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1
Introduction

The thesis comprises of six chapters on evaluation aggregation, social choice and matching. A brief
introduction to each of the six chapters is provided below.

In Chapter 2, we consider collective evaluation problems, where individual grades given to candidates
are combined to obtain a collective grade for each of these candidates. In this paper, we prove the
following two results: (i) a collective evaluation rule is update monotone and continuous if and only if it
is a min-max rule, and (ii) a collective evaluation rule is update monotone and consistent if and only if it is
an extreme min-max rule.

Chapters 3,4 and 5 deals with strategic social choice problems where a social planner needs to decide
an outcome for a society from a finite set of feasible outcomes based on the preferences of the agents in
the society. Agents preferences are their private information and agents are strategic meaning that they
manipulate the outcome by misreporting their preferences whenever that is beneficial for them. The
objective of the social planner is to design a rule that no agent can manipulate.

In Chapter 3, we consider domains that satisfy pervasiveness and top-connectedness, and we provide a
necessary and sufficient condition for the existence of non-dictatorial, Pareto optimal, and group
strategy-proof choice rules on those domains.

In Chapter 4, we consider choice functions that are unanimous, anonymous, symmetric, and group
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strategy-proof and consider domains that are single-peaked on some tree. We prove the following three
results in this setting. First, there exists a unanimous, anonymous, symmetric, and group strategy-proof
choice function on a path-connected domain if and only if the domain is single-peaked on a tree and the
number of agents is odd. Second, a choice function is unanimous, anonymous, symmetric, and group
strategy-proof on a single-peaked domain on a tree if and only if it is the pairwise majority rule (also
known as the tree-median rule) and the number of agents is odd. Third, there exists a unanimous,
anonymous, symmetric, and strategy-proof choice function on a strongly path-connected domain if and
only if the domain is single-peaked on a tree and the number of agents is odd. As a corollary of these
results, we obtain that there exists no unanimous, anonymous, symmetric, and group strategy-proof
choice function on a path-connected domain if the number of agents is even.

In Chapter 5, we consider weak domains, that is, set of preferences that may admit indifference. We
show that every unanimous and strategy-proof random social choice function on any weak domain
containing all strict preferences is weak random dictatorial. On weak single-peaked domains, we show
that a random social choice function is Pareto optimal and strategy-proof if and only if it is an extreme
probabilistic fixed ballot rule. Next, we consider single-plateaued domains and provide the structure of
unanimous and strategy-proof random social choice functions on these domains.

Chapter 6 considers the problem of designing strategy-proof social choice rules in an incomplete
information framework. More formally, agents have beliefs about the preferences of the other agents and
they tend to manipulate whenever that improves the expected outcome according to their belief. We
explore the structure of locally ordinal Bayesian incentive compatible (LOBIC) random Bayesian rules
(RBRs). We show that under lower contour monotonicity, for almost all prior profiles (with full Lebesgue
measure), a LOBIC RBR is locally dominant strategy incentive compatible (LDSIC). We further show
that for almost all prior profiles, a unanimous and LOBIC RBR on the unrestricted domain is random
dictatorial, and thereby extend the result in [40] for Bayesian rules. Next, we provide a sufficient condition
on a domain so that for almost all prior profiles, unanimous RBRs on it are tops-only. Finally, we provide
a wide range of applications of our results on single-peaked (on arbitrary graphs), hybrid, multiple
single-peaked, single-dipped, single-crossing, multi-dimensional separable domains, and domains under
partitioning. Since OBIC implies LOBIC by definition, all our results hold for OBIC RBRs.

Chapter 7 considers the many-to-one two-sided matching problem. Agents are assumed to be
heterogeneous with respect to their ability to foresee the consequences of a block, and thereby categorized
as myopic and farsighted. We study the structure of stable matchings and stable sets in this setting.
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2
On updatemonotone, continuous, and consistent

collective evaluation rules

2.1 Introduction

We consider (collective) evaluation problems where agents grade candidates based on their level of
excellence, and where these individual judgments are to be aggregated to obtain a collective grade for each
of these candidates. In education environments, this is daily practice. Here students are graded for
different subjects and a final overall grade determines the performance of the students compared to each
other. Other examples of these are, for instance, the so-called majority aggregation rules as proposed by
[5] and [6] or the linguistic decision rules described in [38]. The fundamental problem is to find rules
with desirable properties that take all the individual grades as inputs and produce a collective evaluation
as output.

On the one hand, grades may express an evaluation result on a more or less absolute scale. Examples of
such problems include those where agents have to evaluate competitors based on their performances
using a predefined grade scale, like for instance in music contests, teaching environments, or certain sport
disciplines, such as e.g. gymnastics, or figure skating. On the other hand, these grades can be interpreted
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as individual quality assessments enabling agents to order a relatively large group of candidates. At job
vacancies, grades or quality expressions may support committee members in ordering larger amounts of
applicants. Decision-making based on qualitative information has a wide range of practical applications
like online auctions, personnel evaluation, and supply chain management. We use linguistic/qualitative
grading scales to allow explicitly for individual interpretations of these. Strictly speaking a grade A+ in
history given by teacher i is not comparable to a grade B− in geography given by teacher j. Linguistic
qualifications like ‘good’ or ‘perfect’ leave this individual interpretation more open than numerical ones as
the latter automatically refer to an absolute scale.

The literature on collective evaluation rules, also known as linguistic decision rules, is very extensive
(see [90], [91] , [92], [88] and [86]). [89] proposes linguistic max and min operators. The max (min)
operator chooses the maximum (minimum) grade given by the agents to a candidate. Later, [90]
generalizes these operators as linguistic max-min weighted averaging operators. In a similar spirit, [91]
and [92] propose linguistic median and weighted median operators which choose the median and
weighted median grade for a candidate, respectively.

[45] present a linguistic ordered weighted averaging operator which is based upon convex
combinations of grades ([30]). [12] consider a multi-person multi-criteria decision problem for group
decision making in a linguistic context and provide a human-consistent definition of consensus and a
procedure for its computation.

The use of the Borda count in linguistic decision making problems is introduced by [39]. They provide
two ways of extending the Borda rule to an evaluative framework either by taking into account all agent’s
opinions or by only considering the favorable ones for each candidate when compared with each other. A
comprehensive survey of the literature on linguistic decision rules can be found in [87].

[4] introduce the notion of order functions. They show that an evaluation rule is unanimous,
anonymous, monotonic, and strategy-proof if and only if it is an order function.

Judgment aggregation considers situations where there is a collection of propositions and a set of
judges each having a binary opinion (accept/reject) for each proposition. A judgment aggregation rule
chooses a set of propositions based on the approval/disapproval of the judges. Regularly in judgment
aggregation, propositions may be interrelated, whereas in our model, no such interconnection is
considered amongst the grades assigned by the agents over the candidates. There is, however, a small
branch of judgment aggregation literature, dealing with non-binary opinion, to which our model relates
(see [66], [34], [33] and [32]).

Therefore, in literature several collective evaluation rules are proposed and discussed with respect to
their advantages and disadvantages. Here, we intend to look at the converse of this, that is, we identify
three properties of collective evaluation rules and characterize all rules satisfying those properties. These

4



three properties are update monotonicity, continuity, and consistency.
The implication of update monotonicity is as follows. Suppose a grade, say ‘very good’, is collectively

decided for a candidate. Suppose further that an agent, who previously graded this candidate as ‘average’,
now changes his evaluation to ‘good’ while leaving all grades of all other candidates and all other agents
unchanged. In a sense, the evaluation of this agent moves in favor of the outcome ‘very good’. Update
monotonicity says that the collective evaluation of the candidate also in the new situation is ‘very good’.
Thus, update monotonicity ensures that the outcome does not change when agents change their
evaluations towards the outcome.

Continuity is a well-known property of an aggregation rule when candidates are elements of a
Euclidean space. Here, we have adopted this idea for the case of finitely many candidates. Continuity
ensures that small changes in grades lead to small changes in the collective evaluation. In other words, it
ensures that the collective evaluation rule is not too sensitive to some grade changes of some agents.

The implication of consistency is as follows. Let ‘very good’, ‘good’, and ‘average’ be three consecutive
grades. Consider a situation where agents are divided into two groups such that all members of one group
grade a certain candidate as ‘average’ while all other agents grade him/her as ‘good’. Suppose, further, that
all the agents agree on the grade of every other candidate. Now, consider another situation which differs
from the previous case in the following way: the group of agents, who graded the candidate as ‘average’ in
the previous case, now all grade him/her as ‘good’, while the agents in the other group now grade him/her
as ‘very good’. In a sense, the judgment of each agent has shifted uniformly in some particular direction for
the candidate. The consistency property says that the collective decision for the candidate in the latter
case shifts equally in the same direction, that is, if it was ‘good’ (‘average’) in the former case, then it will
be ‘very good’ (‘good’) now. Thus, this property ensures some type of consistency in the evaluation rule.

We provide two different characterization results in this paper. In the first one, we show that a collective
evaluation rule is update monotone and continuous if and only if it is a min-max rule. Such a rule is based
on a unique collection of parameters indicating for each candidate, say a, and each subset of agents, say S,
the lowest possible collective grade candidate a can get, when all agents that are not in S give candidate a
the highest possible grade. Let this lowest grade be denoted by βSa. Given the grades assigned by the
agents, the outcome for candidate c is now determined as follows. First, for every subset S of agents the
maximum among the grades given to c by the agents in S and this parameter βSa is determined. This yields
for each such subsets S a highest grade for a.The min-max rule chooses the minimum of all these highest
grades. In our second result, we show that a collective evaluation rule satisfies update monotonicity and
consistency if and only if it is an extreme min-max or extreme max-min rule. Here the parameters βSa are
either the highest or lowest possible grade. Well-known collective evaluative operators in the literature
such as min, max, median, etc. are special cases of extreme min-max or extreme max-min operators.
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Min-max and max-min rules (for one dimension) arise in the context of strategic social choice on a
single-peaked domain. [63] shows that every unanimous and strategy-proof social choice function on a
one dimensional single-peaked domain is a min-max or max-min rule. Our model captures the
single-peaked property by means of the fact that grades are ordered. It is worth noting that our model is a
multi-dimensional setting where each candidate comprises a dimension. However, as it follows from our
results, the combination of update monotonicity and continuity, and the combination of update
monotonicity and consistency, each implies the candidate-wise property. That is, the collective evaluation
of a candidate depends only on the grades assigned to this candidate by the agents. Another important
thing to note is the following. Since every min-max rule is strategy-proof and every collective evaluation
rule satisfying any of the above mentioned combinations of properties is some type of a min-max rule, it
follows that strategy-proofness can be obtained as a by-product of these properties. Thus, our paper
builds up a connection between the theories of collective evaluation problems and social choice.

2.2 The model

Let A = {a1, . . . , am} denote the finite set ofm candidates and letN = {1, . . . , n} denote the finite set of
n agents. The set of k grades is denoted byG, where these grades are indicated by the numbers 1 up to k.
We emphasize that a higher number corresponds to a higher grade, that is, only ordinal information is
needed here.¹

An evaluation u is a function from A toG. It assigns to every candidate a ∈ A a grade u(a). The
interpretation is related to that of ordinal utility functions: the higher the grade of a candidate, the better
is the evaluation of the candidate. We denote byU the set of all evaluations. A profile uN is an element of
Un, i.e., an n-tuple of evaluations, where agent i’s evaluation is denoted by ui. For a profile uN ∈ Un, ui
denotes the evaluation of agent i and ui(a) denotes the grade agent i gives to candidate a.

A collective evaluation rule assigns to each profile a (collective) evaluation. More formally, a collective
evaluation rule is a function ϕ : Un → U. The grade of a candidate a ∈ A at evaluation ϕ(uN) is denoted
by ϕa(uN). As we have discussed in Section 2.1, some commonly known collective evaluation rules in the

¹Denoting grades by numbers is no more than a convention. While the ordinal structure of numbers represents betterness
comparisons between grades, the arithmetic structure of numbers (including ratios or differences) carries no information, i.e.,
is insignificant. For instance, the comparison 4 > 2 means that grade 4 is higher than grade 2, but the identity 4/2 = 2 does
not mean that grade 4 is twice as high as grade 2, and the difference comparison 4 − 2 > 2 − 1 does not mean that grade 4 is
more distant to grade 2 than grade 2 to grade 1. Although we do not formally represent non-ordinal information, non-ordinal
propositions about grades need not be regarded as meaningless. Ordinalists would regard non-ordinal propositions such as
‘these grades aremore distant from one another than those’ as meaningless. Others would regard them asmeaningful properties
which are not captured arithmetically. Ordinalists would regard two evaluations as equivalent if they induce the sameweak order
over candidates; for instance, evaluating a certain candidate as ‘good’ and all others as ‘bad’ would be equivalent to evaluating
him as ‘excellent’ and all others as ‘good’. The ability to encompass ordinalist and non-ordinalist notions of value counts as an
advantage of our formal framework over the standard relational framework of Arrovian preference aggregation.
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literature are min, max and median rules.
In what follows, we discuss some properties of collective evaluation rules.

Definition 2.2.1 A collective evaluation rule ϕ is called anonymous if for all permutations π of {1, . . . , n}
and all profiles uN, vN ∈ Un such that ui = vπ(i) for all i ∈ {1, . . . , n}, we have ϕ(uN) = ϕ(vN).

In words, a collective evaluation rule is anonymous if the identities of the agents do not play any role in
the aggregation procedure.

Definition 2.2.2 A collective evaluation rule ϕ is update monotone if for all profiles vN,wN ∈ Un such that
for all candidates a ∈ A and all agents i ∈ N, either vi(a) ≤ wi(a) ≤ ϕa(vN) or ϕa(vN) ≤ wi(a) ≤ vi(a), we
have ϕ(vN) = ϕ(wN).

A collective evaluation rule is update monotone if outcomes do not change whenever agents change
their individual grades (judgments) towards the outcomes.²

Definition 2.2.3 A collective evaluation rule ϕ is uncompromising if for all profiles vN,wN ∈ Un with the
property that for all candidates a ∈ A and all agents i ∈ N, vi(a) < ϕa(vN) implies wi(a) ≤ ϕa(vN) and
ϕa(vN) < vi(a) implies ϕa(vN) ≤ wi(a), we have ϕ(vN) = ϕ(wN).

A collective evaluation rule is uncompromising if the aggregated grade does not change whenever
agents do not change their side with respect to the outcome. For instance, suppose that the aggregated
grade of a candidate at a profile is ‘good’ and the judgment of an agent about that candidate at that profile
is ‘bad’. Then, uncompromisingness says that if that agent changes his/her judgment to ‘very bad’ or to
‘average’ or to ‘good’, then the aggregated judgment of the candidate will not change.

Remark 2.2.4 Uncompromisingness implies update monotonicity.³

Definition 2.2.5 A collective evaluation rule ϕ is candidate-wise if for all candidates a and all profiles
vN,wN ∈ Un such that vi(a) = wi(a) for all agents i ∈ N, we have ϕa(vN) = ϕa(wN).

The candidate-wise property says that the outcome grade of a candidate depends only on the individual
grades of the agents about that candidate.

²[16] introduce the notion of update monotonicity in the context of preference aggregation.
³Note that uncompromisingness implies the following weaker property for a collective evaluation rule ϕ: for all profiles

vN,wN ∈ Un, if for all i ∈ N and all a ∈ A, we have wi(a) < vi(a) < ϕa(vN) or wi(a) > vi(a) > ϕa(vN), then ϕ(vN) = ϕ(wN).
This implication is a kind of “inverse updatemonotonicity”: if individualsmove away from the outcome, then the outcome stays
the same. In fact, this is the reason why the name “uncompromising” is given to this axiom.
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2.3 A characterization of the update monotone and continuous collective

evaluation rules

In this section, we provide a characterization of the update monotone and continuous collective
evaluation rules. First, we introduce the notion of continuity.

2.3.1 Continuity

Continuity ensures that a ‘small’ change in the individual grades can only lead to a ‘small’ change in the
outcome. Here, by small change we mean that exactly one agent changes his/her (individual) grade for a
particular candidate to exactly one grade above or below.

Definition 2.3.1 The distance between two evaluations u and v is defined as d(u, v) =
∑

a |u(a)− v(a)|. For
two profiles uN, vN ∈ Un, we define the distance between them as d(uN, vN) =

∑
i∈N d(ui, vi).

Definition 2.3.2 A collective evaluation rule ϕ : Un → U is said to be continuous if for all profiles
uN, vN ∈ Un, d(uN, vN) = 1 implies d(ϕ(uN), ϕ(vN)) ≤ 1.

In Appendix .3, we show that our notion of continuity actually boils down to that in standard
mathematics by considering natural topologies onUn andU.

2.3.2 Min-max rules

Now, we introduce a class of collective evaluation rules called min-max rules. Such a collective evaluation
rule can be described by certain minimax (or equivalently maximin) mechanisms. These rules are well
known in the social choice literature for single-peaked preferences ([63]). Here the structure of
single-peakedness is induced by the underlying natural ordering of the grades. It is well known that the
class ranges from simple rules, like dictatorship or constant rules, to rules which treat all the agents
equally, such as choosing the median grade ([4]).

Definition 2.3.3 For all candidates a ∈ A, let βa = (βSa)S⊆N be a list of 2N parameters satisfying: (i) βSa ∈ G
for all coalitions S ⊆ N, (ii) β∅a = k, βNa = 1, and (iii) for any coalition S ⊆ T, βTa ≤ βSa. Then, a collective
evaluation rule ϕ : Un → U is called a min-max rule with respect to (βa)a∈A if

ϕa(uN) = min
S⊆N

{max({βSa} ∪ {ui(a) : i ∈ S})}.

Clearly, every min-max rule is candidate-wise.
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Definition 2.3.4 Amin-max rule with respect to parameters β = (βSa)a∈A,S⊆N is called a generalized median
rule if for all candidates a ∈ A, βSa = βTa for all S,T ⊆ Nwith |S| = |T|.

Note that a min-max rule is anonymous if and only if it is a generalized median rule.

2.3.3 Results

We now present the main result of this section that characterizes all update monotone and continuous
collective evaluation rules.

Theorem 2.3.5 A collective evaluation rule ϕ : Un → U is update monotone and continuous if and only if it is
a min-max rule.

The proof of this theorem is relegated to Appendix .1.
The following corollary is immediate from Theorem 2.3.5.

Corollary 2.3.1 A collective evaluation rule ϕ : Un → U is update monotone, continuous, and anonymous if
and only if it is a generalized median rule.

In what follows, we show that update monotonicity and continuity are independent of each other.

Remark 2.3.6 (Updatemonotonicity is independent from continuity) Let N = {1, 2} and let
A = {a, b}. Suppose G = {1, 2, 3} where 1 ≡ bad, 2 ≡ average and 3 ≡ good. Consider the collective
evaluation rule, say ϕ, given in Table 2.3.1. The rule ϕ assigns the outcome (1, 2) at every profile except the ones
where agent 1 announces (1, 1), in which case it assigns the outcome (1, 1).

It can be verified that ϕ is continuous. We show that it violates update monotonicity. Consider the profiles
vN = ((2, 1), (1, 1)) and wN = ((1, 1), (1, 1)). Note that ϕ(vN) = (1, 2) and ϕa(vN) = w1(a) < v1(a),
v1(b) = w1(b) < ϕb(vN), v2(a) = w2(a) = ϕa(vN), and v2(b) = w2(b) < ϕb(vN). Further, note that
ϕ(wN) = (1, 1) ̸= ϕ(vN), which is a contradiction to update monotonicity.

Remark 2.3.7 (Continuity is independent from updatemonotonicity) Let N = {1, 2} and let
A = {a, b}. Suppose G = {1, 2, 3} where 1 ≡ bad, 2 ≡ average and 3 ≡ good. Consider the collective
evaluation rule, say ϕ, given in Table 2.3.2. According to this rule, agent 1 is the dictator except when he/she
announces (2, 1), in which case the outcome is (2, 2). It is straightforward that ϕ is update monotone. We show
that it violates continuity. Consider the profiles vN = ((1, 1), (1, 1)) and wN = ((2, 1), (1, 1)). Note that
d(vN,wN) = 1, and ϕ(vN) = (1, 1), ϕ(wN) = (2, 2). However, since d(ϕ(vN), ϕ(wN)) = 2, this violates
continuity.
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1 2 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(1,3) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(2,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(2,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(2,3) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(3,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(3,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(3,3) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)

Table 2.3.1

2.4 A characterization of the update monotone and consistent collective

evaluation rules

In this section, we introduce the notion of consistency and provide a characterization of the collective
evaluation rules that are update monotone and consistent.

2.4.1 Consistency

First, we introduce the notion of minimal conflict profiles.

Definition 2.4.1 For a candidate a ∈ A, a grade l with l < k, and a coalition S ⊆ N, a profile vN ∈ Un is a
minimal conflict profile at (a, l, S) if vi(a) = l for all agents i ∈ S, vj(a) = l+ 1 for all agents j ∈ N− S, and
vs(x) = vt(x) for all agents s, t ∈ N and all candidates x ∈ A− {a}.

In words, for a minimal conflict profile at (a, l, S), the candidate a ∈ A is assigned the grade l by all the
agents in S and the grade l+ 1 by all the agents inN− S. Further, all the agents agree on the grade of every
other candidate.

Now, we are ready to define the notion of consistency. It ensures that the individual grades are
aggregated over minimal conflict profiles in a consistent manner. Note that it does not impose any
condition on the outcome at other profiles. Thus, it is a weak consistency requirement.

Definition 2.4.2 A collective evaluation rule ϕ is consistent if for all candidates a ∈ A, all coalitions S ⊆ N,
all grades l, l′ with l, l′ < k, and all profiles vN,wN ∈ Un such that vN is a minimal conflict profile at (a, l, S)
and wN is a minimal conflict profile at (a, l′, S), we have
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1 2 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
(2,1) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)
(2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)
(2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3)
(3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)
(3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2)
(3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

Table 2.3.2

ϕa(vN) = l if and only if ϕa(wN) = l′.

The implication of consistency is as follows. Consider a candidate a ∈ A and a coalition S ⊆ N.
Consider all the profiles that are minimal conflict at a between S andN− S (but at different grades).
Then, consistency says that if a collective evaluation rule selects the lower (higher) grade at any of these
profiles, then it must select the lower (higher) grade at every profile.

2.4.2 Extreme min-max rules

In this section, we introduce a particular type of collective evaluation rules, called the extreme min-max
rules, which we will use in our characterization of the collective evaluation rules that are update
monotone and consistent. Verbally, an extreme min-max rule is a min-max rule where the parameters
always take extreme values, that is, either the lowest possible grade or the highest possible grade. These
rules are introduced in [18] in the context of strategic social choice, where it is shown that every efficient
and strategy-proof social choice rule on a single-peaked domain with outside option is an extreme
min-max rule.

Definition 2.4.3 Amin-max rule with respect to parameters β = (βSa)a∈A,S⊆N is called an extreme min-max
rule if βSa ∈ {1, k} for all candidates a ∈ A and all coalitions S ⊆ N.

2.4.3 Ordered rules

In this subsection, we introduce one more class of collective evaluation rules called ordered rules.
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The notion of ordered rules is introduced in [4]. However, in their paper, they call these rules order
functions.

Let a ∈ A be a candidate and k ≤ n, and let uN ∈ Un be a profile. Call l the k-th ordered grade of a at
uN, if l is such that |{i ∈ N | ui(a) ≤ l}| ≥ k and |{i ∈ N | ui(a) < l}| < k. Now, we are ready to define
ordered rules.

Definition 2.4.4 Let k˜= (k1, . . . , km) be such that ki ≤ n for all i = 1, . . . ,m. Then, k˜-th ordered rule
ϕk˜ : Un → U is defined as follows: for all candidates ai ∈ A and all profiles uN ∈ Un, ϕ

k
ãi(uN) is the ki-th

ordered grade of ai at uN.

Consider a k˜-th ordered rule. For all i = 1, . . . ,m, if
• ki = 1, then it is known as the min operator,
• ki = n, then it is known as the max operator,
• ki = n/2+ 1 if n is even and ki = (n+ 1)/2 if n is odd, then it is known as the median operator.
It is straightforward to see that every ordered rule is an extreme min-max rule.
It can be verified that every extreme min-max rule (and hence every ordered rule) is update monotone,

consistent and uncompromising. Additionally, ordered rules are anonymous.

2.4.4 Results

In this section, we provide a characterization of all collective evaluation rules that are update monotone
and consistent.

Theorem 2.4.5 A collective evaluation rule ϕ : Un → U is update monotone and consistent if and only if it is
an extreme min-max rule.

The proof of this theorem is relegated to Appendix .2.
The following corollary is immediate from Theorem 2.4.5.

Corollary 2.4.1 A collective evaluation rule is ϕ : Un → U is update monotone, consistent, and anonymous if
and only if it is some k˜-th ordered rule.

In what follows, we show that update monotonicity and consistency are independent of each other.

Remark 2.4.6 (Updatemonotonicity is independent from consistency) Let N = {1, 2} and let
A = {a, b}. Suppose G = {1, 2, 3} where 1 ≡ bad, 2 ≡ average and 3 ≡ good. Consider the collective
evaluation rule, say ϕ, given in Table 2.4.1. Note that the collective grade for candidate a is dictatorially
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determined by agent 1 and that for candidate b is almost also solely determined by agent 1 except in six profiles.
Those profiles have the property that agents 1 and 2 maximally differ on the grade for candidate b, while agreeing
on the grade for candidate a. At these profiles, compromising grade 2 is chosen as the collective grade for b.
It can be verified that ϕ is consistent. We show that it violates update monotonicity. Consider the profiles

vN = ((1, 1), (1, 3)) and wN = ((1, 1), (1, 2)). Note that ϕ(vN) = (1, 2) and v1(a) = w1(a) = ϕa(vN),
v1(b) = w1(b) = ϕb(vN), v2(a) = w2(a) = ϕa(vN), and ϕb(vN) = w2(b) < v2(b). Further, note that
ϕ(wN) = (1, 1) ̸= ϕ(vN), which is a contradiction to the update monotonicity.

1 2 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,1) (1,1) (1,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(1,3) (1,2) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
(2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,2) (2,1) (2,1) (2,1)
(2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)
(2,3) (2,3) (2,3) (2,3) (2,2) (2,3) (2,3) (2,3) (2,3) (2,3)
(3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,2)
(3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2)
(3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3) (3,2) (3,3) (3,3)

Table 2.4.1

Remark 2.4.7 (Consistency is independent from updatemonotonicity) Let N = {1, 2} and let
A = {a, b}. Suppose G = {1, 2, 3}. Consider the collective evaluation rule, say ϕ, such that
ϕ((1, 1), (1, 1)) = (1, 1) and ϕ(uN) = (2, 2) for all profiles uN ̸= ((1, 1), (1, 1)). It is straightforward that ϕ is
update monotone. We show that it violates consistency. Consider the profiles vN = ((1, 2), (1, 1)) and
wN = ((1, 3), (1, 2)). Note that vN is a minimal conflict profile at (b, 1, {2}) and wN is a minimal conflict
profile at (b, 2, {2}). Further, note that ϕb(vN) = 2 and ϕb(wN) = 2, which violates the consistency.

2.5 Conclusion

In this paper, we have characterized the collective evaluation rules based on some properties of those.
Theorem 2.3.5 shows that a collective evaluation rule is update monotone and continuous if and only if it
is a min-max rule ([63]), and Theorem 2.4.5 shows that a collective evaluation rule is update monotone
and consistent if and only if it is an extreme min-max rule. In the literature of strategic social choice
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theory, min-max rules appear as the unanimous (tops-only) and strategy-proof social choice functions on
the single-peaked domains, and extreme min-max rules appear as the efficient and strategy-proof social
choice functions on the single-peaked domains with outside option. In our model, the single-peakedness
is inherited by the ordering over the grades. It is worth noting that unanimity (efficiency) and
strategy-proofness can be guaranteed by the combination of update monotonicity and continuity or by
the combination of update monotonicity and consistency. Thus, this paper has established a relation
between the traditional social choice theory and the aggregations of evaluations.

Appendix

.1 Proof of Theorem 2.3.5

Proof: (If part) Let ϕ be a min-max rule. It follows from [2] that ϕ is uncompromising. By Remark 2.2.4,
ϕ is update monotone. We proceed to show ϕ is continuous. Let uN, vN ∈ Un be two profiles such that
vi(a) = ui(a) + 1 and uj(x) = vj(x) for all (j, x) ∈ N× A such that (j, x) ≠ (i, a). It is sufficient to show
that |ϕ(uN)− ϕ(vN)| ≤ 1. First, note that by uncompromisingness, ϕx(uN) = ϕx(vN) for all x ̸= a. If
ϕa(uN) ̸= ui(a), then again by uncompromisingness, ϕa(uN) = ϕa(vN). So, suppose ϕa(uN) = ui(a).
Assume for contradiction |ϕ(uN)− ϕ(vN)| ≥ 2. Assume without loss of generality, ϕa(vN) = ϕa(uN) + 2.
However, by using uncompromisingness at vN, this means ϕa(vN) = ϕa(uN), a contradiction. ■

(Only-if part) The proof of the only-if part follows from the following lemmas.

Lemma .1.1 Every update monotone and continuous collective evaluation rule ϕ : Un → U is candidate-wise.

Proof: Let ϕ : Un → U be an update monotone and continuous collective evaluation rule. Assume for
contradiction that ϕ is not candidate-wise, that is, there exist profiles uN, vN ∈ Un and a candidate a ∈ A
such that ui(a) = vi(a) for all agents i ∈ N and ϕa(uN) ≠ ϕa(vN). Let
X = {(i, x) ∈ N× A | ui(x) ̸= vi(x)}. IfX is empty, then uN = vN, and hence ϕa(uN) = ϕa(vN).
Suppose thatX is not empty. Consider (i, b) ∈ X . Without loss of generality assume that
ui(b) = l < l′ = vi(b). Consider the profile u′N ∈ Un where only agent i changes his/her grade for only
candidate b from l to l+ 1, and everything else remain same as in uN. More formally, u′N is such that
u′i(b) = l+ 1 and u′j(x) = uj(x) for all (j, x) ∈ N× A such that (j, x) ̸= (i, b).
Claim 1. ϕa(uN) = ϕa(u

′
N).

Proof of the claim. We distinguish the following two cases.

Case 1: Suppose ϕb(uN) ̸= ϕb(u
′
N).
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Note that since from uN to u′N, only agent i changes his/her grade for only b from l to l+ 1, we have
d(uN, u′N) = 1. Therefore, by continuity, ϕb(uN) ̸= ϕb(u

′
N) implies ϕx(uN) = ϕx(u

′
N) for all x ̸= b. This, in

particular, implies ϕa(uN) = ϕa(u
′
N).

Case 2: Suppose ϕb(uN) = ϕb(u
′
N). We distinguish two further sub-cases.

Case 2.1: Suppose ϕb(uN) = ϕb(u
′
N) ≥ l+ 1.

Note that by the construction of u′N, this means from uN to u′N, only agent imoves his/her grade for the
candidate b towards ϕb(uN) and nothing else changes, that is, uj(x) = u′j(x) for all (j, x) ∈ N× A such
that (j, x) ̸= (i, b), and ui(b) ≤ u′i(b) ≤ ϕb(uN). Therefore, we have by update monotonicity,
ϕ(uN) = ϕ(u′N), which in particular means ϕa(uN) = ϕa(u

′
N).

Case 2.2: Suppose ϕb(uN) = ϕb(u
′
N) ≤ l.

Since uj(x) = u′j(x) for all (j, x) ∈ N× A such that (j, x) ≠ (i, b) and ϕb(u
′
N) ≤ ui(b) ≤ u′i(b), we

have by update monotonicity, ϕ(uN) = ϕ(u′N), which in particular means ϕa(uN) = ϕa(u
′
N). This

completes the proof of the claim. □

If u′i(b) ≠ vi(b), then consider the profile u′′N ∈ Un such that u′′i (b) = l+ 2 and u′′j (x) = u′j(x) for all
(j, x) ∈ N× A such that (j, x) ̸= (i, b). By using similar logic as for Claim 1, we can show that
ϕa(u

′′
N) = ϕa(u

′
N). Continuing in this manner, we construct a profile ūN ∈ Un such that ϕa(ūn) = ϕa(uN)

and ūj(x) ̸= vj(x) if and only if (j, x) ∈ X − {(i, b)}. Next, we take (i′, b′) ∈ X − {(i, b)}, and use
similar logic to construct a profile ûN ∈ Un such that ϕa(ûn) = ϕa(uN) and ûj(x) ̸= vj(x) if and only if
(j, x) ∈ X − {(i, b), (i′, b′)}. Continuing in this manner, we arrive at the profile vN and deduce
ϕa(vN) = ϕa(uN), which contradicts our initial assumption that ϕa(vN) ̸= ϕa(uN). This completes the
proof of Lemma .1.1. ■

Lemma .1.2 Every update monotone and continuous collective evaluation rule ϕ : Un → U is
uncompromising.

Proof: Let ϕ : Un → U be an update monotone and continuous collective evaluation rule. By Lemma .1.1,
ϕ is candidate-wise. Therefore, assume that A = {a}. Let a profile uN ∈ Un be such that ui(a) < ϕa(uN).
Take a profile vN ∈ Un such that vi(a) ≤ ϕa(uN). It is enough to show ϕa(vN) = ϕa(uN)where
uj(a) = vj(a) for all j ̸= i. If ui(a) ≤ vi(a) ≤ ϕa(uN), then we are done by update monotonicity of ϕ.
Suppose vi(a) < ui(a) < ϕa(uN). Suppose further that vi(a) = ui(a)− 1. Since vi(a) < ui(a) < ϕa(uN),
by continuity, we have vi(a) < ui(a) ≤ ϕa(vN). By update monotonicity, this means ϕa(vN) = ϕa(uN).
The proof for arbitrary vi(a) < ui(a) follows by repeated application of this argument. ■

Lemma .1.3 Every uncompromising and candidate-wise collective evaluation rule ϕ : Un → U is a min-max
rule.

The proof of this lemma follows from [2].
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.2 Proof of Theorem 2.4.5

Proof: (If part) Let ϕ : Un → U be an extreme min-max rule. Since ϕ is a min-max rule, by the proof of
the if part of Theorem 2.3.5, it follows that ϕ is update monotone. We show that it is consistent. Consider
a candidate a ∈ A and a coaliton S ⊆ N. For all grades l = 1, . . . , k− 1, consider a minimal conflict
profile ulN ∈ Un such that uli(a) = l for all agents i ∈ S, uli(a) = l+ 1 for all agents l ∈ N− S, and
uli(x) = ulj(x) for all agents i, j ∈ N and all candidates x ∈ A− {a}. Consider the profile vN ∈ Un where
vi(a) = 1 for all agents i ∈ S and vi(a) = k for all agents i ∈ N− S. By the definition of ϕ,
ϕa(vN) = βSa ∈ {1, k}. Without loss of generality, let ϕa(vN) = 1. We show that ϕa(u

l
N) = l for all

l = 1, . . . , k− 1. Take l ∈ {1, . . . , k− 1}. Consider the profile v̄N ∈ Un such that v̄i(a) = l for all agents
i ∈ S and v̄j(b) = vj(b) in all other cases, that is, if j /∈ S or if b ̸= a. Suppose ϕa(v̄N) > l. By
uncompromisingness, this means ϕa(vN) > l, a contradiction. So, ϕa(v̄N) ≤ l. Suppose ϕa(v̄N) < l. By
uncompromisingness, this means ϕa(ṽN) < l, where ṽi(a) = k for all agents i ∈ N. However, by the
definition of min-max rule, we have ϕ(ṽN) = k, a contradiction. So, ϕ(v̄N) = l. Now, consider the profile
v̂N ∈ Un such that v̂i(a) = l+ 1 for all agents i ∈ N− S and v̂j(b) = v̄j(b) for all other cases, that is, if
j ∈ S or if b ̸= a. By uncompromisingness, ϕa(v̂N) = l. Note that by the construction of v̂N, v̂i(a) = uli(a)
for all agents i ∈ N. Therefore by the candidate-wise property of ϕ, it follows that ϕa(u

l
N) = l. This

completes the proof of the if part of the theorem.

(Only-if part) The proof of the only-if part follows from the following lemmas. Our first lemma shows
that every update monotone and consistent collective evaluation rule is candidate-wise.

Lemma .2.1 Every update monotone and consistent collective evaluation rule ϕ : Un → U is candidate-wise.

Proof: Let ϕ : Un → U be an update monotone and consistent collective evaluation rule. Consider a
candidate a ∈ A and profiles vN,wN ∈ Un such that vi(a) = wi(a) for all agents i ∈ N. It is sufficient to
prove that ϕa(vN) = ϕa(wN). Without loss of generality, assume for contradiction that ϕa(vN) < ϕa(wN).
Because ϕ is update monotone, we can assume that vi(x) = ϕx(vN) and wi(x) = ϕx(wN) for all agents
i ∈ N and all candidates x ∈ A− {a}. Let S = {i ∈ N | vi(a) ≤ ϕa(vN)}. Let v̂N, ŵN ∈ Un be two
profiles such that

(i) v̂N is a minimal conflict profile at (a, ϕa(vN), S),
(ii) ŵN is a minimal conflict profile at (a, ϕa(wN)− 1, S), and
(iii) v̂i(x) = vi(x) = ϕx(vN) and ŵi(x) = wi(x) = ϕx(wN) for all agents i ∈ N and all candidates

x ∈ A− {a}.
Note that v̂i(a) = ϕa(vN) and ŵi(a) = ϕa(wN)− 1 for all agents i ∈ S and v̂i(a) = ϕa(vN) + 1 and

ŵi(a) = ϕa(wN) for all agents i ∈ N− S. By update monotonicity, ϕa(̂vN) = ϕa(vN) and
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ϕa(ŵN) = ϕa(wN). This means a low grade for a is chosen at v̂N whereas a high grade for a is chosen at ŵN

contradicting that ϕ is consistent. ■

Our next Lemma shows that every update monotone and consistent collective evaluation rule is
uncompromising.

Lemma .2.2 Every update monotone and consistent collective evaluation rule ϕ : Un → U is uncompromising.

Proof: Let ϕ : Un → U be an update monotone and consistent collective evaluation rule. Consider a
candidate a ∈ A. As ϕ is candidate-wise by Lemma .2.1, it is sufficient to prove that ϕa(vN) = ϕa(wN) for
all profiles vN,wN ∈ Un such that for all agents i ∈ N, vi(a) < ϕa(vN) implies wi(a) ≤ ϕa(vN),
ϕa(vN) < vi(a) implies ϕa(vN) ≤ wi(a), and vi(x) = wi(x) for all candidates x ∈ A− {a}. To the
contrary, suppose ϕa(vN) ̸= ϕa(wN). Without loss of generality, assume ϕa(wN) < ϕa(vN). By means of
update monotonicity, we assume that vi(x) = wi(x) = ϕx(vN) for all agents i ∈ N and all candidates
x ∈ A− {a}. Let S = {i ∈ N | vi(a) < ϕa(vN)} and T = {i ∈ N | vi(a) > ϕa(vN)}. Consider the
following two profiles v̂N, ŵN ∈ Un such that

(i) for all agents i ∈ N and all candidates x ∈ A− {a}, v̂i(x) = vi(x) = ϕx(vN) = ŵi(x),
(ii) for all agents i ∈ S, ŵi(a) = ϕa(wN) and v̂i(a) = ϕa(vN)− 1, and
(iii) for all agents i ∈ N− S, ŵi(a) = ϕa(wN) + 1 and v̂i(a) = ϕa(vN).
Note that v̂N is a minimal conflict profile at (a, ϕa(vN)− 1, S) and ŵN is a minimal conflict profile at

(a, ϕa(wN), S). Update monotonicity implies ϕa(ŵN) = ϕa(wN) and ϕa(̂vN) = ϕa(vN). However, as v̂N
and ŵN are minimal conflict profiles, this contradicts the consistency of ϕ. ■

The following Lemma shows that for every update monotone and consistent collective evaluation rule,
the outcome grade of a candidate at a profile is either one of the labels announced by the agents for that
candidate at that profile or one of the highest or the lowest labels for that candidate.

Lemma .2.3 Suppose ϕ : Un → U is an update monotone and consistent collective evaluation rule. Let
uN ∈ Un be a profile and let a ∈ A be a candidate. Then, ϕa(uN) ∈ {u1(a), . . . , un(a)} ∪ {1, k}.

Proof: Let ϕ : Un → U be an update monotone and consistent collective evaluation rule. Let uN ∈ Un be
a profile and let a ∈ A be a candidate. We show that ϕa(uN) ∈ {u1(a), . . . , un(a)} ∪ {1, k}. To the
contrary, suppose ϕa(uN) /∈ {u1(a), . . . , un(a)} ∪ {1, k}. Let S = {i ∈ N | ui(a) < ϕa(uN)}. Because
ϕa(uN) /∈ {u1(a), . . . , un(a)}, we haveN− S = {i ∈ N | ui(a) > ϕa(uN)}. Also, as ϕa(uN) /∈ {1, k}, we
have ϕa(uN) + 1 ∈ G and ϕa(uN)− 1 ∈ G. Let v̂N ∈ Un be a minimal conflict profile at (a, ϕa(uN)− 1, S)
and ŵN be a minimal conflict profile at (a, ϕa(uN), S). By Lemma .2.1, ϕa(̂vN) and ϕa(ŵN) are
independent of v̂i(x) and ŵi(x) for all agents i ∈ N and all candidates x ∈ A− {a}. Because ϕ is update
monotone, it follows that ϕa(̂vN) = ϕa(uN) = ϕa(ŵN). However, this contradicts that ϕ is consistent. ■
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Now, we are ready to complete the proof of Theorem 2.4.5. Let ϕ : Un → U be an update monotone
and consistent collective evaluation rule. By Lemma .2.2 and the if-part of Theorem 2.3.5, this means ϕ is
continuous. Now, by Theorem 2.3.5, we obtain that ϕ is a min-max rule. Suppose (βSa)a∈A,S⊆N are the
parameters of ϕ. It remains to show that βSa ∈ {1, k} for all candidates a ∈ A and all S ⊆ N. Consider a
candidate a ∈ A and a coalition S ⊆ N. Note that by the definition of min-max rule, βSa is the outcome of
ϕ at a profile where ui(a) = 1 for all i ∈ S and ui(a) = k for all agents i ∈ N− S. By Lemma .2.3, the
outcome of ϕ at such a profile is either 1 or k, which completes the proof of the only-if part of the theorem.
■

.3 Topological justification of continuity

A function F from a setA to another setB is continuous if the inverse image F−1(B) of an open set B inB
is open inA. Thus, the definition of continuity requires the notion of open sets, that is, the notion of
topologies on both the domainA and the rangeB of F. Such a topology is standard whenA andB are
Euclidean spaces. However, in case of finite sets, there is no unified notion of topologies. In what follows,
we define a natural topology on graphs and show that the notion of continuity that arises from this
topology coincides with that in Definition 2.3.2.

Let GA = (A, EA) and GB = (B, EB) be (undirected) graphs with vertex setsA andB, respectively.
In our case, these graphs are defined as follows.

The setA is the set of profiles U n and {uN, vN} ∈ EA if and only if there are a ∈ A and i ∈ N such that

(i) uj(x) = vj(x) for all j ∈ N and all x ∈ A such that either j ̸= i or a ̸= x, that is, for all
agent-candidate pairs (j, x) such that (j, x) ̸= (i, a), and

(ii) ui(a) = vi(a) + 1.

Thus, two profiles form an edge if and only if they differ minimally, that is, only one agent differs from one
of them to the other and that too by exactly one grade for one particular candidate.

The setB is the set of evaluations U and {u, v} ∈ EB if and only if there is a ∈ A such that

(i) u(x) = v(x) for all x ∈ Awith a ̸= x, and

(ii) u(a) = v(a) + 1.

Thus, two evaluations form an edge if and only if they differ in a minimal way, that is, by exactly one grade
of one particular candidate.
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Define the topology τA as follows: a subsetO ofA ∪ EA is open if x ∈ O ∩ A and {x, y} ∈ EA for
some y ∈ A imply {x, y} ∈ O.This, in particular, means, for instance, that every collection of edges is
open, and every setOwith the following property is open: if a vertex is inO, then all its adjacent edges are
also inO. Similarly, define the topology τB as the collection of subsetsO ofB ∪ EB such that if
x ∈ O ∩ B and {x, y} ∈ EB for some y ∈ B, then {x, y} ∈ O.

For a vertex z inA, define its neighborhoodNGA(z) = {z} ∪ {{z, v} : {z, v} ∈ EA}. So, the
neighborhood of z in GA consists of the vertex z and all the edges that are adjacent to z. Similarly, we
define the neighborhoodNGB(z) for any z ∈ B.

Call a function F̃ fromA ∪ EA toB ∪ EB an extension of a function F fromA toB if F(x) = F̃(x) for
all x ∈ A.We say that F̃ is continuous if F̃−1(O) ∈ τA for allO ∈ τB.

Lemma .3.1 Let F̃ fromA ∪ EA toB ∪ EB be a continuous extension of a function F fromA toB. Suppose
{x, y} ∈ EA.Then F̃({x, y}) ∈ NGB(F(x)).

Proof: Note thatNGB(F(x)) ∈ τB. So, F̃−1(NGB(F(x))) ∈ τA. But by definition x ∈ F̃−1(NGB(F(x)))
and therewithNGA(x) ⊆ F̃−1(NGB(F(x))). As {x, y} ∈ NGA(x) it follows that F̃({x, y}) ∈ NGB(F(x)).
■

Note that an open setO in GA, i.e., an element of τA, consists of a collection of edges in EA and some
neighborhoodsNGA(x) of the vertices x ∈ O.

Lemma .3.2 Let F̃ fromA ∪ EA toB ∪ EB be an extension of a function F fromA toB. Further, let
F̃({x, y}) ∈ NGB(F(x)) for all {x, y} ∈ EA. Suppose z ∈ B.Then, F̃−1(NGB(z)) is in τA.

Proof: If there is no x inA such that F(x) = z, then F̃−1(NGB(z)) is either empty or consist of (only)
some edges in EA, and hence is open. So, suppose x inA is such that F(x) = z. It is sufficient to prove
thatNGA(x) ⊆ F̃−1(NGB(z)).However, this follows by the assumption that F̃({x, y}) ∈ NGB(F(x)) for
all {x, y} ∈ EA. ■

The above implies the following corollary.

Corollary .3.1 Let F̃ fromA ∪ EA toB ∪ EB be an extension of a function F fromA toB. Then,
(i) F̃ is continuous if and only if F̃({x, y}) ∈ NGB(F(x)) for all {x, y} ∈ EA, and
(ii) if F(x) ̸= F(y) and {x, y} ∈ EA, then F̃({x, y}) = {F(x), F(y)} ∈ EB.

Proof: The proof of (i) follows from Lemmas .3.1 and .3.2. For the proof of (ii), let F(x) ̸= F(y) and
{x, y} ∈ EA. It is sufficient to prove that F̃({x, y}) = {F(x), F(y)}. By Lemma .3.1, F̃({x, y}) is in the
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intersection ofNGB(F(x)) andNGB(F(y)). Now, the proof follows from the fact that these two
neighborhoods have only {x, y} in common. ■

Note that for two distinct profiles uN and vN, we have {uN, vN} ∈ EA if and only if d(uN, vN) = 1, and
for two distinct evaluations u and v, we have {u, v} ∈ EB if and only if d(u, v) = 1. Therefore, it follows
from Corollary .3.1 that a function F : A → B is continuous with respect to the topology defined above
if and only if d(uN, vN) = 1 implies d(F(uN), F(vN)) ≤ 1 as required in Definition 2.3.2.
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3
A characterization of possibility domains under Pareto

optimality and group strategy-proofness

3.1 Introduction

We consider domains satisfying two mild conditions, namely pervasiveness and top-connectedness.
Almost all well-known domains in both one-dimension and multiple-dimensions satisfy these conditions.
We provide a necessary and sufficient condition on these domains for the existence of non-dictatorial,
Pareto optimal, and group strategy-proof choice rules. By applying our result, we show that a domain on a
graph admits such rules if and only if the graph has a terminal node. We further show that generalized
circular domains, partially single-peaked domains, a large class of separable domains and lexicographic
domains do not admit non-dictatorial, Pareto optimal, and group strategy-proof choice rules.

A closely related paper is [75] where the same analysis is done for unanimous and strategy-proof
choice rules. However, they impose some technical condition on the domains (apart from pervasiveness
and top-connectedness). [79] shows that circular domains and [1] and [72] show that a particular type of
partially single-peaked domains do not admit non-dictatorial, unanimous, and strategy-proof choice rules.
Their notions of these domains are quite restrictive. We show that in the presence of unanimity, if one

21



strengthens strategy-proofness by group strategy-proofness, then he/she cannot obtain a non-dictatorial
rule on a much generalized class of such domains.

Most striking consequence of our result is that separable or lexicographic multi-dimensional domains
do not admit non-dictatorial, Pareto optimal, and group strategy-proof choice rules–even if the marginals
are restricted, for instance, single-peaked. This is in sharp contrast with the result in [14] where it is
shown that component-wise dictatorial rules (they are not dictatorial) are unanimous and strategy-proof
on these domains.

3.2 Model

For any set B, we denote byL(B) the set of all linear orders (transitive, antisymmetric, and complete
binary relations) on B. An element ofL(B) is called a preference over B.

LetN = {1, . . . , n} be a set of agents and let A be a set of alternatives, where |A| ≥ 3 and n ≥ 2. A
domain (of admissible preferences)D is a subset ofL(A). We denote by τ(R) the best (top-ranked)
alternative in R ∈ D. For all the domains we consider in this paper, it is assumed that for all x ∈ A there is
R ∈ Dwith τ(R) = x.

A profile p is anN-tuple of individual preferences inDN. A profile p is unanimous if p(i) = p(j) for all
i, j ∈ N. A subset S ofN is called a coalition. The restriction of a profile p to a coalition S is denoted by p|S.

For a preference R and two alternatives x and y, we write R ≡ xy · · · to mean x is the best and y is the
second-best alternative in R. To save parentheses we write xy ∈ R instead of (x, y) ∈ R,which has the
usual interpretation that x is (weakly) preferred to y at R.

The notion of inseparable pairs is introduced in [49]. An ordered pair of alternatives (x, y) is called an
inseparable top-pair if for all R ∈ Dwith τ(R) = x, yz ∈ R for all z ∈ A \ {x, y}.

A domainD is called pervasive if for all x, y ∈ A, R ≡ xy · · · is inD implies there is R′ ≡ yx · · · inD.
Two alternatives x and y in A are called directly top-connected, denoted by x ↭ y, if there are R,R′ ∈ D
such that R ≡ xy · · · and R′ ≡ yx · · · . A domainD is called top-connected if for every two alternatives x, y
there is a sequence x1 = x, . . . , xk = y such that xl and xl+1 are directly top-connected for all
l = 1, . . . , k− 1. The notion of top-connectedness is introduced in [3].

In this paper, we restrict our attention to the domains that are both pervasive and top-connected.
We now introduce choice rules and a few properties of those. A choice rule is a function ϕ : DN → A. A

choice rule ϕ is said to be unanimous if for all unanimous profiles the rule ϕ selects the (common) best
alternative of the agents at the profile. A choice rule ϕ is Pareto optimal if for all profiles p there is no
alternative x different from ϕ(p) such that xϕ(p) ∈ p(i) for all agents i ∈ N. A choice rule ϕ is called
dictatorialwith an agent i as the dictator, if for all profiles p, ϕ(p) = τ(p(i)). A choice rule ϕ is
strategy-proof if for all agents i ∈ N and all profiles p and qwith p|N\{i} = q|N\{i}, we have either
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ϕ(p) = ϕ(q) or ϕ(p)ϕ(q) ∈ p(i). A choice rule ϕ is group strategy-proof if for all coalitions S and all
profiles p and qwith p|N\S = q|N\S, we have either ϕ(p) = ϕ(q) or ϕ(p)ϕ(q) ∈ p(i) for some i ∈ S. Note
that group strategy-proofness and unanimity imply Pareto optimality.

3.3 Results

We now present the main result of this paper and discuss a few applications of it.

