1 be M multi-view data sets with mi variables and n represents the num-

ber of samples. From (7.2), it is seen that the inverse of the covariance matrix Cii
`

“ Xi Xi
T
˘

is needed to compute the basis vector Wi ; @i P t1, 2, ¨ ¨ ¨ ,M u. If n ! mi , the covariance
matrix Cii becomes non-invertible, which leads to the invalid computation of MCCA [68].
To overcome this problem, a ridge regression optimization scheme is used by adding a small
positive quantity ri , known as regularization parameter, to the diagonals of the covariance
matrix Cii . Let us assume that the l -th dimension of the i -th multidimensional variable
Xi rl s is contaminated with noise εi rl s, @l P t1, 2, ¨ ¨ ¨ ,mi u and @i P t1, 2, ¨ ¨ ¨ ,M u, such that
E rεi rl ss “ 0, E

“

εi rl sεi rk sT
‰

“ 0 for l ‰ k , E
”

εi rl sXi rl s
T
ı

“ 0 and Erεi rl sεi rl sT s “ ri ě 0.
Under these assumptions, the covariance matrix of Xi becomes rCii `ri I s. This modification
is similar to ridge regression optimization [278]. The optimal set of regularization param-
eters can be estimated in such a way that the summation of the dissimilarity between
each multidimensional variable with optimal subspace Sopt is minimum. To estimate the
optimal set of regularization parameters, a grid search optimization is performed, where
each regularization parameter ri follows an arithmetic progression and is varied within a
specified range rrmin , rmax s. Let di be the common difference for regularization parameter ri ,
while the parameter ti indicates the number of possible values of ri . Hence, to compute the
matrix Xi

: of (7.2), the inverse of the corresponding covariance matrix has to be computed
ti times, where

Xiki
: “ Xi

T rCii ` pri ` ki di qI s
´1 (7.6)

@ki P t0, 1, ¨ ¨ ¨ , pti ´1qu. According to [174], as the diagonal elements of Cii are only changed
by adding ri , the eigenvalues of rCii ` pri ` ki di qI s are changed, but the corresponding
eigenvectors remain same. Also, there exists a relation between the eigenvalues of rCii `ri I s

and that of rCii ` pri ` ki di qI s, which is given by

∆i ki “ ∆i ` ki di I ; (7.7)

where ∆i ki denotes a diagonal matrix, whose diagonal elements are the eigenvalues of
rCii ` pri ` ki di qI s, ∆i “ ∆i 0 and the corresponding eigenvectors of rCii ` pri ` ki di qI s be the
columns of Ωi . Based on the spectral decomposition, the covariance matrix rCii ` pri ` ki di qI s

and its inverse can be expressed as follows [269]:

rCii ` pri ` ki di qI s “ Ωi∆i kiΩ
T
i “ Ωi r∆i ` ki di I sΩT

i ; (7.8)

and rCii ` pri ` ki di qI s
´1

“ Ωi r∆i ` ki di I s´1ΩT
i . (7.9)

Now, the inverse of the diagonal matrix r∆i ` ki di I s can be computed as

r∆i ` ki di I s
´1

“ ∆´1
i ´ ∆´1

i ki di I∆´1
i

`

I ` ki di I∆´1
i

˘´1
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“ ∆´1
i ´ ∆´1

i ki di∆
´1
i

`

I ` ki di∆
´1
i

˘´1
“ ∆´1

i ´ ∆´1
i ∇iki ; (7.10)

where ∇iki “ ki di∆
´1
i

`

I ` ki di∆
´1
i

˘´1
. (7.11)

Hence, using (7.9) and (7.3.1), the matrix Xiki
: of (7.6) becomes

Xiki
: “ Xi

TΩi
“

∆´1
i ´ ∆´1

i ∇iki

‰

ΩT
i “ Xi

TΩi∆
´1
i ΩT

i ´ Xi
TΩi∆

´1
i ∇ikiΩ

T
i “ Xi

: ´ Biki ; (7.12)

where Biki “ Xi
TΩi∆

´1
i ∇ikiΩ

T
i . (7.13)

From (7.12), it is clear that Xiki
: is dependent on Xi

:. If the eigenvalues and the corre-
sponding eigenvectors of Cii are determined to compute Xi

:, there is no need to calculate
the eigenvalues and the corresponding eigenvectors of the covariance matrix associated
with other regularization parameters for each multidimensional variable. As the matrix
Xiki

: has to be computed ti times for each multidimensional variables, the total number of

all possible combination of regularization parameters is T “
M
ś

l “1

tl . Hence, the matrix Y

has to be determined T times, which is given by

Yr “

M
ÿ

i“1

´

X :
irXi ´ γLG i

¯

“

M
ÿ

i“1

``

Xi
: ´ Bir

˘

Xi ´ γLG i

˘

“

M
ÿ

i“1

Xi
:Xi ´

M
ÿ

i“1

BirXi ´

M
ÿ

i“1

γLG i “ Y ´

M
ÿ

i“1

BirXi ; (7.14)

@r P t1, 2, ¨ ¨ ¨ , T u. Hence, from (7.3.1), it is evident that each Yr matrix can be computed
with the help of the matrix Y . The p principal eigenvectors of Yr is the optimal solution
Soptr corresponding to the r-th combination of regularization parameters.

7.3.2 Sequential Generation of Canonical Variables

In real-world high dimensional multi-view data analysis, the value of p is large. So, the
computation of all p principal eigenvectors of Yr is computationally expensive. In real-
life applications, a small number of extracted features is typically effective to perform a
certain task. So, instead of computing all possible eigenvectors of Yr, if eigenvectors are
evaluated sequentially, then only the required number of features can be extracted. In
this regard, the Power method [90] is used to approximate the dominant eigenvalue and
corresponding eigenvector of the matrix Yr, while other eigenvalues associated with the
corresponding eigenvectors can be approximated based on the Deflation method [293]. Let
the t -th eigenvalue and corresponding eigenvector of Yr be ρptq and Soptrptq, respectively,
associated with the r-th combination of regularization parameters, which is the dominant
eigenvalue-eigenvector pair of the matrix Yrptq. Then

YrptqSoptrptq “ ρptqSoptrptq; (7.15)
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where t ă p. Now, using Deflation method, the pt ` 1q-th eigenvalue-eigenvector pair of
the matrix Yr will be the dominant eigenvalue and corresponding eigenvector of the matrix
Yrpt ` 1q, where

Yrpt ` 1q “ Yrptq ´ ρptqSoptrptq
“

Soptrptq
‰T

“ Yrp1q ´

t
ÿ

l “1

ρpl qSoptrpl q
“

Soptrpl q
‰T
. (7.16)

As Yrp1q is nothing but Yr, (7.16) can be redefined by using (7.3.1), which is expressed as
follows:

Yrpt ` 1q “ Y ´

M
ÿ

i“1

BirXi ´

t
ÿ

l “1

ρpl qSoptrpl q
“

Soptrpl q
‰T
. (7.17)

From (7.17), it is clear that every pt ` 1q-th eigenvalue-eigenvector pair of the matrix Yr,
corresponding to each r-th regularization parameter, can be determined from all previously
computed eigenvalue-eigenvector pairs of the matrix Yr. Thus, the required number of
features is extracted sequentially using (7.17).

7.3.3 Multi-View Incremental Data Analysis

In real-world applications, a huge amount of data is being added to the existing databases
continuously. Hence, the algorithm has to be adaptive or incremental in nature to solve
certain problems associated with such a dynamic database. Moreover, all the available
views of real-life data sets may not be relevant. Some of them may provide noisy or even
inconsistent information with respect to other views. So, it is necessary to evaluate the
quality of a new view before considering it for feature extraction. In this regard, the
proposed algorithm not only integrates dynamic data sets, but also evaluates the relevance
of each multidimensional variable before the integration. The proposed algorithm considers
a new multidimensional variable if it has relevant and significant information with respect
to earlier views. When a new view is available for the same set of samples, the proposed
algorithm generates a new set of features based on the new view as well as the features
extracted from the earlier views. It does not repeat the same procedure with the original
data augmented by the new data.

Let Xi P ℜmi ˆn, @i P t1, 2, ¨ ¨ ¨ ,M u be M multidimensional data sets with mi variables
and n number of samples. Suppose the optimal solution S M

opt is the set of first p principal

eigenvectors of Y M , where Y M “
M
ř

i“1

`

Xi
:Xi ´ γLG i

˘

. Let ΛM be the diagonal matrix, whose

diagonal elements are the eigenvalues of Y M . So,

Y M “ S M
optΛ

M
”

S M
opt

ıT
. (7.18)

Each basis vector Wi
M of Xi can be computed with the help of (7.2). Here, superscript M

of S M
opt, Y M , ΛM , and Wi

M denotes that all M multidimensional variables are considered
to determine the solution. When a new view XpM `1q is added with the existing views, the
basis vector W M `1

pM `1q
associated with XpM `1q has to be determined and the previous basis
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vectors Wi
M of the preceding multidimensional variables Xi have to be updated by using

SM
opt and ΛM . Let the updated basis vectors of the preceding multidimensional variables

Xi be W M `1
i . As XpM `1q is added, Y M `1 will be as follows:

Y M `1 “

M `1
ÿ

i“1

`

Xi
:Xi ´ γLG i

˘

“ Y M ` X :

pM `1q
XpM `1q ´ γLG pM `1q

“ S M
optΛ

M
”

S M
opt

ıT
` X :

pM `1q
XpM `1q ´ γLG pM `1q

. (7.19)

Now, the optimal solution S M `1
opt is the first p principal eigenvectors of Y M `1, where p “

mintmi , nu, @i P t1, 2, ¨ ¨ ¨ , pM ` 1qu.
To get rid of the singularity issue associated with covariance matrix Cii , the ridge re-

gression optimization scheme is used by adding regularization parameter ri to the diagonals
of the matrix Cii . As the views are added sequentially, the optimal combination of the reg-
ularization parameter set corresponding to the preceding multidimensional variables are
already evaluated. The optimal regularization parameter associated with the new view has
to be determined only. Let the regularization parameter rpM `1q, corresponding to XpM `1q,
be varied within a specified range rrmin , rmax s. Let dpM `1q be the common difference for reg-
ularization parameter rpM `1q, while the parameter tpM `1q indicates the number of possible
values of rpM `1q. Hence, the matrix X :

pM `1qkpM `1q
, @kpM `1q P t0, 1, ¨ ¨ ¨ , ptpM `1q ´ 1qu can be

computed using (7.12). Now, combining (7.12) and (7.3.3), the matrix Y M `1 has to be
determined tpM `1q times, which is given by

Y M `1
r “ S M

optΛ
M
”

S M
opt

ıT
`

´

X :

pM `1q
´ BpM `1qr

¯

XpM `1q ´ γLG pM `1q

“ S M
optΛ

M
”

S M
opt

ıT
` X :

pM `1q
XpM `1q ´ BpM `1qrXpM `1q ´ γLG pM `1q

; (7.20)

@r P t1, 2, ¨ ¨ ¨ , tpM `1qu, where BpM `1qr can be computed by using (7.13). Let the t -th
eigenvalue and corresponding eigenvector of Y M `1

r be ρptqM `1 and S M `1
optr

ptq, respectively,
associated with the r-th regularization parameter, which together represent the dominant
eigenvalue-eigenvector pair of the matrix YrptqM `1, where t ă p. Now, using the Deflation
method, the pt `1q-th eigenvalue-eigenvector pair of the matrix Y M `1

r will be the dominant
eigenvalue and corresponding eigenvector of the matrix Yrpt ` 1qM `1, where

Yrpt ` 1qM `1 “ Yrp1qM `1 ´

t
ÿ

l “1

ρpl qM `1S M `1
optr

pl q

”

S M `1
optr

pl q

ıT

“ S M
optΛ

M
”

S M
opt

ıT
` X :

pM `1q
XpM `1q ´ BpM `1qkpM `1q

XpM `1q

´γLG pM `1q
´

t
ÿ

l “1

ρpl qM `1S M `1
optr

pl q

”

S M `1
optr

pl q

ıT
. (7.21)
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From (7.3.3), it is clear that every pt `1q-th eigenvalue-eigenvector pair of the matrix Y M `1
r

corresponding to each r-th regularization parameter can be determined by the help of all t
number of previously computed eigenvalue-eigenvector pair of the matrix Y M `1

r . The basis
vectors of the preceding multidimensional variables can be updated as

W M `1
ir ptq “

”

X :

i r̃i

ıT
S M `1
optr

ptq; (7.22)

where r̃i denotes the optimal regularization parameter selected for the i -th preceding mul-
tidimensional variable, @i P t1, 2, ¨ ¨ ¨ ,M u. On the other hand, the basis vector of the
pM ` 1q-th multidimensional variable can be determined as

W M `1
pM `1qrptq “

”

X :

pM `1qr

ıT
S M `1
optr

ptq. (7.23)

The canonical variables can be computed as

UM `1
ir ptq “

”

W M `1
ir ptq

ıT
Xi ; (7.24)

@i P t1, 2, ¨ ¨ ¨ , pM ` 1qu, for each r-th regularization parameter. Finally, the t -th feature
is generated as

F M `1
r ptq “

M `1
ÿ

i“1

UM `1
ir ptq. (7.25)

Thus, all the features are extracted sequentially without repeating the same steps with
the original data augmented by the new view. The algorithm to compute the basis vector
W i`1

pi`1qrptq of newly added view Xpi`1q for each r-th regularization parameter and to update
the basis vectors of all preceding multidimensional variables is presented in Algorithm 7.1.

