CALCULUS OF GENERALIZED INVERSES OF MATRICES
PART I—GENERAL THEORY

By C. RADHAKRISHNA RAO
Indian Statistical Inslitule

I. GENERAL THEORY

SUMMARY. Bingular square matricos and roctangular matrices do not posscss inverses in the
rogular sonse of the torm. None-tho-loss, for cortain purposcs such as solving consistent lincar equations
or obtaining least square solutions of i i lincar i i f such matrices can bo defined
and used in the samo way aa o rogular inverse. The namo of goneralized inverse (g-inverse) is used in such
casos to distinguish it from a regular inverso. Tho papor shows how & g-invorso can bo defined doponding
on the purpose for which it is used. It also attempts at a classification of g-inverscs based on their uscs
and discussos thoir intorrelationships.

1. INTRODUCTION

The principal contributors to the subject of generalized inverses are Moore
(1935), Murray and Von N (1936) and Bjerh (1961). A systematic ac-
count is contained in two papers by Penrose (1955, 1956). In these papers the authors
define a g-inverso by a set of conditions and show that there exists a unique matrix
satisfying the conditions. A similar notion was also used by Bott and Duffin (1953)
under the name of constrained inverse and by Aitken (1934) with a different symbolism.

In 1955, the author (Rao, 1955) constructed what is termed as a pseudoinverse
of a singular matrix, which does not satisfy all the conditions of Moore-Penrose
g-inverse, but is found useful in the di ion of problems involving solutions of equ-
ations with singular square matrices and gular matrices. It appears that for
many applications it is sufficient to work with a g-inverse satisfying a more general
(weaker) definition, although such an inverse may not be unique. Therefore, a general
definition of a g-in was proposed in another paper (Rao, 1962) and its properties
were examined, In the 1962 paper some applications of g-inverse to problems in mathe-
matical statistics are also considered. Since then, a number of papers have appeared
exploring further uscs of gencralized inverses, specially in the discussion of the theory
of least squares, of quadratic forms, distribution of quadratic forms ete. Some
of theso licati have been di d in some detail in two later publications

PP

(Rao, 1965 ; 1960).

The term pseudoinverso is also used in a paper by Grevillo (1957). Wilkinson
(1958) uses the term, ‘effective inverse’ for inverting normal equations in the least
square problem and jons that the application was suggested to him by A. T.
James in a personal communication in 1956, Boso (1959) mentions the use of g-inverses
in his lecture notes on Analysis of Variance.
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The object of the paper is to provide a calculus of the gcncmhzcd mvema
'R b .

extending tho previous work, Applications to p in
will be considered in a forthcoming paper (Part II).

We consider different definitions of a g-inverso of a matrix depending on the
purpose for which such an inverso is nceded. Somo definitions, such as the general
definition of a g-inverse givcil in Section 2, are valid for matrices with clements belong-
ing to any field. Others involving concepts such as norm and orthogonal projections
are valid only for matrices with real or complex clements or for linear operators in
finite dimensional vector spaces furnished with an inner product. In the present
communication we consider only matrices with real or complex elements unless
otherwise stated.

Nolations and some basic resulls in malnz theory. We nced some basic results
in matrix theory in the di ion of g d in: , which are bricfly reviewed
in this section.

A matrix is generally denoted by a capital letter such as A, B, C, .... The
conjugate transpose of & matrix A, denoted by A°, is a matrix obtained from A by
interchanging rows and col Tand replacing the el ts, if they are complex,
by their conjugates. Two column vectors X and ¥ are said to be orthogonal if
XY =0=Y'X. The following results may be easily verified.

(a) A*=4

(b) rank A = rank A°A =rank AA* = rank A4°

(¢) A°'A=0&A4=0

(d) Let B bo a pxm matrix of rank m, C be a nXg matrix of rank n and
A bo a mXn matrix, Then BAC=0&5A4=0.

Theo result (d) follows by multiplying BAC = 0 from the left by B* and from
the right C* and observing that B*B and CC® are square matrices with full rank.

The linear manifold generated by the columns of a matrix is represented by

2I(A). A set containing maximal ber of independent vectors orthogonal to the

1 of A is rep d by (the col of) matrix A*, A matrix P such that,

for any given vector X, PX is tho orthogonal projection onto a given lincar manifold
is called projection operator. We have the following results.

(a) Let A be a mX=n matrix.
Then rank A4rank A* =m
rank A*4rank A* =n

(b) P is symmetric (i.e., P = P*) and idempotent, (i.0. P3 = P) & P pro-
jects vectors onto AI(P).
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CALCULUS OF GENERALIZED INVERSES OF MATRICES
Let P project vectors on A(A) and choose an arbitrary vector X. Then
PXell(A) and (X—PX)ed((A*). Hence P*A =0 and (I-P)°’A =0. Then
PI—P)(A|AY) =0 == P[P =0 or P*=P.
i.e., P is idempotent. Further
A=A AY)=0=AI-P) =0 0or PA=A.
Also,
(I-P) P(A]|AY) = (I-P)A|0) = 0= P* = PP".
Hence P = PP*, i.c., P is symmetric. The relations P°A! =0 and PA = A show
that f(A) = M(P).

2. A GENERAL DEFINITION OF A g-INVERSE

If A is a non-singular square matrix, then the solution of the linear equation
AX = Y, where Y is nX 1 column vector, is given by X = A-1Y where A1 is the in-
verse of A (ie, AA1=A14=1I, tho identity matrix). We ask the question
whether a similar rep ation of the sol i.e., in the form X = BY, is possible
when A is a singular square matrix or a rectangular matrix. If there exists a matrix
I such that X = BY is a solution of AX = Y for any ¥ such that AX = Yisa con-
sistent equation, then J3 docs the same job (or behaves) as the inverse of A and hence
can be called a generalized inverse of A, So we give a formal definition of generalized
inverse,

Definition 1; Consider an mXn matrix A of any rank. A generalized inverse
(or g-inverse) of A is an nXm matrix, denoted by A-, such that for any vector ¥ for
which AX = Y is a consistent equation, X = A°Y is a solution.

We establish the existence of A~ and investigate its properties.
Lemma 2a: A-existse=y A A=A,

Supposo A~ exists. Choose ¥ as the i-th column a; of A. The equation
AX = ais clearly consistent and honce X=A- a; is a solution, that is, Ad-a;=a;
for all § which is the same as AA"A = 4.

Conversely, if A~ is such that AA-A = A and AX = Y is consistent, then
AAAX = AX or A(A-Y)=Y. Hence X =A-Y is a solution, which proves
Yemma 2a. The result of Lemma 2a shows that we have the following equivnlexit,
definition of a g-inverso.

Definition 2: A g-inverse of A is & matrix A~ such that
AA-A=A, . (20)

We show that A~ exists although it may not be unique.
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Lemma 2b: A- exists and rank A= > rank A.

Given am X n matrix A, thero exist non-singular matrices B, (mXm), and C,
(nXn), such that BAC = Aor A = B"AC-‘ wheroe A is a diagonal matrix (not neces-
sarily square), i.e., with ! possible only in the main diagonal and zero
elements elsev«hcro. Define by A- the matrix obtained by replacing the
elements of A by their reciprocals and taking the transpose. Then it may be eu.uly
scen that AA-A=A, Consider A= = CA-B and verify that AA-A=DB-'AC' = 4,
80 that A~ is a generalized inverse. Obviously rank A~ > rank A.

We shall now consider some results in ion with the solution of consistent
lincar equations AX = ¥. We have already seen that X = A-Y is a solution. But
there may be more than one solution in which case we may like to have an algebraio
expression for a general solution or for gencrating all possible solutions. Fortunately,
this is possible with the help of a g-inverse alone, as defined in (2.1).

Theorem 2a: Let A~ be any g-inverse of A and A=A = II. Then

(a) II*=1II, that is II is idempotent.

(b) AIl = A and rank A = rank Il = trace II.

(c) A general solution of the homog quation AX = 0 is (I—1I)Z where
Z is an arbilrary veclor.