Theorem 3.3.1 LetD be a pervasive and top-connected domain. Then there exist non-dictatorial, Pareto
optimal, and group strategy-proof choice rules onD if and only ifD has an inseparable top-pair.

3.3.1 Domains on graphs

LetG = (A, E) be an undirected connected graph over A. A preference R respectsG if for all
x, y ∈ A \ τ(R), x lies in every path from τ(R) to y implies xy ∈ R.¹ A domainD respects a graphG if it
contains all preferences that respectG.

Note that by definition, every domain on a graph is pervasive and top-connected. Furthermore, a
domain on a graph has an inseparable top-pair if and only if the graph has a terminal node.² Therefore, we
have the following corollary of Theorem 3.3.1.

Corollary 3.3.1 Let G be an arbitrary connected graph and letD be the domain with respect to G. Then, there
exists a non-dictatorial, Pareto optimal, and group strategy-proof choice rule onD if and only if G has a terminal
node.

3.3.2 Generalized circular domains

Generalized circular domains are generalization of the circular domains analyzed in [79]. Suppose that
A = {x1, . . . , xm}. A domain C is called generalized circular if for all xk ∈ A there exist R,R′ ∈ C such
that R ≡ xkxk+1 · · · and R′ ≡ xkxk−1 · · · , where xm+1 = x1 and x0 = xm. Note that the domain with
respect to the graphG = (A, E), where E = {{x1, x2}, . . . , {xk−1, xk}, {xk, x1}}, is the unrestricted
domain. Thus, generalized circular domains are not special cases of domains on graphs. Further note that
by definition, a generalized circular domain C is pervasive and top-connected. Clearly, such a domain
does not have an inseparable top-pair. Thus, we have the following corollary of Theorem 3.3.1.

Corollary 3.3.2 Every Pareto optimal and group strategy-proof choice rule on a generalized circular domain is
dictatorial.

¹A path in a graph is a sequence of nodes such that every two consecutive nodes share an edge.
²A node is called terminal if its degree is one.
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It is worth mentioning that the result in [79] does not apply to generalized circular domains. In fact, there
are non-dictatorial, unanimous, and strategy-proof choice rules on these domains.

3.3.3 Partially single-peaked domains

[72] and [1] consider multiple single-peaked domains and partially single-peaked domains, respectively,
and provide a characterization of the unanimous and strategy-proof choice rules on such domains. Here,
we generalize these domains and provide a necessary and sufficient condition for the existence of
non-dictatorial, Pareto optimal, and group strategy-proof choice rules.

For ease of presentation, we assume that the set of alternatives is the integers {1, . . . ,m}. A preference
R is single-peaked over an interval [x, x] if for all x, y ∈ A such that at least one of x and y is in [x, x], we
have τ(R) ≤ x < y or y < x ≤ τ(R) implies xy ∈ R.

A domain is partially single-peaked over a collection of intervals [x1, x1], . . . , [xk, xk] if each preference
in it is single-peaked over all those intervals. A domainD is single-peaked if it is partially single-peaked
over the interval [1,m]. A domain is tail-single-peaked if it is partially single-peaked over the intervals of
the form [1, x] and [x,m], where 2 < x < x < m− 1.

Corollary 3.3.3 A pervasive and top-connected partially single-peaked domainD admits a non-dictatorial,
Pareto optimal, and group strategy-proof choice rule if and only if it is tail-single-peaked.

Corollary 3.3.3 also holds for a class of single-crossing domains ([78]) since those domains are pervasive
and top-connected.

3.3.4 Multi-dimensional domains

Let A =
∏

l∈M Al whereM = {1, . . . , k} is a finite set of components, and for each component l ∈ M,
the component set Al contains finitely many elements with |Al| ≥ 2.

A preference R is lexicographic if there exists a (unique) component order R0 ∈ L(M) and a (unique)
marginal preference Rl ∈ L(Al) for each l ∈ M such that for all a, b ∈ A, we have[
albl ∈ Rl for some l ∈ M and al′ = bl′ for all l′l ∈ R0

]
⇒ [ab ∈ R].

A preference R is separable if there exists a (unique) marginal preference Rl for each l ∈ M such that for
all a, b ∈ A, we have [albl ∈ Rl and a−l = b−l for some l ∈ M] ⇒ [ab ∈ R].

For a collection of domainsD0 ⊆ L(M),D1 ⊆ L(A1), . . . ,Dk ⊆ L(Ak), we denote by S(D1, . . . ,Dk)

the set of all separable preferences with marginal preferences inD1 × . . .×Dk, and byL(D0,D1, . . . ,Dk)

the set of all lexicographically separable preferences with component orders inD0 and marginal
preferences inD1 × . . .× Dk.

We sayD0 ⊆ L(M) satisfies anti-regularity if for all l ∈ M, there is R0 ∈ D0 such that l is the
bottom-ranked component in R0.
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Note that ifDl is pervasive and top-connected for all l = 1, . . . , k, then S(D1, . . . ,Dk) is also pervasive
and top-connected. Further, ifD0 is anti-regular, thenL(D0,D1, . . . ,Dk) too is pervasive and
top-connected. Verification of these facts is left to the reader.

Corollary 3.3.4 LetDl be pervasive and top-connected for all l = 1, . . . , k. Then, every Pareto optimal and
group strategy-proof choice rule on the separable domain S(D1, . . . ,Dk) is dictatorial. Furthermore, ifD0 is
anti-regular, then every Pareto optimal and group strategy-proof choice rule on the lexicographic domain
L(D0,D1, . . . ,Dk) is dictatorial.

Remark 3.3.2 It is worth noting that Corollary 3.3.4 does not hold if we replace Pareto optimality and group
strategy-proofness by unanimity and strategy-proofness. In fact, it is shown in [14] that every unanimous and
strategy-proof rule on the maximal lexicographic or the maximal separable domain is component wise
dictatorial. To the contrary, with Pareto optimality and group strategy-proofness, we get dictatorship even when
marginals are restricted, for instance, are single-peaked.

Appendix

.1 Proof of Theorem 3.3.1

If part of the proof follows from Example 3.1 of [75]. The proof of the only-if part is also similar to the
proof of the only-if part of Theorem 1 in [75] with the only difference that Lemmas 3 and 5 are to be
modified for our case. We present below these modified lemmas.

The following notations and notions are used in the proofs of Lemmas 1, 2, and 4 in [75] and also in
the proofs below. For a coalition S, we denote by ((R)S, (R′)N\S) a profile pwhere p(i) = R for all i ∈ S
and p(i) = R′ for all i ∈ N \ S. We call such a profile (S,N \ S)-unanimous. Additionally, if τ(R) = x and
τ(R′) = y, then such a profile is said to be xy-(S,N \ S)-unanimous. We say a coalition S is decisive on a
pair of alternatives (x, y) for a choice rule ϕ if ϕ(p) = x for all xy− (S,N \ S)-unanimous profiles p, and
we say that a coalition S is decisive for ϕ if for all R ∈ Dwith τ(R) = x and all p|N\S ∈ DN\S, we have
ϕ(RS, p|N\S) = x. We say that a choice rule ϕ is alternative decisive if for all coalitions S either S is decisive
orN \ S is decisive.

Lemma .1.1 (Modified Lemma 3) Let ϕ : DN → A be a Pareto optimal and strategy-proof choice rule. Let
a ↭ b and b ↭ c, where a, b and c are three different alternatives. Let S ⊆ N be decisive on all
ab-(S,N \ S)-unanimous profiles. Then S is decisive on all bc-(S,N \ S)-unanimous profiles.

Proof: Let ϕ : DN → A be a Pareto optimal and strategy-proof choice rule. Let a ↭ b and b ↭ c, where
a, b and c are three different alternatives. Let S ⊆ N be decisive on all ab-(S,N \ S)-unanimous profiles.
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We show that S is decisive on all bc-(S,N \ S)-unanimous profiles. Assume for contradiction that S is not
decisive on all bc-(S,N \ S)-unanimous profiles. Then Lemma 2 of [75] impliesN \ S is decisive on all
bc-(S,N \ S)-unanimous profiles. Consider Rab inDa and Rcb inDc such that Rab ≡ ab · · · and
Rcb ≡ cb · · · .Take a profile p such that p(i) = Rab for all i ∈ S and p(i) = Rcb for all i ∈ N \ S. As ϕ is
Pareto optimal, this means ϕ(p) ∈ {a, b, c}. Consider a profile qwhere q(i) = Rba,with Rba ≡ ba · · · ,
for all i ∈ S and q(i) = p(i) for all i ∈ N \ S. AsN \ S is decisive on all bc-(S,N \ S)-unanimous profiles,
ϕ(q) = c.This means ϕ(p) /∈ {a, b} as otherwise strategy-proofness will be violated at q via p. Similarly
we have ϕ(p) /∈ {b, c} as S is decisive on all ab-(S,N \ S)-unanimous profiles. So, ϕ(p) /∈ {a, b, c}, a
clear contradiction. So, S is decisive on all bc-(S,N \ S)-unanimous profiles. ■

Lemma .1.2 (Modified Lemma 5) Let for all finite and non-empty subsets N′ of N every Pareto optimal and
group strategy-proof choice rule ϕ′ : DN′ → A be alternative decisive. Let ϕ : DN → A be a Pareto optimal
and group strategy-proof choice rule. Then ϕ is dictatorial.

Proof: LetN = {1, ..., n} and consider the following sequence of choice functions ϕ1 up to ϕn−1 fromDN1

up toDNn−1 to A, respectively, whereNk = {1, ..., k} and ϕk is defined as follows. For all k fix the same
linear order R. For p ∈ DNk define ϕk(p) = ϕ(p,RN\Nk

). Because ϕ is strategy-proof it follows that ϕk is
strategy-proof for all k ∈ {1, ..., n− 1}.Note that if ϕk is dictatorial with dictator ik in {1, ..., k}, then {ik}
is decisive at ϕ at every profile profile qwhere q(j) = R for all j ∈ N \ {ik}. Because ϕ is alternative
decisive this yields that ϕ is dictatorial with dictator ik. So, dictatorship of ϕk implies dictatorship of ϕ.

Now eitherNn−1 is decisive at ϕ or {n} is decisive. In the latter case we have the desired result that ϕ is
dictatorial. In the former case we have ϕn−1 is unanimous by decisiveness ofNn−1 at ϕ. Also ϕ is group
strategy-proof. As group strategy-proofness and unanimity imply Pareto optimality, ϕ is Pareto optimal.
Therefore ϕn−1 is alternative decisive. So, eitherNn−2 or {n− 1} is decisive at ϕn−1. In case {n− 1} is
decisive at ϕn−1 we have that ϕn−1 is dictatorial. Hence, ϕ is dictatorial, the desired result. In caseNn−2 is
decisive at ϕn−1 we may proceed to ϕn−2 and prove similarly that either ϕ is dictatorial with dictator n− 2
or ϕn−3 is a unanimous and strategy-proof choice rule. This process stops certainly at ϕ1 as obviously {1}
is decisive at ϕ1 and therefore ϕ is dictatorial with agent 1 as the dictator. ■
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4
Necessary and sufficient conditions for pairwise
majority decisions on path-connected domains

4.1 Introduction

We consider standard social choice problems where a group of agents have to collectively decide an
alternative from a set of feasible alternatives. A choice function selects an alternative for every collection
of individual preferences.

We impose desirable conditions on choice functions such as unanimity, anonymity, symmetry, and
group strategy-proofness. A choice function is unanimous if, whenever all the individuals have the same
preference, their common top-ranked alternative is chosen. It is called anonymous if it treats all the
individuals equally. Symmetry ensures that if the role of two alternatives (at the top of preferences) are
interchanged at certain type of profiles, the outcome is also interchanged accordingly. A choice function is
called group strategy-proof if no group of agents can be strictly better off by misrepresenting their
preferences, and is called strategy-proof if no individual can be better off by misrepresenting his/her
preference.
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A preference is called single-peaked on a tree if the alternatives can be arranged on a tree¹ so that
preference declines as one moves away from the top-ranked alternative. Such preferences are well-known
in the literature for their usefulness in modelling public good location problems.

We assume a mild structure called path-connectedness (see, [3]) on the domains we consider in this
paper. Theorem 4.4.1 shows that a path-connected domain admits unanimous, anonymous, symmetric,
and group strategy-proof choice functions if and only if it is single-peaked on a tree and the number of
agents is odd. It follows as a corollary of this result that there exists no unanimous, anonymous,
symmetric, and group strategy-proof choice function on a path-connected domain if the number of
agents is even. When the number of agents is odd, Theorem 4.4.2 characterizes all unanimous,
anonymous, symmetric, and group strategy-proof choice functions on single-peaked domains on trees as
the tree-median rule. Finally, we investigate what happens if we replace group strategy-proofness by
strategy-proofness. Theorem 4.5.2 says that if we strengthen the notion of path-connectedness in a
suitable manner, then the conclusion of Theorem 4.4.1 can be achieved with strategy-proofness, that is, a
strongly path-connected domain admits unanimous, anonymous, symmetric, and strategy-proof choice
functions if and only if it is a single-peaked domain on a tree.

An alternative is called the pairwise majority winner at a profile if it beats every other alternative
according to pairwise majority comparison and a choice function is called the pairwise majority rule if it
selects the pairwise majority winner at every preference profile. [27] argued that if such a majority winner
exists at a profile, we should choose it on the basis of “straightforward reasoning”. The analysis of the
pairwise majority rule dates back to [10], [27], and [56]. [9] shows that the pairwise majority rule exists
on domains that are single-peaked on a line. Later, [31] generalizes this result by showing that the
pairwise majority rule exists on a domain even if the domain is single-peaked on a tree. [41] consider the
problem of locating a public facility and show that the outcome of the pairwise majority rule on a
single-peaked domain on a tree minimizes the total distance traversed by the users to go to the facility.
They further prove that this property holds for a single-peaked domain only when the underlying graph is
a tree. [63] characterizes the pairwise majority rule on domains that are single-peaked on a line. [28]
shows that strategy-proof and tops-only SCFs on a single-peaked domain on a tree can be recursively
decomposed into medians of constant and dictatorial rules.

[81] consider single-peaked domains on tree when preferences are Euclidean with respect to the graph
distance and show that an SCF on such a domain is strategy-proof and unanimous if and only if it is an
extended generalized median voter scheme. [65] introduce a class of generalized single-peaked domains
based on an abstract betweenness property and show that an SCF is strategy-proof on a sufficiently rich
domain of generalized single-peaked preferences if and only if it takes the form of voting by issues. They

¹A connected graph is called a tree if it has no cycle.
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also provide a characterization of such domains that admit SCFs satisfying strategy-proofness, unanimity,
neutrality, and non-dictatorship/anonymity. We provide a detailed discussion on the connection of our
paper with these papers in Section 4.6.

[60] considers the problem of preference aggregation with exactly two alternatives and characterizes
the pairwise majority aggregation rule in this setting by means of always decisiveness, equality, symmetry,
and positive responsiveness. Later, [48] and [83] provide necessary and sufficient conditions on a
domain so that the pairwise majority aggregation rule is transitive.

It is worth mentioning that the tree-median rule coincides with the pairwise majority rule on domains
that are single-peaked on a tree.² Thus, the main contributions of our paper can be considered as (i) a
characterization of domains that are single-peaked on trees by means of choice functions satisfying
natural conditions such as unanimity, anonymity, symmetry, and group
strategy-proofness/strategy-proofness, and (ii) a characterization of the pairwise majority rule on these
domains as the only choice function satisfying the above mentioned properties. Thus, in addition to the
existing results where single-peakedness on trees is proved to be sufficient for the existence of the pairwise
majority rule, we show that under some natural conditions, it is also necessary for the same.

Characterizing domains by means of the choice functions that they admit is considered as an important
problem in the literature. [24] characterize single-peaked domains on arbitrary trees by means of
strategy-proof, unanimous, tops-only random social choice functions satisfying a compromise property
and [71] shows that every minimally rich and connected Condorcet domain which contains at least one
pair of completely reversed orders must be single-peaked.

The rest of the paper is organized as follows. Section 4.2 presents the notion of single-peaked domains
on trees and Section 4.3 introduces the notion of the tree-median rule. Main results of the paper are
presented in Section 4.4. Section 4.5 shows how group strategy-proofness can be replaced with
strategy-proofness in our main result. All the proofs, as well as the independence of the axioms used in
our main result, are collected in the Appendix.

4.2 Domains and their properties

Let A denote the set of alternatives and letN = {1, . . . , n} denote the set of n agents, where n is at least 2.
We denote byL(A) the set of all linear orders (reflexive, transitive, antisymmetric, and complete binary
relations) on A. An element ofL(A) is called a preference. Note that preferences are strict by definition.
An admissible set of agents’ preferences (or a domain)D is a subset ofL(A). A profile is a collection of
preferences, one for each agent. More formally, a profile p is an element ofDn.

²Despite the fact that the tree-median rule is nothing but the pairwisemajority rule, we use the former term as for the special
case when the tree is a line, this rule is called the median rule in the literature.
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For ease of presentation, we do not use braces for singleton sets and use the following notations
throughout the paper. Let R be a preference and let a and b be two alternatives (not necessarily distinct)
in A. To save parentheses, we write ab ∈ R instead of (a, b) ∈ R,which has the usual interpretation that a
is (weakly) preferred to b at R.When a and b are distinct, we write R ≡ · · · ab · · · to mean that a is
ranked just above b at R. In line with this, we write R ≡ ab · · · to mean that a is the top-ranked and b is
the second-ranked alternative at R. Notations like R ≡ · · · a · · · b · · · , R ≡ a · · · , and R ≡ · · · a have
self-explanatory interpretations.

The top-ranked alternative at a preference R is denoted by τ(R).The set of the top-ranked alternatives
of the preferences in a domainD is denoted by τ(D), that is,
τ(D) = {a ∈ A : τ(R) = a for some R ∈ D}. We assume that τ(D) is a finite set ofm alternatives.

Next, we introduce the notion of graphs. An (undirected) graphG = (V(G), E(G)) is a tuple where
V(G) is the set of vertices and E(G) ⊆ {{a, b} : a, b ∈ V(G)} is the set of edges. A sequence of vertices
x1, . . . , xk is called a path inG if {xl, xl+1} ∈ E for all 1 ≤ l < k. A path x0, x1, . . . , xk inG is called a cycle
if k ≥ 3, x0 = xk, and xs ̸= xt for all 0 ≤ s < t ≤ k. A graph is called a tree if it has no cycles. For a tree
and two vertices a and b, we denote by π(a, b) (whenever the tree is clear from the context) the unique
path between a and b.

Two alternatives a and b in A are called top-connected (inD) if there are R,R′ ∈ D such that R ≡ ab · · ·
and R′ ≡ ba · · · . We use the notation a ↭ b to mean that a and b are top-connected. The induced graph
of a domainD is defined as the undirected graph G(D) = (τ(D), E),where E is the set of edges
consisting of all pairs of top-connected alternatives, that is, E = {{a, b} ⊆ τ(D) : a ↭ b}.Two
alternatives a and b are called path-connected if there is a path from a to b in G(D). A domainD is called
path-connected if every two alternatives in τ(D) are path-connected (see, [3]).

A subset S ofN is called a coalition. The restriction of a profile p to a coalition S is denoted by p|S. For a
coalition S and preferences R and R′ inD, theN-tuple ((R)S, (R′)N\S) denotes the profile pwhere
p(i) = R for all agents i in S and p(i) = R′ for all agents i inN \ S.

We introduce the notion of single-peaked domains on trees. A preference is single-peaked on a tree if it
has the property that as one goes far away along any path from its top-ranked alternative, preference
decreases.

Definition 4.2.1 Let T be a tree with V(T) ⊆ A. A domainD is called single-peaked on T if τ(D) = V(T)
and for all R ∈ D and all a, b ∈ τ(D), a ∈ π(τ(p(i)), b) implies ab ∈ R.

Note that for a domainD that is single-peaked on a tree, there is no restriction on the ordering of the
alternatives outside τ(D). We present an example of a single-peaked domain on a tree.
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Example 4.2.2 Let the set of alternatives be A = {a1, a2, a3, a4, a5, a6, a7}. Consider the tree T in Figure
4.2.1 with V(T) = {a1, a2, a3, a4, a5}. In Table 4.2.1, we present a single-peaked domain on this tree.

a2

a1

a3

a4 a5

Figure 4.2.1: Tree for Example 4.2.2

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

a1 a1 a2 a2 a2 a2 a2 a3 a3 a4 a4 a4 a4 a4 a5 a5
a2 a2 a1 a6 a3 a4 a4 a7 a2 a2 a2 a6 a5 a5 a4 a6
a6 a4 a4 a1 a7 a5 a7 a2 a6 a7 a5 a2 a6 a2 a6 a4
a3 a7 a7 a4 a1 a6 a5 a6 a4 a6 a3 a3 a2 a6 a2 a2
a4 a3 a6 a3 a4 a3 a1 a4 a1 a1 a6 a7 a7 a1 a3 a1
a5 a6 a5 a5 a5 a7 a3 a5 a5 a3 a1 a5 a1 a3 a7 a7
a7 a5 a3 a7 a6 a1 a6 a1 a7 a5 a7 a1 a3 a7 a1 a3

Table 4.2.1: The single-peaked domain with respect to the tree in Figure 4.2.1

4.3 Choice functions and their properties

A choice function ϕ is a mapping fromDn to A. A choice function ϕ is unanimous if, whenever all the agents
agree on their preferences, the top-ranked alternative of that common preference is chosen. More
formally, ϕ : Dn → A is unanimous if for all profiles p ∈ Dn such that p(i) = R for all agents i ∈ N and
some R ∈ D, we have ϕ(p) = τ(R). A choice function ϕ is called anonymous if it is symmetric in its
arguments. In other words, anonymous choice functions disregard the identities of the agents. A choice
function ϕ is strategy-proof if no agent can change its outcome in his/her favor by misreporting his/her
sincere preference. More formally, ϕ : Dn → A is strategy-proof if for all agents i ∈ N and all profiles
p, q ∈ Dn with p|N\i = q|N\i, we have ϕ(p)ϕ(q) ∈ p(i). A choice function ϕ is group strategy-proof if for
all non-empty coalitions S ofN and all profiles p, q ∈ Dn with p|N\S = q|N\S, we have either ϕ(p) = ϕ(q)
or ϕ(p)ϕ(q) ∈ p(i) for some i ∈ S.
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Next, we introduce the notion of symmetry. Symmetry has some resemblance with neutrality, however
they are not the same.³ Suppose that the agents are divided into two groups such that all agents in each
group have the same preference. Suppose further that two alternatives a and b appear at the top two
positions in each preference. Symmetry says that if the outcome of such a profile is a and the two groups
interchange their preferences, then the outcome of the new profile will be b. In other words, symmetry
ensures that if the roles of two alternatives are interchanged at certain type of profiles, the outcome is also
interchanged accordingly. Note that symmetry is different from neutrality as it applies to a very specific
class of profiles and only to the top-two ranked alternatives.

Definition 4.3.1 We say that a choice function ϕ satisfies symmetry if for all R ≡ ab · · · and R′ ≡ ba · · · ,
and all subsets S of N, we have

ϕ((R)S, (R′)N\S) = a if and only if ϕ((R′)S, (R)N\S) = b.

4.3.1 Tree-median rule

The tree-median rule is an appropriate extension of the median rule defined in the context of
single-peaked domains on lines. We first provide an verbal description of these rules. Suppose that the
alternatives are named as a1, . . . , am and that they are arranged on a line in the following order:
a1 ≺ · · · ≺ am. Note that the median of a subset of alternatives B can be defined as the (unique)
alternative a such that |{b ∈ B : b ≺ a}| < |B|

2 and |{b ∈ B : b ≻ a}| < |B|
2 . For instance, if

B = {a1, a3, a4, a9, a11}, then a4 is the unique alternative that satisfies the condition that
|{b ∈ B : b ≺ a4}| = |{a1, a3}| < 2.5 and |{b ∈ B : b ≻ a4}| = |{a9, a11}| < 2.5. In other words, the
number of alternatives which lie in any particular ‘direction’ of the median must be less than the half of the
cardinality of the set. Here, two alternatives are said to be in the same direction with respect to an
alternative a if they lie in the same component of the (possibly disconnected) graph that is obtained by
deleting the alternative a from the line. We implement this idea on a tree.

Consider a tree T = (V, E). For a vertex a of T, we denote by T−a the graph that is obtained by
deleting the alternative a (and all the edges involving a) from T, that is, T−a = {V̂, Ê}, where V̂ = V \ a
and {x, y} ∈ Ê if and only if {x, y} ∈ E and a /∈ {x, y}. Note that T−a is a disconnected graph unless a is
a terminal node in T.⁴ A component C of T−a is defined as a maximal set of vertices of T−a that are
connected via some path in T−a. Below, we provide an example of a tree T, and show the components of
T−a for some vertex a.

³[65] define a notion that is very similar to symmetry and call it neutrality. We use a different term to avoid confusion.
⁴A node is called terminal if it has degree 1.
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Example 4.3.2 Consider the tree T as given in Figure 4.3.1. Consider the vertex a6. The components of T−a6

are shown in Figure 4.3.2.

Now, we are ready to define the notion of the median with respect to a tree. Let T = (V, E) be a tree.
For a subset V̂ of V, define the median of V̂ (with respect to T) as the unique vertex a ∈ V such that for
each component C of T−a, we have

|V̂ ∩ C| < |V̂|
2
.

Whenever the tree T is clear from the context, we denote the median of a set V̂ ⊆ Vwith respect to T by
median(V̂). The following example explains the idea of the median of a set. It should be clear from this
example that the median of a set may not lie within the set.

Example 4.3.3 Consider the tree T with V(T) = {a1, . . . , a10} as given in Figure 4.3.1. Consider the subset
V̂ = {a1, a4, a7, a8, a9} of V. We show that the median of V̂ is a6. The components C1, C2, C3 of T−a6 are shown
in Figure 4.3.2. Note that in each of these components, the number of elements from V̂ is less than the half of the
cardinality of V̂. For instance, the elements of V̂ that are in Component C1 are a1 and a4. This proves that the
median of V̂ is a6. We proceed to show that a6 is the unique vertex that satisfies this property. Note that since
n
2 = 2.5, a vertex v cannot be the median if a component in T−v has more than two vertices. Consider the vertex
a4. Then, there is a component C = {a6, a7, a8, a9, a10} in T−a4 that contains three elements a7, a8, a9 from V̂.
By using a similar logic, for any vertex v in {a1, a2, a3, a5} there is a component in T−v containing the vertices
a7, a8, a9, for any vertex v in {a8, a9, a10} there is a component in T−v containing the vertices a1, a4, a7, and for
a7 there is a component in T−a7 containing the vertices a1, a4, a8, a9 from V̂. Since for each of these vertices, there
is a component having more than two elements from V̂, none of them satisfies the requirement for being the
median. This shows that a6 is the unique median.

a3

a1

a2

a4

a5

a6

a7

a8

a9

a10

Figure 4.3.1: Tree for Example 4.3.2 and Example 4.3.3
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a3

a1

a2

a4

a5

a7

a8

a9

a10

Figure 4.3.2: Components of T−a6

Now, we are ready to define the notion of the tree-median rule. It selects the median of the top-ranked
alternatives at every profile.

Definition 4.3.4 A choice function ϕ : Dn → A is called the tree-median rule with respect to a tree T with
V(T) = τ(D) if for all p ∈ Dn, ϕ(p) = median({τ(p(i)) : i ∈ N}).

Remark 4.3.5 An alternative a is called pairwise majority winner at a profile if for all b ̸= a, the number of
agents who prefer a to b at that profile is more than n

2 . It is worth noting that the outcome of a median rule at any
profile is the pairwise majority winner (Condorcet winner) at that profile. To see this, suppose that the outcome
of the tree-median rule is a at a profile p. Consider an alternative b other than a. Suppose b belongs to a
component C of T−a. By single-peakedness, every agent, whose top-ranked alternative is not in C , will prefer a to
b. By the definition of the tree-median rule, the number of agents in component C is strictly less than n

2 . Therefore,
the number of agents who prefer a to b must be more than n

2 , implying that a beats b by pairwise majority
comparison.

4.4 Results

Our first theorem characterizes the single-peaked domains on trees by means of choice functions that are
unanimous, anonymous, symmetric, and group strategy-proof. It says that these domains are the only
path-connected domains that admit such rules when the number of agents is odd.

Theorem 4.4.1 LetD be a path-connected domain. Then, there exists a unanimous, anonymous, symmetric,
and group strategy-proof choice function ϕ : Dn → A if and only ifD is single-peaked on a tree and n is odd.

The proof of this theorem is relegated to Appendix .1. In Section 4.4.1, we provide an idea of the proof
of the only-if part of the theorem by considering the case of three alternatives.
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Our next corollary says that if the number of agents is even, then there is no path-connected domain
that admits a unanimous, anonymous, symmetric, and group strategy-proof rule. The intuition of this
result is as follows. Since the number of agents is even, we can divide the agents into two groupsN1 and
N2 having equal size. Consider the profile where agents inN1 have the same preference ab · · · and agents
inN2 have the same preference ba · · · , for some a, b ∈ A. By unanimity and group strategy-proofness, the
outcome at such a profile must be either a or b. Suppose that the outcome is a. Now, consider the profile
where agents inN1 have the same preference ba · · · and agents inN2 have the same preference ab · · · . By
symmetry, the outcome at this profile must be b. However, this violates anonymity.

Corollary 4.4.1 LetD be a path-connected domain and let n be even. Then, there is no unanimous,
anonymous, symmetric, and group strategy-proof choice function ϕ : Dn → A.

Our next theorem characterizes the unanimous, anonymous, symmetric, and group strategy-proof
rules on a single-peaked domain on a tree as the tree-median rules.

Theorem 4.4.2 LetD be path-connected and single-peaked on a tree T and let n be odd. Then, a choice
function ϕ : Dn → A is unanimous, anonymous, symmetric, and group strategy-proof if and only if it is the
tree-median rule with respect to T.

The proof of this theorem is relegated to Appendix .2. In Section 4.4.1, we provide an idea of the proof
of the only-if part by considering the case of three alternatives.

4.4.1 An illustration of the proofs of Theorem 4.4.1 and Theorem 4.4.2

We illustrate the idea of the proof of the only-if parts of Theorem 4.4.1 and Theorem 4.4.2 by considering
the case of three alternatives. Let A = {a, b, c} be the set of three alternatives and letN = {1, . . . , n} be
the set of agents. SupposeD is a path-connected domain and let ϕ be a unanimous, anonymous,
symmetric, and group strategy-proof choice function fromDn to A.We show that

1. n is odd,

2. D is a set of single-peaked preferences on a tree, and

3. ϕ chooses the median of the top-ranked alternatives at any profile inDn.

BecauseD is path-connected we have, after a possible renaming of the alternatives, one of the following
four cases

(i) D= L(A)
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(ii) D= L(A) \ {acb}

(iii) D ⊆ {abc, bac, bca, cba} implying thatD is single-peaked on a (sub)tree T1 of the following tree

a ↭ b ↭ c.

(iv) D ⊆ {abc, acb, cab, cba} implying thatD is single-peaked on a (sub)tree T2 of the following tree⁵

a ↭ c.

Consider a profile p and a coalition S such that p(i) = xyz for all i ∈ S and p(i) = yxz for all i ∈ N \ S.
By unanimity and group strategy-proofness, ϕ(p) ̸= z, as otherwise the agents in Swill manipulate by
reporting their preferences as yxz. By anonymity and group strategy-proofness, the outcome of any
profile p̂ such that p̂(i) ∈ {xyz, yxz} for all i ∈ N and |{i : p̂(i) = xyz}| ≥ |S| is x. By symmetry, this
means ϕ(ˆ̂p) = y for any profile ˆ̂p such that ˆ̂p(i) ∈ {xyz, yxz} for all i ∈ N and |{i : p̂(i) = yxz}| ≥ |S|.
Therefore, it must be that |S| > n

2 , as otherwise we can have a profile q such that both |{i : q(i) = xyz}|
and |{i : q(i) = yxz}| are greater than or equal to |S| and in view of the earlier observations, nothing can
be defined as an outcome at q. Using similar logic, no outcome can be defined at a profile q such that
|{i : q(i) = xyz}| = |{i : q(i) = yxz}|. This proves (1), that is, n is odd. This is formally proved in
Lemma .1.2 (see Appendix .1).

Now, we proceed to prove (2). Consider a coalition Swith |S| > n
2 . We show that for any profile q such

that q(i) = q(j) for all i, j ∈ S and q(i) = q(j) for all i, j ∈ N \ S, the outcome is the top-ranked
alternative of the agents in S. In the following table, we present such profiles where agents’ preferences lie
in the set {zxy, xzy, xyz, yxz}. We also present the outcomes of ϕ at the profiles where it can be obtained
by unanimity and Lemma .1.2.

S
N \ S zxy xzy xyz yxz

zxy z z
xzy x x
xyz x x
yxz y y

Table 4.4.1: Primary structure of a unanimous, anonymous, symmetric, and group strategy-proof
choice function

⁵Such a set of preferences is known as a single-dipped domain in the literature.
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We proceed to show that the outcome at any profile in the table will be the top-ranked alternative of the
agents in S. Since the outcome at the profile (xzy, zxy) is x, by group strategy-proofness it must be x at
(xyz, zxy).⁶ In Table 4.4.2 we present the outcomes that can be obtained using similar logic.

S
N \ S zxy xzy xyz yxz

zxy z z
xzy x x x x
xyz x x x x
yxz y y

Table 4.4.2: Final structure of a unanimous, anonymous, symmetric, and group strategy-proof choice
function

Consider the profile (yxz, xzy). Since the outcome at (xyz, xzy) is x, by group strategy-proofness the
outcome at (yxz, xzy)must be x or y. Similarly, since the outcome at (yxz, xyz) is y, by group
strategy-proofness the outcome at (yxz, xzy)must be y. Moreover, since the outcome at (yxz, xzy) is y
and y is the bottom-ranked alternative for the agents inN \ S, by group strategy-proofness the outcome at
(yxz, zxy)must be y. In Table 4.4.3 we present the outcomes that can be obtained using similar logic.
Since S is arbitrary, Table 4.4.3 implies that the outcome of ϕ will be determined by the majority at any
profile where the agents are partitioned into two groups such that agents in any group have the same
preference.

S
N \ S zxy xzy xyz yxz

zxy z z z z
xzy x x x x
xyz x x x x
yxz y y y y

Table 4.4.3: Additional structure of a unanimous, anonymous, symmetric, and group strategy-proof
choice function

Since n is odd, there must be at least 3 agents. Therefore the set of agents can be partitioned into
non-empty sets S1, S2, S3 such that |Si ∪ Sj| > n

2 for all i ̸= j. Consider the profile v such that v(i) = xyz

⁶For ease of presentation, by (xzy, zxy) we denote the profile where the agents in S have the preference xzy and the agents
inN \ S have the preference zxy. We continue to use similar notations.

37



for all i ∈ S1, v(i) = yzx for all i ∈ S2, and v(i) = zxy for all i ∈ S3.⁷ As |S1 ∪ S2| > n
2 , the outcome at the

profile where agents in S1 ∪ S2 have the preference yzx and the agents in S3 have the preference zxy is y.
Hence, by group strategy-proofness ϕ(v) ̸= z. Using a similar logic, |S2 ∪ S3| > n

2 implies ϕ(v) ̸= x, and
|S1 ∪ S3| > n

2 implies ϕ(v) ̸= y. So, no outcome can be defined at the profile v, and hence a profile like v
cannot lie inDn. Therefore, out of the four cases forDmentioned at the beginning, only Case (iii) and
Case (iv) are possible. This proves that the domainD is a set of single-peaked preferences with respect to
either the tree T1 or the tree T2. This completes the proof of (2).

We complete the sketch of the proof by showing (3). We deal with Case (iii) and Case (iv) separately.
Case (iii): Here,D is a subset of single-peaked preferences {abc, bac, bca, cba}with respect to the
alphabetical order a ≺ b ≺ c and G(D) is a (sub)graph of

a ↭ b ↭ c.

Let p be a profile inDn.We prove that ϕ(p) is the median of the top-ranked alternatives at p.We
distinguish three cases.

Suppose ϕ(p) = b.Consider the profile q such that q(i) = bca if p(i) = abc, and q(i) = p(i)
otherwise. By group strategy-proofness, ϕ(q) = b, as otherwise the agents i having preference bca at q
will (group) manipulate at q by misreporting their preferences as p(i). Next, consider the profile r such
that r(i) = bca if q(i) = p(i) = bac, and r(i) = q(i) = cba otherwise. By group strategy-proofness,
ϕ(r) = b. Since agents have one of the two preferences bca and cba at the profile r, the outcome of ϕ at r
will be the majority vote (winner) between b and c. As this outcome is b, it must be that majority of voters
have the top-ranked alternative as b at the profile r. This implies that a majority of voters have top-ranked
alternatives at p in the set {a, b}. Similarly, we can deduce that a majority of voters have top-ranked
alternatives at p in the set {b, c}.Thus, it follows that at the profile p, there is a majority of voters having
the top-ranked alternative in the set {a, b} and a (possibly different) majority of voters having top-ranked
alternatives in the set {b, c}, and hence, b is the median of the top-ranked alternatives at p.

Suppose ϕ(p) = a.Consider the profile v such that v(i) = bac if p(i) ̸= abc, and v(i) = p(i) = abc
otherwise. Since agents have one of the two preferences abc and bac at the profile v, the outcome of ϕ at v
will be the majority vote between a and b. In particular, ϕ(v) ∈ {a, b}.Note that except for the
preference abc, alternative b is strictly preferred to a at all other preferences inD. So, group
strategy-proofness implies that ϕ(v) ̸= b, as otherwise the agents i having preference bac at vwill
manipulate at p via v(i). So, ϕ(v) = a. Since the outcome of ϕ at vwill be the majority vote between a and
b, this means that there is a majority of voters having top-ranked alternative as a at p. So, a is the median of
the top-ranked alternatives at p.

⁷Such a profile is called a Condorcet profile.
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Suppose ϕ(p) = c.This case is similar to the latter case where ϕ(p) = a.
Case (iv): Here we have τ(D) = {a, c}.We have already argued that the outcome will be determined by
the majority at profiles where agents are partitioned into two groups with each group having the same
preference. Since τ(D) = {a, c}, by group strategy-proofness, this implies that the outcome of ϕ will be
the majority vote between a and c at any profile. This in particular means that ϕ chooses the median of the
top-ranked alternatives at any profile.

So, ϕ is the median rule and the only if parts of Theorem 4.4.1 and Theorem 4.4.2 are proved for the
case of three alternatives.

4.5 Weakening group strategy-proofness to strategy-proofness

In this section, we show that group strategy-proofness cannot be replaced by strategy-proofness in
Theorem 4.4.1, and consequently, provide a version of Theorem 4.4.1 with strategy-proofness. The
following example shows that Theorem 4.4.1 does not hold under strategy-proofness.

Example 4.5.1 Suppose that the set of alternatives is two-dimensional where each dimension/component has
two elements: 0 and 1. More formally, the alternatives are A = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Agents’
preferences are such that if a is the top-ranked alternative in a preference and b differs from a in both components,
then b will be the bottom-ranked alternative in that preference.⁸ For instance, if (0, 1) is the top-ranked
alternative in a preference, then (1, 0) will be the bottom-ranked alternative in that preference. Therefore, there
will be two preferences with (0, 1) at the top for the two possible relative ordering of the remaining alternatives
(0, 0) and (1, 1). The preferences are as follows: (0, 1)(0, 0)(1, 1)(1, 0) and (0, 1)(1, 1)(0, 0), (1, 0). In Table
4.5.1, we present all (eight) preferences satisfying this property. Consider the domain with these preferences.

R1 R2 R3 R4 R5 R6 R7 R8

(0, 0) (0, 1) (0, 1) (1, 1) (1, 1) (1, 0) (1, 0) (0, 0)
(0, 1) (0, 0) (1, 1) (0, 1) (1, 0) (1, 1) (0, 0) (1, 0)
(1, 0) (1, 1) (0, 0) (1, 0) (0, 1) (0, 0) (1, 1) (0, 1)
(1, 1) (1, 0) (1, 0) (0, 0) (0, 0) (0, 1) (0, 1) (1, 1)

Table 4.5.1: Domain for Example 4.5.1

Suppose that there are three agents. We define an SCF called component-wise majority rule. For each
component, it selects the element in that component that appears as the top-ranked element in that component for
at least two agents. Note that the SCF depends only on the top-ranked alternatives in a profile. For an

⁸This is a special case of a more general condition known as separability in the literature.
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illustration of the rule, consider a profile with top-ranked alternatives as (1, 0), (0, 1), (1, 0). In the first
component, element 1 appears at least two times as the top-ranked alternative, and hence, it is the outcome in that
component. Similarly, 0 is the outcome in the second component. The final outcome of the rule is (1, 0), which is
obtained by combining the outcomes in each component.

It is shown in [76] (seeTheorem 1) that the component-wise majority rule is strategy-proof. Unanimity and
anonymity of the rule follow from the definition. For symmetry, consider a profile p where the agents in a group S,
∅ ̸= S ̸= N, have the preference R ≡ xy · · · and others have the preferences R′ ≡ yx · · · for some x and y in A.
By the definition of the domain, x and y can differ only over one component. So, assume without loss of generality,
x = (0, 0) and y = (0, 1), and suppose that the outcome of the component-wise majority rule at this profile is
(0, 0). Since the outcome in the second component is 0, by the definition of the component-wise majority rule, it
must be that S contains at least 2 agents. Now, suppose that the agents in S interchange their preference with those
in N \ S. The outcome in the first component will still be 0 as it is the top-ranked element of each agent in that
component. Moreover, since S contains at least 2 agents, the outcome in the second component will now become 1,
and hence, the final outcome will be (0, 1). This shows that the component-wise majority rule satisfies symmetry.
Now, we argue that it is not group strategy-proof. Consider the profile of top-ranked alternatives

(0, 0), (1, 1), (1, 0). Suppose that both agents 1 and 2 prefer (0, 1) to (1, 0). Note that this assumption is
compatible with our domain restriction. The outcome of the component-wise majority rule at this profile is (1, 0).
However, if agents 1 and 2 together misreport their preferences as one having the top-ranked alternative as (0, 1),
then the outcome of the component-wise majority rule will become (0, 1), which is preferred to (1, 0) for both
agents 1 and 2. Therefore, the component-wise majority rule is not group strategy-proof.

In what follows, we show that if we strengthen the notion of path-connectedness, then we can replace
group strategy-proofness by strategy-proofness in Theorem 4.4.1.

Let a and b be two alternatives in τ(D).We say that a is strongly top-connected to b if there are Ra and Rb

inD such that (i) Ra ≡ ab · · · and Rb ≡ ba · · · , and (ii) for all x, y /∈ {a, b}, xRay if and only if xRby. The
notion of a strongly path-connected domain is defined in an obvious manner.

Our next theorem says that group strategy-proofness can be replaced by strategy-proofness if we
strengthen path-connectedness by strongly path-connectedness.

Theorem 4.5.2 LetD be a strongly path-connected domain. Then, there exists a unanimous, anonymous,
symmetric, and strategy-proof choice function ϕ : Dn → A if and only ifD is single-peaked on a tree and n is
odd.

The proof of this theorem is relegated to Appendix .3.
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4.6 Relation to the literature

In this section, we discuss the connection of our results with some of the closely related papers.

4.6.1 [81]

[81] consider single-peaked domains on graphs (trees as a special case). Preferences are Euclidean with
respect to the graph distance. They show that an SCF is strategy-proof and unanimous if and only if it is an
extended generalized median voter scheme. Although tree median rules are special cases of extended
generalized median voter scheme, our result does not follow from their result because of the following
reasons.

(i) In their model, for each alternative there is exactly one preference with it as the top-ranked
alternative. Thus, SCFs on such a domain become tops-only vacuously. However, in our case, there can be
more than one preference with the same top-ranked alternative, and hence, tops-onlyness is required to
be proved additionally. [84] shows that the maximal single-peaked domain on a line is tops-only, and
recently, [2] generalize this result for arbitrary (that is, not necessary maximal) single-peaked domains on
a line.⁹ [20] provide a sufficient condition on a domain for it to be tops-only. None of these results applies
to a path-connected single-peaked domain on a tree.

(ii) [81] use strategy-proofness whereas we use group strategy-proofness. To the best of our
knowledge, it is not known in the literature whether extended generalized median voter schemes are
group strategy-proof or not on domains that are single-peaked on a tree. [7] provide a sufficient condition
on a domain for the equivalence of group strategy-proofness and strategy-proofness, however, their result
also does not apply to such domains.

4.6.2 [65]

[65] consider a class of single-peaked domains based on an abstract betweenness property. They have
analyzed the structure of strategy-proof and unanimous SCFs on such domains. Furthermore, they
provide a characterization of such domains that admit SCFs satisfying strategy-proof, unanimous, neutral,
and non-dictatorial/anonymity. Two particular results of [65] are closely related to our work, which we
explain below.

(i) Corollary 5 in [65] says that a strategy-proof, unanimous, neutral, and anonymous SCF exists on a
“rich” single-peaked domain if and only if n is odd and the domains is a “median space”. On the
other hand, Theorem 4.4.1 of our paper says that a group strategy-proof, unanimous, anonymous,

⁹A domain is tops-only if every unanimous and strategy-proof SCF on it is tops-only.
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and symmetric SCF exists on a path-connected single-peaked domain if and only if n is odd and the
domain is single-peaked on a tree. While neutrality and symmetry are similar in nature, the
assumption of richness and the inclusion of median space make a significant difference between
the two results as we explain below.

Richness: They assume the domains to be rich. In the context of domains that are single-peaked on
a tree, this means the relative ordering of two alternatives that do not lie on the same path from the
peak must be unrestricted. To see how strong this condition is, consider a single-peaked domain on
a line. One implication of richness is that there must be preferences where the extreme left (or
right) alternative is preferred to the ”right-neighbor” (or the “left-neighbor”) of the peak. For
instance, if there are 100 alternatives a1, . . . , a100 with the prior ordering a1 ≺ · · · ≺ a100, then
there must be a preference with a2 at the top position where the “far away” alternative a100 is
preferred to the neighboring one a1. This is clearly a strong assumption for practical applications.
Our notion of path-connectedness requires that for every two adjacent alternatives, say a2 and a3,
there are two preferences where they swap their positions at the top two ranks, that is, preferences
of the form a2a3 · · · and a3a2 · · · must be present. Thus, we do not require anything about the
relative ordering of other alternatives.

Median space: A domain is a median space if the notion of median can be defined for any three
alternatives in it, that is, for any three alternatives a, b, c, there is an alternativem called the
“median” of a, b, c such thatm lies between every pair of alternatives from a, b, c. Apart from
domains that are single-peaked on a tree, there are several other domains that are median space
(see Example 4 in [65]). Thus, domains that are single-peaked on a tree cannot be characterized by
the properties used in [65]) and the use of group strategy-proofness does the job in our paper. As
we have mentioned earlier, it is not yet known if group strategy-proofness and strategy-proofness
are equivalent on domains that are single-peaked on a tree. Thus, (even the “if part” of) Theorem
4.4.1 of our paper does not follow from Corollary 5 of [65].

(ii) Theorem 4 of [65] says that an SCF on a rich median space is strategy-proof, unanimous, and
neutral if and only if it is a particular type of voting by issues rules. Furthermore, if anonymity is
imposed additionally, then these rules become tree median. Since the single-peaked domains on
trees we consider do not satisfy richness, this result does not apply to these domains. Moreover,
even if we additionally impose richness on such domains, since we work with group
strategy-proofness, Theorem 4.4.1 of our paper does not follow from this result. The contribution
of our result on these special class of rich domains is that it implies that strategy-proofness and
group strategy-proofness are equivalent on those under unanimity, anonymity, and
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symmetry/neutrality. Such a result is not known in the literature and we feel it is not
straightforward either.

Appendix

.1 Proof of Theorem 4.4.1

We introduce the following terminologies to facilitate the presentation of our proofs. For a coalition S, a
preference R, and a profile q, we denote by ((R)S, q|N\S) the profile pwhere p(i) = R for all i ∈ S and
p(i) = q(i) for all i ∈ N \ S. We call such a profile S-unanimous. In a similar fashion, a profile of the form
((R)S, (R′)N\S) is said to be (S,N \ S)-unanimous. Additionally, if τ(R) = a and τ(R′) = b, then such a
profile is said to be (a, b)-(S,N \ S)-unanimous. Let V be a set of S-unanimous profiles inDn for some
coalition S. Given a choice function ϕ, we say that the coalition S is decisive on V (for ϕ), if
ϕ(RS, p|N\S) = τ(R) for all (RS, p|N\S) ∈ V.The coalition S is said to be decisive if it is decisive on the set
of all S-unanimous profiles inDn. For instance,N is decisive for a unanimous choice function ϕ.

We are now ready to present the proof of Theorem 4.4.1.

(If part) Let T be a tree and letD be a single-peaked domain on T. Suppose n is odd. Consider the
median rule ϕ : Dn → A. By definition, ϕ satisfies unanimity, anonymity, and symmetry. In what follows,
we show that it satisfies group strategy-proofness.

Consider a profile p ∈ Dn. Suppose ϕ(p) = a. Assume for contradiction that some coalition S
manipulates ϕ at the profile p. First note that by the definition of single-peaked domain on T, if the
top-ranked alternatives of the agents in S at the profile p are in different components of T−a, then there is
no alternative b that is strictly preferred to a by each agent in S. So, since the agents in Smanipulate, it
must be that their top-ranked alternatives in p are in some component C of T−a. By the definition of the
median rule, the number of agents who have top-ranked alternatives in C is less than n

2 . Therefore, no
matter how the agents in Smisreport there preferences, the outcome at the misreported profile cannot be
an alternative of C. This, in turn, means that the agents in Swill not prefer the outcome at the misreported
profile, a contradiction. This completes the proof of the if part of Theorem 4.4.1.

(Only-if part) We prove the only-if part by means of the following lemmas. For all these lemmas, assume
thatD is a path-connected domain.

Lemma .1.1 Let ϕ : Dn → A be a unanimous and group strategy-proof choice function and let a coalition S be
decisive on all (S,N \ S)-unanimous profiles. Then S is decisive.
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Proof: In order to prove that S is decisive, let p ∈ Dn be an S-unanimous profile such that p(i) = R for all i
in S, where τ(R) = a. For an S-unanimous profile p, define k(p) = |{p(j) : j ∈ N}| as the number of
different preferences in p. We prove the lemma by using induction on k. Note that k ≥ 2 by definition.
Note that the base case where k = 2 follows from the definition of (S,N \ S)-unanimous profiles.
Suppose S is decisive on all S-unanimous profiles p such that k(p) ≤ k̄, for some k̄ ≥ 2. We show that S is
decisive on all S-unanimous profiles p such that k(p) ≤ k̄+ 1. Consider p ∈ Dn such that k(p) = k̄+ 1.
Since k(p) = k̄+ 1, we can partitionN as T1, . . . ,Tk+1 such that for all l ∈ {1, . . . , k+ 1}, there exists
Rl ∈ D such that p(i) = Rl for all i ∈ Tl. Since p is an S-unanimous profile, assume without loss of
generality S ⊆ T1. Assume for contradiction, ϕ(p) ̸= a. Suppose ϕ(p) = b for some b ∈ A \ {a}.
Consider q ∈ Dn such that q(i) = Rl for all i ∈ Tl and all l ∈ {1, . . . , k} and q(i) = Rk for all i ∈ Tk+1.
Since k(q) = k̄ by construction, we have by our induction hypothesis that ϕ(q) = a. By means of group
strategy-proofness for the agents in Tk+1 at p via q|Tk+1 , we have

ba ∈ Rk+1. (1)

Now consider the preference r ∈ Dn such that r(i) = Rl for all i ∈ Tl and all l ∈ {1, . . . , k− 2, k} and
q(i) = Rk+1 for all i ∈ Tk. Since k(r) = k̄ by construction, we have by our induction hypothesis that
ϕ(r) = a. By means of group strategy-proofness for the agents in Tk at r via p|Tk , we have

ab ∈ Rk+1. (2)

Combining (1) and (2), ϕ(p) = a. This completes the proof by induction. ■

Lemma .1.2 Let ϕ : Dn → A be a unanimous, anonymous, symmetric, and group strategy-proof choice
function and let Ra ≡ ab · · · and Rb ≡ ba · · · be two preferences inD. Suppose a coalition S is such that
ϕ((Ra)S, (Rb)N\S) = a. Then |S|> n

2 .