The proposed algorithm is designed in such a way that it considers the relevance of
multidimensional variables while adding them sequentially. The largest eigenvalue of the
covariance matrix of a view represents its relevance value, as the dominant eigenvalue in-
dicates the variance and the corresponding eigenvector denotes the direction of the largest
spread of the data. So, if the data is projected towards the direction of the largest spread
or first principal axis, then the eigenvalue of the covariance matrix represents the variance
of the data in that direction. As both eigenvalues and eigenvectors of each covariance
matrix have to be computed to calculate the inverse of the covariance matrix for each
multidimensional variable, the multidimensional variables are arranged, in descending or-
der, according to their largest eigenvalues of covariance matrices. Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu

be the ordered list of pM ` 1q multidimensional data sets. Let us assume that Si be
the set of Dpď pq selected features where all i multidimensional variables are considered,
@i P t1, 2, ¨ ¨ ¨ , pM ` 1qu and initially Si Ð H. Let us consider that the set Ci contains the
t -th extracted features which are computed by using all r-th combinations of regulariza-
tion parameters, @t P t1, 2, ¨ ¨ ¨ , pu where all i multidimensional variables are considered.
The relevance of the feature F i

r ptq with respect to the sample categories D is denoted by
γF i

rptqpDq. Let σtF i
rptq,F i

l upD,F i
r ptqq denote the significance of the feature F i

r ptq with respect
to already-selected feature F i

l P Si . For t “ 1, the most relevant feature is selected from
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the set Ci and is included to Si , that is,

F i ptq “ argmax
F i
rptqPCi

␣

γF i
rptqpDq

(

; (7.26)

while for t ą 1, the feature which has maximum relevance among the features of Ci and
significance with respect to the features of Si is selected as follows:

F i ptq “ argmax
F i
rptqPCi

$

&

%

γF i
rptqpDq`

1

t ´ 1

ÿ

F i
l PSi

σtF i
rptq,F i

l upD,F i
r ptqq

,

.

-

. (7.27)

The proposed algorithm starts with first three multidimensional variables X1,X2, and X3

from the ordered list, and produces a feature set S3. Then, other views come sequentially
one after another. If the t -th feature of Si has higher relevance and significance value than
that of Si`1, @i P t3, 4, ¨ ¨ ¨ ,M u, then the t -th feature of Si is considered instead of Si`1.
So, if a multidimensional variable Xpi`1q is relevant in extracting the t -th feature, then only
it is considered, otherwise, the multidimensional variables X1,X2, ¨ ¨ ¨ ,Xi are integrated to
extract the t -th feature. So, each feature is extracted by integrating different number of
multidimensional variables. The problem of generating a set of most significant and relevant
feature set SM `1 from the selected multi-view data sets is addressed by a greedy algorithm
which is reported in Algorithm 7.2. In the current research work, both significance and
relevance of an extracted feature are computed by using the concept of rough hypercuboid
approach [172], which is described in Section 3.3.3 of Chapter 3. It helps to optimize the
regularization parameters.

Algorithm 7.1 Proposed Dynamic Fusion Algorithm.
Input: The pi ` 1q-th multidimensional variable Xpi`1q and the optimal solution tS i

opt,Λ
i u

of preceding i multidimensional variables.
Output: The t -th basis vectors W i`1

k r ptq of all pi ` 1q-th multidimensional variables cor-
responding to r-th regularization parameter, @k P t1, 2, ¨ ¨ ¨ , pi ` 1qu.
1: for each r-th regularization parameter, where @r P t1, 2, ¨ ¨ ¨ , tpi`1qu for each t -th ex-

tracted feature do

(i) Calculate Yrptqi`1 using (7.3.3) if t “ 1, otherwise using (7.3.3).

(ii) Compute the dominant eigenvalue ρptqi`1 and corresponding eigenvector S i`1
optr

ptq

of Yrptqi`1.

(iii) Update the t -th basis vector W i`1
k r ptq of all the k preceding multidimensional

variables using (7.22), where @k P t1, 2, ¨ ¨ ¨ , iu.

(iv) Determine the t -th basis vector W i`1
pi`1qrptq of pi ` 1q-th multidimensional variable

using (7.23).

2: end for
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Algorithm 7.2 GraDiM: Graph Discriminant Multiset CCA
Input: pM ` 1q multidimensional variables X1,X2, ¨ ¨ ¨ ,XpM `1q.
Output: A set SM `1 of D selected features.
1: Compute the Laplacian matrix LG i P ℜnˆn of Xi , @i P t1, 2, ¨ ¨ ¨ , pM ` 1qu.
2: Calculate the covariance matrix Cii P ℜmi ˆmi of Xi , @i P t1, 2, ¨ ¨ ¨ , pM ` 1qu.
3: Determine the eigenvalues δi l of Cii , along with the corresponding eigenvectors ωi l ,

@i P t1, 2, ¨ ¨ ¨ , pM ` 1qu, @l P t1, 2, ¨ ¨ ¨ ,mi u.
4: Construct the diagonal matrix ∆i P ℜmi ˆmi , whose diagonal elements are δi l , and the

square matrix Ωi P ℜmi ˆmi , whose each column is ωi l .
5: Rearrange the multidimensional variables according their largest eigenvalues of covari-

ance matrices. Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu be the order list.
6: For each i “ 3, ¨ ¨ ¨ , pM ` 1q do

(I) Initialize Si “ H and t “ 1.

(II) For each j ď p where p “ mintml, nu, @l P t1, ¨ ¨ ¨ , iu do

(i) Initialize Ci “ H.
(ii) For each r-th combinations of regularization parameters, where @r P

t1, 2, ¨ ¨ ¨ ,
i
ś

l “1

tl u if i “ 3; otherwise, for each r-th regularization parameter,

where @r P t1, 2, ¨ ¨ ¨ , ti u do
(a) When i “ 3, compute Yrptqi using (7.3.1) if t “ 1; otherwise, using (7.17).
(b) Determine the t -th basis vector W i

k rptq of k -th multidimensional variable
using (7.23) if i “ 3; otherwise, call the Algorithm 7.1 to compute W i

k rptq,
@k P t1, ¨ ¨ ¨ , iu.

(c) Calculate the t -th canonical variable Ui
k rptq; @k P t1, 2, ¨ ¨ ¨ , iu using

(7.24).
(d) Extract the t -th feature F i

r ptq using (7.25).
(e) Compute the relevance γF i

rptqpDq of the feature F i
r ptq.

(f) If t ą 1, determine the significance σtF i
rptq,F i

l upD,F i
r ptqq of the extracted

feature F i
r ptq.

(g) Add F i
r ptq to Ci if its significance is non-zero with respect to all the

selected features of Si . In effect, Ci “ Ci ŤF i
r ptq.

(iii) end for
(iv) If Ci ‰ H, select a feature as t -th feature F i

r ptq from all the features of Ci ,
which maximizes the condition (7.26) when t “ 1, otherwise (7.27). As a
result of that, Si “ Si ŤF i

r ptq.
(v) For i ą 3, if the value of objective function ((7.26) for t “ 1 and (7.27)

otherwise) of the t -th feature of Si´1 is greater than that of Si , then Si “

Si ŤF i´1
r ptq.

(vi) Set t “ t ` 1.

(III) end for

7: end for
8: Stop.
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7.3.4 Validation of Proposed Algorithm

When a new view XpM `1q is available for analysis, the proposed GraDiM algorithm does
not repeat the same steps with the previous views X1,X2, ¨ ¨ ¨ ,XM augmented by the new
view XpM `1q. Rather, it starts with the results obtained using the previous set of views
and generates the new solution. In fact, if the initial set of views and the new view come
together, then GraDiM produces the same set of basis vectors. Without loss of generality,
let us consider that initially M multidimensional variables are present. The optimal solution
S M
opt is the eigenvector of Y M , where eigenvalues are placed in the diagonal positions of the

diagonal matrix ΛM . Thus, Y M can be expressed as (7.18).
Suppose, a new multidimensional variable XpM `1q has come. According to GraDiM, the

results of the previous M views, that is, ΛM and S M
opt have to be used to generate the new

results. The optimal solution S M `1
opt is the eigenvectors of Y M `1, where

Y M `1 “

M `1
ÿ

i“1

`

Xi
:Xi ´ γLG i

˘

. (7.28)

Let the t -th eigenvalue and corresponding eigenvector of Y M `1 be ρptqM `1 and S M `1
opt ptq,

respectively, where t ă mintmi , nu, @i P t1, 2, ¨ ¨ ¨ , pM ` 1qu. Hence, let the dominant
eigenvalue-eigenvector pair of Y M `1 be ρp1qM `1 and S M `1

opt p1q, respectively,

Y M `1 “ ρp1qM `1S M `1
opt p1q

”

S M `1
opt p1q

ıT
. (7.29)

On the other hand, using GraDiM, the eigenvector of the matrix pY M `1 is the optimal
solution pS M `1

opt , where

pY M `1 “ S M
optΛ

M
”

S M
opt

ıT
` X :

pM `1q
XpM `1q ´ γLG pM `1q

. (7.30)

Let the t -th eigenvalue-eigenvector pair of pY M `1 be
´

pρptqM `1, pS M `1
opt ptq

¯

. Thus, the domi-

nant eigenvalue and corresponding eigenvector of pY M `1 be pρp1qM `1 and pS M `1
opt p1q, respec-

tively,
pY M `1 “ pρp1qM `1

pS M `1
opt p1q

”

pS M `1
opt p1q

ıT
. (7.31)

To establish the characteristics, we need to show that the eigenvalue-eigenvector pairs
´

ρptqM `1, S M `1
opt ptq

¯

and
´

pρptqM `1, pS M `1
opt ptq

¯

of Y M `1 and pY M `1, where t ă mintmi , nu,
@i P t1, 2, ¨ ¨ ¨ , pM ` 1qu are the same. Mathematical induction is used to prove this
affirmation.

Base step: Comparing the value of Y M `1 of (7.3.3) and (7.29) and using the value of
pY M `1 of (7.31), we get,

S M
optΛ

M
”

S M
opt

ıT
` X :

pM `1q
XpM `1q ´ γLG pM `1q

“ ρp1qM `1S M `1
opt p1q

”

S M `1
opt p1q

ıT
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ñ pY M `1 “ ρp1qM `1S M `1
opt p1q

”

S M `1
opt p1q

ıT
. (7.32)

From (7.3.4), it is clear that, ρp1qM `1 and S M `1
opt p1q are the dominant eigenvalue and cor-

responding eigenvector of pY M `1. As the dominant eigenvalue-eigenvector pair has to be
unique,

´

ρp1qM `1, S M `1
opt p1q

¯

and
´

pρp1qM `1, pS M `1
opt p1q

¯

are the same.
Inductive step: Let all t eigenvalues and the corresponding eigenvector pairs

´

ρptqM`1, S M `1
opt ptq

¯

and
´

pρptqM `1, pS M `1
opt ptq

¯

of Y M `1 and pY M `1, are same. We have

to prove that the pt ` 1q-th eigenvalue-eigenvector pair
´

ρpt ` 1qM `1, S M `1
opt pt ` 1q

¯

and
´

pρpt ` 1qM `1, pS M `1
opt pt ` 1q

¯

of Y M `1 and pY M `1 are same, where pt `1q ď mintmi , nu,@i P

t1, 2, ¨ ¨ ¨ , pM ` 1qu. Now, using Deflation method,

Y pt ` 1qM `1 “ Y p1qM `1 ´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT
; (7.33)

and
pY pt ` 1qM `1 “ pY p1qM `1 ´

t
ÿ

l “1

pρpl qM `1
pS M `1
opt pl q

”

pS M `1
opt pl q

ıT

“ pY p1qM `1 ´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT
. (7.34)

As Y p1qM `1 and pY p1qM `1 are nothing but Y M `1 and pY M `1, respectively, (7.33) and (7.3.4)
can be redefined by using (7.28) and (7.30), respectively, which are expressed as follows:

Y pt ` 1qM `1 “

M `1
ÿ

i“1

`

Xi
:Xi ´ γLG i

˘

´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT
; (7.35)

pY pt`1qM `1 “ S M
optΛ

M
”

S M
opt

ıT
`X :

pM `1q
XpM `1q´γLG pM `1q

´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT
.

(7.36)
Now, from (7.35), we get

Y pt`1qM `1 “

M
ÿ

i“1

Xi
:Xi `X :

pM `1q
XpM `1q´

M
ÿ

i“1

γLG i ´γLG pM `1q
´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT

“ Y M ` X :

pM `1q
XpM `1q ´ γLG pM `1q

´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT

“ S M
optΛ

M
”

S M
opt

ıT
` X :

pM `1q
XpM `1q ´ γLG pM `1q

´

t
ÿ

l “1

ρpl qM `1S M `1
opt pl q

”

S M `1
opt pl q

ıT
. (7.37)
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Comparing (7.36) and (7.3.4), it is clear that

Y pt ` 1qM `1 “ pY pt ` 1qM `1. (7.38)

Hence, the pt ` 1q-th eigenvalue-eigenvector pairs
´

ρpt ` 1qM `1, S M `1
opt pt ` 1q

¯

and
´

pρpt ` 1qM `1, pS M `1
opt pt ` 1q

¯

of Y M `1 and pY M `1, respectively, are same. Thus, it is proved
that the proposed GraDiM algorithm produces the same set of solutions if all pM `1q views
are considered simultaneously.