(d) A general solution of a islent homog quation, AX =Y, is

A-YH(I-1)Z . (2.2)

where Z is an arbitrary veclor.
(e) Q'X, where Q is a given veclor, has a unigue value for all solutions of
AX =Y, iff
wo=9 v (23)
i.e., Q is an eigen vector of II.
(f) The necessary and sufficient condition that AX = Y is consistent is that
ALY =Y.

Proof of (a): IP=A"AA~A=A(AA-A)=A-A=1I.

Proof of (b) : AIl = AA-A = A so that rank A<rank II. Since A-A = II,
rank II < rank A. Hence rank A = rank II = trace II, since by (a) II is an
idempotent matrix.

Proof of (¢): A(I—IIZ = 0 for any Z and hence (I —I)Z is a solution of
AX = 0. All solutions can be obtained by varying Z, since

rank (I—1I) = trace (I—1I) = trace I—trace Il
=n—rank A
which is the rank of the solution space of AX = 0.
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Proof of (d): Tho result (2.2) follows since a general solution of AX =¥
is the sum of a particular solution of AX = Y and a general solution of AX = 0.
Proof of (e) :
Q'X = QA Y+(I-1I)Z)
=Q'AYH(Q'-Q'INZ
= Q'A-Y, since Q' = Q'Il
80 that the result is the same whatever Z may be.
Proof of (f): The result is obvious.
Lemma 2¢: The necessary and sufficient condition that
BA-A=D w (24)
i that B = DA, where D is arbitrary.
Sufficiency is obvious. To prove the necessity let A be a m X n matrix of rank

rand C be n—rxn matrix of rank n—r such that AC* = 0. By choice CC* is a non-
singular square matrix. Any given matrix B can be written

ll
B= (n 513) () = DA+EC. . (25)
[y
From (2.4), we find that
BC* = BA-AC® =0, since AC*=0. we (2.6)

Now multiplying both sides of (2.5) by C*,
BC* =0 = DAC*+ECC* = ECC* = 0.
Since CC" is non-singular, E = 0 giving the required result.
Theorem 2b: The following results hold for any g-inverse.
(a) One choice of (A°)~is (A-)".
(b) A(A*Ay-A*A=A.
(0) (A°A)A*A)A° = A",
(d) A(A°A)-A* is symmetrical, idempotent and of rank equal to that of A.
(&) A(A*A)-A* is a projection operalor which projects veclors onlo the subspace
spanned by the columns of A.
(f) If A is idempolent, A= = A is one choice of a g-inverse of A.
(g) A"ALA=A"AEAA-A= A
The rosult (a) follows from definition. To prove (b) consider
[A(A°A)-A"A—A)[A(A°A)-A"A—-A)
=[(4°A4)-A"A-I)"A°[A(A°A)-A°A—A]
= [(A°A)-A*A—IJ[A"A(A°A)-A"A—A*A)
which vanishes because the second factor vanishes by dofinition. Hence A(A°A)~
(A4°A) = A. (c) is proved in a similar way.
321
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To prove (d), first consider A(A°A)~A*—A[(A°A)"]'A* and multiply by its

conjugate transpose. Using the result (c), the product is found to be zero showing that
A(A°A)-A° = [H(A°A)-A°]".
Tho idempotoncy and the result on rank are casily establishod.

By (d), A(A°A)-A° is a projection operator. If X is an arbitrary vector,
then obviously A(A°A1)-A*XeM(A). The projection is onto, since rank (A(4°4)-A°)
=rank A. Thus (e) is proved. It is casy to establish (f).

(g) is proved by showing that the product of (4A4-A—A) by its transpose is
a zero matrix.

Theorem 2¢. Let Ag be mXny matriz of rank vy, s=1,..,% If Zry=m,
then the statements

(a) Aidy;=0, for all i, j such that i #j,

(b) I = A4, A+ A Apdi)=Ay,
are equivalent where in (b), (AiA;)~ is any g-inverse of (A7 Ay).

To prove (a) == (b), let the right side of (b) be B. Then multiplying
both sides of (b) by A; and using (a) we have
A(I-DB) = A;—A;A(A3A)"A; =0 . (2.7)
using (c) of Theorem 2b. Let € = (A4, i A, i ... Ax). Then C(I—B)=0by (2.7).
But rank C =m. Hence I-B = 0.
To prove (b) == (a) we observe that
A(AiA)-A; = E(EIE)E}

e dent col

where E; is the matrix obtained from /; by g only the indep
and omitting the rest. Thus the order of Ey is m X r¢ with rank equal to r; and EE;
admits a true inverse since its rank is full. Then (b) can be written

I = E(E{E,))"'Ei+ ... +E(E;E:)E; w (28)
where E=(E; : E; : ... } E)is of rank m. The equation (2.8) can bo written as

((E: ) )
I=E . E
(E; Ex)?

with the off diagonal submatrices in the middle matrix being null, from which we obtain
E; E,)-
LB = (BB = ( ., )
(B B
and taking inverses of both sides,
. ((E: E),

w (29

" E.))
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The left hand side of (2.9) is

. N e (2.10)
EE, ELE, .. EiE:

Comparing (2.9) and (2.10), E} E; =0, 4 # j which implies A} A; =0, i #j.

Corollary: Let A be a positive definile matriz and let A; be as defined in
Theorem 2¢ with Z(rank -Aj) = m. Then the two stalements

(a) A;AAy=0 foralli,j such thati #j

(b) A'=Z A(A}A A) A}
are equivalent.

Theorem 2d : A necessary and sufficient condition for the equation AXB = C
lo have a solulion is

AA-CB-B=C, . (211)
in which case the general solution is
X=A4-CB-+Z—-A-AZBB-. w (2.12)

Suppose there exists an X such that AXB = C. Then
C = AXDB = (AA-A) X (BB-B)
= AA-(AXDB)B-B
=AA-CB-B
establishing the necessity of (2.11). The sufficiency is obvious, for if (2.11) holds,
then X = A-CB- is a solution.

A-CB-is a particular solution of the equation AXB=C. To get the general
solution we add to it a general solution of the equation AXDB = 0. It may be ecn
that

AXB=0& XB=(A-A-I)FB
where F is arbitrary, Further

XB=(A-A-I)FB

& X = (I-A-AFBB-+G(I-BB-)

where G is arbitrary, Now

X = FBB-+G(I-BB-)—A-AFBB-

=Z—-A-AZBB-

where Z = FBB~+G(I—BB-) which is arbitrary sinco I and G are arbitrary.
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Theorem 20 : A necessary and sufficient condition for the equations AX = C,
X B =D lo have a common solution is that the individual equations should have solutions
and AD = CDB.
Necessity is obvious. To prove sufficiency consider
X =A-C+DB-—A-ADB-
which is a solution if the required conditions AA-C = C, DB-B = Dand AD = CB
are satisfied.

Theorem 2f: (Rep tation of all g-i ). The general solution lo a
g-inverse of a given mxn malriz A is
A+ U—A~AUAA- e (213)

where A= is a particular inverse and U is an arbilrary nXm malriz.
The expression (2.13) is the general solution of tho equation AXA = A, which
is deduced from the result of Theorem 2d.

From (d) of Theorem 2a and the result (2.13) of Theorem 2f, it follows that any
lution of the istent equation AX = ¥ can be written as A-Y where A~ is a
g-inverse of A.

3. A g-INVERSE FOR A MINIMUM NORM SOLUTION OF AX =Y (CONSISTENT)

In Section 2 we have scen that a general solution of the consistent equation,
AX =Y, can be expressed in tho form

X =A-Y+(I-INZ w (31)
where A~ is any g-inverse of A, i.e., AA~A = A as defined in (2.1), and xl'A ll
There is no unique solution unless JI = I and all solutions are d by

different values to Z. Among thesoe solutions, there exists one which has the smallest
norm. Such a solution is called the minimum norm solution and can be found by choos-
ing Z such that the norm of (3.1) is a minimum.