Proof: Assume for contradiction |S| ≤ n
2 . By applying symmetry to ϕ((Ra)S, (Rb)N\S) = a, we have

ϕ((Rb)S, (Ra)N\S) = b. (3)

Since |S| ≤ n
2 , there exists T ⊆ N \ S such that |S| = |T|. We write ϕ((Ra)S, (Rb)N\S) = a as

ϕ((Ra)S, (Rb)T, (Rb)N\(S∪T)) = a. (4)
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Now, applying anonymity to (4), since |S| = |T|,

ϕ((Rb)S, (Ra)T, (Rb)N\(S∪T)) = a. (5)

This, together with (3) implies that agents inN \ (S ∪ T)manipulates at ((Rb)S, (Ra)N\S) via (Rb)N\(S∪T),
a contradiction. ■

Lemma .1.3 Let ϕ : Dn → A be a unanimous and group strategy-proof choice function and let Ra ≡ ab · · ·
and Rb ≡ ba · · · be two preferences inD. Suppose a coalition S is such that ϕ((Ra)S, (Rb)N\S) = a. Then S is
decisive on all (a, b)-(S,N \ S)-unanimous profiles.

Proof: Consider an (a, b)-(S,N \ S)-unanimous profile p ∈ Dn. Assume for contradiction, ϕ(p) ̸= a.
Suppose ϕ(p) = x. Consider q ∈ Dn such that q(i) = Ra for all i ∈ S and q|N\S = p|N\S. We claim
ϕ(q) = b. If ϕ(q) = a, then by means of unanimity agents in Smanipulates at p via q|S, a contradiction. If
ϕ(q) /∈ {a, b}, then agents in Smanipulates at q via some preference where b is the top-ranked alternative
for all agents in S. So, ϕ(q) = b. However, since ϕ((Ra)S, (Rb)N\S) = a, this means agents inN \ S
manipulates at ((Ra)S, (Rb)N\S) via q|N\S, a contradiction. ■

Remark .1.1 It follows from Lemma .1.2 and Lemma .1.3 that there is a unanimous, anonymous, symmetric,
and group strategy-proof choice function ϕ : Dn → A only if n is odd. This completes the proof of Corollary
4.4.1.

Lemma .1.4 Let ϕ : Dn → A be a unanimous, anonymous, symmetric, and group strategy-proof choice
function and let a and b be top-connected alternatives. Then the following two are equivalent.

(i) S is decisive on all (a, b)-(S,N \ S)-unanimous profiles.

(ii) |S|> n
2 .

Proof: Consider Ra ≡ ab · · · and Rb ≡ ba · · · . By group strategy-proofness and unanimity,
ϕ((Ra)S, (Rb)N\S) ∈ {a, b}. If (i) holds, then ϕ((Ra)S, (Rb)N\S) = a, and by Lemma .1.2, |S| > n

2 .
Suppose (ii) holds. If ϕ((Ra)S, (Rb)N\S) = b, then by Lemma .1.2, we have |N \ S| > n

2 , a
contradiction to |S| > n

2 . So, ϕ((R
a)S, (Rb)N\S) = a. By Lemma .1.2, this implies S is decisive on all

(a, b)-(S,N \ S)-unanimous profiles. ■
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Lemma .1.5 Let ϕ : Dn → A be a unanimous and group strategy-proof choice function and let x1, . . . , xk be a
path in G(D) such that every three consecutive alternatives in the path are distinct. Suppose a coalition S is
decisive on all (x1, x2)-(S,N \ S)-unanimous profiles. Then, S is decisive on all (xs, xt)-(S,N \ S)-unanimous
profiles for all 1 ≤ s < t ≤ k.

Proof: We prove this by using induction on the value of t− s for (xs, xt)-(S,N \ S)-unanimous profiles.
First, we prove that S is decisive on all (xs, xs+1)-(S,N \ S)-unanimous profiles for all 0 ≤ s < k.

Consider p ∈ Dn such that p(i) ≡ x2x3 · · · for all i ∈ S and p(i) ≡ x3x2 · · · for all i ∈ N \ S. We show
that ϕ(p) = x2. To ease the presentation of the proof, we use the notationRst to denote a preference of the
form xsxt · · · . By our assumption, ϕ((R12)S, (R23)N\S) = x1. Consider a profile ((R12)S(R32)N\S) ∈ Dn. By
group strategy-proofness, ϕ((R12)S, (R32)N\S) ∈ {x1, x2, x3}. Since ϕ((R12)S, (R23)N\S) = x1, by using
group strategy-proofness for the agents inN \ S, ϕ((R12)S, (R32)N\S) = x1. Consider a profile of the form
((R21)S, (R32)N\S). Since ϕ((R12)S, (R32)N\S) = x1, by using group strategy-proofness for agents in S,
ϕ((R21)S, (R32)N\S) ∈ {x1, x2}. If ϕ((R21)S, (R32)N\S) = x1, then agents inN \ Smanipulates at
((R21)S, (R32)N\S) via (R21)N\S. So, ϕ((R21)S, (R32)N\S) = x2. By group strategy-proofness,
ϕ((R23)S, (R32)N\S) = x2 and by Lemma .1.3, S is decisive on all (x2, x3)-(S,N \ S)-unanimous profiles.
Continuing in this manner, it can be shown that S is decisive on all (xs, xs+1)-(S,N \ S)-unanimous
profiles for all 1 ≤ s < k. Suppose S is decisive on all (xs, xt)-(S,N \ S)-unanimous profiles where
t− s ≤ l for some l ≤ k− 1. We show that S is decisive on all (xs, xt)-(S,N \ S)-unanimous profiles
where t− s = l+ 1.

By our induction hypothesis, ϕ((R(s+1)s)S, (Rt+1)N\S) = xs+1. By group strategy-proofness, this means
ϕ((Rs(s+1))S, (Rt+1)N\S) ∈ {xs, xs+1}. Suppose ϕ((Rs(s+1))S, (Rt+1)N\S) = xs+1. Then, by group
strategy-proofness ϕ((Rs(s+1))S, (R(s+1)s)N\S) = xs+1, which contradicts our earlier step where we have
shown that S is decisive on all (xs, xs+1)-(S,N \ S)-unanimous profiles for all 0 ≤ s < k. So,
ϕ((Rs(s+1))S, (Rt+1)N\S) = xs. By group strategy-proofness, this means ϕ((Rs)S, (Rt+1)N\S) = xs implying
that S is decisive on all (xs, xt)-(S,N \ S)-unanimous profiles for all 0 ≤ s < t ≤ k. This completes the
proof of the lemma. ■

Lemma .1.6 Let ϕ : Dn → A be a unanimous, anonymous, symmetric, and group strategy-proof choice
function and let S be a coalition with |S|> n

2 . Then S is decisive.

Proof: By Lemma .1.4, S is decisive on all (a, b)-(S,N \ S)-unanimous profiles where a ↭ b. By Lemma
.1.5, S is decisive on all (x, y)-(S,N \ S)-unanimous profiles such that there exists a path inG(D)
connecting x and y. SinceG(D) is connected, this means S is decisive on all (x, y)-(S,N \ S)-unanimous
profiles. Now, by Lemma .1.1, we have that S is decisive on all profiles. ■
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The restriction of a preference R ∈ L(A) to a set X ⊆ A is defined as
R|X := {xy : xy ∈ R and xy ∈ X× X}.

Lemma .1.7 Let ϕ : Dn → A be a unanimous, anonymous, symmetric, and group strategy-proof choice
function. Consider a path x1, . . . , xk in G(D) such that xi ̸= xj for all i ̸= j. Then, for all R ∈ D, τ(R|X) = xk

implies R|X ≡ xkxk−1 · · · x1, where X = {x1, . . . , xk}.

Proof: Since n is odd, n ≥ 3. Therefore,N can be partitioned into coalitions S,T andU such that |S| = 1,
|S ∪ U| > n

2 , |T ∪ U| > n
2 and |S ∪ T| > n

2 . Let a preference R1 ∈ D be such that τ(R1) = x1. Define the
choice function ψ : DS∪T → A such that for all p ∈ DS∪T, ψ(p) = ϕ(p̃)where p̃(i) = R1 for all i ∈ U and
p̃(i) = p(i) for all i ∈ S ∪ T. Since ϕ is group strategy-proof, ψ is group strategy-proof. Further, since
|S ∪ T| > n

2 , by Lemma .1.6, S ∪ T is decisive for ϕ. This, together with the fact that ϕ is unanimous
implies ψ is unanimous. Since |S ∪ U| > n

2 , by Lemma .1.6, ϕ(p̃) = x1 where p̃(i) = R1 for all i ∈ S ∪ U
and τ(p̃(i)) = x2 for all i ∈ T. This means ψ(p) = x1, where p is a (x1, x2)-(S,T)-unanimous profile.
Since ψ is unanimous and group strategy-proof, by Lemma .1.5, we have for all 1 ≤ s < t ≤ k and all
(xs, xt)-(S,T)-unanimous profiles q, ψ(q) = xs. Using a similar logic, it follows that T is decisive on all
(xs, xt)-(T, S)-unanimous profiles for all 1 ≤ s < t ≤ k. Combining all these observations, we have

ϕ(q) = xmin{s,t}. (6)

Now, we are ready to complete the proof of the lemma. Assume for contradiction that there exists R ∈ D
such that τ(R|X) = xk and xrxs ∈ R for some r < s. Then, by (6), ψ(p) = xs where p(i) = R for all i ∈ S
and τ(p(i)) = xs for all i ∈ T. Consider q ∈ Dn such that τ(q(i)) = xr for all i ∈ S and q|T = p|T. By (6),
ψ(q) = xr, which means that the agents in Smanipulate at p via q|S contradicting the group
strategy-proofness (also, strategy-proofness) of ψ. ■

Lemma .1.8 Let ϕ : Dn → A be a unanimous, anonymous, symmetric, and group strategy-proof choice
function. Then G(D)must be a tree,Dmust be single-peaked on G(D), and n must be odd.

Proof: Assume for contradiction that there exists a cycle x1, . . . , xk, x1 inG(D) such that xi ̸= xj for all
i ̸= j. Consider R ∈ D such that τ(R) = x1. Since x1, x2, . . . , xk is a path inG(D) such that xi ̸= xj for all
i ̸= j, by Lemma .1.7, x2x3 ∈ R. Again, since x1, xk, xk−1, . . . , x2 is a path inG(D) such that xi ̸= xj for all
i ̸= j, by Lemma .1.7, x3x2 ∈ R. However, this contradicts that R is a preference. So,G(D) is a tree. Now,
by means of Lemma .1.7 it follows thatD is single-peaked onG(D).

Now, we show n is odd. Suppose not. Take |S| = n
2 . Let Ra ≡ ab · · · and Rb ≡ ba · · · . By unanimity

and group strategy-proofness, ϕ((Ra)S, (Rb)N\S) ∈ {a, b}. Assume without loss of generality,
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ϕ((Ra)S, (Rb)N\S) = a. Since |S| = n
2 , by anonymity of ϕ, this implies ϕ((Rb)S, (Ra)N\S) = a. On the

other hand, since ϕ((Ra)S, (Rb)N\S) = a, by symmetry ϕ((Rb)S, (Ra)N\S) = b, which is a contradiction.
■

.2 Proof of Theorem 4.4.2

Proof: The proof of the if part of the Theorem follows from the same of the if part of Theorem 4.4.1. We
proceed to prove the only-if part.

Assume for contradiction that ϕ(p) = x for some p ∈ Dn where x is such that there exists a component
C in T−x with |{i ∈ N : τ(p(i)) ∈ C}| ≥ n

2 . Let S = {i ∈ N : τ(p(i)) ∈ C}. Since n is odd, this means
|S| > n

2 . Consider q ∈ Dn such that q(i) = p(i) for all i ∈ S and τ(q(i)) = x for all i ∈ N \ S. By group
strategy-proofness, ϕ(q) = x. Let y ∈ C be the (unique) vertex in C such that {x, y} is an edge in T.
Consider r ∈ Dn such that r(i) ≡ yx · · · for all i ∈ S and r(i) = q(i) for all i ∈ N \ S. By unanimity and
group strategy-proofness, ϕ(r) ∈ {x, y}. If ϕ(r) = y, then, because preferences are single-peaked on T,
agents in Smanipulates at r via q|S. So, ϕ(r) = x. However, since r is a (x, y)-(S,N \ S)-unanimous profile
with |S| > n

2 , this contradicts Lemma .1.2. ■

.3 Proof of Theorem 4.5.2

The proof of Theorem 4.5.2 follows from following the steps in the proof of Theorem 4.4.1 with the
following modifications.
Proof:[Proof of Lemma .1.5] Let R,R′ ∈ D be such that R ≡ x1x2 · · · and R′ ≡ x3x2 · · · . Let S be a
coalition and consider the profile p such that p(i) = R for all i ∈ S and p(i) = R′ for all i ∈ N \ S. In the
proof of Lemma .1.5, we use the fact that by unanimity and group strategy-proofness, ϕ(p) ∈ {x1, x2, x3}.
Clearly, this does not follow if we replace group strategy-proofness by strategy-proofness. However, since
we additionally have the fact that the domain is strongly path-connected, this assertion follows. To see
this, assume for contradiction that ϕ(p) /∈ {x1, x2, x3}. Consider the preference R̄ such that R̄ ≡ x2x3 · · · ,
and for all a, b /∈ {x2, x3}, ab ∈ R̄ if and only if ab ∈ R. We canmove the agents inN \ S sequentially to R̄,
and each time, by strategy-proofness we can claim that the outcome will remain the same as ϕ(p). Since
ϕ(p) /∈ {x1, x2, x3}, this contradicts the assumption of the lemma that S is decisive on all
(x1, x2)-(S,N \ S)-unanimous profiles. This completes the proof of Lemma .1.5 for this case.

In every other place where group strategy-proofness is used, we can change the preferences of the
agents in the corresponding group one by one (as discussed in the modified proof of Lemma .1.5), and
apply strategy-proofness at each step to obtain the desired conclusion. ■
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.4 Independence of axioms in Theorem 4.4.1

In this section, we establish the independence of the conditions that we have used in Theorem 4.4.1
Furthermore, we show how to modify Theorem 4.4.1 if we replace group strategy-proofness by
strategy-proofness.

In what follows, we introduce some special type of choice functions and discuss their properties. We
will use these functions to establish the mentioned independence.

Let a ∈ A be an alternative and letD−a be a domain such that a /∈ τ(D−a). A choice function
ϕa : (D−a)n → A is called constant at a if ϕa(p) = a for all profiles p ∈ (D−a)n. By definition, ϕa violates
unanimity. Since the outcome of ϕa does not depend on the profiles, it satisfies anonymity,
strategy-proofness, and group strategy-proofness. To apply symmetry, we need two preferences in the
domain of the form xy · · · and yx · · · for some x, y ∈ A, and a profile where each agent has one of the two
preferences such that the outcome at that profile is either x or y. Because a never appears at the top
position in any preference inD−a, a cannot be one of x or y in the aforementioned preferences. Since both
x and y are different from a, by definition the outcome of ϕa cannot be x or y. Thus, symmetry is vacuously
satisfied by ϕa.

A choice function ϕdict
j : L(A)n → A, where j ∈ N, is called dictatorial if ϕdict

j (p) = τ(p(j)) for all
p ∈ L(A)n. By definition, ϕdict

j satisfies unanimity, strategy-proofness, group strategy-proofness and
violates anonymity. To see that ϕdict

j satisfies symmetry, consider a profile where a group S, ∅ ̸= S ̸= N, of
agents have a preference P ≡ xy · · · and other agents have the preference P′ ≡ yx · · · . Suppose that
outcome of ϕdict

j at this profile is x. This means some agent in S is the dictator. Therefore, if agents in S and
N \ S interchange their preferences, then the top-ranked alternative of the dictator will be y, and
consequently the outcome will be y, ensuring symmetry.

A choice function ϕuna
a : (D−a)n → A, where a ∈ A, is called unanimous with disagreement a, if for all

p ∈ L(A)n,
ϕuna
a (p) = b if τ(p(i)) = b for all i ∈ N

= a otherwise.

The rule ϕuna
a satisfies unanimity by definition. Anonymity of ϕuna

a follows from the fact that if agents
interchange their preferences, then a unanimous profile will remain unanimous and a non-unanimous
profile will remain non-unanimous, and hence by definition, the outcome of ϕuna

a will not change. Since a
does not appear at the top position in any preference inD−a, as we have explained in the case of ϕa,
symmetry holds vacuously for ϕuna

a . To see that ϕuna
a is manipulable, consider a profile where some

alternative b is the top-ranked alternative of every agent except agent 1 and b is preferred to a for agent 1.
By definition, the outcome of ϕuna

a at this profile is a. However, if agent 1 misreports her preference as one
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with b at the top position, then the outcome will become b and agent 1 will be strictly better off. So, ϕuna
a is

not strategy-proof, and hence, it is not group strategy-proof either.
For the next choice function and its (restricted) domain, let the alternatives be numbered as a1, . . . , am.

To ease our presentation, whenever we use minimum or maximum of a set of alternatives, we mean it with
respect to the ordering a1 ≺ · · · ≺ am. A domain S is said to be semi single-peaked domain if for all R in
S , τ(R) = ak implies R ≡ ak · · · ak−1 · · · ak−2 · · · a2 · · · a1 · · · . Thus, each preference in a semi
single-peaked domain maintains single-peakedness only on the left side of the peak (that is, the top-ranked
alternative), that is, as one moves away from the peak on the left side, preference declines. Note that there
is no restriction on the relative ordering of two alternatives if at least one of them is on the right of the
peak.

A choice function ϕlow : Sn → A is called lowest peak if for all p ∈ Sn,

ϕlow(p) = min{τ(p(i)) : i ∈ N}.

As the name suggests, ϕlow selects the minimum peak (with respect to the ordering≺) at every profile.
Unanimity and anonymity of ϕlow follow from the definition. In what follows, we argue that ϕlow satisfies
group strategy-proofness (and hence strategy-proofness).

Suppose a group of agents Smanipulate ϕlow at a profile p. Letmin(p) be the minimum peak of p. Since
ϕ(p) = min(p), the (sincere) peak of each agent in Smust be strictly on the right ofmin(p). This in
particular means that the peak of some agent outside S ismin(p). Therefore, by the definition of ϕ, the
only way the agents in S can change the outcome is to declare a peak which is on the (further) left of
min(p). This will push the outcome to the left ofmin(p) as well. Since the sincere peaks of the agents in S
are on the right ofmin(p) and the changed outcome is on the left ofmin(p), by the definition of semi
single-peakedness, the changed outcome will become even worse for them. So, no group of agents can
manipulate ϕlow at any profile.

Finally, we explain that ϕlow does not satisfy symmetry. Consider two preferences R ≡ akak+1 · · · and
R′ ≡ ak+1ak · · · , and consider a profile pwhere each agent in a group S, ∅ ̸= S ̸= N, has the preference R
and each remaining agent has the preference R′. By the definition of ϕlow, ϕlow(p) = ak. Now, consider the
profile p′ where each agent in S has the preference R′ and each remaining agent has the preference R. In
order to satisfy symmetry, the outcome at this profile must be xk+1, but by the definition of ϕlow, the
outcome is xk.

In the following table, we present the conditions that are satisfied by each of the above-mentioned
choice functions. Note that this table establishes the independences of the conditions that are used in
Theorem 4.4.1.
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ϕa on (D−a)n ϕdict
j onL(A)n ϕlow on Sn ϕuna

a on (D−a)n

unanimity No Yes Yes Yes

anonymity Yes No Yes Yes

symmetry Yes Yes No Yes

group strategy-proofness Yes Yes Yes No

strategy-proofness Yes Yes Yes No

Table .4.1: Independence of axioms in Theorem 4.4.1
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5
Strategy-proof RandomVoting Rules onWeak

Domains

5.1 Introduction

We consider the standard social choice problem where a social planner has to choose an alternative from a
feasible set based on the preferences of the agents in a society. Unanimity, Pareto optimality,
strategy-proofness are considered as desirable properties of a deterministic social choice function
(DSCF). A DSCF is unanimous if, whenever all agents agree on their top-ranked alternative, that
alternative is chosen. It is Pareto efficient if its outcome cannot be improved in way so that no one is worse
off and someone is better off. It is strategy-proof if no agent can benefit by misreporting her preference.

The horizon of social choice theory is expanded by introducing randomness in social choice functions.
A random social choice function (RSCF) selects a probability distribution over the alternatives at every
collection of preferences. The notions of unanimity and Pareto optimality remain the same for RSCFs,
while that of strategy-proofness is formulated by means of stochastic dominance.

Importance of RSCFs over DSCFs is well-established in the literature (see [68], [67] and [37]). The
appeal of RSCFs over DSCFs is that they allow for the introduction of fairness considerations and
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reasonable compromise in the decision-making process, facilitating the resolution of conflicts of interest
(see [64] and [70]).

A preference is strict if it does not admit any indifference. The study of social choice functions when
preferences are strict is quite extensive. In a seminal work, [40] shows that an RSCF on the strict
unrestricted domain is unanimous and strategy-proof if and only if it is random dictatorial. Subsequently,
several other random dictatorial domains are characterized in the literature. For domains with specific
structure, unanimous and strategy-proof RSCFs on the strict single-peaked domain, the strict
single-dipped domain, and strict single-crossing domains are characterized (see, [37], [74] and [68])

To our understanding, the assumption of strict preferences is quite strong for practical purpose.
However, contrary to their strict counterpart, the literature of social choice theory for weak preferences is
rather limited. Our objective of this paper is to explore this area.

We first analyse what happens when weak preferences are added to a random dictatorial domains. We
introduce the notion of weak random dictatorial rules and provide the structure of unanimous and
strategy-proof RSCFs on such domains by means of these rules. We use a result in [15] to prove our result.
It is worth mentioning that our result generalizes the result of [40] for weak preferences. In the context of
cardinal preferences, similar results are proved in [64], [35] and [47].

Next, we analyze what happens when weak preferences are added to the well-known single-peaked
domain. We consider two types of weak domains in this context: one where indifference occurs only at
the top-position, and the other one where it occurs only below the top-position. An important weak
domain of the former type is the single-plateaued domain and that of the latter type is the single-peaked
domain with outside option. We provide the structure of unanimous (or Pareto optimal) and
strategy-proof RSCFs for each of these cases. [8] provide the structure of unanimous and strategy-proof
DSCFs on the single-plateaued domain and [18] provide that for the single-peaked domain with outside
option. We generalize these results for RSCFs. Also, we provide closed form presentation of these rules.

In Section 5.2 we introduce the basic model, notations and definitions. In Section 5.3 we investigate
the the structure of unanimous and strategy-proof rules if weak preferences are added to a random
dictatorial domains. We show that if agents have κ-single-plateaued preferences, then any RSCF that is
unanimous and strategy-proof is also Pareto-optimal. In Section 5.4,we consider weak single-peaked
domains and chracterize the Pareto optimal and strategy-proof RSCFs on them. In Section 5.5 we
consider the case of single-plateaued domains, and show that unlike strict single-peaked domains,
unanimity and strategy-proofness does not guarantee tops-onlyness. We also provide an axiomatic
characterization of strategy-proof RSCFs under unanimity. We introduce the notion of generalized
uncompromisingness which boils down to uncompromisingness when κ is equal to 1 and show that an
unanimous RSCF is strategy-proof if and only if it is generalized uncompromising. Finally, in Section 5.6
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we provide the conclusion.

5.2 Preliminaries

LetN = {1, . . . , n} be a set of at least two agents, who collectively choose an element from a finite set
A = {1, . . . ,m} of at least two alternatives. For x, y ∈ A such that x ≤ y, we define the intervals
[x, y] = {z ∈ A | x ≤ z ≤ y}, [x, y) = [x, y] \ {y}, (x, y] = [x, y] \ {x}, and (x, y) = [x, y] \ {x, y}. For
notational convenience, whenever it is clear from the context, we do not use braces for singleton sets, i.e.,
we denote sets {i} by i.

A (weak) preference R over A is a complete and transitive binary relation (also called a weak order)
defined on A. We denote by P and I the anti-symmetric and the indifference part of R, respectively. That is,
xPymeans xRy and not yRx, and xIymeans xRy and yRx. We denote byW(A) the set of all preferences
over A. For a preference R ∈ W(A), we denote by τ(R) the set of alternatives that appear at the
top-position of R, that is, τ(R) = {x ∈ A | xRy for all y ∈ A}. For a preference R ∈ W(A) and an
alternative x, the upper contour setU(x,R) of R at x is defined as the set of alternatives that are (weakly)
preferred to x at R, that is,U(x,R) = {y ∈ A | yRx}. An antisymmetric preference is called strict
preference. We denote a strict preference by P.

We denote a set of admissible preferences of an agent i byDi, and a set of admissible strict preferences
by D̂i. LetDN =

∏
i∈NDi. An element ofDN is called a preference profile. For ease of presentation, we

refer to setsDi andDN as domains, and sets D̂i and D̂N as strict domains. Furthermore, for a domainDi

orDN, we denote by strict(Di) and strict(DN) the set of strict preferences inDi andDN , respectively.
A random social choice function assigns a probability distribution over the alternatives at each

preference profile.

Definition 5.2.1 A random social choice function (RSCF) ϕ onDN is a mapping ϕ : DN → ΔA.

Unanimity says that whenever all the agents in a society have some alternative(s) common in their top
position, those alternatives are chosen with probability 1.

Definition 5.2.2 An RSCF ϕ : DN → ΔA is unanimous if for all RN ∈ DN such that∩i∈Nτ(Ri) ̸= ∅, we
have

∑
x∈∩i∈Nτ(Ri) ϕx(RN) = 1.

We say an alternative x Pareto dominates another alternative y at a preference profile RN if every agent
weakly prefers x to y and some agent strictly prefers x to y, that is, xRiy for all i ∈ N and xPiy for some
i ∈ N. An alternative is said to be Pareto dominated if some other alternative Pareto dominates it. Pareto
optimality says that a Pareto dominated alternative cannot be selected with positive probability.
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Definition 5.2.3 An RSCF ϕ : DN → ΔA satisfies Pareto optimality if for all RN ∈ DN, we have
ϕx(RN) = 0 for all x ∈ A such that x is Pareto dominated at RN.

An RSCF is strategy-proof if no agent can increase the probability of any upper contour set by
misreporting his/her preferences.

Definition 5.2.4 An RSCF ϕ : DN → ΔA is called strategy-proof if for all i ∈ N, (Ri,RN\i) ∈ DN, R′
i ∈ Di,

and x ∈ A ∑
y∈U(x,Ri)

ϕy(Ri,RN\i) ≥
∑

y∈U(x,Ri)

ϕy(R
′
i,RN\i).

Remark 5.2.5 An RSCF is called a deterministic social choice function (DSCF) if it selects a degenerate
probability distribution at every preference profile. More formally, an RSCF ϕ : DN → ΔA is called a DSCF if
ϕa(RN) ∈ {0, 1} for all a ∈ A and all RN ∈ DN. The notions of unanimity, Pareto optimality, and
strategy-proofness for DSCFs are special cases of the corresponding definitions for RSCFs.

5.3 Weak random dictatorial domains

[23] provide a sufficient condition on strict domains so that every unanimous and strategy-proof random
rule on it is random dictatorial. They call such domains random dictatorial domains. In this section, we
investigate what happens to the unanimous and strategy-proof random rules if weak preferences are
allowed to these domains.

First, we introduce the notion of random dictatorial rules on strict domains. An RSCF ϕ : D̂N → ΔA
is called random dictatorial with coefficients (α1, . . . , αn) ∈ ΔN if for each profile PN ∈ D̂N and all a ∈ A,
ϕa(PN) =

∑
{i|τ(Pi)=a} αi. Thus, for a random dictatorial rule, each agent i has a weight αi which he/she

assigns to his/her top-ranked alternative. A strict domain D̂N is called random dictatorial if every
unanimous and strategy-proof random rule ϕ : D̂N → A is random dictatorial.

A strict preference P̂ is a strict extension of a preference R if for all a, b ∈ A, aPb implies aP̂b. Note that
a preference can have multiple strict extensions. For instance, if R = a[bcd]e, then the following
preferences are strict extensions of R: abcde, abdce, acbde, acdbe, adbce, and adcbe. A domainD satisfies
the strict extension property if it contains all strict extensions of all preferences in it.

It is shown in [40] that the strict unrestricted domain is random dictatorial. Note that every superset of
the unrestricted domain (in particular, the universal domain) satisfies the strict extension property.

In what follows, we introduce the notion of weak random dictatorial rules. These are extensions of
random dictatorial rules for arbitrary domains. Like random dictatorial rules, here to each agent i has a
weight αi, however now, this αi weight is divided amongst the top-ranked alternatives of agent i.
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Definition 5.3.1 An RSCF ϕ : DN → ΔA is weak random dictatorial with coefficients (α1, . . . , αn) ∈ ΔN if
for each profile RN ∈ DN there exists λ(i, a) ∈ [0, 1] for all (a, i) ∈ A× N such that

(i) λ(a, i) = 0 if a /∈ τ(Ri),

(ii)
∑

a λ(a, i) = αi, and

(iii)
∑

i λ(a, i) = ϕa(RN).

It is worth mentioning that a weak random dictatorial rule ϕ : DN → ΔA becomes random dictatorial
if |τ(Ri)| = 1 for all Ri ∈ Di. Our next theorem provides the structure of unanimous and strategy-proof
RSCFs on minimally rich domains.

Theorem 5.3.2 LetDi satisfy the strict extensions property for all i ∈ N and suppose strict(DN) is a random
dictatorial domain. If an RSCF ϕ : DN → ΔA is unanimous and strategy-proof, then it is weak random
dictatorial.

The proof of this theorem is relegated to Appendix .1.

Remark 5.3.3 [77] introduces the notion of super dictatorial domains and provides a characterization of
these domains. A domain is super dictatorial if its all supersets (including itself) are dictatorial. One can
similarly define the notion of super random dictatorial domains: a domain is super random dictatorial if all its
supersets are random dictatorial. It follows fromTheorem 5.3.2 that the unrestricted domain (among others) is
super random dictatorial.

5.4 Random rules on single-peaked domains

In this section, we consider single-peaked domains and provide a characterization of Pareto optimal and
strategy-proof RSCFs on these domains.

A preference is called single-peaked if there is a unique top-ranked alternative such that preference
weakly declines as one moves away from the top-ranked alternative in any direction.

Definition 5.4.1 A preference R is called single-peaked if it has a unique top-ranked alternative τ(R), called
the peak, such that for all a, b ∈ A, b < a < τ(R) or τ(R) < a < b implies aRb. A domain is called
single-peaked if each preference in it is single-peaked.

A single-peaked preference is called strict single-peaked if it does not contain any indifference. A
domain is called strict single-peaked if each preference in it is strict single-peaked.
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Next, we introduce the notion of probabilistic fixed ballot rules. We need the following terminology.
For a preference profile RN and an alternative x, we denote the set of agents whose peaks are on the right
of x by S(x,RN), that is, S(x,RN) = {i ∈ N | τ(Ri) ≥ x}.

Definition 5.4.2 An RSCF ϕ : DN → ΔA is called a probabilistic fixed ballot rule if for all S ⊆ N, there
exists βS ∈ ΔA satisfying

(i) βN(m) = 1 and β∅(1) = 1, and

(ii) βS([x,m]) ≤ βT([x,m]) for all S ⊆ T and all x ∈ A

such that for all RN ∈ DN and all x ∈ A, we have

ϕx(RN) = βS(x,RN)[x,m]− βS(x+1,RN)[x+ 1,m],

where βS(m+1,RN)[m+ 1,m] ≡ 0.

Finally, we introduce the notion of extreme PFBRs. These are special cases of PFBRs where each βS
assigns positive probabilities only to the “extreme” alternatives 1 andm.

Definition 5.4.3 A PFBR with respect to parameters (βS)S⊆N is called extreme if βS(x) > 0 implies
x ∈ {1,m}.

A single-peaked preference R is called left dichotomous if τ(R) = 1 and 2Im. In other words, except
from alternative 1, which is ranked top at R, all other alternatives are indifferent to each other. Similarly, a
preference R′ is called right dichotomous if τ(R′) = m and (m− 1)I′1. A single-peaked domain is
minimally rich if it contains all strict single-peaked preferences, the left dichotomous, and the right
dichotomous preference. Our next theorem says that every Pareto optimal and strategy-proof RSCF on
the single-peaked domain is an extreme PFBR. [18] considers the single-peaked domain with outside
options and characterizes Pareto optimal and strategy-proof DSCFs on those domain.¹ The single-peaked
domains with outside option are special cases of minimally rich weak single-peaked domains, and hence a
characterization of Pareto optimal and strategy-proof RSCFs on those domains follows as a corollary of
our result.

Theorem 5.4.4 LetDi be a minimally rich single-peaked domain for each i ∈ N. An RSCF ϕ : DN → ΔA is
Pareto optimal and strategy-proof if and only if it is an extreme PFBR.

The proof of the theorem is relegated to Appendix .2.

¹A preference is single-peaked with outside options if there is a region around the peak such that the preference exhibits
single-peakedness over the alternatives in that region and indifference over the ones outside it.
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5.5 Random rules on single-plateaued domains

In this section, we introduce the notion of single-plateaued preferences. For these preferences, an interval
of alternatives appear at the top-position, and as one go far from this interval (in any particular direction),
preference declines strictly. Moreover, indifference occurs only at the top-position for such a preference.
Note that single-plateaued preferences are the counter part of weak single-peaked preferences in the sense
that for the former, indifference can occur only at the top, whereas for the latter, it can occur only below
the top.

Throughout this section, we assume that admissible preferences are the same across agents.

Definition 5.5.1 A preference R ∈ W(A) is called single-plateaued if there exist x, y ∈ A with x < y such
that

(i) τ(R) = [x, y],

(ii) for all u, v ∈ A, [u < v ≤ x or y ≤ v < u] implies vPu, and

(iii) for all u, v /∈ [x, y], either uPv or vPu.

In what follows, we introduce some particular type of single-plateaued preferences based on the size of
the plateau.

Definition 5.5.2 For 1 ≤ κ1 ≤ κ2 < m, a single-plateaued preference R ∈ W(A) is called
(κ1, κ2)-single-plateaued if κ1 ≤ |τ(R)| ≤ κ2. A domain is called (κ1, κ2)-single-plateaued domain if it contains
all (κ1, κ2)-single-plateaued preferences.

For a single-plateaued preference R, we denote by τ+(R) and τ−(R) the right-end point and the left
end-point of the plateau, respectively. More formally, if τ(R) = [x, y], then τ+(R) = y and τ−(R) = x.

5.5.1 Equivalence of unanimity and Pareto optimality under strategy-proofness

In this section, we introduce the concepts of unanimity and Pareto optimality. Unanimity is a weaker
notion of Pareto optimality, however we show that under strategy-proofness they are equivalent on a
single-plateaued domain. It is worth mentioning that the same result holds on a single-peaked domain
(see [63] and [84]).

From this section onward, we assume that all the agents have the same set of admissible preferences.
Our next theorem says that unanimity and Pareto optimality are equivalent for a strategy-proof RSCF

on a (κ1, κ2)-single-plateaued domain.
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Theorem 5.5.3 Let 1 ≤ κ1 ≤ κ2 ≤ m and letD be a (κ1, κ2)-single-plateaued domain. Suppose
ϕ : Dn → ΔA is a strategy-proof RSCF.Then, ϕ is unanimous if and only if it is Pareto optimal.

The proof of the theorem is relegated to Appendix .3.

5.5.2 Unanimity and almost plateau-onlyness

In this section, we analyze the connection between unanimity and a weaker version of plateau-onlyness
called almost plateau-onlyness in the presence of strategy-proofness. An RSCF is called plateau-only if its
outcome depends only on the plateaus at a preference profile.

Definition 5.5.4 An RSCF ϕ : Dn → ΔA is called plateau-only if for any two preference profiles
RN,R′

N ∈ Dn, τ(Ri) = τ(R′
i) for all i ∈ N implies ϕ(RN) = ϕ(R′

N).

On single-peaked domains, peaks-onlyness and unanimity are equivalent for random rules under
strategy-proofness ([63] and [84]). However, as the following example suggests, the same does not hold
even for deterministic rules on single-plateaued domains when peaks-onlyness is replaced by
plateau-onlyness.

Example 5.5.5 Consider the DSCF, say f, given in Table 5.5.1. It can be verified that ϕ is unanimous and
strategy-proof. However, since τ([23]14) = τ([23]41) and f([23]14, [123]4) ̸= f([23]41, [123]4), it is not
plateau-only. □

1 2 1234 2134 2314 3214 3421 4321 [12]34 [23]14 [23]41 [34]21 [123]4 [234]1
1234 1 2 2 2 2 2 1 2 2 2 1 2
2134 2 2 2 2 2 2 2 2 2 2 2 2
2314 2 2 2 2 2 2 2 2 2 2 2 2
3214 2 2 2 3 3 3 3 3 3 3 3 3
3421 2 2 2 3 3 3 3 3 3 3 3 3
4321 2 2 2 3 3 4 2 3 3 4 3 4
[12]34 1 2 2 3 3 2 1 2 2 2 2 2
[23]14 2 2 2 3 3 3 2 3 2 3 3 2
[23]41 2 2 2 3 3 3 2 2 3 3 2 3
[34]21 2 2 2 3 3 4 2 3 3 4 3 3
[123]4 1 2 2 3 3 3 1 3 2 3 1 3
[234]1 2 2 2 3 3 4 2 3 2 4 2 3

Table 5.5.1

It is worth noting from Example 5.5.5 that if an agent changes his/her preference maintaining his/her
plateau, then unanimity and strategy-proofness can never rule out the possibility of rearranging the
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probabilities of the alternatives in the plateau. In view of this fact, we weaken the notion of
plateau-onlyness by almost plateau-onlyness. It says that if an agent changes his/her preference
maintaining his/her plateau, then the probability of any alternative that lies outside his/her plateau must
remain the same. In other words, the only change that can happen by this change of preference is that the
probabilities of the alternatives in his/her plateau are rearranged.

Definition 5.5.6 An RSCF ϕ : Dn → ΔA is called almost plateau-only if for any two preference profiles
(Ri,RN\i), (R′

i,RN\i) ∈ Dn, τ(Ri) = τ(R′
i) implies ϕx(Ri,RN\i) = ϕx(R

′
i,RN\i) for all x /∈ τ(Ri).

Theorem 5.5.7 Let 1 ≤ κ1 ≤ κ2 ≤ m and letD be a (κ1, κ2)-single-plateaued domain. LetD be a
(κ1, κ2)-single-plateaued domain and let ϕ : Dn → ΔA be a unanimous and strategy-proof RSCF.Then, ϕ is
almost plateau-only.

The proof of the theorem is relegated to Appendix .4.

5.5.3 Acharacterizationofunanimousandstrategy-proofrulesonarbitrarysingle-plateaued
domains

In this section, we provide a characterization of unanimous and strategy-proof RSCFs on arbitrary
single-plateaued domains. We do this by identifying a property called generalized uncompromisingness
of such rules. As the name suggests, this property is a generalization of the uncompromisingness property
that exists in the literature in the context of single-peaked domains.

The notion of generalized uncompromisingness turns out to be relatively simpler for DSCFs. To help
the reader, we first present this notion for DSCFs.

A DSCF satisfies generalized uncompromisingness if the following happens. Whenever an agent
unilaterally moves his/her plateau in some direction, (i) if both the plateaus lie either strictly on the right
of the outcome or strictly on the left of the outcome of the DSCF, then the outcome does not change, and
(ii) if the right-end point or the left-end point of the plateau crosses the outcome, then the outcome
moves in the direction to which the plateau has moved.

Definition 5.5.8 An DSCF f : Dn → A satisfies generalized uncompromisingness if for all Ri,R′
i ∈ D, and

all RN\i ∈ Dn−1, we have

(i) [f(RN), f(R′
N) ≤ min{τ−(Ri), τ−(R′

i)}] or [max{τ+(Ri), τ+(R′
i)} ≤ f(RN), f(R′

N)], and

(ii) [τ+(Ri) < f(RN) ≤ τ+(R′
i)] or [τ−(Ri) < f(RN) ≤ τ−(R′

i)] implies f(RN) ≤ f(R′
i,RN\i).

60



We illustrate the notion of generalized uncompromisingness by means of the following example. It
should be noted that DSCFs satisfying generalized uncompromisingness can be constructed in a relatively
easy manner.

Example 5.5.9 Let the set of alternatives be A = {1, 2, 3, 4, 5} and suppose that there are two agents
N = {1, 2}. We consider an arbitrary single-plateaued domainD. In Table 5.5.2, we present a DSCF, say f, that
satisfies generalized uncompromisingness. To see that f satisfies part (i) of generalized uncompromisingness,
consider, for instance, the preference profiles (12345, [23]145) and (12345, [45]321). Note that agent 2 changes
his/her plateau from [23] to [45] from the former preference profile to the latter. The outcome at the former
preference profile is 1, which lies strictly on the left of both the plateaus [23] and [45]. As required by (i), the
outcome at the latter preference profile is also 1. To see that f satisfies part (ii) of generalized uncompromisingness,
consider, for instance, the preference profiles ([123]45, [123]45) and ([123]45, [45]321). Note that the outcome at
the former preference profile is 2, which lies (weakly) on the right of the former plateau 1 and strictly on the left of
the latter plateau 4. As required by (ii), the outcome moves to its right from 2 to 3. It is worth mentioning that
although the DSCF in this example is chosen to be unanimous, unanimity is not implied by generalized
uncompromisingness. Later, we will make a formal remark to emphasize this fact. □

1 2 12345 [123]45 [23]145 [23]451 [234]51 32145 34521 [3245]1 [45]321 43215 43521 54321

12345 1 1 1 1 1 1 1 1 1 3 1 1

[123]45 1 2 3 3 3 3 3 3 3 3 3 3

[23]145 1 3 2 2 2 3 3 3 3 3 3 3

[23]451 1 3 2 2 2 3 3 3 3 3 3 3

[234]51 1 3 2 2 4 3 3 4 4 4 4 4

32145 1 3 3 3 3 3 3 3 3 3 3 3

34521 1 3 3 3 3 3 3 3 3 3 3 3

[3245]1 1 3 3 3 4 3 3 2 4 4 4 5

[45]321 1 3 3 3 4 3 3 4 4 4 4 5

43215 1 3 3 3 4 3 3 4 4 4 4 4

43521 1 3 3 3 4 3 3 4 4 4 4 4

54321 1 3 3 3 4 3 3 5 5 4 4 5

Table 5.5.2

Now, we present the notion of generalized uncompromisingness for RSCFs. It says that whenever an
agent unilaterally moves his/her plateau in some direction, (i) if, for an alternative x, both the plateaus lie
either strictly on the right of it or strictly on the left of it, then the probability of x does not change, and (ii)
the probability of an interval [x,m], where x lies in exactly one of the two plateaus, will weakly increase. In
our formal definition, we present (i) by means of probabilities of sets of the form [x,m], one can verify
that it means exactly what we have explained above.
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Definition 5.5.10 An RSCF ϕ : Dn → ΔA satisfies generalized uncompromisingness if for all Ri,R′
i ∈ D,

all RN\i ∈ Dn−1, and all x ∈ A, we have

(i) [x ≤ min{τ−(Ri), τ−(R′
i)}] or [max{τ+(Ri), τ+(R′

i)} < x] implies
ϕ[x,m](R

′
i,RN\i) = ϕ[x,m](Ri,RN\i), and

(ii) [τ+(Ri) < x ≤ τ+(R′
i)] or [τ−(Ri) < x ≤ τ−(R′

i)] implies ϕ[x,m](R
′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i).

Remark 5.5.11 Note that as we have mentioned in the introduction of Definition 5.5.8, part (i) of generalized
uncompromisingness implies that for all (Ri,RN\i) ∈ Dn, all i ∈ N, and all R′

i ∈ D, we have
ϕx(Ri,RN\i) = ϕx(R

′
i,RN\i) for all x ∈ A such that either x < {τ−(Ri), τ−(R′

i)} or
x > max{τ+(Ri), τ+(R′

i)}.

Remark 5.5.12 It is worth noting that the notion of generalized uncompromisingness coincides with that of
uncompromisingness ([63]) if we assume τ+(R) = τ−(R) for all R ∈ D, that is, if preferences are
single-peaked.

Remark 5.5.13 By considering Ri and R′
i such that τ−(Ri) = τ−(R′

i) and τ+(Ri) = τ+(R′
i), it follows that

generalized uncompromisingness implies almost plateau-onlyness.

We illustrate the notion of generalized uncompromisingness by means of the following example. It is
worth mentioning that, although the RSCF in the following example is chosen to be unanimous, the same
is not implied by generalized uncompromisingness.

Example 5.5.14 Let the set of alternatives, agents, and admissible preferences be the same as in Example 5.5.9.
In Table 5.5.3, we present an RSCF, say ϕ, that satisfies generalized uncompromisingness. To see that ϕ satisfies
part (i) of generalized uncompromisingness, consider, for instance, the preference profiles (12345, [123]45) and
(12345, [234]51). Note that agent 2 changes his/her plateau from [123] to [234] from the former preference profile
to the latter. As alternative 5 lies strictly to the right of both the plateaus [123] and [234],
ϕ5(12345, [123]45) = ϕ5(12345, [234]51) = 0. To see that ϕ satisfies part (ii) of generalized
uncompromisingness, consider, for instance, the preference profiles ([2345]1, [234]51) and ([2345]1, [45]321).
Alternative 3 lies (weakly) to the right of the plateau [234] and strictly to the left of the plateau [45]. As required
by (ii), ϕ[3,5]([2345]1, [234]51) < ϕ[3,5]([2345]1, [45]321). It is worth mentioning that although the RSCF in this
example is chosen to be unanimous, unanimity is not implied by generalized uncompromisingness. Later, we will
make a formal remark to emphasize this fact. □

62



1 2 12345 [123]45 [23]145 [23]451 [234]51 32145 34521 [2345]1 [45]321 43215 43521 54321

12345 (1, 0, 0, 0, 0) (1, 0, 0, 0, 0) (0.3, 0.7, 0, 0, 0) (0.3, 0.7, 0, 0, 0) (0.3, 0.7, 0, 0, 0) (0.3, 0.3, 0.4, 0, 0) (0.3, 0.3, 0.4, 0, 0) (0.3, 0.3, 0.4, 0, 0) (0.3, 0.3, 0.4, 0, 0) (0.3, 0.3, 0.4, 0, 0) (0.3, 0.3, 0.4, 0, 0) (0.3, 0.3, 0.4, 0, 0)

[123]45 (1, 0, 0, 0, 0) (0.3, 0.4, 0.3, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0.6, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0)

[23]145 (0.3, 0.7, 0, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0.8, 0.2, 0, 0) (0, 0.7, 0.3, 0, 0) (0, 0.6, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0)

[23]451 (0.3, 0.7, 0, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0.7, 0.3, 0, 0) (0, 0.4, 0.6, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0)

[234]51 (0.3, 0.7, 0, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0.6, 0.4, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0.2, 0.3, 0.5, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0.4, 0.4, 0.2, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0)

32145 (0.3, 0.3, 0.4, 0, 0) (0, 0.5, 0.5, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0)

34521 (0.3, 0.3, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0)

[2345]1 (0.3, 0.3, 0.4, 0, 0) (0, 0.6, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0.4, 0.4, 0.2, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0.5, 0.5) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1)

[45]321 (0.3, 0.3, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 0.5, 0.5) (0, 0, 0, 0.6, 0.4) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1)

43215 (0.3, 0.3, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0)

43521 (0.3, 0.3, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0)

54321 (0.3, 0.3, 0.4, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 0, 1) (0, 0, 0, 0, 1) (0, 0, 0, 1, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1)

Table 5.5.3

We are now ready to present the main theorem of this section. It provides a characterization of
unanimous and strategy-proof RSCFs by saying that a unanimous RSCF is strategy-proof if and only if it
satisfies generalized uncompromisingness.

Theorem 5.5.15 Let 1 ≤ κ1 ≤ κ2 ≤ m and letD be a (κ1, κ2)-single-plateaued domain. If ϕ : Dn → ΔA
satisfies generalized uncompromisingness, then it is strategy-proof.

The proof of the theorem is relegated to Appendix .5.

Theorem 5.5.16 Let 1 ≤ κ1 ≤ κ2 ≤ m and letD be a (κ1, κ2)-single-plateaued domain. Suppose
ϕ : Dn → ΔA is unanimous. Then, ϕ is strategy-proof if and only if it satisfies generalized uncompromisingness.

The proof of the theorem is relegated to Appendix .6.

5.5.4 A functional form characterization of the unanimous and strategy-proof rules
for the case of two agents

In this section, we consider the case where there are exactly two agents. We provide a complete
characterization of the unanimous and strategy-proof rules in this scenario.

In what follows, we introduce the notion of probabilistic plateau rule when there are two agents. These
rules are based on two parameters β1 and β2. Both these parameters represent some probability
distributions over the set of alternatives. For instance, if the set of alternatives is {1, . . . , 5}, then possible
values of β1 and β2 are (0.1, 0.2, 0.2, 0.3, 0.2) and (0.4, 0, 0.1, 0.2, 0.3), respectively. Note that β1 and β2
are independent of each other.

Now, we explain how the the outcome of a probabilistic plateau rule ϕ is determined based on the
parameter values β1 and β2. For any preference profile where τ(R1) ∩ τ(R2) ̸= ∅, define the outcome as an
arbitrary probability distribution over τ(R1) ∩ τ(R2). Consider a preference profile where
τ(R1) ∩ τ(R2) = ∅. Suppose τ+(R1) < τ−(R2). Consider an alternative x. If x < τ+(R1) or τ−(R2) < x,

63



then define ϕx(RN) = 0. If τ+(R1) < x < τ−(R2), define ϕx(RN) = β2(x). Finally, if x = τ+(R1), then
ϕx(RN) = β2[1, x], and if x = τ−(R2), then ϕx(RN) = β2[x,m]. For the case where τ+(R2) < τ−(R1), we
use the probability distribution given by β1 in place of β2 to determine the outcomes.

For an example of probabilistic plateau rule , consider β1 = (0.1, 0.2, 0.2, 0.3, 0.2) and
β2 = (0.4, 0, 0.1, 0.2, 0.3). Let ϕ be a probabilistic plateau rule with respect to (β1, β2). In Table 5.5.4 , we
provide the values of ϕ at some preference profiles.

RN ϕ1(RN) ϕ2(RN) ϕ3(RN) ϕ4(RN) ϕ5(RN)

([12]345, 54321) 0 0.4 0.1 0.2 0.3
([234]15, [34]521) 0 0 0.4 0.6 0
([34]251, [12]345) 0 0 0.3 0.7 0
([543]21, 23451) 0 0 0.3 0.7 0
(54321, [23]145) 0 0 0.5 0.3 0.2

Table 5.5.4

Below, we provide a formal definition of these rules.

Definition 5.5.17 An RSCF ϕ : D2 → ΔA is called probabilistic plateau rule with respect to (β1, β2), where
βi ∈ ΔA for all i ∈ N, if for all RN ∈ D2 and all x ∈ A, we have

(i) τ(R1) ∩ τ(R2) ̸= ∅ implies ϕ(RN) is an arbitrary probability distribution over τ(R1) ∩ τ(R2),

(ii) τ+(R1) < τ−(R2) implies ϕ[x,m](RN) = β2[x,m] for all τ
+(R1) < x ≤ τ−(R2) and ϕx(RN) = 0 for

all x /∈ [τ+(R1), τ−(R2)], and

(iii) τ+(R2) < τ−(R1) implies ϕ[x,m](RN) = β1[x,m] for all τ
+(R2) < x ≤ τ−(R1) and ϕx(RN) = 0 for

all x /∈ [τ+(R2), τ−(R1)].

Now, we present the main result of this section. It characterizes all unanimous and strategy-proof rules
on (κ1, κ2)-single-plateaued domains for two agents.

