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ABSTRACT
The thesis focuses on the cryptanalysis of private-key ciphers, which are widely used

encryption methods due to their fast encryption/decryption computing ability and low mem-

ory requirements. The thesis covers two different aspects of cryptanalysis: traditional attack

techniques and physical attacks. For physical attacks, the thesis presents a differential fault

attack on the CAESAR scheme NORX with parallelism levels of 2 and 4. By introducing

faults in NORX in parallel mode, the state collides with the internal branches to produce

an all-zero state, which can be replayed despite different nonces and messages. The secret

key of NORX is recovered using secondary faults and faulty tags, utilizing both internal and

classical differentials. The attack strategy is demonstrated using different fault models to

showcase its versatility. Additionally, the thesis identifies and solves a new variant of the

coupon collector problem called the Non-circular Consecutive Coupon Collector Problem,

which estimates the expected faults for the consecutive bit-fault model. The problem is

extended to the circular variant and validated using hypothesis testing. The outcomes of

this study may hold significance and relevance to the research community as a standalone

contribution. Furthermore, the thesis investigates the faulty forgery attack on the decryp-

tion query to recover the state, leading to key recovery, for sponge-based authentication

schemes with internal permutations following the SPN-based GFN structure. The attack

is then extended to retrieve the secret key of any SPN-based sponge/SIV-like schemes. For

traditional cryptanalysis, the thesis analyzes differential cryptanalysis of single or multiple

AND-based NLFSR-like ciphers. Recent trends in automated cryptanalysis involve model-

ing classical cryptanalysis tools as optimization problems to leverage state-of-the-art solvers

and improving existing models to make them more efficient and accurate. The thesis con-

tributes to this trend by devising a general MILP model referred to as “DEEPAND” that

captures the correlations among multiple AND gates in NLFSR-based lightweight block ci-

phers. The DEEPAND model builds upon and generalizes the idea of joint propagation of

differences through AND gates, captured using refined MILP modeling of TinyJAMBU by

Saha et al. in FSE 2020. The proposed model has been applied to TinyJAMBU and KATAN

and can detect correlations that were missed by earlier models. This leads to more accurate

differential bounds for both ciphers.
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1
INTRODUCTION

The words cryptography or cryptology comes from Ancient-Greek words, kryptós meaning

“hidden secret”, graphein meaning “to write” and logia means “to study”. According to

the definition in Oxford Dictionary, cryptography is the art of writing codes, where “code”

refers to a system of symbols–such as a letter, word, text, sound, image, etc.– to convert

information secrcetly into another form. Historically, cryptography was an art that focuses

solely on the problem of secret communication. In the ancient times, constructing good

codes, or breaking the codes mostly relied on creativity and personal skills. But as a

science, the rigorous study of cryptography with time has been radically changed based on

some emerging rich theories. The field of cryptography now encompasses much more than

secret communication, including message authentication, digital signatures, protocols for

exchanging secret keys, authentication protocols, electronic auctions, elections, and digital

cash. Formally, modern cryptography is the science or study of the techniques of secret

writing, especially code and cipher systems to secure digital information, transactions, and

distributed computations. In short, Cryptography is the study of hidden writing, or the

science of encrypting and decrypting message and ciphertexts.

Since the beginning of civilization, in military, diplomatic or otherwise, people have

been felt a need for secrecy in communication. Indeed, the oldest known encrypted text

occurred some 4000 years ago in the Egyptian town of Menet Khufu where the hieroglyphic

inscriptions on the tomb of the nobleman KHNUMHOTEP II were written with a number of

unusual symbols to obscure the meaning of the inscriptions. Also, in the 5-th century BC

the Spartans developed a cryptographic device Scytale based on a transposition cipher

to send and receive secret messages. A development of this cryptography field starts after

1



the two world wars followed by the subsequent cold war. Then the Internet revolution

with the growth of IoT technologies and products, have acted as catalysts in the rapid

development of this field. Cryptography has evolved significantly over the centuries with

several key developments. In the 18𝑡ℎ century, the Vienna Black Chamber was important

for intercepting and decrypting communications for the Habsburg Empire. In the 19𝑡ℎ

century, Auguste Kerckhoffs established principles for cryptographic security, stating that

the security should depend only on the secrecy of the key. In the 20𝑡ℎ century, Gilbert

Vernam introduced The One-Time Pad, a method that provides theoretically unbreakable

encryption, transforming secure communication. In [1], Kahn comprehensively described

the history and development of cryptography. The era of modern cryptography begins with

Claude Shannon, with his pioneering works during world war II on communications security.

The first paper [2] in 1948, titled “A mathematical theory of communication”, while the

second paper, titled “Communication Theory of Secrecy Systems” [3] in 1949. These, in

addition to his other works on information and communication theory established a solid

theoretical basis for cryptography and also for much of cryptanalysis.

Until the 1970s, secure cryptography was largely the preserve of governments and con-

cerned with just confidentiality or privacy in communication. Prior to that time, all useful

encryption algorithms had been private-key ciphers in which the same cryptographic key is

used with the underlying cipher, and both the sender and the recipient must have to kept

it secret. The mid-1970s saw two major public advances. First was the publication of the

draft Data Encryption Standard (DES) in the U.S. Federal Register on 17 March 1975. The

proposed DES cipher was submitted by a research group at IBM, at the invitation of the

National Bureau of Standards (now NIST), in an effort to develop secure electronic commu-

nication facilities for businesses such as banks and other large financial organizations. The

second development, in 1976, the paper “New Directions in Cryptography” [4] by Whitfield

Diffie and Martin Hellman introduced a radically new method of distributing cryptographic

keys (known as the Diffie-Hellman key exchange), which went far toward solving one of the

fundamental problems of cryptography. The article also stimulated the almost immediate

public development of a new class of enciphering algorithms, the asymmetric-key (or the

public-key) algorithms.

Modern cryptographic schemes are classified into two major classes: private-key (or

symmetric-key/secret-key) and public-key (or asymmetric-key). For secret communication,
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the setting in which the communicating parties share some secret information in advance

is known as the private-key setting. In the private-key setting, two parties share some

secret information called a key, and use this key when they wish to communicate secretly

with each other. This shared key serves to distinguish the communicating parties from any

other parties who may be eavesdropping on their communication (which is assumed to take

place over a public channel). This explains why this setting is known as the private-key

setting, where the symmetry lies in the fact that both parties hold the same key which

is used for both encryption and decryption. Whereas in contrast to the setting of public

encryption, different keys are used for encryption and decryption. For private setting,

communicating parties must have some way of initially sharing a key in a secret manner

either by a physical meeting or by sharing the key through a private channel. In fact, most

of the modern communication protocols employ a hybrid of public and private-key schemes,

where the public-key scheme is used to fulfill the initial prerequisites like key exchange,

and then, the actual communication takes place using private-key schemes. While both can

serve same cryptographic goals but the private-key ciphers are always have the advantage

over the public-key ciphers for ease of implementation and high-performance.

Cryptology includes the study and practice of both cryptography and cryptanalysis,

where the later consists of techniques used to analyze a cipher so as to gain some use-

ful information which may help in breaking it. In short, cryptanalysis is the science of

breaking those encrypted messages to recover their meaning. Here, we are concerned about

both making and breaking a cipher which indirectly implies the importance of the design

and their subsequent analysis. The analysis generally proceeds in two directions where one

concentrated on theoretical aspects of the design, called as the classical attacks under the

black-box model assumptions and the other relying on information leaked due to imple-

mentation, called as the physical attacks under the gray-box model assumptions. In the

black-box model, the assumption is made that an adversary only has access to the inputs

and outputs of a cryptographic cipher. In the gray-box model, the attacker has access to a

cipher’s implementation. This makes gray-box models more realistic than black-box models

for applications such as smart cards, embedded systems, and virtualized systems, to which

attackers often have physical access and can thus tamper with the algorithms’ internals.

The implementation attacks were first introduced in the seminal work of Boneh, DeMillo,

and Lipton [5] and Kocher [6]. This started the field of physical attacks on cryptographic
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devices. The introduction of physical attacks moved the field of cryptography from the

black-box model to a gray-box model. These physical attacks can generally be split up into

two classes. The first one is passive where an attacker only observes the operation of the de-

vice. The other ones are active attacks where the attacker actively manipulating the device

operation to extract secret information from it. Active attacks, also called fault attacks,

aim to disturb the device’s operation outside its normal operating conditions so that the

device can output erroneous results. Based on various classical cryptanalytic techniques as

well as fault-based side-channel analysis, this work primarily focuses on scrutinizing some

of the modern-day lightweight and authenticated ciphers.

1.1 Private-key Cryptography
Historically, classical ciphers work on letters rather than on bits using computers and

are much simpler than modern private-key ciphers. Some of the famous classical ciphers

are Caesar cipher, Vigenère cipher, and Vernam cipher (The One-Time Pad). The Caesar

cipher, named after Julius Caesar, is a substitution cipher that shifts each letter of the

plaintext by a fixed number of positions down the alphabet. The Vigenère cipher improves

on this by using a repeating keyword to determine the shift for each letter, making it more

secure against frequency analysis. The Vernam cipher, or The One-Time Pad, where a

plaintext is paired with a random secret key and offers the highest level of security by using

a random key as long as the message itself when the key is used only once and kept secret.

Abstractly, these ciphers have mainly two main components: permutation and mode of

operation. A permutation is a function that has a unique inverse and a mode of operation is

an algorithm that internally uses a permutation to process data of arbitrary size. In today’s

world, most of these classical ciphers can be easily broken using simple computer programs

that analyze the statistical distribution of the alphabet. Although The One-Time Pad is

perfectly secure encrypting large data becomes impractical because it needs a very large

key as the given data size. A perfectly secure ciphers are such ciphers that are provably

secure even against an adversary who has unbounded computational power. Thus, to need

a cipher to be both secure and usable, we need some security notion in a combination of

some security goals with some attack model.

A private key encryption algorithm is a type of encryption that uses a single secret key

for both encryption and decryption. These algorithms can be broadly categorized into two
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classes: stream ciphers and block ciphers. Stream ciphers are designed to encrypt individ-

ual characters or bits of a plaintext message one at a time. The synchronous stream cipher

generates a stream of pseudorandom bits independently of the plaintext and ciphertext

messages from the key and Initialization vector (IV). It then uses the stream to encrypt

the plaintext by making XOR/modular addition with the pseudorandom bits. Additionally,

the self-synchronous stream cipher is another approach that uses several of the previous ci-

phertext bits to compute the keystream bits, such as ciphertext-feedback mode (CFB). The

encryption process is typically performed in real time as the plaintext is being transmitted.

One of the key features of stream ciphers is that they can encrypt plaintext of any size, and

the encryption process is simple and efficient. Block ciphers, on the other hand, encrypt

a fixed-size group of characters (usually 64 or 128 bits) at a time. These ciphers mix the

plaintext block with key bits to produce a ciphertext block of the same size using a fixed

encryption function. The encryption process is typically performed on an entire message

or block of data at once, which makes it more secure than stream ciphers. Block ciphers

are typically slower than stream ciphers when implemented in software due to their more

complex encryption process. However, the assertion that stream ciphers are faster than

block ciphers on hardware platforms may be debatable. For instance, to optimize AES en-

cryption and decryption, modern CPUs include AES-NI (Advanced Encryption Standard

New Instructions), which often outperforms certain efficient stream cipher designs in terms

of speed and efficiency.

In the absence of dedicated hardware instruction sets for block ciphers, stream ciphers

are typically faster and have simpler hardware circuits. This advantage arises because

stream ciphers encrypt data bit by bit, whereas block ciphers encrypt data in predefined

block sizes. This means that stream ciphers can encrypt data in real time, while block

ciphers typically need to wait until they have enough data to form a complete block. How-

ever, when block ciphers are used in Counter (CTR) mode, they can encrypt data similarly

to stream ciphers. CTR mode generates a keystream that can be XORed with plaintext bits

or bytes as they come, allowing for real-time encryption without waiting for a complete

block. In summary, both stream ciphers and block ciphers have their own advantages and

disadvantages. Stream ciphers are simple, efficient, and can encrypt data in real time, while

block ciphers are more secure but slower and more complex. The choice of which one to

use depends on the specific requirements of the application.
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1.1.1 Attack Models
In cryptography, an attacker attempts to break a cipher by analyzing the ciphertext

and trying to obtain the key. This is done by exploiting any vulnerabilities in the encryp-

tion and decryption algorithms, or by accessing the system in various ways. According

to Kerckhoffs’s principle [7], it is generally assumed that the encryption and decryption

algorithms themselves are publicly known and available to all. To evaluate the security of

modern cryptographic algorithms, cryptographers use different attack models to estimate

the capabilities of an attacker. An attack model is a set of assumptions about how the

attackers might interact with a cipher so that modern cryptographic algorithms and their

implementations are analyzed in order to estimate their security. Cryptographers currently

use three common attack models to estimate an attacker’s capabilities.

The traditional security and attacker model is the black-box model, where cryptographic

implementations are considered as a black-box and the attacker can only observe the input

and output behavior. In this model, the attacker’s power is limited to making queries to

the cipher, which is the operation that sends input to some function and gets the output in

return, without exposing the details of that function. There are several different black-box

attack models, ranging from the weakest to the strongest, based on the amount of access

the attacker has to the system.

Ciphertext-only Attack (COA): In this model, the attacker can only see the ciphertext

and cannot perform any encryption or decryption operations.

Known-plaintext Attack (KPA): In this attack model, the attacker can see both the ci-

phertext and the corresponding plaintext, which are assumed to be randomly selected.

The attacker is given a list of plaintext-ciphertext pairs.

Chosen-plaintext Attack (CPA): In this attack model, the attacker can select any plain-

text of their choice and perform encryption on it to observe the resulting ciphertext.

This model is considered stronger than the previous ones, as the attacker can choose

which plaintexts they want to encrypt and observe the corresponding ciphertexts.

Chosen-ciphertext Attack (CCA): This attack model is similar to the chosen-plaintext

attack, where the attacker has the ability to make the system decrypt any ciphertext

of their choice. Mathematically, the ability to choose plaintexts is equivalent to the

6



ability to choose ciphertexts. However, in practice, the latter model is often considered

stronger because it allows the attacker to specifically target the decryption of certain

ciphertexts. CCA2 is an enhanced version of the CCA attack, where the attacker can

not only choose the ciphertext but also adaptively choose the ciphertexts after seeing

the results of the previous decryption queries. CCA2 is considered to be a stronger

attack model than CCA because the attacker has more information and control over

the decryption process. In summary, in the security model of CCA, the adversary is

permitted to submit decryption queries only before the challenge ciphertext query. In

contrast, in the security model of CCA2, the adversary can submit decryption queries

both before and after the challenge ciphertext query.

The black-box model, which only allows the attacker to observe the input and output of

the encryption and decryption algorithms, is being replaced by the gray-box model. This

is due to the increasing use of embedded systems for security purposes on a large scale.

The gray-box model includes the limitations of the black-box model but also assumes that

the attacker has limited access to the internal workings of the implementation. Gray-box

attacks, such as side-channel and fault attacks, focus on the implementation rather than

the algorithm, making them more realistic for applications such as smart cards, embedded

systems, and virtualized systems, where attackers often have physical access and can tamper

with the internals of the algorithm. Based on this partial knowledge, there are several types

of attacks that can be launched against a system:

Side-channel attacks (SCA): These attacks exploit information about the system that

can be obtained through observing its behavior during operation, such as power

consumption or timing information.

Implementation attacks: These attacks exploit specific details about the way the sys-

tem is implemented, such as the specific algorithm used for encryption or the specific

hardware used to implement the system.

Key-recovery attacks: These attacks aim to recover the secret key used for encryption.

It is important to note that in a gray-box attack model, the attacker may have different

levels of access and knowledge about the system and the attack can be tailored accordingly.
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The white-box model is a relatively new addition to attack models in cryptography,

focusing on software implementations of cryptographic algorithms. In 2002, Chow et al. [8,

9] introduced the white-box model with initial implementations of white-box AES and DES.

In this model, the attacker is assumed to have complete control over the implementation and

the execution environment, giving them virtually unrestricted capabilities. The security of

implementation under the white-box model is assessed by its ability to maintain security

levels similar to those in the black-box model, meaning that even a white-box attacker should

not gain any additional advantage over black-box attackers. This model is particularly

relevant for software implementations of cryptographic algorithms, where the attacker may

have full access to the implementation and the execution environment, and the challenge is

to make the algorithm secure under such conditions.

The ideal white-box implementation for cryptographic algorithms would involve a single

look-up table mapping plaintexts to ciphertexts, including the hidden secret key. However,

such a solution is impractical for modern ciphers with large block and key sizes, like 128 bits

or more, due to security and efficiency challenges. Instead, a more practical approach is to

use multiple smaller look-up tables and apply secret and invertible encodings to each table

individually. This method aims to protect and conceal the secret key material by transform-

ing the cryptographic primitive into a functionally equivalent implementation through these

smaller tables and encodings. Despite this approach’s practicality for modern ciphers, many

table-based white-box implementations have been shown to fall short of required security

levels, as discussed in the literature [10, 11].

1.1.2 Security Goals
Indistinguishability (IND) is an important security goal in cryptography as it helps to

protect the confidentiality of the plaintext. When a plaintext is encrypted, the resulting

ciphertext should be indistinguishable from random noise, making it impossible for an at-

tacker to determine the content of the plaintext by analyzing the ciphertext. This is known

as pseudo-random permutation, and it is achieved by using a key to encrypt the plaintext

in such a way that the resulting ciphertext is random and unique for every plaintext. This

property of indistinguishability is often tested through the IND-CPA experiment, where

the attacker selects two plaintexts and is then provided with the ciphertext of one of them,

chosen at random. The goal of the attacker is to determine which plaintext was encrypted.
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If the attacker is unable to distinguish the encryption of chosen plaintexts, the encryption

scheme is said to be indistinguishable. In summary, indistinguishability is a security goal

that ensures that the ciphertexts produced by a cipher look like random strings and an

attacker should not be able to determine the content of the plaintext by analyzing the

ciphertext, which is an important property for maintaining the confidentiality of the plain-

text.

Non-malleability (NM) is a security goal that ensures that it is impossible for an attacker

to create another ciphertext that corresponds to a plaintext that is related to the original

plaintext in a meaningful way. This means that an attacker should not be able to alter

the ciphertext in a way that would change the original message in a meaningful way. This

is important for maintaining the integrity of the message, as it ensures that the message

received is the same as the one sent and that it has not been modified by any unauthorized

parties. One example of a malleable encryption scheme is The One-Time Pad, where an

attacker can XOR the ciphertext with any value and still obtain a meaningful plaintext.

This is why The One-Time Pad is not considered a secure encryption scheme. In the

NM-CCA experiment, an encryption scheme is tested for its non-malleability by evaluating

whether an adversary can manipulate ciphertexts to infer information about the encrypted

plaintext. The game involves the adversary submitting decryption queries for various ci-

phertexts, including one chosen at random, and then attempting to forge a new ciphertext.

The challenge is to determine if the adversary can produce a related ciphertext that reveals

or manipulates the plaintext of the original ciphertext without being able to distinguish it

from a random guess. The encryption scheme is considered non-malleable if the adversary’s

success probability in distinguishing the encrypted plaintext remains negligible. In sum-

mary, Non-malleability is a security goal that ensures that it is impossible for an attacker

to create another ciphertext that corresponds to a plaintext that is related to the original

plaintext in a meaningful way and is important for maintaining the integrity of the message,

as it ensures that the message received is the same as the one sent.

Both Indistinguishability and Non-malleability are important security goals in cryptog-

raphy as they protect the confidentiality and integrity of the message respectively. Cryp-

tographic algorithms are designed to achieve both these properties to provide a secure and

reliable means of communication.
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1.1.3 Security Notion
To measure the security of a cipher, security goals are combined with an attack model to

define a security notion as GOAL-MODEL. Under the black-box attack model, the attacker

is assumed to have no knowledge about the system except for the ability to interact with it

through a public interface, such as an encryption or decryption oracle. The security notions

that are typically considered under this model include:

Indistinguishability under chosen-plaintext attack (IND-CPA): This notion requires that

an attacker should not be able to distinguish the encryptions of two different plain-

texts, even if they are allowed to choose the plaintexts and observe the corresponding

ciphertexts.

Indistinguishability under chosen-ciphertext attack (IND-CCA): This notion requires

that an attacker should not be able to distinguish the encryptions of two different

plaintexts, even if they are allowed to choose the ciphertexts and request for their

corresponding plaintexts in the decryption queries.

Non-malleability under chosen-ciphertext attack (NM-CCA): This notion requires that

an attacker should not be able to modify a ciphertext in a way that the resulting

plaintext can be related to the original plaintext.

Also, the security notions that are typically considered under a gray-box attack model

include:

Indistinguishability under chosen-plaintext attack (IND-CPA) (or chosen-ciphertext attack

(IND-CCA)): For IND-CPA, the attacker cannot distinguish the encryptions of two

different plaintexts, even if they are allowed to choose the plaintexts and observe the

corresponding ciphertexts. Similarly, for IND-CCA, the attacker cannot distinguish

the encryptions of two different plaintexts even if they can choose the ciphertexts and

obtain the decryption of other ciphertexts.

Non-malleability under chosen-ciphertext attack (NM-CCA): The attacker should not

be able to modify a ciphertext in a way that the resulting plaintext can be related

to the original plaintext. This ensures that the ciphertext cannot be altered without

detection.
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Key-privacy (KP-CPA) or Key-privacy under chosen-ciphertext attack (KP-CCA): This

notion requires that an attacker should not be able to learn the secret key used for

encryption

Key-indistinguishability (KI-CPA) or Key-indistinguishability under chosen-ciphertext at-

tack (KI-CCA): This notion requires that an attacker should not be able to distinguish

the secret key used for encryption from a random key.

The security notions typically considered under a white-box attack model include:

Code Obfuscation: Making the code difficult to understand and reverse-engineer, even

when the attacker has full access to the source code or binary.

Key Extraction Resistance: Ensuring that the attacker cannot extract the secret key

from the implementation, despite having full access to the code and runtime environ-

ment.

Code Lifting Resistance: Ensuring that the cryptographic implementation cannot be

easily extracted and reused in another environment by an attacker.

Dynamic Analysis Resistance: Protecting against attacks that involve monitoring and

manipulating the running program to understand its inner workings and extract se-

crets.

Tamper Resistance: Protecting the implementation from being altered or tampered

with by an attacker.

These security notions define the ability of the attacker to manipulate the plaintext or

ciphertext in a way that it could be distinguished or tampered with. In general, when

evaluating the security of a cryptographic system, it is important to consider both

the security goals and the attack models that are relevant to the system’s intended

use. More details can be found in the following books [12, 13, 14]. However, since

this thesis does not focus on white-box designs or related cryptanalysis, we will omit

the security notions specific to white-box models.
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1.1.4 Other Private-key Primitives

Besides stream or block ciphers, there are many other private-key cryptographic prim-

itives. These schemes are employed in defense communications, banking operations,

and, probably the most important of them all, network protocols such as SSH [15],

SRTP [16], TLS [17], WPA2 [18] etc.. Since a block cipher can only handle a fixed-size

plaintext, in order to encrypt messages of arbitrary length, a mode of operation spec-

ifies how the message is processed. In general, it involves partitioning a message into

blocks of suitable length for the underlying block cipher, padding the message block

to the required block length when necessary, and iteratively processing the message

blocks using block cipher encryption. The private-key ciphers protect primarily the

confidentiality of the transmitted information. Besides confidentiality, there are two

other properties that are important in practice, the integrity and authenticity of the

information. Any private-key scheme is also expected to guarantee either confidential-

ity or authenticity (and integrity), or both. Authenticated encryption (AE) aims at

combining the goals of privacy and authenticity under a single function. Convention-

ally, an encryption scheme offers confidentiality while a message authentication code

(MAC) provides authentication and message integrity. An authenticated cipher tries

to integrate both these primitives together. Initially, there have been various attempts

to address the challenge of designing efficient authenticated ciphers providing a rea-

sonable security margin. However, the exposure of serious vulnerabilities [19, 20, 21]

in OpenSSL and TLS highlighted the lack of proper understanding of the problem.

Thus the need for well-studied innovative designs lead to the initiation of a public

competition CAESAR: Competition for Authenticated Encryption: Security, Appli-

cability, and Robustness [22]. The CAESAR competition began in 2014 with 57

proposals submitted from all around the world. The competition has announced its

7 finalists in March 2018. Also, the ever-increasing collection of IoT devices inter-

connected with each other through the Internet, which includes countless small and

constrained devices such as Radio-Frequency IDentification (RFID) tags and wire-

less sensor nodes. This gives rise to a new subfield of cryptography– lightweight

cryptography. On a day-to-day life, there is a shift from general-purpose computers

to dedicated resource-constrained devices. Unfortunately, conventional cryptographic
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primitives may not be suitable for such devices as they can only dedicate a small por-

tion of the already constrained hardware for security purposes. Even when it can be

implemented, the performance may not be acceptable. In 2019, NIST [23] initiated

a process to solicit, evaluate, and standardize lightweight cryptographic algorithms

suitable for use in constrained environments. Initially, it has received 57 submissions

out of which 56 were accepted for Round 1. Then, after the evaluation, 32 candi-

dates were selected for Round-2 from which 10 finalists have recently been announced.

Finally, NIST-LwC announced Ascon as the winner of this competition.

1.1.5 Cryptanalysis
Cryptanalysis is the process of breaking a cryptographic system in order to gain access

to the plaintext or secret key without the knowledge of the encryption key. In the case

of symmetric key ciphers, cryptanalysis is the process of attempting to determine the

secret key used for encryption. There are several types of cryptanalysis techniques

that can be used against symmetric key ciphers. Some of these techniques are as

follows.

– Brute-force attack: This type of attack involves trying every possible key until

the correct one is found. This technique is computationally infeasible for large

key sizes.

– Differential cryptanalysis: This type of attack involves studying the difference

between the encryption of two plaintexts in order to determine information

about the secret key.

– Linear cryptanalysis: This type of attack is based on linear approximations of the

encryption function, which allows the attacker to determine information about

the secret key.

– Algebraic Cryptanalysis: This attack involves solving algebraic equations derived

from the encryption algorithm. It is used to find the key by exploiting algebraic

structures in the cipher.

– Meet-in-the-Middle Attack: This technique is used primarily against encryption

schemes that use multiple stages or keys, such as double encryption. The at-

tacker encrypts from the plaintext side and decrypts from the ciphertext side
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simultaneously, storing intermediate results for comparison. This significantly

reduces the time complexity compared to a brute force attack, making it a

powerful method for breaking schemes with multiple layers of encryption.

It’s important to note that the effectiveness of these techniques depends on the

specifics of the symmetric key cipher in question and the amount of information

available to the attacker. In general, the security of symmetric key ciphers can be

enhanced by increasing the key size and the complexity of the encryption algorithm,

but these methods also make the encryption process more computationally expensive.

1.1.5.1 Brute-force Attack

A brute-force attack is a type of generic attacks in cryptanalysis in which an attacker

systematically tries all possible combinations of characters or words in an attempt to

guess a password or key. These attacks can be automated and run through a computer

program, making them efficient and fast. They are often used to crack encryption

or other types of security mechanisms and can be especially effective against weak

or easily guessable passwords. The attack exhausts all possible combinations, rather

than applying any strategy to reduce the search space, also called an exhaustive

search.

1.1.5.2 Differential Cryptanalysis

Differential cryptanalysis is a powerful method for analyzing and attacking crypto-

graphic systems, particularly symmetric-key ciphers. It works by studying the dif-

ference between pairs of plaintext and ciphertext pairs, known as “differences”. By

analyzing the patterns of these differences, differential cryptanalysis aims to either

distinguish the ciphertext from random texts or to determine the secret key used in

the encryption process. Note that most key recovery attacks depend on the distin-

guisher. This technique was first introduced by Biham and Shamir in [24].

The basic idea behind differential cryptanalysis is to find a set of plaintext and cipher-

text pairs that have a specific relationship between their differences. This relationship

is known as a “differential” and is specific to the encryption algorithm being used.

Differential Characteristics describe the propagation of differences through multiple
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rounds, whereas Differential Trail provides detailed instances of these characteristics,

including specific intermediate differences. By analyzing the differential character-

istic, the cryptanalyst can determine the internal state of the encryption algorithm

and, with enough data, the secret key used. This leads to a distinguishing and even

a key-recovery attack.

1.1.5.3 Linear Cryptanalysis

Linear cryptanalysis is a known plaintext attack that takes advantage of a potential

linear bias in a cipher. Developed by Matsui [25], it involves expressing certain

plaintext and ciphertext bits as a linear Boolean expression, which holds true (equals

0) with probability 𝑝. The stronger the bias (𝑝 is further away from the probability 1
2),

the more successful the attack is. The attack uses a linear mask to extract specific bits

from the plaintext or ciphertext to form the linear expression. The method involves

collecting many plaintext-ciphertext pairs and detecting biases, which can then be

used to conduct a distinguishing or key-recovery attack.

1.1.5.4 Side-channel Attack

Side-channel analysis is a type of attack in which an attacker observes physical infor-

mation leaked from a target device through a side channel. This information, known

as side-channel information, contains sensitive information about the intermediate

values of a cryptographic operation. By analyzing this information and understand-

ing the relationship between intermediate values and the side-channel information,

the attacker can potentially disclose the intermediate value, which can often lead to

the recovery of the secret key used in the cipher.

There are several types of sources of leakage for side-channel attacks, including power

analysis, electromagnetic analysis, Timing Analysis, and Cache Attacks. These leak-

ages can be used to extract encryption keys, passwords, and other sensitive informa-

tion from a wide range of systems, including smart cards, cryptographic devices, and

embedded systems.

To protect against side-channel attacks, it is important to use cryptographic tech-

niques and protocols that are resistant to side-channel attacks, such as masking and

blinding, as well as to use secure hardware and software designs that can reduce the
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amount of information leaked through side channels. Additionally, regular monitoring

and testing of the systems to detect any signs of side-channel attacks.

1.1.5.5 Fault Attacks

Fault attacks are one of the types of implementation attacks that fall under the cat-

egory of active attacks. Fault attacks disturb the calculations of the cryptographic

algorithms intentionally, i.e., the attackers force some known property of the inter-

mediate values to occur in the target device. The assumption of the active attack

implies the alternation of the original calculation of the cryptographic algorithms by

performing the so-called fault injections. More precisely, for the active attacks, the

attackers need to interact with the target device to perform the key recovery. Target-

ing a cryptographic device is a two-step process. The first one is the fault injection

step where an attacker needs to inject faults into the device and collect faulted out-

puts. The second one is the fault analysis step where the collected outputs need to

be processed in order to retrieve the secret key.

The first academic publication on fault-based cryptanalysis, by Boneh, DeMillo, and

Lipton [5], pointed out that faults can be used to break cryptographic algorithms.