7.3.5 Complexity Analysis

This section presents the time complexity of the proposed GraDiM algorithm. Let tX1,X2,
¨ ¨ ¨ ,XpM `1qu be the pM ` 1q views, with c classes and n samples, where each Xi P ℜmi ˆn

and mi represents the number of features in Xi . Let us assume that the regularization
parameter ri has ti possible values. Let tX1,X2, ¨ ¨ ¨ ,XpM `1qu is the order list, which
is rearranged according to their largest eigenvalues of covariance matrices. Let q “

maxtm1,m2, ¨ ¨ ¨ ,mpM `1qu, p “ mintm1,m2, ¨ ¨ ¨ ,mpM `1qu, where the number of extracted

features D ăă p. Let τ “ t1t2t3 `

pM `1q
ř

l “4

tl .

The adjacency matrix, the degree matrix, and the Laplacian matrix of graph for
each view can be computed with time complexity Opn2q, Opnq, and Opn2q, respectively.
Hence, the total time complexity to compute the Laplacian matrix of graph for all views
is OppM ` 1qn2q. The covariance matrices tCii u can be computed with a complexity
Op

ř

i
m2

i nq « Opq2nq, @i P t1, 2, ¨ ¨ ¨ , pM ` 1qu. All the eigenvalues δi l , along with cor-

responding eigenvectors ωi l , are computed with computational complexity Op
ř

i
m3

i q «

Opq3q; @l P t1, 2, ¨ ¨ ¨ ,mi u, in step 3. On the other hand, step 4 and step 5 have constant
time complexity of Op1q. Thus, the total computational complexity of these five steps is
OppM ` 1qn2 ` q2n` q3q « Opq3q as n ăă q and M ăă q .

In step 6, there is a loop which is executed pM ´ 2q times. The first step of this
loop has constant time complexity, which is given as Op1q and the next step has another
loop, which is executed D times. Again, the first step of this loop has constant time
complexity, which is given by Op1q and the next step has another loop, which is executed

i
ś

l “1

tl times if i “ 3; otherwise, ti times, @i P t4, 5, ¨ ¨ ¨ , pM ` 1qu. The complexity to

compute Yrptqi is Opτpq3 ` qn2 ` n2qq « Opτq3q. The eigenvector of the matrix Yrptqi can
be calculated with computational complexity Opq2q. The t -th basis vector W i

k rptq of i -th
view can be computed with time complexity Oppqnq. The t -th canonical variable Ui

k rptq

can be computed with time complexity Opqnq. Hence, a feature F i
r ptq can be extracted

with computational complexity Opnq. The step to compute both significance and relevance
of a feature has the same time complexity, which is given by Opcnq. The selection of a
feature from t1t2t3 candidate features, for i “ 3, otherwise pτ ´ t1t2t3q candidate features,
by maximizing both relevance and significance, has complexity Opτq. The last step of the
loop has constant time complexity of Op1q. So, the total complexity to execute the loop D
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times is OpDpτq3 ` q2 ` pqn` qn` n` cn` τqq « OpDτq3q. Hence, the proposed GDiM
algorithm has computational complexity of Opq3 ` Dτq3q « OpDτq3q.

7.4 Performance Analysis

The performance of the proposed feature extraction algorithm, termed as GraDiM, is ex-
tensively studied and compared with that of several existing multimodal data integration
algorithms. To evaluate the performance of different algorithms, support vector machine
with linear kernels is used. Each regularization parameter is varied in between 0.0 and
1.0, with a difference of 0.1. Five benchmark data sets, namely, CiteSeer, Handwritten,
NUS-WIDE-OBJECT (NW-OBJECT), Reuters, and Caltech; and five cancer data sets,
namely, glioblastoma multiforme (GBM), lung (LUNG), kidney (KIDNEY), lower grade
glioma (LGG), and ovarian serous cystadenocarcinoma (OV), are used in the current re-
search work. All the data sets are summarized in Table 5.1 and Table 5.2 of Chapter 5, and
briefly described in Appendix A. The proposed algorithm is implemented in C language
and run in Ubuntu 14.04 LTS having machine configuration Intel(R) Core(TM) i7-4790
CPU @ 3.60GHzˆ8 and 32 GB RAM.

The randomly selected 50% samples from each class are used for training and the rest
are used for testing purposes for each of the data sets. The 10-fold cross-validation (CV)
is also performed on each data set to assess the performance of the proposed algorithm
statistically. To analyze the statistical significance of the derived results, paired-t test
(one-tailed), Wilcoxon signed rank test (one-tailed), and Friedman test (one-tailed), with
95% confidence level, are used to compute the p-values. For each data set, 25 top-ranked
correlated features are selected for the analysis.

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

CiteSeer

0.00

0.20

0.40

0.60

0.80

1.00

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Handwritten

SUMCOR

GENVAR

MAXVAR

MINVAR

SSQCOR

GraDiM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

NUS-WIDE-OBJECT

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Reuters

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Caltech

Figure 7.1: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (GraDiM) algorithm on benchmark data
sets using 10-fold CV.
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Figure 7.2: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (GraDiM) algorithm on benchmark data
sets using training-testing.
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Figure 7.3: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (GraDiM) algorithm on omics data sets
using 10-fold CV.

7.4.1 Importance of Various Criteria of MCCA

Figure 7.1, Figure 7.2, Figure 7.3, and Figure 7.4 compare the performance of the pro-
posed algorithm with that of various criteria of the MCCA, namely, SUMCOR, MAXVAR,
generalized variance (GENVAR), minimum variance (MINVAR), and sum of squared cor-
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Figure 7.4: Variation of classification accuracy with respect to number of extracted features
for different criteria of the MCCA and proposed (GraDiM) algorithm on omics data sets
using training-testing.

relations (SSQCOR) [135]. Table 7.1 presents the classification accuracy obtained using
the proposed algorithm on each data set in case of training-testing. The mean, median,
and standard deviation of 10-fold CV are also reported in Table 7.1 for each data set. To
perform the statistical significance analysis, the p-values computed using different tests are
reported in Table 7.2, Table 7.3, and Table 7.4.

7.4.1.1 Performance on Benchmark Data

The results presented in Figure 7.1 and Figure 7.2 convey that the MAXVAR provides
the highest accuracy irrespective of the features among different criteria of the MCCA on
Caltech data sets. However, the performance of the proposed algorithm is significantly
higher as compared to that of various criteria of the MCCA, irrespective of the generated
features and data sets used. The results reported in Table 5.3, Table 5.4, and Table 5.5 of
Chapter 5, and Table 7.1 demonstrate that the MAXVAR criterion provides the highest
classification accuracy of 0.733 on Caltech data set. On the other hand, the SUMCOR
attains the highest accuracy of 0.581, 0.870, 0.303, and 0.575 on CiteSeer, Handwritten,
NW-OBJECT, and Reuters data sets, respectively, among five criteria of the MCCA.
However, the proposed algorithm achieves the highest classification accuracy on all five
benchmark data sets. All the results reported in Table 7.2, Table 7.3, and Table 7.4
depict that the proposed GraDiM algorithm achieves significantly better (marked in bold)
p-values than different criteria of the MCCA in all 75 cases. Figure 7.5 shows the scatter
plots using the first two extracted features, along with the class separability index, of the
proposed algorithm on five benchmark and five omics data sets, while the corresponding
results of different criteria of the MCCA are reported in the first five columns of Figure 5.5
of Chapter 5. All the results reported in Figure 5.5 of Chapter 5 and Figure 7.5 establish
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Table 7.1: Classification Accuracy and Execution Time of Proposed GraDiM Algorithm

Different Accuracy Accuracy for 10-Fold CV Time
Data Sets (Train-Test) Mean Median StdDev (in sec.)

B
en

ch
m

ar
k CiteSeer 0.652 0.646 0.647 0.027 90.5

Handwritten 0.966 0.969 0.970 0.016 103.8
NW-OBJECT 0.402 0.404 0.405 0.006 11659.2

Reuters 0.672 0.708 0.712 0.013 26924.3
Caltech 0.897 0.820 0.821 0.015 1552.7

O
m

ic
s

GBM 0.752 0.738 0.696 0.079 223.1
LUNG 0.971 0.975 0.970 0.029 447.2

KIDNEY 0.961 0.974 0.971 0.025 281.8
LGG 0.946 0.847 0.863 0.152 332.4
OV 0.951 0.773 0.750 0.096 220.6

Table 7.2: Statistical Significance Analysis of Different Algorithms on CiteSeer and GBM
Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR

C
it

eS
ee

r

2.15E-05 2.52E-03 1.57E-03

G
B

M

1.39E-06 2.40E-03 1.57E-03
GENVAR 2.60E-05 2.53E-03 1.57E-03 3.18E-04 3.33E-03 2.70E-03
MAXVAR 6.21E-06 2.52E-03 1.57E-03 5.40E-06 2.45E-03 1.57E-03
MINVAR 2.01E-06 2.50E-03 1.57E-03 1.24E-02 1.94E-02 2.06E-01
SSQCOR 5.37E-05 3.46E-03 1.14E-02 4.18E-03 7.23E-03 1.96E-02

RGCCA 3.47E-10 2.53E-03 1.57E-03 2.28E-03 7.03E-03 1.14E-02
GMCCA 2.66E-09 2.53E-03 1.57E-03 2.00E-04 3.74E-03 2.70E-03

GMKCCA 9.52E-11 2.53E-03 1.57E-03 1.87E-06 2.46E-03 1.57E-03
LasCCA 1.25E-10 2.52E-03 1.57E-03 4.66E-02 4.42E-02 1.57E-01
DisCCA 1.22E-11 2.53E-03 1.57E-03 1.86E-05 2.46E-03 1.57E-03
BsMCCA 1.53E-10 2.53E-03 1.57E-03 4.43E-02 3.81E-02 5.78E-02
ReDMiCA 7.48E-03 9.78E-03 9.56E-02 6.92E-01 7.06E-01 6.55E-01

MvDA 9.19E-09 2.53E-03 1.57E-03 7.78E-01 7.54E-01 2.57E-01
MvDA-VC 1.78E-07 2.53E-03 1.57E-03 2.64E-02 2.68E-02 5.88E-02

LiveGCANO 3.70E-09 2.45E-03 1.57E-03 8.06E-03 1.20E-02 3.39E-02
OPID 1.52E-09 2.52E-03 1.57E-03 3.36E-01 3.66E-01 7.06E-01
SAC 2.50E-10 2.53E-03 1.57E-03 3.93E-02 6.01E-02 9.56E-02

SeFGeIM 1.40E-01 1.21E-01 4.80E-01 4.60E-01 7.03E-01 4.14E-01

the superiority of the proposed algorithm over different criteria of the MCCA.

7.4.1.2 Performance on Omics Data

All the results reported in Figure 7.3 and Figure 7.4 demonstrate that the classification
accuracy of the proposed algorithm is significantly higher as compared to that of various
criteria of the MCCA, irrespective of the generated features, data sets, and experimental
setup used. All the results reported in Table 5.3, Table 5.4, and Table 5.5 of Chapter 5
and Table 7.1 confirm that the proposed algorithm attains the highest mean and median
accuracy, irrespective of all five omics data sets. From the results reported in Table 7.2,
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Table 7.3: Statistical Significance Analysis of Different Algorithms on Handwritten, NW-
OBJECT, LUNG, and KIDNEY Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR
H

an
dw

ri
tt

en
1.93E-08 2.50E-03 1.57E-03

LU
N

G

3.98E-11 2.50E-03 1.57E-03
GENVAR 3.91E-11 2.52E-03 1.57E-03 5.59E-05 2.49E-03 1.57E-03
MAXVAR 2.22E-13 2.52E-03 1.57E-03 1.60E-06 2.50E-03 1.57E-03
MINVAR 1.11E-12 2.50E-03 1.57E-03 8.81E-06 2.53E-03 1.57E-03
SSQCOR 1.26E-14 2.52E-03 1.57E-03 9.41E-06 2.52E-03 1.57E-03

RGCCA 1.56E-05 3.82E-03 2.70E-03 4.45E-06 2.50E-03 1.57E-03
GMCCA 8.74E-15 2.47E-03 1.57E-03 5.16E-08 2.49E-03 1.57E-03

GMKCCA 9.23E-13 2.53E-03 1.57E-03 1.64E-03 3.98E-03 1.14E-02
LasCCA 1.12E-15 2.46E-03 1.57E-03 5.89E-05 2.50E-03 1.57E-03
DisCCA 3.03E-12 2.50E-03 1.57E-03 4.69E-09 2.49E-03 1.57E-03
BsMCCA 7.94E-12 2.52E-03 1.57E-03 1.32E-02 1.03E-02 3.39E-02
ReDMiCA 1.00E+00 1.00E+00 1.00E+00 2.61E-02 2.90E-02 9.56E-02