Theorem 5.5.18 Let N = {1, 2} and 1 ≤ κ1 ≤ κ2 ≤ m. SupposeD is the (κ1, κ2)-single-plateaued domain.
Then, an RSCF ϕ : D2 → ΔA is unanimous and strategy-proof if and only if it is a probabilistic plateau rule.

The proof of this theorem is relegated to Appendix .7.
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5.5.5 A class of unanimous and strategy-proof rules

In this section, we present a large class of RSCFs that are unanimous and strategy-proof. These RSCFs are
extension of probabilistic plateau rules for arbitrary number of agents. Like probabilistic plateau rules,
these rules too are based on a class of parameters that we call probability ballots.

Definition 5.5.19 A collection (βS)S⊆N, where βS ∈ ΔA for all S ⊆ N, is called probability ballots if for all
∅ ⊆ S ⊂ T ⊆ N and all x ∈ A, we have βS[x,m] ≤ βT[x,m].

Now, we introduce the notion of generalized probabilistic ballot rule with parameters k and (βS)S⊆N,
where k ∈ {0, . . . ,m} and (βS)S⊆N is a collection of probability ballots. We use the following notation:
for a preference profile RN ∈ Dn, whenever∩i∈Nτ(Ri) = ∅we denote by I(RN) the minimal interval I
such that I ∩ τ(Ri) ̸= ∅ for all i ∈ N, otherwise we define I(RN) = ∩i∈Nτ(Ri). In other words, when
∩i∈Nτ(Ri) = ∅, I(RN) denotes the minimal interval that contains some top-ranked alternative of each
agent.

Definition 5.5.20 An RSCF ϕ : Dn → ΔA is called a generalized probabilistic ballot rule with parameters k
and (βS)S⊆N, where k ∈ {0, . . . ,m} and (βS)S⊆N is a collection of probability ballots, if for all RN ∈ Dn and
all x ∈ A, we have

(i) ϕ[x,m](RN) = 1 for all x ≤ I−(RN),

(ii) ϕ[x,m](RN) = 0, for all x > I+(RN), and

(iii) ∩i∈Nτ(Ri) = ∅ implies that for all I−(RN) < x ≤ I+(RN) , ϕ[x,m](RN) = βS[x,m], where S is such
that i ∈ S if and only if τ−(Ri) ≥ x− k and τ+(Ri) ≥ x.

Note that one can construct a large class of generalized probabilistic ballot rules by varying the values
of βs and ks. In what follows, we present an example of generalized probabilistic ballot rule.

Example 5.5.21 Let the set of alternatives be A = {1, 2, 3, 4, 5} and the set of agents be N = {1, 2, 3}.
Consider the generalized probabilistic ballot rule with parameters k and (βS)S⊆N, where k = 1 and β∅ =
(1, 0, 0, 0, 0), β{1} = β{2} = β{3} = (0.5, 0.2, 0.2, 0.1, 0), β{1,2} = β{1,3} = β{2,3} = (0.2, 0.4, 0.3, 0.1, 0)
and β{1,2,3} = (0.1, 0.3, 0.3, 0.2, 0.1). In Table 5.5.5, we provide the outcomes of ϕ at some particular
preference profiles. We explain how the outcomes are calculated. Consider the first preference profile
R1
N = ([12]345, [23]145, [23]415). Here, I(R1

N) = {2}, therefore by Conditions (i) and (ii) of a generalized
probabilistic ballot rule, we have ϕ[1,5](R

1
N) = 1, ϕ[2,5](R

1
N) = 1, ϕ[3,5](R

1
N) = ϕ[4,5](R

1
N) = ϕ5(R

1
N) = 0.

Hence, ϕ1(R
1
N) = 0, ϕ2(R

1
N) = 1, ϕ3(R

1
N) = ϕ4(R

1
N) = ϕ5(R

1
N) = 0. Consider the second preference profile
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R2
N = ([12]345, [45]321, [34]521). Here,∩i∈Nτ(Ri) = ∅. Hence, I(R2

N) = {2, 3, 4}. Therefore by Conditions
(i) and (ii) of a generalized probabilistic ballot rule, we have ϕ[1,5](R

2
N) = 1, ϕ[2,5](R

2
N) = 1, ϕ5(R

2
N) = 0. For

ease of presentation, let the use Consider the alternative 3. Since τ−(R2) ≥ 2, τ−(R3) ≥ 2, τ+(R2) ≥ 3 and
τ+(R3) ≥ 3, we have S = {2, 3}. By Condition (iii) of a generalized probabilistic ballot rule,
ϕ[3,5](R

2
N) = β{2,3}[3, 5] = 0.4. Finally, consider the alternative 4. Since τ−(R2) ≥ 3, τ−(R3) ≥ 3,

τ+(R2) ≥ 4 and τ+(R3) ≥ 4, we have S = {2, 3}. By Condition (iii) of a generalized probabilistic ballot rule,
ϕ[4,5]([12]345, [45]321, [34]521) = β{2,3}[4, 5] = 0.1. Hence, ϕ1([12]345, [45]321, [34]521) = 0,
ϕ2([12]345, [45]321, [34]521) = 0.6, ϕ3([12]345, [45]321, [34]521) = 0.3, ϕ4([12]345, [45]321, [34]521) = 0.1
and ϕ3([12]345, [45]321, [34]521) = 0. Similarly, one can compute the outcome of ϕ at the other preference
profiles mentioned in the table.

(R1,R2,R3) ϕ1(R1,R2,R3) ϕ2(R1,R2,R3) ϕ3(R1,R2,R3) ϕ4(R1,R2,R3) ϕ5(R1,R2,R3)

R1
N = ([12]345, [23]145, [23]415) 0 1 0 0 0

R2
N = ([12]345, [45]321, [34]521) 0 0.6 0.3 0.1 0

R3
N = ([123]45, [23]451, [234]51) 0 0.7 0.3 0 0

R4
N = ([23]145, [234]51, [45]321) 0 0 0.9 0.1 0

Table 5.5.5

In Section 5.5.4, we have introduced the notion of probabilistic plateau rules when there are two agents.
It can be verified that those rules are special cases of generalized probabilistic ballot rules. We present the
rules as probabilistic plateau rules rules as we find that more intuitive and reader friendly when there are
two agents.

We now present the main theorem of this section.

Theorem 5.5.22 LetD be a (κ1, κ2)-single-plateaued domain for some 1 ≤ κ1 ≤ κ2 ≤ m. Suppose
ϕ : Dn → ΔA is a generalized probabilistic ballot rule with parameters k and (βS)S⊆N where
k ∈ {0, . . . , κ1 − 1} and (βS)S⊆N is a collection of probability ballots. Then, ϕ is unanimous and strategy-proof.

The proof of this theorem is relegated to Appendix .8.
In Section 5.5.6, we provide a characterization of unanimous, anonymous, plateau-only, and

strategy-proof rules on a particular class of single-plateaued domains. It will be clear from that result the
there are unanimous and strategy-proof rules other than generalized probabilistic ballot rules on a
single-plateaued domain.
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5.5.6 Afunctionalformcharacterizationofanonymous, plateau-only, andstrategy-proof
rules

In this section, we provide a functional form characterization of anonymous, plateau-only, and
strategy-proof RSCFs on a class of single-plateaued domains. By Theorem 5.5.7, every unanimous and
strategy-proof RSCF is almost plateau-only. We strengthen almost plateau-onlyness by plateau-onlyness
in the interest of tractability. We also add anonymity for the same reason. Our characterization requires
too many parameters even with these additional assumptions. Nevertheless, this characterization result
can be extended by dropping anonymity in the same way as median rules are extended to min-max rules
in the context of single-peaked domains ([63]) . To replace plateau-onlyness by almost plateau-onlyness
(which is implied by unanimity and strategy-proofness), one would require many more parameters,
which, we think, will be too technical for its practical use.

In what follows, we present a collection of parameters that we require for the description of our RSCFs.
Let κ ∈ {1, . . . ,m}. In our subsequent discussion, this κ is going to represent the size of the plateau of a
single-plateaued preference. Given a κ, by n˜we denote a vector (n0, n1, . . . , nκ−1) such that
0 ≤ nκ−1 ≤ · · · ≤ n1 ≤ n0 ≤ n. For instance, if κ = 3 and n = 4, then an example of n˜would be (3, 3, 1).
LetN˜ be the collection of all such vectors. Consider a table of order |N˜| × |{2, . . . ,m}|where the rows
are indexed by the vectors n˜ inN˜ and columns are indexed by the alternatives in {2, . . . ,m}. See Table
5.5.7, for an example of such a table when κ = 3, n = 2, andm = 5.

Now, we identify some cells of the table described above for which we will define the values of our
parameters. Let κ ∈ {1, . . . ,m}. Call the cell (corresponding to the position) (n˜, x) feasible for κ if
n˜κ−x = n if x ≤ κ and n˜m−x+1 = 0 ifm− κ + 1 < x. For instance, if κ = 3, n = 3 andm = 10, then the
following are some feasible cells: ((3, 3, 2), 2), ((3, 3, 1), 2), ((3, 2, 2), 3),
((2, 2, 2), 5), ((3, 1, 1), 7), ((3, 2, 0), 9), ((2, 0, 0), 10) and the following are some infeasible cells:
((3, 1, 0), 2), ((1, 1, 1), 3), ((3, 3, 3), 9), ((2, 1, 1), 10). We denote byF(κ) the set of all feasible cells for κ.

We need the following terminologies to present some conditions on our parameters. For a vector n˜, we
denote by n˜+ the ‘right-shifted’ value of n˜, that is, n˜+j = n˜j−1 if 1 ≤ j ≤ κ − 1. For instance, if
n˜ = (5, 3, 2, 2, 1), then n˜+ = (·, 5, 3, 2, 2). Here, any number that is weakly bigger than 5 (and weakly
smaller than n) can appear at the position of the dot. For two vectors n˜ and n˜′, we write n˜′ = n˜⊕ 1 if there
is l ∈ {0, . . . , κ − 1} such that either [ n˜′0 = n˜0 + 1, . . . , n˜′l = n˜l + 1 and n˜′l+1 = n˜l+1, . . . , n˜′κ−1 = n˜κ−1] or
[ n˜′0 = n˜0, . . . , n˜′l = n˜l and n˜′l+1 = n˜l+1 + 1, . . . , n˜′κ−1 = n˜κ−1 + 1]. In Table 5.5.6, we present some values
of n˜ and n˜′ Note that when n˜ is (3, 2, 2, 1, 0), the first, second and third components of n˜ are increased by 1,
respectively, and the remaining are left unchanged. When n˜ is (4, 3, 2, 0, 0), then the last and second-last
components of n˜ are increased by 1 and the remaining are left unchanged.
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Definition 5.5.23 Let κ ∈ {1, . . . ,m}. A collection {β(n˜, x)(n˜,x)∈F(κ)} of numbers in [0, 1] is called plateau
parameters for κ if for all n˜,

(i) β(n˜, x) ≤ β(n˜+, x− 1), and

(ii) β(n˜, x) ≤ β(n˜⊕ 1, x).

In Table 5.5.7, we present a collection of plateau parameters for the case when κ = 3, n = 2, andm = 5.

n˜ n˜′
(3, 2, 2, 1, 0) (4, 3, 3, 1, 0)

(4, 3, 2, 0, 0) (4, 3, 2, 1, 1)

Table 5.5.6

Example 5.5.24 Let n = 2, κ = 3 and A = {1, 2, 3, 4, 5}. Here

F(3) = {((2, 2, 0), 2), ((2, 2, 1), 2), ((2, 2, 2), 2),

((2, 0, 0), 3), ((2, 1, 0), 3), ((2, 2, 0), 3), ((2, 1, 1), 3), ((2, 2, 1), 3), ((2, 2, 2), 3),

((0, 0, 0), 4), ((1, 0, 0), 4), ((1, 1, 0), 4), ((2, 0, 0), 4), ((2, 1, 0), 4), ((2, 2, 0), 4), ((1, 1, 1), 4),

((0, 0, 0), 5), ((1, 0, 0), 5), ((2, 0, 0), 5)}.

Let {(β(n˜, x))(n˜,x) ∈ F(3)} be a collection of plateau parameters as given in Definition 5.5.23. Consider
x = 3, n˜ = (2, 0, 0) and n˜′ = (2, 2, 0). By Condition (i) in Definition 5.5.23,
0 ≤ β((2, 0, 0), 3) ≤ β((2, 2, 0), 2) ≤ 1. Take x = 4, n˜ = (0, 0, 0) and n˜′ = (1, 1, 0). By Condition (ii) of
Definition 5.5.23, we must have 0 ≤ β((0, 0, 0), 4) ≤ β((1, 1, 0), 4) ≤ 1. Now, take x = 4, n˜ = (1, 1, 0) and
n˜′ = (1, 1, 1). As βs are plateau parameters, by Condition (ii) of Definition 5.5.23,
0 ≤ β((1, 1, 0), 4) ≤ β((1, 1, 1), 4) ≤ 1. Table 5.5.7 provides an example of plateau parameters. □

Definition 5.5.25 Let κ ∈ {1, . . . ,m}. A collection of plateau parameters {β(n˜, x)(n˜,x)∈F(κ)} is called
unanimous if β(n˜, x) = 1 whenever n˜0 = n and n˜κ−1 > 0, and β(n˜, x) = 0 whenever n˜0 < n and n˜κ−1 = 0.
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(n0, n1, n2) 2 3 4 5

(0,0,0) .4 .3

(1,0,0) .5 .4

(1,1,0) .45

(1,1,1)

(2,0,0) .6 .6 .45

(2,1,0) .55 .55

(2,1,1) .55

(2,2,0) .7 .6 .5

(2,2,1) .8 .7

(2,2,2) .9 .8

Table 5.5.7

(n0, n1, n2) 2 3 4 5

(0,0,0) 0 0

(1,0,0) 0 0

(1,1,0) 0

(1,1,1)

(2,0,0) 0.6 .6 .45

(2,1,0) .55 .55

(2,1,1) 1

(2,2,0) 0.7 .6 .5

(2,2,1) 1 1

(2,2,2) 1 1

Table 5.5.8

In Table 5.5.8, we provide a collection of unanimous plateau parameters.
In Example 5.5.24, for {β(n˜, x)(n˜,x)∈F(3)} to be unanimous plateau parameters we must have

β((2, 2, 1), 2) = β((2, 2, 2), 2) = β((2, 1, 1), 3) = β((2, 2, 1), 3) = β((2, 2, 2), 3) = 1 and
β((0, 0, 0), 4) = β((1, 0, 0), 4) = β((1, 1, 0), 4) = β((0, 0, 0), 5) = β((1, 0, 0), 5) = 0.

In what follows, we present the notion of κ-plateaued rules. We need the following terminology for our
presentation. For an alternative x ∈ A, a number l ∈ {0, . . . , κ − 1}, and a preference profile RN ∈ Dn,
let nxl (RN) = |{i ∈ N | τ+(Ri) ≥ x+ l}| be the set of agents whose right-end point of the plateau at RN is
(weakly) on the right of x+ l.

Definition 5.5.26 An RSCF ϕ : Dn → ΔA is called a κ-plateaued rule for if there is a collection of plateau
parameters {(β(n˜, x))(n˜,x)∈F(κ)} for κ such that for all RN ∈ Dn, ϕ[x,m](RN) = β(n˜, x), where n˜l = nxl (RN)

for all 0 ≤ l ≤ κ − 1.
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In Example 5.5.27, we present a κ-plateaued rule .

Example 5.5.27 Let n = 2, κ = 3 and A = {1, 2, 3, 4, 5}. Let ϕ be a 3-plateaued rule with respect to a
collection {(β(n˜, x))(n˜,x)∈F(3)} as given in Example 5.5.24. Consider the preference profile RN ∈ Dn where
τ(R1) = [1, 3] and τ(R2) = [3, 5]. Take x = 5. Note that n5(RN) = (1, 0, 0). Thus,
ϕ5(RN) = β(5, (1, 0, 0)) = 0.4. Similarly, n4(RN) = (1, 1, 0), n3(RN) = (2, 1, 1) and n2(RN) = (2, 2, 1)
(refer to Figure 5.5.1). As ϕ is a 3-plateaued rule , ϕ[4,5](RN) = 0.45, ϕ[3,5](RN) = 0.55 , ϕ[2,5](RN) = 0.8 and
ϕ[1,5](RN) = 1. Thus ϕ5(RN) = 0.4, ϕ4(RN) = 0.05, ϕ3(RN) = 0.1, ϕ2(RN) = 0.25 and ϕ1(RN) = 0.2. The
complete rule is given in Table 5.5.9. □

1 2 3 4 5

τ(R1)

τ(R2)

Figure 5.5.1: Single-plateaued preferences for Example 5.5.27

[1, 3] [2, 4] [3, 5]

[1, 3] (0.3, 0.1, 0.2, 0.1, 0.3) (0.2, 0.25, 0.05, 0.2, 0.3) (0.2, 0.25, 0.1, 0.05, 0.4)

[2, 4] (0.2, 0.25, 0.05, 0.2, 0.3) (0.1, 0.3, 0, 0.3, 0.3) (0.1, 0.2, 0.15, 0.15, 0.4)

[3, 5] (0.2, 0.25, 0.1, 0.05, 0.4) (0.1, 0.2, 0.15, 0.15, 0.4) (0.1, 0.1, 0.3, 0.05, 0.45)

Table 5.5.9

Now, we are ready to present the main results of this section. For ease of presentation, we call a
(κ, κ)-singe-plateaued domain a κ-single-plateaued domain. Note that if κ = 1, then aD domain is the
single-peaked domain. Theorem 5.5.28 characterizes all anonymous, plateau-only, and strategy-proof
RSCFs on a κ-single-plateaued domain.

Theorem 5.5.28 Let κ ∈ {1, . . . ,m} andD be a κ-single-plateaued domain. An RSCF ϕ : Dn → ΔA is
anonymous, plateau-only, and strategy-proof if and only if it is κ-plateaued rule .

The proof of the theorem is relegated to Appendix .9.

Corollary 5.5.1 An RSCF is unanimous, anonymous, plateau-only, and strategy-proof if and only if it is a
κ-plateaued rule with respect to some unanimous plateau parameters.
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The proof of the corollary is relegated to Appendix .10.
Our next theorem says that a κ-plateaued rule is strategy-proof (together with being anonymous and

plateau-only) on any single-plateaued domain such that the size of the plateau for any preference in it is at
least κ.

Theorem 5.5.29 Let κ ∈ {1, . . . ,m} and letD be a (κ, κ̂)-single-plateaued domain for some (arbitrary)
κ̂ ≥ κ. Suppose ϕ : Dn → ΔA is a κ-plateaued rule . Then, ϕ is anonymous, plateau-only, and strategy-proof.

The proof of the theorem is relegated to Appendix .11.

5.6 Conclusion

In this paper we study the structure of unanimous (or Pareto optimality) and strategy-proof random
social choice functions when weak preferences are admissible. Theorem 5.3.2 shows that a weak random
dictatorial RSCF is unanimous and strategy-proof on a domain satisfying the strict extensions property.
Theorem 5.4.4 of this paper shows that under some minimal richness condition on the weak
single-peaked domain an RSCF is Pareto optimal and strategy-proof if and only if it is an extreme PFBR.
An interesting application of this result is the single-peaked domain with outside options (see [18]).
Theorem Theorem 5.5.3 shows that on a single-plateaued domain under strategy-proofness, unanimity
and Pareto optimality are equivalent for RSCFs. Theorem 5.5.7 shows that any unanimous and
strategy-proof RSCF is almost plateau-only.

Next, in Theorems 5.5.15 and 5.5.16, we provide an axiomatic characterization of the unanimous and
strategy-proof RSCFs. We show that an RSCF is unanimous and strategy-proof if and only if it satisfies a
generalized version of uncompromisingness. Uncompromisingness says that as long as the plateau of an
individual stay on one side of an alternative, the probability of that alternative cannot be changed.
Generalized uncompromisingness additionally imposes some restriction on how the probability of an
alternative can change when the plateau of an individual crosses it.

Finally, we proceed to present a functional form presentation of RSCFs. We provide a functional form
characterization of the unanimous and strategy-proof rules on (κ1, κ2)-single-plateaued domains for two
players. We also provide a class of unanimous and strategy-proof RSCFs on (κ1, κ2)-single-plateaued
domains for more than two players. In Theorem 5.5.28 we strengthen almost plateau-onlyness by
plateau-onlyness and provide a functional form characterization of the plateau-only, anonymous, and
strategy-proof RSCFs.
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Appendix

.1 Proof of Theorem 5.3.2

Proof: First, we present a lemma that provides a necessary and sufficient condition for weak random
dictatorship.

Lemma .1.1 An RSCF ϕ : DN → ΔA is weak random dictatorial with coefficients (α1, . . . , αn) if and only if
for all RN ∈ DN, and all B ⊆ A, we have ϕB(RN) ≤

∑
{i|B∩τ(Ri) ̸=∅} αi.

Proof: Theonly if part of the theorem follows from the definition of a weak random dictatorial rule (5.3.1).
We prove the if part using a result from [15].

Consider a profile RN. For each i ∈ N, let Ai = τ(Ri). Given the collection (Ai)i∈N, we define anm× n
dimensional matrixB in the following manner. The rows ofB are indexed by alternatives and the columns
are indexed by agents. The elementBa,i is zero if a /∈ Ai.

Let R be the row vector indexed by the elements of A defined as Ra = ϕa(RN) for all a ∈ A, and S is the
column vector indexed by the elements of the setN defined as Si = αi for all i ∈ N. GivenB and the
vectors R, S, we define the class of matricesB(R, S) satisfying the conditions thatM ∈ B(R, S) implies
for all a ∈ A and i ∈ N, (i)Ma,i ≥ 0, (ii)Ba,i = 0 impliesMa,i = 0, and (iii)

∑
a∈A Ma,i = ϕa(RN) and∑

i∈NMa,i = αi. Note that the existence of a weak random dictatorial with co-efficients (α1, . . . , αn) is
equivalent to the existence of a matrixM inB(R, S) asMa,i will serve as the value of λ(a, i) for all a ∈ A
and i ∈ N.

In [15] (see Theorem 2.1), it shown that givenB that is not decomposable², a matrixB(R, S) exists if
and only if whenever the rows and columns ofB can be permuted to the form[

B1 0
B2 B3

]
(1)

whereB1 is a non-vacuous 0, 1-matrix formed from rows i1, . . . , ip and columns j1, . . . , jq ofB andB3 is
non-vacuous, then

ri1 + · · ·+ rip < sj1 + · · ·+ sjq. (2)

Consider a set of alternatives B ⊆ A and the set of agents i ∈ N such that B ∩ Ai ̸= ∅. Recall that by
the restriction onB, we haveBa,i = 0 if a /∈ Ai. Therefore, each set of alternatives B partitions the matrix

²The matrixB is decomposable if it can be written as
[
B1 0
0 B3

]
.
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(through some permutation of rows and columns)B in the following way:

[
B1 0
B2 B3

]
. So, by Theorem

2.1 of [15], ri1 + · · ·+ rip < sj1 + · · ·+ sjq implies that there exists a matrix inB(R, S). The proof is
completed by showing that when ri1 + · · ·+ rip = sj1 + · · ·+ sjq, then the matrixB is decomposable.³
This follows from the fact that the condition ri1 + · · ·+ rip = sj1 + · · ·+ sjq impliesBa,i = 0 for all a /∈ B
and i ∈ N, and hence the matrixB2 = 0. ■

In view of Lemma .1.1, it is enough to show that for all RN ∈ DN, and all B ⊆ A, we have
ϕB(RN) ≤

∑
{i|B∩τ(Ri) ̸=∅} αi. For all Ri ∈ Di let P̂i be a strict extension of Ri such that for all b ∈ B and

c ∈ A \ B, bIic implies bP̂ic.

Claim .1.1 ϕB(P̂i,RN\i) ≥ ϕB(Ri,RN\i).

Proof: Consider agent i. Let {B1, . . . , Bk} be a partition of B such that for all l ∈ {1, . . . , k} and all
b, b′ ∈ Bl, bIib′, and B1Pi · · · PiBk. Let l ∈ {1, . . . , k}. Consider the sets of alternatives
Cl = {a ∈ A | aPiBl} and C̄l = Cl ∪ Bl. Note that Cl i an upper contour set in both Ri and P̂i, and C̄l is an
upper contour set in P̂i. Since Cl is an upper contour set in both Ri and P̂i, we have by strategy-proofness

ϕCl
(P̂i,RN\i) = ϕCl

(Ri,RN\i). (3)

Again since C̄l is an upper contour set in P̂i, we have by strategy-proofness

ϕC̄l
(P̂i,RN\i) ≥ ϕC̄l

(Ri,RN\i). (4)

Subtracting (3) from (4), we obtain

ϕBl
(P̂i,RN\i) ≥ ϕBl

(Ri,RN\i). (5)

Since ϕB(P̂i,RN\i) =
∑

l∈{1,...,k} ϕBl
(P̂i,RN\i) and ϕB(Ri,RN\i) =

∑
l∈{1,...,k} ϕBl

(Ri,RN\i), by (5) it
follows that ϕB(P̂i,RN\i) ≥ ϕB(Ri,RN\i). This completes the proof of the claim. ■

By applying Claim .1.1 for all i ∈ N, we obtain ϕB(P̂N) ≥ ϕB(RN). ■

.2 Proof of Theorem 5.4.4

Proof: (“If ” part) We show that an extreme PFBR is Pareto optimal and strategy-proof. Since an
alternative receives positive probability in an extreme PFBR at a profile if and only if the alternative is

³If the matrixB is decomposable, then the problem reduces to a lower dimensional problem.
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top-ranked by at least one agent, it follows that the outcome of an extreme PFBR at any profile cannot be
Pareto dominated, which implies that such a rule is Pareto optimal. Let ϕ be an extreme PFBR. To show
strategy-proofness, let us assume for contradiction that

∑
y∈U(x,Ri) ϕy(R

′
i,RN\i) >

∑
y∈U(x,Ri) ϕy(Ri,RN\i)

for some RN and R′
i . Let P̂N ∈ strict(DN) and Pi ∈ strict(Di) be such that τ(P̂i) = τ(Ri) for all i ∈ N,

τ(Pi) = τ(R′
i), andU(x,Ri) is an upper contour set of P̂i. By the definition of an extreme PFBR, we have

ϕ(P̂N) = ϕ(RN) and ϕ(Pi, P̂N\i) = ϕ(R′
i,RN\i). This implies

∑
y∈U(x,Ri) ϕy(Pi, P̂N\i) >

∑
y∈U(x,Ri) ϕy(P̂N),

which in turn means that the restriction of ϕ on strict(DN) is manipulable. However, this is a
contradiction since the restriction of ϕ on strict(DN) is a PFBR which is known to be strategy-proof (see
[37]).
(“Only-if ” part) A profile RN ∈ DN is called a boundary profile if τ(Ri) ∈ {1,m} for all i ∈ N, that is, the
top-ranked alternative of any preference in such a profile lies on the boundary 1 orm of the set of
alternatives. We make extensive use of two particular types of strict single-peaked preferences in our
proofs: a single-peaked preference P is called left (or right) if for all x < τ(P) and all y > τ(P), we have
xPy (or yPx).

Lemma .2.1 Let i ∈ N, Pi ∈ strict(Di), and RN\i ∈ DN\i. Suppose r < τ(Pi) < s are such that sPir. Then,

(i) there exists P̄i ∈ Di with P̄i ≡ τ(Pi) · · · sr · · · such that ϕs(Pi,RN\i) ≥ ϕs(P̄i,RN\i), and

(ii) ¯̄Pi ∈ Di with ¯̄Pi ≡ τ(Pi) · · · rs · · · such that ϕs(Pi,RN\i) > ϕs(
¯̄Pi,RN\i) implies

ϕk(Pi,RN\i) < ϕk(
¯̄Pi,RN\i) for some k ∈ [r, τ(Pi)).

Proof: By the definition of single-peakedness, if sPiaPir for some a ∈ A, then either a > s or a ∈ (r, τ(Pi)).
Consider the strict single-peaked preference P̂i ∈ strict(Di) such that τ(P̂i) = τ(Pi),U(s, Pi) = U(s, P̂i)
and sP̂iaP̂ir for some a ∈ A if and only if a ∈ (r, τ(Pi)) \ U(s, Pi). Existence of such a preference is
guaranteed by minimal richness. By strategy-proofness, ϕs(Pi,RN\i) = ϕs(P̂i,RN\i). By the definition of
P̂i, there exists l ≥ 0 such that P̂i ≡ · · · s(r+ l)(r+ l− 1) · · · (r+ 1)r · · · . Let ˆ̂Pi be obtained by
swapping the alternatives s and (r+ l) at P̂i. Thus, ˆ̂Pi ≡ · · · (r+ l)s(r+ l− 1) · · · (r+ 1)r · · · . Note that
ˆ̂Pi is strict single-peaked. By straightforward application of strategy-proofness, ϕs(P̂i,RN\i) ≥ ϕs(

ˆ̂Pi,RN\i).
Continuing in this manner, we can arrive at a preference P̄i such that P̄i ≡ τ(Pi) · · · sr · · · and
ϕs(Pi,RN\i) ≥ ϕs(P̄i,RN\i). This completes the proof of part (i) of the lemma.

Let ¯̄Pi be the strict single-peaked preference obtained by swapping s and r at P̄i. Since
ϕs(Pi,RN\i) = ϕs(P̂i,RN\i) and we have arrived at the preference ¯̄Pi from P̂i by a sequence of swaps
between s and some alternatives in the set {r, . . . , r+ l}, if ϕs(

¯̄P,RN\i) < ϕs(Pi,RN\i), then there must
exist some a ∈ {r, . . . , r+ l} such that ϕa(P̄i,RN\i) > ϕa(Pi,RN\i). This completes the proof of part (ii)
of the lemma. ■
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We prove the “only-if ” part of the theorem in two steps. In the first step, we show that every Pareto
optimal and strategy-proof RSCF on the domain strict(DN) behaves like an extreme PFBR on the set of
boundary profiles. In the next step, we show that the same happens on every profile.
Step 1. Let ϕ be a Pareto optimal and strategy-proof RSCF. We show that ϕ is an extreme PFBR. The
following claim says that only the boundary alternatives 1 andm can get positive probability at boundary
profiles.

Claim .2.1 ϕx(RN) = 0 for all x ∈ {2, . . . ,m− 1} and all boundary profiles RN ∈ DN.

Proof of Claim. Assume for contradiction ϕx(RN) > 0 for some x ∈ {2, . . . ,m− 1} and for some
boundary profile RN ∈ DN. For each Ri ∈ Di, let R̄i be the dichotomous preference with τ(R̄i) = τ(Ri).
Note that such preferences exist as the domain is minimally rich. By Pareto optimality, ϕx(R̄N) = 0 for all
x ∈ {2, . . . ,m− 1}. For all x ∈ {1,m}, letNx be the set of agents iwhose top ranked alternative at R̄i is x,
that isNx = {i ∈ N | τ(R̄i) = x}. Take i ∈ N. Consider the profile (Ri, R̄N\i). By strategy-proofness,
ϕ1(Ri, R̄N\i) = ϕ1(R̄i, R̄N\i). Also, by Pareto optimality, ϕx(Ri, R̄N\i) = 0 for all x ∈ {2, . . . ,m− 1}. This
is because if ϕx(Ri, R̄N\i) > 0 for some x ∈ {2, . . . ,m− 1}, then shifting this probability to 1will be a
Pareto improvement. Thus, ϕ(Ri, R̄N\i) = ϕ(R̄i, R̄N\i). Applying this logic repeatedly for all agents inN1,
we obtain ϕ(RN1 , R̄N\N1) = ϕ(R̄N1 , R̄N\N1). Now, consider i ∈ Nm. Since τ(R̄i) = τ(Ri) = m, by
strategy-proofness, ϕm(Ri,RN1 , R̄N\N1∪i) = ϕm(R̄i,RN1 , R̄N\N1∪i). This, combined with the fact that
ϕ(RN1 , R̄N\N1) = ϕ(R̄N1 , R̄N\N1), yields

ϕm(Ri,RN1 , R̄N\N1∪i) = ϕm(R̄N). (6)

Applying this argument for all agents inNm \ {i}, we obtain ϕm(RN) = ϕm(R̄N). Since ϕx(RN) > 0 for
some x ∈ {2, . . . ,m− 1}, this implies

ϕ1(RN) < ϕ1(R̄N). (7)

Note that we can arrive at the profile RN in a symmetrically opposite way: by changing the preferences
of agents inNm from R̄i to Ri first, and then changing the preferences of agents inN1 from R̄i to Ri.
Therefore, by using the same argument as for obtaining (6), we can conclude that ϕ1(RN) = ϕ1(R̄N),
which contradicts (7). □

To prove that ϕ is an extreme PFBR, it remains to show that ϕ is monotonic over the boundary profiles,
that is, for all RN,R′

N ∈ DN with S(m,RN) ⊆ S(m,R′
N), we have ϕm(RN) ≤ ϕm(R

′
N). This follows by

straightforward application of strategy-proofness.
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Step 2. Let strict(Di) ⊂ Di be the strict single-peaked domain contained inDi. Since ϕ is Pareto optimal
and strategy-proof, it must be a PFBR on strict(DN). By Step 1, it follows that ϕ is an extreme PFBR. It is
sufficient to show that ϕ is tops-only onDN. We prove this by using induction on the number of agents in
a preference profile having non-strict preferences. We begin with the base case where there exists exactly
one agent having non-strict preference.

Base case: Let PN ∈ strict(DN) be a strict single-peaked preference profile and let Ri be a non-strict
preference with τ(Ri) = τ(Pi). We show that ϕ(PN) = ϕ(Ri, PN\i). Assume for contradiction that
ϕ(PN) ̸= ϕ(Ri, PN\i). Without loss of generality, let s > τ(Pi) be such that ϕs(Ri, PN\i) > ϕs(Pi, PN\i) and
ϕt(Ri, PN\i) ≤ ϕt(Pi, PN\i) for all t ∈ [τ(Pi), s).
Case B1. Suppose that there is no agent j such that τ(Pj) ∈ (τ(Pi), s).

Let P̂i be the right strict single-peaked preference with τ(P̂i) = τ(Ri) = τ(Pi). Since
(P̂i, PN\i) ∈ strict(DN), by only-topsness ϕt(P̂i, PN\i) = 0 for all t ∈ (τ(Pi), s). By strategy-proofness
ϕU(s,P̂i)(P̂i, PN\i) ≥ ϕU(s,P̂i)(Ri, PN\i) and ϕτ(Pi)(P̂i, PN\i) = ϕτ(Pi)(Ri, PN\i). Combining all these
observations, it follows that

ϕs(P̂i, PN\i) ≥ ϕs(Ri, PN\i). (8)

Recall that
ϕs(Ri, PN\i) > ϕs(Pi, PN\i). (9)

By (8) and (9) this implies
ϕs(P̂i, PN\i) > ϕs(Pi, PN\i). (10)

Since τ(Pi) = τ(P̂i), we have ϕs(Pi, PN\i) = ϕs(P̂i, PN\i), which contradicts (10).
Case B2. Suppose that Case 1 does not hold, that is, there are agents j such that τ(Pj) ∈ (τ(Pi), s).

Consider j ∈ N such that τ(Pj) ∈ (τ(Pi), s) and there does not exist l ∈ N such that
τ(Pl) ∈ (τ(Pi), τ(Pj))

Claim .2.2 ϕs(Ri, P̂j, PN\{i,j}) = ϕs(Ri, Pj, PN\{i,j}) for some P̂j ∈ strict(Dj) with τ(P̂j) = τ(Pi).

Proof of Claim .2.2
Case B2.1. Suppose τ(Pi)Pjs.
Since τ(Pi)Pjs, there exists P̂j with τ(P̂j) such thatU(s, P̂j) = U(s, Pj). By strategy-proofness,

ϕs(Ri, P̂j, PN\{i,j}) = ϕs(Ri, Pj, PN\{i,j}).
Case B2.2. Suppose sPjτ(Pi).
In view of Case 1 it is sufficient to show ϕs(Ri, Pj, PN\{i,j}) = ϕs(Ri, P̄j, PN\{i,j}) for some P̄j with
τ(P̄j) = τ(Pj) and τ(Pi)P̄js.
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Since τ(Pi) < τ(Pj) < s, by Lemma .2.1, we can construct a preference P̃j ≡ · · · sτ(Pi) · · · such that

ϕs(Ri, Pj, PN\{i,j}) ≥ ϕs(Ri, P̃j, PN\{i,j}). (11)

Construct a preference ˜̃Pj by swapping s and τ(Pi) in P̃j. By strategy-proofness,

ϕs(Ri, P̃j, PN\{i,j}) ≥ ϕs(Ri,
˜̃Pj, PN\{i,j}). (12)

Combining (3) and (4), ϕs(Ri, Pj, PN\{i,j}) ≥ ϕs(Ri,
˜̃Pj, PN\{i,j}). If ϕs(Ri, Pj, PN\{i,j}) =

ϕs(Ri,
˜̃Pj, PN\{i,j}), then we take P̄j = ˜̃Pj. Suppose ϕs(Ri, Pj, PN\{i,j}) > ϕs(Ri,

˜̃Pj, PN\{i,j}). It follows
from Lemma .2.1 that there exists r ∈ [τ(Pi), τ(Pj)) such that ϕr(Ri, Pj, PN\{i,j}) < ϕr(Ri,

˜̃Pj, PN\{i,j}). Let
P̂i be the right strict single-peaked preference with τ(Pi) = τ(P̂i). Since (P̂i, ˜̃Pj, PN\{i,j}) ∈ strict(DN), by
only-topsness and our assumption that there is no l ∈ N such that τ(Pl) ∈ (τ(Pi), τ(Pj)), we have
ϕt(P̂i,

˜̃P, PN\{i,j}) = 0 for all t ∈ (τ(Pi), τ(Pj)). ConsiderU(r, P̂i). By strategy-proofness,
ϕU(r,P̂i)(P̂i,

˜̃Pj, PN\{i,j}) ≥ ϕU(r,P̂i)(Ri,
˜̃Pj, PN\{i,j}). Because ϕr(Ri,

˜̃Pj, PN\{i,j}) > 0 and

ϕt(P̂i,
˜̃P, PN\{i,j}) = 0 for all t ∈ U(r, P̂i) \ {τ(Pi)}, this implies

ϕτ(Pi)(P̂i,
˜̃Pj, PN\{i,j}) > ϕτ(Pi)(Ri,

˜̃Pj, PN\{i,j}). Since τ(Pi) = τ(P̂i) = τ(Ri), this is a contradiction to
strategy-proofness. □

Consider the profile (Ri, P̂j, PN\{i,j}). Let l ∈ N be such that τ(Pl) ∈ (τ(Pi), s) and
τ(P̂l) /∈ (τ(Pi), τ(Pl)) for all l̂ ∈ N. By using similar logic as for Claim .2.2, we can construct a preference
P̂l such that τ(P̂l) = τ(Pl) and ϕs(Ri, P̂j, PN\{i,j}) = ϕs(Ri, P̂j, P̂l, PN\{i,j,l}). Continuing in this manner, we
can construct a profile (Ri, P̂N\i) such that τ(P̂j) = τ(Pi) if τ(Pj) ∈ (τ(Pi), s) and P̂j = Pj if
τ(Pj) /∈ (τ(Pi), s) and

ϕs(Ri, P̂N\i) = ϕs(Ri, PN\i) (13)

Note that by construction of P̂N\i, there is no agent j such that τ(P̂j) ∈ (τ(Pi), s). Thus, by applying the
same logic as in Case B1, ϕs(Ri, P̂N\i) = ϕs(Pi, PN\i). Combining this with (5), we have
ϕs(Pi, PN\i) = ϕs(Ri, PN\i).

Induction step: Suppose that ϕ behaves like an extreme PFBR over all profiles at which at most k agents
have non-strict preferences. We proceed to show that the same holds over all profiles where k+ 1 agents
have non-strict preferences.
Consider (RS, PN\S) ∈ DN such that Ri is not strict for all i ∈ S, Pi is strict for all i ∈ N \ S and
|S| = k+ 1. Assume without loss of generality, agent 1 ∈ S. Let P1 be a strict preference with
τ(P1) = τ(R1). In view of our induction hypothesis, it is enough to show, ϕ(RS, PN\S) = ϕ(P1,RS\1, PN\S).
Clearly, by strategy-proofness, ϕτ(R1)(RS, PN\S) = ϕτ(R1)(P1,RS\1, PN\S). Consider l ∈ A such that
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τ(Ri) = l for some i ∈ S \ 1. We show that ϕl(RS, PN\S) = ϕl(P1,RS\1, PN\S). Let Pi be a strict preference
with τ(Pi) = τ(Ri). By strategy-proofness,

ϕl(Pi,RS\i, PN\S) = ϕl(RS, PN\S). (14)

Since both the profiles (Pi,RS\i, PN\S) and (P1,RS\1, PN\S) have exactly k agents with non-strict
preferences, by our induction hypothesis,

ϕl(Pi,RS\i, PN\S) = ϕl(P1,RS\1, PN\S). (15)

Combining (14) and (15), we have ϕl(RS, PN\S) = ϕl(P1,RS\1, PN\S).
Next, we proceed to show ϕ(RS, PN\S) = ϕ(P1,RS\1, PN\S). Assume for contradiction that

ϕ(RS, PN\S) ̸= ϕ(P1,RS\1, PN\S). Without loss of generality s > τ(P1) be such that
ϕs(RS, PN\S) > ϕs(P1,RS\1PN\S) and ϕt(RS, PN\S) ≤ ϕt(P1,RS\1PN\S) for all t ∈ (τ(P1), s). Let i ∈ S be
such that there does not exist l ∈ S such that τ(Rl) ∈ (τ(Ri), s]. The rest of the proof follows by using
similar logic as for the base case, but for the sake of completeness, we present it.
Case I1. Suppose there is no agent j such that τ(Rj) ∈ (τ(Ri), s).

Let P̂i be the right strict single-peaked preference with τ(P̂i) = τ(Ri) = τ(Pi). Since (P̂i,RS\i, PN\S)
has exactly k agents with non-strict preferences, by our induction hypothesis ϕt(P̂i,RS\i, PN\S) = 0 for all
t ∈ (τ(Pi), s). By strategy-proofness ϕU(s,P̂i)(P̂i,RS\i, PN\S) ≥ ϕU(s,P̂i)(RS, PN\S) and
ϕτ(Pi)(P̂i,RS\i, PN\S) = ϕτ(Pi)(RS, PN\S). Combining all these observations,

ϕs(P̂i,RS\i, PN\i) ≥ ϕs(RS, PN\S). (16)

Recall that
ϕs(RS, PN\S) > ϕs(P1,RS\1, PN\S). (17)

By (16) and (17) this implies

ϕs(P̂i,RS\i, PN\S) > ϕs(P1,RS\1, PN\S). (18)

Since at the profiles (P̂i,RS\i, PN\S) and (P1,RS\1, PN\S), ϕs(P̂i,RS\i, PN\S) = ϕs(P1,RS\1, PN\S), which
contradicts (18).
Case I2. Suppose that Case 1 does not hold, that is, there are agents j such that τ(Pj) ∈ (τ(Pi), s).

Consider j ∈ N such that τ(Pj) ∈ (τ(Pi), s) and there does not exist l ∈ N such that
τ(Pl) ∈ (τ(Pi), τ(Pj)).
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Claim .2.3 ϕs(RS, P̂j, PN\S∪j) = ϕs(RS, Pj, PN\S∪j) for some P̂j ∈ strict(Dj) with τ(P̂j) = τ(Pi).

Proof of Claim .2.3
Case I2.1. Suppose τ(Pi)Pjs.
Since τ(Pi)Pjs, there exists P̂j with τ(P̂j) such thatU(s, P̂j) = U(s, Pj). By strategy-proofness,
ϕs(RS, P̂j, PN\S∪j) = ϕs(RS, Pj, PN\S∪j).
Case I2.2. Suppose sPjτ(Pi).
In view of Case 1 it is sufficient to show ϕs(RS, Pj, PN\S∪j) = ϕs(RS, P̄j, PN\S∪j) for some P̄j with
τ(P̄j) = τ(Pj) and τ(Pi)P̄js.

Since τ(Pi) < τ(Pj) < s, by Lemma .2.1, we can construct a preference P̃j ≡ · · · sτ(Pi) · · · such that

ϕs(RS, Pj, PN\S∪j) ≥ ϕs(RS, P̃j, PN\S∪j). (19)

Construct a preference ˜̃Pj by swapping s and τ(Pi) in P̃j. By strategy-proofness,

ϕs(RS, P̃j, PN\S∪j) ≥ ϕs(RS,
˜̃Pj, PN\S∪j). (20)

Combining (19) and (20), ϕs(RS, Pj, PN\S∪{j}) ≥ ϕs(RS,
˜̃Pj, PN\S∪{j}). If

ϕs(RS, Pj, PN\S∪j) = ϕs(RS,
˜̃Pj, PN\S∪j), then we take P̄j = ˜̃Pj. Suppose

ϕs(RS, Pj, PN\S∪j) > ϕs(RS,
˜̃Pj, PN\S∪j). It follows from Lemma .2.1 that there exists r ∈ [τ(Pi), τ(Pj))

such that ϕr(RS, Pj, PN\S∪j) < ϕr(RS,
˜̃Pj, PN\S∪j). Let P̂i be the right strict single-peaked preference with

τ(Pi) = τ(P̂i). Since (P̂i,RS\i,
˜̃Pj, PN\S∪j) has exactly k agents with non-strict preferences, by our

induction hypothesis and assumption that there is no l ∈ N such that τ(Pl) ∈ (τ(Pi), τ(Pj)), we have
ϕt(P̂i,RS\i,

˜̃Pj, PN\S∪j) = 0 for all t ∈ (τ(Pi), τ(Pj)). ConsiderU(r, P̂i). By strategy-proofness,
ϕU(r,P̂i)(P̂i,RS\{i},

˜̃Pj, PN\S∪j) ≥ ϕU(r,P̂i)(RS,
˜̃Pj, PN\S∪j). Because ϕr(RS,

˜̃Pj, PN\S∪j) > 0 and

ϕt(P̂i,RS\i
˜̃P, PN\S∪j) = 0 for all t ∈ U(r, P̂i) \ {τ(Pi)}, this implies

ϕτ(Pi)(P̂i,RS\i,
˜̃Pj, PN\S∪j) > ϕτ(Pi)(RS,

˜̃Pj, PN\S∪j). Since τ(Pi) = τ(P̂i) = τ(Ri), this is a contradiction to
strategy-proofness. □

Consider the profile (RS, P̂j, PN\S∪j). Let l ∈ N be such that τ(Pl) ∈ (τ(Pi), s) and τ(P̂l) /∈ (τ(Pi), τ(Pl))
for all l̂ ∈ N. By using similar logic as for Claim .2.3, we can construct a preference P̂l such that
τ(P̂l) = τ(Pl) and ϕs(RS, P̂j, PN\S∪j) = ϕs(RS, P̂j, P̂l, PN\S∪{j,l}). Continuing in this manner, we can
construct a profile (RS, P̂N\S) such that τ(P̂j) = τ(Pi) if τ(Pj) ∈ (τ(Pi), s) and P̂j = Pj if τ(Pj) /∈ (τ(Pi), s)
and

ϕs(RS, P̂N\S) = ϕs(RS, PN\S). (21)

79



Note that by construction of (RS, P̂N\S), there is no agent j such that τ(R̂j) ∈ (τ(Pi), s). Thus, by applying
the same logic as in Case I1, ϕs(RS, P̂N\S) = ϕs(P1,RS\1, PN\S). Combining this with (21), we have
ϕs(RS, P̂N\S) = ϕs(P1,RS\1, PN\S). ■

.3 Proof of Theorem 5.5.3

We make extensive use of two particular types of single-plateaued preferences in our proofs: a
single-plateaued preference R is called left (or right) if for all x < τ−(R) and all y > τ+(R), we have xPy
(or yPx).

Lemma .3.1 An RSCF ϕ : Dn → ΔA satisfies Pareto optimality if and only if it is unanimous and for all
RN ∈ Dn such that∩i∈Nτ(Ri) = ∅, we have ϕI(RN)(RN) = 1, where I(RN) is the minimal interval such that
I(RN) ∩ τ(Ri) ̸= ∅ for all i ∈ N.

Proof:[Proof of Lemma .3.1] The proof of this lemma is somewhat straightforward. However, for the sake
of completeness, we provide it here.

(If part) Suppose ϕ satisfies Pareto optimality. Then, it is straightforwardly unanimous. Take RN ∈ Dn

such that∩i∈Nτ(Ri) = ∅. We show that ϕI(RN)(RN) = 1. It is sufficient to show ϕx(RN) = 0 for all
x /∈ I(RN). Take x /∈ I(RN). Let I(RN) = [y, z] . Assume without loss of generality x < y. Since
I(RN) = [y, z], there exists i ∈ N such that τ+(Ri) = y. Since RN is not unanimous, there exists j ∈ N
such that τ−(Rj) > y. This means yPjx. Moreover, since I(RN) = [y, z], τ+(Ri) ≥ y for all i ∈ N. This
means yRix for all i ∈ N. Combining, we have y Pareto dominates x. So, ϕx(RN) = 0.
(Only-if part) Suppose an RSCF ϕ : Dn → ΔA is unanimous and satisfies the property that for all
RN ∈ Dn such that∩i∈Nτ(Ri) = ∅, ϕI(RN)(RN) = 1. We show that ϕ satisfies Pareto optimality. Take
RN ∈ Dn. If RN is a unanimous profile, then there is nothing to show. Suppose RN is not unanimous. Take
x ∈ I(RN). We show that there does not exist y ∈ A such that yRix for all i ∈ N and yPjx for some j ∈ N.
Assume for contradiction that there is such an alternative y ∈ A. Because x ∈ I(RN), there exist i, j ∈ N
such that τ+(Ri) ≤ x and τ−(Rj) ≥ x. So, if y > x, then xPiy. On the other hand, if y < x, then xPjy. So, y
cannot Pareto dominate x. ■

Proof: [Proof of Theorem 5.5.3] “Only if ” part of the theorem is straightforward, we proceed to prove the
“if ” part. LetD be the (κ1, κ2)-single-plateaued domain and let ϕ : Dn → ΔA be a unanimous and
strategy-proof RSCF. We show that ϕ is Pareto optimal. Take RN ∈ Dn such that∩i∈Nτ(Ri) = ∅. In view
of Lemma .3.1, it is sufficient to show that ϕI(RN)(RN) = 1. Suppose not. Let I(RN) = [x, y]. Assume
without loss of generality, ϕ[1,x−1](RN) > 0. Take i ∈ N such that τ−(Ri) > x. There must exist such an
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agent since RN is not a unanimous profile. Let R′
i ∈ D be a left-single-plateaued preference such that

τ−(R′
i) = x and |τ(R′

i)| = κ1.

Claim. ϕ[1,x−1](R
′
i,RN\i) ≥ ϕ[1,x−1](RN).

Proof of the claim. Note that since R′
i is a left-single-plateaued preference, for all w ≥ τ+(R′

i) the
interval [1,w] is an upper contour set in R′

i . So, by strategy-proofness, ϕ[1,w](R
′
i,RN\i) ≥ ϕ[1,w](RN), as

otherwise agent imanipulates at (R′
i,RN\i) via Ri. Now, assume for contradiction that

ϕ[1,x−1](R
′
i,RN\i) < ϕ[1,x−1](RN). This implies for all w ≥ τ(R′

i),

ϕ[x,w](R
′
i,RN\i) > ϕ[x,w](RN). (22)

Consider the upper contour setU(x,Ri). Since Ri is single-plateaued, there must be an alternative
z ≥ τ+(Ri) such thatU(x,Ri) = [x, τ+(Ri)) ∪ [τ+(Ri) + 1, z]. By 22, we have
ϕ[x,z](R

′
i,RN\i) > ϕ[x,z](RN). However, since [x, z] is an upper contour set at Ri, this means agent i

manipulates at RN via R′
i . □

Continuing in this manner, we can construct a profile R′
N with ϕ[1,x−1](R

′
N) > 0where τ−(R′

i) = x and
R′
i is left-single-plateaued for all i ∈ Di with τ−(Ri) > x and R′

i = Ri for all other agents. Clearly,
x− 1 /∈ ∩i∈Nτ(R′

i). Moreover, since I(RN) = [x, y], there must be i ∈ Nwith τ+(Ri) = x. By the
construction of R′

N, R′
i = Ri for such an agent i. This means x+ 1 /∈ τ(R′

i) for such an agent, and
consequently, x+ 1 /∈ ∩i∈Nτ(R′

i). Thus, we have∩i∈Nτ(R′
i) = {x}. By unanimity, ϕx(R

′
N) = 1, which is a

contradiction to ϕ[1,x−1](R
′
N) > 0. ■

.4 Proof of Theorem 5.5.7

Proof: LetD be the (κ1, κ2)-single-plateaued domain and let ϕ : Dn → ΔA be a unanimous and
strategy-proof RSCF. We show ϕ is almost plateau-only. Take i ∈ N and (Ri,RN\i), (R′

i,RN\i) ∈ Dn such
that τ(Ri) = τ(R′

i). Let x ∈ A \ τ(Ri) be arbitrary. It is enough to show ϕx(Ri,RN\i) = ϕx(R
′
i,RN\i).