Immediately after this work, Biham and Shamir first demonstrated the vulnerabil-

ity of private-key ciphers by presenting several attacks on block ciphers, including

differential fault analysis (DFA). Differential fault analysis is a combination of round-

reduced differential cryptanalysis with pairs of correct and faulty ciphertexts. Simply

speaking, DFA requires an attacker to to run an encryption of the exact same input

twice, where the first one is fault-free and the second one is faulted. Once a suf-

ficient amount of faulty and correct ciphertext pairs have been collected apply the

differential cryptanalysis technique to retrieve the secret key. Further, the number of

required faults to recover the key will depend on the structure of the cipher and the

round the attacker chooses to target. Also, some other state-of-the-art fault attack

techniques have been applied to break the private-key ciphers. These techniques are

as follows: Collision Fault Analysis (CFA) [26], Ineffective Fault Analysis (IFA) [27],

Safe-Error Analysis (SEA) [28], Fault Sensitivity Analysis (FSA) [29], Linear Fault

Analysis (LFA) [30], Statistical Fault Attack (SFA) [31], Statistical Ineffective Fault

Attack (SIFA) [32, 33], Statistical Effective Fault Attack (SEFA) [34].
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1.1.5.5.1 Differential Fault Attack Differential Fault Attack (DFA) has

been introduced by Biham and Shamir [35] in 1997. Since then DFA has grown

in both depth and breadth and is considered one of the most effective forms of physi-

cal attacks. The basic idea to perform DFA is to collect non-faulty and faulty outputs

and then apply differential cryptanalysis to recover its key. An important require-

ment of DFA is the ability to replay the execution of the cipher in order to exploit the

difference between faulty and non-faulty outputs. This is referred to as the Replaying

criterion.

1.2 Motivation and Objectives
Authenticated Encryption (AE) is a cryptographic primitive that provides both con-

fidentiality and integrity to data. It is designed to ensure that the data has not

been tampered with and comes from a trusted source. Since its inception, there have

been several attempts to improve its design and analysis. One of the most significant

events in the history of AE is the announcement of the CAESAR competition [22]

in 2013 and the NIST LwC [36] competition in 2019. These competitions invited re-

searchers and practitioners to submit new and innovative designs for AE, with the

aim of improving its security and efficiency. As a result, there has been a surge in

research in this domain, leading to the development of several new schemes. One of

the challenges in analyzing AE schemes is that they must defend against a variety of

attacks, including traditional cryptographic attacks, fault attacks, and side-channel

attacks, and they must also provide misuse resistance. Traditional attacks such as

ciphertext-only, known-plaintext, and chosen-plaintext attacks are well-known, and

many cryptographic schemes are designed to withstand them. Some AE schemes are

also designed to remain secure even if nonces are reused. This helps prevent major fail-

ures if nonces (numbers used once) are accidentally repeated. Therefore, AE schemes

should ensure security even in the case of nonce reuse. However, fault/side-channel

attacks are a relatively new type of attack that can be used to exploit weaknesses

in the implementation of the scheme. Fault attacks involve deliberately inducing er-

rors or faults in the implementation of the cryptographic scheme to reveal its secrets.

These attacks can be challenging to detect and can result in the disclosure of sensitive
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information. Therefore, it is essential to analyze AE schemes for their vulnerability

to fault attacks.

Differential fault attacks (DFA) involve introducing errors into the computation of

the encryption or decryption function, potentially revealing the secret key or other

sensitive information. For nonce-based AE schemes, the use of a unique nonce in

the encryption process prevents attackers from replaying the algorithm and introduc-

ing errors in an encryption query, thus making the scheme resistant to differential

fault attacks. This work mainly focuses on performing DFA on several nonce-based

AE schemes to reveal vulnerabilities under gray-box attack models and retrieve the

key. The other research work of this thesis is based on classical cryptanalysis of the

nonlinear feedback shift register (NLFSR)-based block ciphers.

Non-linear Feedback Shift Registers (NLFSRs) are frequently used as components in

the design of cryptographic primitives, including lightweight primitives like stream

ciphers, block ciphers, and authenticated encryption (AE) schemes. Initially, NLFSRs

were introduced in modern stream ciphers for applications such as RFID and smart-

cards. They are particularly well-suited for lightweight cipher designs because they

offer a compact, low-power, and fast solution ideal for real-time protocols. Recently,

cryptographers have proposed several NLFSR-based block ciphers and AE designs for

these reasons. These ciphers have been the focus of much research in recent years, as

they are widely used in resource-constrained environments such as Internet of Things

(IoT) devices. One of the methods used to analyze the security of cryptographic

primitives is the use of mathematical modeling, such as MILP-based cryptanalysis.

MILP-based cryptanalysis involves the use of linear and integer programming tech-

niques to solve a system of equations that model the cryptographic primitive. The aim

is to find a differential or linear characteristic that has a high probability of occurring

in the cipher and can be exploited to recover the secret key. In our research, we used

MILP-based differential cryptanalysis to analyze two lightweight ciphers, TinyJAMBU

and KATAN , both of which are NLFSR-based. TinyJAMBU is a finalist in the NIST

lightweight cryptography competition, while KATAN is a widely used block cipher in

IoT devices. The MILP-based differential cryptanalysis approach allowed us to model

the ciphers as a set of linear equations and then solve them to find differentials with
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a high probability of occurrence. Overall, our research highlights the importance of

using mathematical modeling techniques such as MILP-based cryptanalysis to analyze

the security of lightweight ciphers such as TinyJAMBU and KATAN . This approach

can help identify potential weaknesses in the ciphers and improve their overall secu-

rity.

1.3 Thesis Outline and Our Contributions

In the thesis, the focus is on the cryptanalysis of private key ciphers using both tradi-

tional and physical attack techniques. The contributions are presented in Chapter 3

onwards and can be broadly grouped into two parts: Difference-based Fault Analysis

on AE Schemes and Cryptanalysis of NLFSR-based ciphers. Chapters 3 to 6 deal

with the first part of the contribution which is focused on the Difference-based Fault

Analysis on AE Schemes. In particular, the study investigates the vulnerability of

AE schemes to differential fault attacks. The research identifies a simple property of

AE schemes that seemed to protect these ciphers implicitly from being exposed to

differential fault attacks. The study shows that most of the ciphers submitted to the

CAESAR and NIST competitions are resilient to such attacks, even in the presence of

faults. Chapter 7 discusses the second part of the contribution which is the cryptanal-

ysis of NLFSR-based ciphers. Finally, Chapter 8 concludes the thesis by discussing

potential issues that may arise from the research presented.

Overall, the thesis contributes to the research on the cryptanalysis of private key

ciphers using traditional and physical attack techniques. The research highlights the

importance of using mathematical modeling techniques such as MILP-based crypt-

analysis to analyze the security of lightweight ciphers and identify potential weak-

nesses that can be exploited. The study also identifies a property of AE schemes that

protect them implicitly from being exposed to differential fault attacks, which is an

important finding in the field of authenticated encryption. The following subsections

give a brief account of the results obtained during this research.
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1.3.1 Difference-based Fault Analysis on AE Schemes

The difference-based analysis is somewhat similar and can be considered as an exten-

sion of DFA. Whereas, the DFA can be regarded as an extension of the classical differ-

ential attack and it requires an attacker to be able to inject faults in a cryptosystem

while replaying a previous fault-free run of the algorithm. Generally speaking, DFA or

its variants can be successfully applied to any unprotected deterministic private-key

block or stream ciphers. Also, DFA is successfully applied to other kinds of primitives

like hash functions, message authenticated encryptions (MAC), and authenticated

encryptions (AE) as well. Although, researchers have proposed several state-of-the-

art countermeasures to inhibit such kind of difference-based fault attacks. Some of

the well-studied countermeasures in symmetric key cryptography include Detection,

Infection, and Prevention. These strategies often use redundant computations to en-

hance security. Detailed explanations of these methods can be found in the survey

work [37].

In this part of the work, we address an interesting problem where a simple property of

cryptographic design proves to be a great inhibitor for one of the most effective forms

of physical attacks. Here the former refers to the paradigm of Nonce-based design

while the latter implies the area of fault-based cryptanalysis. The problem posed by

a nonce derives from his definition itself. Nonce-based encryption was formalized by

Rogaway in [38] where it is assumed that security is provided as long as the nonce does

not repeat. One of the interesting consequences of a single nonce in an encryption

algorithm is to ensure that old communications cannot be reused in replay attacks.

Also, the use of a nonce in a cipher leads to a direct contradiction to the ability

to replay a cipher and thereby resulting in automatic protection from DFA in the

encryption query. Moreover, in public key cryptography, nonces have been used to

counteract fault attacks. Though it has been shown in some limited settings that

these nonces can be tackled but the techniques used to rely on theoretical constructs

that may not directly work with their private-key counterparts. Thus, nonce-based

encryption seems to have an in-built protection against DFA.

In the classic security concepts of Authenticated Encryption (AE), the delivery of

the decrypted plaintext is subject to successful verification. In their pioneering ar-
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ticle [39] in Asiacrypt 2014, Andreeva et al. questioned this model by introducing

and formalizing the idea of releasing unverified plaintexts (RUP). The basic idea is to

separate the plaintext computation and verification during AE decryption so that the

plaintexts are always released irrespective of the status of the verification process. In

such a scenario, the nonce can be easily bypassed by choosing the decryption query

which opens up new avenues for attacking the decryption module [40]. Further differ-

ential fault attacks [41, 42] on nonce-based AE schemes are applied either by misusing

the nonce or by avoiding the nonce using the internal DFA to parallel counter-mode

encryptions.

In this part of the thesis, we explore other ways to overcome the nonce effect in

DFA. We focus primarily on the emerging area of authenticated encryption schemes,

although most of the results obtained meet a greater subset of cryptographic primi-

tives. We begin by identifying certain subdomains of authenticated encryption sys-

tems based on design principles. Then attempt to exploit certain inherent properties

to re-establish the Replaying Criterion that makes the DFA viable in the presence

of a nonce. Finally, to illustrate the ideas to perform the DFA, we are interested in

some specific types of SPN-based AE design modes. The case studies conclude with

the practical set-up of differential fault attacks on some of the selected designs. The

investigation has been done in three ways.

1.3.1.1 Analysis of NORX using Variants of Coupon Collector Prob-

lem

In chapter 4, we first show the differential fault attack on CAESAR scheme NORX

with a level of parallelism 𝑝 ∈ {2, 4}(applicable to all the versions v1, v2.0, v3.0)

in the presence of a nonce. This demonstrates a scenario when faults introduced in

NORX in parallel mode can be used to collide the internal branches to produce an

all-zero state. Later, this fault is used to replay on NORX despite being instantiated

by different nonces and messages. Once replayed, the secret key of NORX can be

recovered using secondary faults and the faulty tags. The attack presents a case

where for the first time both internal and classical differentials are used to mount

a DFA on a nonce-based authenticated cipher. Different fault models are used to

showcase the versatility of the attack strategy. A detailed theoretical analysis of the
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expected number of faults is furnished under various models. Under the random bit-

flip model, around 1384 faults need to be induced to reduce the key space from 2128

to 232, while the random byte-flip model requires 332 faults to uniquely identify the

key. Moreover, Finally, we furnish a discussion to assess the DFA vulnerability of

FORK-256-256 based on a strategy similar to the one used for NORX.

Moreover, we have identified and provided a solution to a new theoretical problem for

the consecutive bit-flip fault model that is a special variant of the generalized coupon

collector problem. The problem essentially states the following: If an attacker repeat-

edly injects consecutive bit faults in an 𝑛-bit register and in each trial, he randomly

chooses a bit from the register and then flips 𝑘 bits (𝑘 ≤ 𝑛) to the right of the bit,

then what is the expected number of trials so that 𝑡 (1 ≤ 𝑡 ≤ 𝑛) number of bits get

flipped. We refer to the new problem as the non-circular consecutive coupon collector

problem. We present a mathematical solution to this problem for the first time in the

literature. Additionally, we corroborate that our theoretical values are matched very

closely to the simulated values. Further, we show the validation of our calculations

of the problem using hypothesis testing. We additionally extend the problem to the

Circular variant and refer to this problem as circular consecutive coupon collector

problem. This problem may be of independent interest to the community. For this

circular variant, we provide the mathematical proof of this problem and also validate

it using hypothesis testing. We will discuss these variants of coupon collector problem

and their proofs completely in chapter 3.

Publication History: Chapters 3–4 are based on our works [43], published at

ASHES@CCS and its extended work [44], accepted in Journal of Cryptographic En-

gineering.

1.3.1.2 Analysis on Feistel-based Sponge AE Schemes

In Chapter 4, we present a problem with a certain type of encryption called au-

thenticated encryption that uses a technique called sponge mode of operation. We

explain that carrying out a differential fault attack on this encryption is challenging.

This difficulty arises because of the use of a unique value, known as a nonce, which

changes with each encryption and is used only once. However, we have found that if
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the nonce is repeated through multiple decryption queries, it becomes possible to per-

form an attack. The sponge duplex mode, which is the mode of operation in question,

is commonly used in constructing authenticated encryption schemes. Many of the

submissions to the current NIST lightweight cryptography standardization process,

which is a process for evaluating and selecting new encryption standards, are based

on this mode. A majority of NIST-LwC submissions use Substitution Permutation

Networks or Feistel-like structures in their underlying permutation. This means that

a large number of encryption schemes that are being considered for standardization

are potentially vulnerable to this attack.

In this work, we are looking into a specific type of encryption called Generalized

Feistel Networks (GFN) that is used in a technique called sponge AE construction.

It is also assumed that the internal round function used in GFN follows an SPN-like

structure. We observed that by intentionally introducing small errors or faults during

the decryption process, it may be possible to recover the key used in the encryption.

We then present an attack on a specific type of encryption called CiliPadi family of

authenticated encryption scheme, under a random fault model. This attack is used to

retrieve the state of the encryption and ultimately recover the secret key. Further, we

demonstrate that our method is effective and efficient, showing that it is possible to

recover the secret key with a small number of faulty queries and low time and memory

complexities. Thus, we propose a generalized method for any GFN-based sponge AE

where SPN is internally used inside the GFN. To recover the internal state of this

encryption, we present two different fault attacks. Both attacks involve performing

faulty forgery at the final permutation call under two different fault models. We also

provide a theoretical analysis of how to perform these faulty forgeries and propose

general countermeasures against these types of fault attacks. To the best of our

knowledge, this is the first report of a fault attack on GFN-based sponge AE.

Publication History: Chapters 5 is based on our work [45], published at Journal

of Hardware and Systems Security.
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1.3.1.3 Analysis on Sponge and SIV-like AE Schemes

This work presents the first successful differential fault attack (DFA) on the nonce-

based AE scheme Photon-Beetle, which is one of the finalists in the ongoing NIST

LwC competition. Furthermore, this work reports the first DFA on other sponge

and SIV-based NIST LwC schemes, namely ORANGE, SIV-TEM-PHOTON, and

ESTATE. Although performing DFA on any nonce-based sponge/SIV-based AE is

challenging due to the unique nonce in the encryption query, the decryption procedure

(with a fixed nonce) remains vulnerable to DFA. To accomplish the attack, we propose

various fault attack models and estimate the number of faulty queries required to

obtain multiple forgeries. Our simulated values corroborate closely the theoretical

estimates. Finally, we devise an algorithm to recover the state using the collected

forgeries.

Under the random fault attack model, this work reports that approximately 237.15

faulty queries are needed to retrieve the secret key. The offline time and memory

complexities of this attack are respectively 216 and 210 nibbles. In contrast, under

the random bit fault attack model, this work reports that around 211.5 faulty queries

are necessary to retrieve the key for Photon-based schemes, while 213.1 faulty queries

are needed for AES-based scheme ESTATE.

Also, in the known fault attack model, this work reports that approximately 211.05

faulty queries are required to retrieve the secret key for Photon-based schemes, while

213.01 faulty queries are necessary for AES-based scheme ESTATE. The time and

memory complexities of the state recovery attack (for Photon-based schemes) are

respectively 211 and 29 nibbles. Moreover, this work successfully reduces the number

of faulty queries required to 29.32 under the precise bit-flip fault model.

Publication History: Chapter 6 is based on our work [46], which was published at

ASHES@CCS, and its extended version [47] is published in Journal of Cryptographic

Engineering.
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1.3.2 Traditional Cryptanalysis of NLFSR-based Lightweight

Ciphers: TinyJAMBU and KATAN
Since Mouha et al.’s pioneering work [48] showcased the power of Mixed Integer Linear

Programming (MILP) in automated cryptanalysis, it has taken center stage in this

arena. Research in this area has primarily moved in two directions: modeling classical

cryptanalysis tools as optimization problems to leverage state-of-the-art solvers, and

improving existing models to make them more efficient and/or accurate. In this

work, we aim to contribute to the latter by devising a general model referred to as

“DEEPAND” that captures the correlations among multiple AND gates in NLFSR-

based lightweight block ciphers.

DEEPAND builds upon and generalizes the idea of joint propagation of differences

through AND gates, captured using refined MILP modeling of TinyJAMBU by Saha

et al. [49] in FSE 2020. The proposed model has been applied to TinyJAMBU and

KATAN and can detect correlations that were missed by earlier models. This leads to

more accurate differential bounds for both ciphers.

This new model has found a 384-round (full-round as per earlier specification) Type-IV

trail for TinyJAMBU with 14 active AND gates, while the refined model reported this

figure to be 19. This reaffirms the decision of the designers to increase the number of

rounds from 384 to 640. Moreover, the model succeeds in searching a full-round Type-

IV differential characteristic of TinyJAMBU keyed permutation 𝒫1024 with probability

2−108 (much greater than 2−128). This reveals the non-random properties of 𝒫1024,

thereby showing it to be non-ideal. Hence it cannot be expected to provide the same

security levels as robust block ciphers. Further, the provable security of TinyJAMBU

AEAD scheme should be carefully revisited.

Similarly, for KATAN32 , DEEPAND modeling improves the 42-round differential with

2−11 probability to 2−7. Also, for KATAN48 and KATAN64 , this model, respec-

tively improves the designer’s claimed 43-round and 37-round differential probabil-

ities. Moreover, in the related-key setting, the DEEPAND model is able to make a

better 140-round boomerang distinguisher (for both the data and time complexity) in

comparison to the previous boomerang attack by Isobe et al. in ACISP 2013. In sum-

mary, DEEPAND seems to capture the underlying correlation better when multiple

25



AND gates are at play and can be adapted to other classes of ciphers as well.

Publication History: Chapter 7 is based on our work [50], which is currently

under submission.
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2
BACKGROUND

This chapter begins by revisiting fundamental design paradigms and exploring cryp-

tographic tools that are relevant to the research conducted in this thesis.

2.1 Generalized Feistel Networks (GFN)
A classical Feistel network is a general method of constructing any function into

a permutation. It was invented by Horst Feistel in his design of Lucifer [51], and

has been used in many block cipher designs (with some variations) like DES [52],

FEAL [53], GOST [54], Khufu and Khafre [55], LOKI [56], CAST [57], Blowfish [58],

and RC5 [59]. The fundamental building block of a Feistel network is a key-dependent

nonlinear mapping, called an 𝑓 -function. In design, 𝑓 can be made arbitrarily com-

plicated, since it does not need to be designed to be invertible.

Traditionally, most of the existing Feistel designs divide the input message block into

two parts, whereas GFN divides an input message block into 𝑙 ≥ 2 sub-blocks (called it

as branches). GFNs can be considered a comprehensive collection of various Feistel-

based design variants. Despite their extensive use, the parameterized definition of

GFNs is not well formulated. Here, we provide a parameterized definition of GFNs.

2.1.1 Classification of GFN

GFN is a generalized structure for Feistel with an arbitrary number of rounds (we

denote it by 𝑟), several branches (we denote it by 𝑙), and branch lengths (we denote

them by 𝑛0, 𝑛1, . . . , 𝑛𝑙−1) as well as branch permutations (permutation 𝜋 to define
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which branch is going where). Below, we start with the definition of the basic GFN

structure with 𝑙 = 2 and only one internal round function 𝑓 ∈ ℱ , called the classical

Feistel. The state is divided into left and right branches with lengths 𝑛0 and 𝑛1

respectively. This is the most popular choice for Feistel designs. The structure is

parameterized by 𝑛0, 𝑛1 and 𝑓 . We denote this GFN with 𝑙 = 2 by GFN𝑓 [𝑟, 𝑛, 2]. It is

defined as follows.

Definition 1 (Two Branch Feistel). Let 𝑙 = 2 and 𝑓 : {0, 1}𝑛0 → {0, 1}𝑛1 be a

function with 𝑛0, 𝑛1 ∈ N. Consider a permutation 𝜑 : {0, 1}𝑛0+𝑛1 → {0, 1}𝑛0+𝑛1 such

that 𝜑(𝐵1, 𝐵2) = (𝐵2, 𝐵1⊕𝑓(𝐵2)) with |𝐵1| = 𝑛0 and |𝐵2| = 𝑛1. Then a Feistel with

two branch (𝑙 = 2) GFN𝑓 [𝑟, 𝑛, 2] with the input 𝐵1‖𝐵2 is defined as

GFN𝑓 [𝑟, 𝑛, 2](𝐵1‖𝐵2) = 𝜑𝑟(𝐵1‖𝐵2).

Typically 𝜑 is called round function. 𝑛0 + 𝑛1 is called the block size, denoted by

𝑛(= 𝑛0 + 𝑛1), where 𝑛0, 𝑛1 denote branch lengths. If the two branches are of equal

size, i.e., 𝑛0 = 𝑛1 = 𝑛/2, it is called a classical Feistel or a balanced Feistel with 𝑙 = 2,

given in Figure 2-1a. Otherwise it is called 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, given in Figure 2-1c.

Further generalization of Feistel design for any arbitrary branch number 𝑙 ∈ N with

equal-sized sub-blocks 𝑛0, 𝑛1, . . . , 𝑛𝑙−1, was proposed in [60]. They had proposed three

different types of balanced Feistel designs, called Type-1, Type-2, Type-3 respectively.

Definition 2 (Type-1 Feistel). Let 𝑙 ≥ 2 and 𝑓 : {0, 1}𝑛0 → {0, 1}𝑛0 be a function

with 𝑛0 ∈ N. Consider a permutation 𝜑1 : {0, 1}𝑙·𝑛0 → {0, 1}𝑙·𝑛0 with 𝑛 = 𝑙 · 𝑛0 such

that 𝜑1(𝐵1, 𝐵2, · · · , 𝐵𝑙−1, 𝐵𝑙) = (𝐵2⊕𝑓(𝐵1), 𝐵3, · · · , 𝐵𝑙, 𝐵1) with |𝐵1| = · · · = |𝐵𝑙| =

𝑛0. Then a Type-1 Feistel GFN𝑓
1 [𝑟, 𝑛, 𝑙] with the input 𝐵1‖ · · · ‖𝐵𝑙 is defined as

GFN𝑓
1 [𝑟, 𝑛, 𝑙](𝐵1‖ · · · ‖𝐵𝑙) = 𝜑𝑟

1(𝐵1‖ · · · ‖𝐵𝑙).

Definition 3 (Type-2 Feistel). Let 𝑙 ≥ 2 is an even number and 𝑓𝑖 : {0, 1}𝑛0 →

{0, 1}𝑛0 , 𝑖 ≤ 𝑙
2 be a function with 𝑛0 ∈ N. Consider a permutation 𝜑2 : {0, 1}𝑙·𝑛0 →

{0, 1}𝑙·𝑛0 with 𝑛 = 𝑙 · 𝑛0 such that 𝜑2(𝐵1, 𝐵2, · · · , 𝐵𝑙−1, 𝐵𝑙) = (𝐵2 ⊕ 𝑓1(𝐵1), 𝐵3, 𝐵4 ⊕

𝑓2(𝐵3), 𝐵5, · · · , 𝐵𝑙 ⊕ 𝑓𝑙/2(𝐵𝑙−1), 𝐵1) with |𝐵1| = · · · = |𝐵𝑙| = 𝑛0. Then a Type-2
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Feistel GFN𝑓
2 [𝑟, 𝑛, 𝑙] with the input 𝐵1‖ · · · ‖𝐵𝑙 is defined as

GFN𝑓
2 [𝑟, 𝑛, 𝑙](𝐵1‖ · · · ‖𝐵𝑙) = 𝜑𝑟

2(𝐵1‖ · · · ‖𝐵𝑙).

Definition 4 (Type-3 Feistel). Let 𝑙 ≥ 2 and 𝑓𝑖 : {0, 1}𝑛0 → {0, 1}𝑛0 , 𝑖 ≤ 𝑙 − 1 be

a function with 𝑛0 ∈ N. Consider a permutation 𝜑3 : {0, 1}𝑙·𝑛0 → {0, 1}𝑙·𝑛0 with

𝑛 = 𝑙 · 𝑛0 such that 𝜑3(𝐵1, 𝐵2, · · · , 𝐵𝑙−1, 𝐵𝑙) = (𝐵2 ⊕ 𝑓1(𝐵1), 𝐵3 ⊕ 𝑓2(𝐵2), · · · , 𝐵𝑙 ⊕

𝑓𝑙−1(𝐵𝑙−1), 𝐵1) with |𝐵1| = · · · = |𝐵𝑙| = 𝑛0. Then a Type-3 Feistel GFN𝑓
3 [𝑟, 𝑛, 𝑙] with

the input 𝐵1‖ · · · ‖𝐵𝑙 is defined as

GFN𝑓
3 [𝑟, 𝑛, 𝑙](𝐵1‖ · · · ‖𝐵𝑙) = 𝜑𝑟

3(𝐵1‖ · · · ‖𝐵𝑙).

Another new Feistel design was proposed in [61], called alternating Feistel in Figure 2-

1e, where the round functions alternate between contracting and expanding. It is

defined as follows.

Definition 5 (Alternating Feistel). For 𝑙 = 2 and 𝑛0 ≤ 𝑛1, let 𝑓 : {0, 1}𝑛0 → {0, 1}𝑛1 ,

𝑓
′ : {0, 1}𝑛1 → {0, 1}𝑛0 are respectively an expanding and contracting functions

with 𝑛0, 𝑛1 ∈ N. Consider a permutation 𝜑𝑎𝑙𝑡 : {0, 1}𝑛0+𝑛1 → {0, 1}𝑛0+𝑛1 such that

𝜑𝑎𝑙𝑡(𝐵1, 𝐵2) = (𝐵1⊕𝑓
′(𝐵2⊕𝑓(𝐵1)), 𝐵2⊕𝑓(𝐵1)) with |𝐵1| = 𝑛0 and |𝐵2| = 𝑛1. Then

an alternating Feistel with two branch (𝑙 = 2) GFN𝑓
𝑎𝑙𝑡[𝑟, 𝑛, 2] with the input 𝐵1‖𝐵2 is

defined as

GFN𝑓
𝑎𝑙𝑡[𝑟, 𝑛, 2](𝐵1‖𝐵2) = 𝜑𝑟

𝑎𝑙𝑡(𝐵1‖𝐵2).

2.1.2 Parameterized Definition of GFN

We first start by setting up the parameters for generalized GFN. Next we define

the round function of GFN and then define all the existing classes of GFN case by

case. Let GFNf [𝑟, 𝑙, 𝑛0, 𝑛1, . . . , 𝑛𝑙−1, 𝑞, 𝑑]: {0, 1}𝑛 → {0, 1}𝑛 be the GFN, where the

parameters are as follows,

– 𝑟 ∈ N denotes the number of rounds,

– 𝑙 ∈ N denotes the number of branches
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– 𝑛0, . . . , 𝑛𝑙−1 ∈ N denotes the length of the branches in bits such that 𝑛 =
𝑙−1∑︀
𝑖=0

𝑛𝑖

is the block size,

– 𝑞 ∈ B, denotes whether all branches are of equal length 𝑛
𝑙 or not. Precisely,

when 𝑞 = 0 then 𝑛0 = 𝑛1 = · · · = 𝑛𝑙−1 and 𝑞 = 1 denotes ∃𝑖, 𝑗 s.t, 𝑛𝑖 ̸= 𝑛𝑗 ,

– f is a tuple of 𝑙 functions (𝑓0, . . . , 𝑓𝑙−1) and 𝑑 = 𝑑0 . . . 𝑑𝑙−1 ∈ {0, 1, 2}𝑙 such that

𝑓𝑖 : {0, 1}𝑛𝑖+𝑑𝑖 → {0, 1}𝑛𝑖+1−𝑑𝑖 , 𝑓𝑖 ∈ ℱ will be assigned to the branches based on

the values of 𝑑𝑖, ∀𝑖. For 𝑑𝑖 = 0/1, we assign an internal branch function to the

𝑖𝑡ℎ branch (direction: branch 𝑖 to 𝑖+1 for 𝑑 = 0 and branch 𝑖+1 to 𝑖 for 𝑑 = 1).

When 𝑑𝑖 = 2, we assign 𝑓𝑖 = 0, i.e., no non-identity function will be assigned

for the 𝑖𝑡ℎ branch.

GFNf [𝑟, 𝑙, 𝑛0, . . . , 𝑛𝑙−1, 𝑞, 𝑑] takes 𝑥 ∈ {0, 1}𝑛 as the input and is defined as

GFNf [𝑟, 𝑙, 𝑛0, . . . , 𝑛𝑙−1, 𝑞, 𝑑](𝑥) = (𝜑𝑑)𝑟(𝑥0|| · · · ||𝑥𝑙−1),

where, 𝜑𝑑 is the round function iteartes 𝑟 times. Each of the iterations uses a branch

permutation 𝜋𝑙 and an internal round function 𝜏 f
𝑑 . Thus by fixing all the parameter

values, one round of the GFN is defined as

𝜑𝑑(𝑥) = 𝜑𝑑(𝑥0|| · · · ||𝑥𝑙−1)

= 𝜋𝑙 ∘ 𝜏 f
𝑑(𝑥0|| · · · ||𝑥𝑙−1)

= 𝜋𝑙(𝑦0|| · · · ||𝑦𝑙−1)

= (𝑧0|| · · · ||𝑧𝑙−1).

Different types of Feistels described above are pictorially represented below.

One Round Balanced/Unbalanced GFN: One round of balanced/unbalanced

GFN with 𝑥𝑖/𝑥𝑖+1 as the input/output is defined as:

𝑥𝑖+1 = 𝜋𝑙 ∘ 𝜏 f
𝑑(𝑥0

𝑖 || · · · ||𝑥𝑙−1
𝑖 ) = 𝜋𝑙(𝑦0

𝑖 || · · · ||𝑦𝑙−1
𝑖 ),

where ∀𝑗 ∈ [0, 𝑙 − 1], |𝑥𝑗
𝑖 | = 𝑛𝑗 and
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𝑦𝑗
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑗

𝑖 op 𝑓𝑗(𝑥𝑗−1+2𝑑𝑗

𝑖 ) if 𝑑𝑗 = 0, 1

𝑥𝑗
𝑖 if 𝑑𝑗 = 2.

It is noted that, if ∀𝑖, 𝑗 ∈ [0, 𝑙−1], 𝑛𝑖 = 𝑛𝑗 , then it is called balanced GFN. Otherwise,

we call it unbalanced GFN. Here if we fix some parameters as

l = 2, q = 0, d = 02, 𝜋2 = (2, 1) , then one round GFN represents a classical bal-

anced Feistel network, given in Figure 2-1a. Similarly, for any values of

l (> 2), q = 0, 𝜋𝑙 = (2, 3, · · · , 𝑙, 1) , one round GFN can be represent as Type-1 (Fig-
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Figure 2-1: Generalized Feistel Network
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ure 2-1b), Type-2 (Figure 2-1d), Type-3 (Figure 2-1f) for

d = 02· · · 22, 𝑑 = 02 · · · 02, 𝑑 = 00 · · · 02 respectively.