MvDA 1.34E-03 2.42E-03 1.57E-03 5.98E-02 5.58E-02 2.06E-01
MvDA-VC 2.47E-02 2.30E-02 5.78E-02 8.88E-02 1.17E-01 2.06E-01

LiveGCANO 5.24E-13 2.52E-03 1.57E-03 2.96E-10 2.42E-03 1.57E-03
OPID 8.08E-03 8.02E-03 1.14E-02 1.06E-02 1.39E-02 3.39E-02
SAC 2.20E-03 5.81E-03 4.68E-03 6.08E-02 7.00E-02 4.80E-01

SeFGeIM 5.00E-01 4.66E-01 7.06E-01 1.29E-01 1.49E-01 3.17E-01

M
C

C
A

SUMCOR

N
W

-O
B

JE
C

T

1.74E-12 2.53E-03 1.57E-03

K
ID

N
E

Y

9.65E-09 2.47E-03 1.57E-03
GENVAR 3.98E-14 2.53E-03 1.57E-03 1.47E-02 1.97E-02 3.39E-02
MAXVAR 2.20E-16 2.53E-03 1.57E-03 1.38E-06 2.46E-03 1.57E-03
MINVAR 5.04E-15 2.52E-03 1.57E-03 2.12E-06 2.50E-03 1.57E-03
SSQCOR 2.20E-16 2.52E-03 1.57E-03 3.61E-07 2.40E-03 1.57E-03

RGCCA 3.17E-16 2.52E-03 1.57E-03 1.48E-03 3.90E-03 1.14E-02
GMCCA 3.27E-16 2.53E-03 1.57E-03 5.10E-06 2.52E-03 1.57E-03

GMKCCA 5.18E-13 2.53E-03 1.57E-03 7.27E-05 2.39E-03 1.57E-03
LasCCA 2.20E-16 2.53E-03 1.57E-03 2.15E-04 2.50E-03 1.57E-03
DisCCA 5.51E-14 2.53E-03 1.57E-03 1.72E-07 2.39E-03 1.57E-03
BsMCCA 1.20E-15 2.53E-03 1.57E-03 1.98E-03 3.32E-03 1.14E-02
ReDMiCA 2.46E-06 2.53E-03 1.57E-03 3.63E-01 3.53E-01 3.17E-01

MvDA 1.95E-12 2.53E-03 1.57E-03 3.73E-04 4.69E-03 4.68E-03
MvDA-VC 5.27E-12 2.53E-03 1.57E-03 7.48E-03 1.05E-02 1.96E-02

LiveGCANO 1.75E-11 2.53E-03 1.57E-03 2.83E-06 2.47E-03 1.57E-03
OPID 8.67E-14 2.53E-03 1.57E-03 1.72E-01 1.59E-01 4.14E-01
SAC 4.65E-12 2.53E-03 1.57E-03 5.35E-03 1.16E-02 1.43E-02

SeFGeIM 3.26E-03 8.30E-03 5.78E-02 3.39E-01 3.27E-01 6.55E-01

Table 7.3, and Table 7.4, it is evident that out of a total of 75 cases, the proposed algorithm
achieves significantly better (marked in bold) p-values than different criteria of the MCCA
in 73 cases. On the other hand, the proposed algorithm provides better but not significant
(marked in italics) p-values in only 2 cases, for the SSQCOR and the MINVAR using the
Friedman test on OV and GBM data sets, respectively. Comparing the results reported
in the first five columns of Figure 5.6 of Chapter 5 and the bottom row of Figure 7.5, it
is clear that the scatter plots of the first two extracted features of the proposed algorithm
is able to separate different classes on omics data sets more precisely than the different
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Table 7.4: Statistical Significance Analysis of Different Algorithms on Reuters, Caltech,
LGG, and OV Data Sets

Different Data p-values for 10-Fold CV Data p-values for 10-Fold CV
Algorithms Sets Paired-t Wilcoxon Friedman Sets Paired-t Wilcoxon Friedman

M
C

C
A

SUMCOR
R

eu
te

rs
5.15E-08 2.53E-03 1.57E-03

LG
G

1.83E-05 3.46E-03 1.14E-02
GENVAR 4.73E-13 2.53E-03 1.57E-03 1.50E-04 3.46E-03 1.14E-02
MAXVAR 2.99E-13 2.53E-03 1.57E-03 5.38E-06 2.49E-03 1.57E-03
MINVAR 9.16E-16 2.53E-03 1.57E-03 2.36E-05 3.44E-03 1.14E-02
SSQCOR 9.42E-12 2.53E-03 1.57E-03 7.52E-06 2.50E-03 1.57E-03

RGCCA 1.47E-13 2.53E-03 1.57E-03 3.62E-05 3.42E-03 1.14E-02
GMCCA 5.19E-13 2.53E-03 1.57E-03 8.87E-06 2.50E-03 1.57E-03

GMKCCA 2.64E-13 2.53E-03 1.57E-03 9.13E-07 2.53E-03 1.57E-03
LasCCA 8.20E-12 2.53E-03 1.57E-03 2.16E-06 2.50E-03 1.57E-03
DisCCA 3.48E-08 2.53E-03 1.57E-03 6.17E-06 2.50E-03 1.57E-03
BsMCCA 1.42E-11 2.53E-03 1.57E-03 6.03E-03 1.42E-02 1.14E-02
ReDMiCA 5.76E-04 3.44E-03 1.14E-02 5.21E-01 2.20E-01 3.17E-01

MvDA 4.87E-11 2.53E-03 1.57E-03 2.99E-02 2.88E-02 1.14E-02
MvDA-VC 2.11E-11 2.53E-03 1.57E-03 2.80E-01 7.81E-02 3.39E-02

LiveGCANO 8.77E-11 2.50E-03 1.57E-03 5.16E-06 2.52E-03 1.57E-03
OPID 2.67E-09 2.53E-03 1.57E-03 5.00E-01 3.60E-01 7.39E-01
SAC 1.43E-08 2.53E-03 1.57E-03 4.59E-01 1.06E-01 9.56E-02

SeFGeIM 2.97E-01 3.80E-01 5.27E-01 4.78E-01 2.42E-01 1.57E-01

M
C

C
A

SUMCOR

C
al

te
ch

4.92E-07 2.47E-03 1.57E-03

O
V

4.54E-08 2.50E-03 1.57E-03
GENVAR 1.29E-08 2.52E-03 1.57E-03 9.13E-09 2.46E-03 1.57E-03
MAXVAR 3.74E-08 2.50E-03 1.57E-03 5.55E-06 2.52E-03 1.57E-03
MINVAR 5.74E-09 2.52E-03 1.57E-03 2.16E-03 8.37E-03 3.39E-02
SSQCOR 2.55E-09 2.47E-03 1.57E-03 8.32E-03 1.42E-02 5.78E-02

RGCCA 2.12E-15 2.52E-03 1.57E-03 2.69E-03 5.40E-03 1.96E-02
GMCCA 3.87E-16 2.53E-03 1.57E-03 2.59E-06 2.52E-03 1.57E-03

GMKCCA 1.35E-15 2.52E-03 1.57E-03 1.23E-06 2.52E-03 1.57E-03
LasCCA 2.33E-15 2.52E-03 1.57E-03 5.70E-08 2.50E-03 1.57E-03
DisCCA 1.23E-10 2.53E-03 1.57E-03 2.84E-08 2.52E-03 1.57E-03
BsMCCA 7.66E-04 3.44E-03 1.14E-02 2.42E-02 3.44E-02 3.39E-02
ReDMiCA 5.70E-03 1.08E-02 5.78E-02 4.71E-02 4.25E-02 1.96E-02

MvDA 6.04E-04 3.46E-03 1.14E-02 2.87E-02 3.27E-02 3.17E-01
MvDA-VC 1.49E-03 3.74E-03 2.70E-03 8.66E-05 3.74E-03 2.70E-03

LiveGCANO 2.20E-16 2.42E-03 1.57E-03 5.83E-07 2.52E-03 1.57E-03
OPID 1.04E-05 2.47E-03 1.57E-03 2.75E-03 9.41E-03 1.14E-02
SAC 2.24E-04 2.50E-03 1.57E-03 3.93E-03 3.71E-03 2.70E-03

SeFGeIM 7.14E-04 3.79E-03 2.70E-03 3.13E-01 3.35E-01 7.06E-01

criteria of the MCCA do.

7.4.2 Comparative Performance Analysis

Finally, Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9 along with Table 7.1, Table 7.2,
Table 7.3, Table 7.4, and Table 7.5 analyze the performance of the proposed multimodal
data integration algorithm, termed as GraDiM, with that of various state-of-the-art MCCA
based methods, namely, RGCCA [262], GMCCA [43], GMKCCA [43], large-scale general-
ized CCA (LasCCA) [84], distributed generalized CCA (DisCCA) [84], block sparse MCCA
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Figure 7.5: Scatter plots for the proposed GraDiM algorithm, along with class separability
index, each Oi denotes the i-th object class.

(BsMCCA) [235], and ReDMiCA [185] presented in Chapter 5; two popular multidimen-
sional data integration algorithms, namely, multi-view discriminant analysis (MvDA) [128]
and MvDA with view-consistency (MvDA-VC) [129]; three multi-view incremental algo-
rithms, namely, live generalized canonical correlation analysis (LiveGCANO) [187], one-
pass learning with incremental and decremental features (OPID) [114], safe classification
with augmented features (SAC) [113], and SeFGeIM [184] presented in Chapter 6; and
three deep learning-based algorithms, namely, deep MCCA (dMCCA) [244], deep multi-
view learning via task-optimal CCA (TOCCA) [55], and multimodal deep Boltzmann ma-
chines (MDBM) [247]. On the other hand, Figure 7.5 shows the scatter plots using the first
two extracted features of the proposed algorithm on each data set, while the correspond-
ing plots of the aforementioned algorithms are reported in Figure 5.11 and Figure 5.12 of
Chapter 5 and Figure 6.6, and Figure 6.7 of Chapter 6.

7.4.2.1 MCCA Based Methods

Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9 along with Table 5.3, Table 5.4, and
Table 5.5 of Chapter 5 and Table 7.1 demonstrate that the accuracy of the proposed multi-
view data integration algorithm is significantly higher as compared to that of existing
MCCA based methods on both omics and benchmark data sets. All the results reported in
Table 5.3, Table 5.4, and Table 5.5, of Chapter 5 and Table 7.1 confirm that the proposed
algorithm attains the highest mean and median accuracy, in most of the data sets. From the
results reported in Table 7.2, Table 7.3, and Table 7.4, it is seen that out of total 180 cases,
the proposed algorithm attains significantly better (marked in bold) p-values than existing
MCCA based methods in 178 cases, and better but not significant (marked in italics) p-
values in 2 cases. From the first four columns of Figure 5.11 and the first two columns of
Figure 5.12 of Chapter 5, and Figure 7.5, it can be seen that the separation among various
classes using the first two extracted features of the proposed algorithm is significantly better
than that of the existing algorithms on Handwritten and Caltech data sets. It shows that
the proposed algorithm can separate different classes of LUNG data set using the first two

153



0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

CiteSeer

0.00

0.20

0.40

0.60

0.80

1.00

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Handwritten

RGCCA

GMCCA

GMKCCA

LasCCA

DisCCA

BsMCCA

MvDA

MvDA-VC

ReDMiCA

LiveGCANO

OPID

SAC

SeFGeIM

GraDiM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

NUS-WIDE-OBJECT

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Reuters

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0  5  10  15  20  25

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Number of Extracted Features

Caltech

Figure 7.6: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (GraDiM) algorithm on benchmark data sets
using 10-fold CV.
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Figure 7.7: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (GraDiM) algorithm on benchmark data sets
using training-testing.

extracted features only. For the LGG data set, the proposed algorithm isolates almost
all the samples of IDHwt class properly, but there is an overlap between the samples of
the other two classes. On the other hand, for the OV data set, most of the samples of
Proliferative and Mesenchymal classes are well segregated, though Immunoreactive and
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Figure 7.8: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (GraDiM) algorithm on omics data sets using
10-fold CV.
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Figure 7.9: Variation of classification accuracy with respect to number of extracted features
for different existing algorithms and proposed (GraDiM) algorithm on omics data sets using
training-testing.

Differentiated classes do not have a linear boundary between them. For the GBM data set,
most of the samples of Proneural and G-CIMP classes are disconnected, but a few samples
of Classical, Mesenchymal, and Neural classes are not classified properly.
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7.4.2.2 Multi-View Learning Algorithms

From Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9, it is seen that the classification
accuracy of the proposed algorithm is significantly higher, irrespective of the number of
extracted features, as compared to that of both MvDA and MvDA-VC on each of the
data sets. As shown in Table 7.2, Table 7.3, and Table 7.4, out of total 60 cases, the
proposed algorithm attains significantly better (marked in bold) p-values than other two
data integration methods in 46 cases, and better but not significant (marked in italics) p-
values in 12 cases. The proposed algorithm is not significantly better than MvDA according
to paired-t test and Wilcoxon signed rank test on the GBM data set. Comparing the results
reported in the 3rd and 4th columns of Figure 5.12 of Chapter 5 and Figure 7.5, it is evident
that different classes are remarkably separable using the first two extracted features of the
proposed algorithm than these two existing multi-view learning algorithms on omics as well
as benchmark data sets. Moreover, the CSI of the proposed algorithm is higher compared
to that of MvDA and MvDA-VC, which indicates the better separation of the classes.