We now raiso tho following question. Does thero exist a particular choice of
a g-inverse G such that X = G'Y is a solution with a minimum norm ? Let G exist.
Since @ is a g-inverse, a general solution of AX = Yis

GY+(I-GA)Z . (32)

and by hypothesis
IGY| € |IGY+(I-GA)Z| for all Z e (33)

which implies that
Y'G(I-GA)=0. e (34)

Sinco the condition (3.4) should bo true for all ¥ such that ¥ = Ab where b is
arbitrary it follows that

AG*(I-GA) =0 or (GA)(I-GA) =0. . (3.59)
Wo cstablish the following lemma.
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Lomma 3a: The necessary and sufficient conditions that X = GY is a mini-
mum norm solution of the consistent equation AX =Y are

() AGA=A4, (b) (GA)'(I-GA)=0. o (3.6)
Thero are, h , diff scts of
norm solution which we give in Theorem 3a.
Theorem 3a: The set of conditions
(i) AGA=4, (GA)(I-GA)=0
(i) AGA=A,(GA)=GA,
(iii) GAA*= A",
(iv) AGA = A, GAel(A"),
are equivalent for GY to be a minimum norm solution of AX =Y.

From (i), (GA)'=(GA)(GA) = (GA)=(GA)(GA) and hence
(GA)* = (G:1) which shows that (i) == (ii).

From (ji), A°G°A* = A* == (GA)°A* = GAA* = A', i, (i) = (iii).
From (iii), GAA’G® = A'G* == (GA)* = GA=) GAc)(A°).
Further AGA = A(GA)® = AA’G = A, which shows that (iii) =) (iv).
From (iv), GA = A°D for some matrix D. Then
(GA)* = D*A = (GA)(I-GA) = D°A(I-GA) = 0.
Thus (iv) == (i) which proves Theorem 3a.

qui conditions for & minimum

We denote a g-i which provides a mini norm solution of a consis-
tent equation AX =Y by A;. If such an inverse exists then it must satisfy the
necessary and sufficient conditions of Lemma 3a.

Corollary : One choice of Ay is A(AA")~ where (AA")~ is any g-inverse
of AA°.

From (jii) of Theorem 3a it is seen that A satisfies the equation in G,

GAAL* = A* w (37)
which is obviously istent. Hence a solution for G can be obtained as
G = A(AA")~. . (38)

This may be independently verified, for by substituting A%(AA°)~ for G on the left
hand side of (3.7) we obtain

A(AA°)-AA* w (39)

which is equal to A* using (b) of Theorem 2b. The solution (3.8) is not unique unless
(AA°) is of full rank. However for any choice of G, the minimum norm solution of
o consistent equation A X =Y is uniquo in virtue of (vii) of Theorem 2a,
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The most general solution of (3.7) is one in which the i-th row of G is a(AA")~
where a; is the i-th row of A° and (1.1°)~ is any g-inverse of (AA4°) and tho choico may
depend on 4. In the solution (3.8), the choico of (A.1°)~ is the same for all &,

The following results are easy to verify for any choice of A5

Theorem 3b :
(i) One choice of (AA"); is (A7)°A5.
(ii) (AA")7AA® = (A45)"
(ili) One choice of (UAV); is V*AZU* when U and V are unilary malrices
(le, UU=LVV*'=1).
(iv) One choice of (AA); = A-'A; where A is a non-zero scalar.
(v) (A°A)zA°isa g-inverseof A.
(vi) A(A°A)7A* is symmelric.
(vii) If G, and Gy are any two different choices of A, then (G,—G,)A = 0.

(viii) If rank A = n = min(m,n) then every A= is a A,

4. A g-INVERSE FOR A LEAST SQUARE SOLUTION

Let us ider an i istent equation AX =Y. Wo say that X is a least
square solution of AX =Y iff

lAX-Y| = nj‘én jAX=Y] v (1)

It is well known that X exists which, however, may not be unique. Now we ask the
question whether there exists a g-inverse, G such that GY is a least square solution
of AX =Y for any given Y. Suppose such a matrix G exists. Then

IV—=AGY|| € Y —AGY+AGY —AX]|
which implies that the inner product
(Y—AGY, AGY—AX)=0 for all X and ¥

or
A(I-AG)=0.
We establish the following lemma.
Lemma 4a: The necessary and sufficient condition that X = GY is a least
square solulion of the equation AX =Y is
AY(I-AG)=0. . (42)
As in the case of a minimum norm solution, there are different sets of equi-

valent conditions for a loast square solution, which are stated in Thoorem 4a.

320



CALCULUS OF GENERALIZED INVERSES OF MATRICES
Theorem 4a: The following sels of conditions
(i) A*=AAG,
(i) AGA=A, (AG)*=AG,
(iii) AGA = A, (AG)(I-AG) =0,
(iv) AGA = A, (AG)%e 2(A),
are equivalent for GY to be a least square solution of AX =Y.

The proof of this theorem is similar to that of Theorem 3a and is therefore
omitted.

We denote byA;, a g-inverse which provides a least square solution of
AX =Y, which may be consistent or not. Aj is not, however, unique.

Corollary : One choice of A ia (A*A)=A°* where (A°A)~ is any g-inverse
of (A*A).

The result follows from condition (i) of Theorem 4a. For further comments
see the corollary following Theorem 3a. The following results are easy to verify.

Theorem 4b :
i) (AA); = A~ A; where A is a non-zero scalar.
(i) One choice of (UAV);" = V*Aj U* when U and V are unilary malrices.
(iii) If rank A = m = min(m, n), then every A~ isa A;
(iv) If G, and G, are two choices of A, then A(Gy—G,) = 0.

5. A g-INVERSE FOR MINIMUM NORM LEAST SQUARE SOLUTION

Let X be a least square solution of AX =Y. Then

IW—AX| < [Y—AX]| forall X v (51)
&S A(Y-AX)=0 . (52)

80 that X satisfies the equation

A'AX = A°Y, . (83)
The equation (5.2) does not have a unique solution unless the matrix A°A is nonsingu-
lar. However [|[¥—A X[ is unique for any solution of (5.2). We define Xm to be a mini-
mum norm least square solution if Xy is a lcast square solution and

1Xmll < 1 v (54)

for any other least squaro solution X
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Let X = GY be a particular solution valid for any given Y. A general solu-
tion of (5.3) is

GY+(I—(A°A)-A°A)Z e (5.5)
where (A°A)- is any g-inverse of (4°A). Sinco GY is a solution of (5.3)
A'AGY = A°Y = A"AG = A", v (58)

Now, if GY is & minimum norm solution of (5.3), then
G'(I—(A°A)-A°A) = 0
& G* = DA, or GeM(A"), e (87)
where D is some matrix, using the result of Lemma 2b, since (A°A)=A" is a g-inverse
of A. We establish the following lemma.
Lemma 5a: The necessary and sufficient conditions that GY is a minimum
norm least square solution of AX =Y are
(a) A*=A°AG, (b) GeM(A®) or G* = DA for some matriz D. ... (5.8)
Now wo consider a number of sets of equivalent conditions which define a
g-inverse for the minimum norm least square solution.
Theorem 6a: The following sels of conditions
(i) A°AG = A°, G* = DA for some mairiz D,
(ii) GAA* = A°, G* = AD for some malriz D,
(i) GAA® = A°, AGG*=G",
(iv) 4°AG = A°, G*GA =G",
(v) AGA=A4, GAG =G, (AG)' = AG, (GA)* = GA,
are equivalent for GY to be a mininum norm least square solution of AX=Y.
The conditions (iv) are proposed by Moore (1935) and conditions (v) by Penrose
1956).
( It is already shown in Theorem 4a that
A°AG = A* =) AGA = A, (AG)’ = AG. e (5.9)
Now DA(I-GA) = DA—DAGA = 0 =) G*(I-GA) = 0.
Further G'(I-GA) = 0= A'G*(I-GA) =0 or

(GA)* = (GA)'GA = GA. e (5.10)
Also, G*(I—GA) = 0 = G*(I—A°G*) = 0 using (5.10)== G* = G°A’G" or
GAG =G. e (811)

The results (5.9), (5.10) and (5.11) show that (i) == (v). From (v),
A'G'A* = A* = GAA* = A° using A°G* = GA
G’ = G*'A’G* = AGG* = AD, using G*A* = AG.
Hence (v) ==} (ii). From (ii)

GAA" = A= AGA=A.
Then

G*=AD = AG AD = AGG*
which shows that (ii) = (iii).
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From (iii), GAA*=A"=AGA=A. Now
A'AG—-A")G°A°A—A) =0
using the conditions AGA = A and AGG®* =G, Henco A°AG = A", Simi-
larfly G°GA = G*. Thus (jii) == (iv). It is easy to sco that (iv)==>(i). Thus
Theorem 5a is established.