Without loss of generality, assume x > τ+(Ri), ϕx(Ri,RN\i) < ϕx(R
′
i,RN\i), and

ϕy(Ri,RN\i) = ϕy(R
′
i,RN\i) for all y ∈ (τ+(Ri), x).

Let j ∈ N be such that τ+(Rj) ≤ τ+(Rk) for all k ∈ N. Consider R′
j ∈ D such that τ+(R′

j) = τ+(Ri)

and R′
j is left single-plateaued.

Claim .4.1 ϕy(Ri,R′
j,RN\{i,j}) = ϕy(Ri,Rj,RN\{i,j}) and ϕy(R

′
i,R′

j,RN\{i,j}) = ϕy(R
′
i,Rj,RN\{i,j}) for all

y > τ+(Ri).
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Proof: It is sufficient to show ϕy(Ri,R′
j,RN\{i,j}) = ϕy(Ri,Rj,RN\{i,j}) for all y > τ+(Ri). The proof of

ϕy(R
′
i,R′

j,RN\{i,j}) = ϕy(R
′
i,Rj,RN\{i,j}) for all y > τ+(Ri) follows from similar argument. Take y ∈ A

such that y > τ+(Ri). Because τ+(R′
j) = τ+(Ri) and τ+(Ri) < y, we have τ+(R′

j) < y. Since R′
j is left

single-plateaued and τ+(R′
j) < y,U(y,R′

j) = U(y,Rj) ∪ [1, τ−(Rj)). By strategy-proofness of ϕ, we have

ϕU(y,Rj)(Ri,Rj,RN\{i,j}) ≥ ϕU(y,Rj)(Ri,R′
j,RN\{i,j}) (23)

and
ϕU(y,R′j )

(Ri,R′
j,RN\{i,j}) ≥ ϕU(y,R′j )

(Ri,Rj,RN\{i,j}). (24)

As ϕ is unanimous and strategy-proof, by Theorem 5.5.3 it follows that ϕ satisfies Pareto optimality. By
Pareto optimality and our assumption on Rj, ϕ[1,τ−(Rj))(Ri,Rj,RN\{i,j}) = ϕ[1,τ−(Rj))(Ri,R′

j,RN\{i,j})

= 0. This together with (23) implies

ϕU(y,R′j )
(Ri,R′

j,RN\{i,j}) ≤ ϕU(y,R′j )
(Ri,Rj,RN\{i,j}) (25)

Now, (24) and (25) imply

ϕU(y,R′j )
(Ri,R′

j,RN\{i,j}) = ϕU(y,R′j )
(Ri,Rj,RN\{i,j}). (26)

Because y > τ+(R′
j), using similar argument for y− 1, we have

ϕU(y−1,R′j )
(Ri,Rj,RN\{i,j}) = ϕU(y−1,R′j )

(Ri,R′
j,RN\{i,j}). (27)

Subtracting (27) from (26), we have ϕy(Ri,Rj,RN\{i,j}) = ϕy(Ri,R′
j,RN\{i,j}). This completes the proof of

the claim. ■

Now we complete the proof of the theorem. Let k ∈ N be such that τ+(Rk) ≤ τ+(Rl) for all
l ∈ N \ {j}. Let R′

k ∈ D be such that τ+(R′
k) = τ+(Ri) and R′

k is left single-plateaued. Using similar logic
as for the proof of Claim .4.1, we have ϕy(Ri,R′

j,Rk,RN\{i,j,k}) = ϕy(Ri,R′
j,R′

k,RN\{i,j,k}) and
ϕy(Ri,R′

j,Rk,RN\{i,j,k}) = ϕy(Ri,R′
j,R′

k,RN\{i,j,k}) for all y > τ+(Ri).
Continuing in this manner, we construct profiles (Ri,R′

N\i) and R
′
N such that for all l ∈ N \ i,

τ+(R′
l) = τ+(Ri) if τ+(Rl) < τ+(Ri) and R′

l = Rl otherwise and ϕy(Ri,R′
N\i) = ϕy(Ri,RN\i) and

ϕy(R
′
i,R′

N\i) = ϕy(R
′
i,RN\i) for all y > τ+(Ri).

By Pareto optimality, ϕz(Ri,R′
N\i) = ϕz(R

′
i,R′

N\i) = 0 for all z < τ+(Ri). Also, by strategy-proofness
of ϕ, ϕτ(Ri)(Ri,R′

N\i) = ϕτ(Ri)(R
′
i,R′

N\i). Since ϕx(Ri,RN\i) < ϕx(R
′
i,RN\i), by Claim .4.1 we have

ϕU(x,Ri)(Ri,R′
N\i) < ϕU(x,Ri)(R

′
i,R′

N\i). This means imanipulates at (Ri,R′
N\i) via R

′
i , which contradicts
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that ϕ is strategy-proof. ■

.5 Proof of Theorem 5.5.15

Proof: (If part) LetD be the (κ1, κ2)-single-plateaued domain and let ϕ : Dn → ΔA be an RSCF
satisfying generalized uncompromisingness. We show that ϕ is strategy-proof. Take RN ∈ Dn and R′

i ∈ D.
By Remark 5.5.13, ϕ is almost plateau-only. Thus, if τ(Ri) = τ(R′

i), ϕU(x,Ri)(Ri,RN\i) = ϕU(x,Ri)(R
′
i,RN\i)

for all x ∈ A. We distinguish the following cases based on the relative position of τ(Ri) and τ(R′
i) to

complete the proof.
Case 1. Suppose τ−(Ri) < τ−(R′

i) and τ+(Ri) < τ+(R′
i)

1 mτ−(Ri) τ+(Ri)τ−(R′i ) τ+(R′i )

Figure .5.1: τ−(Ri) < τ−(R′i) and τ+(Ri) < τ+(R′i).

By Remark 5.5.11,
ϕx(Ri,RN\i) = ϕx(R

′
i,RN\i) for all x /∈ [τ−(Ri), τ+(R′

i)]. (28)

Because S is single-plateaued , for all y ∈ A, there are y′ ≤ τ−(Ri) and y′′ ≥ τ+(Ri) such that
U(y,Ri) = [y′, τ−(Ri)− 1] ∪ [τ−(Ri), y′′], where [y′, τ−(Ri)− 1] = ∅when y′ = τ−(Ri). This together
with (28), implies that to show ϕ is strategy-proof it is sufficient to show
ϕ[τ−(Ri),y](Ri,RN\i) ≥ ϕ[τ−(Ri),y](R

′
i,RN\i) for all y ∈ [τ+(Ri), τ+(R′

i)].
Take y = τ+(Ri). It follows from (28) that ϕ[τ−(Ri),τ+(R′i )]

(Ri,RN\i) = ϕ[τ−(Ri),τ+(R′i )]
(R′

i,RN\i). Now,
take y ∈ [τ+(Ri), τ+(R′

i)− 1]. As τ+(Ri) < y+ 1 and τ+(R′
i) ≥ y+ 1, by condition (ii) of Definition

5.5.10, we have
ϕ[y+1,m](Ri,RN\i) ≤ ϕ[y+1,m](R

′
i,RN\i). (29)

By condition (i) of Definition 5.5.10, ϕ[τ−(Ri),m](Ri,RN\i) = ϕ[τ−(Ri),m](R
′
i,RN\i). This together with (29),

implies
ϕ[τ−(Ri),y](Ri,RN\i) ≥ ϕ[τ−(Ri),y](R

′
i,RN\i).

Case 2. Suppose τ−(Ri) > τ−(R′
i) and τ+(Ri) > τ+(R′

i).
This case is very similar to Case 1, however for the sake of completeness we provide a formal proof. Take
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1 mτ−(Ri) τ+(Ri)τ−(R′i ) τ+(R′i )

Figure .5.2: τ−(Ri) > τ−(R′i) and τ+(Ri) > τ+(R′i).

x /∈ [τ−(R′
i) + 1, τ+(Ri)]. By Condition (i) of Definition 5.5.10, we have

ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i). (30)

Using similar logic as in Case 1, to show ϕ is strategy-proof, it is sufficient to show ϕ[y,τ+(Ri)](Ri,RN\i)

≥ ϕ[y,τ+(Ri)](R
′
i,RN\i) for all y ∈ [τ−(R′

i), τ−(Ri)]. First, take y = τ−(R′
i). By Condition (i) of

Definition 5.5.10, it follows that ϕ[τ−(R′i ),τ+(Ri)](Ri,RN\i) = ϕ[τ−(R′i ),τ+(Ri)](R
′
i,RN\i). Next, take

y ∈ [τ−(R′
i) + 1, τ−(Ri)]. As τ−(Ri) ≥ y and τ−(R′

i) < y, by Condition (ii) of Definition 5.5.10, we have

ϕ[y,m](Ri,RN\i) ≥ ϕ[y,m](R
′
i,RN\i). (31)

Taking x = τ+(Ri) + 1 in (30) and subtracting it from (31), we get

ϕ[y,τ+(Ri)](Ri,RN\i) ≥ ϕ[y,τ+(Ri)](R
′
i,RN\i).

Case 3. Suppose τ−(Ri) ≥ τ−(R′
i) and τ+(Ri) ≤ τ+(R′

i).
The proof for this case follows by combining the arguments in Case 1 and Case 2. For the sake of
completeness, we provide a formal proof here.

1 mτ−(Ri) τ+(Ri)τ−(R′i ) τ+(R′i )

Figure .5.3: τ−(Ri) ≥ τ−(R′i) and τ+(Ri) ≤ τ+(R′i).

Case 4. Suppose τ−(Ri) ≤ τ−(R′
i) and τ+(Ri) ≥ τ+(R′

i).
By Remark 5.5.11, ϕx(Ri,RN\i) = ϕx(R

′
i,RN\i) for all x /∈ τ(Ri). Therefore, agent i cannot manipulate

at (Ri,RN\i) via R′
i .

■
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1 mτ−(Ri) τ+(Ri)τ−(R′i ) τ+(R′i )

Figure .5.4: τ−(Ri) ≤ τ−(R′i) and τ+(Ri) ≥ τ+(R′i).

.6 Proof of Theoerem 5.5.16

Proof: “If ” part of the theorem follows from Theorem 5.5.15. We proceed to prove the “only if ” part. Let
ϕ : Dn → ΔA be a strategy-proof and unanimous RSCF. We show ϕ satisfies generalized
uncompromisingness. Take i ∈ N and Ri,R′

i ∈ D with τ+(Ri) < τ+(R′
i), RN\i ∈ Dn−1, and x ∈ A.

We show that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i) ifmax{τ+(Ri), τ+(R′

i)} < x or if
min{τ−(Ri), τ−(R′

i)} ≥ x. Supposemax{τ+(Ri), τ+(R′
i)} < x. In view of Theorem 5.5.7, we assume

both Ri,R′
i to be left single-plateaued. By strategy-proofness, ϕU(x−1,Ri)(Ri,RN\i) ≥ ϕU(x−1,Ri)(R

′
i,RN\i)

and ϕU(x−1,R′i )
(R′

i,RN\i) ≥ ϕU(x−1,R′i )
(Ri,RN\i). However, since both Ri and R′

i are left single-plateaued,
U(x− 1,Ri) = U(x− 1,R′

i) = [1, x− 1]. Therefore, ϕ[x,m](R
′
i,RN\i) = ϕ[x,m](Ri,RN\i).

For the case wheremin{τ−(Ri), τ−(R′
i)} ≥ x, by means of Theorem 5.5.7 we can assume both Ri and

R′
i to be right single-plateaued. Then ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i) follows by using similar argument

as above.
Now we show (ii) in Definition 5.5.10. Suppose τ+(Ri) < x ≤ τ+(R′

i). Since x > τ+(Ri) in view of
Theorem 5.5.7 , we assume Ri to be left single-plateaued. By strategy-proofness,
ϕU(x−1,Ri)(Ri,RN\i) ≥ ϕU(x−1,Ri)(R

′
i,RN\i). However, as Ri is a left single-plateaued preference,

U(x− 1,Ri) = [1, x− 1]. This means ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i).

Suppose τ−(Ri) < x ≤ τ−(R′
i). Since x ≤ τ−(R′

i) in view of Theorem 5.5.7, without loss of generality
we assume R′

i to be right single-plateaued. Then,U(x− 1,Ri) = [x,m]. By strategy-proofness, this means
ϕ[x,m](R

′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i)which completes the proof. ■

.7 Proof of Theorem 5.5.18

Proof: (If part) In Section 5.5.5, we introduce a generalization of probabilistic plateau rule which we call
generalized probabilistic ballot rules. Theorem 5.5.22 shows that those rules are unanimous and
strategy-proof. Therefore, if part of the theorem follows from Theorem 5.5.22.
(Only-if part) Suppose an RSCF ϕ : D2 → ΔA is unanimous and strategy-proof. We show that ϕ is a
probabilistic plateau rule. Condition (i) of Definition 5.5.17 follows from unanimity of ϕ.

Consider a preference profile RN ∈ D2 with τ+(R1) < τ−(R2). It follows from Theorem 5.5.3 that ϕ is
Pareto optimal. By means of Pareto optimality, we have ϕx(RN) = 0 for all x /∈ [τ+(R1), τ−(R2)]. We

85



prcoceed to show ϕx(RN) = β2[x,m] for some β2 ∈ ΔAwhere x ∈ A such that τ+(R1) < x ≤ τ−(R2).
Let R̄N ∈ D2 be such that τ(R̄1) = [1, κ1] and τ(R̄2) = [m− κ1 + 1,m]. Define ϕ(R̄N) := β2. Consider
the preference profile (R1, R̄2). Since τ+(R1) < x, by strategy-proofness, ϕ[x,m](R1, R̄2) = β2[x,m]. Again,
since x < τ−(R2), ϕ[x,m](R1,R2) = β2[x,m]. This proves Condition (ii) of Definition 5.5.17. Condition
(iii) of Definition 5.5.17 can be proved with a similar argument. ■

.8 Proof of Theorem 5.5.22

Proof: Let k ∈ {0, . . . , κ1 − 1} and let (βS)S⊆N be a collection of probability ballots. Suppose
ϕ : Dn → ΔA is a generalized probabilistic ballot rule with parameters k and (βS)S⊆N. We show that ϕ is
unanimous and strategy-proof. Unanimity of ϕ follows from Condition (i) and Condition (ii) of
Definition 5.5.20. To show that ϕ is strategy-proof, by Theorem 5.5.16, it is enough to show that it satisfies
generalized uncompromisingness. Consider Ri,R′

i ∈ Di and RN\i ∈ Dn−1.
Case 1. Suppose x ∈ A is such that x ≤ min{τ−(Ri), τ−(R′

i)}. Assume without loss of generality that
τ−(Ri) ≤ τ−(R′

i). We further distinguish three cases based on location of xwith respect to I(Ri,RN\i).
Case 1.1. x ≤ I−(Ri,RN\i).

As x ≤ I−(Ri,RN\i), we have by Condition (i) of the definition of a generalized probabilistic ballot rule
(Definition 5.5.20), ϕ[x,m](Ri,RN\i) = 1. Suppose τ−(Ri) < I−(Ri,RN\i). Because τ−(Ri) ≤ τ−(R′

i), this
and the fact that τ−(Ri) ≤ I−(Ri,RN\i) imply τ−(Ri) ≤ I−(R′

i,RN\i). Combining the two facts
τ−(Ri) ≤ I−(Ri,RN\i) and x ≤ τ−(Ri), we have x ≤ I−(R′

i,RN\i). Therefore, by Condition (i) of the
definition of a generalized probabilistic ballot rule (Definition 5.5.20), we have ϕ[x,m](R

′
i,RN\i) = 1. As

ϕ[x,m](Ri,RN\i) = 1, it follows that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i) = 1. Now, suppose

I−(Ri,RN\i) < τ−(Ri). Since τ−(Ri) ≤ τ−(R′
i), this implies I−(Ri,RN\i) = I−(R′

i,RN\i). Because
x ≤ I−(Ri,RN\i) by our assumption in Case 1.1, we have x ≤ I−(R′

i,RN\i). By Condition (i) of the
definition of a generalized probabilistic ballot rule (Definition 5.5.20), we obtain ϕ[x,m](R

′
i,RN\i) = 1. As

ϕ[x,m](Ri,RN\i) = 1, it follows that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i).

Case 1.2. I+(Ri,RN\i) < x.
By the definition of I(Ri,RN\i), we have τ−(Ri) ≤ I+(Ri,RN\i). As x ≤ τ−(Ri), this means we must

have x ≤ τ−(Ri) ≤ I+(Ri,RN\i), which in turn means that Case 1.2 is not possible.
Case 1.3. I−(Ri,RN\i) < x ≤ I+(Ri,RN\i).

Consider the preference profile (Ri,RN\i). We first show that∩j∈Nτ(Rj) = ∅. Suppose not. Then by
the definition of I(RN), we have τ−(Ri) ≤ I−(Ri,RN\i), which contradicts the assumption of Case 1 that
x ≤ τ−(Ri). Therefore, we have∩j∈Nτ(Rj) = ∅. Combining this with the fact that
I−(Ri,RN\i) < x ≤ τ−(Ri), it follows that there must be some l ∈ N such that τ+(Rl) = I−(Ri,RN\i).
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Consider the preference profile (R′
i,RN\i). By using τ+(Rl) = I−(Ri,RN\i), I−(Ri,RN\i) < x and

x ≤ τ−(Ri) ≤ τ−(R′
i), we obtain τ+(Rl) < τ−(Ri) ≤ τ−(R′

i). As τ+(Rl) < τ−(R′
i)we must have

τ(Rl) ∩ τ(R′
i) = ∅. This means∩j∈N\iτ(Rj) ∩ τ(R′

i) = ∅. Because∩j∈N\iτ(Rj) ∩ τ(R′
i) = ∅, by the

definition of I(Ri,RN\i) and I(R′
i,RN\i) it follows that I−(Ri,RN\i) = I−(R′

i,RN\i). Since∩j∈Nτ(Rj) = ∅
and∩j∈N\iτ(Rj) ∩ τ(R′

i) = ∅, we can use Condition (iii) of the definition of a generalized probabilistic
ballot rule to calculate the outcome of ϕ at (Ri,RN\i) and (R′

i,RN\i). Let S ⊆ N be such that j ∈ S if and
only if x− k ≤ τ−(Rj) and x ≤ τ+(Rj) and let S′ ⊆ N be such that j ∈ S′ if and only if
x− k ≤ τ−(R′

j)x− k and x ≤ τ+(R′
j). Note that S \ i = S′ \ i. Since x ≤ τ−(Ri) ≤ τ−(R′

i), we have
i ∈ S and i ∈ S′, which, by means of the fact that S \ i = S′ \ i, implies S = S′. By the definition of ϕ,
ϕ[x,m](Ri,RN\i) = βS[x,m] and ϕ[x,m](R

′
i,RN\i) = βS′ [x,m]. Because S = S′, this implies

ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i).

Case 2. Suppose x ∈ A is such thatmax{τ+(Ri), τ+(R′
i)} < x. Assume without loss of generality that

τ+(R′
i) ≤ τ+(Ri). We further distinguish three cases based on location of xwith respect to I(Ri,RN\i).

Case 2.1. x ≤ I−(Ri,RN\i).
By the definition of I(Ri,RN\i), we have I−(Ri,RN\i) ≤ τ+(Ri). As τ+(Ri) < x, this means we must

have I−(Ri,RN\i) ≤ τ+(Ri) < x, which in turn means that Case 2.1 is not possible.
Case 2.2. I+(Ri,RN\i) < x

As I+(Ri,RN\i) < x, we have by Condition (ii) of the definition of a generalized probabilistic ballot
rule (Definition 5.5.20), ϕ[x,m](Ri,RN\i) = 0. Suppose τ+(Ri) < I+(Ri,RN\i). Because τ+(R′

i) ≤ τ+(Ri),
and τ+(Ri) < I+(Ri,RN\i), we have I+(R′

i,RN\i) = I+(R′
i,RN\i). So, I−(R′

i,RN\i) < x. Hence,
ϕ[x,m](R

′
i,RN\i) = 0. If I+(Ri,RN\i) ≤ τ+(Ri), then I−(R′

i,RN\i) ≤ τ+(Ri). So,
I−(R′

i,RN\i) ≤ τ+(Ri) < x. Hence, ϕ[x,m](R
′
i,RN\i) = 0. When I−(Ri,RN\i) < x, we have

ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i).

Case 2.3. I−(Ri,RN\i) < x ≤ I+(Ri,RN\i)

Consider the preference profile (Ri,RN\i). We first show that∩j∈Nτ(Rj) = ∅. Suppose not. Then by
the definition of I(RN), we have I+(Ri,RN\i) ≤ τ+(Ri), which contradicts the assumption of Case 2 that
τ+(Ri) < x. Therefore, we have∩j∈Nτ(Rj) = ∅. Combining this with the fact that
τ+(Ri) < x ≤ I+(Ri,RN\i), it follows that there must be some l ∈ N such that τ−(Rl) = I+(Ri,RN\i).
Consider the preference profile (R′

i,RN\i). By using τ−(Rl) = I+(Ri,RN\i), x ≤ I+(Ri,RN\i) and
τ+(R′

i) ≤ τ+(Ri) < x, we obtain τ+(R′
i) ≤ τ+(Ri) < τ−(Rl). As τ+(R′

i) < τ−(Rl)we must have
τ(Rl) ∩ τ(R′

i) = ∅. This means∩j∈N\iτ(Rj) ∩ τ(R′
i) = ∅. Because∩j∈N\iτ(Rj) ∩ τ(R′

i) = ∅, by the
definition of I(Ri,RN\i) and I(R′

i,RN\i) it follows that I+(Ri,RN\i) = I+(R′
i,RN\i). Since∩j∈Nτ(Rj) = ∅

and∩j∈N\iτ(Rj) ∩ τ(R′
i) = ∅, we can use Condition (iii) of the definition of a generalized probabilistic

ballot rule to calculate the outcome of ϕ at (Ri,RN\i) and (R′
i,RN\i). Let S ⊆ N be such that j ∈ S if and

87



only if x− k ≤ τ−(Rj) and x ≤ τ+(Rj) and let S′ ⊆ N be such that j ∈ S′ if and only if x− k ≤ τ−(R′
j)

and x ≤ τ+(R′
j). Note that S \ i = S′ \ i. Since τ+(R′

i) ≤ τ+(Ri) < x, we have i ∈ S and i ∈ S′, which, by
means of the fact that S \ i = S′ \ i, implies S = S′. By the definition of ϕ, ϕ[x,m](Ri,RN\i) = βS[x,m] and
ϕ[x,m](R

′
i,RN\i) = βS′ [x,m]. Because S = S′, this implies ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i).

Case 3. Suppose x ∈ A is such that τ+(Ri) < x ≤ τ+(R′
i). We further distinguish three cases based on

location of xwith respect to I(Ri,RN\i).
Case 3.1. x ≤ I−(Ri,RN\i).

By the definition of I(Ri,RN\i), no matter whether∩i∈Nτ(Ri) is empty or not, we have
I−(Ri,RN\i) ≤ τ+(Ri). Therefore, this case is not possible.
Case 3.2. I+(Ri,RN\i) < x

By Condition (ii) of the definition of a generalized probabilistic ballot rule (Definition 5.5.20),
ϕ[x,m](Ri,RN\i) = 0. As ϕ[x,m](R

′
i,RN\i) cannot be negative, this implies that

ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i).

Case 3.3. I−(Ri,RN\i) < x ≤ I+(Ri,RN\i)

Suppose x ≤ I−(R′
i,RN\i). Then, by Condition (i) of the definition of a generalized probabilistic ballot

rule (Definition 5.5.20), we have ϕ[x,m](R
′
i,RN\i) = 1. This means ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R

′
i,RN\i).

Now suppose I−(R′
i,RN\i) < x. By using the same logic as in Case 2.3, we can show that

∩j∈Nτ(Rj) = ∅. By the assumption of Case 3, we have τ+(Ri) < x and by the assumption of Case 3.3, we
have x ≤ I+(Ri,RN\i). Combining we obtain τ+(Ri) < x ≤ I+(Ri,RN\i). As∩j∈Nτ(Rj) = ∅ and
τ+(Ri) < I+(Ri,RN\i), there must be some l ∈ N such that τ−(Rl) = I+(Ri,RN\i), and hence
I+(Ri,RN\i) ≤ I+(R′

i,RN\i). This, the assumption of Case 3.3, and the supposition of the current
paragraph that I−(R′

i,RN\i) < x, imply I−(R′
i,RN\i) < x ≤ I+(R′

i,RN\i). Because τ−(Rl) = I+(Ri,RN\i),
the assumptions that I−(Ri,RN\i) < x ≤ I+(Ri,RN\i) and I−(R′

i,RN\i) < x, imply
I−(R′

i,RN\i) < τ−(Rl), and hence I−(R′
i,RN\i) /∈ τ(Rl). We claim that I(R′

i,RN\i) ̸= ∩j∈N\iτ(Rj) ∩ τ(R′
i).

Assume for contradiction that I(R′
i,RN\i) = ∩j∈N\iτ(Rj) ∩ τ(R′

i). However, then I(R′
i,RN\i) ⊆ τ(Rj) for

all j ∈ N, and in particular, I−(R′
i,RN\i) ∈ τ(Rj) for all j ∈ N, which contradicts our earlier deduction

that I−(R′
i,RN\i) /∈ τ(Rl). This proves our claim that I(R′

i,RN\i) ̸= ∩j∈N\iτ(Rj) ∩ τ(R′
i). Because

I(R′
i,RN\i) ̸= ∩j∈N\iτ(Rj)∩ τ(R′

i), by the definition of I(R′
i,RN\i) it must be that∩j∈N\iτ(Rj)∩ τ(R′

i) ̸= ∅.
Therefore, we can use Condition (iii) of the definition of a generalized probabilistic ballot rule (Definition
5.5.20) to calculate the outcome of ϕ at the preference profiles (Ri,RN\i) and (R′

i,RN\i). Let S ⊆ N be
such that i ∈ S if and only if x− k ≤ τ−(Ri) and x ≤ τ+(Ri) and let S′ ⊆ N be such that i ∈ S′ if and
only if x− k ≤ τ−(R′

i) and x ≤ τ+(R′
i). By the assumption of Case 3, τ+(Ri) < x ≤ τ+(R′

i), and hence
S ⊆ S′. By the definition of ϕ, we have ϕ[x,m](Ri,RN\i) = βS[x,m] and ϕ[x,m](R

′
i,RN\i) = βS′ [x,m], and by

the definition of (βS)S⊆N, we have βS[x,m] ≤ βS′ [x,m]. Therefore, ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i).
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Case 4. Suppose x ∈ A is such that τ−(Ri) < x ≤ τ−(R′
i). We further distinguish three cases based on

location of xwith respect to I(R′
i,RN\i).

Case 4.1. x ≤ I−(R′
i,RN\i)

By Condition (i) of the definition of a generalized probabilistic ballot rule (Definition 5.5.20),
ϕ[x,m](Ri,RN\i) = 1. As ϕx(Ri,RN\i) ≤ 1, this implies that ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R

′
i,RN\i).

Case 4.2. I+(R′
i,RN\i) < x

By the definition of I(Ri,RN\i), no matter whether∩i∈Nτ(Ri) is empty or not, we have
τ−(R′

i) ≤ I+(R′
i,RN\i). Therefore, this case is not possible.

Case 4.3. I−(R′
i,RN\i) < x ≤ I+(R′

i,RN\i)

Suppose I+(Ri,RN\i) < x. Then, by Condition (ii) of the definition of a generalized probabilistic ballot
rule (Definition 5.5.20), we have ϕ[x,m](Ri,RN\i) = 0. This means ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R

′
i,RN\i).

Now suppose x ≤ I+(Ri,RN\i). By using the same logic as in Case 1.3, we can show that
∩j∈N\iτ(Rj) ∩ τ(Ri) = ∅. By the assumption of Case 4, we have x ≤ τ−(R′

i) and by the assumption of
Case 4.3, we have I−(R′

i,RN\i) < x. Combining we obtain I−(R′
i,RN\i) < x ≤ τ−(R′

i). As
∩j∈N\iτ(Rj) ∩ τ(Ri) = ∅ and I−(R′

i,RN\i) < τ−(R′
i), there must be some l ∈ N such that

τ+(Rl) = I−(R′
i,RN\i), and hence I−(Ri,RN\i) ≤ I−(R′

i,RN\i). This, the assumption of Case 4.3, and the
supposition of the current paragraph that x ≤ I+(Ri,RN\i), imply I−(Ri,RN\i) < x ≤ I+(Ri,RN\i).
Because τ+(Rl) = I−(R′

i,RN\i), the assumptions that I−(R′
i,RN\i) < x ≤ I+(R′

i,RN\i) and
I−(Ri,RN\i) < x, imply I−(Ri,RN\i) < τ−(Rl), and hence I−(Ri,RN\i) /∈ τ(Rl). We claim that
I(Ri,RN\i) ̸= ∩j∈Nτ(Rj). Assume for contradiction that I(Ri,RN\i) = ∩j∈Nτ(Rj). However, then
I(Ri,RN\i) ⊆ τ(Rj) for all j ∈ N, and in particular, I−(Ri,RN\i) ∈ τ(Rj) for all j ∈ N, which contradicts
our earlier deduction that I−(Ri,RN\i) /∈ τ(Rl). This proves our claim that I(Ri,RN\i) ̸= ∩j∈Nτ(Rj).
Because I(Ri,RN\i) ̸= ∩j∈Nτ(Rj), by the definition of I(Ri,RN\i) it must be that∩j∈Nτ(Rj) ̸= ∅.
Therefore, we can use Condition (iii) of the definition of a generalized probabilistic ballot rule (Definition
5.5.20) to calculate the outcome of ϕ at the preference profiles (Ri,RN\i) and (R′

i,RN\i). Let S ⊆ N be
such that i ∈ S if and only if x− k ≤ τ−(Ri) and x ≤ τ+(Ri) and let S′ ⊆ N be such that i ∈ S′ if and
only if x− k ≤ τ−(R′

i) and x ≤ τ+(R′
i). By the assumption of Case 4, τ−(Ri) < x ≤ τ−(R′

i), and hence
S ⊆ S′. By the definition of ϕ, we have ϕ[x,m](Ri,RN\i) = βS[x,m] and ϕ[x,m](R

′
i,RN\i) = βS′ [x,m], and by

the definition of (βS)S⊆N, we have βS[x,m] ≤ βS′ [x,m]. Therefore, ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i). ■

.9 Proof of Theorem 5.5.28

Proof: (If part) LetD be a κ-single-plateaued domain for some κ ∈ {1, . . . ,m} and let ϕ : Dn → ΔA be a
κ-plateaued rule . By definition ϕ is anonymous and plateau-only. To show that ϕ is strategy-proof, in view
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of Theorem 5.5.15, it is enough to show that it satisfies generalized uncompromisingness. Consider i ∈ N,
Ri,R′

i ∈ D with τ+(Ri) < τ+(R′
i), RN\i ∈ Dn−1, and x ∈ A. First we show that Condition (i) in

Definition 5.5.10 holds. Consider the case where τ+(R′
i) < x or τ−(Ri) ≥ x. As τ+(Ri) < τ+(R′

i), it
follows that when τ+(R′

i) < xwe have τ+(Ri) < x, and when τ−(Ri) ≥ xwe have τ−(R′
i) > x. This

implies nxl (Ri,RN\i) = nxl (R′
i,RN\i) for all 0 ≤ l ≤ κ − 1. By the definition of κ-plateaued rule , this yields

ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i), which proves that ϕ satisfies Condition (i) in Definition 5.5.10.

Next we show ϕ satisfies Condition (ii) in Definition 5.5.10. We distinguish the following two cases.
Case 1. Suppose τ+(Ri) < x ≤ τ+(R′

i).
By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β(n˜, x) and ϕ[x,m](R

′
i,RN\i) = β(n˜′, x), where

for all 0 ≤ l ≤ κ − 1, n˜l = nxl (Ri,RN\i) and n˜′l = nxl (R′
i,RN\i). Since τ+(Ri) < x and τ+(R′

i) ≥ x, there
must exist 0 ≤ l′ ≤ κ − 1 such that nxl (R′

i,RN\i) = nxl (Ri,RN\i) + 1 for all 0 ≤ l ≤ l′, and
nxl (R′

i,RN\i) = nxl (Ri,RN\i) for all l′ < l ≤ κ − 1. This implies n˜′ = n˜⊕ 1. Therefore, by Condition (ii) of
Definition 5.5.23, we have β(n˜, x) ≤ β(n˜⊕ 1, x), and hence it follows that
ϕ[x,m](R

′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i).

Case 2. Suppose τ−(Ri) < x ≤ τ−(R′
i).

By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β(n˜, x) and ϕ[x,m](R
′
i,RN\i) = β(n˜′, x), where

for all 0 ≤ l ≤ κ − 1, n˜l = nxl (Ri,RN\i) and n˜′l = nxl (R′
i,RN\i). If τ+(Ri) < x, then

nxl (R′
i,RN\i) = nxl (Ri,RN\i) + 1 for all 0 ≤ l ≤ κ − 1. However, if x ≤ τ+(Ri) < x+ κ − 1, then there

must exist l′ such that nxl (R′
i,RN\i) = nxl (Ri,RN\i) for all 0 ≤ l ≤ l′ and nxl (R′

i,RN\i) = nxl (Ri,RN\i) + 1
for all l′ < l ≤ κ − 1. In both these cases, n˜′ = n˜⊕ 1, and hence by using Condition (ii) of Definition
5.5.23, we have ϕ[x,m](R

′
i,RN\i) ≥ ϕ[x,m](Ri,RNx\i).

(Only-if part) Let ϕ be a strategy-proof, anonymous, and plateau-only RSCF onDn. We show that it is a
κ-plateaued rule.

Lemma .9.1 Let x ∈ A and RN,R′
N ∈ Dn be such that nxl (RN) = nxl (R′

N) for all 0 ≤ l ≤ κ − 1. Then,
ϕ[x,m](RN) = ϕ[x,m](R

′
N).

Proof: Note that for all R̄N ∈ {RN,R′
N}, |{i ∈ N | τ+(R̄i) = x+ l}| = nxl (R̄N)− nxl+1(R̄N) for all

0 ≤ l ≤ κ − 2 and |{i ∈ N | τ+(R̄i) < x}| = n− nx0(R̄N) . Because nxl (RN) = nxl (R′
N) for all

0 ≤ l ≤ κ − 1, this means |{i ∈ N | τ+(Ri) = x+ l}| = |{i ∈ N | τ+(R′
i) = x+ l}| for all

0 ≤ l ≤ κ − 2, |{i ∈ N | τ−(Ri) ≥ x}| = |{i ∈ N | τ−(R′
i) ≥ x}| and

|{i ∈ N | τ+(Ri) < x}| = |{i ∈ N | R′
i(1) < x}| . Let nl = |{i ∈ N | τ+(Ri) = x+ l}| for all

0 ≤ l ≤ κ − 2. Since ϕ is anonymous, assume without loss of generality that
(i) {i ∈ N | τ+(Ri) = x+ l} = {i ∈ N | τ+(R′

i) = x+ l} = {isl−1 + 1, . . . , isl}, where for all
0 ≤ l ≤ κ − 2, sl = n0 + . . .+ nl and is−1 = 0, and
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(ii) for all i ∈ N \ {isκ−2 , . . . , 1}, either τ+(Ri), τ+(R′
i) < x or τ−(Ri), τ−(R′

i) ≥ x. In view of this, it is
enough to show that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i) for all (Ri,RN\i), (R′

i,RN\i) ∈ S such that either
τ+(Ri), τ+(R′

i) < x or τ−(Ri), τ−(Ri) ≥ x. Suppose τ+(Ri), τ+(R′
i) < x. Since ϕ is plateau-only, assume

without loss of generality that both Ri and R′
i are left single-plateaued. This means

U(x− 1,Ri) = U(x− 1,R′
i) = [1, x− 1]. Now, by straightforward application of strategy-proofness, it

follows that ϕ[1,x−1](Ri,RN\i) = ϕ[1,x−1](R
′
i,RN\i). Thus, ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i).

Next, suppose τ−(Ri), τ−(Ri) ≥ x. Since ϕ is plateau-only, assume without loss of generality that both
Ri and R′

i are right single-plateaued. This meansU(x,Ri) = U(x,R′
i) = [x,m]. Now, by straightforward

application of strategy-proofness, it follows that ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i). This completes the

proof of the lemma. ■

In view of Lemma .9.1, for all (n˜, x) ∈ F(κ), define β(n˜, x) = ϕ[x,m](RN)where RN is such that
nxl (Ri,RN\i) = n˜l for all 0 ≤ l ≤ κ − 1. In what follows we show that the parameters βs are plateau
parameters.

We show that (β(n˜, x)) satisfies Condition (ii) in Definition 5.5.23. In view of Lemma .9.1, it is enough
to show that ϕ[x,m](Ri,RN\i) ≥ ϕ[x,m](R

′
i,RN\i)where (Ri,RN\i), (R′

i,RN\i) ∈ Dn are such that either[
τ+(Ri) < x and τ+(R′

i) ≥ x
]
or

[
τ−(Ri) ≥ x and x ≤ τ+(R′

i) < x+ κ − 1
]
. First we consider the case

where τ+(Ri) < x and τ+(R′
i) ≥ x. In view of Lemma .9.1 , it is enough to show that

ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i)where (Ri,RN\i), (R′

i,RN\i) ∈ S are such that τ+(Ri) < x and
τ+(R′

i) ≥ x. Since ϕ is plateau-only, assume without loss of generality that Ri is left single-plateaued. Then
U(x− 1,Ri) = [1, x− 1]. By strategy-proofness, ϕU(x−1,Ri)(Ri,RN\i) ≥ ϕU(x−1,Ri)(R

′
i,RN\i), which means

ϕ[x,m](Ri,RN\i) ≤ ϕ[x,m](R
′
i,RN\i). Next we consider the case where τ−(Ri) ≥ x and

x ≤ τ+(R′
i) < x+ κ − 1. Next we show that (β(n˜, x)) satisfies Condition (ii) in Definition 5.5.23. In

view of Lemma .9.1, it is enough to show that ϕ[x,m](Ri,RN\i) ≥ ϕ[x,m](R
′
i,RN\i)where

(Ri,RN\i), (R′
i,RN\i) ∈ Dn are such that τ−(Ri) ≥ x and x ≤ τ+(R′

i) < x+ κ− 1. Since ϕ is plateau-only,
assume without loss of generality that Ri is right single-plateaued. ThenU(x,Ri) = [x,m]. By
strategy-proofness, ϕU(x,Ri)(Ri,RN\i) ≥ ϕU(x,Ri)(R

′
i,RN\i), which means ϕ[x,m](Ri,RN\i) ≥ ϕ[x,m](R

′
i,RN\i).

Finally, we show that {(β(n˜, x))(n˜,x)∈F(κ)} satisfies Condition (i) of Definition 5.5.23. Take n˜, n˜+ ∈ N˜ ,
RN ∈ Dn and x ∈ [3,m] such that nxl (RN) = n˜l and n˜x−1

l (RN) = n˜+l for all 0 ≤ l ≤ κ − 1. It is easy to see
that such a RN and x exist for every possible choice of n˜ and n˜+. Since ϕ is an RSCF,
ϕ[x,m](RN) ≤ ϕ[x−1,m](RN). By the construction of (β(n˜, x))(n˜,x)∈F(κ), we have
0 ≤ β(n˜, x) ≤ β(n˜+, x− 1) ≤ 1 for all n˜, n˜+ ∈ N˜ . ■
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.10 Proof of Corollary 5.5.1

Proof: It remains to show that a κ-plateaued rule is unanimous if and only if it is based on a collection of
unanimous plateau parameters.

(If part) Suppose {(β(n˜, x))(n˜,x)∈F(κ)} is unanimous and ϕ is a κ-plateaued rule with respect to
{(β(n˜, x))(n˜,x)∈F(κ)}. We show ϕ is unanimous.

Let RN ∈ Dn be such that∩i∈Nτ(Ri) ̸= ∅. Let∩i∈Nτ(Ri) = [y, z]. Then, ny0(RN) = n and
nyκ−1(RN) > 0 (see Figure .10.1 for details). Since n̂˜0 = n and n̂˜κ−1 > 0, by unanimity of plateau
parameters, we have β(n̂˜, y) = 1. Because ϕ[y,m](RN) = β(n̂˜, y), this means ϕ[y,m](RN) = 1. As
∩τ(Ri) = [y, z], nz+1

0 (RN) < n and nz+1
κ−1(RN) = 0 (see Figure .10.1 for details). Since n̄˜0 < n and

n̄˜κ−1 = 0, by unanimity of plateau parameters, we have β(n̄˜, z+ 1) = 0. Because
ϕ[z+1,m](RN) = β(n̄˜, z+ 1), this means ϕ[z+1,m](RN) = 0. So, we have ϕ[y,z](RN) = 1.

(Only-if part) Let ϕ be a strategy-proof, plateau-only, anonymous and unanimous RSCF onDn. We
show it is a κ-plateaued rule with respect to unanimous plateau parameters. By Theorem 5.5.29, ϕ is a
κ-plateaued rule. Let {(β(n˜, x))(n˜,x)∈F(κ)} be the plateau parameters of ϕ. We need to show that the
collection {(β(n˜, x))(n˜,x)∈F(κ)} is unanimous.

Since, ϕ is unanimous and strategy-proof, by Theorem 5.5.3, it is Pareto optimal. Take RN ∈ Dn and
x ∈ [2,m] such that nx0(RN) = n and nxκ−1(RN) > 0. Since, nx0(RN) = n,mini∈N(τ+(Ri)) ≥ x. Also, since
nxκ−1(RN) > 0, there must exist î ∈ N such that τ−(R̂i) ≥ x. Take y < x. Asmini∈N(τ+(Ri)) ≥ x, xRiy
for all i ∈ N. Moreover, because τ−(R̂i) ≥ x, xP̂iy. By Pareto optimality of ϕ, ϕy(RN) = 0. Since, y < x is
arbitrary, this means ϕ[x,m](RN) = 1. Because ϕ[x,m](RN) = β(n˜, x)where (n˜, x) is such that n˜0 = n and
n˜κ−1 > 0, it follows that β(n˜, x) = 1.

Now take RN ∈ Dn such that nx0 < n and nxκ−1 = 0. Since nx0 < n, this means there exists ī ∈ N such
that τ+(R̄i) < x. Moreover, as nxκ−1 = 0,mini∈N τ−(Ri) < x. Take y ≥ x. Asmini∈N τ−(Ri) < x,
mini∈N τ−(Ri)Riy for all i ∈ N. Also, as τ+(R̄i) < x, this means τ+(R̄i)P̄iy. By Pareto optimality,
ϕy(RN) = 0. Since y ≥ x is arbitrary, we have ϕ[x,m](RN) = 0. Because ϕ[x,m](RN) = β(n˜, x)where (n˜, x)
is such that n˜0 < n and n˜κ−1 = 0, it follows that β(n˜, x) = 0.

1 mz z+1y

Figure .10.1: A preference profile RN ∈ Dn such that ∩i∈Nτ(Ri) ̸= ∅
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.11 Proof of Theorem 5.5.29

Proof: LetD be a (κ, κ̂)-single-plateaued domain for some κ ∈ {1, . . . ,m} and some κ̂ ≥ κ and let
ϕ : Dn → ΔA be a κ-plateaued rule. By definition ϕ is anonymous and plateau-only. To show that ϕ is
strategy-proof, by Theorem 5.5.15, it is enough to show that it satisfies generalized uncompromisingness.
Consider i ∈ N, Ri,R′

i ∈ D, RN\i ∈ Dn−1, and x ∈ A. First we show that Condition (i) in Definition
5.5.10 holds. We distinguish the following two cases.
Case 1. Suppose x ≤ min{τ−(Ri), τ−(R′

i)}.
AsD is a (κ, κ̂)-single-plateaued domain, |τ(Ri)| ≥ κ and |τ(R′

i)| ≥ κ. This implies
nxl (Ri,RN\i) = nxl (R′

i,RN\i) for all 0 ≤ l ≤ κ − 1. By the definition of κ-plateaued rule, this yields
ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i).

Case 2. Supposemax{τ+(Ri), τ+(R′
i)} < x.

This implies nxl (Ri,RN\i) = nxl (R′
i,RN\i) for all 0 ≤ l ≤ κ− 1. By the definition of κ-plateaued rule, this

yields ϕ[x,m](Ri,RN\i) = ϕ[x,m](R
′
i,RN\i).

Next we show ϕ satisfies Condition (ii) in Definition 5.5.10. We distinguish the following two cases.
Case 1. Suppose τ+(Ri) < x ≤ τ+(R′

i).
By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β(n˜, x) and ϕ[x,m](R

′
i,RN\i) = β(n˜′, x), where

for all 0 ≤ l ≤ κ − 1, n˜l = nxl (Ri,RN\i) and n˜′l = nxl (R′
i,RN\i). Since τ+(Ri) < x and τ+(R′

i) ≥ x, there
must exist 0 ≤ l′ ≤ κ − 1 such that nxl (R′

i,RN\i) = nxl (Ri,RN\i) + 1 for all 0 ≤ l ≤ l′, and
nxl (R′

i,RN\i) = nxl (Ri,RN\i) for all l′ < l ≤ κ − 1. This implies n˜′ = n˜⊕ 1. Therefore, by Condition (ii) of
Definition 5.5.23, we have β(n˜, x) ≤ β(n˜⊕ 1, x), and hence it follows that
ϕ[x,m](R

′
i,RN\i) ≥ ϕ[x,m](Ri,RN\i).

Case 2. Suppose τ−(Ri) < x ≤ τ−(R′
i).

By the definition of κ-plateaued rule, ϕ[x,m](Ri,RN\i) = β(n˜, x) and ϕ[x,m](R
′
i,RN\i) = β(n˜′, x), where

for all 0 ≤ l ≤ κ − 1, n˜l = nxl (Ri,RN\i) and n˜′l = nxl (R′
i,RN\i). If τ+(Ri) < x, then

nxl (R′
i,RN\i) = nxl (Ri,RN\i) + 1 for all 0 ≤ l ≤ κ − 1. However, if x ≤ τ+(Ri) < x+ κ − 1, then there

must exist l′ such that nxl (R′
i,RN\i) = nxl (Ri,RN\i) for all 0 ≤ l ≤ l′ and nxl (R′

i,RN\i) = nxl (Ri,RN\i) + 1
for all l′ < l ≤ κ − 1. In both these cases, n˜′ = n˜⊕ 1, and hence by using Condition (ii) of Definition
5.5.23, we have ϕ[x,m](R

′
i,RN\i) ≥ ϕ[x,m](Ri,RNx\i). If τ+(Ri) ≥ x+ κ − 1, nxl (Ri,RN\i) = nxl (R′

i,RN\i) for
all 0 ≤ l ≤ κ − 1. By the definition of κ-plateaued rule, this yields ϕ[x,m](Ri,RN\i) = ϕ[x,m](R

′
i,RN\i). ■
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6
TheStructure of (Local)Ordinal Bayesian Incentive

Compatible RandomRules

6.1 Introduction

We consider social choice problems where a random social choice function (RSCF) selects a probability
distribution over a finite set of alternatives at every collection of the agents’ preferences in a society. An
RSCF is dominant strategy incentive compatible (DSIC) if no agent can increase the probability of any
upper contour set by misreporting her preference.¹ A random Bayesian rule (RBR) consists of an RSCF
and a prior belief of each agent about the preferences of the others. We assume that the prior of an agent is
“partially correlated”: her belief about the preference of one agent may depend on that about another
agent, but it does not depend on her own preference. Ordinal Bayesian incentive compatibility (OBIC) is
the natural extension of the notion of incentive compatibility (IC) for RBRs. This notion is introduced in
[29] and it captures the idea of Bayes-Nash equilibrium in the context of incomplete information game.
An RBR is OBIC if no agent can increase the expected probability (with respect to her belief) of any
upper contour set by misreporting her preference.

¹An upper contour set at a preferences is a set “top k alternatives” for some number k, that is, alternatives having rank less
than or equal to k.
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The importance of Bayesian rules is well-established in the literature: on the one hand, they model real
life situations where agents behave according to their beliefs, on the other hand, they are significant
weakening of the seemingly too demanding requirement of DSIC that leads to dictatorship (or random
dictatorships) unless the domain is restricted. It is worth mentioning that the RBRs are particularly
important as randomization has long been recognized as a useful device to achieve fairness in allocation
problems.

Locally DSIC (LDSIC) or locally OBIC (LOBIC) are weaker versions of the corresponding notions.
As the name suggests, they apply to deviations/misreports to only “local” preferences (the notion of
which is fixed a priori). The importance of these local notions is well-established in the literature. They
are useful in modeling behavioral agents (see [19]). Furthermore, on many domains they turn out to be
equivalent to their corresponding global versions, and thereby, they are used as a simpler way to check
whether a given RSCF is DSIC (see [19], [80], [26], [54], etc.).

The main objective of this paper is to explore the structure of LOBIC RBRs on different domains. The
structure of DSIC RSCFs is well-explored in the literature. On the unrestricted domain, they turn out to
be random dictatorial, and on restricted domains such as single-peaked or single-crossing or
single-dipped, they are some versions of probabilistic fixed ballot rules. However, to the best of our
knowledge, the only thing known about the structure of LOBIC (or OBIC) RBRs is that if there are
exactly two agents and at least four alternatives, then for almost all prior profiles (that is, for a set of prior
profiles having full measure), a unanimous, neutral and OBIC RBR is random dictatorial ([57]).² Even
for deterministic Bayesian rules (DBRs), not much is known. [58] show that for almost all prior profiles, a
unanimous and OBIC DBR on the unrestricted domain is dictatorial, and later, [61] shows that for
almost all prior profiles, an “elementary monotonic” and OBIC DBR on a swap-connected domain is
DSIC. Recently, [46] extend these results for sparsely connected domains without restoration.³

Most of the existing literature consider the notion of localness that is derived from Kemeny distance
(see [50] and [51] for further details about Kemeny distance).⁴ According to this notion, two preferences
are local if they differ by a swap of two adjacent alternatives. [19] and [80] provide the following
motivations for using local strategy-proofness.

(i) Local notions of incentive compatibility makes it simpler for the designer to check if a given rule is
DSIC.

(ii) Due to social stigma or self-guilt or bounded rationality, some behavioral agents consider

²A set of prior profiles is said to have full measure if its complement has Lebesgue measure zero.
³We provide a detailed discussion on the connection between our results and those in [46] in Section 6.9.3.
⁴[50] provides a characterization of the Kemeny distance with five axioms; metric, betweenness, neutrality, normalization

and reducibility. Later, [17] provide another characterization where it is shown that the reducibility axiom is redundant for the
characterization.
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manipulations only for some particular deviations. Such deviations are captured by the notion of local
preferences.

Following [54] and [55], we consider an arbitrary notion of localness which we formulate by a graph
over preferences. The motivation behind this consideration is as follows. Firstly, when it comes to the task
of checking whether a given rule is DSIC, which notion of localness will be suitable for this purpose
totally depends on the device that the designer uses and the computational complexity in checking local
DSIC. Secondly, when it comes to modeling behavioral agents there is no reason to assume such an agent
will consider only manipulations by swapping two adjacent alternatives. Clearly, such local deviations
depend on the agents, as well as on the particular context. For instance, an agent may try to manipulate by
moving an alternative to the top of her sincere preference whenever she tries to make that alternative the
outcome. Furthermore, the use of such a general notion enables us to apply our results on a large number
of domains like multi-dimensional domains, domains under partitioning, domains under categorization,
sequentially dichotomous domains, etc where it is not always possible to swap two adjacent alternatives
without affecting the ranking of other alternatives.