7.4.2.3 Multi-View Incremental Learning Algorithms

The results reported in Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9 clearly establish
the fact that the proposed GraDiM algorithm provides better performance than three
incremental multi-view data integration methods, namely, LiveGCANO, OPID, and SAC,
in most of the cases. However, for the GBM data set, SAC attains a little overlap with
GraDiM. From the results presented in Table 6.2 of Chapter 6 and Table 7.1, it can be seen
that the proposed algorithm attains the higher classification accuracy of training-testing
in 9 cases, while the SAC algorithm achieves it only for the KIDNEY data set. The results
corresponding to 10-fold CV indicate that the proposed algorithm attains the higher mean
accuracy in 10 cases and higher median accuracy in 8 cases, out of total 10 cases each.
Moreover, the proposed GraDiM algorithm attains significantly better p-values (marked in
bold) than the three incremental methods in 73 cases, out of the total 90 cases, and better
but not significant p-values (marked in italics) in 14 cases, considering 95% confidence level.
The proposed algorithm is not significantly better than the OPID according to paired-t test
and Friedman test on the LGG data set and Friedman test on the GBM data set. Finally,
the comparative analysis of the scatter plots presented in the first three columns of Figure
6.6 and Figure 6.7 of Chapter 6 and Figure 7.5 confirm that the proposed algorithm can
separate different classes better than the existing approaches.

7.4.2.4 Deep Learning Based Methods

Finally, the performance of the proposed GraDiM algorithm is compared with that of
several deep learning-based algorithms, namely, dMCCA [244], TOCCA [55], and MDBM
[247]. The results presented in Table 5.9 and Table 5.10 of Chapter 5 and Table 7.1 demon-
strate that the classification accuracy of the proposed algorithm is significantly higher as
compared to that of various deep learning-based methods in all the cases. The TOCCA
algorithm performs well on benchmark data sets other than CiteSeer, but it fails to achieve
judicious results on most of the omics data sets. The MDBM and dMCCA obtain 87.9%
and 86.2% accuracy on LUNG and KIDNEY data sets, respectively, whereas both of them
perform moderately on the GBM and LGG data sets. On the other hand, none of the deep
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learning-based methods performs better on the OV data set. Both MDBM and dMCCA
provide poor performance on Handwritten, Caltech, and NW-OBJECT data sets due to
the over training of these models. Table 7.5 presents the statistical significance analysis
on five omics data sets. The results reported in Table 7.5 establish that the proposed
algorithm attains significantly better p-values than the three deep learning-based methods,
irrespective of the significance analysis and omics data sets used.

Table 7.5: Statistical Significance Analysis of Different Deep Learning Algorithms on Omics
Data Sets

Different Different p-values for 10-Fold CV
Data Sets Algorithms Paired-t Wilcoxon Friedman

GBM
dMCCA 1.76E-05 2.53E-03 1.57E-03
TOCCA 1.95E-06 2.52E-03 1.57E-03
MDBM 6.94E-05 2.53E-03 1.57E-03

LUNG
dMCCA 1.24E-10 2.50E-03 1.57E-03
TOCCA 4.57E-12 2.36E-03 1.57E-03
MDBM 5.25E-04 2.46E-03 1.57E-03

KIDNEY
dMCCA 1.52E-09 2.32E-03 1.57E-03
TOCCA 1.50E-07 2.25E-03 1.57E-03
MDBM 5.53E-06 3.45E-03 2.70E-03

LGG
dMCCA 7.89E-05 3.42E-03 1.14E-02
TOCCA 4.06E-05 3.42E-03 1.14E-02
MDBM 3.49E-06 2.52E-03 1.57E-03

OV
dMCCA 1.25E-06 2.52E-03 1.57E-03
TOCCA 4.47E-05 3.46E-03 1.14E-02
MDBM 1.96E-05 2.53E-03 1.57E-03

All the results, reported here establish the effectiveness of the proposed incremental
multi-view data integration algorithm over state-of-the-art data integration approaches. In
real-life data analysis, all the modalities may not be required to extract different features.
Considering this fact, the GraDiM is developed in such a way that only relevant modalities
are integrated to extract features. This property of the proposed method helps to perform
significantly better than existing methods.

7.5 Conclusion

A novel supervised sequential feature extraction algorithm, termed as GraDiM, has been
proposed in this chapter. It integrates multi-view data sets by using the MAXVAR cri-
terion and the knowledge of the graph. It can update the solutions adaptively wherever
a new view is available for the analysis, without repeating the same procedure with the
original data augmented by the new view. Moreover, the algorithm is designed in such
a way that if all the views are available at the beginning of the analysis, the algorithm
starts with the three most relevant views, and the remaining views are added sequentially
according to their relevance. The proposed GraDiM model deals with the “curse of dimen-
sionality” problem due to ‘large p and small n’ characteristics of real-life multi-view data
sets, by using the ridge regression optimization technique. The quality of the extracted
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features depends on the supervised information of sample categories. Analytical formula-
tion facilitates the generation of relevant and significant features from multi-view dynamic
data sets with significantly lower computational costs. The effectiveness of the proposed
GraDiM algorithm, along with a comparison with other algorithms, has been demonstrated
on several benchmarks and real-life cancer data sets.
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Chapter 8

Conclusion and Future Directions

The major contributions of the research presented in different chapters of this thesis are
summarized in this chapter. The possible extensions and applications of the proposed
research work are also discussed in this chapter.

8.1 Major Contributions

The thesis presents some novel approaches for multi-view data integration. The main
challenge associated with multi-view data analysis is five-fold, namely, (i) curse of dimen-
sionality problem of each view, (ii) unavailability of all the modalities at the beginning
of the analysis, (iii) integration of the most informative and relevant views while discard-
ing the redundant and insignificant views, (iv) sequential extraction of relevant features
based on the supervised information of sample categories, and (v) modeling the structural
information associated with geometrical knowledge of individual views. All these afore-
mentioned issues have been addressed in this thesis. A brief summary, highlighting the
main features of the proposed approaches, is discussed next.

Chapter 3 presents a novel supervised regularized canonical correlation analysis (CCA),
termed as CuRSaR, to extract relevant and significant features from two multidimensional
data sets. An analytical formulation, based on spectral decomposition, has been introduced
to establish the relationship between the covariance matrices of different regularization pa-
rameters. It makes the computational complexity of the proposed algorithm significantly
lower than that of the existing methods. The algorithm proposed in Chapter 3 extracts
a set of features simultaneously from two multidimensional data sets by maximizing the
relevance of extracted features with respect to sample categories and significance among
them. However, instead of producing all canonical variables simultaneously, if each variable
is computed sequentially, the quality of each generated feature can be evaluated indepen-
dently, and eventually, a reduced set of features can be selected based on their quality. In
this regard, a fast and robust feature extraction algorithm, termed as FaRoC, has been pre-
sented in Chapter 4, which extracts new features sequentially from two multidimensional
data sets by maximizing their relevance with respect to the class label and significance with
respect to the already-extracted features. To generate canonical variables sequentially, an
analytical formulation has been introduced to establish the relation between regulariza-
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tion parameters and CCA. The formulation enables FaRoC to extract a required number
of correlated features sequentially with lesser computational cost as compared to existing
algorithms. The efficacy of both CuRSaR and FaRoC, along with a comparison with other
existing methods, has been extensively established on several real-life cancer data sets.

Both CuRSaR and FaRoC can only account for two sets of variables. In this regard,
a new multi-view data integration algorithm, termed as ReDMiCA, has been presented in
Chapter 5. It integrates multimodal multidimensional data sets by solving the maximal
correlation problem of multiset CCA (MCCA). A new block matrix representation has
been introduced to determine the basis vectors of the MCCA. The proposed algorithm has
addressed the high-dimension low-sample size issue of real-world multi-view data sets by
using the ridge regression optimization technique. A theoretical analysis has been presented
to generate the desired number of correlated features sequentially, without producing the
complete set of possible features. An important result of this analysis is that the proposed
algorithm computes the canonical variable for a single modality having the lowest dimen-
sion with the initial regularization parameter, and this canonical variable can be used to
compute the canonical variables of all other modalities at different combinations of regular-
ization parameters. The optimum values of regularization parameters have been estimated
by computing the relevance and significance of the corresponding feature. The performance
of the proposed multiblock data integration algorithm has been compared with that of dif-
ferent existing integrative methods on several real-life cancer as well as benchmark data
sets from varying application domains.

The algorithms proposed in Chapter 3 to Chapter 5 are applicable for multiblock static
data analysis. In multiblock dynamic data, all the modalities may not be available ini-
tially. The databases are generally updated incrementally by the new modalities. In this
regard, both Chapter 6 and Chapter 7 present two models which are applicable for multi-
view dynamic data analysis. In Chapter 6, a new MCCA, termed as incremental MCCA
(IMCCA) has been presented, which can update its solutions adaptively wherever a new
modality is available for the analysis. It deals with the “curse of dimensionality” prob-
lem due to high-dimension low-sample size characteristics of real-life multimodal data sets,
by using the ridge regression optimization technique with shrinkage estimation. Using the
proposed IMCCA model, a new feature extraction algorithm, termed as SeFGeIM has been
introduced, which considers a new modality for the analysis if it has relevant and signifi-
cant information with respect to existing modalities. The quality of the extracted features
depends on the supervised information of sample categories. Analytical formulation facili-
tates the generation of relevant and significant features from multiblock dynamic data sets
with significantly lower computational costs. Both the algorithms presented in Chapter 5
and Chapter 6 are based on the sum of correlations (SUMCOR) criterion of the MCCA,
which has higher cost as compared to the maximum variance (MAXVAR) criterion of the
MCCA. Moreover, they do not consider the geometry of the multi-view data. In this regard,
a new supervised feature extraction algorithm, termed as GraDiM, has been presented in
Chapter 7, which integrates dynamic multi-view data sets by using the MAXVAR criterion
and the knowledge of the graph. It can update the solutions adaptively wherever a new
view is available for the analysis, without repeating the same procedure with the original
data augmented by the new view. Moreover, the algorithm is designed in such a way that
if all the views are available at the beginning of the analysis, the algorithm starts with
the three most relevant views, and the remaining views are added sequentially according
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to their relevance. The proposed GraDiM algorithm addresses the singularity issue of the
covariance matrices by using the ridge regression optimization technique. The optimum
regularization parameters for the proposed algorithm are estimated based on the super-
vised information of sample categories. Analytical formulation facilitates the generation of
relevant and significant features from multi-view dynamic data sets with significantly lower
computational costs. The effectiveness of the proposed SeFGeIM algorithm of Chapter 6
and GraDiM algorithm of Chapter 7, along with a comparison with other algorithms, has
been demonstrated on several multi-omics cancer and benchmark data sets.

In brief, the concept of incremental MCCA proposed in this thesis is unique.

8.2 Future Directions

There are various key characteristics of the research presented in this thesis that can be
extended further for the progress of multi-view data analysis. Some improvements and
future directions are reported next with which the research can be continued.

• Incomplete views: All the proposed multi-view data integration algorithms pre-
sented in the thesis assume that all the views have the same set of common samples.
But, in practical application, it may happen that the data set has incomplete views
due to pre-processing and measurement errors. For example, in Web analysis, some
websites may contain texts, pictures, and videos, but others may contain one or two
types only, which produces data with missing views. Multi-view data integration
algorithms are supposed to work with incomplete views as well. Hence, all the multi-
view data integration algorithms presented in the thesis can be extended such that
by establishing a connection between the views the missing sample can be restored
with the help of the complete views [299] without discarding the missing sample from
all views.

• Non-linear or kernel learning: All the algorithms presented in the thesis are
based on the linear relationship among different views. A kernel function generally
transforms data points into a high (possibly infinite) dimensional space and returns
the inner-product between two points in a standard feature dimension [265]. All the
proposed algorithms can be extended in such a way that non-linear correlation may
be achieved during the integration process. It could be done by mapping the data
sets into a very high-dimensional Hilbert space using a non-linear transformation and
then correlated subspaces are obtained.

• Manifold learning based optimization: Many real-life data sets have meaningful
structures that lie on a low-dimensional manifold embedded in a higher-dimensional
Euclidean space [236]. As each view can have a separate manifold, the multi-view
data set can be considered as a mixture of manifolds. Based on this hypothesis, all
the multi-view data integration algorithms presented in the thesis can be extended
where correlated subspaces are constructed from a low-dimensional manifold.

• Deep network based optimization: The thesis focuses on spectral decomposition-
based analysis and shallow optimization solutions. On the other hand, deep learn-
ing architectures such as the multimodal deep Boltzmann machines [247] can learn
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non-linear transformations from multiple modalities. As the extensions of the pro-
posed algorithms, an attempt will be made to integrate multi-view data sets using a
deep learning framework to learn maximally correlated subspaces, where the spectral
decomposition-based solutions can help to initialize the deep optimization model.

• Supervised information during learning: Both CCA and MCCA are unsuper-
vised methods. All the multi-view data integration algorithms presented in this thesis
consider the class label information during the evaluation of each extracted feature.
Instead of considering the supervised knowledge in the feature selection process, the
class information can be taken during the learning process also. It may be done by
computing the within-class covariance matrix.