Also, if we fix inputs as l = 2, q = 1, p = 10, 𝜋2 = {2, 1} , then one round GFN rep-

resents a classical unbalanced Feistel network, given in Figure 2-1c.

One Round Alternating GFN: For the alternating GFN, we need another tuple of

functions f ′ = (𝑓 ′
0, . . . , 𝑓

′
𝑙−1) together with f, where 𝑓

′
𝑖 : {0, 1}𝑛𝑖+𝑑𝑖 → {0, 1}𝑛𝑖+1−𝑑𝑖 .

Let GFNf
f’ [𝑟, 𝑙, 𝑛0, . . . , 𝑛𝑙−1, 𝑞, 𝑑] be the modified GFN. We also denote 𝑑 ∈ {0, 1, 2}𝑙,

where 𝑑𝑖 will be defined as follows:

𝑑𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑑𝑖 + 1 mod 2 if 𝑑𝑖 = 0, 1

2 if 𝑑𝑖 = 2.

Then GFNf
f’ [𝑟, 𝑙, 𝑛0, 𝑛1, . . . , 𝑛𝑙−1, 𝑞, 𝑑] with input 𝑥 ∈ {0, 1}𝑛 is defined as

GFNf
f’ [𝑟, 𝑙, 𝑛0, . . . , 𝑛𝑙−1, 𝑞, 𝑑](𝑥) = (𝜑𝑑)𝑟(𝑥0|| · · · ||𝑥𝑙−1) = (𝜋𝑙 ∘ 𝜏 f ′

𝑑 ∘ 𝜏 f
𝑑)𝑟(𝑥0|| · · · ||𝑥𝑙−1).

Where, 𝜑𝑑 is the round function, which can be viewed as the composition of 𝜋𝑙, 𝜏 f’
𝑑 ,

𝜏 f
𝑑. By fixing all the parameter values, one round alternating GFN is defined as

𝜑𝑑(𝑥) = 𝜑𝑑(𝑥0|| · · · ||𝑥𝑙−1) = 𝜋𝑙 ∘ 𝜏 f
′

𝑑 ∘ 𝜏 f
𝑑(𝑥0|| · · · ||𝑥𝑙−1)

= 𝜋𝑙 ∘ 𝜏 f
′

𝑑 (𝑢0|| · · · ||𝑢𝑙−1)

= 𝜋𝑙(𝑦0|| · · · ||𝑦𝑙−1)

= (𝑧0|| · · · ||𝑧𝑙−1).

Thus, one round alternate Feistel network with 𝑥𝑖/𝑥𝑖+1 as the input/output can be

defined as

𝑥𝑖+1 = 𝜑𝑑(𝑥0
𝑖 || · · · ||𝑥𝑙−1

𝑖 ) = 𝜋𝑙 ∘ 𝜏 f
′

𝑑 ∘ 𝜏 f
𝑑(𝑥0

𝑖 || · · · ||𝑥𝑙−1
𝑖 )

= 𝜋𝑙 ∘ 𝜏 f
′

𝑑 (𝑢0
𝑖 || · · · ||𝑢𝑙−1

𝑖 )

= 𝜋𝑙(𝑦0
𝑖 || · · · ||𝑦𝑙−1

𝑖 )

= (𝑧0
𝑖 || · · · ||𝑧𝑙−1

𝑖 ).
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where ∀𝑗 ∈ [0, 𝑙 − 1], |𝑥𝑗
𝑖 | = 𝑛𝑗 ,

𝑢𝑗
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑗

𝑖 op 𝑓𝑗(𝑥𝑗−1+2𝑑𝑗

𝑖 ) if 𝑑𝑗 = 0, 1

𝑥𝑗
𝑖 if 𝑑𝑗 = 2,

and

𝑦𝑗
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑗

𝑖 op 𝑓
′
𝑗(𝑢𝑗−1+2𝑑𝑗

𝑖 ) if 𝑑𝑗 = 0, 1

𝑢𝑗
𝑖 if 𝑑𝑗 = 2.

It is noted that, if ∀𝑖, 𝑗 ∈ [0, 𝑙 − 1], 𝑛𝑖 = 𝑛𝑗 , then it is called balanced alternating

GFN. Otherwise, we call it as unbalanced alternating GFN. E.g., by fixing inputs as

𝑙 = 2, 𝑞 = 1, 𝑑 = 02, 𝜋2 = (1, 2), 𝑛0 > 𝑛1, it represents a alternate Feistel network,

given in Figure 2-1e.

n-bit “state”

b-bit “bundle”

S S S S S S S S

M

Ki

Figure 2-2: One Round of an SPN
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2.2 Substitution Permutation Networks (SPN)
In an 𝑛-bit SPN cipher, its internal state can typically be divided into 𝑛

𝑏 many 𝑏-bit

words, sometimes we also use nibble (resp. byte) to describe a word if 𝑏 = 4 (resp.

𝑏 = 8). In a round function, the 𝑆-box layer usually consists of 𝑏-bit 𝑆-boxes updating

all the words in parallel. Then, the ℳ-layer applies linear transformations on every

𝑏-bit words. Confusion and diffusion are two important design principles for a secure

cipher. The property of confusion hides the relationship between the ciphertext and

the key so that it makes difficult to find the key from the ciphertext. This property

ensures that a small alteration in the key results in a significant and broad impact.

The 𝑆-box is a crucial component of an SPN cipher for introducing non-linearity to

the system. Diffusion means that if we change a single bit of the plaintext, then about

half of the bits in the ciphertext should change. For the diffusion property, it is often

achieved by the ℳ-layer and to some extent through the 𝑆-box layer as well.

A substitution permutation network (SPN) is made up of multiple rounds and operates

on a state of 𝑛 bits. Each round (as shown in Figure 2-2) involves dividing the input

into 𝑏-bit words, applying a substitution function (𝑆-box) to each word individually,

and then diffusing the words using a linear transformation (ℳ) that exhibits certain

“branching” properties. Hence, the state of an SPN can be regarded as a sequence of

𝑚 words, where 𝑚 = 𝑛
𝑏 .

An SPN SPN𝑘 : {0, 1}𝑛 → {0, 1}𝑛 is defined mathematically by three parameters and

two functions, indexed by a key 𝑘 = 𝑘0 || 𝑘1 || · · · || 𝑘𝑟 ∈ ({0, 1}𝑛)𝑟+1.

– 𝑟 ∈ N, denotes the number of rounds.

– 𝑏 ∈ N, denotes the 𝑆-box input size, i.e., the word size.

– 𝑚 ∈ N, denotes the total number of words in SPN state.

– 𝑆 : 𝐺𝐹 (2𝑏)→ 𝐺𝐹 (2𝑏), denotes the 𝑆-box

– ℳ : (𝐺𝐹 (2𝑏))𝑚 → (𝐺𝐹 (2𝑏))𝑚, denotes the linear transformation.

The input and output size of SPN𝑘 are determined by the product of 𝑚 and 𝑏, i.e.,

𝑛 = 𝑚 · 𝑏. For instance, AES uses parameters 𝑏 = 8, 𝑛 = 128, and 𝑟 ∈ 10, 12, 14, and

the computation of SPN𝑘 involves 𝑟 rounds. The SPN state is initially XORed with
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the subkey 𝑘0, after which each of the 𝑟 rounds (∀𝑖 ∈ 1, · · · , 𝑟) is carried out in three

steps:

1. The 𝑆-boxes are applied to 𝑚 parallel words.

2. The entire state undergoes the linear transformation ℳ.

3. The entire state is XORed with the round key 𝑘𝑖.

It is worth noting that each round in the SPN has the same structure, except for

step (3)1. Specifically, given an input 𝑥, SPN𝑘(𝑥) uses 𝑥 ⊕ 𝑘0 as input for the first

round. The output of round 𝑖 serves as the input to round 𝑖 + 1 (for 1 ≤ 𝑖 < 𝑟), and

ultimately, the output of SPN𝑘(𝑥) is the ciphertext.

Generally speaking, one round SPN structure can be viewed as the composition of

Sbox Layer and Linear Layer. Further, a SPN structure can be categorized into two

classes based on the Linear Layer. The first one [62, 63] is based on Mixcolumn

(MDS or almost-MDS) matrix (strong diffusion), where the second one [64, 65] is

based on bit permutation (lighter diffusion compared to the first one).

2.3 Sponge Construction
The primary property associated with a hash function’s output is that it is fixed.

However, it’s possible to create a more general form of such functions that allows for

variable length output in a straightforward way compared to regular hash functions.

Moreover, the sponge is introduced to create a cryptographic primitive that can serve

multiple purposes, such as hashing, encryption, and pseudo-random number genera-

tion, all within a single framework.. The sponge construction [66] provides a concrete

way to realize such functions. As defined by Bertoni et al., it is a simple iterated con-

struction that builds a function (𝑓) with variable-length input and arbitrary output

length based on a fixed-length transformation or permutation (𝑓) operating on a fixed

number (𝑏) of bits. This 𝑏 is called the width. The sponge construction operates on a

state of 𝑏 = 𝑟 + 𝑐 bits, where 𝑟 is called the bitrate and 𝑐 is called the capacity. At the

1SPN can be defined more generally by allowing variations in the 𝑆-box across rounds or a more
complex interaction with 𝑘 than XOR
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Figure 2-3: The Sponge Construction [66]

initialization phase, the internal state is set to all zeros. Then, the sponge construc-

tion process begins with two phases of iteration. The first phase is the absorption

phase, where input data is absorbed into the internal state, and the second phase

is the squeezing phase, where the output is generated from the internal state. This

process is illustrated in Figure 2-3. The sponge construction is a method for creating

cryptographic hash functions with variable length output, and it is used as a reference

for security claims. The designers have demonstrated that random sponges can be

as strong as a random oracle under certain conditions, specifically when the internal

state size is sufficiently large. A random sponge refers to a sponge function where

the internal permutations or transformations behave like random permutations and a

random oracle is a theoretical black box that provides truly random and independent

responses to every unique query. The designers suggest using permutations instead

of more complicated structures like block ciphers or special compression functions as

the foundation for their cryptographic method.

Hermetic Sponge Strategy

The hermetic sponge strategy is a design strategy based on the concept that any attack

against a sponge function implies that the permutation used can be distinguished

from a randomly-chosen permutation. This strategy plays a fundamental role in the

analysis of permutations for structural distinguishers. Additionally, the security level

of the strategy is determined by the capacity 𝑐, which can be traded for speed using

bitrate 𝑟. The sponge construction can also be used to design other primitives such as

MACs and key-stream generators. With the help of an equivalent construction called
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Figure 2-4: The Duplex Construction [66]

Duplex, efficient reseedable pseudo-random bit sequence generation and authenticated

encryption schemes can also be implemented.

The duplex construction (refer to Figure 2-4), introduced by Bertoni, Daemen, Peeters,

and Van Assche [67], is a variant of the sponge construction that allows for the gener-

ation of efficient reseedable pseudo-random bit sequences and the implementation of

authenticated encryption schemes. It is based on fixed-width permutations and allows

for the absorption of one 𝑟-bit input block while producing one 𝑟-bit output block

separated by one permutation call 𝑓 . The output block depends on all previously

absorbed input blocks. The duplex construction enables the creation of single-pass

authenticated encryption schemes. The duplex construction is a useful tool for var-

ious cryptographic needs and has been utilized in various authenticated encryption

schemes.

2.4 Synthetic IV (SIV) Construction
Synthetic Initialization Vector or Synthetic IV, or SIV, is a mode of operation for

blockciphers that uses a key, plaintext, and header (a sequence of zero or more strings)

as inputs to produce a deterministic associated ciphertext. This ciphertext maintains

the privacy of the plaintext and authenticates both the ciphertext and the header. It

can be used to resolve two issues: the key-wrap problem (deterministic authenticated

encryption), is a type of authenticated encryption scheme where the encryption pro-
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cess does not involve any randomness and conventional (two-pass, nonce-based) au-

thenticated encryption, depending on its usage. In [68], Phillip Rogaway and Thomas

Shrimpton specified a new block cipher mode, SIV, that provides both nonce-based

authenticated encryption and deterministic, nonce-less key wrapping.

A unique initialization vector (IV) or nonce is essential for the security of authen-

ticated encryption modes like Galois Counter Mode (GCM) [69]. Without it, the

encryption could become vulnerable to various attacks. Reusing an IV can lead to a

loss of confidentiality and/or authenticity. The SIV mode of operation, when used

with a unique nonce as part of the associated data, provides protection against nonce

(a) SIV Encryption (b) SIV Decryption

DoublingDoubling

(c) CMAC without Padding

DoublingDoubling Doubling

(d) CMAC with Padding

Figure 2-5: The SIV Construction [68]
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reuse. It allows for no loss of authenticity and minimal loss of confidentiality in

case of nonce reuse. It is specified as a generic composition of an IV-based encryp-

tion scheme and a pseudorandom function (PRF). The construction (see Figure 2-5),

contains a Pseudo-Random Function (PRF) construction called S2V and an encryp-

tion/decryption construction, called CTR. S2V uses AES in Cipher-based Message

Authentication Code mode [70] and CTR uses AES in counter mode [70]. The most

commonly used instantiation of the SIV mode is AES-SIV [71], which is built entirely

from the AES block cipher, using AES-CMAC [72] as the PRF and AES in CTR mode

for confidentiality. It is attractive because it requires only an AES encryption oper-

ation to implement all aspects of the mode and it also has the convenient property

that AES-CMAC produces a 128-bit tag, and AES-CTR requires a 128-bit IV, which

allows the tag to be used directly as the (synthetic) IV.

2.5 Authenticated Encryption
Authenticated encryption is a method of encryption that combines the goals of con-

fidentiality and data integrity into one mechanism. It is used to ensure that sensitive

information is kept private while also verifying that the data has not been tampered

with and that it was sent by the correct sender. This is accomplished by combin-

ing symmetric encryption with a message authentication code. Real-world scenarios

such as sending medical information about a patient require both confidentiality and

authenticity, which is why authenticated encryption is of practical significance. The

concept of authenticated encryption was first introduced by Bellare and Namprempre

in their pioneering work [73, 19, 74]. An Authenticated Encryption (AE) scheme is a

type of symmetric encryption scheme where the decryption process returns an error

if the ciphertext is not authentic. AE has become a widely used method in many

standards, such as SSH [75], TLS [76], IPSec [77]. This widespread use has increased

the motivation for further research in this area of cryptography.

The security implications of the three forms of generic composition: MAC-then-

Encrypt (MtE), Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM) have been studied

in depth in various literature, such as [73, 19, 74]. These studies have examined the

security properties of each composition method and how they compare to one another.
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Both Krawczyk [19] and Bellare and Namprempre [73] have independently analyzed

the security properties of the three forms of generic composition: MtE, E&M, and

EtM. Both studies seem to favor the EtM method over the other two. Even though

the EtM composition is generally considered to be more secure, other compositions

may be appropriate in certain circumstances, as demonstrated by Namprempre et al.

in [78]. They have shown that nonce-based authenticated encryption with associated

data can be realized using various building blocks like encryption schemes that require

an initial value IV to be random, or encryption schemes that just require a nonce 𝑁

to be unique. They also show that EtM constructions can fail if, for example, the

nonce is not authenticated.

Authenticated Encryption has evolved over time to address performance and security

issues, and can be classified based on the number of passes on the message or underly-

ing construction. Dedicated AE schemes, which do not rely on composition, are initial

schemes mainly based on block ciphers. Single-pass schemes, such as IAPM [79, 80],

XCBC/XECB [81], and OCB [82, 83], have minimal message expansion, while two-

pass schemes, such as CCM [84], EAX [85], CWC [86], and GCM [69], emulate generic

composition but use a single key throughout. GCM is the most popular and widely

standardized. While two-pass modes are widely adopted, they are not as efficient as

single-pass schemes. However, the use of single-pass schemes is limited.

Authenticated ciphers have also evolved by moving away from the use of block-ciphers

and using other symmetric-cryptographic primitives to achieve the goal of authen-

ticated encryption. Examples include schemes that use stream ciphers [87, 88, 89],

hash/compression functions [90], or more recently, key-less permutations [91].

Authenticated encryption with associated data (AEAD) is a technique that allows for

encrypting and authenticating a message, as well as sending additional unencrypted

data. An example of this could be a network packet where the payload is encrypted

and authenticated, but the header is not encrypted to allow for routing information

to be in plaintext. The concept of AEAD was first introduced by Rogaway [92],

who added a third input to the standard form of authenticated encryption. Many

different schemes now support AEAD, including the nonce-based AE and deterministic

AE (DAE) schemes. The SIV [68] and HBS [93] schemes are examples of DAE schemes.
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However, some DAE schemes were found to not be able to be computed in real-time,

which is desirable in many practical applications. To address this, the concept of

online AEAD was introduced in the form of the McOE scheme [94]. The field of AEAD

is constantly evolving and new developments and advancements are being made all

the time.

Formal Definition of Nonce-based AEAD
Nonce-based authenticated encryption with associated data is a method of encrypting

data that uses a unique nonce (number used once) or initialization vector (IV) in

combination with a secret key to encrypt the data. A formal definition of nonce-

based authenticated encryption can be stated as follows:

Definition 6. A quadruple of probabilistic polynomial-time algorithms (𝒦,𝒩 , ℰ ,𝒟)

satisfying the following properties for any plaintext 𝑚 ∈ ℳ, associted data 𝐴 ∈ 𝒜,

any key 𝐾 chosen from the key space 𝒦, any nonce 𝑁 chosen from the nonce space

𝒩 :

– Key Generation Algorithm: 𝒦(𝜆)→ 𝐾, where 𝜆 is the security parameter.

– Nonce Generation Algorithm: 𝒩 (𝜆)→ 𝑁

– Encryption Algorithm: ℰ(𝐾, 𝑁, 𝐴, 𝑀)→ (𝐶, 𝑇 ) = 𝐶
′(𝑠𝑎𝑦), where 𝐶 ∈ 𝒞 is the

ciphertext and 𝑇 ∈ 𝒯 is the authentication tag.

– Decryption Algorithm: 𝒟(𝐾, 𝑁, 𝐴, 𝐶, 𝑇
′) → 𝑀

′ , where 𝑀
′ is the plaintext 𝑀

if 𝑇
′ = 𝑇 , otherwise 𝑀

′ =⊥, an authentication error symbol.

The nonce-based AEAD scheme is said to be secure if, for any polynomial-time ad-

versary A, the following two conditions hold:

– Confidentiality: For any two messages 𝑀1 and 𝑀2, and any nonce 𝑁 , the ci-

phertexts ℰ(𝐾, 𝑁, 𝐴, 𝑀1) and ℰ(𝐾, 𝑁, 𝐴, 𝑀2) should be indistinguishable by an

adversary without the key 𝐾.

– Integrity: For any ciphertext 𝐶
′ , nonce 𝑁 , and associated data 𝐴, it should

be computationally infeasible for an adversary to produce a valid (𝑁, 𝐶
′
, 𝐴)

without knowing the key 𝐾 such that 𝒟(𝐾, 𝑁, 𝐴, 𝐶, 𝑇
′)→⊥.
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Figure 2-6: Illustration of Difference Propagation

– Authenticity: The scheme should ensure that a message 𝑀 decrypted with 𝒟

under key 𝐾 is indeed the message 𝑀 that was encrypted with ℰ under the key

𝐾, and that it has not been tampered with.

This definition highlights the importance of the additional component nonce gener-

ation and how it is used in combination with key and encryption and decryption

algorithms to ensure confidentiality, authenticity and integrity. Nonce-based AEAD is

widely used in protocols such as GCM(Galois/Counter Mode) and CCM(Counter with

CBC-MAC), which provides confidentiality, integrity and authenticity of the data.

2.6 Differential Cryptanalysis
Differential cryptanalysis is one of the two most widely used cryptanalysis on private-

key ciphers, was first introduced by Biham and Shamir [24]. It is a chosen-plaintext

attack (𝐶𝑃𝐴) that exploits the high probability of certain plaintext difference prop-

agating through multiple round functions to a specific ciphertext difference, we call

it the differential. The differential cryptanalysis focuses on the difference of two com-

putations in a cipher.

Suppose 𝑆 : F𝑏
2 → F𝑏

2 is a non-linear function and Δ′ be the output difference cor-
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𝑥 0 1 2 3 4 5 6 7 8 9 a b c d e f
S-box c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

Table 2.1: The PRESENT 𝑆-box

reponds to a pair of input (𝑥, 𝑥′) with the input difference Δ. An illustration of the

difference propagation for the 𝑆 function is given in Figure 2-6.

Definition 7. Let Δ, Δ′(∈ F𝑏
2) be the input and output differences of 𝑆. We denote

the differential probability (𝑝) from Δ to Δ′ under 𝑆 as Δ 𝑝−−−−→ Δ′ or Pr[Δ→ Δ′ ]

and define it as follows:

Pr[Δ→ Δ′ ] = #{𝑥 ∈ F𝑏
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ) = Δ′}

2𝑏
.

The Substitution layer is a crucial component of an SPN/Feistel cipher for introducing

non-linearity to the system. The differential transition of an 𝑆-box is often represented

in a 2𝑏 × 2𝑏 difference distribution table (DDT) where each (Δ, Δ′)-entry shows the

number of occurrences for which the differential transition holds, i.e., #{𝑥 ∈ F𝑏
2 :

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ) = Δ′}.

Δ
Δ′

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Table 2.2: DDT of PRESENT 𝑆-box

Example 1. Consider the 4-bit 𝑆-box in PRESENT cipher [64] and its truth table

is given in Table 2.1. The DDT of the PRESENT 𝑆-box is presented in Table 2.2.
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According to the Table 2.2, we can see that 3 22
−−−−−→ 6, i.e., Pr[3→ 6] = 4

16 = 2−2.

The differential cryptanalysis technique is used to find some high probability differ-

ential trails. For an 𝑟 round 𝑛-bit cipher, let Δ0 = 𝑀 ⊕𝑀
′ be the difference between

the two plaintexts 𝑀, 𝑀
′ . The objective is to analyse how the difference propa-

gates through 𝑟 rounds in a cipher. Let us consider that at round 𝑖, the difference

Δ𝑖−1 propagates to Δ𝑖 with probability 𝑝𝑖. Note that, at any round, an 𝑆-box with

Δ ̸= 0, Δ′ ̸= 0 is called as an active 𝑆-box. At each round 𝑖, the probability 𝑝𝑖 is

calculated by multiplying the probabilities of each individual active 𝑆-boxes in that

round. At the end, we can find a differential trail through the entire cipher as

Δ0
𝑝0−−−−−→ Δ1

𝑝1−−−−−→ Δ2
𝑝2−−−−−→ Δ3 · · ·

𝑝𝑟−2−−−−−−→ Δ𝑟−1
𝑝𝑟−1−−−−−−→ Δ𝑟. (2.1)

We call this as the differential characteristic. Assuming that the independence be-

tween rounds, which is not the case in reality as the subkeys are XORed in each round.

Thus, the overall probability of a differential characteristic is only an estimation, i.e.,

Pr[A differential characteristic in 2.1] =
𝑟−1∏︁
𝑖=0

𝑝𝑖.

However, in practice, this is proven to be reasonably accurate for many ciphers.

However, it is worth noting that there may be multiple differential characteristics

(Δ0
𝑟−→ Δ𝑟) with the same initial (Δ0) and final (Δ1) difference that contribute to the

overall probability of the differential. In that case the probability of the differential

characteristic is calculated by summing of the probability of each differential charac-

teristics with same input and output difference. Thus, the differential probability of

Δ0
𝑟−→ Δ𝑟 will be calculated as follows.

Pr[Δ0
𝑟−→ Δ𝑟] =

∑︁
all intermediate differences

Pr[Δ0 → Δ1 → Δ2 → · · ·Δ𝑟−1 → Δ𝑟].

Differential cryptanalysis involves identifying differential characteristics, which are

patterns of differences in input pairs that lead to specific differences in output pairs

with high probability. Once such characteristics are found, they can be used to

launch distinguishing attacks and potentially key-recovery attacks. In a distinguishing
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attack, the encryption of 𝜁 pairs of plaintext with the same input difference Δ0 is

queried. The number of ciphertext differences that match the target difference Δ1 is

then compared to the differential probability, and if they are close, it is likely that

the encryption oracle is the target cipher. If not, it is likely a random permutation.

In a key-recovery attack, a (𝑟 − 1)-round differential is used. After obtaining the

ciphertext pairs, the last round subkey is guessed, and the internal states of the

previous rounds are then worked backwards to check for the target difference. The

correct subkey candidate should result in a significantly higher number of matches

than the incorrect candidates. Hence the amount of plaintext pairs needed to launch

a differential attack is estimated to be 𝜁 = 𝑐

Pr[Δ0
𝑟−→Δ𝑟]

, where 𝑐 is a small constant.

Searching for Characteristics

Manual searching for characteristics in cryptography can be time-consuming and

prone to errors, therefore, several methods and tools have been developed to aid

in the search. These methods can be broadly categorized into building tools from

scratch or building on existing MILP, CP or SAT solvers. The aim of these tools

can vary from finding or bounding the probability of the best existing characteristic

to searching for good characteristics that can be useful in attacks. The ability to

give a tight bound on probability and finding the characteristic highly depend on the

analyzed primitive. In [95], Matsui introduced a method for finding the best differ-

ential and linear characteristics for DES. Later, Biryukov and Nikoli𝑐 developed a

tool [96] for searching related-key differential characteristics that works well for byte-

aligned ciphers. Biryukov, Velichkov, and Le Corre also developed a tool [97] for best

characteristics for ARX-based primitives. Other tools [98, 99] have been developed

for specific primitives such as Keccak, exploiting its structural properties to provide

bounds on probability.

Recently, it has become popular to use mixed integer linear programming (MILP) and

SAT solvers to search for differential and linear characteristics. Mouha, Wang, Gu,

and Preneel [48] were among the first to use MILP to prove bounds on the minimum

number of active 𝑆-boxes in a differential or linear characteristic. This method has

been extended to the related-key setting for SPN-structures. More recently, MILP
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and SAT solvers [100, 101, 102] have been used to search for differential and linear

characteristics for ARX-based primitives.

2.7 Boomerang Attack

The boomerang attack is a method for the cryptanalysis of block ciphers based on

differential cryptanalysis. In most of the ciphers, the searching of high probability

differential characteristics might not be always possible. In such cases, Wagner in [103]

have proposed a variant of differential attack, known as the boomerang attack, which

may become very useful to exploit the differntial properties of a cipher by combining

two high probability differentials in an elegent way for different segments of the cipher.

Consider an 𝑛-bit block cipher 𝐸 with 𝑘-bit key, which can be expressed as a cascade

cipher 𝐸 = 𝐸1 ∘𝐸0, where 𝐸0 has a differential Δ0
𝑝−−→ Δ1, and 𝐸1 has a differential

∇0
𝑞−−→ ∇1. In this attack, the cipher 𝐸 is considered as a composition of two sub-

ciphers 𝐸0 and 𝐸1, i.e., 𝐸 = 𝐸1 ∘ 𝐸0, where we suppose that the input difference

Δ0 is propagated to the difference Δ1 by 𝐸0 with probability 𝑝 and the difference

∇0 is propagated to ∇1 by 𝐸1 with probability 𝑞. This is described in Figure 2-7.

The boomerang attack leverages two short differentials with high probability, rather

than relying on one long differential with low probability, to enhance the chances of

success. The method for mounting the distinguisher is as follows.

1. Ask for the ciphertexts 𝐶0 = 𝐸(𝑃0) and 𝐶1 = 𝐸(𝑃1), where 𝑃1 = 𝑃0 ⊕Δ0.

2. Ask for the plaintexts 𝑃2 = 𝐸−1(𝐶2) and 𝑃3 = 𝐸−1(𝐶3), where 𝐶2 = 𝐶0 ⊕∇1

and 𝐶3 = 𝐶1 ⊕∇1.

3. Check whether 𝑃2 ⊕ 𝑃3 = Δ0.

The expected probability of this attack, assuming the independence of the character-

istics, exploits the following differential:

Pr(𝐸−1(𝐸(𝑥)⊕∇1)⊕ 𝐸−1(𝐸(𝑥⊕Δ0)⊕∇1) = Δ0] = 𝑝2 · 𝑞2. (2.2)
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Figure 2-8: Related-key Boomerang

Equation 2.2 shows that by performing 1
𝑝2·𝑞2 number of adaptively chosen plaintext

and ciphertext queries with the Δ0 difference on the encryption queries and the ∇1

difference on the decryption queries, the attacker can distinguish 𝐸 from ideal cipher.

Later, the amplified boomerang attack [104] (also called the ‘rectangle attack [105]’)

was proposed which works in a chosen-plaintext attack (CPA) scenario. In this attack,

the expected probability to get a right quartet will be 𝑝2 · 𝑞2 · 2−𝑛. Furthermore,

in [106, 107], they have pointed out that any value of Δ1 and ∇0 can be considered

as long as Δ1 ̸= ∇0. As a result, the probability of the right quartet is increased

to 2−𝑛 · 𝑝2 · 𝑞2, where 𝑝 =
√︂∑︀

𝑖
Pr2(Δ0 → Δ𝑖

1) and 𝑞 =
√︂∑︀

𝑗
Pr2(∇𝑗

0 → ∇1). Later,

Dunkelman et al. [108] formalized the sandwich attack, decomposing the target cipher

into three parts, 𝐸 = 𝐸1 ∘ 𝐸𝑚 ∘ 𝐸0, with the middle part 𝐸𝑚 having relatively

short transformations. Sandwich attacks extend boomerang attacks by adding an

encryption layer to exploit specific differential properties. To systematically calculate

the probability 𝑟 for 𝐸𝑚 and find effective switches, Cid et al. [109] proposed the

Boomerang Connectivity Table (BCT), which refines boomerang attacks by analyzing

connectivity between input and output differences.
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2.8 Related-key Boomerang Attack
The related-key boomerang attack, as illustrated in Figure 2-8, uses key differences

in addition to plaintext differences. It assumes that the upper sub-cipher 𝐸0 has a

differential characteristic Δ0
𝑝−→ Δ1 under a key difference 𝛼 = 𝐾0 ⊕𝐾1 = 𝐾2 ⊕𝐾3

and the lower sub-cipher 𝐸1 has a differential characteristic ∇0
𝑝−→ ∇1 under a key

difference 𝛽 = 𝐾0 ⊕ 𝐾2 = 𝐾1 ⊕ 𝐾3. A related-key distinguisher is constructed by

using four different unknown keys: 𝐾0, 𝐾1 = 𝐾1⊕Δ0, 𝐾2 = 𝐾1⊕𝛽, and 𝐾3 = 𝐾0⊕𝛽.

Under adaptively chosen plaintext and ciphertext queries, the procedure for executing

the related-key boomerang distinguisher is as follows.

1. Ask 𝜂 ciphertext pairs (𝐶0, 𝐶1), where 𝐶0 = 𝐸𝐾0(𝑃0), 𝐶1 = 𝐸𝐾1(𝑃1) and 𝑃0 ⊕

𝑃1 = Δ0. We denote the set of these pairs as 𝒮.

2. Ask 𝜂 ciphertext pairs (𝐶2, 𝐶3), where 𝐶2 = 𝐸𝐾2(𝑃2), 𝐶3 = 𝐸𝐾3(𝑃3) and 𝑃2 ⊕

𝑃3 = Δ0. We denote the set of these pairs as 𝒮 ′ .