We introduce the notion of lower contour monotonicity for an RBR and in Theorem 6.3.2 establish the
equivalence between LOBIC and the much stronger (and well-studied) notion LDSIC on any domain for
RBRs satisfying this property. The deterministic version of this result for the special case of swap-local
domains is proved in [61].⁵

We show that under LOBIC, unanimity implies lower contour monotonicity on the unrestricted
domain. Therefore, it follows as a corollary of Theorem 6.3.2 that for almost all prior profiles, unanimous
and LOBIC (and hence OBIC) RBRs on the unrestricted domain are random dictatorial. Next, we move
to restricted domains. It turns out that unanimity is not strong enough to ensure lower contour
monotonicity for LOBIC RBRs on most well-known restricted domains. Therefore, we proceed to
explore the relation of unanimity to another important property of a rule, namely tops-onlyness, on such
domains.

Tops-onlyness is a strong property for a rule as it says that the designer can ignore any information
about a preference beyond the top-ranked alternative. On the positive side, this property makes the
structure of a rule quite simple, however, on the negative side, this property is not quite desirable as it
ignores most part of a preference and thereby significantly restricts the scope for designing incentive
compatible rules. Interestingly, the negative side of the tops-only property does not play any role for some
domains as unanimity alone enforces it under DSIC. [20] provide a sufficient condition on a domain so
that unanimity and DSIC imply tops-onlyness for DSCFs on it. Later, [22] show that the same sufficient
condition does not work for RSCFs, and consequently, they provide a stronger sufficient condition on a

⁵A graph on a domain is swap-local if any two local preferences differ by a swap of consecutively ranked alternatives.
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domain so that unanimity and DSIC imply tops-onlyness. We provide a sufficient condition on a domain
so that for almost all prior profiles, unanimous and graph-LOBIC RBRs imply tops-onlyness. It is worth
mentioning that establishing the tops-only property is a major step in characterizing unanimous and
OBIC RBRs. Tops-onlyness significantly weakens the requirement of LCM on the RBR and hence plays a
crucial role in generalizing our results for the equivalence of LOBIC and LDSIC (see Remark 6.3.6,
Proposition 6.4.1 and Corollary 6.4.1)

Finally, we provide a discussion explaining why none of these results can be extended for fully
correlated priors (that is, when the prior of an agent depends on her own preference). It is worth
emphasizing that all the existing results for LOBIC DBRs ([58] and [61]) follow from our results.
Furthermore, since every OBIC rule is LOBIC by definition, all our results hold for OBIC rules in
particular.

The results in this paper hold for RBRs for almost all priors profiles, that is, for each prior profile in a set
of prior profiles having full measure. It is worth mentioning the economic motivation of such results.
Firstly, if the designer thinks all prior profiles are equally likely (or she does not have any particular
information about prior profiles), then she knows that except for some “rare” cases (with Lebesgue
measure zero), an RBR is LOBIC (or OBIC) if and only if its RSCF component is LDSIC (or DSIC).
Since the structure of LDSIC (or DSIC) RSCFs is much simpler, she can use her knowledge about the
same in dealing with the RBRs for such prior profiles. Secondly, if the objective of the designer is to
maximize the expected total welfare (with respect to any prior distribution over preference profiles and
the uniform distribution over prior profiles) of a society over LOBIC (or OBIC) RBRs, then she can
restrict her attention (that is, the feasible set) to the LDSIC (or DSIC) RSCFs. This is because a
non-LDSIC RSCF can be part of a LOBIC (or OBIC) RBR only for a (Lebesgue) measure zero set of
cases which will not contribute to the expected value.

[58] introduce the notion of generic priors, the particularity of which is that they have full measure. It
is shown in Example 1 of [57] that a unanimous and OBIC RBR with respect to a generic prior profile
need not be random dictatorial, and therefore, it seemed that the dictatorial result does not extend
(almost surely) for OBIC RBRs. However, it follows from our results that in fact it does, only thing is that
one needs to construct the right class of priors ensuring the full measure.

We provide a wide range of applications of our results. We introduce the notion of betweenness
domains and establish the structure of RBRs that are LOBIC for almost all prior profiles on these
domains. Well-known restricted domains such as single-peaked on arbitrary graphs, hybrid, multiple
single-peaked, single-dipped, single-crossing, and domains under partitioning are important examples of
betweenness domains. We introduce a weaker version of lower contour monotonicity and obtain a
characterization of unanimous RBRs or DBRs (depending on what is known in the literature regarding
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the equivalence of LDSIC and DSIC) that are LOBIC on these domains for almost all prior profiles.
Our consideration of arbitrary notion of localness allows us to deal with multi-dimensional domains.

The importance of such domains is well understood in the literature; we provide a discussion on this in
Section 6.8. We provide the structure of LOBIC RBRs on full separable multi-dimensional domains
when the marginal domains satisfy the betweenness property, for instance, when the marginal domains
are unrestricted or single-peaked on graphs or hybrid or multiple single-peaked or single-dipped or
single-crossing.

The rest of the paper is organized as follows. Section 6.2 introduces the notions of domains, RSCFs,
priors, RBRs, and their relevant properties. Sections 6.3 and 6.4 present our results for graph-connected
and swap-connected domains. Sections 6.5, 6.6, 6.7 and 6.8 present the applications of our results on
unrestricted, betweenness, non-regular and multi-dimensional domains. Finally, in Section 6.9 we
provide a discussion on DBRs, (fully) correlated priors, and the relation of our paper with [46].

6.2 Preliminaries

We denote a finite set of alternatives by A and a finite set of n agents byN. A (strict) preference over A is
defined as a linear order on A.⁶ The set of all preferences over A is denoted byP(A). A subsetD ofP(A)
is called a domain. Whenever it is clear from the context, we do not use brackets to denote singleton sets.

The weak part of a preference P is denoted by R. Since P is strict, for any two alternatives x and y, xRy
implies either xPy or x = y. The kth ranked alternative in a preference P is denoted by P(k).⁷ The top-set
τ(D) of a domainD is defined as the set of alternatives∪P∈DP(1). A domainD is regular if τ(D) = A.
The upper contour setU(x, P) of an alternative x at a preference P is defined as the set of alternatives that
are strictly preferred to x in P, that is,U(x, P) = {a ∈ A | aPx}. A setU is called an upper contour set at
P if it is an upper contour set of some alternative at P. The restriction of a preference P to a subset B of
alternatives is denoted by P|B, more formally, P|B ∈ P(B) such that for all a, b ∈ B, aP|Bb if and only if
aPb. We use the following terminologies to ease the presentation: P ≡ xy · · · means P(1) = x and
P(2) = y; P ≡ · · · xy · · · means x and y are consecutively ranked in Pwith xPy; P ≡ · · · x · · · y · · ·
means x is ranked above y. When the set of alternatives is precisely stated, say A = {a, b, c, d}, we write,
for instance, P = abcd to mean P(1) = a, P(2) = b, P(3) = c, and P(4) = d. We use similar notations
without further explanations.

Each agent i ∈ N has a domainDi (of admissible preferences). We assume that each domainDi is
endowed with some graph structureGi = ⟨Di, Ei⟩where Ei ⊆ Di ×Di is the set of edges. The graphGi

represents the proximity relation between the preferences: an edge between two preferences implies that

⁶A linear order is a complete, transitive, and antisymmetric binary relation.
⁷The rank of an alternative a in a preference P is k if and only if |{b ∈ A | bPa}| = k− 1.
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they are close in some sense. The closeness plays the role that whenever an agent tries to manipulate: she
only misreports her sincere preference as the one that is close to her sincere one. For instance, suppose
A = {a, b, c} andDi is the set of all preferences over A. Suppose that two preferences are “close” if and
only if they are swap-local, that is, differ by a swap of two consecutive alternatives. In other words, two
preferences are close if their Kemeny distance is 1.⁸ The graphGi that represents this proximity relation is
given in Figure 6.2.1. The alternatives that swap between two preferences are mentioned on the edge
between the two.

Figure 6.2.1: The graph representing the proximity relation that two preferences are close if and only
if they differ by a swap of two consecutive alternatives

abc
{a,b}

bac

cab cba
{a,b}

acb bca

{b,c} {a,c}

{b,c}{a,c}

We provide an example to explain why a proximity relation need not always be based on the Kemeny
distance. Suppose that an agent cannot do complicated calculations in order to manipulate, she just
moves an alternative to the top of her sincere preference whenever she tries to make that alternative the
outcome by misreporting her preference. According to such a proximity, a preference P is close to a
preference P′ if P′ is obtained bymoving an alternative to the top position at P. For instance, abc is close to
bac and cab. Another important instance that cannot be modelled by swap-localness is the one where the
alternatives have multiple dimensions and preferences are separable.⁹

We denote byGN a collection of graphs (Gi)i∈N. Whenever we use some term involving the word
“graph”, we mean it with respect to a collectionGN. Two preferences Pi and P′i of an agent i are graph-local
if they form an edge inGi, and a sequence of preferences (P1i , . . . , Pti) is a graph-local path if every two
consecutive preferences in the sequence are graph-local. A domainDi is graph-connected if there is a
graph-local path between any two preferences in it. We denote byDN the product setD1 × · · · × Dn of
individual domains. An element ofDN is called a preference profile. All the domains we consider in this
paper are assumed to be graph-connected.

⁸The Kemeny distance between two preferences is the minimum number of adjacent flips that is required to reach one pref-
erence from the other.

⁹See Section 6.8 for a formal definition of a separable preference.
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6.2.1 Random social choice functions and their properties

Let ΔA be the set of all probability distributions on A. A random social choice function (RSCF) is a
mapping ϕ : DN → ΔA. We denote the probability of an alternative x at ϕ(PN) by ϕx(PN). An RSCF
ϕ : DN → ΔA is called a deterministic social choice function (DSCF) if ϕx(PN) ∈ {0, 1} for all x ∈ A
and all PN ∈ DN.

An RSCF ϕ : DN → ΔA is unanimous if for all PN ∈ DN such that for all i ∈ N, Pi(1) = x for some
x ∈ A, we have ϕx(PN) = 1. An RSCF ϕ : DN → ΔA is tops-only if for all PN, P′N ∈ DN such that
Pi(1) = P′i(1) for all i ∈ N, we have ϕ(PN) = ϕ(P′N).

A probability distribution ν stochastically dominates another probability distribution ν̂ at a preference
P, denoted by νPsd ν̂, if νU(x,P) ≥ ν̂U(x,P) for all x ∈ A and νU(y,P) > ν̂U(y,P) for some y ∈ A.¹⁰ We write
νRsd ν̂ to mean either νPsd ν̂ or ν = ν̂. An RSCF ϕ : DN → ΔA is dominant strategy incentive compatible
(DSIC) on a pair of preferences (Pi, P′i) of an agent i ∈ N, if ϕ(Pi, P−i)Rsdi ϕ(P′i, P−i) for all P−i ∈ D−i. An
RSCF is graph-locally dominant strategy incentive compatible (graph-LDSIC) if it is DSIC on every
pair of graph-local preferences of each agent, and it is called dominant strategy incentive compatible
(DSIC) if it is DSIC on every pair of preferences of each agent. Note that the pair (Pi, P′i) is ordered in the
definition of DSIC on a pair of preference (Pi, P′i), in particular, DSIC on the pair of preferences (Pi, P′i) is
different from DSIC on the pair of preferences (P′i, Pi).

A set of alternatives B is a block in a pair of preferences (P, P′) if it is a minimal non-empty set satisfying
the following property: for all x ∈ B and y /∈ B, P|{x,y} = P′|{x,y}. For instance, the blocks in the pair of
preferences (abcdefg, bcadegf) are {a, b, c}, {d}, {e}, and {f, g}. The lower contour set L(x, P) of an
alternative x at a preference P is L(x, P) = {a ∈ A | xPa}. A set L is a lower contour set at a preference P
if it is a lower contour set of some alternative at P. Lower contour monotonicity says that whenever an
agent i unilaterally deviates from Pi to a graph-local preference P′i , the probability of each lower contour
set at Pi restricted to any non-singleton block in (Pi, P′i)will weakly increase. For instance, consider our
earlier example Pi = abcdefg and P′i = bcadegfwith non-singleton blocks {a, b, c} and {f, g}. The lower
contour sets at Pi restricted to {a, b, c} are {c} and {b, c}, and that restricted to {f, g} is {g}. Lower
contour monotonicity says that the probability of each of the sets {c}, {b, c}, and {g}will weakly increase
if agent i unilaterally deviates from Pi to P′i . The intuition behind lower contour monotonicity is simple,
roughly speaking it says that whenever some alternatives are moved up in a preference, their probabilities
also weakly increase. Clearly, it is a generalization of well-known monotonicity condition.

Definition 6.2.1 An RSCF ϕ : DN → ΔA is called lower contour monotonic if for all i ∈ N, all
graph-local preferences Pi, P′i ∈ Di, all non-singleton blocks B in (Pi, P′i), and all P−i ∈ D−i, we have

¹⁰For a subset B of A, we denote by νB the total probability of the set B according to the probability distribution ν.
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ϕL(Pi, P−i) ≤ ϕL(P
′
i, P−i) for each lower contour set L of Pi|B.

6.2.2 Priors, Random Bayesian rules, and their properties

A prior μi of an agent i is a probability distribution overD−i which represents her belief about the
preferences of the others, and a prior profile μN := (μi)i∈N is a collection of priors, one for each agent.

Definition 6.2.2 Consider an RSCF ϕ : DN → ΔA. A prior profile μN is called compatible with ϕ if for all
i ∈ N, all Pi, P′i ∈ Di, and all X ⊊ A,

∑
P−i

μi(P−i)
(
ϕX(Pi, P−i)− ϕX(P

′
i, P−i)

)
= 0 (6.1)

=⇒ ϕX(Pi, P−i)− ϕX(P
′
i, P−i) = 0 for all P−i.

LetM(ϕ) denote the set of all prior profiles that are compatible with ϕ. It is worth noting that the prior
μi of an agent i does not depend on her preference Pi.

A pair (ϕ, μN) consisting of an RSCF ϕ : DN → ΔA and a prior profile μN is called a random Bayesian
rule (RBR) onDN. When the RSCF ϕ is a DSCF, then it is called a deterministic Bayesian rule (DBR).

The expected outcome with respect to the belief of an agent is called her interim expected outcome.
More formally, the interim expected outcome ϕ(Pi, μi) for an agent i ∈ N at a preference Pi ∈ Di from an
RBR (ϕ, μN) onDN is defined as the following probability distribution on A: for all x ∈ A,

ϕx(Pi, μi) =
∑

P−i∈D−i

μi(P−i)ϕx(Pi, P−i).

Example 6.2.3 Let N = {1, 2} and A = {a, b, c}. Consider the RBR (ϕ, μN) given in Table 6.2.2. Agent 1’s
belief μ1 about agent 2’s preferences is given in the top row and agent 2’s belief μ2 about agent 1’s preferences in the
leftmost column of the table. The outcomes of ϕ at different profiles are presented in the corresponding cells. Here,
for instance, (0.7, 0, 0.3) denotes the outcome where a, b, and c are given probabilities 0.7, 0, and 0.3,
respectively. The rest of the table is self-explanatory. Consider the preference P1 = abc of agent 1. In what follows,
we show how to compute her interim expected outcome ϕ(P1, μ1) at this preference:
ϕa(P1, μ1) = 0.2× 1+ 0.1× 1+ 0.05× 1+ 0.3× 0.5+ 0.15× 1+ 0.2× 1 = 0.85. Similarly, one can
calculate that ϕb(P1, μ1) = 0.15, and ϕc(P1, μ1) = 0, and for agent 2’s preference P2 = bca,
ϕb(P2, μ2) = 0.575, ϕc(P2, μ2) = 0.06, and ϕa(P2, μ2) = 0.365.
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Table 6.2.1: The RBR (ϕ, μN) in Example 6.2.3

μ1 0.2 0.1 0.05 0.3 0.15 0.2
2 abc acb bac bca cba cab

μ2 1
0.25 abc (1,0,0) (1,0,0) (1,0,0) (0.5,0.5,0) (1,0,0) (1,0,0)
0.2 acb (1,0,0) (1,0,0) (1,0,0) (0.7,0,0.3) (1,0,0) (1,0,0)
0.15 bac (1,0,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) (1,0,0)
0.1 bca (0,1,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0)
0.2 cba (1,0,0) (0,0,1) (0,0.4,0.6) (0,1,0) (0,0,1) (0,0,1)
0.1 cab (1,0,0) (0,0.4,0.6) (1,0,0) (1,0,0) (0,0,1) (0,0,1)

Table 6.2.2: The RBR (ϕ, μN) in Example 6.2.3

μ1 0.2 0.1 0.05 0.3 0.15 0.2
μ2 1 2 abc acb bac bca cba cab

0.25 abc (1,0,0) (1,0,0) (1,0,0) (0.5,0.5,0) (1,0,0) (1,0,0)
0.2 acb (1,0,0) (1,0,0) (1,0,0) (0.7,0,0.3) (1,0,0) (1,0,0)
0.15 bac (1,0,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) (1,0,0)
0.1 bca (0,1,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0)
0.2 cba (1,0,0) (0,0,1) (0,0.4,0.6) (0,1,0) (0,0,1) (0,0,1)
0.1 cab (1,0,0) (0,0.4,0.6) (1,0,0) (1,0,0) (0,0,1) (0,0,1)

The notion of ordinal Bayesian incentive compatibility (OBIC) captures the idea of DSIC for an RBR
by ensuring that no agent can improve her interim expected outcome by misreporting her preference.

Definition 6.2.4 An RBR (ϕ, μN) onDN is ordinal Bayesian incentive compatible (OBIC) on a pair of
preferences (Pi, P′i) of an agent i ∈ N if ϕμi

(Pi)Rsdi ϕμi
(P′i).¹¹ An RBR (ϕ, μN) is graph-locally ordinal

Bayesian incentive compatible (graph-LOBIC) if it is OBIC on every pair of graph-local preferences in the
domain of each agent, and it is ordinal Bayesian incentive compatible (OBIC) if it is OBIC on every pair of
preferences in the domain of each agent.

Note that OBIC is a weaker requirement than DSIC since if an RSCF ϕ is DSIC, then (ϕ, μN) is OBIC
for all prior profiles μN.

For ease of presentation, given a property defined for an RSCF, we say an RBR (ϕ, μN) satisfies it, if ϕ
satisfies the property.

¹¹As in the case of DSIC on a pair of preferences, the pair (Pi, P′i) is also ordered in the definition of OBIC on a pair of
preferences (Pi, P′i).
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6.3 Results on graph-connected domains

In this section, we explore the structure of graph-LOBIC Bayesian rules on graph-connected domains.
Since OBIC implies graph-LOBIC (by definition), all these results hold for OBIC RBRs as well.

Recall the definition of a block given in Page 10. The block preservation property says that if an agent
unilaterally changes her preference to a graph-local preference, the total probability of any block in the
two preferences will remain unchanged.

Definition 6.3.1 An RSCF ϕ : DN → ΔA satisfies the block preservation property if for all i ∈ N, all
graph-local preferences Pi, P′i ∈ Di of agent i, all blocks B in (Pi, P′i), and all P−i ∈ D−i, we have
ϕB(Pi, P−i) = ϕB(P

′
i, P−i).

For two preferences P and P′, P△P′ = {x ∈ A | U(x, P) ̸= U(x, P′)} denotes the set of alternatives
that change their relative ordering with some other alternative from P to P′. Note that the block
preservation property implies ϕx(Pi, P−i) = ϕx(P

′
i, P−i) for all x /∈ Pi△P′i as such an alternative forms a

singleton block in (Pi, P′i).
Our next proposition says that graph-LOBIC implies the block-preservation property almost surely

(with probability one). In other words, for each RSCF ϕ, there is a set of prior profiles with full measure
such that if it is graph-LOBIC with respect to any of the prior profiles in the set, it will satisfy the
block-preservation property. The economic interpretation of this result is that if the designer thinks that
all the priors of an agent are equally likely and wants to ensure that no agent can manipulate her RBR,
then “almost surely” she needs to make the RSCF component of the RBR satisfy the block-preservation
property.

Proposition 6.3.1 For every RSCF ϕ : DN → ΔA, there is a set of prior profilesM(ϕ) with full measure
such that for each μN ∈ M(ϕ), if the RBR (ϕ, μN) is graph-LOBIC then ϕ satisfies the block-preservation
property.

The proof of this proposition is relegated to Appendix .2.

6.3.1 Equivalence of graph-LOBIC and graph-LDSIC under lower contour monotonicity

As we have mentioned in Section 6.1, Example 1 of [57] shows that in case of RBRs the equivalence of
graph-LDSIC and graph-LOBIC does not hold for “generic priors” under lower contour
monotonicity.¹²,¹³ What we show in the following is that the set of generic priors for which the

¹²It is shown inExample 1of [57] that a unanimous andOBICRBRwith respect to generic priors neednot beDSIC.However,
it can be verified that the RSCF they consider also satisfies lower contour monotonicity.

¹³See Section 6.9.1 for the definition of generic priors.
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equivalence fails is actually rare in the sense that its Lebesgue measure is zero. More formally, we show
that under lower contour monotonicity, the notion of graph-LDSIC becomes almost surely equivalent to
the much weaker notion of graph-LOBIC.

Theorem 6.3.2 For every lower contour monotonic RSCF ϕ : DN → ΔA, there is a set of prior profilesM(ϕ)
with full measure such that for each μN ∈ M(ϕ), the RBR (ϕ, μN) is graph-LOBIC if and only if ϕ is
graph-LDSIC.

The proof of this theorem is relegated to Appendix .3.1.
The economic interpretation of Theorem 6.3.2 is that if the designer wants to construct a graph-LOBIC

RBR satisfying lower contour monotonicity, then for almost all prior profiles (that is, with full measure)
she can restrict her attention to graph-LDSIC RSCF only.

Even though there is a measure zero set of prior profiles such that the RBR (ϕ, μN) is graph-LOBIC but
ϕ is not graph-LDSIC, it is important to know the exact structure of that (measure zero) set. The structure
of the set depends on the RSCF ϕ through a system of linear equations (see Equation (6.1) in Definition
6.2.2 and Claim .1.1).

It is worth emphasizing that Theorem 6.3.2 holds for any domain and for any graph structure on it (as
long as it is connected). In Sections 6.5, 6.6 and 6.8, we discuss its applications on unrestricted,
single-peaked on a graph (and on a tree or a line as special cases), multiple single-peaked, hybrid, multiple
single-peaked, intermediate, single-dipped, single-crossing and multi-dimensional separable domains.
One can also apply the theorem on domains under categorization, sequentially dichotomous domains,
etc.

6.3.2 Relation between unanimity and tops-onlyness

In this section, we show that on any domain satisfying the path-richness property unanimity and
graph-LOBIC for almost all prior profiles imply tops-onlyness.

Definition 6.3.3 A domainD satisfies the path-richness property if for all preferences P, P′ ∈ D such that
P(1) = P′(1),

(i) if P and P′ are not graph-local, then there is a graph-local path (P1 = P, . . . , Pt = P′) such that
Pl(1) = P(1) for all l = 1, . . . , t, and

(ii) if P and P′ are graph-local, then for each preference P̂ ∈ D, there exists a graph-local path
(P1 = P̂, . . . , Pt) with Pt(1) = P(1) such that for all l < t and all distinct y, z ∈ P△P′, there is a
common upper contour set U of Pl and Pl+1 such that exactly one of y and z is contained in U.
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A domain satisfies the path-richness property if for every two preferences P and P′ having the same
top-ranked alternative, say x, the following happens: (i) if P and P′ are not graph-local then there is
graph-local path from P to P′ such that x appears as the top-ranked alternative in each preference in the
path, and (ii) if P and P′ are graph-local, then from any preference P̂ there is a path to some preference P̄
with x as the top-ranked alternative such that for any two alternatives a, b that change their relative ranking
from P to P′ and for any two consecutive preferences in the path, there is a common upper contour set of
the preferences such that exactly one of a and b belongs to it. For an illustration of Condition (ii) of the
path-richness property, suppose A = {a, b, c, d}, P = abcd and P′ = adcb, and assume that P and P′ are
graph-local. Consider a preference P̂ = dbca. Path-richness requires that a path of the following type
must be present in the domain: (dbca, dbac, dabc, adbc). To see that this path satisfies (ii), consider two
alternatives that change their relative ordering from P to P′, say b and c. Note that the upper contour set
{d, b} in P1 and P2 contains b but not c, the upper contour set {d, b, a} in P2 and P3 contains b but not c,
and so on. Path-richness requires that such a path must exist for every preference P̂ in the domain.

Table 6.3.1: The domain in Example 6.3.4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

a a a c c c c e e e e
b c c a b b e c c c d
c b b b a e b b b d c
d d e e e a a a d b b
e e d d d d d d a a a

Example 6.3.4 Consider the domain in Table 6.3.1. We explain that this domain satisfies the path-richness
property. Suppose that two preferences are graph-local if and only if they differ by a swap of two alternatives.
Consider the preferences P1 and P3 having the same top-ranked alternative. Note that they are not graph-local.
The path (P1, P2, P3) is graph-local and a appears as the top-ranked alternative in each preference in the path.
So, the path satisfies the requirement of (i). It can be verified that for other non graph-local preferences with the
same top-ranked alternative (such as P4 and P7, or P8 and P11, etc.) such a path lies in the domain. Now, consider
the preferences P1 and P2. Note that they are graph-local and the alternatives b and c are swapped in the two
preferences (that is, P1△P2 = {a, b}). Consider any other preference, say P7. The path (P7, P6, P5, P4, P3) has
the property that (a) it ends with a preference that has the same top-ranked alternative a as P1 and P2, and (b)
for every two consecutive preferences in the path, there is a common upper contour set of the two preferences that
contains exactly one of b and c (for instance, the common upper contour set {a, c} of P3 and P4 contains c but
not b, and so on). It can be verified that such a path exists for every pair of graph-local preferences P and P′

having the same top-ranked alternative and for every preference P̂. It is worth mentioning that for the kind of
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graph-localness we consider in this example, the requirement of (b) boils down to requiring that the swapping
alternatives in the graph-local preferences maintain their relative ranking throughout the path.

The path-richness property may seem to be somewhat involved but we show in Sections 6.5, 6.6 and
6.7, most domains of practical importance like the unrestricted, single-peaked, single-dipped,
single-crossing, domains under partitioning, etc. satisfy this property.

Our next theorem says that if the designer wants to construct a unanimous and graph-LOBIC RBR on
a domain satisfying the path-richness property, then for almost all prior profiles she can restrict her
attention to tops-only RSCFs. Clearly, this makes the construction considerably simpler. As we have
mentioned in case of Theorem 6.3.2, the economic implication of this theorem is that if the designer
thinks all the priors of an agent are equally likely, then she can be assured that a unanimous and
graph-LOBIC RBR on a path-rich domain will be tops-only with probability one.

Theorem 6.3.5 SupposeD satisfies the path-richness property. For every unanimous RSCF ϕ : DN → ΔA,
there is a set of prior profilesM(ϕ) with full measure such that for each μN ∈ M(ϕ), if the RBR (ϕ, μN) is
graph-LOBIC then ϕ is tops-only.

The proof of this theorem is relegated to Appendix .3.2

Remark 6.3.6 Lower contour monotonicity can be weakened in a straightforward way under tops-onlyness.
Let us say that an RSCF satisfies top lower contour monotonicity if it satisfies lower contour monotonicity only
over (unilateral) deviations to graph-local preferences where the top-ranked alternative is changed. Thus, top
lower contour monotonicity does not impose any restriction for graph-local preferences P and P′ with
P(1) = P′(1). Clearly, under tops-onlyness, lower contour monotonicity will be automatically guaranteed in all
other cases, and hence, top lower contour monotonicity will be equivalent to lower contour monotonicity. Since
under graph-LOBIC, unanimity implies tops-onlyness on a large class of domains, this simple observation is of
great help for practical applications. □

6.4 The case of swap-connected domains

In this section, we consider graphs where two preferences are local if and only if they differ by a swap of
two consecutively ranked alternatives. Formally, two preferences P and P′ are swap-local if
P△P′ = {x, y} for some x, y ∈ A. For two swap-local preferences P and P′, we say x overtakes y from P to
P′ if yPx and xP′y. A domainDi is swap-connected if there is a swap-local path between any two
preferences in it. We use terms like swap-LOBIC, swap-LDSIC, etc. (instead of graph-LOBIC,
graph-LDSIC, etc.) to emphasize the fact that the graph is based on the swap-local structure.
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When graphs are swap-connected, lower contour monotonicity boils down to the following condition
called elementary monotonicity. An RSCF ϕ : DN → ΔA is called elementarymonotonic if for every
i ∈ N, all swap-local preferences Pi, P′i ∈ Di of agent i, and all P−i ∈ D−i, x overtakes some alternative
from Pi to P′i implies ϕx(Pi, P−i) ≤ ϕx(P

′
i, P−i).

Remark 6.4.1 As we have mentioned in Example 6.3.4, under swap-connectedness, Condition (ii) of the
path-richness property (Definition 6.3.3) simplifies to the following condition: if there are two swap-local
preferences having the same top-ranked alternative, say x, where two alternatives, say y and z, are swapped, then
from every preference in the domain there must be a swap-local path to some preference with x as the top-ranked
alternative such that the relative ranking of y and z remains the same along the path.

6.4.1 Equivalenceofswap-LDSICandweakelementarymonotonicityundertops-onlyness

Weak elementary monotonicity ([61]) is a restricted version of elementary monotonicity where the latter
is required to be satisfied only for a particular type of profiles where all the agents agree on the ranking of
alternatives from rank three onward.

Definition 6.4.2 An RSCF ϕ : Dn → ΔA satisfies weak elementary monotonicity if for all i ∈ N, and all
(Pi, P−i) and (P′i, P−i) such that Pi(k) = P′i(k) = Pj(k) for all j ∈ N \ i and all k > 2, we have
ϕPi(1)(Pi, P−i) ≥ ϕPi(1)(P

′
i, P−i).

Our next result says that under tops-onlyness, for almost all priors, weak elementary monotonic and
swap-LOBIC RBRs are swap-LDSIC.

Proposition 6.4.1 For every tops-only and weak elementary monotonic RSCF ϕ : DN → ΔA, there is a set of
prior profilesM(ϕ) with full measure such that for each μN ∈ M(ϕ), the RBR (ϕ, μN) is swap-LOBIC if and
only if ϕ is swap-LDSIC.

The proof of this theorem is relegated to Appendix .3.3.
We obtain the following corollary from Theorem 6.3.5 and Proposition 6.4.1.

Corollary 6.4.1 SupposeD satisfies the path-richness property. For every unanimous and weak elementary
monotonic RSCF ϕ : DN → ΔA, there is a set of prior profilesM(ϕ) with full measure such that for each
μN ∈ M(ϕ), the RBR (ϕ, μN) is swap-LOBIC if and only if ϕ is swap-LDSIC.
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Remark 6.4.3 [80] and [61] consider swap-connected domains without restoration. [80] shows that
swap-DSIC and swap-LDSIC are equivalent on such domains and [61] shows that any unanimous and
tops-only DBR on such domains is weak elementary monotonic and swap-LOBIC with respect to generic priors if
and only if it is swap-LDSIC. [46] show that unanimous and swap-LOBIC with respect to generic priors DBRs
on sparsely-connected domains without restoration are tops-only. [21] provide two conditions, namely, the
interior property and the exterior property on the domain that are jointly sufficient for top-onlyness of
unanimous and DSIC RSCFs. For the special case of swap-localness, Condition (i) in the definition of the
path-richness property (Definition 6.3.3) is the same as the interior property, whereas Condition (ii) of the
path-richness property is weaker than exterior property. In Appendix .4 we provide an example of a domain that
is path-rich but does not satisfy the conditions provided in [80], [61] and [46].

6.5 Application on the unrestricted domain

The domainP(A) containing all preferences over A is called the unrestricted domain (over A). Sincethe
unrestricted domain satisfies the path-richness property, it follows from Theorem 6.3.5 that for almost all
prior profiles, unanimity and swap-LOBIC implies tops-onlyness on the unrestricted domain. The
following theorem further establishes that for almost all prior profiles, swap-LOBIC RBRs are in fact
swap-LDSIC.

Theorem 6.5.1 For every unanimous RSCF ϕ : Pn → ΔA, there is a set of prior profilesM(ϕ) with full
measure such that for each μN ∈ M(ϕ), the RBR (ϕ, μN) is swap-LOBIC if and only if ϕ is swap-LDSIC.

The proof of this theorem is relegated to Appendix .3.4.
[40] shows that every unanimous and DSIC RSCF on the unrestricted domain is random dictatorial.

An RSCF is random dictatorial if it is convex combination of the dictatorial rules, that is, for each agent
there is a fixed probability such that the agent is the dictator with that probability.

Definition 6.5.2 An RSCF ϕ : DN → ΔA is random dictatorial if there exist non-negative real numbers βi;
i ∈ N, with

∑
i∈N βi = 1, such that for all PN ∈ DN and a ∈ A, ϕa(PN) =

∑
{i|Pi(1)=a} βi.

Let us call a domain swap random local-global equivalent (swap-RLGE) if every swap-LDSIC
RSCF on it is DSIC. It follows from [26] that the unrestricted domain is swap-RLGE. Since every OBIC
RBR is swap-LOBIC by definition, it follows from Theorem 6.5.1 that the same result as [40] holds for
almost all prior profiles even if we replace DSIC with the much weaker notion OBIC.

Corollary 6.5.1 Let |A| ≥ 3. For every unanimous RSCF ϕ : Pn → ΔA, there is a set of prior profilesM(ϕ)
with full measure such that for each μN ∈ M(ϕ), the RBR (ϕ, μN) is swap-LOBIC if and only if ϕ is random
dictatorial.
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6.6 Applications on domains satisfying the betweenness property

A betweenness relation βmaps every pair of distinct alternatives (x, y) to a subset of alternatives β(x, y)
including x and y. We only consider betweenness relations β that are rational: for every x ∈ A, there is a
preference Pwith P(1) = x such that for all y, z ∈ A, y ∈ β(x, z) implies yRz. Such a preference P is said
to respect the betweenness relation β. A domainD respects a betweenness relation β if it contains all
preferences respecting β. We denote such a domain byD(β). For a collection of betweenness relations
B = {β1, . . . , βr}, we denote the domain∪r

l=1D(βl) byD(B).
A pair of alternatives (x, y) is adjacent in β if β(x, y) = {x, y}. A betweenness relation β isweakly

consistent if for all x, x̄ ∈ A, there is a sequence (x1 = x, . . . , xt = x̄) of adjacent alternatives in β(x, x̄)
such that for all l < t, we have β(xl+1, x̄) ⊆ β(xl, x̄). A betweenness relation β is strongly consistent if for
all x, x̄ ∈ A, there is a sequence (x1 = x, . . . , xt = x̄) of adjacent alternatives in β(x, x̄) such that for all
l < t and all w ∈ β(xl, x̄), we have β(xl+1,w) ⊆ β(xl, x̄). A collectionB = {β1, . . . , βr} or a betweenness
domainD(B) is strongly/weakly consistent if βl is strongly/weakly consistent for all l = 1, . . . , r.

Two betweenness relations β and β′ are swap-local if for every x ∈ A, there are P ∈ D(β) and
P′ ∈ D(β′) such that P(1) = P′(1) = x and P and P′ are swap-local. A collectionB of betweenness
relations is called swap-connected if for all β, β′ ∈ B, there is a sequence (β1 = β, . . . , βt = β′) inB such
that βl and βl+1 are swap-local for all l < t.

We now define the local structure on a betweenness domainD(B) in a natural way. A preference P′ is
graph-local to another preference P if there is no preference P′′ ∈ D(B) \ {P, P′} that is “more similar” to
P than P′ is to P, that is, there is no P′′ such that for all x, y ∈ A, P|{x,y} = P′|{x,y} implies P|{x,y} = P′′|{x,y}.
Our next corollary follows from Theorem 6.3.5.

Corollary 6.6.1 LetB be a collection of strongly consistent and swap-connected betweenness relations. For
every unanimous RSCF ϕ : D(B)n → ΔA, there is a set of prior profilesM(ϕ) with full measure such that for
each μN ∈ M(ϕ), if the RBR (ϕ, μN) is graph-LOBIC then ϕ is tops-only.

The proof of this corollary is relegated to Appendix .3.5.
A domain is called graph deterministic local-global equivalent (graph-DLGE) if every graph-LDSIC

DSCF on it is DSIC.

Proposition 6.6.1 LetB be a collection of weakly consistent and swap-connected betweenness relations. Then,
D(B) is a graph-DLGE domain.

The proof of this theorem is relegated to Appendix .3.6.
In what follows, we apply our results to explore the structure of LOBIC RBRs on well-known

betweenness domains.
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6.6.1 Single-peaked domains on graphs

[69] introduce the notion of single-peaked domains on graphs and characterize all unanimous and DSIC
RSCFs on these domains. We assume that the set of alternatives is endowed with an (undirected) graph
G = ⟨A, E⟩. For x, x̄ ∈ Awith x ̸= x̄, a path (x1 = x, . . . , xt = x̄) from x to x̄ in G is a sequence of
distinct alternatives such that {xi, xi+1} ∈ E for all i = 1, . . . , t− 1. If it is clear which path is meant, we
also denote it by [x, x̄]. We assume that G is connected, that is, there is a path from x to x̄ for all distinct
x, x̄ ∈ A. If this path is unique for all x, x̄ ∈ A, then G is called a tree. A spanning tree of G is a tree
T = ⟨A, ET⟩where ET ⊆ E. In other words, spanning tree of G is a tree that can be obtained by deleting
some edges of G.

Definition 6.6.1 A preference P is single-peaked on G if there is a spanning tree T of G such that for all distinct
x, y ∈ A with P(1) ̸= y, x ∈ [P(1), y] =⇒ xPy, where [P(1), y] is the path from P(1) to y in T. A domain is
called single-peaked on G if it contains all single-peaked preferences on G .

It follows from the definition that a single-peaked domainDT on a tree T can be represented as a
betweenness domainD(βT)where βT is defined as follows: βT(x, y) = [x, y]. Single-peaked domains on
graphs are well-known for the cases when the graph G is a line or a tree.¹⁴ When the graph G is a line, then
the corresponding domain is known in the literature as the single-peaked domain.¹⁵

We now argue that the betweenness relation βT is strongly consistent. To see that βT is strongly
consistent consider two alternatives x and x̄, and consider the unique path [x, x̄] between them in T. Let
[x, x̄] = (x1 = x, . . . , xt = x̄). By the definition of βT, the path [x, x̄] lies in (in fact, is equal to) βT(x, x̄).
Consider xl ∈ βT(x, x̄) and w ∈ βT(xl, x̄). Since both w and xl+1 lie on the path [xl, x̄], it follows that
[xl+1,w] ⊆ [xl, x̄], and hence βT(xl+1,w) ⊆ βT(xl, x̄). This proves that βT is the strongly consistent (and
hence is also weakly consistent). Since a betweenness relation that generates a single-peaked domain on a
tree is strongly consistent, it follows from the definition of a single-peaked domain on a graph that the
betweenness relation that generates such a domain also satisfies the property. It is shown in [69] (see
Lemma A.1 for details) that for all x ∈ A, the (sub)domain ofDG containing all preferences with x as the
top-ranked alternative is swap-connected, which implies that the betweenness relations generated by the
spanning trees of a graph are swap-connected. Therefore, it follows from Corollary 6.6.1 that for almost all
prior profiles, unanimous and swap-LOBIC RBRs on the single-peaked domain on a graph are tops-only.
Consequently, we obtain from Corollary 6.4.1 that for almost all prior profiles, a unanimous and weak
elementary monotonic RBR on the single-peaked domain on a graph is swap-LOBIC if and only if it is
swap-LDSIC.

¹⁴A tree is called a line if it has exactly two nodes with degree one (such nodes are called leafs).
¹⁵A line graph can be represented by a linear order≺ over the alternatives in an obvious manner: if the edges in a line graph

are {(a1, a2), . . . , (am−1, am)}, then one can take the linear order≺ as a1 ≺ · · · ≺ am.
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It follows from Proposition 6.6.1 that the single-peaked domain on a graph is swap-DLGE. It is shown
in [69] that a DSCF on the single-peaked domain on a graph is unanimous and DSIC if and only if it is a
monotonic collection of parameters based rule (see Theorem 5.5 in [69] for details). Therefore, it follows as a
corollary of Proposition 6.6.1 that for almost all prior profiles, unanimous and weak elementary
monotonic swap-LOBIC RBRs on the single-peaked domain on a graph are monotonic collection of
parameters based rule.¹⁶

[26] shows that the single-peaked domain is swap-RLGE. Moreover, [67] show that every unanimous
and DSIC RSCF on the single-peaked domain is a probabilistic fixed ballot rule (PFBR). Therefore, for
almost all prior profiles, unanimous and weak elementary monotonic swap-LOBIC RBRs on the
single-peaked domain are PFBRs.

In what follows, we provide a discussion on the structure of unanimous and swap-LOBIC RBRs on the
single-peaked domain that do not satisfy weak elementary monotonicity. The structure of such RBRs
depends on the specific prior profile. In the following example, we present an RSCF for three agents that is
unanimous and OBIC with respect to any independent prior profile (μ1, μ2, μ3)where μ2(abc) ≥

1
6 .¹⁷ By

Corollary 6.6.1, we know that such an RSCF will be tops-only. In Table 6.6.1, the preferences in rows and
columns belong to agents 1 and 2, respectively, and the preferences written at the top-left corner of any
table belong to agent 3. Note that agent 3 is the dictator for this RSCF except when she has the preference
abc. When she has the preference abc, the rule violates weak elementary monotonicity over the profiles
(abc, bac, abc) and (bac, bac, abc). Note that except from such violations, the rule behaves like a PFBR.

Table 6.6.1: An RSCF on the single-peaked domain that is unanimous and OBIC with respect to any
independent prior profile (μ1, μ2, μ3) where μ2(abc) ≥

1
6

abc abc bac bca cba

abc (1, 0, 0) (0.4, 0.6, 0) (0.4, 0.6, 0) (0.4, 0.6, 0)

bac (0.5, 0.5, 0) (0.5, 0.5, 0) (0.5, 0.5, 0) (0.5, 0.5, 0)

bca (0.5, 0.5, 0) (0.5, 0.5, 0) (0.5, 0.5, 0) (0.5, 0.5, 0)

cba (0.5, 0.5, 0) (0.5, 0.5, 0) (0.5, 0.5, 0) (0.5, 0.5, 0)

bac abc bac bca cba

abc (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

bac (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

bca (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

cba (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

bca abc bac bca cba

abc (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

bac (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

bca (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

cba (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)

cba abc bac bca cba

abc (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

bac (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

bca (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

cba (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

¹⁶Although [69] provide the said characterization (Theorem 5.5) for RSCFs, we cannot apply it to obtain a characterization
of LOBIC RSCFs as it is not known whether the single-peaked domain on a graph is RLGE or not.

¹⁷The rule is OBIC for dependent priors if: 5μ1(abc, abc) ≥ μ1(bac, abc) + μ1(bca, abc) + μ1(cba, abc), where the first and
the second preference in μ1 denote the preferences of agents 2 and 3, respectively.
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6.6.2 Hybrid domains

[25] introduce the notion of hybrid domains and discuss its importance. These domains satisfy
single-peaked property only over a subset of alternatives. Let us assume that A = {1, . . . ,m}.
Throughout this subsection, we assume that two alternatives k and kwith k < k are arbitrary but fixed.

Definition 6.6.2 A preference P is called (k, k)-hybrid if the following two conditions are satisfied:

(i) For all r, s ∈ A such that either r, s ∈ [1, k] or r, s ∈ [k,m],[
r < s < P(1) or P(1) < s < r

]
⇒ [ sPr ].

(ii)
[
P(1) ∈ [1, k]

]
⇒

[
kPr for all r ∈ (k, k]

]
and[

P(1) ∈ [k,m]
]
⇒

[
kPs for all s ∈ [k, k)

]
.¹⁸

A domain is (k, k)-hybrid if it contains all (k, k)-hybrid preferences. The betweenness relation β that
generates a (k, k)-hybrid domain is as follows: if x < y then β(x, y) = {x, y} ∪

(
(x, y) \ (k, k)

)
and if

y < x then β(x, y) = {x, y} ∪
(
(y, x) \ (k, k)

)
. In other words, an alternative other than x and y lies

between x and y if and only if it lies in the interval [x, y] or [y, x] but not in the interval (k, k).
Using similar logic as we have used in the case of a single-peaked domain on a tree, it follows that the

betweenness relation that generates a hybrid domain is strongly consistent. Therefore, Corollary 6.6.1
implies that for almost all prior profiles, unanimous and swap-LOBIC RBRs on the (k, k)-hybrid domain
are tops-only.

[25] show that every unanimous and DSIC RSCF on the hybrid domain is a (k, k)-restricted
probabilistic fixed ballot rule ((k, k)-RPFBR). Since the hybrid domain is swap-RLGE (see [25] for details),
Corollary 6.4.1 implies that for almost all prior profiles, unanimous and weak elementary monotonic
swap-LOBIC RBRs on the (k, k)-hybrid domain are (k, k)-RPFBR.

6.6.3 Multiple single-peaked domains

The notion of multiple single-peaked domains is introduced in [72]. As the name suggests, these domains
are union of several single-peaked domains. It is worth mentioning that these domains are different from
hybrid domains–neither of them contains the other. For ease of presentation, we denote a single-peaked
domain with respect to a prior ordering≺ over A byD≺.

Definition 6.6.3 LetΩ ⊆ P(A) be a swap-connected collection of prior orderings over A. A domainD is
calledmultiple single-peaked with respect toΩ ifD = ∪≺∈ΩD≺.

¹⁸For two alternatives x and y, by (x, y] we denote the alternatives z such that x < z ≤ y. The interpretation of the notation
[x, y) is similar.
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Since the prior orders in a multiple single-peaked domain are assumed to be swap-connected, it follows
that preferences with the same top-ranked alternative are swap-connected. This implies that the collection
B of betweenness relations that generate a multiple single-peaked domain is swap-connected. Using
similar logic as we have used in the case of a single-peaked domain on a tree, it follows that multiple
single-peaked domains are both weakly and strongly consistent betweenness domains. Therefore,
Corollary 6.6.1 implies that for almost all prior profiles, unanimous and swap-LOBIC RBRs on the
multiple single-peaked domain are tops-only.

Let us assume without loss of generality thatΩ contains the integer ordering< over A = {1, . . . ,m}.
For a class of prior orderingΩ over A, the left cut-off k is defined as the maximum (with respect to<)
alternative with the property that 1 ≺ 2 ≺ · · · ≺ k ≺ x for all x /∈ {1, . . . , k} and all≺∈ Ω. Similarly,
define the right cut-off as the minimum alternative k such that x ≺ k ≺ · · · ≺ m− 1 ≺ m for all
x /∈ {k, . . . ,m} and all≺∈ Ω.

[72] shows that a DSCF is unanimous and DSIC on a multiple single-peaked domain with left cut-off k
and right cut-off k if and only if it is a (k, k)-partly dictatorial generalized median voter scheme
((k, k)-PDGMVS). Moreover, by Proposition 6.6.1, a multiple single-peaked domain is a swap-DLGE
domain. Combining all these results with Corollary Corollary 6.4.1, we obtain that for almost all prior
profiles, unanimous and weak elementary monotonic swap-LOBIC RBRs on the multiple single-peaked
domain are (k, k)-PDGMVS.

6.6.4 Domains under partitioning

The notion of domains under partitioning is introduced in [62]. Such domains arise when a group of
objects are to be partitioned based on the preferences of the agents over different partitions.

Let X be a finite set of objects and let A be the set of all partitions of X.¹⁹ For instance, if X = {x, y, z},
then elements of A are

{
{x}, {y}, {z}

}
,
{
{x}, {y, z}

}
,
{
{y}, {x, z}

}
,
{
{z}, {x, y}

}
, and

{
{x, y, z}

}
.

We say that two objects are together in a partition if they are contained in a common element (subset of
X) of the partition. For instance, objects x and y are together in the partition

{
{z}, {x, y}

}
. If two objects

are not together in a partition, we say they are separated. For three distinct partitions X1,X2,X3 ∈ A, we
say X2 lies between X1 and X3 if for every two objects x and y, x and y are together in both X1 and X3

implies they are also together in X2, and x and y are separate in both X1 and X3 implies they are also
separate in X2. For instance, any of the partitions

{
{x}, {y, z}

}
or

{
{y}, {x, z}

}
or

{
{z}, {x, y}

}
lies

between
{
{x}, {y}, {z}

}
and

{
{x, y, z}

}
. This follows from the fact that no two objects are together (or

separated) in both
{
{x}, {y}, {z}

}
and

{
{x, y, z}

}
, so the betweenness condition is vacuously satisfied.

For another instance, consider the partitions
{
{x, y}, {z}

}
and

{
{x, z}, {y}

}
. The only partition that

¹⁹A partition of a set is a set of subsets of that set that are mutually exclusive and exhaustive.
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lies between these two partitions is
{
{x}, {y}, {z}

}
. To see this, note that y are z are separate in both the

partitions (and no two objects are together in both), and
{
{x}, {y}, {z}

}
is the only partition (other

than the two) in which y and z are separated.

Definition 6.6.4 A domainD is intermediate if for all P ∈ D and every two partitions X1,X2 ∈ A, X1 lies
between P(1) and X2 implies X1PX2.

By definition, intermediate domains are betweenness domains. In Table 6.6.2, we present a preference
in an intermediate domain over three objects, and in Table 6.6.3, we illustrate the localness structure by
providing two local preferences in such a domain. Note that the betweenness relation does not specify the
ordering of {{a, b}, {c}}, {{a, c}, {b}}, and {{a}, {b, c}}when {{a}, {b}, {c}} is the top-ranked
partition. Therefore, there are six preferences with {{a}, {b}, {c}} as the top-ranked partition, P1 is one
of them. It is worth noting that an intermediate domain is not swap-connected. For instance, the
preferences P2 and P3 are graph-local but not swap-local.

Table 6.6.2: An example of a preference in an intermediate domain over three objects

P1

{{a}, {b}, {c}}
{{a, b}, {c}}
{{a, c}, {b}}
{{a}, {b, c}}
{{a, b, c}}

Table 6.6.3: Two graph-local preferences in an intermediate domain over three objects

P2 P3

{{a, b}, {c}} {{a, b, c}}
{{a, b, c}} {{a, b}, {c}}

{{a}, {b}, {c}} {{a, c}, {b}}
{{a, c}, {b}} {{a}, {b, c}}
{{a}, {b, c}} {{a}, {b}, {c}}

Proposition 6.6.2 The intermediate domain is strongly consistent.

The proof of this proposition is relegated to Appendix .3.7.
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By Corollary 6.6.1 and Proposition 6.6.2, it follows that for almost all prior profiles, unanimous and
DSIC RBRs on the intermediate domain are tops-only. This is a major step towards characterizing
unanimous and OBIC RBRs for almost all prior profiles on the intermediate domain. It is worth
mentioning that the structure of unanimous and DSIC RSCFs are yet not explored on the intermediate
domain and it follows from Corollary 6.6.1 that every such rule is tops-only.

It is shown in [62] that a DSCF is unanimous and DSIC on the intermediate domain if and only if it is a
meet aggregator. Moreover, by Proposition 6.6.1 and Proposition 6.6.2, every intermediate domain is
graph-DLGE. Combining these results with Remark 6.3.6, we obtain that for almost all prior profiles,
unanimous and weak elementary monotonic swap-LOBIC RBRs on the intermediate domain are meet
aggregators.

6.7 Applications on non-regular domains

In this section, we consider two important non-regular domains, namely single-dipped and
single-crossing domains. Let the alternatives be A = {1, . . . ,m}.