• Views observed in heterogeneous measurement spaces: All the multi-view
data integration algorithms presented in the thesis assume that each of the views is
observed in a real-valued Euclidean space, and hence is provided in feature space-
based representation. However, in practical application, it may be possible that some
of the views may not be embedded in real-valued space. They may consist of tex-
tual, integer count, or categorical information. The proposed multi-view algorithms
presented in this thesis should be modified such that heterogeneous multi-view data
where different views are embedded in different measurement spaces can be inte-
grated.

• Tensor spectral analysis: Tensor is the extension of matrix factorization in multi-
view data analysis. It is used to capture higher-order correlations among multiple
views [47, 297, 298]. Hence, generalization of CCA for more than two views can be
done by tensor [169]. As none of the proposed algorithms consider tensors to analyze
multi-view data set, it can be evident extension where tensor spectral is used to
compute maximally correlated canonical variables.

• Regression optimization: All the multi-view data integration algorithms presented
in the thesis are based on the assumption that noise in the data sets is Gaussian, inde-
pendent, and identically distributed. For this reason, there is a non-zero variance for
each feature and the covariance is 0. Thus, ridge regression optimization can address
this issue. It also takes care of the invertibility problem of the covariance matrix of
each high-dimensional variable. However, sometimes real-world data may fail to sat-
isfy the mixture of Gaussian assumptions. Hence, other optimization techniques may
be used to overcome this situation. The singularity issue of the covariance matrices
can also be addressed in different ways.

• Sparse data integration: The algorithms presented in this thesis do not take care
of the sparsity of the data sets directly. However, sparse features can cause problems
like overfitting and suboptimal results in learning models. Hence, the data integration
algorithms should be extended in such a way that sparse multi-view data sets can be
integrated efficiently.

• View ranking: Although both SeFGeIM and GraDiM, presented in Chapter 6 and
Chapter 7, respectively, integrate views according to their relevance, a normality-
based measure of relevance of an individual modality and an orthogonality-based
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measure of shared information or dependency between two modalities can be con-
sidered to rank the views [136, 137]. As an extension of SeFGeIM or GraDiM, an
attempt will be made to integrate the multi-view data sets according to the ranking
of the views.
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Appendix A

Description of Data Sets

The appendix presents a brief description of the multi-view benchmark and multi-omics
cancer data sets used in the thesis for comparative analysis of the proposed and the existing
multi-view clustering algorithms. Five benchmark data sets, namely, CiteSeer, Handwrit-
ten, NUS-WIDE-OBJECT (NW-OBJECT), Reuters, and Caltech; and five cancer data
sets, namely, glioblastoma multiforme (GBM), lung (LUNG), kidney (KIDNEY), lower
grade glioma (LGG), and ovarian serous cystadenocarcinoma (OV), are used in the cur-
rent work.

A.1 Benchmark Data Sets

This section presents a brief description of the five benchmark data sets.

1. CiteSeer: The CiteSeer database is obtained from http://networkrepository.
com. The set is generated by sampling scientific documents from CiteSeer digital
library. The publications are classified into one of the six classes, namely, Agents,
AI, DB, IR, ML, and HCI. There are 3312 papers in the data set. The papers are
selected in a way such that in the final set every paper cites or is cited by at least
one other paper. After stemming and removing the stopwords, a vocabulary of size
3703 unique words is obtained. All the words with document frequency less than 10
are removed. Each publication in the database is described by a 0 or 1 valued word
vector indicating the absence or presence of the corresponding word in the document.

2. NUS-WIDE-OBJECT (NW-OBJECT): This data has been downloaded from
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswi
de/NUS-WIDE.html. This database, created by Lab for Media Search in National
University of Singapore, is intended for object recognition tasks. It consists of 30000
images categorized into 31 different classes. The 30000 images of the database are
represented in terms of the five feature sets.

3. Reuters: This multilingual data has been downloaded from http://archive.ic
s.uci.edu/ml/machine-learning-databases/00259/. The collection contains
feature characteristics of documents originally written in the English language and
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the corresponding translations in French, German, Spanish, and Italian languages
over a common set of 6 categories. This collection can be used for multilingual
categorization and multi-view learning research. Documents have been translated,
preprocessed, and are made available as feature characteristics in a “bag of words”
format. 18758 documents are partitioned into 6 categories which include CCAT, C15,
ECAT, E21, GCAT, and M11; and represented in terms of the following five feature
sets.

4. Handwritten: This data has been downloaded from https://archive.ics.uci.
edu/ml/datasets/Multiple+Features. This dataset consists of features of hand-
written numerals (‘0’–‘9’) extracted from a collection of Dutch utility maps. 200
patterns per class (for a total of 2,000 patterns) have been digitized in binary images.
These digits are represented in terms of the six feature sets. Though Handwritten
data set has six modalities, one of them has only six features. As the MCCA based
methods can generate minpm1,m2, ¨ ¨ ¨ ,mM q features at most, so the modality with
six features, is not considered in all the MCCA based methods including the pro-
posed algorithm. Both MvDA and MvDA-VC have the same property. Hence, that
modality is also excluded in the integration process of Handwritten data set using
MvDA and MvDA-VC. On the other hand, deep learning based methods do not
hold this characteristic. Thus, in deep learning based methods, all six modalities are
considered to extract features from Handwritten data set.

5. Caltech: This data has been downloaded from http://www.vision.caltech.edu/I
mage_Datasets/Caltech101/. Caltech-101 consists of pictures of objects belonging
to 101 categories. There are 40 to 800 images per category. Most categories have
about 50 images, collected in September 2003 by Fei-Fei Li, Marco Andreetto, and
Marc Aurelio Ranzato. The size of each image is roughly 300ˆ 200 pixels. Caltech-20
is a subset of Caltech-101, which contains only 20 classes. In the current research
work, Caltech-20 is used to analyze the performance of the proposed algorithm.

The summary of each data set, in terms of the sample size, dimension of different views
and the number of classes, is provided in Table A.1.

A.2 Omics Data Sets

This section presents a brief description of the five multi-view omics data sets of The Cancer
Genome Atlas (TCGA) [2]. All the data sets have been downloaded from the Genomic
Data Commons (GDC) Data Portal [1]. A brief description of the four cancer data sets
used in this work is presented next.

1. Glioblastoma multiforme (GBM): It is the most common and malignant form
of brain cancer and has four subtypes identified in the study by Veerhak et al. [72].
The subtypes are proneural, neural, classical, and mesenchymal. The updated 2016
World Health Organization (WHO) classification of tumors of the central nervous
system reflects a refinement of tumor diagnostics by integrating the genotypic and
phenotypic features, thereby narrowing the defined subgroups. The new classification
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recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational sta-
tus in gliomas. Using TCGA data, Noushmehr et al. [71] identified a subset of GBM
tumors with characteristic promoter DNA methylation alterations, referred to as a
glioma cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP).
G-CIMP tumors have distinct molecular features, including a high frequency of IDH1
mutation and characteristic copy-number alterations. Patients with G-CIMP tumors
are younger at diagnosis and display improved survival times. The molecular alter-
ations in G-CIMP tumors define a distinct subset of human gliomas with specific
clinical features. G-CIMP tumors belong to the proneural subgroup. In order to
obtain an integrated view of the relationships of G-CIMP status and gene expression
differences, Noushmehr et al. performed pairwise comparisons between members
of different molecular subgroups. In this paper Noushmehr et al. calculated the
mean Euclidean distance in both DNA methylation and expression for each possible
pairwise combination of the five different subtypes: G-CIMP-positive proneural, G-
CIMP-negative proneural, classical, mesenchymal, and neural tumors. Hence, in the
current research work, G-CIMP is also used as a class label along with proneural,
neural, classical, and mesenchymal; where G-CIMP-positive proneural and G-CIMP-
negative proneural are considered as G-CIMP and proneural, respectively. The data
set consists of 213 samples from four genomic modalities, namely, miRNA, RNA,
DNA, and CNV. The data set contains 39, 52, 21, 64, and 37 samples of proneural,
classical, G-CIMP, mesenchymal, and neural subtypes, respectively.

2. Lung Carcinoma (LUNG): There are two subtypes, namely, lung squamous cell
carcinoma (LUSC) and lung adenocarcinoma (LUAD) are present in the current
research work, based on the same primary site of origin. According to the 2015
WHO lung cancer classification [272], these had been the two major subtypes. The
total number of samples in LUSC and LUAD are 234 and 312, respectively.

3. Kidney Carcinoma (KIDNEY): The kidney cancer data set has two histological
subtypes, namely, renal clear cell carcinoma (KIRC) and renal papillary cell carci-
noma (KIRP). These subtypes were included in the 2004 WHO classification of adult
renal tumors [217]. The KIDNEY data set consists of 305 samples of kidney cancer
with 95 samples of KIRC and 210 samples of KIRP.

4. Lower Grade Glioma (LGG): According to World Health Organization, lower-
grade glioma is grades II and III, which is made up of diffuse low-grade and intermediate-
grade gliomas. As LGG has highly variable clinical behavior, it is very difficult to pre-
dict LGG based on histologic class [202]. Some are indolent; others quickly progress
to glioblastoma. In the current research work, 374 LGG samples are used to analyze
the performance of each algorithm. The first subtype exhibits IDH mutation with no
1p/19q codeletion and has 180 samples. The second subtype has 129 samples that
exhibit both IDH mutation and 1p/19q codeletion. The wild-type IDH subtype is
the third subtype, which has 65 samples.

5. Ovarian Serous Cystadenocarcinoma (OV): Ovarian serous cystadenocarci-
noma is the malignant form of ovarian serous tumor, which is the most common
type of ovarian epithelial tumor. It is the eighth-most commonly occurring cancer in
women. According to [32], there were nearly 300,000 new cases in 2018. In [201], four
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subtypes are identified, which are used in the current research work. These subtypes
are proliferative, differentiated, mesenchymal, and immunoreactive, which consist of
60, 35, 64, and 47 samples, respectively.

These subtypes are clinically relevant and provide a roadmap for patient stratification
and trials of targeted therapies. The information of DNA methylation (mDNA) has been
utilized in all omics data sets. On the other hand, reverse phase protein array expression
(RPPA) is common for LUNG, KIDNEY, LGG, and OV data sets. The aforementioned
data sets make use of microRNA (miRNA) in sequence form, but GBM takes the knowledge
of miRNA in expression form. The details of the gene (RNA) have been taken from RNA
sequences in LUNG, KIDNEY, and LGG data sets, while gene expression provides gene-
related information in the GBM and OV data sets. The information of Copy number
segmentation (CNS) is used in GBM, LUNG, KIDNEY, LGG, and OV data sets.

The thesis addresses the problem associated with the high-dimension low-sample issue
of real-life data sets. Thus, all five omics data sets have this kind of property, where the
number of features is large enough, and the number of samples is very small. On the other
hand, different benchmark data sets are used to study the other possible situations. For
example, CiteSeer, Handwritten, and Caltech data sets have a moderate number of features
as well as samples. NUS-WIDE-OBJECT (NW-OBJECT) data set addresses the situation
where the number of samples is huge, but the number of features is undersized; while in
case of Reuters both the samples and features are large. According to the experimental
analysis, the proposed algorithms work well for not only the high-dimension low-sample
case, but also the other situations.

Data Platforms and Preprocessing

The reverse-phase protein array data from the MDA_RPPA_Core platform is used to
obtain the protein modality. The number of proteins is different for each sample. Only a
set of common proteins which is present in all the samples is considered to construct the
protein expression data set. The H-miRNA_8x15Kv2 and H-miRNA_8x15K platforms are
used to extract the information of miRNA for OV and GBM, respectively. On the other
hand, the sequence-based miRNA expression data from the Illumina HiSeq platform is used
for other data sets, which contain RPM (reads per million miRNA mapped) values for 1046
miRNAs. The miRNA sequence data is also log-transformed. The expression values of this
modality are not available for most of the samples in these data sets. As there are too
many missing values, the feature having more than 5% missing values is discarded. The
missing values are replaced by 0 for the feature which has less than or equal to 5% missing
values.