3. Find right quartets satisfying the following conditions from 𝒮 and 𝒮 ′ : 𝑃0⊕𝑃1 =

𝑃2 ⊕ 𝑃3 = Δ0 and 𝐶0 ⊕ 𝐶2 = 𝐶1 ⊕ 𝐶3 = ∇1.

2.9 MILP-based Cryptanalysis
Linear programming (LP) involves optimizing a linear objective function subject to

linear inequalities with decision variables. When certain decision variables are re-

quired to be integers, the problem becomes mixed-integer linear programming (MILP).

MILP has practical applications in fields such as economy and business, but its use in

cryptography has been limited. If all decision variables must be integers, the problem

is referred to as pure integer linear programming (ILP).

In cryptography, MILP and ILP solvers have been used to solve problems related

to stream ciphers, hash functions, and Feistel networks. Borghoff et al. [110] used

CPLEX to solve the MILP problem for recovering the internal state of Bivium, while

Bouillaguet et al. [111] used an ILP solver to find a differential characteristic for SIMD.

Bogdanov [112] used an MILP program to calculate the minimum number of linearly

and differentially active S-boxes of unbalanced Feistel networks. These approaches
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are relatively time-consuming and involve a substantial amount of manual labor, as

well as the construction of multiple linear programming (LP) programs.

In [113, 48], MILP was used to assess the security of block ciphers against differen-

tial and linear cryptanalysis. Mouha et al. [48] introduced a model framework to

systematically calculate lower bounds on the minimum number of active 𝑆-boxes for

word-oriented ciphers. A short description to prove the security of word-oriented

ciphers against differential cryptanalysis of this model technique is given below.

In the context of truncated differences, a binary variable 𝑥 is utilized to represent a

word-level difference, where 𝑥 equals 1 if and only if the input word is non-zero. For

a cipher that comprises XOR, Linear Transformation, and 𝑆-box operations, the con-

straints below are employed to depict how word-level differences propagate through

the cipher:

Constraints for XOR Operation. Let the word-level input differences of the

XOR operation are 𝑢, 𝑣 and 𝑤 be its corresponding output difference. For XOR, the

differential branch number is 2, where the differential branch number is the minimum

number of input and output bytes that contain differences, excluding the case where

there are no differences in inputs nor outputs. The following constraints are used to

describe the XOR operation.

⎧⎪⎪⎨⎪⎪⎩
𝑢 + 𝑣 + 𝑤 ≥ 2𝑑⊕,

𝑑⊕ ≥ 𝑢, 𝑑⊕ ≥ 𝑣, 𝑑⊕ ≥ 𝑤,

where 𝑑⊕ ∈ {0, 1} is a new binary dummy variable.

Constraints for Linear Transformation. Let (𝑥0, · · · , 𝑥𝑚−1) and (𝑦0, · · · , 𝑦𝑚−1)

denote word-level input and output differences of the linear transformation 𝐿 respec-

tively. Given the differential branch number 𝐵𝒟, the linear transformation 𝐿 can be

constrained by the following linear equations:

⎧⎪⎪⎨⎪⎪⎩
𝑚−1∑︀
𝑖=0

𝑥𝑖 +
𝑚−1∑︀
𝑖=0

𝑦𝑖 ≥ 𝐵𝒟𝐷𝐿,

𝐷𝐿 ≥ 𝑥𝑖, 𝐷𝐿 ≥ 𝑦𝑖, 𝑖 ∈ {0, 1, · · · , 𝑚− 1},
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where 𝑑𝐿 ∈ {0, 1} is a dummy binary variable.

Additional Constraints. To prevent the trivial solution where no 𝑆-box is ac-

tive, an additional linear constraint is included in the ILP problem. If all 𝑑-variables

and 𝑥-variables corresponding to plaintext are restricted to binary values, the re-

sulting program becomes a pure ILP. However, if only 𝑑-variables are binary, and

plaintext variables are binary, the equations guarantee that the optimal solution for

other 𝑥-variables will also be binary. This approach leads to an MILP problem that

can be solved more efficiently.

Objective Fucnction The objective function is to minimize the number of active

𝑆-boxes,i.e, the sum of all variables representing word-level input differences of S-

boxes of eachround.

An MILP model was constructed using the above framework to determine the mini-

mum number of active S-boxes for a word-oriented block cipher. However, this model

does not take into account bitwise operations, making it unsuitable for bit-oriented

block ciphers. Sun et al. [114] extended this framework to SPN ciphers with bit-

wise permutation diffusion layers. At ASIACRYPT 2014, Sun et al. [115] improved

the MILP-based method for automatically evaluating block cipher security against

related-key differential cryptanalysis. They proposed a heuristic algorithm to find

actual related-key differential characteristics by introducing two systematic methods

for generating inequalities to remove impossible differential characteristics from the

model’s feasible region. In [116], Sun et al. encoded differential probabilities and

linear approximations of 𝑆-boxes into the MILP model and argued that the feasible

region of the model built using the convex hull computation method for 𝑆-boxes cor-

responds to the set of all possible related-key differential and linear characteristics.

Moreover, several automatic search algorithms based on MILP [100, 117, 118, 49] have

been developed to identify the most favorable linear and differential characteristics.

2.10 Differential Fault Analysis
Differential Fault Analysis (DFA) is a method that was first introduced by Biham and

Shamir in [119]. It is similar to differential cryptanalysis, and it typically requires
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knowledge of both correct and faulty data. The goal of DFA is to induce a fault in the

last rounds of a cipher and inject a difference in the intermediate state, which allows

the attacker to apply differential cryptanalysis to just a few rounds. In the case of

DES, it was shown that an attacker can flip a single bit in a register and if the fault

occurs in the last round, it can be used to reduce the possible keys to four 6-bit keys

on average, by knowing the input and output differences of one 𝑆-box.

DFA can also be applied to SPN structures like AES, where the last round does not

have a MixColumn operation. In [120], Piret and Quisquater, demonstrated how DFA

can be used to attack AES by injecting a difference in one byte just before the last

MixColumns operation of AES. This results in differences in 4 bytes of the ciphertext.

The attacker can then guess the 4 last round key bytes at the position of these differ-

ences, and use that information to invert the last round and an inverse MixColumns

operation. By discarding any key guesses that lead to a state with more than one

byte difference, the attacker can determine the 4 key bytes uniquely with just two

faulty ciphertexts. This method can also be applied to the second to last application

of MixColumns, allowing to recover 16 bytes of the last round key in parallel. The

fault analysis for attacking SPN ciphers, particularly those that use a diffusion matrix

as the linear layer instead of bit permutation, is similar and can be generalized from a

theoretical perspective to some extent. The security properties and potential vulner-

abilities of high-profile ciphers like AES [121, 122, 123], CLEFIA [124], present [125],

PRINCE [126], and MIDORI [127] have been recently studied using DFA, which is

a commonly employed method for analyzing the security of such ciphers.

2.11 Statistical Fault Analysis
Statistical fault analysis (SFA) differs from DFA in that it does not rely on injecting

differences in a pair of intermediate states. Instead, SFA attacks exploit the way

faults can affect the distribution of intermediate values across many encryptions.

This means that instead of encrypting the same input twice, many different unknown

inputs are processed. A simple version of this attack on AES is when a fault occurs

before the last round key application, which immediately reveals the key. Fuhr et

al. [31] first studied different fault models on the byte level, such as a stuck-at-zero
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fault, a stuck-at-one fault, and a stuck-at-random fault are used to show attacks on

AES.

2.12 Counting Elements Having at Least 𝑚 Prop-

erties
Counting elements with at least 𝑚 properties is a fundamental problem in combina-

torics and applied mathematics. Let’s consider a finite collection of sets 𝐴1, 𝐴2, . . . , 𝐴𝑛.

We define 𝐵𝑚 as the set of elements 𝑥 that belong to at least 𝑚 of the sets 𝐴1, 𝐴2, . . . , 𝐴𝑛,

i.e., 𝐵𝑚 = 𝑥 ∈ 𝐴1 ∪ . . . ∪𝐴𝑛 : 𝑥 belongs to at least 𝑚 of 𝐴1, 𝐴2, . . . , 𝐴𝑛. The objec-

tive is to determine the number of elements in 𝐵𝑚. We state this problem in Propo-

sition 2. Another variant of the problem is to count elements that have exactly 𝑚

properties. Both of these problems can be proved using similar techniques. The

formal proof of the latter variant can be found in [128, Theorem 7.4], where basic

counting methods are employed. However, it is also possible to prove this variant

using the mathematical induction technique. In this exposition, we will present the

proof of proposition using mathematical induction, without loss of generality. Fur-

thermore, we utilize the principle of inclusion-exclusion (stated in Proposition 1) as

a crucial tool in our proof. A formal proof of the inclusion-exclusion property can be

found in [128, Theorem 7.1]. For the sake of completeness, we will provide a brief

presentation of the proof of this inclusion-exclusion property.

Proposition 1 (The Principle of Inclusion and Exclusion). Suppose, we have 𝑛

number of finite sets as 𝐴1, . . . , 𝐴𝑛. Then, the cardinality of their unions can be

calculated using the following formula:

⃒⃒⃒ ⋃︁
1≤𝑖≤𝑛

𝐴𝑖

⃒⃒⃒
=

∑︁
1≤𝑖1≤𝑛

⃒⃒
𝐴𝑖1

⃒⃒
−

∑︁
1≤𝑖1≤𝑖2≤𝑛

⃒⃒
𝐴𝑖1 ∩𝐴𝑖2

⃒⃒
+

∑︁
1≤𝑖1≤𝑖2≤𝑖3≤𝑛

⃒⃒
𝐴𝑖1 ∩𝐴𝑖2 ∩𝐴𝑖3

⃒⃒
− . . . + (−1)𝑛+1⃒⃒ ∩𝑛

𝑖=1 𝐴𝑖

⃒⃒
.

Proof. We prove this Inclusion-Exclusion principle by counting the number of occu-

rances of an element from both sides in the relation. Let 𝑥 ∈ 𝐴1 ∪ . . . ∪ 𝐴𝑛. Then,

in the left hand side, the count will be 1. Now, we have to count the number of
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occurances of 𝑥 in the right hand side.

Let us assume that, 𝑥 belongs to ℓ number of sets out of 𝐴1, . . . , 𝐴𝑛. Then, the counts

of 𝑥 in the right hand side can be calculated in the following way.

∑︁
1≤𝑖1≤𝑛

⃒⃒
𝐴𝑖1

⃒⃒
=
(︃

ℓ

1

)︃
,

∑︁
1≤𝑖1≤𝑖2≤𝑛

⃒⃒
𝐴𝑖1 ∩𝐴𝑖2

⃒⃒
=
(︃

ℓ

2

)︃
,

∑︁
1≤𝑖1≤𝑖2≤𝑖3≤𝑛

⃒⃒
𝐴𝑖1 ∩𝐴𝑖2 ∩𝐴𝑖3

⃒⃒
=
(︃

ℓ

3

)︃
,

and, so on.

Thus, the right hand side can be written as:

(︃
ℓ

1

)︃
−
(︃

ℓ

2

)︃
+
(︃

ℓ

3

)︃
− . . . + (−1)ℓ+1

(︃
ℓ

ℓ

)︃

= 1− [1−
(︃

ℓ

1

)︃
+
(︃

ℓ

2

)︃
−
(︃

ℓ

3

)︃
+ . . .− (−1)ℓ+1

(︃
ℓ

ℓ

)︃
]

= 1− [1 + (−1)]ℓ [ Using Binomial Theorem]

= 1.

This completes the proof.

Proposition 2 (Counting elements having at least 𝑚 properties). Suppose we have

a finite 𝑛 number of sets 𝐴1, · · · , 𝐴𝑛. Let 𝐵𝑚 be the set of elements belonging to at

least 𝑚 number of sets of 𝐴1, · · · , 𝐴𝑛. Then,

|𝐵𝑚| =
𝑛−𝑚∑︁
ℎ=0

(−1)ℎ

(︃
𝑚 + ℎ− 1

𝑚− 1

)︃
𝑆𝑚+ℎ,

where

𝑆𝑗 =
∑︁

𝑖1≤······≤𝑖𝑗

⃒⃒⃒
𝐴𝑖1 ∩ · · · ∩𝐴𝑖𝑗

⃒⃒⃒
.

Proof. Let us prove Proposition 2 by using principle of mathematical induction. For

𝑚 = 1, the equality in Proposition 2 holds by using principle of inclusion and exclusion

53



(Proposition 1). Let us assume that Proposition 2 is true for 𝑚. Now, we have to

prove whether it is true for 𝑚 + 1 or not. Therefore, we have to show that

|𝐵𝑚+1| =
𝑛−𝑚−1∑︁

ℎ=0
(−1)ℎ

(︃
𝑚 + ℎ

𝑚

)︃
𝑆𝑚+ℎ+1.

Let 𝐶(𝑘, 𝑚) denote the number of times an element 𝑥 belonging to exactly 𝑘 sets out

of 𝐴1, 𝐴2, . . . , 𝐴𝑛 which is actually counted on the right hand side of the expression

| 𝐵𝑚 |. So, by induction hypothesis, we can write

𝐶(𝑘, 𝑚) =

⎧⎪⎨⎪⎩ 1, if 𝑘 ≥ 𝑚;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Let us assume that an element 𝑥 belonging to exactly 𝑘 sets out of the given 𝑛 sets

𝐴1, 𝐴2, . . . , 𝐴𝑛. Then we have to show that,

𝐶(𝑘, 𝑚 + 1) =

⎧⎪⎨⎪⎩ 1, if 𝑘 ≥ 𝑚 + 1;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Now, for 𝑘 ≥ 𝑚 + 1, 𝐶(𝑘, 𝑚 + 1) denote the number of times 𝑥 belonging to exactly 𝑘

sets of 𝑛 sets. This number is actually counted on the right hand side of the expression

| 𝐵𝑚+1 |. Therefore, we can write,

𝐶(𝑘, 𝑚 + 1) =
𝑛−𝑚−1∑︁

𝑖=0
(−1)𝑖

(︃
𝑚 + 𝑖

𝑚

)︃(︃
𝑘

𝑚 + 𝑖 + 1

)︃
.

(𝐴𝑠 𝑆𝑚+𝑖+1 =
∑︁
| 𝐴𝑗1 ∩𝐴𝑗2 ∩ . . . ∩𝐴𝑗𝑚+𝑖+1 |)

Now, by putting ℎ = 𝑖 + 1 in the above expresssion, we get

𝐶(𝑘, 𝑚 + 1) =
𝑛−𝑚∑︁
ℎ=1

(−1)ℎ−1
(︃

𝑚 + ℎ− 1
𝑚

)︃(︃
𝑘

𝑚 + ℎ

)︃
.

Further, we have

𝐶(𝑘, 𝑚) =
𝑛−𝑚∑︁
ℎ=0

(−1)ℎ

(︃
𝑚 + ℎ− 1

𝑚− 1

)︃(︃
𝑘

𝑚 + ℎ

)︃
= 1.
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Therefore, we have

𝐶(𝑘, 𝑚)− 𝐶(𝑘, 𝑚 + 1)

=
𝑛−𝑚∑︁
ℎ=0

(−1)ℎ

(︃
𝑚 + ℎ− 1

𝑚− 1

)︃(︃
𝑘

𝑚 + ℎ

)︃
−

𝑛−𝑚∑︁
ℎ=1

(−1)ℎ−1
(︃

𝑚 + ℎ− 1
𝑚

)︃(︃
𝑘

𝑚 + ℎ

)︃

=
(︃

𝑘

𝑚

)︃
+

𝑛−𝑚∑︁
ℎ=1

(−1)ℎ[
(︃

𝑚 + ℎ− 1
𝑚− 1

)︃
+
(︃

𝑚 + ℎ− 1
𝑚

)︃
]
(︃

𝑘

𝑚 + ℎ

)︃

=
(︃

𝑘

𝑚

)︃
+

𝑛−𝑚∑︁
ℎ=1

(−1)ℎ

(︃
𝑚 + ℎ

𝑚

)︃(︃
𝑘

𝑚 + ℎ

)︃

=
(︃

𝑘

𝑚

)︃
+
(︃

𝑘

𝑚

)︃
𝑛−𝑚∑︁
ℎ=1

(−1)ℎ

(︃
𝑘 −𝑚

ℎ

)︃

=
(︃

𝑘

𝑚

)︃
𝑛−𝑚∑︁
ℎ=0

(−1)ℎ

(︃
𝑘 −𝑚

ℎ

)︃

=
(︃

𝑘

𝑚

)︃
𝑘−𝑚∑︁
ℎ=0

(−1)ℎ

(︃
𝑘 −𝑚

ℎ

)︃
=
(︃

𝑘

𝑚

)︃
(1− 1)𝑘−𝑚 = 0.

Hence, 𝐶(𝑘, 𝑚 + 1) = 𝐶(𝑘, 𝑚) = 1. Again, for 𝑘 ≤ 𝑚, we have 𝐶(𝑘, 𝑚 + 1) = 0 as

|𝐵𝑚+1| =
𝑛−𝑚−1∑︁

ℎ=0
(−1)ℎ

(︃
𝑚 + ℎ

𝑚

)︃
𝑆𝑚+ℎ+1.

This completes the proof.
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3
NEW VARIANTS OF COUPON COLLECTOR

PROBLEM

3.1 Introduction
The Coupon Collector Problem (CCP) is a widely studied mathematical problem that

has various applications in different fields. It involves collecting different types of

coupons with the goal of getting one of each type. The expected number of coupons

needed to complete the collection can vary based on the probabilities of getting each

type of coupon and can be affected by various factors such as the arrival of coupons in

groups of constant size, or the intentions of a group of friends to complete multiple col-

lections. The problem has been applied in fields such as combinatorial mathematics,

computer science, cryptography, machine learning, operations research, marketing,

queueing theory, and simulation. It can also be used to analyze the performance

of systems that use multiple servers or to generate random samples for simulating

complex systems.

The CCP and its variants are of long-standing and recurrent interest in the field

of mathematics and computer science, as evidenced by their numerous mentions in

multiple studies [129, 130, 131, 132, 133]. The problem is well known for its rich

theoretical structures and implications, which have led to a wide range of practical

applications. Some of these applications include dynamic resource allocation, hashing,

and fault detection in combinatorial circuits.

The Fault Detection (FD) problem in digital circuit testing is particularly relevant to

57



the coupon collector problem. The goal of the FD problem is to identify the minimal

list of input vectors that can detect all the faults in a digital circuit. The standard

fault model assumes that faults occur infrequently and independently, with the only

possible faults being lines that are either stuck at 0 or 1. To solve the FD problem,

one randomly selects input vectors, determines the faults detected by each input, and

continues this process until all faults are detected. The probability of detecting a fault

is proportional to the number of input vectors that produce incorrect output when

that fault is present. This makes the FD problem similar to the coupon collector

problem, as both involve collecting items with a certain probability of success.

It has been found that in certain permutation-based ciphers under DFA, an attacker

who can cause 𝑙 consecutive bit-flips in the final rounds of the state can obtain the

𝑙 consecutive state bits. Although this consecutive bit-flip model in the context of

fault injection into a device may seem unrealistic, research has shown that consecutive

bit-flips can occur quite frequently. For instance, it has been shown [134, 135] that

a single-spot laser can induce these consecutive bit-flips and that the size of the

laser spot plays a major role. Additionally, a multi-spot laser setup [136] has been

demonstrated to be capable of injecting faults on more than two adjacent bits.

We present a new variant of the CCP that models the expected number of attempts

needed to complete the collection in this scenario. We call it the “Consecutive Coupon

Collector Problem (CCCP)”. The problem is as follows: if an attacker repeatedly injects

consecutive bit-faults into an 𝑛-bit register and in each trial, randomly selects a bit

and then flips 𝑘 bits (𝑘 ≤ 𝑛) to the right of the selected bit, what is the expected

number of trials to flip 𝑡 (1 ≤ 𝑡 ≤ 𝑛) bits? To the best of our knowledge, this problem

has not been treated previously in the literature.

We conduct a theoretical analysis of the problem, provide a mathematical proof, and

show a close match between our theoretical predictions and simulation results. We

also perform hypothesis testing to validate our calculations. Additionally, we extend

the problem to the “Circular” variant and treat it similarly. This problem may be of

independent interest to the research community.
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3.2 Summary of Known Variants of the Coupon

Collector Problem
The CCP is a popular problem with many variants in Discrete Probability The-

ory. Interestingly, some of the most common variants can be combined together in

a generalized problem statement as follows.

3.2.1 Generalized Problem Statement
Given a set of 𝑛 coupons, the collector draws randomly 𝑙 (1 ≤ 𝑙 ≤ 𝑛) many coupons

at each trial with replacement. What is the expected number of trials necessary to

collect 𝑚 copies of each coupon of the 𝑛 coupons?

3.2.2 Solution for Different Cases
Let 𝑋 𝑙

𝑚,𝑛 be a random variable to denote the number of trials necessary to collect 𝑚

copies of each coupon. We need to calculate 𝐸(𝑋 𝑙
𝑚,𝑛).

1. For 𝑙 = 1 and 𝑚 = 1, this problem is the Classic CCP [137]. In this case,

𝐸(𝑋1
1,𝑛) = 𝑛𝐻𝑛, (3.1)

where 𝐻𝑛 =
𝑛∑︀

𝑖=1
1
𝑖 is the 𝑛𝑡ℎ Harmonic number, which for large 𝑛, equals log(𝑛)+

𝑂(1).

𝐸(𝑋1
1,𝑛) = 𝑛 log(𝑛) + 𝑛𝑂(1).

2. For 𝑙 = 1 and 𝑚 ≥ 1 it can be shown that [133], we have

𝐸(𝑋1
𝑚,𝑛) =

∫︁ 1

0
(1− (1− 𝑆𝑚(𝑡)𝑒−𝑡)𝑛) 𝑑𝑡,

where 𝑆𝑚(𝑡) =
𝑚−1∑︀
𝑖=0

𝑡𝑖

𝑖! .

For fixed 𝑚 and large 𝑛,

𝐸(𝑋1
𝑚,𝑛) = 𝑛 log(𝑛) + 𝑛(𝑚− 1) log(log(𝑛)) + 𝑛𝑂(1).
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3. For 𝑙 ≥ 1 and 𝑚 = 1, one can show the following [138].

𝐸(𝑋 𝑙
1,𝑛) =

𝑛−1∑︁
𝑖=0

1(︃
1−

(︀𝑖
𝑑

)︀(︀𝑛
𝑑

)︀)︃
,

where
(︀𝑖

𝑑

)︀
= 0 if 𝑖 < 𝑑.

For fixed 𝑚 and large 𝑛,

𝐸(𝑋1
𝑚,𝑛) ≈ 1

𝑙
𝑛 log(𝑛).

4. For 𝑙 ≥ 1 and 𝑚 ≥ 1, one can derive the following bound [139].

(︀𝑛
𝑙

)︀
𝑛𝑙

𝐸(𝑋1
𝑚,𝑛)
𝑙

≤ 𝐸(𝑋 𝑙
𝑚,𝑛) ≤

𝐸(𝑋1
𝑚,𝑛)
𝑙

+ 𝑚𝑛

(︂
1− 1

𝑙

)︂
.

For 𝑙 ≥ 1 (e.g., Cases 3 and 4 above), the problem is sometimes referred to as the

Generalized Coupon Collector Problem. Several other variants of the CCP exist in the

literature [130, 140, 141, 129, 142, 143, 144, 145, 146] with different assumptions and

models.

3.3 Consecutive Coupon Collector Problem
In this chapter, we introduce a new variant called the Consecutive Coupon Collector

Problem (CCCP) and derive the relevant expected number of trials for both non-

circular and circular cases in the context of the consecutive bit-flip model. The result

in Proposition 2 is directly used to calculate the probability of an event for the CCCP.

3.3.1 Non-Circular Consecutive Coupon Collector Prob-

lem

The Non-Circular variant of the CCCP is a scenario in cryptography and information

security that considers an attacker repeatedly selecting a random bit from an 𝑛-bit

register and flipping 𝑙 bits to the right of the selected bit. The objective is to either

select all 𝑛 bits in the register or some 𝑡 (less than or equal to 𝑛) number of bits
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through multiple trials. This problem is an extension of the CCP and is of interest

to researchers and practitioners in the field of cryptography and information security.

To solve the problem, the first step is to find a solution for the boundary case, i.e.

finding the expected number of trials required to flip all 𝑛 bits in the register. Then,

the solution for all cases, i.e. finding the expected number of trials to flip 𝑡 bits (where

𝑡 is between 1 and 𝑛) in the register, is provided.

3.3.1.1 Solution to a Boundary Case of Non-Circular Consecutive

Coupon Collector Problem

Problem Statement.

Suppose an attacker targets to inject consecutive bits fault in a register containing

𝑛 bits. In each trial, the attacker randomly chooses a bit from the register and then

flips 𝑙 bits ( for some pre-defined number 𝑙 ≤ 𝑛 ) from the flipped one to the right

and marks them as flipped. Then, what is the expected number of trials so that all

the 𝑛 bits get flipped?

Exact Theoretical Solution.

For a fixed 𝑛, 𝑙, let us define the random variable 𝑋𝑖 as

𝑋𝑖 := Number of trials required for the bit position 𝑖 to be flipped.
𝑛/𝑙 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1.0

2 3.0 2.0

3 5.5 3.5 3.0

4 8.3 5.0 4.3 4.0

5 11.4 6.7 5.6 5.2 5.0

6 14.7 8.4 6.9 6.4 6.2 6.0

7 18.1 10.2 8.3 7.6 7.3 7.2 7.0

8 21.7 12.1 9.7 8.8 8.4 8.2 8.1 8.0

9 25.5 14.1 11.1 10.0 9.5 9.3 9.2 9.1 9.0

10 29.3 16.0 12.6 11.3 10.7 10.4 10.2 10.2 10.1 10.0

11 33.2 18.0 14.1 12.6 11.9 11.5 11.3 11.2 11.1 11.1 11.0

12 37.2 20.2 15.6 13.9 13.0 12.6 12.4 12.3 12.1 12.1 12.0 12.0

13 41.3 22.2 17.2 15.2 14.3 13.8 13.5 13.3 13.2 13.1 13.1 13.1 13.0

14 45.5 24.4 18.7 16.5 15.4 14.9 14.6 14.4 14.3 14.2 14.1 14.1 14.1 14.0

15 49.8 26.6 20.3 17.8 16.7 16.1 15.7 15.4 15.3 15.2 15.1 15.1 15.1 15.1 15.0

16 54.1 28.8 21.9 19.2 17.9 17.2 16.8 16.5 16.4 16.3 16.2 16.1 16.1 16.1 16.1 16.0

17 58.5 31.1 23.5 20.5 19.1 18.3 17.9 17.6 17.4 17.3 17.2 17.2 17.1 17.1 17.1 17.1 17.0

18 62.9 33.3 25.2 21.9 20.3 19.5 18.9 18.7 18.5 18.3 18.3 18.2 18.2 18.1 18.1 18.1 18.1 18.0

19 67.4 35.6 26.8 23.3 21.6 20.7 20.1 19.8 19.5 19.4 19.3 19.2 19.2 19.1 19.1 19.1 19.1 19.1 19.0

20 71.9 37.9 28.5 24.7 22.8 21.8 21.2 20.9 20.6 20.5 20.3 20.3 20.2 20.2 20.1 20.1 20.1 20.1 20.1 20.0

21 76.5 40.3 30.1 26.1 24.1 22.9 22.3 21.9 21.7 21.5 21.4 21.3 21.2 21.2 21.1 21.1 21.1 21.1 21.1 21.1 21.0

22 81.2 42.6 31.8 27.5 25.3 24.2 23.5 23.1 22.7 22.5 22.4 22.3 22.2 22.2 22.1 22.1 22.1 22.1 22.1 22.1 22.1 22.0

23 85.9 45.1 33.5 28.9 26.6 25.3 24.6 24.1 23.8 23.6 23.5 23.4 23.3 23.2 23.2 23.1 23.1 23.1 23.1 23.1 23.1 23.0 23.0

24 90.6 47.5 35.3 30.3 27.9 26.5 25.7 25.2 24.9 24.7 24.5 24.4 24.3 24.2 24.2 24.2 24.1 24.1 24.1 24.1 24.1 24.1 24.0 24.0

Table 3.1: Theoretical values for the boundary case of non-circular CCCP
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Now, observe that, if we want bit position 𝑖 to be flipped, then there exist some fixed

bit positions which need to be flipped in the trials that makes our concerned position

checked. We want the expected number of trials so that all the positions get checked.

So, we need to find the expectation of the maximum number of trials required for 𝑛

number of bits to get checked. Let us define a new random variable 𝑋 as

𝑋 := max
𝑖

𝑋𝑖,

and we want to calculate E(𝑋). Before proceeding into mathematical details, let us

first fix some notations.

1. Distance between node 𝑖 and node 𝑗 is 𝑑𝑖𝑗 :=| 𝑖− 𝑗 |.

2. WLOG, let 𝑖 < 𝑗. The number of joint favorable hitting positions contributed

by 𝑗 given 𝑖 is 𝑣𝑖𝑗 := min(𝑑𝑖𝑗 , 𝑙).

Then, WLOG given 𝐴 = {𝑖1, 𝑖2, . . . , 𝑖𝑝} ⊂ {1, 2, . . . , 𝑛}, where 𝑖1 < 𝑖2 < . . . < 𝑖𝑝 the

total number of favorable hitting positions such that at least one of them is flipped

is given by

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑝) := 𝑣0𝑖1 + 𝑣𝑖1𝑖2 + 𝑣𝑖2𝑖3 + · · ·+ 𝑣𝑖𝑝−1𝑖𝑝 .

Where, following our definition above, 𝑣0𝑖1 = min(𝑑0𝑖1 , 𝑙) = min(|0−𝑖1|, 𝑙) = min(𝑖1, 𝑙).

Thus, we can write down the joint probability as

Pr(𝑋𝑖1 > 𝑟, 𝑋𝑖2 > 𝑟, . . . , 𝑋𝑖𝑝 > 𝑟) =

⎡⎢⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑝)

𝑛

⎤⎥⎦
𝑟

.

Due to the independence of the trials, we will get by using the Principle of inclusion
and exclusion,

Pr(𝑋 > 𝑟) = Pr(max
𝑖

𝑋𝑖 > 𝑟)

=
∑︁

𝑖

Pr(𝑋𝑖 > 𝑟)−
∑︁

𝑖1<𝑖2

Pr(𝑋𝑖1 > 𝑟, 𝑋𝑖2 > 𝑟) + · · ·+ (−1)𝑛+1 Pr(𝑋1 > 𝑟, 𝑋2 > 𝑟, . . . , 𝑋𝑛 > 𝑟).

62



As the last term will be 0 for all 𝑟 ≥ 1. Then we have,

Pr(𝑋 > 𝑟)

=
∑︁

𝑖

⎡⎣1−
𝑙

𝑛

⎤⎦𝑟

−
∑︁

𝑖1<𝑖2

⎡⎣1−
ℎ (𝑖1, 𝑖2)

𝑛

⎤⎦𝑟

+ · · ·+ (−1)𝑛
∑︁

𝑖1<···<𝑖𝑛−1

⎡⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

𝑛

⎤⎦𝑟

.