A g-inverse satisfying any of the scts of conditions in Therem Ba is called
Moore-Penroso inverse and is represented by A+ using the notation used by Penrose,
According to the notation of this paper the symbol Aj, will be used for A+,

Lemma 6b: A+ is unique.

Let G be any matrix satisfying the conditions (5.8). Then using the
condition (a) of (5.8)
A°A(G—AY) =0 or A(G—A) =0. e (512)
Using condition (b) of (5.8)
(G"A')‘ . (Dx"D:)A

= T(G—A*) =0 e (513)
where the rows of T are orthogonal to the rows of A. The equations (5.12) and (5.13)
together imply that G—A* =0 which proves the desired result.

The following results are easy to verify.

Theorem 6b :

i) (A=A
(ii) (A= (44"
(iii) (A4°)* = (44)°A*
(iv) rank A = rank A*,
(v) rank A+ = rank AtA.
(vi) A*A = AA*if A is normal.
(vii) (An)* = (A*) if A is normal.

(viii) (A4°)*(A4°) = (44%)°.

(ix) (UAV)+ = V*A+U* when U and V are unilary malrices.
(x) (AA)+ = A4+

(xi) A+ =(A°A)*A".

(xii) AA* = AA} for any choice of Af".

(xiii) A*A = AZA for any choice of Ag.

(xiv) A+ =(A°A)zA" for any choice of (A°A)z.

(xv) A+ = A"(AA") for any choice of (AA°);.

(xvi) A*= A5 ifrank A =m = min (m,n).

(xvii) A+ = Af if rank A = n = min (m, n).

Let A and B be any two malrics with the product AB defined. Further-
moro let B, = A*AD and A, = AB,B}. Then AB = A,B, and (AD)*
= B{A} (Cline, 1964).
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6. PROJECTION OPERATOR

Let I bo a(m X m) matrix which projects (orthogonally) vectors onto the mani-
fold M(A), generated by the columns of a m Xz matrix A. Choose an arbitrary vector
Y. Then

BYe M(A) for all Y = B = AD . (8)
where D is (nxm) matrix. Further (¥—BY) is orthogonal to 3/(4) for any Y, i.e.,
A(I-B)=0. e (62)

We establish the following theorem.

Theorem 6a: The necessary and sufficient conditions that B projects veclors
onlo M(A) are

(a) B=AD, (b) A*=A'B e (8.3)
which are equivalent lo the conditions
(8) (AD)=AD, (b) ADA=A e (8:4)

where D is as defined in (6.1).

From (a) and (b) of (6.3), B* = D°A* = D'A°B = B*B. Hence B=AD
is symmetrical. Further
A'=A'B=A'B*'= A'D'A’
which proves that the conditions of (6.3) imply the conditions of (6.4). The reverse
is easy to prove.

Corollary 1: A projection operalor is symmelric and idempotent.

Corollary 2: An operalor projecting vectors onto M(A) can be wrillen as AAf.
From the conditions (6.4) we sce that D is A7. Hence B = AAf.
Corollary 3 : A(A°A)"A* is symmelric, idempotent and projects veclors onto M(A).
The result follows since one choico of A7 is (A°A)-A°"

7. EINVERSE FOR A BASIO SOLUTION OF AX =Y (CONSISTENT)
We say that X is a basio solution of AX =Y if

(i) AXp,=Y, and
(ii) X has at most r non-zero components where r is rank A.

Let G bo an inverso which provides X». Then GY has (n—r) components
zero, whenever Yed[(A), i.e.,, GA has (n—r) null rows. Let us suppose without loss
of generality that the last n—r rows are null. Then writing G as a partitioned matrix

we have
G, G A
(‘) A= ( A ) . (1)
G, 0
where G, has r rows, giving
G A=0. . (1.2)
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Further writing /1 as a partitioned matrix the equation AGA = Ab
. /G,
(,1, : A,) ( ) A=4 e (1.3)
G,
giving
AGA=A4 e (74)

where A, has r columns, which implies that rank G, = rank A, = r and A,£3[(4,).
The cquation (7.4) can bo written as

A4,G A, =4, AGA =4, e (1.5)
which shows that G is a (c1,)", the second equation being automatically satisfied since
A eM(A,).

Multiplying the first equation of (7.5) by A}

A4, G A = N, = G A, =1 e (1.6)
since Aj, is a square matrix with full rank, Hence G, is also (4,). Thus we estab-
lish Lemma 7a.

Lemma 7a: The necessary and sufficient condition that /4 is a g-inverse of A
providing a basic solution of a consistent equation AX =Y is
G,=(4), GA=0 e (17)
where G,, G, are partitions of G with y and n—r rows respeclively, A, is mXr malriz
formed by any r independent columns of A (which may be laken as the first r columns of
A by suitable rearrangement), (A,)~ is any g-inverse of A, and G, is any malrizx such that
G A =0. In fact (A,)- = (A);.
We represent such an inverse by Aj. It is scen that if we want a solution
withat most 8 > r P , then the cor di

p g g-i can be written
as
(4y)
( ! ) . (18)
G,
where (A, { A;) is a partition of A such that A, contains s columns out of which r are

independent and G, is any matrix such that G4 = 0. In such a caso (A,)~is no
longer a (4)7.

8. A E-INVERSE FOR A BASIO LEAST SQUARE SOLUTION OF AX =Y
A vector X is said to be a basioc least square solution of AX = Y’ if
(i) 1AX—Y| < |[AX—Y]| for all X, and

(ii) X has at most r nonzero components, where r is the rank of A.

Let G be an inverse of A which provides such a solution. Then G satisfies the
conditions of A7, In addition GY can have at most r nonzero components for any
Y, which implics that (n—r) rows of G are null. Let us suppose without loss of gene-
rality that the last (n—r) rows of G are null in which case G can bo written as

(%)

331
14



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Series A

where G, has r rows. Let us ider the ding partition of A =(4,: 4,
where .1, has r oolumns and A, has (n—r) columm Thon we have the following
lemma g the rep tation of a g-invi which provides a basic least

square solution und which may be denoted by Az
Lemma 8a : Ap can be expressed in the form

() ew

where A, is any setof r mclqnmlcnl columns of A which may be wrillen as the first
partition of A by interchangi if Y.
Using the partitioned forms of A and G, we have

(A,,A)( )A=A or 4G A=A w (82

which shows that rank A, = rank G, = rank A = r, since /A, has r columns and G,
has r rows. The equation (8.2) can be written
A,G A, = A, 4,G A, =4, e (83)
The first equation shows that G, is a g-inverso of .1, and the second equation is
automatically satisfied since A,6J[(A,). Further
AG = AG, = (1,G,)* = (4,G) e (84)
since @ satisfies the conditions of A;7. Hence G, is (A,)7. Since rank A, is equal to
the number of columns of A,, (4,7 = A} which proves the lemma.
It may bo noted that Aj is not unique, since A, may be chosen in
different ways.
Lemma 8b :  Aj satisfies the reflexive condition in addition to being Ag.
We have only to verify that the reflexive condition is satisfied by Az, i.e.,
A Adg = A, e (8.5)
Using the representation (8.1) of A as found in Lemma 7a

At Af
( )(lll A,)( )
0 [}
(A:A, Apd, ) (A:)
“\ o 0 0
(A,’A,A.‘ ) ( at )
- . o

which establishes the equation (7.5).
The pscudoinverse constructed by Rao (1955) is of the type Az Lancoz
(1961) has considered such inverses and Rosen (1964) provided an algorithm for com-
puting them.
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9. A g-INVERSE LAVING EIGEN VALUES RECIPROCAL TO THOSE OF A

When A is a square nonsingular matrix the cigen valucs of A-! are reciprocals
of those of .1 and the eigen vectors of A are also the eigen vectors of A-!. Is it possible
to construct a g-inverse, when 1 is a square singular matrix, for which a similar
property holds It is clear that if thero exists a g-inverse which commutes with A,
then the above property is satisfied. We state another sufficient condition in

Lemma 9a.