For the DNA methylation modality, methylation β-values from Illumina Human Methy-
lation 450 platform are used on LUNG, KIDNEY, and LGG data sets. On the other hand,
methylation β-values of GBM and OV data sets consist of Illumina Human Methylation
27 platform. The Human Methylation 450 gives methylation β-values of approximately
450,000 CpG sites, while Human Methylation 27 covers 27,000 CpG sites. The CpG lo-
cations having missing gene information are excluded. In the current research work, the
top 2,000 CpG sites having the most variance, are used. In all omics data sets, CNV is
generated from Affymetrix SNP Array 6.0 platform. To reduce the redundant copy number
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regions, the CNregions function of iCluster+ R-package [193] has been used in raw copy
number segmented data. There is an epsilon parameter in the CNregions function, which
has been used to compute the maximum Euclidean distance between adjacent probes tol-
erated for defining a non-redundant region. The value of this epsilon parameter gives the
number of non-redundant copy number regions. According to [193], the value of this epsilon
parameter has to be selected in this manner so that the reduced dimension becomes less
than 10,000. In all the data sets, the default value that is 0.005 has been considered for the
epsilon parameter of the CNregions function. For the RNA modality of LUNG, KIDNEY,
and LGG data sets, RNA-sequence data from the Illumina HiSeq platform is used which
contains normalized RPKM (reads per kilobase of exon per million) counts for 20,531 genes.
The data is then log transformed and 2,000 most variable genes based on their expression
profile across the samples are considered. The RNA modality of the GBM and OV data sets
are prepared using the platform HT_HG-U133A and AgilentG4502A_07_3, respectively,
and consists of log-ratio based expression data for 12,042 genes amongst which 2,000 genes
having the most variance are considered. The summary of each data set, in terms of the
dimension of different modalities, the number of classes, and the sample size is provided in
Table A.2.
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Appendix B

More Results Using F1 Score

This section provides a brief description of F1 score that are used to validate the perfor-
mance of the proposed algorithms presented in Chapter 3, Chapter 4, Chapter 5, Chapter
6, and Chapter 7. In case of classification, the F1 score is the harmonic mean of the
precision and recall [232], that is,

F1 score “
2

1
precision ` 1

recall

“ 2 ˆ
precision ˆ recall

precision ` recall
; (B.1)

where, the precision is the number of true positive results divided by the number of all
positive results, including those not identified correctly, and the recall is the number of
true positive results divided by the number of all samples that should have been identified
as positive [265] and can be defined as:

precision “
TP

TP ` FP
and recall “

TP

TP ` FN
; (B.2)

where, TP, FP, and FN are known as true positive, false positive, and false negative,
respectively. TP, FP, and FN denote a test result that correctly indicates the presence of a
condition or characteristic, a test result which wrongly indicates that a particular condition
or attribute is present, and a test result which wrongly indicates that a particular condition
or attribute is absent, respectively. Precision is also known as positive predictive value,
and recall is also known as sensitivity value. True negative rate is also known as specificity
and can be defined as follows:

specificity “
TN

TN ` FP
; (B.3)

where, TN is known as true negative and denotes a test result that correctly indicates the
absence of a condition or characteristic.

Table B.1, Table B.2, Table B.3, Table B.4, and Table B.5 present the F1 score of
the five benchmark data sets, namely, CiteSeer, Handwritten, NUS-WIDE-OBJECT (NW-
OBJECT), Reuters, and Caltech and five cancer data sets, namely, glioblastoma multiforme
(GBM), lung (LUNG), kidney (KIDNEY), lower grade glioma (LGG) and ovarian serous
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Table B.1: F1 Score of Different Algorithms on CiteSeer and GBM Data Sets

Different Data F1 Score F1 Score and Significance Analysis for 10-Fold CV
Algorithms Sets (Train-Test) Mean MedianStdDevPaired-t:pWilcoxon:pFriedman:p

M
C

C
A

SUMCOR

C
it

eS
ee

r

0.527 0.549 0.560 0.026 1.48E-04 2.53E-03 1.57E-03
GENVAR 0.366 0.359 0.401 0.102 3.28E-05 2.53E-03 1.57E-03
MAXVAR 0.533 0.519 0.391 0.022 1.35E-04 2.53E-03 1.57E-03
MINVAR 0.470 0.482 0.514 0.023 6.41E-07 2.53E-03 1.57E-03
SSQCOR 0.487 0.501 0.480 0.032 6.37E-05 2.53E-03 1.57E-03

RGCCA 0.252 0.401 0.503 0.025 2.87E-08 2.53E-03 1.57E-03
GMCCA 0.154 0.423 0.422 0.031 5.14E-09 2.53E-03 1.57E-03

GMKCCA 0.165 0.150 0.141 0.041 1.97E-10 2.53E-03 1.57E-03
LasCCA 0.209 0.456 0.450 0.023 1.09E-09 2.53E-03 1.57E-03
DisCCA 0.175 0.211 0.208 0.017 1.69E-11 2.53E-03 1.57E-03
BsMCCA 0.203 0.050 0.193 0.000 1.53E-10 2.53E-03 1.57E-03
MvDA 0.316 0.364 0.364 0.018 1.52E-09 2.53E-03 1.57E-03

MvDA-VC 0.374 0.414 0.410 0.026 1.09E-07 2.53E-03 1.57E-03
LiveGCANO 0.183 0.050 0.372 0.000 1.89E-07 2.53E-03 1.57E-03

OPID 0.424 0.343 0.334 0.032 6.91E-11 2.53E-03 1.57E-03
SAC 0.420 0.326 0.321 0.042 6.78E-12 2.53E-03 1.57E-03

ReDMiCA 0.591 0.593 0.591 0.030 5.31E-02 5.71E-02 2.06E-01
SeFGeIM 0.600 0.595 0.595 0.032 9.46E-02 6.97E-02 5.27E-01
GraDiM 0.597 0.598 0.592 0.030 - - -

M
C

C
A

SUMCOR

G
B

M

0.169 0.150 0.116 0.098 3.70E-08 2.53E-03 1.57E-03
GENVAR 0.162 0.238 0.238 0.079 4.89E-08 2.53E-03 1.57E-03
MAXVAR 0.394 0.610 0.455 0.109 1.66E-03 4.67E-03 1.14E-02
MINVAR 0.377 0.554 0.496 0.120 5.39E-04 3.46E-03 1.14E-02
SSQCOR 0.452 0.497 0.420 0.115 1.06E-04 2.53E-03 1.57E-03

RGCCA 0.223 0.351 0.257 0.126 6.75E-07 2.53E-03 1.57E-03
GMCCA 0.408 0.321 0.269 0.112 2.50E-07 2.53E-03 1.57E-03

GMKCCA 0.240 0.194 0.183 0.096 9.26E-08 2.53E-03 1.57E-03
LasCCA 0.559 0.631 0.405 0.094 6.04E-03 4.67E-03 1.14E-02
DisCCA 0.360 0.335 0.258 0.138 5.47E-06 2.53E-03 1.57E-03
BsMCCA 0.667 0.566 0.274 0.210 1.09E-02 1.09E-02 5.78E-02
MvDA 0.644 0.718 0.614 0.078 2.19E-01 2.54E-01 1.00E+00

MvDA-VC 0.744 0.692 0.625 0.086 4.46E-02 4.63E-02 2.06E-01
LiveGCANO 0.533 0.566 0.275 0.105 3.82E-04 2.53E-03 1.57E-03

OPID 0.670 0.744 0.736 0.054 4.13E-01 4.80E-01 5.27E-01
SAC 0.663 0.685 0.655 0.097 3.80E-02 4.63E-02 5.78E-02

ReDMiCA 0.742 0.729 0.742 0.045 1.65E-01 1.42E-01 2.06E-01
SeFGeIM 0.712 0.745 0.681 0.162 4.66E-01 5.61E-01 1.00E+00
GraDiM 0.770 0.750 0.704 0.070 - - -

cystadenocarcinoma (OV). All the data sets are briefly described in Appendix A. The
randomly selected 50% samples from each class are used for training and the rest are used
for testing purposes for each of the data sets. The 10-fold cross-validation is also performed
on each data set to assess the performance of the proposed algorithm statistically. To
analyze the statistical significance of the derived results, paired-t test (one-tailed), Wilcoxon
signed rank test (one-tailed) and Friedman test (one-tailed), with a 95% confidence level,
are used to compute the p-values. For each data set, 25 top-ranked correlated features are
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Table B.2: F1 Score of Different Algorithms on Handwritten and LUNG Data Sets

Different Data F1 Score F1 Score and Significance Analysis for 10-Fold CV
Algorithms Sets (Train-Test) Mean MedianStdDevPaired-t:pWilcoxon:pFriedman:p

M
C

C
A

SUMCOR

H
an

dw
ri

tt
en

0.870 0.821 0.825 0.023 1.41E-08 2.53E-03 1.57E-03
GENVAR 0.077 0.095 0.907 0.072 1.92E-11 2.53E-03 1.57E-03
MAXVAR 0.048 0.066 0.065 0.047 2.97E-13 2.53E-03 1.57E-03
MINVAR 0.129 0.103 0.047 0.044 7.37E-13 2.53E-03 1.57E-03
SSQCOR 0.089 0.084 0.117 0.040 1.59E-14 2.53E-03 1.57E-03

RGCCA 0.904 0.911 0.093 0.013 2.17E-05 3.46E-03 1.14E-02
GMCCA 0.096 0.101 0.096 0.029 5.22E-14 2.53E-03 1.57E-03

GMKCCA 0.061 0.091 0.102 0.046 4.01E-13 2.53E-03 1.57E-03
LasCCA 0.098 0.069 0.063 0.020 6.16E-16 2.53E-03 1.57E-03
DisCCA 0.057 0.134 0.126 0.063 1.92E-11 2.53E-03 1.57E-03
BsMCCA 0.114 0.116 0.100 0.061 3.96E-12 2.53E-03 1.57E-03
MvDA 0.925 0.947 0.954 0.021 1.27E-03 2.53E-03 1.57E-03

MvDA-VC 0.935 0.955 0.953 0.013 2.34E-02 2.34E-02 5.78E-02
LiveGCANO 0.084 0.099 0.094 0.040 1.44E-13 2.53E-03 1.57E-03

OPID 0.937 0.953 0.958 0.021 7.43E-03 1.09E-02 1.14E-02
SAC 0.941 0.949 0.949 0.016 2.22E-03 3.46E-03 1.14E-02

ReDMiCA 0.964 0.969 0.970 0.016 1.00E+00 1.00E+00 1.00E+00
SeFGeIM 0.966 0.969 0.971 0.009 4.88E-01 6.01E-01 5.27E-01
GraDiM 0.966 0.969 0.970 0.016 - - -

M
C

C
A

SUMCOR

LU
N

G

0.484 0.498 0.492 0.035 1.95E-10 2.53E-03 1.57E-03
GENVAR 0.364 0.556 0.864 0.160 1.85E-05 2.52E-03 1.57E-03
MAXVAR 0.752 0.686 0.575 0.143 8.13E-05 2.53E-03 1.57E-03
MINVAR 0.781 0.704 0.689 0.139 1.29E-04 2.53E-03 1.57E-03
SSQCOR 0.786 0.723 0.716 0.066 3.35E-06 2.53E-03 1.57E-03

RGCCA 0.876 0.875 0.730 0.042 5.16E-05 2.53E-03 1.57E-03
GMCCA 0.677 0.684 0.697 0.069 2.99E-08 2.53E-03 1.57E-03

GMKCCA 0.861 0.861 0.875 0.083 1.55E-03 3.46E-03 1.14E-02
LasCCA 0.821 0.853 0.855 0.064 5.49E-05 2.53E-03 1.57E-03
DisCCA 0.510 0.508 0.512 0.098 1.80E-08 2.53E-03 1.57E-03
BsMCCA 0.891 0.827 0.891 0.161 1.31E-02 1.04E-02 3.39E-02
MvDA 0.921 0.947 0.964 0.042 5.68E-02 3.71E-02 2.06E-01

MvDA-VC 0.914 0.955 0.956 0.034 8.60E-02 1.42E-01 2.06E-01
LiveGCANO 0.502 0.529 0.526 0.056 4.49E-10 2.53E-03 1.57E-03

OPID 0.948 0.942 0.947 0.040 1.07E-02 7.58E-03 1.96E-02
SAC 0.963 0.949 0.946 0.037 5.76E-02 5.49E-02 3.17E-01

ReDMiCA 0.948 0.957 0.955 0.032 2.35E-02 2.07E-02 5.78E-02
SeFGeIM 0.940 0.962 0.955 0.025 1.24E-01 9.59E-02 3.17E-01
GraDiM 0.970 0.975 0.969 0.030 - - -

selected for the analysis.
The proposed algorithm ReDMiCA, SeFGeIM, and GraDiM presented in Chapter 5,

Chapter 6, and Chapter 7, respectively are compared with (i) different criteria of the
MCCA, namely, SUMCOR, MAXVAR, generalized variance (GENVAR), minimum vari-
ance (MINVAR), and sum of squared correlations (SSQCOR) [135]; (ii) various state-
of-the-art MCCA based methods, namely, RGCCA [262], GMCCA [43], GMKCCA [43],
large-scale generalized CCA (LasCCA) [84], distributed generalized CCA (DisCCA) [84],
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Table B.3: F1 Score of Different Algorithms on NW-OBJECT and KIDNEY Data Sets

Different Data F1 Score F1 Score and Significance Analysis for 10-Fold CV
Algorithms Sets (Train-Test) Mean MedianStdDevPaired-t:pWilcoxon:pFriedman:p

M
C

C
A

SUMCOR

N
W

-O
B

JE
C

T

0.135 0.152 0.153 0.008 5.11E-09 2.53E-03 1.57E-03
GENVAR 0.033 0.030 0.015 0.005 8.01E-13 2.53E-03 1.57E-03
MAXVAR 0.028 0.031 0.029 0.008 1.60E-12 2.53E-03 1.57E-03
MINVAR 0.032 0.030 0.032 0.005 2.99E-13 2.53E-03 1.57E-03
SSQCOR 0.032 0.032 0.029 0.005 4.82E-14 2.53E-03 1.57E-03

RGCCA 0.053 0.015 0.032 0.001 3.80E-13 2.53E-03 1.57E-03
GMCCA 0.027 0.031 0.032 0.004 7.73E-13 2.53E-03 1.57E-03

GMKCCA 0.018 0.023 0.023 0.005 4.92E-13 2.53E-03 1.57E-03
LasCCA 0.039 0.048 0.048 0.006 1.08E-12 2.53E-03 1.57E-03
DisCCA 0.028 0.024 0.023 0.007 8.29E-13 2.53E-03 1.57E-03
BsMCCA 0.047 0.040 0.041 0.003 1.30E-12 2.53E-03 1.57E-03
MvDA 0.145 0.125 0.124 0.012 1.35E-09 2.53E-03 1.57E-03