Finally, we can conclude that,

E(𝑋) =
∑︁
𝑟≥0

Pr(𝑋 > 𝑟)

=
∑︁
𝑟≥0

∑︁
𝑖

⎡⎣1−
𝑙

𝑛

⎤⎦𝑟

−
∑︁
𝑟≥0

∑︁
𝑖1<𝑖2

⎡⎣1−
ℎ (𝑖1, 𝑖2)

𝑛

⎤⎦𝑟

+ · · ·+ (−1)𝑛
∑︁
𝑟≥0

∑︁
𝑖1<···<𝑖𝑛−1

⎡⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

𝑛

⎤⎦𝑟

=
∑︁

𝑖

∑︁
𝑟≥0

⎡⎣1−
𝑙

𝑛

⎤⎦𝑟

−
∑︁

𝑖1<𝑖2

∑︁
𝑟≥0

⎡⎣1−
ℎ (𝑖1, 𝑖2)

𝑛

⎤⎦𝑟

+ · · ·+ (−1)𝑛
∑︁

𝑖1<···<𝑖𝑛−1

∑︁
𝑟≥0

⎡⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

𝑛

⎤⎦𝑟

=
∑︁

𝑖

𝑛

𝑙
−
∑︁

𝑖1<𝑖2

𝑛

ℎ (𝑖1, 𝑖2) + · · ·+ (−1)𝑛
∑︁

𝑖1<···<𝑖𝑛−1

𝑛

ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

= 𝑛

⎡⎣∑︁
𝑖

1
𝑙
−
∑︁

𝑖1<𝑖2

1
ℎ (𝑖1, 𝑖2) + · · · + (−1)𝑛

∑︁
𝑖1<···<𝑖𝑛−1

1
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

]︂
.

Empirical Validation.

We simulate the procedure 1,00,000 times for each value of 𝑛 and 𝑙 and take averages

over those values to compare it with the theoretical values. Both the theoretical and

the simulated values are given in Table 3.1 and Table 3.2 respectively. It is clear that

our theoretical result is very close to the simulated one.

Counting observations beyond 3𝜎 limits.

The corrplot in Figure 3-1 of the difference matrix obtained from the theoretical and

the simulated values shows an idea of how close the values are.

Also, we plot the 3𝜎 limits in Figure 3-2 around the mean differences to see how many

of the observations fall beyond 3𝜎 limit.

Notice that, out of the 300 observations, only 3 of them are not significantly close

which is 3
300 = 1% of the total number of observations. Hence there is clear evidence

that our calculations are correct.
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Now, to make things more rigorous, we can do some hypothesis testing, which results

in an interesting observation.

Hypothesis Testing.

For each fixed 𝑛 and 𝑙, let, 𝑌 1
𝑛,𝑙, 𝑌 2

𝑛,𝑙, . . . 𝑌 𝑚
𝑛,𝑙 be 𝑚 observations coming from some

distribution with mean 𝜇𝑛𝑙. Then, we can frame our hypothesis as:

ℋ0 : 𝜇𝑛𝑙 = 𝑡(𝑛, 𝑙), ℋ𝐴 : 𝜇𝑛𝑙 ̸= 𝑡(𝑛, 𝑙),

where, 𝑡(𝑛, 𝑙) is our calculated theoretical value. For our purpose, 𝑚 = 1, 00, 000.

So, we can do a large sample approximation here. We want to test at 5% level of

significance. Then, the test statistic will be,

𝑇 =
√

𝑚 (𝑌𝑛,𝑙 − 𝜇𝑛𝑙)
𝑠𝑛𝑙

,

where,

𝑌𝑛,𝑙 =
1
𝑚

𝑚∑︁
𝑖=1

𝑌 𝑖
𝑛,𝑙, and 𝑠𝑛𝑙 =

1
𝑚− 1

𝑚∑︁
𝑖=1

(𝑌 𝑖
𝑛,𝑙 − 𝑌𝑛,𝑙)2.

Since we are doing a both-sided test, our decision rule will be,

𝑛/𝑙 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1.0

2 3.0 1.9

3 5.5 3.5 2.9

4 8.3 5.0 4.3 4.0

5 11.4 6.7 5.6 5.2 4.9

6 14.7 8.4 6.9 6.4 6.2 6.0

7 18.2 10.2 8.3 7.6 7.3 7.2 6.9

8 21.7 12.1 9.7 8.8 8.4 8.2 8.1 8.0

9 25.4 14.0 11.1 10.0 9.5 9.3 9.2 9.1 9.0

10 29.3 16.1 12.6 11.3 10.7 10.4 10.2 10.2 10.0 9.9

11 33.2 18.1 14.0 12.5 11.9 11.4 11.3 11.2 11.1 11.1 10.9

12 37.2 20.1 15.6 13.8 13.1 12.6 12.4 12.2 12.2 12.1 12.1 12.0

13 41.4 22.3 17.2 15.1 14.2 13.8 13.5 13.4 13.2 13.2 13.2 13.1 13.0

14 45.5 24.4 18.7 16.6 15.5 14.9 14.6 14.3 14.3 14.2 14.2 14.1 14.0 13.9

15 49.8 26.6 20.3 17.8 16.7 16.0 15.6 15.4 15.4 15.2 15.1 15.1 15.1 15.1 14.9

16 54.1 28.9 21.9 19.2 17.9 17.2 16.7 16.5 16.3 16.2 16.1 16.1 16.1 16.0 16.0 15.9

17 58.5 31.0 23.5 20.4 19.1 18.4 17.9 17.6 17.4 17.3 17.2 17.1 17.1 17.1 17.1 17.0 16.9

18 62.9 33.3 25.1 21.9 20.3 19.5 18.9 18.6 18.4 18.4 18.3 18.2 18.2 18.2 18.1 18.0 18.0 17.9

19 67.4 35.6 26.8 23.3 21.6 20.7 20.1 19.9 19.4 19.4 19.3 19.3 19.2 19.2 19.2 19.0 19.0 19.1 19.0

20 72.0 37.8 28.5 24.7 22.8 21.8 21.2 20.8 20.6 20.4 20.3 20.2 20.1 20.2 20.1 20.2 20.1 20.1 20.0 19.9

21 76.4 40.3 30.1 26.0 24.0 23.1 22.3 21.9 21.6 21.5 21.4 21.2 21.1 21.2 21.2 21.1 21.1 21.1 21.1 20.9 20.9

22 81.1 42.6 31.9 27.5 25.4 24.1 23.4 22.9 22.7 22.7 22.4 22.3 22.3 22.3 22.1 22.1 22.1 22.1 21.9 22.1 21.9 22.1

23 85.9 45.1 33.5 28.7 26.7 25.5 24.6 24.2 23.8 23.6 23.5 23.4 23.2 23.2 23.2 23.1 23.1 23.3 23.0 23.1 23.1 23.2 22.9

24 90.6 47.6 35.3 30.3 27.8 26.6 25.7 25.2 24.8 24.6 24.4 24.3 24.3 24.2 24.1 24.2 23.9 24.1 24.1 24.0 24.1 23.9 24.0 23.9

Table 3.2: Simulated values for the boundary case of non-circular CCCP
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Figure 3-1: Corrplot of the difference matrix between theoretical and simulated values
for the boundary case of non-circular CCCP

Reject ℋ0 if |𝑇𝑜𝑏𝑠| > 1.96 .

Now, we are doing 25×24
2 = 300 many testings. Out of them 17 was rejected which is

17
300 × 100% = 5.67% of the total values.

3.3.1.2 Solution to All Cases of Non-Circular Consecutive Coupon

Collector Problem

Problem Statement.

Suppose an attacker targets to inject consecutive bits fault in a register containing 𝑛

number of bits. In each trial, the attacker randomly chooses a bit from the register

and then flips 𝑙 bits ( for some pre-defined number 𝑙 ≤ 𝑛 ) from the flipped one to

the right and marks them as flipped. Then, what is the expected number of trials so

that 𝑡 (1 ≤ 𝑡 ≤ 𝑛) number of bits get flipped?
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Figure 3-2: Mean differences between theoretical and simulated values for the bound-
ary case of non-circular CCCP with 3𝜎 limit

Exact Theoretical Solution.

For a fixed 𝑛, 𝑙, and 𝑡, let us define the random variable 𝑋𝑖 as

𝑋𝑖 := Number of trials required for the bit position 𝑖 to be flipped.

Now, observe that, if we want bit position 𝑖 to be flipped, then there exist some fixed

bit positions which need to be flipped in the trials that make our concerned position

checked. We want the expected number of trials so that all the positions get checked.

So, we need to find the expectation of the maximum number of trials required so that

1 ≤ 𝑡 ≤ 𝑛 number of bits get checked in the register. Let us define a new random

variable 𝑋 as

𝑋 := min
{𝑖1,𝑖2,··· ,𝑖𝑡}⊂{1,2,··· ,𝑛}

max
𝑖∈{𝑖1,𝑖2,··· ,𝑖𝑡}

𝑋𝑖,

and we want to calculate E(𝑋). Before proceeding to the mathematical details, let

us first fix some notations.
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1. Distance between node 𝑖 and node 𝑗 is 𝑑𝑖𝑗 :=| 𝑖− 𝑗 | .

2. WLOG, let 𝑖 < 𝑗. The number of joint favorable hitting positions contributed

by 𝑗 given 𝑖 is 𝑣𝑖𝑗 := min(𝑑𝑖𝑗 , 𝑙).

Then, WLOG given 𝐴 = {𝑖1, 𝑖2, . . . , 𝑖𝑝} ⊂ {1, 2, . . . , 𝑛}, where 𝑖1 < 𝑖2 < . . . < 𝑖𝑝 the

total number of favorable hitting positions such that at least one of them is flipped

is given by

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑝) := 𝑣0𝑖1 + 𝑣𝑖1𝑖2 + 𝑣𝑖2𝑖3 + · · ·+ 𝑣𝑖𝑝−1𝑖𝑝 .

Where, following our definition above, 𝑣0𝑖1 = min(𝑑0𝑖1 , 𝑙) = min(|0−𝑖1|, 𝑙) = min(𝑖1, 𝑙).

Thus, we can write down the joint probability as

Pr(𝑋𝑖1 > 𝑟, 𝑋𝑖2 > 𝑟, . . . , 𝑋𝑖𝑝 > 𝑟) =

⎡⎢⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑝)

𝑛

⎤⎥⎦
𝑟

.

Due to the independence of the trials, we will get by using Proposition 2,

Pr(𝑋 > 𝑟) = Pr(𝑋𝑖 > 𝑟 for at least 𝑛− 𝑡 + 1 values of 𝑖)

=
∑︁

𝑖1<···<𝑖𝑛−𝑡+1

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛−𝑡+1 > 𝑟)−
(︂

𝑛− 𝑡 + 1
1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+2

Pr(𝑋𝑖1 > 𝑟, · · ·

, 𝑋𝑖𝑛−𝑡+2 > 𝑟) +
(︂

𝑛− 𝑡 + 2
2

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+3

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛−𝑡+3 > 𝑟) + . . .

+ (−1)𝑡−1 ·
(︂

𝑛− 1
𝑡− 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛
> 𝑟)

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︂
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛−𝑡+𝑘
> 𝑟)

]︃

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︂
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

[︂
1−

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)
𝑛

]︂𝑟
]︃

.
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Finally, we can conclude that,

E(𝑋) =
∑︁
𝑟≥0

Pr(𝑋 > 𝑟)

=
∑︁
𝑟≥0

𝑡∑︁
𝑘=1

[︃
(−1)𝑘−1 ×

(︂
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

[︂
1−

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)
𝑛

]︂𝑟
]︃

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︂
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

∑︁
𝑟≥0

[︂
1−

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)
𝑛

]︂𝑟
]︃

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︂
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

𝑛

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)

]︃

= 𝑛 ·
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︂
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︂
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

1
ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)

]︃
.
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Figure 3-3: Graphical comparison of expected values for 𝑛 = 𝑡 = 15, 20, 25, 32
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Empirical Validation of the Above Solution.

Now we want to verify whether our calculations empirically matched with the simu-

lation. We simulate the procedure 1,00,000 times for each value of 𝑛, 𝑙, and 𝑡. Upon

comparison, we find that the theoretical values closely match the corresponding ex-

perimental ones. Figure 3-3 shows a graphical representation of the expected value

(vertical axis) with the 𝑙 consecutive number of bits (horizontal axis) for some specific

values of 𝑛 = 𝑡 = 10, 15, 25, 32.

Additionally, we perform hypothesis testing to validate our calculations of the problem

as follows.

Hypothesis Testing.

For each fixed 𝑛, 𝑡, and 𝑘, let, 𝑌 1
𝑛,𝑡,𝑘, 𝑌 2

𝑛,𝑡,𝑘,

. . . 𝑌 𝑚
𝑛,𝑡,𝑘 be 𝑚 observations coming from some distribution with mean 𝜇𝑛𝑡𝑘. Then,

we can frame our hypothesis as:

ℋ0 : 𝜇𝑛𝑡𝑘 = 𝑛𝑐(𝑛, 𝑡, 𝑘), ℋ𝐴 : 𝜇𝑛𝑡𝑘 ̸= 𝑛𝑐(𝑛, 𝑡, 𝑘),

where, 𝑛𝑐(𝑛, 𝑡, 𝑘) is our calculated theoretical value. For our purpose, 𝑚 = 50, 000.

So, we can do large sample approximation here. We want to test at 5% level of

significance. Then, the test statistic will be,

𝑇 =
√

𝑚 (𝑌𝑛,𝑡,𝑘 − 𝑛𝑐(𝑛, 𝑡, 𝑘))
𝑠𝑛,𝑡,𝑘

,

where,

𝑌𝑛,𝑡,𝑘 =
1
𝑚

𝑚∑︁
𝑖=1

𝑌 𝑖
𝑛,𝑡,𝑘, and 𝑠𝑛,𝑡,𝑘 =

1
𝑚− 1

𝑚∑︁
𝑖=1

(𝑌 𝑖
𝑛,𝑡,𝑘 − 𝑌𝑛,𝑡,𝑘)2.

Under ℋ0, 𝑇 ∼ 𝒩 (0, 1). Since we are doing a both-sided test, our decision rule will

be,

Reject ℋ0 if |𝑇𝑜𝑏𝑠| > 1.96 .
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Now, observe that some of the observations must be accurate to the theoretical values.

So, those observations totally coincides with their theoretical values and do not qualify

for testing. To be very specific,

– For some fixed 𝑛 and 𝑡, it is enough to consider 𝑘’s only from 1 to 𝑡 because if

𝑘 ≥ 𝑡 + 1, then, the events are identical to the one when 𝑘 = 𝑡.

– For any 𝑛, when 𝑡 = 1, that means we want to see how many trials are required

to mark at least one of the entries checked and that value is always 1.

– Since the calculation of theoretical values is computationally expensive, we are

testing up to 𝑛 = 23.

3.3.1.3 Total Number of Hypothesis Testing

For each fixed 𝑛, we are taking 𝑡 from 2 to 𝑛, that is 𝑛− 1 values and for each fixed

𝑡 value, we are considering 𝑘 values from 1 to 𝑡. So, for 𝑛 = 1, 2, . . . , 23, the total

number of test performed is given by

23∑︁
𝑛=2

𝑛∑︁
𝑡=2

𝑡 =
23∑︁

𝑛=2

⎡⎢⎣(𝑛 + 1)𝑛
2 − 1

⎤⎥⎦ =
1
2

23∑︁
𝑛=2

[𝑛2 + 𝑛− 2] =
1
2

[︃ 23∑︁
𝑛=2

𝑛2 +
23∑︁

𝑛=2
𝑛− 22× 2

]︃

=
1
2

[︃ 23∑︁
𝑛=1

𝑛2 +
23∑︁

𝑛=1
𝑛− 23× 2

]︃
=

1
2

⎡⎢⎣23× 24× 47
6 +

23× 24
2 − 46

⎤⎥⎦ = 2277.

Out of these 2277 many testing procedures, only 123 many have been rejected which

is
123
2277 × 100 = 5.4% of the total testing problems, which is significantly small,

conforming to our theoretical estimates.

3.3.2 Circular Consecutive Coupon Collector Problem

The above problem can extend to a new problem where an attacker circularly flips

consecutive bits. In this case, an attacker first selects the bit position 𝑖 and then

flips 𝑙 consecutive bits areas 𝑖, 𝑖 + 1, · · · , (𝑖 + 𝑘 − 1) (mod 𝑛). This problem looks

very similar to the Non-circular Consecutive problem. We will give the solution to

this problem from our theoretical interests. To the best of our knowledge, this might
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also be the first time where we will provide a theoretical solution to this problem and

show that these values closely behave with the simulated values.

3.3.2.1 Solution to a Boundary Case of Circular Consecutive Coupon

Collector Problem

Problem Statement.

Suppose an attacker targets to inject consecutive bits fault in a register containing

𝑛 number of bits. In each trial, the attacker randomly chooses a bit 𝑖 from the

register and then flips 𝑙 bits circularly ( for some pre-defined number 𝑙 ≤ 𝑛 ), i.e., bits

𝑖, 𝑖 + 1, · · · , 𝑖 + 𝑙− 1 (mod 𝑛) and marks them as flipped. Then, what is the expected

number of trials so that all the 𝑛 bits get flipped?

Exact Theoretical Solution.

For a fixed 𝑛 and 𝑙, let us define the random variable 𝑋𝑖 as

𝑋𝑖 := Number of trials required for the bit position 𝑖 to get selected.

𝑛/𝑙 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1

2 3 1

3 5.5 2.5 1

4 8.3 3.7 2.3 1

5 11.4 5.2 3.1 2.2 1

6 14.7 6.7 4 2.8 2.2 1

7 18.1 8.3 5.1 3.4 2.6 2.2 1

8 21.7 10.1 6.1 4.2 3.1 2.5 2.1 1

9 25.5 11.9 7.3 5.1 3.7 2.9 2.4 2.1 1

10 29.3 13.7 8.4 5.9 4.3 3.4 2.8 2.4 2.1 1

11 33.2 15.6 9.6 6.7 5 3.9 3.2 2.7 2.3 2.1 1

12 37.2 17.5 10.9 7.6 5.7 4.4 3.6 3 2.6 2.3 2.1 1

13 41.3 19.5 12.1 8.5 6.4 5.0 4.0 3.3 2.9 2.5 2.3 2.1 1

14 45.5 21.6 13.4 9.4 7.1 5.6 4.5 3.7 3.2 2.8 2.5 2.2 2.1 1

15 49.8 23.6 14.8 10.4 7.8 6.1 5.0 4.1 3.5 3.0 2.7 2.4 2.2 2.1 1

16 54.1 25.7 16.1 11.3 8.6 6.7 5.5 4.5 3.8 3.3 2.9 2.6 2.4 2.2 2.1 1

17 58.5 27.9 17.5 12.3 9.3 7.3 5.9 5.0 4.2 3.6 3.2 2.8 2.6 2.4 2.2 2.1 1

18 62.9 30 18.9 13.3 10.1 7.9 6.5 5.4 4.6 3.9 3.4 3.1 2.8 2.5 2.3 2.2 2.1 1

19 67.4 32.2 20.3 14.4 10.9 8.6 7.0 5.9 5.0 4.3 3.7 3.3 2.9 2.7 2.5 2.3 2.2 2.0 1

20 71.9 34.4 21.7 15.4 11.7 9.2 7.5 6.3 5.4 4.6 4.0 3.6 3.2 2.9 2.7 2.5 2.3 2.2 2.0 1

21 76.5 36.7 23.2 16.4 12.5 9.9 8.1 6.8 5.7 5.0 4.3 3.8 3.3 3.1 2.8 2.6 2.4 2.3 2.2 2.1 1

22 81.2 38.9 24.6 17.5 13.3 10.5 8.6 7.2 6.2 5.3 4.7 4.1 3.6 3.3 3.0 2.8 2.6 2.4 2.3 2.1 2.0 1

23 85.9 41.3 26.1 18.6 14.1 11.2 9.2 7.7 6.6 5.7 5.0 4.4 3.9 3.5 3.2 2.9 2.7 2.5 2.4 2.2 2.1 2.0 1

24 90.6 43.6 27.6 19.7 14.9 11.9 9.7 8.2 6.9 6.0 5.3 4.7 4.2 3.7 3.4 3.1 2.9 2.7 2.5 2.4 2.2 2.1 2.0 1

Table 3.3: Theoretical values for the boundary case of circular CCCP

71



Now, observe that, if we want the bit position 𝑖 to be flipped, then there exist some

fixed bit positions which need to be flipped in the trials that make our concerned

position checked. We want the expected number of trials so that all the bit positions

get checked. So, we need to find the expectation of the maximum number of trials

required so that all bits in the register get selected. Let us define a new random

variable 𝑋 as

𝑋 := max
𝑖

𝑋𝑖,

and we want to calculate E(𝑋). Before proceeding to the mathematical details, let

us first fix some notations.

1. Anti clock-wise distance between node 𝑖 and node 𝑗 is

𝑑𝑖𝑗 :=

⎧⎪⎪⎨⎪⎪⎩
|𝑖− 𝑗| |𝑖− 𝑗| < 𝑛

2

𝑛− |𝑖− 𝑗| |𝑖− 𝑗| ≥ 𝑛
2 ·

2. WLOG, let 𝑖 < 𝑗 and |𝑖 − 𝑗| < 𝑛
2 . Then the number of joint favorable hitting

positions contributed by 𝑗 given 𝑖 is 𝑣𝑖𝑗 := min(𝑑𝑖𝑗 , 𝑙).

Then, WLOG given 𝐴 = {𝑖1, 𝑖2, . . . 𝑖𝑝} ⊂ {1, 2, . . . , 𝑛}, where 𝑖1 < 𝑖2 < . . . < 𝑖𝑝 the

total number of favorable hitting positions such that at least one of them is selected

is given by

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑝) := 𝑣𝑖1𝑖2 + 𝑣𝑖2𝑖3 + . . . 𝑣𝑖𝑝−1𝑖𝑝 + 𝑣𝑖𝑝𝑖1

Thus, we can write down the joint probability as

Pr(𝑋𝑖1 > 𝑟, 𝑋𝑖2 > 𝑟, . . . , 𝑋𝑖𝑝 > 𝑟) =

⎡⎢⎣1−
ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑝)

𝑛

⎤⎥⎦
𝑟

.
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since the trials are independent, we will get by using the Principle of inclusion and
exclusion

Pr(𝑋 > 𝑟) = Pr(max
𝑖

𝑋𝑖 > 𝑟)

=
∑︁

𝑖

Pr(𝑋𝑖 > 𝑟)−
∑︁

𝑖1<𝑖2

Pr(𝑋𝑖1 > 𝑟, 𝑋𝑖2 > 𝑟) + · · ·+ (−1)𝑛+1 Pr(𝑋1 > 𝑟, 𝑋2 > 𝑟, . . . , 𝑋𝑛 > 𝑟)

=
∑︁

𝑖

⎡⎣1−
𝑙

𝑛

⎤⎦𝑟

−
∑︁

𝑖1<𝑖2

⎡⎣1−
ℎ (𝑖1, 𝑖2)

𝑛

⎤⎦𝑟

+ · · ·+ (−1)𝑛
∑︁

𝑖1<···<𝑖𝑛−1

⎡⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

𝑛

⎤⎦𝑟

.

Since the last term will be 0 for all 𝑟 ≥ 1. And finally, we can conclude that,

E(𝑋) =
∑︁
𝑟≥0

Pr(𝑋 > 𝑟)

=
∑︁
𝑟≥0

∑︁
𝑖

⎡⎣1−
𝑙

𝑛

⎤⎦𝑟

−
∑︁
𝑟≥0

∑︁
𝑖1<𝑖2

⎡⎣1−
ℎ (𝑖1, 𝑖2)

𝑛

⎤⎦𝑟

+ · · ·+ (−1)𝑛
∑︁
𝑟≥0

∑︁
𝑖1<···<𝑖𝑛−1

⎡⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

𝑛

⎤⎦𝑟

=
∑︁

𝑖

∑︁
𝑟≥0

⎡⎣1−
𝑙

𝑛

⎤⎦𝑟

−
∑︁

𝑖1<𝑖2

∑︁
𝑟≥0

⎡⎣1−
ℎ (𝑖1, 𝑖2)

𝑛

⎤⎦𝑟

+ · · ·+ (−1)𝑛
∑︁

𝑖1<···<𝑖𝑛−1

∑︁
𝑟≥0

⎡⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

𝑛

⎤⎦𝑟

=
∑︁

𝑖

𝑛

𝑙
−
∑︁

𝑖1<𝑖2

𝑛

ℎ (𝑖1, 𝑖2) + · · ·+ (−1)𝑛
∑︁

𝑖1<···<𝑖𝑛−1

𝑛

ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

= 𝑛

⎡⎣∑︁
𝑖

1
𝑙
−
∑︁

𝑖1<𝑖2

1
ℎ (𝑖1, 𝑖2) + · · ·+ (−1)𝑛

∑︁
𝑖1<···<𝑖𝑛−1

1
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑛−1)

⎤⎦ .

Empirical Validation.

Now we want to verify whether our calculations are true. To check this, we have

simulated the procedure 1,00,000 times for each value of 𝑛 and 𝑙 and taken averages

over those values to compare them with the theoretical values. Both the theoretical

and the simulated results are given in Table 3.3 and Table 3.4 respectively and showed

that our theoretical result is very close to the simulated one.

Counting observations beyond 3𝜎 limits.

The corrplot is given in Figure 3-4 of the difference matrix obtained from the theo-

retical and the simulated values to have an idea about how close the values are.

Next, we plot the 3𝜎 limits in Figure 3-5 around the mean differences to see how

many of the observations fall beyond 3𝜎 limit.
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Notice that, out of the 300 observations, only 7 of them are not significantly close

𝑛/𝑙 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1

2 3.0 1

3 5.5 2.5 1

4 8.3 3.7 2.3 1

5 11.4 5.2 3.15 2.2 1

6 14.7 6.7 4.0 2.8 2.2 1

7 18.1 8.3 5.1 3.4 2.6 2.2 1

8 21.7 10.1 6.2 4.2 3.1 2.5 2.1 1

9 25.4 11.8 7.3 5.0 3.7 2.9 2.4 2.1 1

10 29.3 13.7 8.4 5.9 4.3 3.4 2.8 2.3 2.1 1

11 33.3 15.6 9.6 6.7 5.0 3.9 3.1 2.7 2.3 2.1 1

12 37.2 17.5 10.9 7.6 5.7 4.4 3.6 3.0 2.6 2.3 2.1 1

13 41.4 19.5 12.1 8.5 6.4 5.0 4.0 3.3 2.9 2.5 2.3 2.1 1

14 45.5 21.6 13.4 9.4 7.1 5.6 4.5 3.7 3.2 2.8 2.5 2.2 2.0 1

15 49.8 23.6 14.8 10.4 7.8 6.1 5.0 4.1 3.5 3.0 2.7 2.4 2.2 2.1 1

16 54.1 25.7 16.1 11.4 8.5 6.8 5.5 4.5 3.9 3.3 2.9 2.6 2.4 2.2 2.1 1

17 58.4 27.8 17.5 12.3 9.3 7.3 5.9 5.0 4.2 3.6 3.2 2.8 2.6 2.4 2.2 2.1 1

18 62.9 30.1 18.9 13.3 10.1 7.9 6.5 5.4 4.6 3.9 3.4 3.1 2.8 2.5 2.3 2.2 2.1 1

19 67.3 32.2 20.3 14.4 10.9 8.6 7.0 5.9 5.0 4.3 3.7 3.3 2.9 2.7 2.5 2.3 2.2 2.1 1

20 71.9 34.4 21.8 15.4 11.7 9.2 7.6 6.3 5.4 4.6 4.0 3.6 3.2 2.9 2.7 2.5 2.3 2.2 2.0 1

21 76.5 36.7 23.2 16.4 12.5 9.9 8.1 6.8 5.8 5.0 4.3 3.8 3.4 3.1 2.8 2.6 2.4 2.3 2.1 2.0 1

22 81.2 38.9 24.7 17.5 13.3 10.5 8.6 7.2 6.2 5.3 4.7 4.1 3.6 3.3 3.0 2.8 2.6 2.4 2.3 2.1 2.0 1

23 85.9 41.3 26.1 18.6 14.1 11.2 9.2 7.7 6.6 5.7 4.9 4.4 3.9 3.5 3.2 2.9 2.7 2.5 2.4 2.2 2.1 2.0 1

24 90.6 43.6 27.6 19.6 14.9 11.9 9.7 8.1 6.9 6.0 5.3 4.7 4.2 3.7 3.4 3.1 2.9 2.7 2.5 2.4 2.2 2.1 2.0 1

Table 3.4: Simulated values for the boundary case of circular CCCP

Figure 3-4: Corrplot of the difference matrix between theoretical and simulated values
for the boundary case of circular CCCP
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which is
7

300 = 2.33% of the total number of observations. Hence there is clear

evidence that our calculations are correct.

Now, to make things more rigorous, we can do some hypothesis testing, which results

in an interesting observation.

Hypothesis Testing.

For each fixed 𝑛 and 𝑙, let, 𝑌 1
𝑛,𝑙, 𝑌 2

𝑛,𝑙, . . . 𝑌 𝑚
𝑛,𝑙 be 𝑚 observations coming from some

distribution with mean 𝜇𝑛𝑙. Then, we can frame our hypothesis as:

ℋ0 : 𝜇𝑛𝑙 = 𝑡(𝑛, 𝑙), ℋ𝐴 : 𝜇𝑛𝑙 ̸= 𝑡(𝑛, 𝑙),

Figure 3-5: Mean differences between theoretical and simulated values for the bound-
ary case of circular CCCP with 3𝜎 limit
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where, 𝑡(𝑛, 𝑙) is our calculated value. For our purpose, 𝑚 = 1, 00, 000. So, we can do

large sample approximation here. We want to test at 5% level of significance. Then,

the test statistic will be,

𝑇 =
√

𝑚 (𝑌𝑛,𝑙 − 𝜇𝑛𝑙)
𝑠𝑛𝑙

,

where, 𝑌𝑛,𝑙 =
1
𝑚

∑︀𝑚
𝑖=1 𝑌 𝑖

𝑛,𝑙, and 𝑠𝑛𝑙 =
1

𝑚− 1
∑︀𝑚

𝑖=1(𝑌 𝑖
𝑛,𝑙 − 𝑌𝑛,𝑙)2. Since we are doing a

both-sided test, our test procedure will be,

Reject ℋ0 if |𝑇 | > 1.96 .

Now, when 𝑛 = 𝑙, then all simulated values match exactly with the theoretical values.

So, we are just testing for the cases when 𝑙 < 𝑛 i.e. we are doing
23× 24

2 = 276 many

testings. Out of them 22 was rejected which is
22
276×100% = 7.9% of the total values.

3.3.2.2 Solution to All Cases of Circular Consecutive Coupon Col-

lector Problem

Problem Statement. Suppose an attacker targets to inject consecutive bits fault

in a register containing 𝑛 number of bits. In each trial, the attacker randomly chooses

a bit 𝑖 from the register and then flips 𝑙 bits circularly ( for some pre-defined number

𝑙 ≤ 𝑛 ), i.e., bits 𝑖, 𝑖+1, · · · , 𝑖+ 𝑙−1 (mod 𝑛) and marks them as flipped. Then, what

is the expected number of trials so that 𝑡 (1 ≤ 𝑡 ≤ 𝑛) number of bits get flipped?