Lemma 9a: Let G be a generalized inverse of a square malriz A, ie.,
AGA=A. If

k k
G I qd'= T qA?
=1 (=3

Jor some k and constants ay, ..., ax, then
AX =AX=GX =2"'X
provided T a;At # 0.
The result immediately follows since
GEqA'X = T qA-IX

GIZaAlX = Z gl X
or dividing by T aiA!,
GX = A\X.

We havo given only sufficient conditions for a g-inverse to have cigen values
whioh are rociprocals of the eigen values of A. An inverse with this property is
denoted by A;. Methods of constructing such inverses are given by Drazin (1958)
and Scroggs and Odell (1966).

10. B-INVERSE WITH MAXIMUM RANK

If a general inverse G of A satisfies the conditions AGA = A andGAG = G,
then it follows that rank A = rank G. However, if AGA = A is the only condition
to bo satisfied, then there is a possibility of rank G exceeding rank'A. We show that
there exists a g-inverse with the maximum rank which is min (m, n) whatever may be
rank A.

Let m < 2 and consider the square matrix I3 obtained by adding (n—m) zero
rows to A. It is known that there exists a nxn non-singular matrix C such that
CB =1, whero II is in Hermite canonical form with the property I*= Il
(Rao, 1965, p. 18).

333



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : SEriEs A

Consider the (nX m) matrix A= obtained by omitting the last (n—m) columns
of C. Obviously rank 1~ is m and wo show that A~ is & g-inverse. Now

CBCB =11'=1I
A
= BCB=C'l=D= ( R ) v (10.0)

pi A
BCB = (A-: D)
0 0
AL-  AD a4 AA-A
= ( ( - - (10.2)
0 0 0 0

where C is written (A~ : D). Comparing (10.1) and (10.2) AAd-A = A, ie, A~ is a
g-inverso.

If n<m, I} is obtained by adding (m—n) zero columns to A and - by omitting
the last (m—n) rows of C.

A g-inverso so constructed with the maximum rank provides a test for consis-
tency of given lincar equations different from the one proposed in Theorem 2a based
on any g-inverse.

Lemma 10a: Consider A~ as defined in (10.1,10.2). Let A~ A = II which
is nXn square matriz, and A~Y = h which is nX 1 column vector, The necessary and
sufficient condition that AX =Y is consistent is that the i-th component of I is zero if
the i-th row of II consists of all zeroes.

It may bo seen that under the condition of the Lemma 9a rank A = rank
(4 ¢ ¥) which is the condition for the cxistence of a solution of AX=Y. A g-inverse
with maximum rank as defined in (10.1, 10.2) is denoted by A;.

11, REFLEXIVE TYPE g-INVERSE

In addition to the g-inverses defined in the earlicr scctions we shall consider
a few more which are not related to any specific purpose but which are interesting.
It may be noted that the reflexive condition GAG = G did not play any part in many
of tho definitions. We can, however, introduce it as an additional condition in some
situations. For instance, we can define a g-inverse by the conditions AGA = A,
GAG = G. Such an inverse may be d d by A7 (a g-i which is reflexive)
Similarly by introducing the additional condition GAG = G, we define A, Aj.
The following lemmas contain scts of equivalent con ditions for such inverses.
Lemma 1la: The following sels of conditions
(i) AGA=A, G=A'D for some malriz D,
(i) AGA =4, GAG =G, (GA)*=GA,

are equivalent,

The inverse so obtained is an A with the additional reflexive condition
GAG =G and is denoted by A, The equivalence of the conditions is easily
cstablished.
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Lemma 11b: The following sels of conditions
(i) AGA=A, G=DA* for some matriz D,
(i) AGA=A4, GAG =G, (AG)* = AG,
are equivalent.
The inverse so obtained is an Ay with the additional reflexive condition
GAG = G and is denoted by A;. Again, the equivalence of the conditions is easily
established. The definition (ii) of Lemma 11b was proposed by Zelen and Goldman
(1964) under the name of ‘weak generalized inverse',
Lemma 11o: A general representation of A is DA® where
D = Dy+Z—D A AZA'AD,
Z being an arbitrary malriz and Dy = (A°A)~, any g-inverse of (A°A).
Let Aj; = DA* = (D,+D,)A°. Then using the condition AA; A=A
ADA’A =0 &= A°ADA°A =0,
A general solution of D is then, using the result of Theorem 2d,
D = D\+Z—DA'AZA'AD,
where Z is arbitrary. Thus Aj; is not unique and the least square solution based on
such an inverse is also not unique.

12, A CLASSIFICATION OF DIFFERENT TYPES OF g-INVERSES

Let G denote a g-inverse of A. The different types of g-inverses studied in
Sections 2-11 and their definitions are brought together in this section and exhibited
in a tabular form.

TABLE 1. NON-REFLEXIVE TYPE g-INVERSES

purposo sots of equivalent conditions symbol
1. solutions of AX=Y, AXB=C, oto. AGA=A A-
2. minimum norm solution of (i) AGA=A, (GA(I-GA)=0 A5
AX=Y (consistent) (ii) AGA=A, (GA)*=GA
(iii) GAA*=A®
(iv) AGA=A, GAM(A®)
3. loast squaro solution of ) A*=A4°AG A7
AX=Y (inconsistent) (ii) AGA=A, (AG)*=AG
(iii) AGA=4, (AG)*(I-AG)=0
(iv) AGA=A, (AG)*€M(A)
al
4. basic solution of a=.( ). A=(dy: 4y)
AX=Y (consistont) G,
rank G, =rank A, =rank G Ay
G, =(4,), GA=0
5. invorso with the same eigon veotors AGA=A
and oigon values reciprocal to GEq Al mZaAt a;
thoso of A
6. invorso with tho maximum rank AGA=A
for tosting consistoncy of rank G =min (m, n) Az
equations
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TABLE 2. REFLEXIVE TYPE g-INVERSES

purposo scts of equivalent conditions symbol
1. solutions of AX=Y, AXB=C, cte. AGA=A,GAG=CG A7
2. minimum norm solution of () AGA=A, GEM(A%) Az,
AX=Y (consistent) (i) AGA=A,GAG=G,
(GA)*=GA
3. least square solution of (i) AGA=A, G*€M(A) A
AXw=Y (inconsistent) (ii) AGA=A,GAG=G,
(AG)*=AG
G,
4. basio least square solution of G= ( ). A=(A;: Ay) AR
AX=Y (inconsistont) G,
rank G, =rank A, =rank A
Gy=(d))* =(A)], Ga=0
5. minimum norm least square (i) A*AG=A*, GEM(A®) A*
solution of A X=Y (inconsistent) (ii) GAA* =A%, G*€M(A)

(iii) GAA* =A%, AGG*=G*

(iv) A*AG =A%, G*GA=G*

(v) AGA=A,GAG=G,
(1G)*=AG, (GA)*=GA.

13. SOME FURTHER EXAMPLES OF g-INVERSES
(i) Let A be mXn matrix of rank r. Consider the partitions

A 4, An) B,: By C,
"(4, ay) = '"('é'.)

such that A, is rXr matrix of rank r, B, is m X r matrix of rank r and C, is r X n matrix
of rank r, by suitabl 8 t of col and rows if necessary. It may be
seen that

Ay = A A7A,.
It is easy to verify the following

A7 0
(a) ( ) is Ay and reflexive.
0 0

A7' —K
(b) (0 " ) is A7, where K is such that A,K = A,.

Bi
(c) (0 )in Ay and reflexive.
d) (Cii0)is A7,

((n,»-) (nr) . _
(e) = is A and reflexive.
0 0 ) o
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(f) (Cni0)=(Ci:0) is A5,
(8) DYDD*)'B}is A* where D = BiA and Bf = (B,);.
(h) CHD*D)"'D* is A+ where D = ACt, Ct = C}(C,C)™
(i) AAA)S s A
G) (Leaya s 4
(k) A(AA)  is A*ifrank A =m < n
) (A°4)24°  is A+ if rank A =1n & m.