6.7.1 Single-dipped domains

A preference is single-dipped if there is a “dip” (the worst alternative) of it so that as one moves farther
away from it, preference increases. These domains arise in the context of locating a “public bad” (such as
garbage dump, nuclear plant, wind mill, etc.).

Definition 6.7.1 A preference P is single-dipped if it has a unique minimal element d(P), the dip of P, such
that for all x, y ∈ A, [d(P) ≤ x < y or y < x ≤ d(P)]⇒ yPx. A domain is single-dipped if it contains all
single-dipped preferences.

In what follows, we argue that the single-dipped domain satisfies the path-richness property. Consider
two preferences of the form a · · · xy · · · and a · · · yx · · · . We need to show that from every preference of
the form b · · · , we can reach a preference with a as the top-ranked alternative through a swap-local path
such that the relative ranking of x and y does not change along the path. Since only one of the alternatives
1 andm can be a top-ranked alternative in the single-dipped domain and the domain is symmetric with
respect to 1 andm, it is sufficient to show this for a = 1 and b = m.

First suppose that for some x, y ∈ {2, . . . ,m}, there are preferences of the form 1 · · · xy · · · and
1 · · · yx · · · in the domain. Consider a preference P ≡ m · · · . Suppose xPy. We can construct a
swap-local path to a preference P′ ≡ m · · · y such that no alternative overtakes y along the path. This can
be done by shifting the dip of the preferences to y along the path, which is always possible by the
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definition of the single-dipped domain. Next, we go to a preference P′′ ≡ m 1 · · · y through a swap-local
path such that y remains as the bottom ranked alternative in each preference in the path. Finally, we swap
m and 1 to obtain a preference with 1 as the top-ranked alternative. By the construction of the whole path,
no alternative overtakes y along the path. Since x is ranked above y in P, this, in particular, implies the
relative ranking of x and y does not change along the path. Hence we obtain from Theorem 6.3.5 that
almost all prior profiles, unanimous and swap-LOBIC RBRs on the single-dipped domain are tops-only.

It is shown in [68] that an RSCF on the single-dipped domain is unanimous and DSIC if and only if it
is a random committee rule. By combining this result with Corollary 6.4.1 and the fact that every
swap-LDSIC RSCF on the single-dipped domain is DSIC (see [26] for details) we obtain that for almost
all prior profiles, unanimous and weak elementary monotonic swap-LOBIC RBRs on the single-dipped
domain are random committee rules.

6.7.2 Single-crossing domains

A domain is single-crossing if its preferences can be ordered in a way so that no two alternatives change
their relative ranking more than once along that ordering. Such domains are used in models of income
taxation and redistribution, local public goods and stratification, and coalition formation (see [78] for
details).

Definition 6.7.2 A domainD is single-crossing if there is an ordering ◁ overD such that for all x, y ∈ A and
all P, P′ ∈ D, [x < y, P ◁ P′, and yPx] =⇒ yP′x.

To see that a single-crossing domain satisfies the path-richness property, consider an alternative a and
suppose that there are two swap-local preferences P ≡ a · · · xy · · · and P′ ≡ a · · · yx · · · . Since P and P′

are swap-local, they must be consecutive in the ordering ◁. Assume without loss of generality that P ◁ P′.
This means xP̂y for all P̂with P̂ ◁ P and yP̄x for all P̄with P′ ◁ P̂. Consider any preference P̃. If xP̃y, then
P̃ ◁ P, and hence from P̃ one can go to the preference P following the path given by ◁maintaining the
relative ordering between x and y. On the other hand, if yP̃x, then one can go from P̃ to the preference P′

following the path given by ◁. This shows that a single-crossing domain satisfies the path-richness
property, and hence we obtain from Theorem 6.3.5 that almost all prior profiles, unanimous and
swap-LOBIC RBRs on the single-crossing domain are tops-only.

[73] show that an RSCF on the single-crossing domain is unanimous and DSIC if and only if it is a
tops-restricted probabilistic fixed ballot rules (TPFBRs). Moreover, [26] shows that every swap-LDSIC
RSCF on the single-crossing domain is DSIC. Combining these results with Corollary 6.4.1, we obtain
that for almost all prior profiles, unanimous and weak elementary monotonic swap-LOBIC RBRs on the
single-crossing domain are TPFBRs.
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6.8 Applications onmulti-dimensional separable domains

Multi-dimensional separable domains comprise the main application of our general model.
Multi-dimensional models are used in political economy, as well as in public good location problems
where an alternative represents the location of a political party/public good in the multi-dimensional
political spectrum/Euclidean space (see [14] and [11] for details). Suchmodels are also used to deal with
the problem of forming a committee by taking members from a given set of candidates (see [76]). In a
different context, this model is used in formulating the model of externalities in the context of the debate
on liberalism (see [82] and [85]). In this setting, a social alternative has several components. Each
component represents some aspect of the alternative. There is no dependence between the components,
that is, the set of alternatives is a product set (of the alternatives available in different components).
Separability implies that there is no interaction between the preferences of an agent (over the alternatives)
in different components.

Let K = {1, . . . , k}with k ≥ 2 be the set of components, and for each l ∈ K, let Al be the set of at least
two alternatives available in component l. We assume that the alternative set can be decomposed as a
Cartesian product, i.e., A = A1 × · · · × Ak. Thus, an alternative x is a vector of k elements, which we
denote by (x1, . . . , xk). For l ∈ K, we denote by A−l the set A1 × · · · × Al−1 × Al+1 × · · · × Ak and by x−l

an element of A−l.
A preference P ∈ P(A) is separable if there exists a (unique) marginal preference Pl for each l ∈ K such

that for all x, y ∈ A, we have [xlPlyl for some l ∈ K and x−l = y−l] ⇒ [xPy]. A domain is called separable
if each preference in it is separable.

For a collection of marginal preferences (P1, . . . , Pk), the collection of all separable preferences with
marginals as (P1, . . . , Pk) is denoted by S(P1, . . . , Pk). Similarly, for a collection of marginal domains
(D1, . . . ,Dk), the set of all separable preferences with marginals in (D1, . . . ,Dk) is denoted by
S(D1, . . . ,Dk), that is, S(D1, . . . ,Dk) = ∪(P1,...,Pk)∈(D1,...,Dk)S(P1, . . . , Pk). A separable domain of the
form S(D1, . . . ,Dk) is called a full separable domain. Throughout this subsection, we assume that the
marginal domains are betweenness domains satisfying swap-connectedness and consistency, for instance,
they can be any domain we have discussed so far except the intermediate domain. For
PN ∈ S(D1, . . . ,Dk), we denote its restriction to a component l ∈ K by PlN, that is, PlN = (Pl1, . . . , Pln).
We introduce the local structure in a full separable domain in a natural way.

Example 6.8.1 Consider the situation where the set of possible candidates from which a committee has to be
formed is K = {1, 2}, and for each candidate l ∈ K, the alternatives are Al = {0, 1} where 0 and 1 represents
the corresponding candidate is excluded and included in the committee respectively. Thus, the set of alternatives
A = A1 × A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Consider the preference P = (0, 0)(0, 1)(1, 0)(1, 1). If we swap
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the top-two alternatives in this preference, we obtain the preference P′ = (0, 1)(0, 0)(1, 0)(1, 1), which is no
more separable.

Table 6.8.1: The separable domain in Example 6.8.1

P1 P2 P3 P4 P5 P6 P7 P8
(0, 0) (0, 0) (1, 0) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1)
(0, 1) (1, 0) (0, 0) (1, 1) (1, 0) (0, 1) (1, 1) (0, 0)
(1, 0) (0, 1) (1, 1) (0, 0) (0, 1) (1, 0) (0, 0) (1, 1)
(1, 1) (1, 1) (0, 1) (0, 1) (0, 0) (0, 0) (1, 0) (1, 0)

Figure 6.8.1: Swap-local structure of the domain in Table 6.8.1
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The full separable domain on A is presented in Table 6.8.1 and the swap-local structure is shown in Figure 6.8.1
by means of a graph. Note that the graph is not connected. Thus, not only that swap-localness leads to non
separable preferences, it cannot even connect every separable preference in the domain. This explains why
swap-localness is not compatible with multi-dimensional separable preferences.

Definition 6.8.2 LetDl be swap-connected for all l ∈ K. Two preferences P, P̄ ∈ S(D1, . . . ,Dk) are
sep-local if one of the following two holds:

(i) P△P̄ = {x, y} where x, y are such that |{l | xl ̸= yl}| ≥ 2.

(ii) P△P̄ = {((a−l, xl), (a−l, yl)) | a−l ∈ A−l}, where l ∈ K and xl, yl ∈ Al swap from Pl to P̄l.

Thus, (i) in Definition 6.8.2 says that exactly one pair of alternatives (x, y), that vary over at least two
components, swap from P to P′, and (ii) in Definition 6.8.2 says that multiple pairs of alternatives of the
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form ((a−l, xl), (a−l, yl)), where a−l ∈ A−l, swaps from P to P′. This structure makes the lower contour
monotonicity property simpler: it imposes elementary monotonicity to every pair of swapping
alternatives. We call it sep-monotonicity.

Figure 6.8.2: Sep-local structure of the domain in Table 6.8.1
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In Example 6.8.1 we have shown that a multidimensional separable domain is not connected if we use
swap-localness as the notion of localness. In Figure 6.8.2, we show how the same domain becomes
connected under sep-localness as defined in Definition 6.8.2. We have used dotted lines to emphasize the
edges that are newly added to the graph, that is, are sep-local but not swap-local.

For notational convenience, we denote a domain S(D1, . . . ,Dk) by S in the following results. The
following corollary is obtained from Theorem 6.3.2.

Corollary 6.8.1 For every sep-monotonic RSCF ϕ : Sn → ΔA, there is a set of prior profilesM(ϕ) with full
measure such that for each μN ∈ M(ϕ), the RBR (ϕ, μN) is sep-LOBIC if and only if ϕ is sep-LDSIC.

It is worth mentioning that Corollary 6.8.1 holds as long as the marginal domains are swap-connected.
Our next two propositions are derived by using Theorem 6.3.5. An RSCF ϕ : Sn → ΔA satisfies

component-unanimity if for each component l ∈ K and each PN ∈ Sn such that Pli(1) = xl for all i ∈ N
and some xl ∈ Al, we have ϕl

xl(PN) = 1.

Proposition 6.8.1 For every unanimous RSCF ϕ : Sn → ΔA, there is a set of prior profilesM(ϕ) with full
measure such that for each μN ∈ M(ϕ), if the RBR (ϕ, μN) is sep-LOBIC then ϕ satisfies
component-unanimity.

The proof of this proposition is relegated to Appendix .3.8.
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Proposition 6.8.2 For every unanimous RSCF ϕ : Sn → ΔA, there is a set of prior profilesM(ϕ) with full
measure such that for each μN ∈ M(ϕ), if the RBR (ϕ, μN) is sep-LOBIC then ϕ is tops-only.

The proof of this proposition is relegated to Appendix .3.9.
For random rules, to the best of our knowledge, it is still not known whether sep-LDSIC implies DSIC

or not. However, the same is shown for DSCFs on domains having unrestricted marginals (see [54] for
details). Thus, it follows from Corollary 6.8.1 that for almost all prior profiles, sep-monotonic DSCFs,
OBIC and DSIC are equivalent on such domains.

6.9 Discussion

6.9.1 The case of DBRs

A probability distribution ν on a finite set S is generic if for all subsetsU and V of S, ν(U) = ν(V) implies
U = V. [58] show that on the unrestricted domain, every unanimous DBR that is OBIC with respect to a
generic prior is dictatorial, and [61] shows that under elementary monotonicity, the notions DSIC and
OBIC with respect to generic priors are equivalent. It can be verified that all our results hold for generic
priors if we restrict our attention to DBRs.

6.9.2 Fully correlated priors

Note that the priors we consider in this paper are partially correlated: prior of an agent is independent of
her own preference, while it may be correlated over the preferences of other agents. The natural question
arises here as to what will happen if the prior of an agent depends on her own preferences too. Firstly, our
proof technique for Theorem 6.3.2 will fail, but more importantly, Theorem 6.3.2 will not even hold
anymore. It can be verified from the proof of Proposition 6.3.1 that if an RSCF is graph-LOBIC but not
graph-LDSIC then it must satisfy a system of equations. The proof follows from the fact that the set of
prior profiles that satisfy such a system of equations has Lebesgue measure zero. However, if an agent has
two different priors for two local preferences, then we cannot obtain such a system of equations on a given
prior (what we obtain are equations involving different priors), and consequently, nothing can be
concluded about the Lebesgue measure of such priors. We illustrate this with the following example.

Suppose that there are two agents 1 and 2, and three alternatives a, b, and c. Consider two swap-local
preferences cab and cba of agent 1. Consider the anti-plurality rule with the tie-breaking criteria as
a ≻ b ≻ c. In Table 6.9.1, we present this rule when agent 1 has preferences bac and bca, and 2 has any
preference. It is well-known (and also can be verified from the example) that anti-plurality rule is not
swap-LDSIC. However, it is swap-LOBIC over the mentioned preferences of agent 1 if her prior satisfies
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the following conditions: μ1(bca|cab) + μ1(cab|cab)− μ1(acb|cab)− μ1(cba|cab) ≥ 0 and
μ1(acb|cba) + μ1(cba|cba)− μ1(bca|cba)− μ1(cab|cba) ≥ 0. It is clear that the Lebesgue measure of such
priors is not zero (this is because, as we have argued, the inequalities are imposed on two different priors
μ1(·|cab) and μ1(·|cba)). In a similar way, it follows that if one considers all possible restrictions arising
from all possible swap-local preferences of each agent, the resulting priors for which the rule is LOBIC
can have Lebesgue measure strictly bigger than zero.

Table 6.9.1: A DBR that is not swap-DSIC but is swap-LOBIC with respect to a class of correlated
priors with positive Lebesgue measure

1 2 abc acb bac bca cba cab
cab a a a c a c
cba b c b b c b

6.9.3 Relation with [46]

[46] explore the structure of LOBIC DBRs with respect to generic priors (as defined in [58]) on sparsely
connected domains without restoration. They show that if a unanimous DBR on a sparsely connected
domain without restoration is LOBIC with respect to generic priors, then it will be tops-only. Since they
consider sparsely connected domains without restoration, even the deterministic versions of our results
for multi-dimensional domains and intermediate domains do not follow from their result. Coming to the
unrestricted domain and single-peaked domains, which are sparsely connected domains without
restoration (see [46] for details), Example 1 of [57] already shows that their results do not extend for
RBRs on the unrestricted domain. Below, we provide an example to show that it does not extend for
RBRs on single-peaked domains either.

Table 6.9.2: The RBR in Example 6.9.1

μ1 0.1 0.3 0.44 0.16

μ2 1 2 abc bac bca cba

0.2 abc (1,0,0) (0.5,0.4,0.1) (0.44,0.4,0.16) (0.44,0.56,0)
0.24 bac (0.4,0.3,0.3) (0,1,0) (0,1,0) (0,0.56,0.44)
0.34 bca (0.4,0.3,0.3) (0,1,0) (0,1,0) (0,0.56,0.44)
0.22 cba (0.4,0.3,0.3) (0,0,1) (0,0,1) (0,0,1)
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Example 6.9.1 Consider the RBR in Table 6.9.2.²⁰ The priors of agents 1 and 2, μ1 and μ2 are generic. For
instance, μ1(abc)(= 0.1) is different from μ1(S) for any set of preferences S other than {abc},
μ1(abc) + μ1(bac)(= .4) is different from μ1(S) for any set of preferences S other than {abc, bac}, etc.
Preferences of agents 1 and 2 are depicted in the second column and the second row, and the outcome of the
RSCF, say ϕ, is given by the corresponding cells. Clearly, the rule ϕ is unanimous. To see that ϕ is OBIC with
respect to the given priors, consider, for instance, agent 1. Suppose her sincere preference is abc. If she reports this
preference, she receives interim expected outcome ϕ(abc, μ1) = (0.514, 0.3856, 0.1004). If she misreports, say as
the preference bac, then she receives interim expected outcome ϕ(bac, μ1) = (0.04, 0.8596, 0.1004). Since
ϕ(abc, μ1) stochastically dominates ϕ(bac, μ1) at abc, agent 1 cannot manipulate by misreporting the preference
abc as bac. In a similar fashion, it can be verified that no agent can manipulate ϕ. Now, consider the profiles
(abc, bac) and (abc, bca). Each agent has the same top-ranked alternative in these two profiles. However,
ϕ(abc, bac) ̸= ϕ(abc, bca), which means ϕ is not tops-only.

Appendix

.1 Preliminaries for the proofs

Claim .1.1 For every RSCF ϕ, the Lebesgue measure of the complement ofM(ϕ) is zero.

Proof:[Proof of Claim .1.1] The proof of this claim follows from elementary measure theory; we provide a
sketch of it for the sake of completeness. First note that for a given RSCF ϕ and for all i ∈ N, all
Pi, P′i ∈ Di, and all X ⊊ A, (6.1) is equivalent to an equation of the form:

x1α1 + · · ·+ xkαk = 0, (2)

where α’s are some constants and x’s are non-negative variables summing up to 1 (that is, probabilities).
The question is if x’s are drawn randomly (uniformly) from the space
{(x1, . . . , xk) | xl ≥ 0 for all l and

∑
l xl = 1}, what is the Lebesgue measure of the priors for which (2)

will be satisfied? Clearly, if α’s are all zeros, (2) will be satisfied for all prior profiles. We argue that if α’s are
not all zeros, then (2) can be satisfied only for a set of prior profiles with Lebesgue measure zero, which
will complete the proof by means of the fact that the number of agents, preferences, and alternatives are all
finite. However, this follows from the facts that the solutions of (2) form a hyperplane and that the
Lebesgue measure of a hyperplane is zero (because of dimensional reduction, such as the Lebesgue
measure of a line in a plane is zero, that of a plane in a cube is zero, etc.).²¹ ■

²⁰See Example 6.2.3 for an explanation of the table.
²¹For a detailed argument, suppose that exactly one α, say α1 is not zero. Note that this assumption gives maximum freedom
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.2 Proof of Proposition 6.3.1

Proof: Let (ϕ, μN) be a graph-LOBIC RBR. Since we prove the claim for a set of prior profiles with full
measure, in view of Claim .1.1, we assume that μN is compatible with ϕ. Consider graph-local preferences
Pi, P′i ∈ Di and P−i ∈ D−i. Suppose that B is a block in (Pi, P′i). Let
UB(Pi) = {x ∈ A | xPib for all b ∈ B} be the set of alternatives that are strictly preferred to each element
of B according to Pi. By the definition of a block in (Pi, P′i), it follows that bothUB(Pi) andUB(Pi) ∪ B are
upper contour sets in each of the preferences Pi and P′i . Since Pi and P′i are graph-local, by graph-LOBIC,∑

P−i∈D−i

μi(P−i)ϕUB(Pi)(Pi, P−i) =
∑

P−i∈D−i

μi(P−i)ϕUB(Pi)(P
′
i, P−i) (3)

and ∑
P−i∈D−i

μi(P−i)ϕUB(Pi)∪B(Pi, P−i) =
∑

P−i∈D−i

μi(P−i)ϕUB(Pi)∪B(P
′
i, P−i). (4)

Subtracting (3) from (4), we have∑
P−i∈D−i

μi(P−i)(ϕB(Pi, P−i)− ϕB(P
′
i, P−i)) = 0. (5)

Since μN is compatible with ϕ, this means ϕB(Pi, P−i) = ϕB(P
′
i, P−i) for all P−i ∈ D−i, which completes

the proof. ■

Remark .2.1 It is worth noting from the proof that an RBR (ϕ, μN)must satisfy (5) in order to be
graph-LOBIC. If the RSCF ϕ is not LDSIC, then there will be at least one B such that
ϕB(Pi, P−i)− ϕB(P

′
i, P−i) ̸= 0, in which case (5) can only be satisfied for set of prior profiles with measure zero.

□

.3 Other proofs

In view of Proposition 6.3.1, whenever we prove some statement for a class of RBRs (ϕ, μN)where μN
belongs to a set with full measure, we assume that ϕ satisfies the block preservation property.

for the values of x’s and therebymaximize theLebesguemeasure of the solution spaceof (2). However, thismeans in any solution
x1 must be zero, the measure of which in the solution space is zero.
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.3.1 Proof of Theorem 6.3.2

Proof: If part of the theorem follows from the definitions of graph-LDSIC and graph-LOBIC. We proceed
to prove the only-if part. Let ϕ : DN → ΔA be an RSCF satisfying lower contour monotonicity and the
block preservation property. We show that ϕ is graph-LDSIC. Consider graph-local preferences
Pi, P′i ∈ Di, P−i ∈ D−i, and x ∈ A. We show ϕU(x,Pi)(Pi, P−i) ≥ ϕU(x,Pi)(P

′
i, P−i). Let B1, . . . , Bt be the

blocks in (Pi, P′i) such that for all l < t and all b ∈ Bl and b′ ∈ Bl+1, we have bPib′. Suppose that x ∈ Bl for
some l ∈ {1, . . . , t}.

Let B̂l = {b ∈ Bl | bPix} be the set of alternatives (possibly empty) in Bl that are (strictly) preferred to
x. Note that the set Bl \ B̂l is lower contour set of Pi|Bl . Therefore, by lower contour monotonicity,

ϕBl\B̂l(P
′
i, P−i) ≥ ϕBl\B̂l(Pi, P−i). (6)

Furthermore, by the block preservation property, we have

ϕBl
(P′i, P−i) = ϕBl

(Pi, P−i). (7)

Subtracting (6) from (7), we have

ϕB̂l
(Pi, P−i) ≥ ϕB̂l

(P′i, P−i). (8)

Note thatU(x, Pi) = B1 ∪ · · · ∪ Bl−1 ∪ B̂l. This means
ϕU(x,Pi)(Pi, P−i) = ϕB1∪···∪Bl−1

(Pi, P−i) + ϕB̂l
(Pi, P−i) and

ϕU(x,Pi)(P
′
i, P−i) = ϕB1∪···∪Bl−1

(P′i, P−i) + ϕB̂l
(P′i, P−i). By the block preservation property,

ϕB1∪···∪Bl−1
(Pi, P−i) = ϕB1∪···∪Bl−1

(P′i, P−i), and by (8) , ϕB̂l
(Pi, P−i) ≥ ϕB̂l

(P′i, P−i). Combining these
observations, we have ϕU(x,Pi)(Pi, P−i) ≥ ϕU(x,Pi)(P

′
i, P−i), which completes the proof. ■

.3.2 Proof of Theorem 6.3.5

We use the following lemma in our proof. The idea of the proof of this lemma is closely related to that of
the proof of Lemma 2 in [46]. There are two key differences: first, [46] consider swap-localness whereas
we consider graph-localness, and second, [46] consider deterministic rules whereas we consider random
rules.

Lemma .3.1 Suppose an RSCF ϕ : Dn → ΔA satisfies unanimity and the block preservation property. Let
Pi, P′i ∈ D be graph-local and let P−i ∈ Dn−1 be such that ϕx(Pi, P−i) ̸= ϕx(P

′
i, P−i) for some x ∈ Pi△P′i .

Consider an agent j ̸= i and suppose that there is a graph-local path (P1j = Pj, . . . , Ptj = P̄j) such that for all
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l < t and for every two alternatives a, b ∈ Pi△P′i , there is a common upper contour set U of both Plj and P
l+1
j

such that exactly one of a and b is contained in U. Then ϕx(Pi, P̄j, P−{i,j}) ̸= ϕx(P
′
i, P̄j, P−{i,j}).

Proof:[Proof of Lemma .3.1] Suppose ϕx(Pi, P
l
j, P−{i,j}) ̸= ϕx(P

′
i, Plj, P−{i,j}) for some l < t and some

x ∈ Pi△P′i . It is enough to show that ϕx(Pi, P
l+1
j , P−{i,j}) ̸= ϕx(P

′
i, P

l+1
j , P−{i,j}). Let a and ā be the

alternatives, if exist, that are ranked just above and just below x, respectively, in Plj|Pi△P′i . More formally, let
a ∈ Pi△P′i be such that aPljx and no alternative in Pi△P′i is ranked between a and x, and let ā ∈ Pi△P′i be
such that xPljā and no alternative in Pi△P′i is ranked between x and a. LetU be the common upper
contour set of Plj and P

l+1
j such thatU ∩ {a, x} = a, and Û be the common upper contour set of Plj and

Pl+1
j such that Û∩ {x, ā} = x. Here,Umight be empty and Ûmight be A. Consider the set of alternatives

B = Û \ U. Note that B can be expressed as a union of blocks in (Plj, P
l+1
j ). Therefore, by applying the

block preservation property to each block in B, we obtain ϕB(Pi, P
l
j, P−{i,j}) = ϕB(Pi, P

l+1
j , P−{i,j}) and

ϕB(P
′
i, Plj, P−{i,j}) = ϕB(P

′
i, P

l+1
j , P−{i,j}). Moreover, since each c ∈ B \ x is a block in (Pi, P′i), we have by

the block preservation property, ϕc(Pi, P
l
j, P−{i,j}) = ϕc(P

′
i, Plj, P−{i,j}) and

ϕc(Pi, P
l+1
j , P−{i,j}) = ϕc(P

′
i, P

l+1
j , P−{i,j}) for all c ∈ B \ x. Combining these observations, it follows that

ϕx(Pi, P
l+1
j , P−{i,j}) ̸= ϕx(P

′
i, P

l+1
j , P−{i,j}). ■

Proof:[Proof of Theorem 6.3.5] LetD satisfy the path-richness property (see Definition 6.3.3) and
suppose that ϕ : Dn → ΔA is an RSCF satisfying unanimity and the block preservation property. We
show that ϕ is tops-only. Assume for contradiction that ϕ(Pi, P−i) ̸= ϕ(P′i, P−i) for some Pi, P′i ∈ D with
Pi(1) = P′i(1) and some P−i ∈ Dn−1. By means of Condition (i) of the path-richness property, it is enough
to assume that Pi and P′i are graph-local. Therefore, by the block preservation property, it follows that
ϕx(Pi, P−i) ̸= ϕx(P

′
i, P−i) for some x ∈ Pi△P′i .

Consider j ∈ N \ {i}. By Condition (ii) of the path-richness property, there is a path
(P1j = Pj, . . . , Ptj = P′j)with P′j(1) = Pi(1) such that for all l < t and for every two alternatives
a, b ∈ Pi△P′i , there is a common upper contour setU of both Plj and P

l+1
j such that exactly one of a and b

is contained inU. By applying Lemma .3.1, it follows that ϕx(Pi, P
′
j, P−i) ̸= ϕx(P

′
i, P′j, P−i). By applying

this logic to all agents except i, we construct P′−i ∈ Dn−1 such that P′j(1) = Pi(1) for all j ̸= i and
ϕx(Pi, P

′
−i) ̸= ϕx(P

′
i, P′−i). However, since (Pi, P′−i) and (P′i, P′−i) are unanimous preference profiles with

the top-ranked alternative different from x, ϕx(Pi, P
′
−i) = ϕx(P

′
i, P′−i) = 0, a contradiction. ■

.3.3 Proof of Proposition 6.4.1

The proof of Proposition 6.4.1 is related to the proof of Proposition 5 in [46]. The similarity is that we
both show that under tops-onlyness, weak elementary monotonicity is equivalent to elementary
monotonicity for swap-LOBIC rules. The difference lies in our proof techniques. [46] first show that any
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unanimous and swap-LOBIC (with respect to generic priors) DBR on a sparsely connected domain
without restoration is tops-only. Then they show that under tops-onlyness, weak elementary
monotonicity is equivalent to elementary monotonicity for swap-LOBIC DBRs on a sparsely connected
domain without restoration. On the other hand, we prove our result for tops-only and swap-LOBIC
RBRs on any swap-connected domain. Since we work with arbitrary swap-connected domains, the
techniques we employ in the proof are different from those in [46]. Another difference is that we work
with random rules whereas [46] deal with deterministic rules.
Proof: If part of the theorem follows from the definitions of swap-LDSIC and swap-LOBIC. We proceed
to prove the only-if part. LetD be swap-connected and suppose that ϕ : DN → ΔA is a tops-only RSCF
satisfying weak elementary monotonicity and the block preservation property. We show that ϕ is
swap-LDSIC.

Let Pi and P′i be two swap-local preferences. If Pi(1) = P′i(1), then by tops-onlyness,
ϕ(Pi, P−i) = ϕ(P′i, P−i), and we are done. So, suppose Pi ≡ ab · · · and P′i ≡ ba · · · . Assume for
contradiction that ϕa(Pi, P−i) < ϕa(P

′
i, P−i). By the block preservation property,

ϕ{a,b}(Pi, P−i) = ϕ{a,b}(P
′
i, P−i), and hence our assumption for contradiction means

ϕb(Pi, P−i) > ϕb(P
′
i, P−i). Consider an agent j ∈ N \ i such that Pj(1) /∈ {a, b}. Note that sinceDj is

swap-connected one of the following two cases must hold for Pj: (i) there is a swap-local path from Pj to a
preference P′j ≡ a · · · such that b does not appear as the top-ranked alternative in any preference in the
path, (ii) there is a swap-local path from Pj to a preference P′j ≡ b · · · such that a does not appear as the
top-ranked alternative in any preference in the path.

Suppose Case (i) holds. Let B be the set of alternatives that appear as the top-ranked alternative in
some preference in thementioned path. Consider the outcomes of ϕwhen agent j changes her preferences
along the path, while all other agents keep their preferences unchanged. By tops-onlyness, the outcome
can change only when the top-ranked alternative changes along the path. Moreover, by the definition of
swap-local path, the top-ranked alternative can change along the path only through a swap between two
alternatives in B. By block preservation, this implies that the probability of the two swapping alternatives
can only change in any such situations, and hence, the probability of the alternatives outside Bwill remain
unchanged at the end of the path. Since b /∈ B, this yields ϕb(Pi, Pj, P−{i,j}) = ϕb(Pi, P

′
j, P−{i,j}) and

ϕb(P
′
i, Pj, P−{i,j}) = ϕb(P

′
i, P′j, P−{i,j}). This, together with our assumption for contradiction that

ϕb(Pi, P−i) > ϕb(P
′
i, P−i), implies ϕb(Pi, P

′
j, P−{i,j}) > ϕb(P

′
i, P′j, P−{i,j}). Now, since Pi△P′i = {a, b}, we

have by block preservation, ϕ{a,b}(Pi, P
′
j, P−{i,j}) = ϕ{a,b}(P

′
i, P′j, P−{i,j}). Because

ϕb(Pi, P
′
j, P−{i,j}) > ϕb(P

′
i, P′j, P−{i,j}), this yields ϕa(Pi, P

′
j, P−{i,j}) < ϕa(P

′
i, P′j, P−{i,j}). Using similar

logic, we can conclude for Case (ii) that ϕa(Pi, P
′
j, P−{i,j}) < ϕa(P

′
i, P′j, P−{i,j}).

Note that the preceding argument holds no matter what the preferences of the agents inN \ {i, j} are.
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Therefore, by repeated application of this argument for each agent j ∈ N \ iwith Pj(1) /∈ {a, b}, we
obtain P′−i ∈ D−i of the agents inN \ i such that (i) P′j(1) ∈ {a, b} for each j ∈ N \ i, and (ii)
ϕa(Pi, P

′
−i) < ϕa(P

′
i, P′−i).

We now complete the proof by means of tops-onlyness. If P′j ≡ a · · · then let P′′j = Pi, and if
P′j ≡ b · · · then let P′′j = P′i . By tops-onlyness, ϕ(Pi, P′−i) = ϕ(Pi, P′′−i) and ϕ(P′i, P′−i) = ϕ(P′i, P′′−i), and
hence, ϕa(Pi, P

′′
−i) < ϕa(P

′
i, P′′−i). However, since for each j ∈ N, either P′′j ≡ Pi or P′′j ≡ P′i , this violates

weak elementary monotonicity, a contradiction. ■

.3.4 Proof of Theorem 6.5.1

Pareto optimality is an efficiency property which requires that an alternative will receive zero probability if
there is some other alternative that is preferred to it by each agent. More formally, an RSCF ϕ : DN → ΔA
is Pareto optimal if for all PN ∈ DN and all x ∈ A such that there exists y ∈ Awith yPix for all i ∈ N, we
have ϕx(PN) = 0. Clearly, Pareto optimality is a much stronger requirement than unanimity. However,
our next lemma says that they become equivalent under block preservation property.

Lemma .3.2 Suppose an RSCF ϕ : P(A)n → ΔA satisfies unanimity and the block preservation property.
Then ϕ is Pareto optimal.

Proof:[Proof of Lemma .3.2] Consider PN ∈ P(A)n such that xPiy for all i ∈ N and some x, y ∈ A. We
show that ϕy(PN) = 0. Assume for contradiction ϕy(PN) > 0. Consider i ∈ N. SinceP(A) contains all
preferences over A, there exists a swap-local path (P1i = Pi, . . . , Pti) such that Pti(1) = x and
U(Pi, y) = U(Pli, y) for all l = 1, . . . , t. SinceU(y, P1i) = U(y, P2i ), we have y /∈ P1i△P2i , which implies that
{y} is a singleton block in (P1i , P2i ). By the block preservation property, this implies
ϕy(P

2
i , P−i) = ϕy(Pi, P−i). Continuing in this manner, we reach a preference profile (Pti, P−i) such that

Pti(1) = x and ϕy(P
t
i, P−i) > 0. By applying the same argument to the agents j ∈ N \ {i}we can

construct a preference profile P′N such that P′j(1) = x for all j ∈ N and ϕy(P
′
N) > 0. Since P′j(1) = x for all

j ∈ N, by unanimity we have ϕx(P
′
N) = 1, which contradicts that ϕy(P

′
N) > 0. ■

Proof:[Proof of Theorem 6.5.1] If part of the theorem follows from the definitions of swap-LDSIC and
swap-LOBIC. We proceed to prove the only-if part. Let ϕ : P(A)n → ΔA be a unanimous RSCF
satisfying the block preservation property. We show that ϕ is swap-LDSIC. By Lemma .3.2 and Theorem
6.3.5, ϕ is Pareto optimal and tops-only. To show that ϕ is swap-LDSIC, by Proposition 6.4.1, it is
sufficient to show that ϕ is weak elementary monotonic. Consider swap-local preferences Pi, P̄i ∈ P(A)
such that Pi ≡ ab · · · and P̄i ≡ ba · · · . Assume for contradiction that ϕb(Pi, P−i) > ϕb(P̄i, P−i) for some
P−i ∈ P(A)n−1 such that Pi(k) = P̄i(k) = Pj(k) for all j ∈ N \ i and all k > 2. Let c be the alternative
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such that Pi ≡ abc · · · . Because Pi and P̄i are swap-local, this means P̄i ≡ bac · · · . Consider P1i ∈ P(A)
such that P1i = acb · · · and P1i and Pi are swap-local, that is P1i△Pi = {b, c}. By tops-onlyness of ϕ,
ϕ(P1i , P−i) = ϕ(Pi, P−i). Next, consider P2i ∈ P(A) such that P2i ≡ cab · · · and P2i and P1i are swap-local.
By the block preservation property, ϕb(P

2
i , P−i) = ϕb(P

1
i , P−i). Now, consider P3i ∈ P(A) such that

P3i ≡ cba · · · and P3i and P2i are swap-local. By tops-onlyness of ϕ, ϕ(P3i , P−i) = ϕ(P2i , P−i). Finally,
consider P4i ∈ P(A) such that P4i ≡ bca · · · and P4i and P3i are swap-local. Since bP4i c and bPjc for all
j ∈ N \ i, we have by Pareto optimality, ϕc(P

4
i , P−i) = 0. Moreover, by the block preservation property,

we have ϕb(P
4
i , P−i) = ϕb(P

3
i , P−i) + ϕc(P

3
i , P−i). This, together with the fact that

ϕb(P
3
i , P−i) = ϕb(Pi, P−i), implies ϕb(P

4
i , P−i) ≥ ϕb(Pi, P−i). By our assumption, this means that

ϕb(P
4
i , P−i) > ϕb(P̄i, P−i). Since P4i (1) = P̄i(1)which contradicts that ϕ is tops-only. ■

.3.5 Proof of Corollary 6.6.1

First, we state some important observations about betweenness domains which we will use in the proof.

Observation .3.1 Consider an alternative x ∈ A and letDx(β) be the set of all preferences with top-ranked
alternative x and satisfying the betweenness condition β. Then, the domainDx(β) is swap-connected.

Observation .3.2 Let x, y ∈ A and let P ∈ D(β) be such that P(1) = x and U(y, P) ∪ y = β(x, y). Then,
for all P̂ ≡ x · · · , there is a swap-local path from P̂ to P such that no alternative overtakes y along the path.

Observation .3.3 LetD(β) be strongly consistent. Let x, x̄ ∈ A and let (x1 = x, . . . , xt = x̄) be a sequence
of adjacent alternatives in β(x, x̄) such that for all l < t and all w ∈ β(xl, x̄), we have β(xl+1,w) ⊆ β(xl, x̄).
Then, for all l < t, there exist P ≡ xl · · · and P′ ≡ xl+1 · · · such that β(xl, xt) is an upper contour set in both P
and P′. To see this, consider xl. SinceD(β) is strongly consistent, there is a preference P ∈ D(β) such that
β(xl, xt) is an upper contour set of P. Name the alternatives in β(xl, xt) as w1, . . . ,wu such that
β(xl+1,wr) ⊊ β(xl+1,ws) implies r < s. SinceD(β) is strongly consistent, we have β(xl+1,w) ⊆ β(xl, xt) for
all w ∈ β(xl, xt), and hence there is a preference P′, graph-local to P, satisfying the betweenness relation β such
that P′ ≡ w1w2 · · ·wu−1wu · · · . Therefore, U(wu, P′) ∪ wu = β(xl, xt).

We are now ready to start the proof. To ease the presentation, for a path π, we denote by π−1 the path π in
the reversed direction, that is, if π = (P1, P2, . . . , Pt), then π−1 = (Pt, Pt−1, . . . , P1).
Proof:[Proof of Corollary 6.6.1] LetB be a collection of strongly consistent and swap-connected
betweenness relations. We show thatD(B) satisfies the path-richness property.

First, we showD(B) satisfies Condition (i) of the path-richness property (see Definition 6.3.3).
Consider P and P′ with P(1) = P′(1) that are not graph-local. If P, P′ ∈ D(β) for some β ∈ B, then by
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Observation .3.1 there is a swap-local path from P to P′ such that the top-ranked alternative does not
change along the path. Suppose P ∈ D(β) and P′ ∈ D(β̂) for some β, β̂ ∈ B. Let P(1) = P′(1) = x and
let (β1 = β, . . . , βt = β̂) be a swap-local path. By the swap-connectedness ofB, there are swap-local
preferences P1 ∈ D(β1) and P2 ∈ D(β2)with P1(1) = P2(1) = x. By Observation .3.1, there is a
swap-local path π1 from P to P1 inD(β1) such that x remains at the top-position in all the preferences in
the path. Thus, the path (π1, P2) from P to P2 satisfies Condition (i) of the path-richness property.
Continuing in this manner, we can construct a path from P to P′ that satisfies Condition (i) of the
path-richness property.

Now, we showD(B) satisfies Condition (ii) of the path-richness property, that is, for all P, P′ ∈ D(B)
with P(1) = P′(1), if P and P′ are graph-local, then for each preference P̂ ∈ D(B), there exists a
graph-local path (P1 = P̂, . . . , Pv)with Pv(1) = P(1) such that for all l < v and all distinct a, b ∈ P△P′,
there is a common upper contour setU of both Pl and Pl+1 such that exactly one of a and b is contained in
U. Since P and P′ are graph-local with P(1) = P′(1), by means of the fact that the collectionB is
swap-connected, it follows that P and P′ are swap-local. So assume that P ≡ w · · · yz · · · and
P′ ≡ w · · · zy · · · . Consider P̂ ∈ D(B). Suppose P̂(1) = x and yP̂z. Let P̂ ∈ D(β) for some β ∈ B. We
construct a path from P̂ to a preference with w as the top-ranked alternative maintaining Condition (ii) of
the path-richness property with respect to y and z in two steps. For ease of presentation, we denote P̂ by P1.
Step 1: Since β is strongly consistent, there is a sequence (x1 = x, . . . , xt = y) of adjacent alternatives in
β(x1, xt) such that for all l < t and all u ∈ β(xl, xt), β(xl, xt) ⊇ β(xl+1, u). By Observation .3.2, there is a
path π1 from P1 to a preference P̄1 with P̄1(1) = x1 such thatU(xt, P̄1)∪xt = β(x1, xt) and no alternative
overtakes xt along the path. Consider x2. By Observation .3.3, there is a preference P2 with P2(1) = x2

such that P2 is graph-local to P̄1 and β(x1, xt) is an upper contour set in P2. Since z /∈ β(x1, xt) and β(x1, xt)
is a common upper contour set of P̄1 and P2, Condition (ii) of the path-richness property is satisfied with
respect to xt and z on the path (P̄1, P2). As in the case for P1 and P̄1, by Observation .3.2, we can construct
a swap-local path π2 from P2 to some preference P̄2 with P̄2(1) = x2 such thatU(xt, P̄2) ∪ xt = β(x2, xt)
and no alternative overtakes xt along the path. As in the case for P̄1 and P2, by Observation .3.3, there is a
preference P3 with P3(1) = x3 such that P3 is graph-local to P̄2 and β(x2, xt) is an upper contour set in P3. It
follows that the path (π1, π2, P3) from P1 to the preference P3 satisfies Condition (ii) of the path-richness
property with respect to xt and z. Continuing in this manner, we can construct a path π̂ inD(β) from P̂ to
a preference ˆ̂Pwith ˆ̂P(1) = y such that Condition (ii) of the path-richness property is satisfied along the
path.
Step 2: Consider the preference P ≡ w · · · yz · · · . Let P ∈ D(β̃) for some β̃ ∈ B. Using similar
argument as in Step 1, we can construct a path π̃ inD(β̃) from P to some P̃with P̃(1) = y such that
Condition (ii) of the path-richness property is satisfied with respect to y and z.
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Step 3: Since ˆ̂P(1) = P̃(1) = y and the collectionB is swap-connected, there is a swap-local path π̄ in
D(B) from ˆ̂P to P̃ such that y stays as the top-ranked alternative in each preference of the path. Clearly,
such a path will satisfy Condition (ii) of the path-richness property with respect to y and z.

Consider the path (π̂, π̄, π̃−1) from P̂ to P. By construction, this path satisfies Condition (ii) of the
path-richness property with respect to y and z, which completes the proof. ■

.3.6 Proof of Proposition 6.6.1

Proof: [54] show that a domainD is graph-DLGE if and only if it satisfies the following property: for all
distinct P, P′ ∈ D and all a ∈ A, there exists a path π from P to P′ with no (a, b)-restoration for all
b ∈ L(a, P).Here, a path is said to have no (a, b)-restoration if the relative ranking of a and b is reversed at
most once along π. In what follows, we show thatD(B) satisfies the above-mentioned property whenB
is weakly consistent and swap-connected. Consider two preferences P ∈ D(β) and P′ ∈ D(β′) for some
β, β′ ∈ B and a ∈ A. We show that there is a path π from P to P′ that has no (a, x)-restoration for all
x ∈ L(a, P). By Observation .3.3, from P and P′ there are graph-local paths π̂ and π̄, respectively, to some
preferences P̂ and P̄with a as the top-ranked alternatives such that no alternative overtakes a along each of
the paths. Let π̃ be a swap-local path joining P̂ and P̄ such that a remains the top-ranked alternative
throughout the path. Consider the path (π̂, π̃, π̄−1). No alternative in L(a, P) overtakes a along the path π̂.
So, if there is an (a, x)-restoration for some x ∈ L(a, P) in the path (π̂, π̃, π̄−1), then it must be that the
restoration happens in the path π̄−1. However, then amust overtake x in this path, which means x
overtakes a in the reversed path π̄, which is not possible by the construction of the path π̄. This completes
the proof. ■

.3.7 Proof of Proposition 6.6.2

Proof: Consider X,X ∈ A. We show that there is a sequence (X1 = X, . . . ,Xt = X) of adjacent
alternatives in β(X,X) such that for all l < t and allW ∈ β(Xl,Xt), we have β(Xl+1,W) ⊆ β(Xl,Xt). Let
l < t and considerW ∈ β(Xl,Xt). We show β(Xl+1,W) ⊆ β(Xl,Xt). Take Z /∈ β(Xl,Xt). Because Z does
not lie in β(Xl,Xt), there must be a pair (a, b) of objects such that either (i) a and b are together in both Xl

and Xt, but separate in Z, or (ii) a and b are separate in both Xl and Xt, but together in Z. Because both
Xl+1 andW are in β(Xl,Xt), it must hold that in case (i) a and b are together in both Xl+1 andW, and in
case (ii) they are separate in both Xl+1 andW. In case (i), a and b are together in both Xl+1 andW but they
are separate in Z. Therefore, Z cannot lie in β(Xl+1,W). On the other hand, in case (ii) a and b are
separate in both Xl+1 andW, but they are together in Z. Therefore, Z cannot lie in β(Xl+1,W). This
completes the proof. ■
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.3.8 Proof of Proposition 6.8.1

We first prove some lemmas which we later use in the proof of the proposition. We use the following
notions in the proofs. A preference P is lexicographically separable if there exists a (unique) component
order P0 ∈ P(K) and a (unique) marginal preference Pj ∈ P(Aj) for each j ∈ K such that for all x, y ∈ A,
we have

[
xlPlyl for some l ∈ K and xj = yj for all jP0l

]
⇒ [xPy]. A lexicographically separable

preference P can be uniquely represented by a (k+ 1)-tuple consisting of a lexicographic order P0 over the
components and marginal preferences P1, . . . , Pk.

Lemma .3.3 Let P ∈ S , l ∈ K, and x, y ∈ A be such that xlPlyl and xPy. Then, for every component j ̸= l
there is a sep-local path from P to a lexicographically separable preference P̄ ∈ S having same marginal
preferences as P, and l and j as the lexicographically best and worst components, respectively, such that the x and
y do not swap along the path.

Proof: Assume without loss of generality, l = 1 and j = m. First, make the component 1 lexicographically
best (without changing the marginal preferences of P) by swapping consecutively ranked alternatives
multiple times in the following manner: each time swap a pair of consecutively ranked alternatives a and b
where a1P1b1 and bPa. Note that since x1P1y1 and xPy, x and y are never swapped in this step. Having made
1 the lexicographically best component, the component 2 can be made lexicographically second-best in
the following manner: each time swap a pair of consecutively ranked alternatives a and b in Pwhere
a1 = b1, a2P2b2, and bPa. As we have explained for the case of component 1, alternatives x and ywill not
swap in this process. Continuing in this manner, we can finally obtain a preference P̄with lexicographic
ordering over the components as 1P̄0 · · · P̄0k through a sep-local path along which the alternatives x and y
are not swapped. ■

Lemma .3.4 Let P ∈ S be a preference such that xPy for some alternatives x and y that differ in at least two
components. Then, there is a sep-local path (P1 = P, . . . , Pt = P̂) with P̂(1) = x such that xPly for all l < t.

Proof: Since xPy, there is a component l such that xlPlyl. Assume without loss of generality l = 1.
Consider component 2 . By Lemma .3.3, there is a sep-local path π1 from P to a preference P̄ having
components 1 and 2 as the lexicographically best and the worst components, respectively, such that x and
y do not swap along the path. Since 2 is the lexicographically worst component of P̄, we can construct a
sep-local path from P̄ to a preference ¯̄P such that (i) the marginal preferences in each component other
than 2 and the lexicographic ordering over the components of each preference in the path remains the
same as P̄, and (ii) x2 appears at the top-position of ¯̄P2. Since component 1 is the lexicographically best
component in all these preferences and x1 is preferred to y1 in the marginal preference in component 1 for
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all these preferences, it follows that x remains ranked above y along the path. Repeating this process for all
the components 3, . . . , k, we can construct a path having no swap between x and y from P to a preference
P̃ having (i) the same marginal preference as P in component 1, and (ii) xt at the top-position of the
marginal preference in component t for all t > 1.

Starting from the preference P̃, make component 1 lexicographically worst through a sep-local path
without changing the marginal preferences. Since xl is weakly preferred to yl in each component l in each
preference of this path, xwill remain ranked above y throughout the path. Finally, move x1 to the
top-position in the marginal preference in component 1 thorough a(ny) swap-local path. Since x and y are
different in at least two components, there is a component j lexicographically dominating component 1
(as it is the worst component) such that xj is preferred to yj in its marginal preference. Therefore, xwill be
ranked above y throughout the path. Note that in the final preference, for each component t, xt appears at
the top-position in the marginal preference in component t, and hence the alternative x appears at the
top-position in it. ■

Lemma .3.5 Let ϕ : Sn → ΔA be a unanimous RSCF satisfying the block preservation property. Then
ϕ(PN) = ϕ(P̄N) for all PN, P̄N such that PlN = P̄lN for all l ∈ K.

Proof: It is enough to show that ϕ(Pi, P−i) = ϕ(P̄i, P−i)where Pli = P̄li for all l ∈ K. Since preferences
with the same marginals are swap-connected, we can assume without loss of generality that Pi and P̄i are
swap-local with the swap of alternatives x and y. Assume for contradiction ϕ(Pi, P−i) ̸= ϕ(P̄i, P−i). By
the block preservation property, this means ϕx(Pi, P−i) ̸= ϕx(P̄i, P−i). By Lemma .3.4, for all j ∈ N \ i,
there is a sep-local path (P1j = Pj, . . . , Ptj = P̄j)with P̄j(1) = Pi(1) satisfying the property that for all l < t
there is a common upper contour setU of both Plj and P

l+1
j such that exactly one of x and y is contained in

U.²² By Lemma .3.1, we have ϕx(Pi, P̄j, P−{i,j}) ̸= ϕx(P̄i, P̄j, P−{i,j}). Continuing in this manner, we can
construct P̄−i ∈ Sn−1 such that P̄j(1) = Pi(1) for all j ̸= i and ϕx(Pi, P̄−i) ̸= ϕx(P̄i, P̄−i). However, since
(Pi, P̄−i) and (P̄i, P̄−i) are unanimous preference profiles with the top-ranked alternative different from x,
ϕx(Pi, P̄−i) = ϕx(P̄i, P̄−i) = 0, a contradiction. ■

Proof:[Proof of Proposition 6.8.1] Let ϕ : Sn → ΔA be a unanimous RSCF satisfying the block
preservation property. We show that ϕ satisfies component-unanimity. Consider PN ∈ Sn such that
Pli(1) = xl for all i ∈ N, some l ∈ K, and some xl ∈ Al. Assume for contradiction ϕl

xl(PN) ̸= 1. Without
loss of generality assume l = 1. By Lemma .3.3 and Lemma .3.5, we can assume that PN is a profile of
lexicographically separable preferences with each agent i having the component ordering 1P0i · · · P0i k. Fix
some alternative xk in component k and consider some agent i. As we have argued in the proof of Lemma

²²Note that the statement of Lemma .3.4 is slightly different from what we mention here. Since any two consecutive prefer-
ences in a sep-local pathdifferby swapsofmultiplepairs of consecutively rankedalternatives, these two statements are equivalent.
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.3.4, there is a sep-local path from Pi to a preference P̄i such that each preference in the path has the same
lexicographic ordering over the components as Pi, P̄ki (1) = xk, and P̄li = Pli for all l ̸= k. By construction,
for all x−k ∈ A−k and yk, zk ∈ Ak, each pair of alternatives ((x−k, yk), (x−k, zk)) forms a block for any two
consecutive (sep-local) preferences in the path. This in particular implies ϕ1

x1(P̄i, P−i) = ϕ1
x1(PN).