Exact Theoretical Solution.

For a fixed 𝑛, 𝑙, and 𝑡, let us define the random variable 𝑋𝑖 as

𝑋𝑖 := Number of trials required for the bit position 𝑖 to be flipped.

Now, observe that, if we want the bit position 𝑖 to be flipped, then there exist some

fixed bit positions which need to be flipped in the trials that make our concerned

position checked. We want the expected number of trials so that 𝑡𝑙𝑒𝑞𝑛 bit positions

get checked. In summary, we need to find the expectation of the maximum number
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of trials required so that 1 ≤ 𝑡 ≤ 𝑛 many bits get selected in the register. Let us

define a new random variable 𝑋 as

𝑋 := min
{𝑖1,𝑖2,··· ,𝑖𝑡}⊂{1,2,··· ,𝑛}

max
𝑖∈{𝑖1,𝑖2,··· ,𝑖𝑡}

𝑋𝑖,

and we want to calculate E(𝑋). Before proceeding into mathematical details, let us

first fix some notations.

1. Anti clock-wise distance between node 𝑖 and node 𝑗 is

𝑑𝑖𝑗 :=

⎧⎪⎪⎨⎪⎪⎩
|𝑖− 𝑗| |𝑖− 𝑗| < 𝑛

2

𝑛− |𝑖− 𝑗| |𝑖− 𝑗| ≥ 𝑛
2 .

2. WLOG, let 𝑖 < 𝑗 and |𝑖 − 𝑗| < 𝑛
2 . Then the number of joint favorable hitting

positions contributed by 𝑗 given 𝑖 is 𝑣𝑖𝑗 := min(𝑑𝑖𝑗 , 𝑙).

Then, WLOG given 𝐴 = {𝑖1, 𝑖2, . . . , 𝑖𝑝} ⊂ {1, 2, . . . , 𝑛}, where 𝑖1 < 𝑖2 < . . . < 𝑖𝑝 the

total number of favorable hitting positions such that at least one of them is selected

is given by

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑝) := 𝑣𝑖1𝑖2 + 𝑣𝑖2𝑖3 + · · ·+ 𝑣𝑖𝑝−1𝑖𝑝 + 𝑣𝑖𝑝𝑖1

Thus, we can write down the joint probability as

Pr(𝑋𝑖1 > 𝑟, 𝑋𝑖2 > 𝑟, . . . , 𝑋𝑖𝑝 > 𝑟) =

⎡⎢⎣1−
ℎ (𝑖1, 𝑖2, . . . 𝑖𝑝)

𝑛

⎤⎥⎦
𝑟
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Since the trials are independent, we will get by using Proposition 2,

Pr(𝑋 > 𝑟) = Pr(𝑋𝑖 > 𝑟 for at least 𝑛− 𝑡 + 1 values of 𝑖)

=
∑︁

𝑖1<···<𝑖𝑛−𝑡+1

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛−𝑡+1 > 𝑟)−
(︃

𝑛− 𝑡 + 1
1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+2

Pr(𝑋𝑖1 > 𝑟, · · ·

, 𝑋𝑖𝑛−𝑡+2 > 𝑟) +
(︃

𝑛− 𝑡 + 2
2

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+3

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛−𝑡+3 > 𝑟) + . . .

+ (−1)𝑡−1 ·
(︃

𝑛− 1
𝑡− 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛 > 𝑟)

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︃
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

Pr(𝑋𝑖1 > 𝑟, · · · , 𝑋𝑖𝑛−𝑡+𝑘
> 𝑟)

]︃

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︃
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

[︂
1−

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)
𝑛

]︂𝑟
]︃
.

Finally, we can conclude that,

E(𝑋) =
∑︁
𝑟≥0

Pr(𝑋 > 𝑟)

=
∑︁
𝑟≥0

𝑡∑︁
𝑘=1

[︃
(−1)𝑘−1 ×

(︃
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

[︂
1−

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)
𝑛

]︂𝑟
]︃

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︃
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

∑︁
𝑟≥0

[︂
1−

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)
𝑛

]︂𝑟
]︃

=
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︃
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

𝑛

ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)

]︃

= 𝑛 ·
𝑡∑︁

𝑘=1

[︃
(−1)𝑘−1 ×

(︃
𝑛− 𝑡 + 𝑘 − 1

𝑘 − 1

)︃
×

∑︁
𝑖1<···<𝑖𝑛−𝑡+𝑘

1
ℎ (𝑖1, 𝑖2, . . . , 𝑖𝑛−𝑡+𝑘)

]︃
.

Now we want to verify whether our calculations are true. To check this, we have

simulated the procedure 1,00,000 times for each value of 𝑛, 𝑙, and 𝑡. Figure 3-6

shows a graphical comparison of the theoretical vs. simulation results for the specific

values of 𝑛 = 𝑡 = 10, 15, 25, 32. From the above graphical comparison, our theoretical

calculations perfectly matched the simulated values.
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Hypothesis Testing.

For each fixed 𝑛, 𝑡 and 𝑘, let, 𝑌 1
𝑛,𝑡,𝑘, 𝑌 2

𝑛,𝑡,𝑘, . . . 𝑌 𝑚
𝑛,𝑡,𝑘 be 𝑚 observations coming from

some distribution with mean 𝜇𝑛𝑡𝑘. Then, we can frame our hypothesis as:

ℋ0 : 𝜇𝑛𝑡𝑘 = 𝑐(𝑛, 𝑡, 𝑘), ℋ𝐴 : 𝜇𝑛𝑡𝑘 ̸= 𝑐(𝑛, 𝑡, 𝑘),

where, 𝑐(𝑛, 𝑡, 𝑘) is our calculated theoretical value. For our purpose, 𝑚 = 50, 000.

So, we can do large sample approximation here. We want to test at 5% level of

significance. Then, the test statistic will be,

𝑇 =
√

𝑚 (𝑌𝑛,𝑡,𝑘 − 𝑐(𝑛, 𝑡, 𝑘))
𝑠𝑛,𝑡,𝑘
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Figure 3-6: Graphical comparison of expected values for 𝑛 = 𝑡 = 15, 20, 25, 32
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where,

𝑌𝑛,𝑡,𝑘 =
1
𝑚

𝑚∑︁
𝑖=1

𝑌 𝑖
𝑛,𝑡,𝑘, and 𝑠𝑛,𝑡,𝑘 =

1
𝑚− 1

𝑚∑︁
𝑖=1

(𝑌 𝑖
𝑛,𝑡,𝑘 − 𝑌𝑛,𝑡,𝑘)2.

Under ℋ0, 𝑇 ∼ 𝒩 (0, 1). Since we are doing a both-sided test, our decision rule will

be,

Reject ℋ0 if |𝑇𝑜𝑏𝑠| > 1.96 .

Now, observe that some of the observations must be accurate to the theoretical values.

So, those observations totally coincides with their theoretical values and do not qualify

for testing. To be very specific,

1. For some fixed 𝑛 and 𝑡, we need to consider 𝑘’s only from 1 to 𝑡− 1 because if

𝑘 ≥ 𝑡, then, 𝑡 many positions get marked only in one go.

2. For any 𝑛, when 𝑡 = 1, that means we want to see how many trials are required

to mark at least one of the entries checked and that value is always 1.

3. Since the calculation of theoretical values is computationally expensive, we are

testing upto 𝑛 = 23

3.3.2.3 Total Number of Hypothesis Testing

For each fixed 𝑛, we are taking 𝑡 from 2 to 𝑛, that is 𝑛− 1 values and for each fixed

𝑡 value, we are considering 𝑘 values from 1 to 𝑡 − 1. So for 𝑛 = 1, 2, . . . , 23, we are

testing a total of

23∑︁
𝑛=2

𝑛∑︁
𝑡=2

(𝑡− 1) =
23∑︁

𝑛=2

[︃
𝑛∑︁

𝑡=2
𝑡− (𝑛− 1)

]︃
=

23∑︁
𝑛=2

⎡⎢⎣(𝑛 + 1)𝑛
2 − 1− 𝑛 + 1

⎤⎥⎦ =
23∑︁

𝑛=2

𝑛2 + 𝑛− 2𝑛

2

=
1
2

[︃ 23∑︁
𝑛=2

𝑛2 −
23∑︁

𝑛=2
𝑛

]︃
=

1
2

[︃ 23∑︁
𝑛=1

𝑛2 −
23∑︁

𝑛=1
𝑛

]︃
=

1
2

⎡⎢⎣23× 24× 47
6 −

23× 24
2

⎤⎥⎦ = 2024.

Out of these 2024 many testing procedures, only 125 many have been rejected which

is
125
2024 × 100 = 6.1% of the total testing problems, which is significantly small. So,

we can expect that our theoretical values are correct.
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3.4 Some observations
Now, it is of interest not how many of them gets rejected but which of them are getting

rejected. We have done this testing procedure multiple times and have observed that,

in each case, the anomaly includes observations for some particular values of 𝑛. In

the above case, there were 3 observations for 𝑛 = 8 and 7 observations for 𝑛 = 16.

We are including another set of simulated values for which the testing procedure was

performed. Here in total 26 hypothesis got rejected, which is
26
276× 100% = 9.4% of

the total values which is less than 10% but interestingly enough, out of these, 4 were

from 𝑛 = 8 and 9 were from 𝑛 = 16. We can also look at the corrplot 3-4 and compare

it with the previous one presented above and immediately identify some similarities

where the simulated and theoretical values are not close enough.

3.5 Conclusion
This chapter focuses on two new variants of the generalized coupon collector problem,

namely the non-circular and circular consecutive coupon collector problems. We have

provided theoretical solutions to both of these variants, and our testing procedures

have validated our calculations for both problems.

Our results have demonstrated a high level of accuracy, with over 90% of the observed

values closely matching the simulated values for both non-circular and circular coupon

collector problems. However, as previously mentioned, further investigation is needed

to address the issue of fluctuations in the data when the number of seats, 𝑛, is a power

of 2. It appears that the speed at which seats are checked out may vary for these

values of 𝑛, which could potentially impact the accuracy of our results.

To address this issue, we need to conduct additional tests with higher powers of 2

to determine if the fluctuations persist. By identifying and analyzing the factors

contributing to the variability in the checkout speed for power-of-2 values of 𝑛, we

can refine our model and improve the accuracy and reliability of our calculations.

Overall, our work on the non-circular and circular consecutive coupon collector prob-

lems provides new insights and solutions to these important problems in probability

theory.
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4
DIFFERENTIAL FAULT ANALYSIS OF NORX

USING VARIANTS OF COUPON COLLECTOR

PROBLEM

4.1 Introduction
Fault analysis has always been one of the most popular physical attacks. It is pri-

marily attributed to the ease of mounting such attacks in practice and secondarily

due to the difficulty in inhibiting them. The basic idea of fault-based attacks is to

maliciously modify intermediate states of a cryptosystem, while in operation, leading

to cryptanalytically exploitable side-channel information. Differential Fault Attacks

(DFA) is the most well-studied type of fault attack and was first demonstrated by

Biham and Shamir [119]. In general, DFA is based on inducing faults in the state

of a cipher while studying the diffusion in the state and leveraging the relationship

between the faulty ciphertext and its fault-free counterpart.

The initiation of CAESAR competition [22] on authenticated encryption (AE) schemes

generated a lot of interest in the crypto community to analyze these ciphers which

try to combine the goals of authenticity and confidentiality under a single unified

primitive. Researchers also tried to look at authenticated ciphers from the fault

analysis perspective. Authenticated ciphers submitted to CAESAR presented many

interesting problems due to their diverse design strategies and paradigms as well as

an array of useful features like Nonce-Misuse Resistance (NMR), Online Authenti-

cated Encryption (OAE), Inverse Free, Release of Unverified Plaintexts (RUP), Par-
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allelizable Encryption/Decryption and others (a good account of which is available

in [147]). Eventually, it was found that some of these desirable features lead to pre-

viously nonexistent vulnerabilities with regards to fault attacks [41, 40, 42]. One of

many ways that AE schemes can be classified is based on the use of nonces giving

us two types of authenticated ciphers: one that prohibits reusing the nonce and the

other that provides some security under nonce-reuse. In CHES 2016 [42] and later in

JCEN’17 [148], Saha and Roy Chowdhury, using a demonstration on nonce-based au-

thenticated cipher PAEQ [149], highlighted the importance of the nonce-barrier in the

context of automatic prevention of DFA. The basic problem seems to be the fact that

nonce-based schemes inhibit replaying of the algorithm which is a premise to DFA,

thereby implicitly thwarting them. The authors show how parallelism in PAEQ could

be exploited to mount a DFA with a single faulty ciphertext using an internal dif-

ference between parallel branches, thereby completely avoiding the nonce constraint.

The attack requires two faults: one for colliding the branch inputs, while another to

mount a classical DFA. The authors also generalized the attack, showcasing the threat

it poses to parallelizable ciphers that employ the counter-mode.

In this chapter, we target a nonce-respecting CAESAR submission called NORX [150]

which survived up to the third round. NORX constitutes a family of sponge-based

authenticated encryption with associated data (AEAD) algorithms designed by Au-

masson, Jovanovic and Neves. The original submission NORX v1 [151] proposes ver-

sions of NORX with 32 and 64−bit words called NORX 32 and NORX64 respectively.

Subsequently, two more versions, namely, NORX-v2.0 [152] and NORX v3.0 [150], were

proposed with the same word-size variants. Two additional designs with 8 and 16-bit

words were proposed in [153] as lightweight variants, but were not part of the CAE-

SAR competition. Our work is applicable to all the versions v1, v2.0, v3.0. However,

we describe the analysis on NORX v3.0 only, as this is the latest revised version of

CAESAR third round candidates.

Our interest in NORX stems from the fact that it has a unique parallel architecture

based on the MonkeyDuplex construction [66] and supports an arbitrary parallelism

degree, based on LRX (Logical-Operations Rotation XOR) [154] primitives. The way

NORX instantiates parallelism deviates from the classical parallelizable ciphers as
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stated in [42], where it is assumed that the branches are processed independently.

However, though NORX uses a variant of the counter-mode to separate the branches,

it merges all the bran-ches at the end. This is the reason why the idea of using a

fault-induced internal difference between branches proposed in [42] cannot be directly

extended to get an attack on NORX. Hence, NORX presents an interesting case for

investigation in the light of fault-based attacks. Finally, though NORX has been

eliminated from the CAESAR competition, still there are many NORX-like construc-

tions [155, 156, 157] that continue to motivate this kind of analysis.

In this work, we additionally focus on two aspects. On the one hand, we perform

extensive theoretical analysis using variants of the Coupon Collector Problem (CCP) for

estimating the expected number of faults required using four different fault models

for reducing the key-space to practically acceptable limits. The second aspect we

address is to look at FORK-256 [158] which is a hash function having a structure

loosely similar to NORX (as it also uses parallel branches to compute the compression

function) in the light of the fault attack strategy developed here. We found that

in some particular types of implementation strategies that might be adopted for the

resourced constrained environment, FORK-256 may be vulnerable to DFA. The idea

is similar to the one used for NORX and consists of colliding the parallel branches

which results in the chaining-value being passed unaltered to the output. This might

pose a threat if FORK-256 is used in the keyed mode.

4.1.1 Summary of The Chapter

The first contribution comes in the form of generating fault-based internal state col-

lisions on NORX with a level of parallelism 𝑝 ∈ {2, 4}, leading to an all-zero state

at the end of message processing. Once the collision is generated in any1 NORX in-

stantiation, if the trailing data is identical then all such NORX instances will produce

the same (faulty) tag. In other words, the tags would also collide and this can be

interpreted as a faulty forgery. This mimics the replay of the NORX which makes the

threat of classical DFA pertinent.

Devising the attack constitutes our second contribution. We find that if we can inject

1We stress that this is true for any nonce and messages with consecutive identical blocks.
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Fault Model Expected # Faults Reduced Key-Space

Random Bit-Flip 1384 232

1544 216

Random Byte-Flip 136 1

Random Byte with Known Fault 332 232

372 216

Random Consecutive Bit-Flip 302 232

340 212

Table 4.1: Attacks on NORX reported in this work

faults in the internal state of permutation in the last iteration of the round function,

then based on the fault model adopted, one or multiple bits of the internal state is

revealed by the XOR of the tags.

We perform extensive theoretical analysis using variants of the Coupon Collector

Problem [137] for estimating the expected number of faults required using four dif-

ferent fault models for reducing the key-space to practically acceptable limits. The

summary of these results is furnished in Table 6.1.

In the Consecutive Bit-flip Fault Model, an attacker flips 𝑙 consecutive bits in a register

of size 𝑛 bits. This scenario can be modeled as a Consecutive Coupon Collector

Problem, where instead of drawing 𝑙 random coupons, 𝑙 successive coupons are drawn

from a set of 𝑛 coupons in each random sampling. Theoretical solutions to this

problem have been presented in Chapter 3, and our analysis demonstrates that these

theoretical calculations closely match the simulated values.

We additionally, do a DFA vulnerability assessment for the FORK-256 hash function

in the light of the fault model developed for NORX.

4.1.2 Related Works

In [154], Aumasson et al. thoroughly analyzed the differential and the rotational

properties of the core permutation of NORX. They gave upper bounds on the differ-

ential probability for the reduced permutation. More precisely, they demonstrated

that using a classical differential analysis with an input difference in the nonce during

initialization, they could devise a single round differential characteristic with proba-

bilities less than 2−60 (for NORX 32) and 2−53 (for NORX 64). Furthermore, they have
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S =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


(a) State representation

Sinit =


n0 n1 u2 u3

K(1) K(2) K(3) K(4)

u8 u9 u10 u11

u12 u13 u14 u15



(b) State initialization

Figure 4-1: Matrix form of the state

found the best characteristics for four rounds with probabilities of 2−584 and 2−836

for NORX 32 and NORX 64, respectively. In [159], Das et al. describe statistical vari-

ants of zero-sum distinguishers that allow distinguishing the full-round permutation

of NORX-64 and 3.5 rounds of the permutation of NORX-32 from random permuta-

tions. These results cover more rounds compared to the first-order differential analysis

provided in [154]. The used approach is similar to zero-sum distinguishers [160], but

it is probabilistic rather than deterministic. Later in [161], Bagheri et al. showed a

state/key recovery attack for both variants for a reduced version of NORX v2.0 where

the underlying permutation applies half the rounds (2 out of 4). After that, in [162]

Dwivedi et al. analyzed the state-recovery resistance of several submitted CAESAR

candidates, including NORX, using a SAT solver. They have also analyzed modified

versions of these algorithms, including round reduced variants. Later in [163], using

non-random properties of the underlying permutation, they showed a ciphertext-only

forgery with time and data complexity 2−66 (resp. 2−130 ) for the variant of NORX

v2.0 of 128-bit (resp. 256-bit) keys and broke the designer’s claim of a 128-bit (resp.

256-bit) security. Furthermore, they showed that this forgery attack can be extended

to a key-recovery attack on the full NORX v2.0 with the same time and data com-

plexities. Also, for NORX v3.0, the resulting attack enables an adversary to generate

forgeries with data complexities 22𝑤, 𝑤 = 32, 64 for 128, 256-bit keys respectively. It

is interesting to see that despite a lot of cryptanalytic results reported in the liter-

ature, there is no side-channel attack or physical attack developed on NORX. This

forms one of the initial motivations of this work.
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Notation Description
𝑥||𝑦 Concatenation of bitstrings 𝑥 and 𝑦

¯,∧,∨,⊕ Bitwise negation, AND, OR, XOR
𝑥≪ 𝑛, 𝑥 ≫ 𝑛 Left-shift/Right-rotation of bitstring 𝑥 by 𝑛 bits

← Variable assignment
𝑟𝑖𝑔ℎ𝑡𝑟(𝑥) Truncation of bitstring 𝑥 to its 𝑟 right-most bits

𝑤 ∈ {32, 64}, 𝑙 ∈ [1, 63] Word size, Round number
𝑝 ∈ [0, 255], 𝑡(≤ 4𝑤) Parallelism degree, Tag size
𝑆 = 𝑠0||𝑠1|| · · · ||𝑠15 NORX state, where 𝑠𝑖, 𝑖 ∈ [0, 15] represents a word

𝐾, 𝑁 Key (4𝑤 bits), Nonce (2𝑤 bits)
𝐴, 𝑍 Associated data with header 𝐴 and trailer 𝑍

𝑀, 𝐶, 𝑇 Message, Ciphertext, Tag (𝑡 bits)
𝐹, 𝐺 Round and quarter-round function of NORX core permutation

𝑐𝑜𝑙(𝑆), 𝑑𝑖𝑎𝑔(𝑆) Column and diagonal steps of the round function 𝐹 in NORX permutation
𝑙𝑑𝑖𝑎𝑔(𝑆) The final diagonal step (𝑑𝑖𝑎𝑔(𝑆) call) before computing the tag 𝑇 in NORX permutation

(𝑎, 𝑏, 𝑐, 𝑑) 4𝑤-bits input to the 𝐺 function with 𝑑 as the capacity word
(𝐺1), · · · , (𝐺8) Consecutive steps to evaluate the 𝐺 function in NORX

𝑥[𝑖] 𝑖-th bit of any word 𝑥

𝑥𝑖, 𝑥[𝑖,𝑖+𝑗−1] 𝑥[𝑖], 𝑥[𝑖]|| · · · ||𝑥[𝑖 + 𝑗 − 1]
𝑥𝑖+𝑗, 0 ≤ 𝑖, 𝑗 ≤ 𝑤 − 1 𝑥(𝑖+𝑗) mod 𝑤, for any word 𝑥

𝑥𝑖 𝑖-th byte of the word 𝑥

𝑥̃ Faults injected on word 𝑥 at the time of execution among any steps from (𝐺1) to (𝐺5)
inside the 𝐺 function at the 𝑙𝑑𝑖𝑎𝑔(𝑆) operation

𝑏̃ Faults are induced on word 𝑏 at Step (𝐺5) inside the 𝐺 function
𝑐 Faults are induced on word 𝑐 at Step (𝐺3) inside the 𝐺 function

𝑇, 𝑇 𝑥̃ Fresh tag, faulty tag due to 𝑥̃

𝑥̃𝑖, 𝑥̃𝑖, 𝑥̃[𝑖,𝑖+𝑗−1] 𝑖-th bit fault, 𝑖-th byte fault, consecutive bits fault from 𝑖 to 𝑖 + 𝑗 − 1 of 𝑥

𝑇 𝑥̃𝑖 , 𝑇 𝑥̃𝑖
, 𝑇 𝑥̃[𝑖,𝑖+𝑗−1] Faulty tags correspond to bit, byte, consecutive bits fault on 𝑥

Δ𝑧𝑥̃𝑖 , Δ𝑧𝑥̃𝑖
, Δ𝑧𝑥̃[𝑖,𝑖+𝑗−1] XOR difference of 𝑧 and 𝑧 due to 𝑥̃𝑖, 𝑥̃𝑖, 𝑥̃[𝑖,𝑖+𝑗−1]

Δ𝑇 𝑥̃𝑖 , Δ𝑇 𝑥̃𝑖
, Δ𝑇 𝑥̃[𝑖,𝑖+𝑗−1] XOR difference of 𝑇 and 𝑇 𝑥̃𝑖 , 𝑇 and 𝑇 𝑥̃𝑖 , 𝑇 and 𝑇 𝑥̃[𝑖,𝑖+𝑗−1]

Table 4.2: Notations
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4.2 Specification of NORX
We start by defining the notations used throughout the chapter in Table 4.2. Next,

we give a brief description of the NORX family of Authenticated Encryption with

Associated Data (AEAD) algorithms, mainly the description of NORX v3.0.

A NORX instance is denoted by (𝑤, 𝑙, 𝑝, 𝑡). Table 4.3 proposes five NORX instances

for different use cases. The state 𝑆 is viewed as a chain of 16 words, i.e., 𝑆 =

𝑠0||𝑠1||....||𝑠15, where 𝑠0, ..., 𝑠11 are called the rate words (where data blocks are in-

jected) and 𝑠12, ..., 𝑠15 are called the capacity words (which remain untouched). The

state 𝑆 can be viewed as a 4×4 matrix as shown in Figure 6-2a. More information on

the constants can be found in [150]. The encryption algorithm takes as inputs a key

𝐾 of 𝑘-bits, a nonce 𝑁 of 𝑛-bits, a plaintext 𝑀 and an associated data formed by a

header 𝐴 and a trailer 𝑍. The header, the plaintext and the trailer are three optional

strings. The encryption algorithm computes an authentication tag 𝑇 of 𝑡-bits, and

a ciphertext 𝐶 of the same bit-length as the plaintext 𝑀 . Similarly, the decryption

algorithm takes as inputs (𝐾, 𝑁, 𝐴, 𝐶, 𝑍, 𝑇 ) and returns either ⊥ or 𝑀 depending on

whether the tag verification succeeds or not. Both encryption and decryption algo-

rithms begin by an initialization phase that sets the internal state to 𝑆𝑖𝑛𝑖𝑡, consists

of 4𝑤-bit key 𝐾 = 𝐾(1)||𝐾(2)||𝐾(3)||𝐾(4), the 2𝑤-bit nonce 𝑁 = 𝑛0||𝑛1 and some

initialization constants (𝑢𝑖) in the internal state, is given in Figure 6-2b. The basic

Serial Word Round Parallelism Tag Key Nonce
Number Size (𝑤) Number (𝑙) Degree (𝑝) Size (𝑡) Size (𝑘) Size (𝑛)

1. 64 4 1 256 256 256
2. 32 4 1 128 128 128
3. 64 6 1 256 256 256
4. 32 6 1 128 128 128
5. 64 4 4 256 256 256

Table 4.3: NORX instances [150]

building block of NORX is a permutation 𝐹 , also called a round, and 𝐹 𝑙 is 𝑙 consec-

utive applications of 𝐹 . The permutation 𝐹 over the state 𝑆 transforms its columns

with

𝐺(𝑠0, 𝑠4, 𝑠8, 𝑠12) 𝐺(𝑠1, 𝑠5, 𝑠9, 𝑠13) 𝐺(𝑠2, 𝑠6, 𝑠10, 𝑠14) 𝐺(𝑠3, 𝑠7, 𝑠11, 𝑠15)
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and then transforms its diagonals with

𝐺(𝑠0, 𝑠5, 𝑠10, 𝑠15) 𝐺(𝑠1, 𝑠6, 𝑠11, 𝑠12) 𝐺(𝑠2, 𝑠7, 𝑠8, 𝑠13) 𝐺(𝑠3, 𝑠4, 𝑠9, 𝑠14).

Those two operations are denoted by 𝑐𝑜𝑙(𝑆) and 𝑑𝑖𝑎𝑔(𝑆) respectively. Similarly, a

round function 𝐹 can be viewed as 𝐹 = 𝑑𝑖𝑎𝑔 ∘ 𝑐𝑜𝑙(𝑆). The complete pseudo-code for

the NORX core permutation 𝐹 𝑙 is given in Figure 6-3. The 𝐺 function uses cyclic

rotations ≫ and a non-linear operation 𝐻 interchangeably to update its four input

words 𝑎, 𝑏, 𝑐, 𝑑. The rotation offsets 𝑟0, 𝑟1, 𝑟2, and 𝑟3 for the cyclic rotations of 32- and

64-bit NORX are specified in Table 4.4. The designers proposed certain configurations

of the mode to process the payload in parallel. The parallel mode is controlled by

the parameter 0 ≤ 𝑝 ≤ 255. For 𝑝 = 1, the design of NORX corresponds to the

sequential duplex construction and is shown in Figure 4-3. For 𝑝 > 1, NORX achieves

a parallelism of degree 𝑝. For example, the design of NORX with a parallelism degree

of 2 (𝑝 = 2) is illustrated in Figure 4-4. The parameter combinations of the NORX

variants are given in [164, Table 1].

𝑤 𝑟0 𝑟1 𝑟2 𝑟3
32 8 11 16 31
64 8 19 40 61

Table 4.4: Rotation offsets for NORX 32 and NORX 64

4.3 Attack Scenario
In this section, we illustrate the fault injections required to first create a replay in

the nonce-respecting scenario, i.e., create identical states by a counter fault to get

the all-zero state after merging, and then perform DFA. Our differential fault attack

on NORX is applicable for any parallelism of even degree, in particular for 𝑝 = 2 and

4. Note that 𝑝 = 4 is a valid instance as per NORX specification. However, we will

discuss our approach with 𝑝 = 2 for simplicity. Further, in NORX, the operations

in the internal permutation are word-wise, i.e., the internal permutation of NORX

works on the word-level 𝑤, where 𝑤 is either 32 or 64. Here, we describe our attack

for 32-bit version, but, it still works for 64-bit version also.
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Algorithm 1: col(S)

c1. (s0, s4, s8, s12)← G(s0, s4, s8, s12);
c2. (s1, s5, s9, s13)← G(s1, s5, s9, s13);
c3. (s2, s6, s10, s14)← G(s2, s6, s10, s14);
c4. (s3, s7, s11, s15)← G(s3, s7, s11, s15);
c5. return S;

Algorithm 2: diag(S)

d1. (s0, s5, s10, s15)← G(s0, s5, s10, s15);
d2. (s1, s6, s11, s12)← G(s1, s6, s11, s12);
d3. (s2, s7, s8, s13)← G(s2, s7, s8, s13);
d4. (s3, s4, s9, s14)← G(s3, s4, s9, s14);
d5. return S;

Algorithm 3: H(x, y)

H1. return (x⊕ y)⊕ ((x ∧ y)� 1);

Algorithm 4: F l(S)

F1. for i = 0 to l− 1 do
S ← diag(col(S));

F2. return S;

Algorithm 5:G(a, b, c, d)

G1. a← H(a, b);
G2. d← (a⊕ d) ≫ r0;
G3. c← H(c, d);
G4. b← (b⊕ c) ≫ r1;
G5. a← H(a, b);
G6. d← (a⊕ d) ≫ r2;
G7. c← H(c, d);
G8. b← (b⊕ c) ≫ r3;
G9. return a, b, c, d;

Fig. 1: The NORX permutation F lFigure 4-2: The NORX permutation 𝐹 𝑙
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Figure 4-3: Layout of NORX with 𝑝 = 1
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Figure 4-5: Counter fault on NORX with 𝑝 = 2

To perform differential analysis on NORX with parallelism degree 𝑝 = 2, for each

message query, the attacker will inject two faults where the first fault is a counter

fault to create a replay and the second fault is on the words (𝑏̃/𝑐) inside the 𝐺 function

at the 𝑙𝑑𝑖𝑎𝑔(𝑆) call. Thus, it shows that the attacker moves from a single-fault model

to a double-fault one. However, in this particular context, it is clear that performing

the double faults [42, 33, 165] is not too difficult compared to the single one because

of the following reasons.

1. The attacker can send a long enough message so that the second fault occurs

far enough from the first one

2. Thus, we can observe the success of the first fault so that the attacker can tune

the two fault settings independently.
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4.3.1 Creating a Replay on NORX with Parallel Encryp-

tion

An important requirement of DFA is the ability to replay the execution of this cipher

in order to exploit the difference between faulty and non-fault outputs. The DFA in

a cryptosystem requires an attacker to be able to inject faults by replaying a previous

fault-free run of the algorithm, which is known as the replaying criterion of DFA [41].