(ii) Given a (mXn) matrix A, there exists an orthogonal Houscholder matrix
Q (sce page 20 of Rao, 1965) of order m such that

01= (:) itm>n

where T is an upper diagonal matrix of order (n X n) and 0 is(m—n X n) matrix of zeroes.

If n & m, then
AQ=(T:0)

where T is lower triangular of order (mxm). It is easy to verify the following.
If m > n, then
(a) (T-:0)Q is A=, and (T;: 0)Qis A7.
(b) (T+: 0)Q is A+ and (T-*: 0)Qis A+ when T has full rank.
(¢) (Tr: 0)Q is Aj, and (Tj; : 0)Q is A7,
(d) (Ta: 0)Q =45, and (T i 0)Qis Aa
(e) (Tz: 0)Q =45

If n < m, then
T- T,'
(3] Q("')IIA' nndQ( o ) is A
@ 9(1.‘?),,,1‘», and Q(?‘-;-_‘) — A* when T has full ronk.
] ag(")uas
(h) Q(o)nn,.m Q(O is 4.
Ta T'
@) Q("-)ull..nnd Q( )inA;,.
[} [}
Ty
) Q() is A,
0
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(iii) Givien a (mXn) matrix A, thero exist nonsingular matrices B and C

such that
BAC=A

where A is a diagonal matrix, not necessarily square, which may have nonzero
elements only in the main diagonal. Define by A=, the nXm matrix obtained by consi-
dering the pose of A and replacing the ! ts by their reciprocals,
Then CA- B is A;.

(iv) In the decomposition BAC = A, we can chooso I3 and C to be ortho-
gonal matrices. Then CA-D is A+,

(v) Given a square matrix /1 of order m, there exists a nonsingular matrix
T such that

TAT'=J
where J is in Jordan canonical form

where J;, the i-th Jordan block, is of the form

A 1 0 .. O
[ PR | w 0

. . . . .

0o 0 o 1
o o0 o A

where A is an eigen value of A. We define
Jy=Jit when Ay #0
=J{ when Ay=0
and
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It may be verified that A~ = TJ-T-! is A; and reflexive.

(v) Consider a matrix of the form A°A which is non-negative definite and
occurs as the matrix of normal equations in the least squaro theory.

(a) Suppose that it is possible to mect the deficiency in the (mXn) matrix
A by adding the rows of a matrix I3 of minimum rank such that the rank of the exten-
ded matrix is n. Consider

A
(A3 B’)( ) =A'A+DB'B
B
which is of full rank n and which admits a regular inverse. Then

(A°A+DB°B)- is (A°A);.

(b) Find B as in (a) above with the restriction that rank B is equal to the
number of its rows. Observe that the rank of

A4 B*
(z )
is full equal to 2m—r where r is the rank of A. Consider
44 B\ c, G
( B 0 ) = ( c, c.) '
Then C, is a g-inverse of (A°A).
(¢) Suppose that it is possible to write
" S, S,
o= ( S, S, )
where S, is a submatrix of full rank r. Then

st 0
( ) is (A*A).
o o

(d) There exists a nonsingular matrix C such that

1 0
C(A*A)C* = ( )
[

by a rearrangement of the columns of A°A, if necessary. Such a matrix C may bo
found by the square root method as an upper triangular matrix. Then

C*C = (A°A);.
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Now let C, be the matrix obtained by omitting the last (—r) columns and rows of

C. Consider
D=(C; 0) (Cl 0)=(C:C 0)
[} [} (] 0
Then B is (A°A); and BA is Ag.
4 C
M= ( )
cC' B

be a partitioned form of a non-negative Hermitian matrix, where <1 and I3 are square
matrices. The matrix M can be written

(vi) Lot

xX;
M= ( ) (X3 Xy)
Y

“tg
80 that A= XX, B=X;X, C=X] X,.
Consider the matrix (Rhodes, 1965)
A-+A-CD-C°A- —A-CD-
6= ( —-D-C'A- D- )
where D = B—C*A-C. Then
(a) Gis M-,
(b) G is M; if:1- and D~ are replaced by A7 and Dy respectively.
(¢) Gis M* if A- is replaced by A+ and D is nonsingular.
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BOOK REVIEWS

di of the Symposi on Congestion Theory : Edited by Walter

L. Smith and William E. Wilkinson, University of North Carolina Monograph Series in
Probability and Statistics Number 2.

This monograph incorporates 14 papers p d at the Symposium on C
Theory held at the University of North Carolina in August 1964. Tapers have discussed
various aspeets of queucing problems that arise in various situations, and each paper has
been followed by discussions which form a very important part of the Procecdings. Ineach
paper an attempt has been made to survey the present state of knowledge and also the
perspective for future work.

The reviewer would classify the papers under threo main groups :(i) papers dealing
with new mathematical methods to solve the problems of queucing and congestion; (ii) papers
dealing with new angles of queueing problems; (iii) papers with a statisical and practical bias.
The paper No. 7 “Markovian Queucs” by R. Syski docs not really come under any of the
threo above groups, as it gives a broad survey of the problems connected with Markovian
queucs and the possible rescarches in the field.

Tho papera 1 (by Pollaczck), 2 (by Keilson), 12 (by Takdes) and 13 (by- Runnenburg)
come under group (i). In paper 1 Pollaczek introduces an analytical method of determin-
ing the d.f. of waiting time in a multi-channcl telephone trunk problem where the d.f. of
the service times are known. His method has application in general congestion problems, and
perhaps has been presented here for the first time in English language. Runnenburg'’s method
of collective marks (paper 13) gives a lucid way of deducing some known results in queucing
theory in an alternative manner, as pointed out by Professor Takacs in discussion;
Runnenburg’s method can be applied to deduce Pollaczek’s equations in a probabilistic way.
Takacs (paper 12) gives a gencral method of dealing with the queucing problems by the appli-
tion of ballot theorems. A limitation of Takdes' method is that it cannot be applied on &
random walk with two impenctrable walks; and hence on a dam with finite capacity or a*
queucing system with limited waiting epace or with a bounded waiting time. Thero is,
however, a great scopo of applying combinatorial methods for all types of queucing or dam.
problems.

Under group (ii) como the papers 4 (Saaty), 5 (Heatheotc), 6 (Kingman), 8 (Gaver Jr),
9 (Weiss), 11 (Prabhu), 14 (Reich). The papers by Saaty and Reich are related, and deal
with an important and unexplored branch of queucing theory, that of network queues (queuces
in serics, parallel, cte.). A study of departuro processes is necessary for knowing the beha-
viour of network queucs. A limitation of most of tho studics is that whenever the arrival
or servico process is non-Poisson, it is difficult to derive the d.f. of the waiting time in second
or third queuc in scrics. Saaty has shown that there is scopo for applying graph theory in.
net-work queues; this branch is worth exploring.

Heathcote’s paper is on divergent single-server queues, which occur when traffio
intensity (p) is greater than unity. Tho paper is somewhat long-winded, and tho significant
propertics in this situation could be stated straightway. For cxample, if p > 1, a stablo distri-
bution of the waiting time docs not exist if there is no restriction in a customer’s waiting
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timo or if the waiting spaco is unlimited; otheriso it is always possiblo to obtain a stable d.f.
for waiting time or qucue sizo, A study of dual queucs gives an insight into Heathcote's
problems.

Kingman presents the problem of heavy traffic, i.e., tho situation when p is nearly
1,in a lucid manner. Heavy traffic appears in everyday congestion problems, and his
investigations should have & great practical value also.

Gaver presents tho problem of priority queucs which really form a multi-dimensional
stochastio process.

Prabhu brings out the similaritics in the models of dam problems and queueing prob-
lems, particularly for time-dependent situations, and shows how results of one set could be
translated into thoso of the other sct.

In his paper on road traffic problems, Weiss shows how the queucing problems come
across in traffic are different from those of telephono communication. The reviewer feels
that thero is scope for applying control theory and cybernetics in highway problems. This,
however, is a partially unexplored ficld.

Under group (iii) come the papers by Cox on statistical problems in congestion and
Pago on application of computers. Cox has made a detailed survey of the statistical methods
on congestion problems; his paper will be particularly useful to traffic engincers and managers
who would like to make meaning of observations in und ding congestion probl
Pago shows how computer simulation gives an insight into various problems which do not
lend to analytical solutions.