Continuing this way, we can construct P̄N ∈ Sn such that P̄ki (1) = xk for all i ∈ N and ϕ1
x1(P̄N) = ϕ1

x1(PN).
Let ¯̄PN be the profile of lexicographically separable preferences that has same marginal preferences as P̄

and has lexicographic ordering over the components as 1¯̄P0i . . . ¯̄P0i k¯̄P0i k− 1 for all i ∈ N. That is, the
components k− 1 and k are swapped from P̄0i to ¯̄P0i . By Lemma .3.5, ϕ(¯̄PN) = ϕ(P̄N). Now, by using
similar logic as for component k, we can construct P̂N ∈ Sn such that P̂k−1

i (1) = xk−1 for all i ∈ N and
ϕ1
x1(P̂N) = ϕ1

x1(PN). Continuing in this manner, we can arrive at P̃N ∈ Sn such that P̃ti(1) = xt for all t ∈ K
and all i ∈ N and ϕ1

x1(P̃N) = ϕ1
x1(PN). However, since P̃N is unanimous with P̃i(1) = x for all i ∈ N, we

have ϕx(P̃N) = 1, which in particular implies ϕ1
x1(P̃N) = 1, a contradiction. ■

.3.9 Proof of Proposition 6.8.2

We use the following observation in the proof of Proposition 6.8.2.

Observation .3.4 Let l ∈ K and let πl = (πl(1), . . . , πl(t)) be a swap-local path inDl such that the relative
ordering of two alternatives xl, yl ∈ Al remains the same along the path. Then, for every component ordering
P0 ∈ P(K) having l as the worst component, and for every collection of marginal preferences
(P1, . . . , Pl−1, Pl+1, . . . , Pk) over components other than l, the relative ordering of any two alternatives in the set
{a ∈ A | al ∈ {xl, yl}} will remain the same along the sep-local path
((P0, P1, . . . , Pl−1, πl(1), Pl+1, . . . , Pk), . . . ,

(P0, P1, . . . , Pl−1, πl(t), Pl+1, . . . , Pk)) in the domain S(D1, . . . ,Dk).

Proof: Let ϕ : Sn → ΔA be a unanimous RSCF satisfying the block preservation property. We show that
ϕ is tops-only. Consider PN, P̄N ∈ Sn with Pi(1) = P̄i(1) for all i ∈ N. If PlN = P̄lN for all l ∈ K, then we
are done by Lemma .3.5. It is sufficient to assume that only one agent, say i, changes her marginal
preference to a swap-local preference in exactly one component, say t, and nothing else changes from PN
to P̄N. That is, Pti and P̄ti are swap-local with the swap of some yt and zt, Ptj = P̄tj for all j ∈ N \ i, and
PlN = P̄lN for all l ̸= t. Assume without loss of generality, t = k. Furthermore, in view of Lemma .3.5, let
us assume that all agents have the same component orderingQ0 in both PN and P̄N whereQ0 is given by
1Q0 . . .Q0k. We need to show ϕ(PN) = ϕ(P̄N). Assume for contradiction ϕ(PN) ̸= ϕ(P̄N). Since k is the
worst component in P0i , by block preservation property, this implies ϕ(x−k,yk)(PN) ̸= ϕ(x−k,yk)(P̄N) for
some (x−k, yk).
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Consider Pkj for some j ̸= i. By our assumption on the marginal domains, there is a swap-local path
πk = (πk(1) = Pkj , . . . , πk(t) = P̂kj ) inDk with P̂kj (1) = Pki (1) such that for any two consecutive
preferences in the path there is a common upper contour setU such that exactly one of yk and zk is
contained inU. By Observation .3.4, the path ((P0j , P1j , . . . , P

k−1
j , πk(1)), . . . ,

(P0j , P1j , . . . , P
k−1
j , πk(t))) satisfies the property that for all l < t and all u, v ∈ Pi△P̄i there is a common

upper contour setU of both (P0j , P1j , . . . , P
k−1
j , πk(l)) and (P0j , P1j , . . . , P

k−1
j , πk(l+ 1)) such that exactly

one of u and v is contained inU, and hence by Lemma .3.1, we have
ϕ(x−k,yk)(Pi, P̂j, P−{i,j}) ̸= ϕ(x−k,yk)(P̄i, P̂j, P−{i,j}), where P̂j = (P0j , P1j , . . . , P

k−1
j , P̂kj ). Continuing in this

manner, we can construct P̂−i ∈ Sn−1 such that for all j ∈ N \ i, P̂kj (1) = Pki (1) and P̂lj = Plj for all l ̸= k,
and ϕ(x−k,yk)(Pi, P̂−i) ̸= ϕ(x−k,yk)(P̄i, P̂−i). Note that the preference profiles (Pi, P̂−i) and (P̄i, P̂−i) are
component-unanimous for component k, and hence by Proposition 6.8.1,
ϕk
Pki (1)

(Pi, P̂−i) = ϕk
Pki (1)

(P̄i, P̂−i) = 1. This implies ϕ(x−k,yk)(Pi, P̂−i) = ϕ(x−k,yk)(P̄i, P̂−i) = 0, which
contradicts ϕ(x−k,yk)(Pi, P̂−i) ̸= ϕ(x−k,yk)(P̄i, P̂−i). ■

.4 Connectionwith the related literature

Consider the domain D̂ given in Table .4.1 and consider the localness structure to be swap-localness (see
Figure .4.1). In what follows we show that D̂ satisfies the path-richness property but violates the
conditions provided in [80], [61] and [46].

Table .4.1: The domain D̂ satisfying the path richness property but violating the conditions provided
in [80], [61] and [46]

P1 P2 P3 P4 P5 P6 P7
a b b b b b d
b a c c d d b
c c a d c a a
d d d a a c c

Figure .4.1: The localness structure of the domain D̂

abcd
P1

{a, b}
bacd
P2

{a, c}
bcad
P3

{a, d}
bcda
P4

{c, d}
bdca
P5

{c, a}
bdac
P6

{b, d}
dbac
P7

Path-richness: Condition (i) of the path-richness property (Definition 6.3.3) requires that for each
(unordered) pair {P, P′} such that P(1) = P′(1) and P, P′ are not swap-local, there is a swap-local path
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(P1 = P, . . . , Pt = P′) such that Pl(1) = P(1) for all l = 1, . . . , t. Let us list all pairs of preferences in D̂
such that P(1) = P′(1) and P, P′ are not swap-local: {P2, P4}, {P2, P5}, {P2, P6}, {P3, P5}, {P3, P6} and
{P4, P6}. Below, we present the path required in Condition (i) for each of the mentioned pairs:

• {P2, P4} : (P2, P3, P4)

• {P2, P5} : (P2, P3, P4, P5)

• {P2, P6} : (P2, P3, P4, P5, P6)

• {P3, P5} : (P3, P4, P5)

• {P3, P6} : (P3, P4, P5, P6)

• {P4, P6} : (P4, P5, P6)

Since D̂ is swap-connected, by Remark 6.4.1, Condition (ii) of the path-richness property (Definition
6.3.3) requires the following for every pair of preferences {P, P′} such that P(1) = P′(1) and P, P′ are
swap-local: if P and P′ are swap-local and P△P′ = {x, y} then for each preference P̂ ∈ D̂, there exists a
swap-local path (P1 = P̂, . . . , Pt)with Pt(1) = P(1) such that for all l < t, xPly if and only if xPl+1y. We
list all pairs of preferences in D̂ such that such that P(1) = P′(1) and P, P′ are swap-local: {P2, P3},
{P3, P4}, {P4, P5} and {P5, P6}.

Consider the pair P2, P3. Note that P2(1) = P3(1) = b and P2△P3 = {a, c}. Consider the preference
P̂ = P1. Then the path (P1, P2) satisfies Condition (ii) of the path-richness property as aP1c, aP2c and
P2(1) = b. Consider the preference P̂ = P7. Then the path (P7, P6) satisfies Condition (ii) as aP7c, aP6c
and P6(1) = b. Similarly, Condition (ii) can be verified for other pairs of swap-local preferences.
Connected domains without restoration and sparsely connected domains without restoration:
Now, we proceed to show that D̂ is neither connected without restoration nor sparsely connected without
restoration. It is shown in [46] that sparsely connected domains without restoration is a generalization of
connected domains without restoration. Therefore, it is sufficient to show that D̂ is not sparsely
connected without restoration.

We begin with the definition of sparsely connected domains without restoration.

Definition .4.1 A distinct sequence of swap-local preferences (P1, . . . , Pk) in a domain is without
{x, y}-restoration if there exists no distinct l, l′ ∈ {1, . . . , k− 1} such that Pl△Pl+1 = Pl′△Pl′+1 = {x, y}. A
domainD is sparsely connected without restoration if for any P, P′ ∈ D and any x, y ∈ A such that
{x, y} ∩ τ(D) ̸= ∅, P and P′ are connected without {x, y}-restoration inD, i.e., there exists a sequence of
distinct preferences (P = P1, P2, . . . , Pk = P′) inD without {x, y}-restoration.
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To show that the domain D̂ is not sparsely connected without restoration we need to show that for
some P, P′ ∈ D̂ and alternatives x, y there does not exist any sequence of distinct preferences
(P = P1, P2, . . . , Pk = P′) in D̂ without restoration. Consider the preferences P1 and P6 and the
alternatives a, c. The only swap-local path from P1 to P6 is (P1, P2, P3, P4, P5, P6). Note that
P2△P3 = {a, c} and P5△P6 = {a, c}. This means there is no distinct sequence of swap-local preferences
from P1 to P6 in D̂ that is without {a, c}-restoration. Hence, D̂ is not a sparsely connected domain
without restoration.

Interior and exterior properties: We begin with defining the interior and exterior properties introduced
in [22].

Definition .4.2 A domainD satisfies the interior property if for all a ∈ A and all distinct P, P′ with
P(1) = P′(1) = x there exists a swap-local path (P = P1, . . . , Pk = P′) with Pl(1) = x for all l ≤ k.

We need some terms and terminologies to define the exterior property. Given distinct P, P′ ∈ D,
alternatives x, y ∈ A are isolated in (P, P′) if there exists 1 ≤ k ≤ m− 1 such that

• ∪k
t=1P(t) = ∪k

t=1P′(t),

• either x ∈ ∪k
t=1P(t) and y ∈ A \ ∪k

t=1P(t), or x ∈ A \ ∪k
t=1P(t) and y ∈ ∪k

t=1P(t).

Given distinct P, P′ ∈ D and x, y ∈ A, let (P = P1, . . . , Pk = P′) be a sequence of preferences (not
necessarily swap-local) such that x and y are isolated in (Pl, Pl+1) for all l < k. Then,
(P = P1, . . . , Pk = P′) is referred to as an (x, y)-Is-path connecting P and P′.

Definition .4.3 A domainD satisfies the exterior property if given P, P′ ∈ D with P(1) ̸= P′(1) and x, y ∈ A
with xPy and xP′y, there exists an (x, y)-Is-path connecting P and P′.

Now, we are ready to compare our results with that of [21]. [21] show that if a domain satisfies the
interior and exterior properties then any unanimous and DSIC RSCF on it is tops-only. As we have stated
in Remark 6.4.3, in case of swap-connected domains the Interior Property is same as Condition (i) of the
path-richness property. We show that D̂ does not satisfy the exterior property. Consider the preferences
P2 and P6 and the alternatives a, c. We have aP2c and aP6c. In order to satisfy the exterior property, we
need an (a, c)-Is-path connecting P2 and P6. However, there does not exist any such path connecting P2
and P6 (the only paths connecting P2 and P6 are (P2, P3, P4, P5, P6), (P2, P3, P4, P6), (P2, P3, P5, P6),
(P2, P4, P5, P6), (P2, P3, P6), (P2, P5, P6), (P2, P4, P6) and (P2, P6)).
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7
Myopic-farsighted stability inmany-to-onematching

7.1 Introduction

In matching literature, one of the most sought-after properties of a matching is stability. A matching is
stable if no agent can be immediately better off by blocking the matching by forming/destroying the link
with another agent. However, this notion of stability disregards the ability of agents to anticipate that a
blocking can be countered by subsequent blockings. [42] introduced the notion of indirect dominance to
capture such destabilizing effects. In this paper, we consider a many-to-one two-sided matching model
where one side of the market is myopic and the other side is farsighted. A myopic agent tends to block a
matching when the resulted matching is better for her. Whereas, a farsighted agent takes into account the
possible counter-blocks that may follow after her blocking, and tends to block whenever the final outcome
is better for her. [44] argue that there might be an asymmetry between the two sides of the market in their
ability to foresee potential future changes. This can be further substantiated by [13] who shows that there
are cases where one side of the market has some advantage over the other side of the market. We consider
the college admissions problem where students have to matched to colleges. We assume the agents are
heterogeneous with respect to their ability to foresee the consequences of a block, and thereby categorized
as myopic and farsighted. We study the structure of stable matchings and stable sets in this setting.
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A sequence of matchings constitutes a pairwise myopic-farsighted improving path if the farsighted
agents are better off at the final matching compared to the matching they block and the myopic agents are
better off at the immediate matching obtained after their blocking. A set of matchings forms a pairwise
myopic-farsighted stable set if there is a pairwise myopic-farsighted improving path from every matching
outside the set to it, and there is no pairwise myopic-farsighted improving path between two matchings in
the set. A matching is stable if there is no pairwise myopic-farsighted improving path from the matching
to any other matching. The objective of the paper is to explore the structure of stable sets and stable
matchings in this setting.

A model involving both myopic and farsighted agents is first introduced in [44]. They consider a
two-sided one-to-one (marriage problem) matching problem. In this setting, their main results show that
when all agents are myopic then the pairwise myopic-farsighted stable set coincides with the core and
when all agents are farsighted then the pairwise myopic-farsighted stable set coincides with a singleton
subset of the core (see Theorems 2 and 3 in [44]). Moreover, when women are farsighted (and possibly
some men too) or no men are farsighted, they identify some preference profiles where the women
optimal matching constitutes a single pairwise myopic-farsighted stable set at some preference profiles
(see Theorems 6 and 7 in [44]). [59] consider the many-to-one two-sided matching problem when all
agents are farsighted. They show that a set of matchings constitutes a farsighted stable set if and only if it is
a singleton subset of the strong core. They further show that the farsighted core, can be empty. [53]
consider the roommate market where all agents are farsighted and show that a set of matchings is a
farsighted stable set if and only if it is a singleton set containing a myopic stable matching. Several other
papers consider the same model (with homogeneous agents, that is, either everyone is farsighted or
everyone is myopic) and show that the core constitutes desirable outcomes (see [36], [59], [52], and
[43]). However, to the best of our knowledge, the structure of pairwise myopic-farsighted stable sets and
pairwise myopic-farsighted stable matchings are not known in the literature in matching models involving
both myopic and farsighted agents.

As a standard many-to-one two-sided matching problem, we consider the college admission problem.
We assume that colleges have a common preference over the students. This is a natural assumption in
many situations as preferences over students are derived using their scores in some common exam. When
students are farsighted and colleges are myopic, we provide a characterization of pairwise
myopic-farsighted stable matchings, as well as the pairwise myopic-farsighted stable set at every
preference profile. When students are myopic and colleges are farsighted, we provide a characterization of
pairwise myopic-farsighted stable matchings at every preference profile and provide a class of pairwise
myopic-farsighted stable sets at every preference profile.

The paper is organized as follows. Section 7.2 introduces the notions of matching, pairwise
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myopic-farsighted improving path, pairwise myopic-farsighted stable matching, and pairwise
myopic-farsighted stable set. Section 7.3 presents our results when students are farsighted and colleges are
myopic and Section 7.4 presents our results when students are myopic and colleges are farsighted. Finally,
in Section 7.5 we provide the conclusion of the paper.

7.2 Preliminaries

We consider a two-sided many-to-one matching problem between a set of students S = {s1, . . . , sm} and
a set of colleges C = {c0, c1, . . . , cn}. The set of college contains a specific college c0 which is interpreted
as a dummy college. Each college c ∈ C has a quota qc. We assume that qc0 = ∞whereas 1 ≤ qc < ∞ for
all c ∈ C \ {c0}. We assume WLOG that qci ≤ qcj for all 1 ≤ i < j ≤ n. A matching μ is a mapping from S
to C such that for all c ∈ C, |μ−1(c)| ≤ qc. For a student s, μ(s) = c0 implies that s is not matched with any
college (stays “single”). For simplicity, we denote μ−1(c) by μ(c). We denote byM the set of all matchings.

A strict preference P on a finite set A is linear order on A. The weak part of a strict preference P is
denoted by R. Since P is strict, aRb for a, b ∈ Ameans either aPb or a = b. For B ⊆ A and l ≤ |B|,
rl(B, P) denotes the l-th ranked element of B according to P, that is, rl(B, P) = a if and only if
|{a′ ∈ B | a′Pa}| = l− 1.

Each student s ∈ S has a (strict) preference Ps on C. Colleges in C \ {c0} have a common strict
preference over individual students which we denote by Pc. Without loss of generality, we assume that
s1Pcs2Pc · · · Pcsm−1Pcsm, that is, according to Pc, s1 is the best student, s2 is the second best student, and so
on. The common preference Pc of the colleges over individual students is extended to preference P̃c over
sets of students in the following manner. For two sets of students S′ and S′′, a college always prefers the
one with more students, that is, |S′| > |S′′| implies S′P̃cS′′. If |S′| = |S′′|, then the preference on S′ and S′′

is derived in a lexicographic manner, that is, S′P̃cS′′ if and only if there exists k ≤ |S′|(= |S′′|) such that
rk(S′, Pc)Pcrk(S′′, Pc) and rl(S′, Pc) = rl(S′′, Pc) for all l < k. Note that by definition the empty set of
students is the least preferred set of students for any college. To minimize notations, we use the notation
Pc itself to denote the extension P̃c.

We denote S∪ C \ {c0} byN. Elements ofN are called agents. A collection of preferences of the agents
inN is called a preference profile and is denoted by PN. More formally, PN =

(
(Ps)s∈S, (Pc)c∈C\{c0}

)
.

7.2.1 Pairwise myopic-farsighted stablematchings and pairwise myopic-farsighted stable
sets

The set of agentsN is partitioned into two sets F andM. The agents in F are farsighted who anticipate that
individual and coalitional deviations are countered by subsequent deviations and the agents inM are
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myopic in the sense that they do not anticipate such deviations. For a matching μ and a pair
(s, c) ∈ S× C \ {c0} such that μ(s) ∈ c, we denote by μ − (s, c) the matching μ′ obtained from μ by
removing s from c and keeping everything else unchanged. More formally, μ′ is such that
μ′(s) = c0, μ′(c) = μ(c) \ s, and μ′(i) = μ(i) for all i ∈ N \ {s, c}. For a matching μ, a pair (s, c) ∈ S× C
such that s /∈ μ(c), and a preference Pc, we denote by μ + (s, c) the matching μ′ obtained from μ through
matching s to c by removing the worst student in μ(c) according to Pc in case the quota of cwas already full
at μ and c is myopic (and keeping everything else unchanged). More formally, μ′ = μ + (s, c) is such that

(i) if |μ(c)| < qc, then μ′(c′) = μ(c′) \ s for all c′ ∈ C \ c and μ′(c) = μ(c) ∪ s, and
(ii) if |μ(c)| = qc, then μ′(c′) = μ(c) \ s for all c′ ∈ C \ c and μ′(c) = (μ(c) ∪ s) \ s′ where s′ is the

worst student in μ(c) according to Pc if c is myopic, otherwise s′ is an arbitrary student in μ(c). The
assumption that a myopic college rejects the worst student whenever it is required to reject a student is
consistent with the idea of the best response in game theory. In other words, a myopic agent moves
towards the best possible immediate outcome. In the literature, any profitable deviation of a myopic agent
is considered plausible. We feel, on top of the assumption of myopic type, this ”greedy” deviation
assumption becomes quite restrictive and somewhat impractical.

Whenever we say that a pair (s, c) ∈ S× C blocks a matching μ through μ′, we mean that
μ′ = μ+ (s, c) or μ′ = μ− (s, c). Next, we introduce the notion of pairwise myopic-farsighted improving
path at a profile PN. A pairwise myopic-farsighted improving path from a matching μ to a matching μ′ at a
profile PN is a sequence of matchings μ0, . . . , μL starting from μ and ending at μ′ satisfying the following
properties. For all l ∈ 0, . . . , L− 1, μl+1 is obtained through a block by a pair (s, c) to the matching μl.¹
Depending on whether s and c break their existing match or form a new match from μl to μl+1, at least one
or both members of s and c need to take initiative in the block. If that member is myopic then she prefers
her match in the immediate outcome μl+1, and if she is farsighted then she prefers her match at the final
outcome μ′. More formally:

(i) If μl+1 = μl − (s, c), that is, if the match between s and c is broken from μl to μl+1, then either s or c
takes the initiative. And, as we have just explained, a myopic member takes the initiative if she prefers her
match at the immediate outcome, and a farsighted member takes initiative if she prefers her match at the
final outcome μL.

(ii) If μl+1 = μl + (s, c), that is, a match between s and c is formed from μl to μl+1, then both of s and c
take the initiative (as before, the reason for taking an initiative depends on whether the member is myopic
or farsighted).

We now present the mathematical definition of a pairwise myopic-farsighted improving path path at a

¹It is worth mentioning that if μl+1 = μl + (s, c) and c is myopic, then it must be that either s is preferred to some student in
c at μl or the quota of c is not filled in μl.
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profile PN.

Definition 7.2.1 A pairwise myopic-farsighted improving path from a matching μ ∈ M to a matching
μ′ ∈ M \ {μ} at a profile PN is a sequence of distinct matchings (μ0, . . . , μL) with μ0 = μ and μL = μ′ such
that for every l ∈ {0, . . . , L− 1} either (i) or (ii) holds:

(i) μl+1 = μl − (s, c) for some (s, c) ∈ S× C \ {c0} such that{
μl+1(s)Psμl(s) if s ∈ M
μ′(s)Psμl(s) if s ∈ F.

or {
μl+1(c)Pcμl(c) if c ∈ M
μ′(c)Pcμl(c) if c ∈ F.

(ii) μl+1 = μl + (s, c) for some (s, c) ∈ S× C such that{
μl+1(s)Rsμl(s) if s ∈ M
μ′(s)Rsμl(s) if s ∈ F.

and {
μl+1(c)Rcμl(c) if c ∈ M
μ′(c)Rcμl(c) if c ∈ F.

with at least one of these preferences being strict.

We say a matching μ′ dominates another matching μ at a profile PN if there is a pairwise
myopic-farsighted improving path from μ to μ′ at PN. If a matching μ′ dominates another matching μ at a
profile PN then we write μ PN−→ μ′. The set of all matchings that dominates a matching μ ∈ M at a profile
PN is denoted by h(μ, PN), that is, h(μ, PN) = {μ′ ∈ M \ {μ} | μ′ PN−→ μ}.

Definition 7.2.2 Amatching μ ∈ M is pairwise myopic-farsighted stable at a profile PN if if it is not
dominated by any other matching at PN, that is, h(μ, PN) = ∅.

Definition 7.2.3 A set of matchings V ⊂ M is a pairwise myopic-farsighted stable set at a profile PN if it
satisfies the following two conditions.

(i) Internal stability: For every μ ∈ V, it holds that h(μ, PN) ∩ V = ∅.

(ii) External stability: For every μ ∈ M \ V, it holds that h(μ, PN) ∩ V ̸= ∅.
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7.3 Students are farsighted

In this section, we assume that the students are farsighted and colleges are myopic, and explore the
structure of pairwise myopic-farsighted stable matchings and pairwise myopic-farsighted stable sets.

For k ∈ {1, 2, . . . ,m}, let Ck denote the set of colleges that have quota more than or equal to k, that is,
Ck = {c ∈ C | qc ≥ k}. Recall that by convention, qc0 = ∞ and hence c0 ∈ Ck for all k ∈ {1, . . . ,m}.
The option set of colleges of a student sk is the set of colleges whose quota is at least k. For a preference
profile PN, letM(PN) ⊆ M denote the set of matchings μ where each student gets a college that is
weakly better than any college in her option set, that is, μ(sk)Rskr1(Ck, Psk) for all k ∈ {1, 2, . . . ,m}.
Throughout this section, we assume that the number of students is at least as much as the number of
positions in any college, that ism ≥ qcn .

Our next proposition says that for all PN eachmatching inM(PN) dominates every other matching (be
it inM(PN) or not).

Proposition 7.3.1 Suppose that the students are farsighted and the colleges are myopic. Then, for all
μ̄ ∈ M(PN) and all μ ∈ M \ {μ̄}, we have μ̄ ∈ h(μ, PN) for all PN.

The proof of this proposition is relegated to Appendix .1.
In our next proposition, we show that a particular matching μ∗ inM(PN) is not dominated by any

matching outsideM(PN), that is, there is no pairwise myopic-farsighted improving path from μ∗ to any
matching outsideM(PN). Define μ̄∗ ∈ M(PN) as μ̄∗(sk) = r1(Ck, Psk).

Proposition 7.3.2 Suppose that the students are farsighted and the colleges are myopic and let PN be an
arbitrary preference profile. There is no pairwise myopic-farsighted improving path from μ̄∗ to any matching in
M\M(PN), that is, h(μ̄∗, PN) ⊆ M(PN).

The proof of this proposition is relegated to Appendix .2.
We are now ready to present one of the two main theorems in this section. It says that there exists a

pairwise myopic-farsighted stable matching at a profile PN if and only if the setM(PN) is singleton, and in
that case, the singleton element ofM(PN) is the unique pairwise myopic-farsighted stable matching.

Theorem 7.3.1 Suppose that the students are farsighted and the colleges are myopic and let PN be an arbitrary
profile. IfM(PN) is singleton, then the element inM(PN) is the unique pairwise myopic-farsighted stable
matching at PN. IfM(PN) is not singleton, then there is no pairwise myopic-farsighted stable matching at PN.

The proof of this theorem is relegated to Appendix .3.
Our second main theorem of this section says that a set of matchings is stable at a profile PN if and only

if it is a singleton subset ofM(PN).
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Theorem 7.3.2 Suppose that the students are farsighted and the colleges are myopic and let PN be an arbitrary
preference profile. Then, a set of matchings V is pairwise myopic-farsighted stable set at PN if and only if V is a
singleton subset ofM(PN), that is, V = {μ} for some μ ∈ M(PN).

The proof of this theorem is relegated to Appendix .4.

7.4 Colleges are farsighted

In this section, we assume that colleges are farsighted and students are myopic, and explore the structure
of pairwise myopic-farsighted stable matchings and pairwise myopic-farsighted stable sets in this setting.
Throughout this section, we assume that

∑
c∈C\{c0} qc = m and cPsc0 for all s ∈ S and all c ∈ C \ {c0}.

Let Sc(PN) denote that set of students whose most preferred college is c at the profile PN, that is,
Sc(PN) = {s | r1(Ps) = c}. The option setsOc(PN) of a college c at a profile PN is defined as the set of sets
of students in the following manner:

Oc(PN) = {S′ ⊆ Sc(PN) | |S′| = qc} if |Sc(PN)| ≥ qc, and

Oc(PN) = {Sc(PN) ∪ S | |Sc(PN) ∪ S| = qc} if |Sc(PN)| < qc.

For an intuitive understanding of option set, let us consider the set of students Sc(PN)who rank a college c
as their best at a profile PN. If the number of students in Sc(PN) is more than the quota of c, then the
option set consists of any subset of Sc(PN) containing qc students. On the other hand, if the number of
students in Sc(PN) is less than the quota of c, then the option set of c is any set of qc students containing
the students in Sc(PN).

Consider the set of matchings M̂(PN) such that μ ∈ M̂(PN) if and only if

μ(c)RcS′ for all S′ ∈ Oc(PN) if |Sc(PN)| ≥ qc, and

μ(c)RcS′ for some S′ ∈ Oc(PN) if |Sc(PN)| < qc.

Our next proposition says that at a profile PN each matching in M̂(PN) dominates every other
matching (be it in M̂(PN) or not).

Proposition 7.4.1 Suppose that the colleges are farsighted and the students are myopic. Then, for all
μ̂ ∈ M̂(PN) and all μ ∈ M \ μ̂, we have μ̂ ∈ h(μ, PN) for all PN.

The proof of this proposition is relegated to Appendix .5.
Our next theorem characterizes all situations when a pairwise myopic-farsighted stable matching exists.

It further characterizes the pairwise myopic-farsighted stable matchings whenever that exists.
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Theorem 7.4.1 Suppose that the students are myopic and the colleges are farsighted and let PN be an arbitrary
preference profile.

(i) If |Sc(PN)| = qc for all c ∈ C \ {c0}, then μ∗ ∈ M such that μ∗(s) = r1(Ps) for all s ∈ S is the unique
pairwise myopic-farsighted stable matching at PN.

(ii) Otherwise, there is no pairwise myopic-farsighted stable matching at PN.

The proof of this theorem is relegated to Appendix .6.
The following theorem provides a class of pairwise myopic-farsighted stable sets at an arbitrary

preference profile.

Theorem 7.4.2 Suppose that the colleges are farsighted and the student are myopic and let PN be an arbitrary
preference profile. Then, every singleton subset of M̂(PN) is a myopic-farsighted stable set at PN.

The proof of the theorem is relegated to Appendix .7.

7.5 Conclusion

This paper considers situations where agents are not homogeneous with respect to their ability to foresee
the consequences of a blocking. A myopic agent tends to block when the immediate outcome is better for
her, while a farsighted agent does it when the final outcome after a sequence of possible counter-blocks is
better for her. We provide characterizations of pairwise myopic-farsighted stable matchings and pairwise
myopic-farsighted stable sets when students are farsighted and colleges are myopic. When students are
myopic and colleges are farsighted, we characterize the pairwise myopic-farsighted stable matchings and
provide a class of pairwise myopic-farsighted stable sets at arbitrary profiles.

In this paper, a myopic agent is completely naive to foresee even a single counter-block of her block,
while a farsighted agent can foresee arbitrary number of such counter-blocks. A reasonable model would
be something that does not assume agents to be either of the extremes. In particular, agents can be
assumed to be boundedly rational who can foresee up to a limited number of counter-blocks of their
blocks. The structure of stable matchings and stable sets in such a setting is an important future open
problem in our view.

.1 Proof of Proposition 7.3.1

Proof: Let PN be any arbitrary preference profile. Consider μ̄ ∈ M(PN) and an arbitrary μ ∈ M \ μ̄. We
show that there is a pairwise myopic-farsighted improving path from μ to μ̄. We construct the following
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pairwise myopic-farsighted improving path from μ to μ̄. The path has two parts π1 and π2, and π1 has some
subparts.
Thepart π1: The part π1 has several sub-parts–one for each college. We denote the subpart corresponding
to college c by πc1.
Sub-part πc11 corresponding to college c1: Let {s1, . . . , sqc1} \ μ(c1) be the set of students in the set
{s1, . . . , sqc1}who are not matched with c1 at the matching μ. Let us index these students as s11, . . . , s1k1 such
that s1l−1Pcs1l for all l = 2, . . . , k1. If μ(c1) is empty, then we go to the next subpart. Else, the path
πc11 = (μ11, μ

2
1 , . . . , μ

k1
1 )where μl1 = μl−1

1 + (s1l , c1) for all l = 1, . . . , k1 and μ01 = μ.
·
·
·

Sub-part πcn1 corresponding to college cn: Let {s1, . . . , sqcn} \ μ(c1) be the set of students in the set
{s1, . . . , sqcn}who are not matched with cn at the matching μkn−1

n−1 . Let us index these students as sn1 , . . . , snk1
such that snl−1Pcsnl for all n = 2, . . . , k1. If μ(cn) is empty, then we go to the next subpart. Else, the path
πcn1 = (μ1n, μ

2
n, . . . , μ

kn
n )where μln = μl−1

n + (snl , cn) for all l = 1, . . . , kn and μ0n = μkn−1
n−1 .

Thepart π2: Let {̄s1, · · · , s̄k} be the set of students who are matched to different colleges at μknn and μ̄
such that s̄l−1Pc̄sl for all l = 2, . . . , k. The path π2 = (μn+1, . . . , μn+k)where μn+l = μn+l−1 + (̄sl, μ̄(̄sl)) for
all l = 1, . . . , k and μn = μknn .

Consider the path (μ, π1, π2). Note that a matching may appear along this path more than once
consecutively. Consider the path obtained by replacing a number of successive occurrences of a matching
by exactly one occurrence, and thus making all the matchings appearing along the path distinct. For
notational simplicity, let us denote the obtained path by (μ, π1, π2) itself. We argue that this path is a
pairwise myopic-farsighted improving path from μ to μ̄.
From students’ point of view: Since students are farsighted, it is enough to show that each student is weakly
better of at μ̄ compared to their matching where they block.
Students involved in first part of the path:
Students involved in πc11 : Consider the students s11, . . . , s1k1 who block with c1. These students were matched
with μ(s)when they participated in the blocking. We need to show that μ̄ is weakly better than μ for these
students. As qc1 ≤ qc for all c ∈ C, Ck = {c0, c1, . . . , cn} for all k ∈ {1, . . . , qc1}. Since
{s11, . . . , s1k1} ⊆ {s1, . . . , sqc1}, by the definition of μ̄, these students are matched to their most preferred
colleges at μ̄. Therefore, they must weakly prefer μ̄ compared to their matching where they block.
Students involved in πc21 : Consider the students s12, . . . , s2k2 . As we have argued earlier, the students
s1, . . . , sqc1 are matched with their most preferred college at μ̄, and hence they will be willing to participate
in the blocking. If qc1 = qc2 , then we are done. Suppose qc1 < qc2 . Consider a student s in the set
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{sqc1+1, . . . , sqc2} ∩ {s12, . . . , s2k2}. If the student swas matched with c1 at μ, then by the construction of πc11 ,
she is currently matched to c0. This means her matching when she blocks is some college in c0, c2, . . . , cn.
As qc1 < qc2 and qc2 ≤ qc for all c ∈ C \ c1, Ck = {c0, c2, . . . , cn} for all k ∈ {qc1+1, . . . , qc2}. By the
definition of μ̄, her matching at μ̄ will be weakly better than any of these colleges. Since s is farsighted she
will be willing to participate in the blocking.

Continuing in this manner, it follows that students, who are involved in some blocking along the first
part of the path, will be willing to participate in the blockings.
Students involved in the second part of the path: Note that at the end of the first part of the path, all the
students in {s1, . . . , sqcn} are matched with cn. Recall that for all k = 1, . . . ,m, Ck = {c | qc ≥ k}. Since
qc1 ≤ · · · ≤ qcn , it follows that cn ∈ Ck for all k = 1, . . . , qcn . By the definition of μ̄, the allocation of each
student s ∈ {s1, . . . , sqcn} at μ̄ is weakly better than cn. Therefore, the students in {s1, . . . , sqcn}will be
willing to participate in the respective blockings. Similarly,at the end of the first part of the path, the
students sqcn+1, . . . , sm are matched with c0. Note that c0 ∈ Ck for all k = 1, . . . ,m. Hence, by the
definition of μ̄, the allocation of each student s ∈ {sqcn+1, . . . , sm} at μ̄ is weakly better than c0. Therefore,
the students in {sqcn+1, . . . , sm}will also be willing to participate in the respective blockings.
Colleges’ point of view:
Colleges involved in the first part of the path: Note that each college c in this path block (sequentially) with
the top qc students according to its (common) preference. Thus, the colleges will be better off by these
blockings no matter what their initial matching was. Since colleges are myopic, they will be willing to
participate in these blockings.
Colleges involved in the second part of the path: Note that at the end of the first part of the path, either no
college is matched with any student or only cn is matched to the top qcn students. Since preferences are
lexicographic, all the colleges who are not matched to any student will be willing to participate in any
blocking. If cn is not matched to the top qcn students at μ̄, then this means that some of these students are
matched to some other college at μ̄. By the construction of the path π2, this means that whenever cn
participates in a blocking its quota is not exhausted. Hence, as preferences are lexicographic, cn will be
willing to participate in its respective blockings. ■

.2 Proof of Proposition 7.3.2

Proof: Let PN be an arbitrary preference profile and let μ̄∗ ∈ M(PN) be such that μ̄∗(sk) = r1(Ck, Psk).
Suppose μ ∈ h(μ̄∗, PN). We show μ ∈ M(PN). Assume for contradiction that μ /∈ M(PN), there must
be a student sk such that μ̄∗(sk)Pskμ(sk). Since the allocation of sk is strictly worse in μ than that in μ̄∗, sk
will never participate in any blocking along any pairwise myopic-farsighted improving path that ends in
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the matching μ. Therefore, only way to reach the matching μ through a pairwise myopic-farsighted
improving path is that the college μ̄∗(sk), say c, blocked with some student s at some stage t by removing sk.
Let μt be the matching before this block and (hence) μt+1 is the matching obtained after (s, c) blocks μt.
Since a college prefers to have more students as long as its quota allows, the fact that c removes sk while
blocking with s implies that μc has qc students while doing this blocking. Moreover, since colleges are
myopic, it must be that sPcsk and sk is the worst student in μt(c)while c blocks with s. Since sk is the worst
student and c has qc student at this stage, it must be that μ(c) = {s1, . . . , sk}, which in turn implies that
there is no s /∈ S such that sPcsk, a contradiction. ■

.3 Proof of Theorem 7.3.1

Proof: Let PN be an arbitrary preference profile and let μ̄ ∈ M(PN). By Proposition 7.3.1, we know that
μ̄ ∈ h(μ, PN) for all μ ∈ M \ {μ̄}. This means no matching other than μ̄ can be a pairwise
myopic-farsighted stable matching at PN. Consider the case when PN is such thatM(PN) is singleton. By
Proposition 7.3.2, we have h(μ̄, PN) ⊆ M(PN). This means h(μ̄, PN) = ∅ and hence, μ̄ is the unique
pairwise myopic-farsighted stable matching at PN. Now, consider the case when PN is such thatM(PN) is
not singleton. This means |M(PN)| ≥ 2. Let ¯̄μ ∈ M(PN). By using Proposition 7.3.1 once again, we
know that ¯̄μ ∈ h(μ̄, PN), which means μ̄ cannot be pairwise myopic-farsighted stable either. This
completes the proof. ■

.4 Proof of Theorem 7.3.2

Proof: (“If ” part) Let PN be a preference profile and let V = {μ̄}where μ̄ ∈ M(PN). We show that V is a
pairwise myopic-farsighted stable set at PN. Since V is singleton, internal stability is vacuously satisfied.
For external stability, we need to show that for every matching μ /∈ V, h(μ, PN) ∩ V ̸= ∅. This follows
from Proposition 7.3.1. This completes the proof.

(“Only-if ” part) Let PN be a preference profile and let V ⊆ M be a pairwise myopic-farsighted stable
set at PN. We show V is a singleton element fromM(PN). Let μ ∈ V and μ̄ ∈ V∩M(PN) be two distinct
matchings. By Proposition 7.3.1, μ̄ ∈ h(μ, PN). By internal stability, this implies that both μ and μ̄ cannot
be in V. Therefore, if V ∩M(PN) ̸= ∅, then V is a singleton set containing an element fromM(PN). To
complete the proof, we need to rule out the possibility that V ⊆ M\M(PN). Consider μ̄∗ ∈ M(PN)
such that μ̄∗(sk) = r1(Ck, Psk). As V ⊆ M\M(PN), this means that μ̄∗ ∈ M \ V. By Proposition 7.3.2,
h(μ̄∗, PN) ⊆ M(PN). This means that h(μ̄∗, PN) ∩ V = ∅which violates external stability. ■
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.5 Proof of Proposition 7.4.1

Proof: Let PN be any arbitrary preference profile. Consider a matching μ̂ ∈ M̂(PN) and a matching
μ ∈ M \ μ̂. We construct a pairwise myopic-farsighted improving path from μ to μ̂. The path has two
parts: the first part consists a sequence of pairs (not necessarily distinct) of matchings which we define
one by one, and the second part consists of a sequence of matchings.
Thefirst part of the path: To facilitate the presentation, we denote the top-ranked college of student sl by
ĉl.
(μ0, μ

′
0): Define μ0 = μ′0 = μ.

(μ1, μ
′
1): If s1 ∈ μ(̂c1), then define μ1 = μ′1 = μ0, otherwise define μ1 = μ′1 = μ0 + (s1, ĉ1).

(μ2, μ
′
2): If s2 ∈ μ(̂c2), then define μ2 = μ′1, otherwise define μ2 = μ′1 + (s2, ĉ2). If s2 /∈ μ̂(r1(Ps2)), then

μ′2 = μ2 − (s2, ĉ2), otherwise μ′2 = μ2.
·
·
·

(μm, μ
′
m): If sm ∈ μ(̂cm), then define μm = μ′m−1, otherwise define μm = μ′m−1 + (sm, ĉm). If sm /∈ μ̂(̂cm),

then μ′m = μm − (sm, ĉm), otherwise μ′m = μm.
The second part of the path: Let sl1 , . . . , slk be the set of students who are unmatched at μ′m and matched
at μ̂. Let μm+1 = μ′m + (sl1 , μ̂(sl1)), μm+2 = μm+1 + (sl2 , μ̂(sl2)), . . . , μm+k = μm+(k−1) + (slk , μ̂(slk)) = μ̂.

Consider the path ((μ0, μ
′
0), (μ1, μ

′
1), . . . , (μm, μ

′
m), μm+1, . . . , μm+k). As in the proof of Proposition

7.3.1, a matching may appear along this path more than once consecutively. Consider the path obtained
by replacing a number of successive occurrences of a matching by exactly one occurrence, and thus
making all the matchings appearing along the path distinct. For notational simplicity, let us denote the
obtained path by ((μ0, μ

′
0), (μ1, μ

′
1), . . . , (μm, μ

′
m), μm+1, . . . , μm+k) itself. We argue that the path is

pairwise myopic-farsighted improving path. We consider the two parts of the path separately.
Thefirst part: The first part of the path has two types of blocking for each k ∈ {0, . . . ,m}:
(μ′k−1

(sk ,̂ck)−−−→ μk) and (μ
′
k−1

ĉk−→ μk). We show that each of them constitutes a part of a pairwise
myopic-farsighted improving path.

The block (μ′k−1
(sk ,̂ck)−−−→ μk): If μ

′
k−1 = μk, there is nothing to show. Consider the case when

μk = μ′k−1 + (sk, ĉk). Since sk is myopic, she will be willing to participate in the block. To show that the
college ĉk will be willing to take part in the blocking, we distinguish the following two cases based on the
quota of ĉk.
Case 1. Suppose |Sĉk(PN)| ≥ qĉk . By the construction of the path, if there is a student s in μk−1(̂ck)who is
better than sk according to Pc, then it must be that r1(Ps) = ĉk. Let Ŝ = {s ∈ μk−1(̂ck) | sPcsk} be the set of
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such students. Suppose |Ŝ| = qĉk . By the definition ofOĉk(PN), we have Ŝ ∈ Oĉk(PN), and hence μ̂(̂ck)RcŜ.
Therefore, ĉk will be willing to participate in the blocking. Now suppose |Ŝ| < qĉk . Since r1(Ps) = ĉk for all
s ∈ Ŝ∪ sk, there is an element S̃ inOĉk(PN) that contains Ŝ∪ sk. Because sk /∈ μ′k−1(̂ck), by the definition of
lexicographic preference, S̃Pcμ′k−1(̂ck). Since S̃ ∈ Oĉk(PN), by the definition of μ̂, we have μ̂(̂ck)RcS̃, and
hence μ̂(̂ck)Pcμ′k−1(̂ck). Therefore, ĉk will be willing to participate in the blocking.
Case 2. Suppose |Sĉk(PN)| < qĉk . Let Ŝ be as defined in Case 1. As we have argued for Case 1, each s ∈ Ŝ is
matched with her top-ranked college at μ′k−1. By the definition of μ̂, there exists S̃ ∈ Oĉk(PN) such that
μ̂(̂ck)RcS̃. Since r1(Ps) = ĉk for all s ∈ Ŝ ∪ sk, every element inOĉk(PN) contains Ŝ ∪ sk, which in particular,
means that S̃ contains ... as well. Because sk /∈ μ′k−1(̂ck), by the definition of lexicographic preference,
S̃Pcμ′k−1(̂ck). This combined with the fact that μ̂(̂ck)RcS̃ implies that μ̂(̂ck)Pcμ′k−1(̂ck), and hence ĉk will be
willing to participate in the blocking.
The block (μk

ĉk−→ μ′k): If μk = μ′k, there is nothing to show. So, consider the situation where the college ĉk
removes a student, say sk, at the matching sk, that is, μ′k = μk − (sk, ĉk). To show that ĉk is willing to
participate in the blocking we distinguish the following two cases.
Case 1. Suppose |Sĉk(PN)| ≥ qĉk . By the construction of the path, if there is a student s in μk(̂ck)who is
weakly better than sk according to Pc, then it must be that r1(Ps) = ĉk. Let Ŝ = {s ∈ μk(̂ck) | sRcsk} be the
set of such students. Suppose |Ŝ| = qĉk . As r1(Ps) = ĉk, this means Ŝ ∈ Oĉk(PN). By the definition μ̂,
μ̂(̂ck)RcŜ. Therefore, ĉk will be willing to participate in the blocking Now, suppose |Ŝ| < qĉk . By the
definition ofOĉk(PN), there is S̃ ∈ Oĉk(PN) containing Ŝ. By the definition of μ̂, we have μ̂(̂ck)RcS̃. By the
construction of the path we have Ŝ \ sk ⊆ μ̂(̂ck). By combining the facts that Ŝ ⊆ μk(̂ck), Ŝ \ sk ⊆ μ̂(̂ck),
and sk /∈ μ̂(̂ck), the definition of lexicographic preference implies that there must be some student swith
sPcsk who is not matched with ĉk at μk but matched with ĉk at μ̂. Again by using the definition of
lexicographic preference, this implies that μ̂(̂ck)Pcμk(̂ck), and hence ĉk will be willing to participate in the
blocking.
Case 2. Suppose |Sĉk(PN)| < qĉk . By the construction of the path, if there is a student s in μk(̂ck)who is
weakly better than sk according to Pc, then it must be that r1(Ps) = ĉk. Let Ŝ = {s ∈ μk(̂ck) | sRcsk} be the
set of such students. By the definition ofOĉk(PN), every element inOĉk(PN) contains Ŝ. By the definition
of μ̂, we have μ̂(̂ck)RcS̃ for some S̃ ∈ Oĉk(PN). By the construction of the path we have Ŝ \ sk ⊆ μ̂(̂ck). By
combining the facts that Ŝ ⊆ μk(̂ck), Ŝ \ sk ⊆ μ̂(̂ck), and sk /∈ μ̂(̂ck), the definition of lexicographic
preference implies that there must be some student swith sPcsk who is not matched with ĉk at μk but
matched with ĉk at μ̂. Again by using the definition of lexicographic preference, this implies that
μ̂(̂ck)Pcμk(̂ck), and hence ĉk will be willing to participate in the blocking. ■
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.6 Proof of Theorem 7.4.1

Proof: Proof of (i)Consider a profile PN such that |{s | r1(Ps) = c}| = qc for all c ∈ C \ {c0}. We divide
the proof in two parts: in the first part we show that μ∗ ∈ M such that μ∗(s) = r1(Ps) for all s ∈ S is
pairwise myopic-farsighted stable at PN, and the second part we show that there is no other pairwise
myopic-farsighted stable matching at PN.
μ∗ is pairwise myopic-farsighted stable at PN: Suppose not. Then, there is a pairwise myopic-farsighted
improving path (μ∗ = μ0, . . . , μL = μ′) from μ∗ to some matching μ′, that is, μ′ ∈ h(μ∗, PN). Let
Ŝ = {s | μ∗(s) ̸= μ′(s)} be the set of students whose matchings are different in μ∗ and μ′. Let ŝ be the best
student in the set Ŝ according to Pc. Suppose that ŝwas matched with ĉ at μ∗. Since μ∗(̂c) ̸= μ′(̂c), there
must be a stage t̂when the matching of ĉ is changed for the first time, that is, μ∗(̂c) = μt(̂c) for all t < t̂ and
μ∗(̂c) ̸= μ̂t(̂c). Each student s ∈ μ∗(̂c) is matched with her top-ranked college at stage t̂− 1, so being
myopic, ŝwill not leave ĉ by blocking with some other college (including c0). This implies that ĉ has
participated in a blocking at μt. By the definition of ŝ, we have ŝPcs for all s ∈ μ′(̂c) ∩ Ŝ. Because ŝ ∈ μ∗(̂c)
and ŝ /∈ μ′(̂c), by the definition of lexicographic preference, it must be that μ∗(̂c)Pcμ′(̂c). Since ĉ is
farsighted, this contradicts the fact that ĉ has participated in any block at t̂. Therefore, there is no pairwise
myopic-farsighted improving path from μ∗ to any μ′, and hence μ∗ is pairwise myopic-farsighted stable at
PN.
There is no pairwise myopic-farsighted stable matching other than μ∗ at PN: Assume for contradiction that
μ̃ ̸= μ∗ is pairwise myopic-farsighted stable at PN. Let S̃ = {s | μ′(s) ̸= r1(Ps)} be the set of students who
are not matched with their top-ranked college at μ̃ and let s̃ be the best of them according to Pc, that is, s̃Pcs
for all s ∈ S̃. Suppose c̃ = r1(Ps̃). Since |{s | r1(Ps) = c̃}| = qc̃, there is s̄ ∈ μ̃(̃c) such that r1(Ps̄) ̸= c̃. This
means s̄ ∈ S̃. Since s̃Pcs for all s ∈ S̃, we have s̃Pc̄s. Because s̃Pc̄s, by the definition of lexicographic
preference, we have

(
μ̃(̃c) ∪ {̃s} \ {̄s}

)
Pc μ̃(̃c). This implies that the college s̃ and the student s̃ block μ̃ at

PN through the pairwise myopic-farsighted improving path (μ̃, μ̃ + (̃s, c̃)). This is a contradiction to
pairwise myopic-farsighted stability of μ̃, which completes the proof.

This complete the proof of part (i) of the theorem.
Proof of (ii): Consider a profile PN such that |{s | r1(Ps) = c}| ̸= qc for some c ∈ C \ {c0}. We know
from Proposition 7.3.2 that no matching outside M̂(PN) can be pairwise myopic-farsighted stable at PN.
We show that nomatching in M̂(PN) is pairwise myopic-farsighted stable at PN. Consider a matching μ̂ in
M̂(PN). Since |{s | r1(Ps) = c}| ̸= qc for some c ∈ C \ {c0} and

∑
c∈C\{c0} qc = m, there must be a

college c̃ such that |{s | r1(Ps) = c̃}| > qc̃. Let s̃ ∈ Sc̃(PN) be such that s̃ /∈ μ̂(̃c), and let ŝ ∈ S be the worst
student in μ̂(̃c) according to Pc. Consider the block (̃s, c̃)where c̃ removes ŝ. Since r1(Ps̃) = c̃, being
myopic s̃will be willing to participate in the block. So, if s̃Rĉs, then (μ̂, μ̂ + (̃s, c̃)) is a pairwise
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myopic-farsighted improving path and hence μ̂ is not myopic-farsighted stable. Suppose ŝPc̃s. Consider
the sequence of distinct matchings (μ0 = μ̂, μ1 = μ0 + (̃s, c̃), μ2 = μ1 + (̂s, c̃))where c̃ removes ŝ at
μ0 + (̃s, c̃) and s̃ at μ1 + (̂s, c̃). We show that (μ0, μ1, μ2) is a pairwise myopic-farsighted improving path.
Since r1(Ps̃) = c̃ and ŝ is matched to c0 at μ1 which is her worst ranked college, being myopic both s̃ and ŝ
will be willing to participate in the respective blocks. Note that μ0(̃c) = μ2(̃c), therefore c̃will be willing to
participate in the blocking (̃s, c̃) at μ0. Moreover, since ŝPc̃s, by the definition of lexicographic preferences(
μ1(̃c) ∪ {̃s} \ {̂s}

)
Pc μ1(̃c). Hence, c̃will be willing to participate in the blocking (̂s, c̃) at μ1. This proves

that the path (μ0, μ1, μ2) is pairwise myopic-farsighted improving path, and hence μ̂ is not pairwise
myopic-farsighted stable at PN. ■

.7 Proof of Theorem 7.4.2

Proof: Let PN be a preference profile and let V = {μ̂}where μ̂ ∈ M̂(PN). We show that V is a pairwise
myopic-farsighted stable set at PN. Since V is singleton, internal stability is vacuously satisfied. By
Proposition 7.4.1, μ̂ ∈ h(μ, PN) for all PN ∈ M \ {μ}. Hence, V also satisfies external stability as for all
μ /∈ V, h(μ, PN) ∩ V = μ̂. ■
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