The definite structure of nonce-based encryption proposed by Rogaway [38] expects

the uniqueness of the nonce in every instantiation of the cipher and the security claims

rely on this premise. Thus, the use of a unique nonce contradicts the ability to replay

a cipher and thereby results in automatic protection from DFA. So it is quite clear

that the DFA is not applicable for the standard NORX with 𝑝 = 1. But for NORX with

parallelism degree 𝑝 = 2, we can make an exception by inducing a counter fault and

processing the messages in a specific way for each query. For 𝑝 = 2, in each message

query, we can produce a replay, i.e., create a fixed state 𝑆0 = 0 after the merging

phase (i.e., before processing the trailing data) by injecting a fault on the counter 𝑖𝑑1

such that 𝑖𝑑1 = 𝑖𝑑0 = 0 and processing the message 𝑀 = 𝑀0||𝑀1|| . . . ||𝑀𝑚−1 such

that 𝑀𝑖 = 𝑀𝑖+1, 𝑖 = 0, 2, · · · , 𝑚− 2. This description is outlined in Figure 4-5.

4.3.2 Feasibility of the Counter Fault

According to the branch algorithm in [152], for 𝑝 ≥ 2, the branching is done by

XORing the variable 𝑖 at 12 different positions (i.e., at the rate words) in the state.

To produce a replay, an attacker can inject a random fault at the variable 𝑖 (or may

induce a bit-fault on the most significant bit (msb) at the variable 𝑖) so that it will

skip the for-loop for branching. Moreover, using the laser bit sets technique [166],

an attacker can practically induce faults on the data part of the ADD instruction

to prematurely escape a for loop. As a result, it leaves all the states identical after

the branching phase. Also, according to software implementation given by the NORX

designers in [167], a variable 𝑖 is used to XOR with all the rate words of the state

for branching. For 𝑝 = 2, we induce a bit fault at the lsb of the variable 𝑖 = 1, at

the time when 𝑖 will be XORed to all rate words of the state. This equalizes the two

branches of NORX in the branching phase. For 𝑝 = 4, we need two faults to collide
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all four branches to a zero state. The first one is to inject a bit flip at the lsb of the

second branch variable 𝑖 = 1 and the second one is to inject a bit flip at the lsb of

the fourth branch 𝑖 = 3. It can further be noted that if it is a parallelized hardware or

software implementation with no explicit counter, then we target the particular bits

in the bus, so that the inputs to each parallel branch is the same, thereby leading to

the same output values to be XORed for 𝑝 = 2 and 4 which in turn leads to an all-zero

state after merging the branches.

4.3.3 Injecting Fault at the 𝑙𝑑𝑖𝑎𝑔(𝑆) Call

In NORX, an authentication tag 𝑇 = 𝐹 𝑙(𝐹 𝑙(𝑆 ⊕ 08) ⊕𝐾) ⊕𝐾 is generated by first

injecting the domain separation constant 08, then transforming the state 𝑆 twice

with the permutation 𝐹 𝑙 interleaved by two key additions to the capacity, and finally

extracting the 𝑡(≤ 4𝑤) rightmost capacity bits from 𝑆, given in Figure 4-8. Thus, we

can think of the tag 𝑇 as the XORing of the capacity bits, after the 𝑙𝑑𝑖𝑎𝑔(𝑆) opera-

tion with the master key 𝐾. The tag 𝑇 can be viewed as 𝑇1||𝑇2||𝑇3||𝑇4 and the key

𝐾 as 𝐾(1)||𝐾(2)||𝐾(3)||𝐾(4) respectively, where |𝐾(𝑖)| = |𝑇𝑖| = 𝑤, 𝑖 = 1, 2, 3, 4. The

core permutation 𝐹 of NORX has a natural parallelism of 4 independent 𝐺 applica-

tions. The four diagonal words (𝑠0, 𝑠5, 𝑠10, 𝑠15), (𝑠1, 𝑠6, 𝑠11, 𝑠12), (𝑠2, 𝑠7, 𝑠8, 𝑠13) and

(𝑠3, 𝑠4, 𝑠9, 𝑠14) are fed into the 𝐺-function independently inside the 𝑑𝑖𝑎𝑔(𝑆) call. So

after the 𝑙𝑑𝑖𝑎𝑔(𝑆) operation, the tag 𝑇 = 𝑇1||𝑇2||𝑇3||𝑇4 can be viewed as indepen-

dent XORing of the outputs of 4 parallel executions of the 𝐺 function with the keys

𝐾(1), 𝐾(2), 𝐾(3), 𝐾(4) as depicted in Figure 4-7.

s0 s5 s10 s15

G

s0 s5 s10
s15K(1)

T1

s1 s6 s11 s12

G

s1 s6 s11
s12K(2)

T2

s2 s7 s8 s13

G

s2 s7 s8
s13K(3)

T3

s3 s4 s9 s14

G

s3 s4 s9
s14K(4)

T4

Figure 4-7: Parallel execution of 𝐺-functions at the last 𝑑𝑖𝑎𝑔(𝑆) call to generate the
tag 𝑇
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If we look at the input (𝑎, 𝑏, 𝑐, 𝑑) to the 𝐺 application, it is clear that the word 𝑑 is

nothing but a word that belongs to the capacity part of the state. Inside one of the four

independent 𝐺 applications during 𝑙𝑑𝑖𝑎𝑔(𝑆) operation at Step (G6) in Algorithm 5,

the updated word 𝑑 produces the corresponding tag word 𝑇𝑖, 𝑖 = 1, 2, 3, 4 by XORing

with the corresponding word of the key 𝐾. Inside the 𝐺 application, 𝐻 is the only

non-linear operation that helps to increase the degree of a boolean function. Our aim

is to recover the bits of 𝑑 by inducing faults on a word (𝑏̃/𝑐) and observe the XORed

relation of the faulty and non-faulty tags2. The following steps can recover the bits

of the word 𝑑 as also outlined in Figure 4-9.

1. Recover the corresponding bits of 𝑎 by injecting a fault 𝑏̃ and repeat this step

until we recover all the bits of 𝑎.

2. Based on the recovered bits of 𝑎, we can recover the bits of 𝑑 by injecting a fault

𝑐 and repeat this step until we recover all the bits of 𝑑.

The overall fault induction process using primary (counter) faults and secondary

faults is furnished in Figure 4-6.

2Here non-faulty tag means, the tag where we do not induce any fault at the last 𝑑𝑖𝑎𝑔(𝑆) call,
after the internal collision in the state by giving a counter fault. But physically, all tags are faulty
due to the prerequisite of fault-based internal state collision.

Algorithm: finalise(S,K)

1. s15 ← s15 ⊕ 0x08;

2. S ← F l(S);
3. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (K1,K2,K3,4 );

4. S ← F l(S);
5. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (K1,K2,K3,4 );
6. T ← rightt(S);
7. return S, T ;

1

Figure 4-8: Tag generation algorithm of NORX [150]
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4.4 Our General Strategy to Perform DFA on

NORX

Before going to discuss several fault models, we need to build the bit relations of the

words 𝑎, 𝑏, 𝑐, 𝑑 from Step (𝐺5) − (𝐺6) due to faults injection in the word 𝑏 at Step

(𝐺5). Additionally, the bit relations of the words 𝑎, 𝑏, 𝑐, 𝑑 from Step (𝐺3)− (𝐺6) due

to faults injected in the word 𝑐 at Step (𝐺3) are also required.

Fault injection in 𝑏 at Step (𝐺5): We assume that the words 𝑎, 𝑏, 𝑐, 𝑑 are unknown

at the Step (G4) inside the 𝐺 function. Then the update of the words 𝑎, 𝑏, 𝑐, 𝑑 from

Step (𝐺5) and (𝐺6) inside the 𝐺 application can be written in bit-level relations as

below.

𝐺5.

(︁
𝑎

′
0, 𝑎

′
1, · · · , 𝑎

′
30, 𝑎

′
31

)︁
←
(︁
(𝑎0 ⊕ 𝑏0, 𝑎1 ⊕ 𝑏1, · · · , 𝑎31 ⊕ 𝑏31)⊕ ((𝑎0 ∧ 𝑏0, 𝑎1 ∧ 𝑏1, · · · , 𝑎31 ∧ 𝑏31)≪ 1)

)︁
=
(︁
𝑎0 ⊕ 𝑏0 ⊕ (𝑎1 ∧ 𝑏1), 𝑎1 ⊕ 𝑏1 ⊕ (𝑎2 ∧ 𝑏2), · · · , 𝑎30 ⊕ 𝑏30 ⊕ (𝑎31 ∧ 𝑏31), 𝑎31 ⊕ 𝑏31

)︁
.

(s1, s6, s11, s12)

G(a, b, c, d)

d
K(1)

T

Recover wt(b⊕ b̃) number
of bits of a

(s1, s6, s11, s12)

G(a, b, c, d)

db̃
K(1)

T b̃

fault on word

b (b̃) at step
(G5.) inside
ldiag(S) call

(s1, s6, s11, s12)

G(a, b, c, d)

d
K(1)

T

Recover wt(c⊕ c̃) number of bits of d
on the basis of the recovered bits of a

(s1, s6, s11, s12)

G(a, b, c, d)

dc̃
K(1)

T c̃

fault on word

c (c̃) at step
(G3.) inside
ldiag(S) call

Figure 4-9: Fault inducing steps to recover the capacity 𝑑 of the state 𝑆 inside the
𝐺-function
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𝐺6.

(︁
𝑑0, · · · , 𝑑14, 𝑑15, 𝑑16, · · · , 𝑑30, 𝑑31

)︁
←
(︁
(𝑑0 ⊕ 𝑎

′
0, · · · , 𝑑14 ⊕ 𝑎

′
14, 𝑑15 ⊕ 𝑎

′
15, 𝑑16 ⊕ 𝑎

′
16, · · · , 𝑑30 ⊕ 𝑎

′
30, 𝑑31 ⊕ 𝑎

′
31) ≫ 16

)︁
=
(︁
(𝑑0 ⊕ 𝑎0 ⊕ 𝑏0 ⊕ (𝑎1 ∧ 𝑏1), · · · , 𝑑14 ⊕ 𝑎14 ⊕ 𝑏14 ⊕ (𝑎15 ∧ 𝑏15)), 𝑑15 ⊕ 𝑎15 ⊕ 𝑏15⊕

(𝑎16 ∧ 𝑏16), 𝑑16 ⊕ 𝑎16 ⊕ 𝑏16 ⊕ (𝑎17 ∧ 𝑏17), · · · , 𝑑30 ⊕ 𝑎30 ⊕ 𝑏30 ⊕ (𝑎31 ∧ 𝑏31), 𝑑31

⊕ 𝑎31 ⊕ 𝑏31) ≫ 16
)︁

=
(︁
𝑑16 ⊕ 𝑎16 ⊕ 𝑏16 ⊕ (𝑎17 ∧ 𝑏17), · · · , 𝑑30 ⊕ 𝑎30 ⊕ 𝑏30 ⊕ (𝑎31 ∧ 𝑏31), 𝑑31 ⊕ 𝑎31 ⊕ 𝑏31,

𝑑0 ⊕ 𝑎0 ⊕ 𝑏0 ⊕ (𝑎1 ∧ 𝑏1), · · · , 𝑑15 ⊕ 𝑎15 ⊕ 𝑏15 ⊕ (𝑎16 ∧ 𝑏16)
)︁
.

In short, the capacity word 𝑑 at Step (𝐺6) can be written in bit-level relations as

below.

𝑑𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑖+16 ⊕ 𝑎𝑖+16 ⊕ 𝑏𝑖+16

⊕(𝑎𝑖+17 ∧ 𝑏𝑖+17), if 𝑖 ∈ {0, 1, · · · , 31} ∖ {15};

𝑑31 ⊕ 𝑎31 ⊕ 𝑏31, if 𝑖 = 15.

(4.1)

Fault injection in 𝑐 at Step (𝐺3): Similarly, we assume that the words 𝑎, 𝑏, 𝑐, 𝑑 are

unknown at the Step (𝐺2) inside the 𝐺 function. The update of the words 𝑎, 𝑏, 𝑐, 𝑑

from Step (𝐺3) to (𝐺6) inside the 𝐺 application can be written in bit-level relations

as below.

𝐺3.

(︁
𝑐

′
0, 𝑐

′
1, · · · , 𝑐

′
30, 𝑐

′
31

)︁
←
(︁
𝑐0 ⊕ 𝑑0, 𝑐1 ⊕ 𝑑1, · · · , 𝑐30 ⊕ 𝑑30, 𝑐31 ⊕ 𝑑31)⊕ ((𝑐0 ∧ 𝑑0, 𝑐1 ∧ 𝑑1, · · · , 𝑐30 ∧ 𝑑30,

𝑐31 ∧ 𝑑31)≪ 1
)︁

=
(︁
𝑐0 ⊕ 𝑑0, 𝑐1 ⊕ 𝑑1, · · · , 𝑐30 ⊕ 𝑑30, 𝑐31 ⊕ 𝑑31)⊕ (𝑐1 ∧ 𝑑1, 𝑐2 ∧ 𝑑2, · · · , 𝑐31 ∧ 𝑑31, 0

)︁
=
(︁
𝑐0 ⊕ 𝑑0 ⊕ (𝑐1 ∧ 𝑑1), 𝑐1 ⊕ 𝑑1 ⊕ (𝑐2 ∧ 𝑑2), · · · , 𝑐30 ⊕ 𝑑30 ⊕ (𝑐31 ∧ 𝑑31), 𝑐31 ⊕ 𝑑31

)︁
.

𝐺4.

(︁
𝑏

′
0, · · · , 𝑏

′
9, 𝑏

′
10, 𝑏

′
11, · · · , 𝑏

′
31

)︁
←
(︁
(𝑏0 ⊕ 𝑐

′
0, · · · , 𝑏9 ⊕ 𝑐

′
9, 𝑏10 ⊕ 𝑐

′
10, 𝑏11 ⊕ 𝑐

′
11, · · · , 𝑏31 ⊕ 𝑐

′
31) ≫ 11

)︁
=
(︁
𝑏21 ⊕ 𝑐21 ⊕ 𝑑21 ⊕ (𝑐22 ∧ 𝑑22), · · · , 𝑏30 ⊕ 𝑐30 ⊕ 𝑑30 ⊕ (𝑐31 ∧ 𝑑31), 𝑏31 ⊕ 𝑐31 ⊕ 𝑑31,

𝑏0 ⊕ 𝑐0 ⊕ 𝑑0 ⊕ (𝑐1 ∧ 𝑑1), · · · , 𝑏20 ⊕ 𝑐20 ⊕ 𝑑20 ⊕ (𝑐21 ∧ 𝑑21)
)︁
.
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𝐺5.

(︁
𝑎

′
0, · · · , 𝑎

′
9, 𝑎

′
10, 𝑎

′
11, · · · , 𝑎

′
30, 𝑎

′
31

)︁
←
(︁
𝑎0 ⊕ 𝑏

′
0, · · · , 𝑎9 ⊕ 𝑏

′
9, 𝑎10 ⊕ 𝑏

′
10, 𝑎11 ⊕ 𝑏

′
11 · · · , 𝑎30 ⊕ 𝑏

′
30, 𝑎31 ⊕ 𝑏

′
31)⊕

(𝑎0 ∧ 𝑏
′
0, · · · , 𝑎9 ∧ 𝑏

′
9, 𝑎10 ∧ 𝑏

′
10, 𝑎11 ∧ 𝑏

′
11, · · · , 𝑎30 ∧ 𝑏

′
30, 𝑎31 ∧ 𝑏

′
31)≪ 1

)︁
=
(︁
𝑎0 ⊕ 𝑏

′
0 ⊕ (𝑎1 ∧ 𝑏

′
1), · · · , 𝑎9 ⊕ 𝑏

′
9 ⊕ (𝑎10 ∧ 𝑏

′
10), 𝑎10 ⊕ 𝑏

′
10 ⊕ (𝑎11 ∧ 𝑏

′
11),

𝑎11 ⊕ 𝑏
′
11 ⊕ (𝑎12 ∧ 𝑏

′
12), · · · , 𝑎30 ⊕ 𝑏

′
30 ⊕ (𝑎31 ∧ 𝑏

′
31), 𝑎31 ⊕ 𝑏

′
31

)︁
.

𝐺6.

(︁
𝑑0, · · · , 𝑑14, 𝑑15, 𝑑16, · · · , 𝑑25, 𝑑26, 𝑑27, · · · , 𝑑31

)︁
←
(︁
(𝑑0 ⊕ 𝑎

′
0, · · · , 𝑑14 ⊕ 𝑎

′
14, 𝑑15 ⊕ 𝑎

′
15, 𝑑16 ⊕ 𝑎

′
16, · · · , 𝑑25 ⊕ 𝑎

′
25, 𝑑26 ⊕ 𝑎

′
26,

𝑑27 ⊕ 𝑎
′
27, · · · , 𝑑31 ⊕ 𝑎

′
31) ≫ 16

)︁
=
(︁
𝑑16 ⊕ 𝑎

′
16, · · · , 𝑑30 ⊕ 𝑎

′
30, 𝑑31 ⊕ 𝑎

′
31, 𝑑0 ⊕ 𝑎

′
0, · · · , 𝑑9 ⊕ 𝑎

′
9, 𝑑10 ⊕ 𝑎

′
10,

𝑑11 ⊕ 𝑎
′
11, · · · , 𝑑15 ⊕ 𝑎

′
15

)︁
=
(︁
𝑑16 ⊕ 𝑎16 ⊕ 𝑏

′
16 ⊕ (𝑎17 ∧ 𝑏

′
17), · · · , 𝑑30 ⊕ 𝑎30 ⊕ 𝑏

′
30 ⊕ (𝑎31 ∧ 𝑏

′
31), 𝑑31 ⊕ 𝑎31

⊕ 𝑏
′
31, 𝑑0 ⊕ 𝑎0 ⊕ 𝑏

′
0 ⊕ (𝑎1 ∧ 𝑏

′
1), · · · , 𝑑9 ⊕ 𝑎9 ⊕ 𝑏

′
9 ⊕ (𝑎10 ∧ 𝑏

′
10), 𝑑10 ⊕ 𝑎10 ⊕ 𝑏

′
10

⊕ (𝑎11 ∧ 𝑏
′
11), 𝑑11 ⊕ 𝑎11 ⊕ 𝑏

′
11 ⊕ (𝑎12 ∧ 𝑏

′
12), · · · , 𝑑15 ⊕ 𝑎15 ⊕ 𝑏

′
15 ⊕ (𝑎16 ∧ 𝑏

′
16)
)︁
.

In short, the capacity word 𝑑 at Step (𝐺6) can be shown as follows.

𝑑𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑖+16 ⊕ 𝑎𝑖+16 ⊕ 𝑏
′
𝑖+16

⊕(𝑎𝑖+17 ∧ 𝑏
′
𝑖+17), if 𝑖 ∈ {0, 1, · · · , 31} ∖ {15};

𝑑31 ⊕ 𝑎31 ⊕ 𝑏
′
31, if 𝑖 = 15,

(4.2)

where

𝑏
′
𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑏𝑖+21 ⊕ 𝑐𝑖+21 ⊕ 𝑑𝑖+21

⊕(𝑐𝑖+22 ∧ 𝑑𝑖+22), if 𝑖 ∈ {0, 1, · · · , 31} ∖ {10};

𝑏31 ⊕ 𝑐31 ⊕ 𝑑31, if 𝑖 = 10.

(4.3)

For the DFA on NORX, two faults are injected for each encryption query. One cor-

responds to creating an internal state collision (replay) and another one corresponds

to inducing faults at the last 𝑙𝑑𝑖𝑎𝑔(𝑆) operation. So for the DFA, analyzing the re-

lation among the faulty and the non-faulty tags by injecting faults on a word inside
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𝐺(𝑠0, 𝑠5, 𝑠10, 𝑠15) will be sufficient to count the total number of faults required to re-

cover the full key 𝐾, where (𝑠0, 𝑠5, 𝑠10, 𝑠15) is the first diagonal input to the 𝑙𝑑𝑖𝑎𝑔(𝑆)

operation. Let 𝑛 be the number of faults (except the counter faults) required, by

analyzing the relation among the faulty and the non-faulty tags of 𝐺(𝑠0, 𝑠5, 𝑠10, 𝑠15).

Thus, the total number of faults (except the counter faults) will be 4𝑛. In the sub-

sequent sections, we will discuss several fault models with their theoretical analysis.

Then we will demonstrate a close comparison of the simulation result with the theo-

retical values.

4.4.1 Random Byte with Known Fault Model
In this fault model, a random byte fault (𝑥̃𝑖 = 𝑥𝑖 ⊕ 𝛿, 𝑖 = 0, 1, · · · , 𝑤

8 − 1) is injected

on a word with a known fault value, i.e., 𝛿 is known. If 𝑇, 𝑇 𝑥̃𝑖 represent the fresh

and the faulty tags due to a random byte with known fault 𝛿 in a word respectively,

then we can easily rectify the corresponding faulty byte of the word from the relation

Δ𝑇 𝑥̃𝑖 by observing 1 on the corresponding byte position. However, if we know 𝛿,

then we can recover exactly 𝑤𝑡(𝛿) bits from their XORed tag relation, where 𝑤𝑡(𝛿)

represents the hamming weight of 𝛿. Another restriction is that, for the first byte-

fault 𝛿 such that the 0-th bit is flipped, we can recover exactly 𝑤𝑡(Δ)− 1 number of

bits from their XORed tag relation. This happens because the bit information (𝑥0∧𝑦0)

is lost due to one left shift inside the 𝐻-function of NORX core permutation. For

𝑤 = 32, Δ𝑥𝑖
, 𝑖 = 0, 1, 2, 3 represents the corresponding byte-fault on the word 𝑥,

where 𝑥 = (𝑥0, · · · , 𝑥31) and 𝑥𝑗 = (𝑥8𝑗 , 𝑥8𝑗+1, · · · , 𝑥8𝑗+7), 𝑗 = 0, 1, 2, 3.

Let 𝑏 = 𝑏0||𝑏1||𝑏2||𝑏3 be a non-faulty word. Now, for any byte-fault 𝑏̃𝑖 on the word 𝑏

leading to the faulty word 𝑏̃, there is a one-to-one correspondence between Δ𝑏̃ and

Δ𝑇 𝑏̃. This means that for a byte-fault 𝑏̃0 on the word 𝑏, there exists at least one bit

position 𝑖 ∈ {16, 17, · · · , 23} such that Δ𝑇 𝑏̃
𝑖 = 1 and Δ𝑇 𝑏̃

𝑖 = 0 for the remaining bit

positions. Thus in this fault model we can easily detect which byte is faulted due to

𝑏̃ by observing Δ𝑇 𝑏̃. As we know the value of 𝑏̃𝑖, we extract the bit information of

𝑎𝑖 corresponding to the non-zero bits of 𝑏̃𝑖 from their XORed tag Δ𝑇 𝑏̃𝑖 . Similarly, we

recover the word 𝑑 by injecting 𝑐𝑖 and extract the bits information of 𝑑𝑖 corresponding

to the non-zero bits of 𝑐𝑖 from Δ𝑇 𝑐𝑖 . For better understanding, we give an example of

two random byte differences with known values as 𝛿1 = 0x9B000000, 𝛿2 = 0x005C0000

100



16 17 18 19 20 21 22 23 24 15

1 0 a3 ā4 1 a6 ā7 1 0 · · · 0

T1 ⊕ T∆
b

1 [16, · · · , 15] due to ∆b = 0x9B000000

23 24 25 26 27 28 29 30 31 0 22

0 a9 1 a11 ā12 ā13 1 0 0 0 · · · 0

T1 ⊕ T∆
b

1 [23, · · · , 22] due to ∆b = 0x005C0000

26 27 28 29 30 31 0 1 2 3 25

a11 1 a13 ∧ d̄3 d3 ⊕ (a14 ∧ d̄4) d̄4 ⊕ a15 1 ⊕ (a16 ∧ d6) d6 ⊕ (a17 ∧ d̄7) d̄7 ⊕ a18 1 0 · · · 0

T1 ⊕ T∆
c

1 [26, · · · , 25] due to ∆c = 0x9B000000

1 2 3 4 5 6 7 8 9 0

0 d9 ∧ a19 d9 ⊕ a20 1 ⊕ (a21 ∧ d11) d11 ⊕ (a22 ∧ d̄12) d̄12 ⊕ (a23 ∧ d̄13) d̄13 ⊕ a24 1 0 · · · 0

T1 ⊕ T∆
c

1 [1, · · · , 0] due to ∆c = 0x005C0000

Figure 4-10: Two different cases of byte-flips on the word 𝑏 as well on 𝑐

(in hexadecimal notation) on both the words 𝑏 and 𝑐 in Figure 4-10. So we have to

estimate how many random byte-faults are required such all the bits of the word will

be flipped at least once.

4.4.2 Random Bit-flip Fault Model

The fault model, we are considering here is that the effect of an induced fault is to flip

one bit of the word in a state. In most of the devices, bit-flip faults are feasible with

precise corruptability [168, 169, 170, 171]. Here we show some interesting relations

among the words 𝑎, 𝑏, 𝑐, 𝑑 by inducing a single bit random fault either on the word 𝑏

or on 𝑐, by formalizing their respective XORed relations of the fresh tag and the faulty

tag. We categorize this fault model into two cases depending on whether a fault is

injected in the word 𝑏 or in 𝑐.

4.4.2.1 Case 1: Faults on word 𝑏

According to the Equation (4.1), we can see that the bit 𝑏𝑖, 𝑖 ̸= 0 is present at the

two consecutive postions in 𝑑𝑖+15 and 𝑑𝑖+16. The bit 𝑏0 is only present at 𝑑16. Thus,

due to 𝑏̃𝑖, 𝑖 ̸= 0, the XORed tag relation only has two-bit differences at the positions

𝑖 + 15 and 𝑖 + 16 respectively. Whereas, for 𝑏̃0, the XORed tag relation only has
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d

c

b

a

∧ � 1

≫ 8

∧ � 1

≫ 11

a

d

c

b

Bit-flip at i-th position (b̃i, i 6= 0)

∧ � 1





at Step (G5)

∆ab̃i [i − 1] = ai;

∆ab̃i [i] = 1;

∆ab̃i [j] = 0, j 6= i, i − 1;

≫ 16

at Step (G6)

∆db̃i [i + 15] = ai;

∆db̃i [i + 16] = 1;

∆db̃i [j] = 0, j 6= i
+15, i + 16;





∧ � 1

≫ 31

d

K(1)

∆T b̃i

c

b

a

(a) Bit fault 𝑏̃𝑖 inside the 𝐺-function at the 𝑙𝑑𝑖𝑎𝑔(𝑆) call

d

c

b

a

∧ � 1

≫ 8

Bit-flip at i-th position (c̃i, i 6= 0, 22)

∧ � 1

at Step (G4)

∆bc̃i [i + 10] = di;

∆bc̃i [i + 11] = 1;

∆bc̃i [j] = 0, j 6= i + 10
, i + 11;





≫ 11




at Step (G3)

∆cc̃i [i − 1] = di;

∆cc̃i [i] = 1;

∆cc̃i [j] = 0, j 6= i, i − 1;

a

d

c

b

∧ � 1





at Step (G5)

∆ac̃i [i + 9] = ai+10 ∧ di;

∆ac̃i [i + 10] = ai+11 ⊕ di;

∆ac̃i [i + 11] = 1;

∆ac̃i [j] = 0, j 6= i + 9, i + 10, i + 11;

≫ 16

at Step (G6)

∆dc̃i [i + 25] = ai+10 ∧ di;

∆dc̃i [i + 26] = ai+11 ⊕ di;

∆dc̃i [i + 27] = 1;

∆dc̃i [i + 25] = 0, j 6= i + 25,
i + 26, i + 27;





∧ � 1

≫ 31

d

K(1)

∆T c̃i

c

b

a

(b) Bit fault 𝑐𝑖 inside the 𝐺-function at the 𝑙𝑑𝑖𝑎𝑔(𝑆) call

Figure 4-11: A bit-flip scenarios in the 𝐺 circuit.

one-bit difference at the position 16. Figure 4-11a illustrates the location of the bit-

fault injection to retrieve the corresponding bit of the word 𝑎. Thus, for any 𝑏̃𝑖, the

generalized form of the XORed tag is as follows:

(Δ𝑇 𝑏̃𝑖)[𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎𝑖, if 𝑗 = 𝑖 + 15

1, if 𝑗 = 𝑖 + 16

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, if 𝑖 ∈ {0, · · · , 31} ∖ {0};

⎧⎪⎨⎪⎩ 1, if 𝑗 = 16

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, if 𝑖 = 0.

(4.4)

It is clear from Equation (4.4) that, for any 𝑏̃𝑖, we can find the corresponding faulty

bit position in the word 𝑏 by observing the non-zero value 1 from the relation Δ𝑇 𝑏̃𝑖).

So using this relation, we retrieve all the bit values of the word 𝑎 except 𝑎0 by injecting
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random bit-faults in the word 𝑏.

4.4.2.2 Case 2: Faults on word 𝑐

According to Equation (4.2), the bit 𝑐𝑖 is present at three consecutive positions as

𝑖 + 25, 𝑖 + 26, 𝑖 + 27 in 𝑑 respectively due to 𝑐𝑖, 𝑖 ̸= 0, 22. But for 𝑐𝑖, 𝑖 = 0, 22, the bit

𝑐𝑖 is present at two consecutive positions as 𝑖+26, 𝑖+27 in 𝑑. Figure 4-11b illustrates

the location of the bit-fault injection to retrieve the corresponding bit of the word 𝑑.

Thus, for any 𝑐𝑖, the generalized form of the XORed tag is as below.

(Δ𝑇 𝑐𝑖)[𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖+10 ∧ 𝑑𝑖, if 𝑗 = 𝑖 + 25

𝑎𝑖+11 ⊕ 𝑑𝑖, if 𝑗 = 𝑖 + 26

1, if 𝑗 = 𝑖 + 27

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, if 𝑖 ̸= 0, 21, 22;

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎31 ∧ 𝑑21, if 𝑗 = 14

𝑑21, if 𝑗 = 15

1, if 𝑗 = 16

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, if 𝑖 = 21;

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎1 ⊕ 𝑑22, if 𝑗 = 16

1, if 𝑗 = 17

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, if 𝑖 = 22;

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎11, if 𝑗 = 26

1, if 𝑗 = 27

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, if 𝑖 = 0.

(4.5)

After retrieving the whole word 𝑎, we can recover all the bits in the word 𝑑, except

𝑑0 from Equation (4.5), by injecting random bit faults in 𝑐 such that all bit positions

are faulted at least once. If we can recover 𝑑 (except 𝑑0), the secret key 𝐾(1) (except

𝐾
(1)
0 ) will be recovered by XORing the respective word 𝑑 and the non-faulty tag. For

the unknown key bit 𝐾
(1)
0 , we guess that bit and check the corresponding tag for a

given query.
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4.4.2.3 Theoretical Analysis of the Model

To estimate the total number of independent parallel faults, we first calculate the

number 𝛼 of single-bit faults on a word (𝑤 = 32) such that each bit of that word is

flipped at least once. This problem is equivalent to the well-known Coupon Collector

Problem [172]. Therefore, following Equation 3.1, we can directly estimate the re-

quired number of faults to retrieve any number of bits of a word using the following

Corollary.