The discussions at the end of each paper aro highly instructive. Each of the papers
is valuable and makes an attempt to show the advances in analytical methods. There is,
howerver, one limitation in most of the papers except those under group (iii) that attempts
have been mado to build a theory, in some cases on its own sake, rather than for solving
some really intractable practical problems. This, however, is the limitation in the studics
on queucing problems dono so far.  For example, we often make assumption about the Poisson
stream of arrival or service cpochs more as a mathematical convenicnce rather than a practical
need. This remark does in no way undermine tho qualities of the excellent studics p d

in tho Symposium. The get-up of the monograph is excellent.

’ A. Ghosal
O>uncil of thoe Sciontific and Industrial Roscarch
Now Dolhi

Slippage Tests by Doornbos : Mathematical Centre Tracts 15, Mathematisch
Centrum, Amsterdam, 1966 ; pp. 95 ; price $ 3.00.

Slippage tests are tests designed to detect ‘outlying obscrvations', or ‘stragglers’,
or ‘wildshots’ as they aro variously called. In essence, slippage problems are those of testing
homogencity of several samples against a special class of alternatives under which one or more
ol' the samples dcvmte or ‘slip’ from the rest. Although such problems are of quite long

tisfactory solutions to the simpler forms of slippago problems have
been ob'.mnod comparatively recently. In this tract the author dovelops ono such reasonablo
approach and obtains useful solutions for somo of tho standard slippage problems,
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The tract is divided into four chapters. In tho first chapter the author gives a his-
torical review of slippage problems and their solutions starting right from Benjamin Peirio
(1852) and ending with Doornbos and Prins (1958). The sccond chapter is the most important
of the four, in as much as, in it the author develops a general approach to slippage prolems
with reference to the caso of a single outlying sample. The gencral difficulty in solving such
problems is that in most cases tho reasonablo test criterion happens to bo the largest or the
smallest among a sct of jointly distributed random variables and hence the distribution
problem becomes involved. The author solves the problem of determining the critical value
to a good approximation by an application of Bonferroni's inequality subject to a condition
whose validity he later proves individually in each of the special cases considered. In this
way he succeeds in giving close upper and lowe rbounds to the significance level of the test.
In the later part of the chapter the author considers the slippage counterparts to many of the

usual tests for h ity. Specifically, he iders the parametric problems of homo-’
gencity of normal means, | geneity of scale p ters of gamma distributions, homo-
geneity of Poisson means and homogeneity of binomial and negative binomial probabilities.”
Besides ho considers the slippage tests ponding to two well-known nonp ic

several samples test—the Friedman test and the Kruskal-Wallis rank-sum test. In the third
chapter the author indicates an approach which might be useful in the case of more !han
one outlying sample, and in the luding chapter he di some optimali

of the suggested parametric slippage tests as multiple decision procedures nnd studxcs the
consistency and asymptotic efficiencics of the two nonp ric slippage tests considercd.
At the end four tables meant to facilitate the application of some of the slippage tests are
appended

This tract is a useful addition to the literature, even though it represents only one point
of view. However it would have been better if the introductory review and the bibliography
had been more comprehensive.  In particular, one misses references to at least four important
contributions on this area that have come out in recent years (notably that of Karlin and
Truase in Ann. Math. Slatist., 1960). Another point of mild criticism is that the tract smacks
a little too much like a thesis (in the attached crrata one is asked to read ‘tract’ for ‘thesis’
twice!). Many mathematical details could preferably have been transferred to an appendix
and the suggested procedures could have been presented in more cut and dried form with a
few more numerical examples. That would have served better those intercsted in appli-
cations without offending those looking for tho theoretical details.

8. K. Chalterjee
Dopartmont of Statistics,
Lucknow University
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ABSTRACTS OF TECHNICAL REPORTS

9, Two approximations for the distribution of double non-central betas
Pwusi Dasovrta, Indian Statistical Institute, Tech. Report No. 8/67.

Two approximations—based on Laguerre scrics expansion and Jacobi serics expan-
gion have been obtained for the distribution function of the random variable ¥ = x3/(x}+x})
where x} and x3 are independent tral y? variables with p ters 22, and 22,, and
dearees of freedom n, and iy respectively. Efficiency of theso approximations have been
studied numerically.

10. An extremal problem in graph theory: A. RAMACHANDRA R4, Indian Statistical
Institute, Tech. Report No. 9/67.

We consider the problem of determining the class of all connected graphs, called
extremal graphs, on n vertices with m cdges and having & maximum number of articulation
vertices. In Theorem 55 we show that any extremal graph with n vertices and
m (> n) edges consists of a subgraph of onc of the following types with a (possibly empty)
clementary chain attached at cach of its non-articulation vertices,

(1) Anelementary chain (which may bo a single vertex) scparating a complete graph

at one end and a triangle at the other end.

(2) A complete graph with another vertex joined to it by I( > 2) edges.

(3) A graph of type (2) in which any k edges of the complete subgraph are absent,

k-1

In a graph of the first type, the sum of the length of all frce chains and the chains

separating the complete graph and the triangle is r—1 where

n—
rumnx{q:m < ( zq)—}-q}.
Tn a graph of the other two types, the sum of the lengths of all free chains is r.

Tho only extremal graph when m = n—1 is the elementary chain with n vertices.
The analogous problem of maximization of articulation edges is also solved.

11. IXdentities involving g lised Fib i bers: MuTuuLaksiusa R. IYER,
Indian Statistical Institute, Tech. Report No, 10/67.

Following the definition of Generalised Fibonacei Number I/, given by A. F. Horadam
viz. Hy=p, Hy = p+q, U, = I+, >3, the author has derived a number of
identitics involving I7,’s. All the relations aro given as sums upto » terms of which some of
them are listed below :

Terms like £ 1 3 £ £
2‘ [, ).‘ll,,_,. lII,,,.,, Ll Iy cte
Terms of the g, & g
of the form Ll ng, IIli,_,. & oy Iy, cto.
Cubio terms lik S S, S
ike ).I 3, Ill,,. z g, i, cte.

And lastly sums of the form
2 NPT |
'E.o ril,, r3:’(—1) ril,, ’)_:o(—l)' ,, cte.
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12. Optimal sequencing of multistage flow—shop operationss MADAN Lt MiTTAL,
Indian Statistical Institute, Tech. Report No. 11/67.

In this paper a method of obtaining optimal sequencing of a number of items, which
have to bo processed through a number of machines, is presented. It is assumed that tho
manufacturing time of an item on a hine is specified (i.o. hastic) and the order of
processing is identical for all items. Tho optimality critcrion is the total clapsed timo. The
method consists in finding a lower bound on the length of all sequences in which the position
of certain items is specified, proceeding with the one having the least lower bound, untill one
sequence is obtained in which all the items aro assigned a position and whoso length is less
than or equal to tho lower bound on the length of all other sequences.

The Branch and Bound method considers lower bounds on the length of all sequences
tho first r positions of which aro specificd. In this paper we consider bounds on sequences
whose first 7, and Jor last r, positions are specified. This iderably reduces the hing
of tho treo and thus reaches the optimum much faster than the ‘Branch and Bound’ algorithm.

.13. Distribution of most significant digit in certain function whose arguments.
are random variables : A. K. Apmgart and B. P. SARkAR, Indian Statistical
Institute, Tech. Report No. 12/67.

It is empirically well established that in large collections of numbers the proportions

of entries with the most significant digit A is log;e A—j—l The porperty of the most signi-
ficant digit has been studicd in the present paper. It has been proved that when random
numbers or their reciprocals are raised to higher and higher powers, they have log distribution
of most significant digit in the limit. The property is also demonstrated in the limit by the
products of random numbers as the number of terms in the product becomes higher and
higher. The property is not, however, demonstrated by higher roots of the random numbers
or their reciprocals in the limit. Actually there is a concentration at some particular digit.

It has been shown that if X has log distribution of the most significant digit, then so does %

and OX, O being any constant under stronger conditions.