MvDA-VC 0.135 0.121 0.119 0.013 3.39E-10 2.53E-03 1.57E-03
LiveGCANO 0.019 0.023 0.020 0.008 7.04E-13 2.53E-03 1.57E-03

OPID 0.125 0.116 0.115 0.009 3.00E-10 2.53E-03 1.57E-03
SAC 0.119 0.114 0.114 0.007 1.63E-10 2.53E-03 1.57E-03

ReDMiCA 0.241 0.241 0.242 0.011 5.92E-03 1.42E-02 2.06E-01
SeFGeIM 0.260 0.256 0.257 0.016 2.96E-01 2.88E-01 5.27E-01
GraDiM 0.274 0.260 0.260 0.013 - - -

M
C

C
A

SUMCOR

K
ID

N
E

Y

0.487 0.539 0.551 0.063 1.10E-08 2.53E-03 1.57E-03
GENVAR 0.409 0.541 0.910 0.131 9.76E-07 2.53E-03 1.57E-03
MAXVAR 0.728 0.749 0.531 0.060 7.15E-07 2.53E-03 1.57E-03
MINVAR 0.691 0.752 0.742 0.059 1.98E-07 2.53E-03 1.57E-03
SSQCOR 0.728 0.821 0.759 0.098 1.15E-03 3.44E-03 1.14E-02

RGCCA 0.898 0.920 0.837 0.054 1.32E-02 1.77E-02 3.39E-02
GMCCA 0.826 0.706 0.727 0.088 8.85E-06 2.53E-03 1.57E-03

GMKCCA 0.834 0.822 0.846 0.074 6.06E-05 2.53E-03 1.57E-03
LasCCA 0.686 0.791 0.790 0.094 8.80E-05 2.53E-03 1.57E-03
DisCCA 0.518 0.500 0.508 0.090 1.75E-08 2.53E-03 1.57E-03
BsMCCA 0.825 0.895 0.890 0.055 2.01E-03 3.42E-03 1.14E-02
MvDA 0.917 0.925 0.927 0.027 2.46E-04 3.82E-03 2.70E-03

MvDA-VC 0.938 0.935 0.931 0.029 8.53E-03 2.53E-02 1.96E-02
LiveGCANO 0.396 0.562 0.550 0.127 1.41E-06 2.53E-03 1.57E-03

OPID 0.941 0.960 0.963 0.026 1.50E-01 5.79E-02 4.14E-01
SAC 0.969 0.942 0.930 0.032 6.45E-03 1.37E-02 5.88E-02

ReDMiCA 0.954 0.968 0.964 0.031 3.60E-01 3.58E-01 3.17E-01
SeFGeIM 0.961 0.967 0.949 0.021 3.01E-01 1.11E-01 6.55E-01
GraDiM 0.954 0.972 0.968 0.028 - - -

and block sparse MCCA (BsMCCA) [235]; (iii) two popular multidimensional data integra-
tion algorithms, namely, multi-view discriminant analysis (MvDA) [128] and MvDA with
view-consistency (MvDA-VC) [129]; (iv) three multi-view incremental algorithms, namely,
live generalized canonical correlation analysis (LiveGCANO) [187], one-pass learning with
incremental and decremental features (OPID) [114], and safe classification with augmented
features (SAC) [113].

All the results reported in Table B.1, Table B.2, Table B.3, Table B.4, and Table B.5
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Table B.4: F1 Score of Different Algorithms on Reuters and LGG Data Sets

Different Data F1 Score F1 Score and Significance Analysis for 10-Fold CV
Algorithms Sets (Train-Test) Mean MedianStdDevPaired-t:pWilcoxon:pFriedman:p

M
C

C
A

SUMCOR

R
eu

te
rs

0.517 0.605 0.609 0.015 2.89E-06 2.53E-03 1.57E-03
GENVAR 0.129 0.158 0.165 0.027 8.93E-12 2.53E-03 1.57E-03
MAXVAR 0.219 0.187 0.149 0.046 3.71E-10 2.53E-03 1.57E-03
MINVAR 0.171 0.168 0.173 0.020 3.17E-12 2.53E-03 1.57E-03
SSQCOR 0.142 0.189 0.171 0.025 9.76E-12 2.53E-03 1.57E-03

RGCCA 0.316 0.165 0.187 0.004 3.92E-14 2.53E-03 1.57E-03
GMCCA 0.203 0.252 0.253 0.033 1.99E-10 2.53E-03 1.57E-03

GMKCCA 0.252 0.203 0.197 0.019 4.83E-13 2.53E-03 1.57E-03
LasCCA 0.237 0.254 0.269 0.038 5.07E-11 2.53E-03 1.57E-03
DisCCA 0.132 0.147 0.136 0.050 1.90E-10 2.53E-03 1.57E-03
BsMCCA 0.607 0.346 0.340 0.039 2.38E-09 2.53E-03 1.57E-03
MvDA 0.498 0.518 0.525 0.021 8.89E-09 2.53E-03 1.57E-03

MvDA-VC 0.491 0.514 0.516 0.024 8.25E-09 2.53E-03 1.57E-03
LiveGCANO 0.174 0.025 0.020 0.016 1.92E-14 2.53E-03 1.57E-03

OPID 0.499 0.539 0.534 0.020 1.45E-08 2.53E-03 1.57E-03
SAC 0.498 0.527 0.524 0.023 1.99E-07 2.53E-03 1.57E-03

ReDMiCA 0.614 0.647 0.645 0.010 1.44E-02 1.42E-02 5.78E-02
SeFGeIM 0.614 0.660 0.661 0.014 4.87E-01 6.01E-01 5.27E-01
GraDiM 0.608 0.660 0.661 0.019 - - -

M
C

C
A

SUMCOR

LG
G

0.305 0.341 0.315 0.101 1.45E-05 2.53E-03 1.57E-03
GENVAR 0.217 0.225 0.465 0.025 2.76E-07 2.53E-03 1.57E-03
MAXVAR 0.376 0.285 0.214 0.057 1.99E-06 2.53E-03 1.57E-03
MINVAR 0.372 0.285 0.298 0.056 2.86E-07 2.53E-03 1.57E-03
SSQCOR 0.380 0.318 0.270 0.054 2.00E-06 2.53E-03 1.57E-03

RGCCA 0.361 0.428 0.326 0.123 6.88E-05 2.53E-03 1.57E-03
GMCCA 0.356 0.345 0.309 0.102 6.68E-06 2.53E-03 1.57E-03

GMKCCA 0.330 0.307 0.302 0.047 3.78E-07 2.53E-03 1.57E-03
LasCCA 0.367 0.325 0.315 0.078 6.01E-07 2.53E-03 1.57E-03
DisCCA 0.280 0.306 0.288 0.050 9.75E-07 2.53E-03 1.57E-03
BsMCCA 0.653 0.729 0.726 0.055 2.24E-02 3.72E-02 1.14E-02
MvDA 0.785 0.793 0.795 0.069 1.16E-01 3.72E-02 1.14E-02

MvDA-VC 0.770 0.837 0.822 0.071 4.46E-01 1.01E-01 2.06E-01
LiveGCANO 0.297 0.412 0.379 0.071 1.83E-05 3.46E-03 1.14E-02

OPID 0.801 0.870 0.857 0.046 7.16E-01 6.39E-01 1.00E+00
SAC 0.914 0.865 0.889 0.052 6.51E-01 1.93E-01 2.06E-01

ReDMiCA 0.953 0.852 0.839 0.043 5.55E-01 2.22E-01 5.27E-01
SeFGeIM 0.953 0.844 0.774 0.056 4.93E-01 1.66E-01 2.06E-01
GraDiM 0.950 0.845 0.861 0.152 - - -

confirm that ReDMiCA, SeFGeIM, and GraDiM attain the highest F1 score of training-
testing in 2, 5, and 6 cases, respectively, out of total 10 casses each. The results corre-
sponding to 10-fold CV indicate that the proposed ReDMiCA, SeFGeIM, and GraDiM
algorithm attains the higher mean F1 score in 1, 2, and 9 cases and higher median F1
score in 1, 3, and 6 cases, respectively, out of total 10 cases each. Out of the total of
330 cases, the proposed GraDiM algorithm attains significantly better p-values (marked
in bold) than existing MCCA based methods including existing incremental algoritm in
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Table B.5: F1 Score of Different Algorithms on Caltech and OV Data Sets

Different Data F1 Score F1 Score and Significance Analysis for 10-Fold CV
Algorithms Sets (Train-Test) Mean MedianStdDevPaired-t:pWilcoxon:pFriedman:p

M
C

C
A

SUMCOR

C
al

te
ch

0.189 0.413 0.404 0.052 9.36E-09 2.53E-03 1.57E-03
GENVAR 0.199 0.178 0.025 0.033 4.68E-12 2.53E-03 1.57E-03
MAXVAR 0.520 0.522 0.170 0.045 1.62E-07 2.53E-03 1.57E-03
MINVAR 0.494 0.498 0.541 0.038 1.16E-09 2.53E-03 1.57E-03
SSQCOR 0.499 0.532 0.494 0.042 5.26E-08 2.53E-03 1.57E-03

RGCCA 0.025 0.025 0.540 0.000 5.18E-15 2.53E-03 1.57E-03
GMCCA 0.028 0.025 0.026 0.010 4.56E-15 2.53E-03 1.57E-03

GMKCCA 0.082 0.095 0.094 0.030 2.59E-13 2.53E-03 1.57E-03
LasCCA 0.026 0.042 0.035 0.021 3.20E-13 2.53E-03 1.57E-03
DisCCA 0.041 0.051 0.050 0.015 2.11E-13 2.53E-03 1.57E-03
BsMCCA 0.575 0.610 0.598 0.057 7.76E-04 3.46E-03 1.14E-02
MvDA 0.522 0.619 0.609 0.039 4.88E-04 2.53E-03 1.57E-03

MvDA-VC 0.517 0.613 0.611 0.040 3.41E-04 6.26E-03 5.78E-02
LiveGCANO 0.026 0.034 0.034 0.014 4.41E-15 2.53E-03 1.57E-03

OPID 0.521 0.605 0.601 0.035 7.72E-06 2.53E-03 1.57E-03
SAC 0.556 0.613 0.623 0.041 5.15E-04 2.53E-03 1.57E-03

ReDMiCA 0.670 0.651 0.639 0.052 1.48E-02 1.42E-02 5.78E-02
SeFGeIM 0.752 0.668 0.662 0.021 3.56E-03 4.67E-03 1.14E-02
GraDiM 0.764 0.683 0.689 0.023 - - -

M
C

C
A

SUMCOR

O
V

0.165 0.201 0.183 0.101 2.91E-07 2.53E-03 1.57E-03
GENVAR 0.172 0.247 0.305 0.075 4.58E-07 2.53E-03 1.57E-03
MAXVAR 0.189 0.545 0.255 0.169 4.00E-03 1.42E-02 2.06E-01
MINVAR 0.474 0.567 0.474 0.180 1.14E-02 1.83E-02 5.78E-02
SSQCOR 0.462 0.563 0.517 0.120 1.92E-03 4.67E-03 1.14E-02

RGCCA 0.337 0.305 0.603 0.073 2.38E-08 2.53E-03 1.57E-03
GMCCA 0.236 0.267 0.223 0.131 7.38E-06 2.53E-03 1.57E-03

GMKCCA 0.389 0.287 0.279 0.151 9.18E-07 2.53E-03 1.57E-03
LasCCA 0.337 0.297 0.298 0.080 2.15E-08 2.53E-03 1.57E-03
DisCCA 0.238 0.256 0.272 0.105 2.79E-07 2.53E-03 1.57E-03
BsMCCA 0.720 0.634 0.671 0.181 4.50E-02 4.63E-02 2.06E-01
MvDA 0.473 0.641 0.666 0.112 2.33E-02 4.63E-02 5.27E-01

MvDA-VC 0.547 0.557 0.584 0.140 1.51E-04 2.53E-03 1.57E-03
LiveGCANO 0.229 0.266 0.243 0.076 8.23E-07 2.53E-03 1.57E-03

OPID 0.438 0.567 0.553 0.133 3.14E-03 1.09E-02 1.14E-02
SAC 0.613 0.618 0.591 0.132 7.44E-03 6.26E-03 1.14E-02

ReDMiCA 0.941 0.710 0.722 0.092 8.80E-02 2.97E-02 1.14E-02
SeFGeIM 0.951 0.738 0.616 0.102 2.58E-01 2.88E-01 5.27E-01
GraDiM 0.951 0.765 0.749 0.105 - - -

297 cases, considering 95% confidence level. On the other hand, the proposed GraDiM
algorithm provides better but not significant p-values (marked in italics) in 28 cases.

The ReDMiCA extracts the most relevant and significant features sequentially and can
handels the high-dimension low-sample issue of real-life data sets. On the other hand,
SeFGeIM integrates only the relevant views for the analysis, while GraDiM incorporates
the geometrical knowledge along with the categorical information of the data set. Thus,
ReDMiCA, SeFGeIM, and GraDiM perform much better than existing algorithms.
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