14. On vector variables with a linear structure and a characterization of the
jon: C. RADNAKRISHNA Rao, Indian Statistical

Itivari normal distri
Institute, Tech. Report No. 13/67.

A vector random variable X is said to have a lincar structure if it can be expressed as
X =+ AY whero 4 is a constant vector, A’is a matrix and Y is & vector of independent
non-degenerato random variables (called structural variables). Two structures u,+A4,Y
and 5+ A,Z aro said to be equivalent if ono can bo reduced to the other by suitable scaling
and choice of location of the structural variables.

1t is woll known that if X is a multivariato normal variablo then tho structural
represcntation is not unique both with respect to the number of structural variables and
their i The of this proposition is proved to c terize a multivariate
normal distribution. It is shown that if there exist two structural representations mtAY
and py+A,% of X such that no column of A, is & multiple of any column of Ay, then X
must havo & multivariato normal distribution.
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Conditions under which a structural representation is uniquo with respect to the
structural cocflicicnts and the number of variables aro investigated.
It is shown that non-uniquencss arises duo to some of the structural variables having
a normal distribution or having a normal component individually or in linear combinations.

Finally, a thcorem is proved regarding the vector random variablo X as the sum of
two independent variables X, and X, whero X, has a uniquo and X, is
normal,

15. On the minimal thick sets of a measure space ¢ S. B. Rao, Indian Statistical
Institute, T'ech. Report No. 14/67.
Let (X, 8, #) bo 8 measure space. A set A C X is called a thick set of (X, 8, #)
if tho g-inner measuro of its complement is zero. A thick sct A is called a minimal thick set
if no proper subset of 4 is a thick sct. The following results are obtained.

If (X, S, #) admits a minimal thick sct A, then 4 is countable and s is atomic; a finite
product of minimal thick scts is a minimal thick sct, Some topological lemmas are proved.
If X is a complete, scparablo metrio space without isolated points, S, the o ficld generated by
open subsets of X, the following conditions are equivalent.

(1) (X, S, p) is non-atomio

(2) (X, S, #) admits a thick sct whose complement is also a thick sct

(3) (X, 8, p) admits a decreasing sequenco of thick scts tending to the empty set.
Some examples are given,

16. A decomposition theorem for vector variables with a linear structure :
C. RADHAKRISHNA Rao, Indian Statistical Instituto, Tech. Report No. 15/67.

A vector variablo X is said to have a lincar structure if it can be written as X = AY
where A is a matrix and Y is a vector of independent random variables called 1
variables. In earlicr papers tho conditions under which a vector random variable admits
different structural representations have been studied. It is shown, among other results, that
complete non-uniquencess, in somo scnse, of the lincar structure characterizes a multivariate
normal variable. In the present paper we prove a general decomposition theorem which
states that any variable X with a lincar structuro can be expressed as tho sum (X,+X,) of
two independent variables X,, X, of which X, is non-normal and has a unique lincar struc-
ture, and X, is a multivariate normal variablo with a non-uniquoe structure.

17, Role of the theory of graphs in op i h: C. R NUJA ULU,.
Indian Statistical Institute, Tech. Report No. 10/07.

Tho article gives an introduction to tho theory grnphl mainly stressing xla applica.
tions to problems of i h, Market h and lincar p After
mtroducucn in Seetion 1 whero tho gencmhlles on graphs ase ceal* \u'h, Seruon 2 contains
8 brif historical sketch Icading up to modern trends and Scetion 3 whilo introducing basio
definitions also throws light on the role of graph theory in several operations rescarch problems
and related topics. New problems like constructing graph on n vertices with m edges such
that no more than r edges cross at a non-vertex point and no more than such points appear
on an edgo aro presented in courso of discussions on applications.
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18. Some results on Fibonacci quaternions : MuTnuLaxsumi R, Iver, Indian Statis-
tical Institute, Tech. Report No. 17/67.

The n-th Fibonacci Quaternion Q, is defined by tho relation @, = Fp+iFuy1+jFass

+kF,,y whero F, stands for the n-th Fibonacei number of the sequence 1,1, 2,3, 5,..

"
:: where a and b aro the roots of the equation

It is given by the formula F, =
2'—z—1=0.

Defining analogously tho n-th Lucas Quaternion Ty by Ty = Ly+iLey+ilasa
+kL,,s whero L, is tho n-th Lucas number in tho sequence 2,1,3,4,17,..., we sce that
L, = an+b" whercas above a, b are roots of the same quadratic equation.

In this paper some of the relations connecting Fy and L, are presented. Then rela-
tiona connecting Q,'s to F,, and L, are derived, as also those connecting T'y's to F, and L,.
Lastly some relations existing between the @, and 7', aro obtained.

At present these relations scem to be of highly academig interest, but I do hopo and
think that thero is some application of these Fibonacci and Lucas numbers,

19. A note on an i lity for 1 distribution : C. G. Kuarri, Indian
Statistical Institute, Tuh Report No. 18/67.
Let x = (zy, 23, ..., 7;)’ be distributed as multivariate normal with zero means and
covariance matrix V(x)* Such a law of distribution will be denoted by x ~ N(0, ¥(x)).
Dunn’s conjecturo namely

m Plla) Qe i =12 p] > fI L2l <)

was established recently by Khatri, Sidak and Scott by using different methods. The pur-
pose of this note is to generalise this result in the case of convex and symmctrio regions about
the origins. Let Dy(x) be a convex and symmetric region in x about the origin, $ =1, 2,
Then, gencralisation of (1) can be given by

@ PD,(x) " Dy{x)] > P[D,()] P(Dyx)]:

Some applications of (2) aro given with a view to illustrate tho uso of (2) in simultancous con-
fidence bounds.

20. On rang £ ion of i isi bers—I 1 E. V. KRrisuxNa-
amorTHY and B. P, SArRKAR, Indian Smmucnl Institute, Tech. chorl No. 19[67
An ic and efficient algorithm is proposed for range f of !

precision numbers in a general radix, The rules of tho algorithm are derived using crror
analysis.

2]. On rang f ion of i) ision numbers—II : E. V. KrisaNa-
MURTHY and B. P. SARRAR, Indian Stnhshcnl Institute, Tech. Report No. 20/67.

Described in this paper is an algorithm for transforming a number such that its lead-

ing digit is carlicr radix less one or the leading digit is a unity with its next digit zero. It

is shown that for obtaining the required it is sufficicnt to have a k ledg ol' only

tho leading two digita of the given number and it is sufficient to d ine tho

up to its leading two digits. The validity of the rules of the algorithm is proved by usmg

diophantine analysis.
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22, Simulation of q ing probl 1A K A Indian Statistical Institute,
Tech. Report No. 21/67.

A method for estimating averago waiting time and percentago of idle time in queucing
problems by simulation has been described in the paper.  Tho model considered is a general
ono whero the servico time parameter may depend on the arrival type. The result of a study
is also presented in this paper.

23. Polarization of 1 lastically d on d t G. Raxa.
cnaNDRAX, Indian Statistical Instituto, Tech. Report No. Phy/2/67.

The spin-orbit i jon in nucl 2! ttering at low energies is studied

by analysing experimental data on nucleon polarization in elastic ing of nucl on

deuterons using the impulse approximation, which is scen to provide an clegant interpretation
of the obscrved angular distributions of polarization from energics as low as 0.99 MeV ex-
tending upto about 25MeV. Estimates of appropriate phase shift rombinations in P, D
and F partial wavce are obtained using least square fits.

24, Some properties of additi ithmetical fanctions : E. M, Pavr, Indian
Statistical Institute. (Not issued as a Tech. Report).

If an additivo arithmetical function has a distribution, cach valuo d by the,
function (and especially tho value 0) belongs to tho support of the distribution,

If an additivo arithmetical function has a ( iform) distribution locally on ono
intorval, it has a distribution; if tho local distribution is proportional to Lebesguo measure,
it is not known whethor tho result holds,

If i, f2, ... aTO gativo additive functions having distributi and. e, isa
continuity point in tho distribution of f,,n =1,2, ..., tho sot of positive intogers m
such that simultancously f(m) < ay, fo(m) < @y, ... has logarithmio density which is
= -lil::[dcn.sity ofﬁ'(ﬁ(m) Lapi=1 .0
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