Corollary 1. For any word of length 𝑛, let 𝑋 be a discrete random variable that

represents the number of random bit-flips on the word such that 𝑙 different bit po-

sitions will be flipped at least once. Then the expected number of random bit-flips

required in order to hit at least 𝑙 different bit positions of the word will be given by

𝐸[𝑋] = 𝑛 · (𝐻𝑛 −𝐻𝑛−𝑙), where 𝐻𝑛 =
𝑛∑︀

𝑖=1
1
𝑖 is the 𝑛𝑡ℎ harmonic number.

4.4.3 Random Byte-flip Fault Model
In this fault model, we consider that the effect of an induced fault can flip all the

bits in a byte of the word in the state. Now, any word 𝑥 of size 𝑤 ∈ {32, 64} can be

viewed as sequential bytes 𝑥0, 𝑥1, · · · , 𝑥
𝑤
8 −1 respectively, where 𝑥𝑗 = (𝑥8𝑗 , · · · , 𝑥8𝑗+7),

𝑗 = 0, 1, · · · , 𝑤
8 − 1. In this model, we flip a byte randomly out of all the bytes of the

word and collect the corresponding faulty tag.

4.4.3.1 Case 1: Byte-Flip on the word 𝑏

Let us assume that, 𝑏̃𝑖, 𝑖 = 0, 1, · · · , 𝑤
8 − 1, i.e., a byte 𝑏𝑖 is flipped out of the word

𝑏. According to Equation (4.1), the XORed relation of the two tags Δ𝑇 𝑏̃𝑖 is given in

Figure 4-12.

4.4.3.2 Case 2: Byte-flip on the word 𝑐

We assume that, 𝑐𝑖, 𝑖 = 0, 1, · · · , 𝑤
8 − 1, i.e., a byte 𝑐𝑖 is flipped in the word 𝑐.

According to Equation (4.2) and (4.3), the XORed relation of the two tags Δ𝑇 𝑐𝑖 is

given in Figure 4-13.

From Case 1, it is clear that we can recover all the bits of 𝑎 except 𝑎0, by injecting

some random byte-flips 𝑏̃𝑖 in the word 𝑏 such that all the four bytes of 𝑏 are flipped
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16 17 18 19 20 21 22 23

ā1 ā2 ā3 ā4 ā5 ā6 ā7 1

(a) ∆T b̃0

[16, · · · , 23] due to byte-flip b0

on b

23 24 25 26 27 28 29 30 31

a8 ā9 ā10 ā11 ā12 ā13 ā14 ā15 1

(b) ∆T b̃1

[23, · · · , 31] due to byte-flip b1

on b

31 0 1 2 3 4 5 6 7

a16 ā17 ā18 ā19 ā20 ā21 ā22 ā23 1

(c) ∆T b̃2

[31, · · · , 7] due to byte-flip b2

on b

7 8 9 10 11 12 13 14 15

a24 ā25 ā26 ā27 ā28 ā29 ā30 ā31 1

(d) ∆T b̃3

[7, · · · , 15] due to byte-flip b3

on b

Figure 4-12: Four different cases of byte-flip on the word 𝑏

at least once. Similarly, from Case 2, we can recover all the bits of 𝑑 except 𝑑0 by

injecting some random byte-flips 𝑏̃𝑖 on the word 𝑐. So we recover the key 𝐾(1) except

𝐾
(1)
0 due to the unrecoverable bit 𝑑0.

4.4.3.3 Theoretical Analysis of the Model

To estimate the number of byte-flips in a word so that all the 4 bytes are flipped at

least once, we will use Equation 3.1. As the word contains four bytes, the expected

number of byte-flips needed to cover all the four bytes are 4·𝐻4 = 8.3. Hence, for both

of the cases, the expected number of byte-flips is 2 · 4 ·𝐻4 ≈ 17. Since the capacity of

the state has four words, so the total number of byte faults at the 𝑙𝑑𝑖𝑎𝑔(𝑆) operation

is 4 · 17 = 68. Therefore, the total number of faults (including counter faults) is

2 · 68 = 136.

4.4.4 Consecutive Bit-Flip Fault Model
Laser systems have proven to be highly effective at injecting faults into semiconductor

devices. Indeed, laser systems combine high power with fine control over the surface

and time to achieve finer disruptions. It can cause multiple bit errors as well as

controlled and reproducible single bit-flip by choosing the appropriate laser parame-

ters [171, 136, 134, 135, 173]. In this fault model, we assume that the induced fault

can change either a single bit or more than one adjacent bits on a word. Now, we
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26 27 28 29 30 31 0 1 2

a11∧d̄1 d̄1⊕(a12∧d̄2) d̄2⊕(a13∧d̄3) d̄3⊕(a14∧d̄4) d̄4⊕(a15∧d̄5) d̄5⊕(a16∧d̄6) d̄6⊕(a17∧d̄7) d̄7⊕a18 1

(a) ∆T c̃0

[26, · · · , 2] due to byte-flip c0 on c

1 2 3 4 5 6 7 8 9 10

a18∧d8 d8⊕(a19∧d̄9) d̄9⊕(a20∧d̄10) d̄10⊕(a21∧d̄11) d̄11⊕(a22∧d̄12) d̄12⊕(a23∧d̄13) d̄13⊕(a24∧d̄14) d̄14⊕(a25∧d̄15) d̄15⊕a26 1

(b) ∆T c̃1

[1, · · · , 10] due to byte-flip c1 on c

9 10 11 12 13 14 15 16 17 18

a26∧d16 d16⊕(a27∧d̄17) d̄17⊕(a28∧d̄18) d̄18⊕(a29∧̄d19) d̄19⊕(a30∧d̄20) d̄20⊕(a31∧d̄21) d̄21 d̄22⊕(a1∧d̄23) d̄23⊕a2 1

(c) ∆T c̃2

[9, · · · , 18] due to byte-flip c2 on c

17 18 19 20 21 22 23 24 25 26

a2∧d24 d24⊕(a3∧d̄25) d̄25⊕(a4∧d̄26) d̄26⊕(a5∧d̄27) d̄27⊕(a6∧d̄28) d̄28⊕(a7∧d̄29) d̄29⊕(a8∧d̄30) d̄30⊕(a9∧d̄31) d̄31⊕a10 1

(d) ∆T c̃2

[17, · · · , 26] due to byte-flip c2 on c

Figure 4-13: Four different cases of byte-flips on the word 𝑐

discuss the generalization of the XORed relation of the non-faulty and the faulty tags,

due to 𝑙 (1 ≤ 𝑙 ≤ 32) consecutive bit-flips in a word. For 𝑙 = 1, we already discuss it

in Section 4.4.2. In this model, there are two scenarios.

1. For each replay, the adversary can flip a random but fixed number of consecutive

bits in a word, i.e., 𝑙 is fixed for each replay, but the starting position of the

consecutive bit-flip injected by the adversary is random.

2. Another scenario is where both 𝑙 and the starting position of the consecutive

bit-flip are random.

4.4.4.1 Case 1: Consecutive Bits Fault on 𝑏

Assume that 𝑏̃[𝑖,𝑖+𝑙−1] happens, i.e., any 𝑙 consecutive bits flip in the word 𝑏 starting

from the bit position 𝑖 and 𝑇 𝑏̃[𝑖,𝑖+𝑙−1] is the corresponding faulty tag. According to

Equation (4.1), the bit 𝑏0 appears in one position in 𝑑 as 𝑑16, whereas the remaining

𝑏𝑖’s, 𝑖 ̸= 0 appears at two consecutive positions in 𝑑 as 𝑑𝑖+15, 𝑑𝑖+16 respectively. Thus,

for any 𝑙 consecutive bit-flips, if 0𝑡ℎ bit of the word 𝑏 is flipped, then there are several

cases to their XORed tag relation, otherwise if 0 /∈ {𝑖, · · · , 𝑖 + 𝑙 − 1}, then it is quite
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easy to follow the bit relation of Δ𝑇 𝑏̃[𝑖,𝑖+𝑙−1] . Using Equation (4.1), the XORed relation

Δ𝑑𝑏̃[𝑖,𝑖+𝑙−1] , including all the corner cases, are given as follows.

Case 1: For any 𝑏̃[𝑖,𝑖+𝑙−1] such that 0 /∈ {𝑖, · · · , 𝑖 + 𝑙 − 1}, we have,

Δ𝑑𝑏̃[𝑖,𝑖+𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖, if 𝑗 = 𝑖 + 15;

𝑎̄𝑖+𝑗 , for 𝑗 ∈ {𝑖 + 16, · · · , 𝑖 + 14 + 𝑙};

1, if 𝑗 = 𝑖 + 15 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Case 2: 𝑏̃[𝑖,𝑖+𝑙−1] such that 0 ∈ {𝑖, · · · , 𝑖 + 𝑙 − 1}.

Sub-case 1: For 𝑏̃[𝑖,𝑖+𝑙−1], i.e., for 𝑖 = 0, we have,

Δ𝑑𝑏̃[0,𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎̄𝑗 , for 𝑗 ∈ {16, · · · , 14 + 𝑙};

1, if 𝑗 = 15 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Sub-case 2: For any 𝑏̃[𝑖,𝑖+𝑙−1] such that 0 ∈ {𝑖 + 1, · · · , 𝑖 + 𝑙 − 2}, we have,

Δ𝑑𝑏̃[𝑖,𝑖+𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖, if 𝑗 = 𝑖 + 15;

𝑎̄𝑖+12, for 𝑗 ∈ {𝑖 + 16, · · · , 𝑖 + 14 + 𝑙}/{15};

1, if 𝑗 = 𝑖 + 15 + 𝑝 = 15, 1 ≤ 𝑝 ≤ 𝑙 − 1;

1, if 𝑗 = 𝑖 + 15 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

From the above relations, we can retrieve all the bits of 𝑎 (except 𝑎0) by inducing

random 𝑏̃[𝑖,𝑖+𝑙−1] in the word 𝑏 so that all the bits in the word 𝑏 will be flipped at

least once.

4.4.4.2 Case 2: Consecutive Bits Fault on 𝑐:

Similarly, assume that 𝑐[𝑖,𝑖+𝑙−1] happens, i.e., any 𝑙 consecutive bits flip starting from

the bit position 𝑖 in the word 𝑐 and let 𝑇 𝑐[𝑖,𝑖+𝑙−1] be the corresponding faulty tag.
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According to Equations (4.2) and (4.3), 𝑐0 appears at two positions in 𝑑 as 𝑑26, 𝑑27

respectively, 𝑐21 appears at three consecutive positions in 𝑑 as 𝑑14, 𝑑15, 𝑑16 respectively

and 𝑐22 appears at two consecutive position in 𝑑 as 𝑑16, 𝑑17 respectively. Whereas

the remaining 𝑐𝑖’s, 𝑖 ̸= 0, 21, 22 will appear at three consecutive positions in 𝑑 as

𝑑𝑖+25, 𝑑𝑖+26, 𝑑𝑖+27 respectively. Using Equations (4.2) and (4.3), the XORed relation of

Δ𝑑𝑐[𝑖,𝑖+𝑙−1] , including all the corner cases, are given as follows.

Case 1. For any 𝑐[𝑖,𝑖+𝑙−1] such that 0, 21, 22 /∈ {𝑖, · · · , 𝑖 + 𝑙 − 1}, we have,

Δ𝑑
Δ𝑐

[𝑖,𝑖+𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖+10 ∧ 𝑑𝑖, if 𝑗 = 𝑖 + 25;

𝑑𝑖 ⊕ (𝑑𝑖+1 ∧ 𝑎𝑖+11), if 𝑗 = 𝑖 + 26;

𝑑𝑖+𝑗−1 ⊕ (𝑑𝑖+𝑗 ∧ 𝑎𝑖+12), for 𝑗 ∈ {2 · · · , 𝑙 − 1};

𝑑𝑖+𝑙−1 ⊕ 𝑎𝑖+10+𝑙, if 𝑗 = 𝑖 + 25 + 𝑙;

1, if 𝑗 = 𝑖 + 26 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Case 2. For any 𝑐[𝑖,𝑖+𝑙−1] such that 0 ∈ {𝑖, · · · , 𝑖 + 𝑙 − 1} and 𝑖 = 0, we have,

Δ𝑑𝑐[0,𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎11 ∧ 𝑑1, if 𝑗 = 26;

𝑑𝑗⊕ for 𝑗 ∈ {26 + 1,

(𝑎11+𝑗 ∧ 𝑑𝑗+1), · · · , 26 + 𝑙 − 1};

𝑑𝑙 ⊕ 𝑎11+𝑙, if 𝑗 = 26 + 𝑙;

1, if 𝑗 = 27 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Case 3. 𝑐[𝑖,𝑖+𝑙−1] such that 21, 22 ∈ {𝑖, · · · , 𝑖 + 𝑙 − 1}.

Sub-case 3.1. 21, 22 ∈ {𝑖, · · · , 𝑖 + 𝑙 − 1} such that 𝑖 = 21, 22.
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If 𝑖 = 21, then we have,

Δ𝑑𝑐[21,20+𝑙] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎31 ∧ 𝑑21, if 𝑗 = 14;

𝑑21, if 𝑗 = 15;

𝑑21+𝑗−1⊕ for 𝑗 ∈ {16,

(𝑎31+𝑗 ∧ 𝑑21+𝑗), · · · , 13 + 𝑙};

𝑑21+𝑙−1 ⊕ 𝑎31+𝑙, if 𝑗 = 14 + 𝑙;

1, if 𝑗 = 15 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

If 𝑖 = 22, then we have,

Δ𝑑𝑐[22,21+𝑙] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑22 ⊕ (𝑎1 ∧ 𝑑23), if 𝑗 = 16;

𝑑22+𝑗⊕ for 𝑗 ∈ {17,

(𝑎𝑗+1 ∧ 𝑑23+𝑗), · · · , 15 + 𝑙};

𝑑22+𝑙 ⊕ 𝑎𝑙+1, if 𝑗 = 16 + 𝑙;

1, if 𝑗 = 17 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Sub-case 3.2. For 21, 22 ∈ {𝑖 + 1, · · · , 𝑖 + 𝑙 − 2}, we have,

Δ𝑑𝑐[𝑖,𝑖+𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖+10 ∧ 𝑑𝑖, if 𝑗 = 𝑖 + 25;

𝑑𝑖 ⊕ (𝑎𝑖+11 ∧ 𝑑𝑖+1), if 𝑗 = 𝑖 + 26;

𝑑𝑖+𝑗−1⊕ for 𝑗 ∈ {𝑖 + 27,

(𝑎𝑖+10+𝑗 ∧ 𝑑𝑖+𝑗), · · · , 𝑖 + 24 + 𝑙};

𝑑𝑖+𝑙−1 ⊕ 𝑎𝑖+10+𝑙, if 𝑗 = 𝑖 + 25 + 𝑙;

if ∃𝑠 ∈ {1, · · · , 𝑙}

𝑑21, ∋ 𝑗 = 𝑖 + 25 + 𝑠 = 15;

1, if 𝑗 = 𝑖 + 26 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Sub-case 3.3. 21, 22 ∈ {𝑖, · · · , 𝑖 + 𝑙 − 1} such that 𝑖 + 𝑙 − 1 = 21, 22.
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If 𝑖 + 𝑙 − 1 = 21, then we have,

Δ𝑑𝑐[𝑖,𝑖+𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖+10 ∧ 𝑑𝑖, if 𝑗 = 𝑖 + 25;

𝑑𝑖 ⊕ (𝑎𝑖+11 ∧ 𝑑𝑖+1), if 𝑗 = 𝑖 + 26;

𝑑𝑖+𝑗−1⊕ for 𝑗 ∈ {𝑖 + 27,

(𝑎𝑖+10+𝑗 ∧ 𝑑𝑖+𝑗), · · · , 𝑖 + 24 + 𝑙};

𝑑𝑖+𝑙−1, if 𝑗 = 𝑖 + 25 + 𝑙;

1, if 𝑗 = 𝑖 + 26 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

If 𝑖 + 𝑙 − 1 = 22, then we have,

Δ𝑑𝑐[𝑖,𝑖+𝑙−1] [𝑗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖+10 ∧ 𝑑𝑖, if 𝑗 = 𝑖 + 25;

𝑑𝑖 ⊕ (𝑎𝑖+11 ∧ 𝑑𝑖+1), if 𝑗 = 𝑖 + 26;

𝑑𝑖+𝑗−1⊕ for 𝑗 ∈ {𝑖 + 27,

(𝑎𝑖+10+𝑗 ∧ 𝑑𝑖+𝑗), · · · , 𝑖 + 23 + 𝑙};

𝑑𝑖+𝑙−2, if 𝑗 = 𝑖 + 24 + 𝑙 = 15;

𝑑𝑖+𝑙−1 ⊕ 𝑎𝑖+10+𝑙, if 𝑗 = 𝑖 + 25 + 𝑙;

1, if 𝑗 = 𝑖 + 26 + 𝑙;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Based on the retrieved bits of 𝑎, for any 𝑐[𝑖,𝑖+𝑙−1], we can recover all the bits of 𝑑

except 𝑑0 by following one of the above tag relations. Hence, we can recover 𝐾(1)

(except 𝐾
(1)
0 ) by inducing 𝑐[𝑖,𝑖+𝑙−1] in the word 𝑐 such that all the bits of 𝑐 flips at

least once. Instead of recovering all the bits of 𝐾(1), we can recover partial bits of

𝐾(1) and use the brute-force approach for the remaining key bits.

4.4.4.3 Theoretical Analysis of the Model 1

In this model, we have two cases. The first one is where an attacker randomly flips

the 𝑙 number of consecutive bits to the register, i.e., an attacker chooses a random bit

position 𝑖 and then flips bits from 𝑖 to 𝑖 + 𝑙− 1(≤ 𝑛). In Chapter 3, we have provided

an exact theoretical solution to this problem.
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4.4.5 Experimental Results
In this section we present a set of simulations of our fault models and compare the

expected number of required faults with the corresponding theoretical estimates. The

simulations were performed on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz com-

puter.

4.4.5.1 Random Byte with Known Fault Model

By simulating the above problem for 105 times, the expected number of byte-faults

to cover the whole bit positions of the word is 29. So to recover the word 𝑎 and

then 𝑑, the total number byte faults required will be approximately 2 · 29 = 58. But

instead of recovering all the bits of the word 𝑑, we can recover 𝑟 (≥ 16) number of

bits of the secret key 𝐾(1) and the remaining bits are recovered by guessing them.

Our simulation result is given in Table 4.5.

No. of Reco- Expected No. of Expected No. of Total No. of Brute-force

vered Bits (𝑟) 𝑏̃𝑖 (= 𝑍1) 𝑐𝑖 (= 𝑍2) faults (= 𝑍1 + 𝑍2) complexity

16 126 20 292 264

20 126 32 316 248

24 126 40 332 232

28 126 60 372 216

30 126 76 404 28

31 126 92 436 24

Table 4.5: Expected number of random byte with known faults to recover the key 𝐾

4.4.5.2 Random Bit-flip Fault Model

As there are four independent diagonal inputs (𝑎, 𝑏, 𝑐, 𝑑) to the 𝐺 function, the total

number of faults for each of 𝑏̃𝑖 or 𝑐𝑖 is 4 × 𝛼. The estimation of the total number of

faults (including counter faults) corresponding to both the theory and simulation is

furnished in Table 4.6.

4.4.5.3 Consecutive Bit-Flip Fault Model

The total number of faults required to recover some partial bits (𝑟) of the key for

different 𝑙 is given in Table 4.7 according to our simulation and the theoretical esti-

mations. Also, we have done this simulation by running the procedure 1,00,000 times
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Recovered Simulation Theoretical Brute-force

Bits(4× 𝑡) Expected No. Expected No. Total faults Expected No. Expected No. Total faults complexity

of 𝑏̃[𝑖,𝑖+𝑙−1] (𝑧1) of 𝑐[𝑖,𝑖+𝑙−1] (𝑧2) 2 · (𝑧1 + 𝑧2) of 𝑏̃[𝑖,𝑖+𝑙−1] (𝑧1) of 𝑐[𝑖,𝑖+𝑙−1] (𝑧2) 2 · (𝑧1 + 𝑧2)

64 (4× 16) 519.5 (4× 129.8) 87.2 (4× 21.8) 1213.4 520 (4× 67.8) 88 (4× 22) 1216 264

96 (4× 24) 519.5 (4× 129.8) 171.2 (4× 42.8) 1381.4 520 (4× 67.8) 172 (4× 43) 1384 232

116 (4× 29) 519.5 (4× 129.8) 284.4 (4× 71.1) 1607.8 520 (4× 67.8) 285 (4× 71.3) 1609 212

124 (4× 31) 519.5 (4× 129.8) 391.3 (4× 97.8) 1821.5 520 (4× 67.8) 392 (4× 98) 1824 24

𝑎 The feature in the parenthesis indicates the number of registers × number of faults on a register

Table 4.6: Expected number of single-bit random faults to recover the key 𝐾

for some values of 𝑛, 𝑘, and 𝑡 and taken averages over those values. For the second

case, our simulated values are given in Table 4.8.

Number of Recovered Simulation Theoretical Brute-force

consecutive Bits(4× 𝑡) Expected No. Expected No. Total faults Expected No. Expected No. Total faults complexity

bits(𝑙) of 𝑏̃[𝑖,𝑖+𝑙−1] (𝑧1) of 𝑐[𝑖,𝑖+𝑙−1] (𝑧2) 2 · (𝑧1 + 𝑧2) of 𝑏̃[𝑖,𝑖+𝑙−1] (𝑧1) of 𝑐[𝑖,𝑖+𝑙−1] (𝑧2) 2 · (𝑧1 + 𝑧2)

2

64 (4× 16) 270 (4× 67.5) 44.8 (4× 11.2) 629.6 271.2 (4× 67.8) 46.4 (4× 11.6) 635.2 264

96 (4× 24) 270 (4× 67.7) 88 (4× 22) 716 271.2 (4× 67.8) 89.2 (4× 22.3) 720.8 232

116 (4× 29) 270 (4× 67.5) 145.2 (4× 36.3) 830.4 271.2 (4× 67.8) 143.2 (4× 35.8) 828.8 212

124 (4× 31) 270 (4× 67.5) 201.2 (4× 50.3) 942.4 271.2 (4× 67.8) 202 (4× 50.5) 946.4 24

3

64 (4× 16) 197.6 (4× 49.4) 30.8 (4× 7.7) 456.8 196.8 (4× 49.2) 32 (4× 8) 457.6 264

96 (4× 24) 197.6 (4× 49.4) 60 (4× 15) 515.2 196.8 (4× 49.2) 61.2 (4× 15.3) 516 232

116 (4× 29) 197.6 (4× 49.4) 100 (4× 25) 595.2 196.8 (4× 49.2) 99.6 (4× 24.9) 592.8 212

124 (4× 31) 197.6 (4× 49.4) 139.6 (4× 34.9) 674.4 196.8 (4× 49.2) 140.8 (4× 35.2) 675.2 24

7

64 (4× 16) 139.2 (4× 34.8) 15.6 (4× 3.9) 309.6 140.4 (4× 35.1) 14.8 (4× 3.7) 310.4 264

96 (4× 24) 139.2 (4× 34.8) 28.8 (4× 7.2) 336 140.4 (4× 35.1) 29.2 (4× 7.3) 339.2 232

116 (4× 29) 139.2 (4× 34.8) 50.4 (4× 12.6) 379.2 140.4 (4× 35.1) 50 (4× 12.5) 380.8 212

124 (4× 31) 139.2 (4× 34.8) 80.8 (4× 20.2) 440 140.4 (4× 35.1) 81.2 (4× 20.3) 443.2 24

19

64 (4× 16) 128.8 (4× 32.2) 7.6 (4× 1.9) 272.8 128 (4× 32) 8 (4× 2) 272 264

96 (4× 24) 128.8 (4× 32.2) 16 (4× 4) 289.6 128 (4× 32) 15.6 (4× 3.9) 287.2 232

116 (4× 29) 128.8 (4× 32.2) 33.6 (4× 8.4) 324.8 128 (4× 32) 32.8 (4× 8.2) 321.6 212

124 (4× 31) 128.8 (4× 32.2) 65.2 (4× 16.3) 388 128 (4× 32) 64.4 (4× 16.1) 384.8 24

𝑎 The feature in the parenthesis indicates the number of registers × number of faults on a register

Table 4.7: Expected number of consecutive faults for different 𝑙, 𝑡, and 𝑛 = 32

4.5 Discussion
In the literature on physical attacks on cryptographic protocols, the most powerful

and effective fault analyses are DFA and Statistical Fault Analysis (SFA) [31]. In

DFA, the input is encrypted twice with a fault being induced in the last rounds of the

second run, and then, the difference between the correct and the faulty ciphertexts is

used to retrieve the master key. On the other hand, SFA requires only a collection of
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No. of conse- Recovered Expected No. of Expected No. of Total No. of Brute-force

cutive bits (𝑙) Bits (4× 𝑡) Δ𝑏[𝑖,𝑖+𝑙−1] (𝑧1) Δ𝑐[𝑖,𝑖+𝑙−1] (𝑧2) faults 2 · (𝑧1 + 𝑧2) complexity

random

64 (4× 16) 132 10.24 284.48 264

96 (4× 24) 132 19 302 232

116 (4× 29) 132 38 340 212

124 (4× 31) 132 69.4 402.8 24

Table 4.8: Expected number of consecutive faults for random 𝑙

faulty ciphertexts to recover the correct key but does not require correct and faulty

ciphertext pairs. However, two conditions must be satisfied for SFA: the inputs to the

block cipher are different from each other, and the faulty ciphertexts are the direct

outputs of the block cipher [174, 175]. More precisely, the attacker collects biased

faulty ciphertexts (distributed non-uniformly), computes backward to the target byte

corresponding to different key guesses, and tries to discard the wrong key guesses

that would lead to approximately a uniform distribution of the biased target byte.

So, this type of attack is very useful where a key-whitening mechanism is used in any

kind of iterated cipher or in any kind of mode/AEAD scheme where the underlying

block cipher/permutation uses a key-whitening mechanism. But in NORX design, the

master key is used only in the initial phase and at the end of the tag generation phase.

Also, the message is XORed with the rate part of the state to output the ciphertext

and then the permutation is applied to the state to process another message. So if

we generate biased fault on a specific word/byte of a state just before the message

processing at the last round of the permutation 𝐹 and collect the faulty ciphertexts

by XORing the message with the rate part of the state, then there will be no way to

guess the key such that after one round inverse we can check whether that specific

word/byte values behave non-uniformly or not. Similarly, at the last diagonal round

of the tag generation phase, collecting faulty tags by injecting biased faults on a

specific byte/word inside the state does not make it vulnerable to SFA. Since here we

only know the capacity of the state (tag) and the whole rate part is unknown to us.

So, by guessing the key byte/word corresponding to the faulty tag, we can not lead

to the target byte to check its non-uniform behavior by inverting one diagonal round.

In our attack, we make use of Differential Fault Attacks (DFA) on NORX, by creating a

replay in the nonce respecting scenario. Also, we discuss several random fault models
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and recover the secret key bits by building a mathematical relation between the faulty

and the non-faulty tags. Moreover, in the precise control fault model, it is quite easy

to recover the secret key bits with very few faults based on the mathematical relation

between the faulty and the non-faulty tags. Another important point in our attack is

that instead of counter fault for branching to get a state collision in the encryption

query, if the fault modifies the round iteration counter or some other variable, then

we can easily detect this situation at the faulty tag output after injecting the second

fault. For example, in the bit-fault model, if the XOR of the fresh tag and the faulty

tag have a pattern different from what is expected as per Equation (4.4) or (4.5),

then we remove that faulty encryption query from our analysis.
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Figure 4-14: FORK-256 Compression function
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𝑠 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝜎1(𝑠) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝜎2(𝑠) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1
𝜎3(𝑠) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3
𝜎4(𝑠) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

Table 4.9: Message word ordering in FORK-256

4.5.1 Fault Attack on FORK-256

FORK-256 is a 256-bit hash function that consists of four parallel branches used inside

the compression function. These four branches take the previous chaining value 𝐶𝑉𝑖 as

an input. The output of these branches is different due to the message word ordering

and the constant ordering. These are given in Table 4.9, and Table 4.10 respectively.

Figure 4-14 captures the compression function of FORK-256. The iterative process

of FORK-256 uses the Merkle-Damgård construction [176, 177] to hash inputs of

arbitrary length. More details about FORK-256 are given in [158].

Our observation is that FORK-256, when implemented in the serial mode for resource-

constrained devices, can have its compression function behave like an identity func-

tion. This is under the assumption that the message word and constant orderings are

implemented using look-up tables. This is done by inducing two faults separately on

the row indexes of the look-up tables so that the message word ordering and constant

ordering remain the same for all four branches. As an effect of faults on the look-up

tables, we will always have 𝐶𝑉𝑖+1 = 𝐶𝑉𝑖. It looks similar to the one used for NORX

where all the branches collide to a zero state. For FORK-256, it results in the chain-

ing value being passed unaltered to the final hash output. It might pose a threat if

FORK-256 is used in the keyed mode. For example, if someone constructs an NMAC

using the FORK-256 hash function, we can recover the secret key by injecting faults

on the look-up tables of message word ordering and constant ordering. For NMAC,

the secret key is used as an IV for the compression function. Since the chaining

value always remains unaltered for FORK-256 by keeping the message and constant

ordering identical to all the branches, we will get the secret key in the tag output.
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𝑠 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝜌1(𝑠) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝜌2(𝑠) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
𝜌3(𝑠) 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
𝜌4(𝑠) 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

Table 4.10: Constant ordering in FORK-256

4.5.2 Countermeasures

The attacks demonstrated in this work can be thwarted or made difficult to mount

using two approaches. The first is related to the implementation of the counter in

software or hardware. In software, the counter may be implemented in Single Instruc-

tion Multiple Data (SIMD) to make the attack harder, as one has to induce separate

faults for each branch to create the collision. The same is true when the counter

values are hardwired separately for each branch in case of a hardware implementa-

tion. A more effective strategy is to implement a random number generator or to use

pre-generated random numbers to separate the branches, instead of using a counter.

This would make the branch collision highly improbable thereby violating the initial

premise of the attack. Apart from these, other standard mitigation techniques like

duplicating parts of the cipher and using redundancy can also be used, though the

overhead of implementing them would be, as already known, quite high.

4.6 Conclusion
We show the first fault attack that uses both internal and classical differentials to

mount a differential fault analysis on the nonce-based authenticated cipher NORX.

Our fault analysis is applicable to all three versions of NORX proposed in the CAESAR

competition for any degree of parallelism 𝑝 > 1. We show that the faults introduced

in NORX in parallel mode can be used to collide the internal state to produce an all-

zero state and this can be used to replay NORX despite being instantiated by different

nonces and messages. Once replayed, we show how the internal state of NORX can

be recovered using secondary faults. We use four different fault models. Under the

random bit-flip model, around 1384 faults are to be induced to reduce the key-space

from 2128 to 232. Whereas for the reduced key space of size 32, under random byte
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with known fault and random consecutive bit-flip models, approximately 332 and 302

faults are to be induced respectively. For the random byte-flip model, our analysis

shows that, by injecting approximately 136 faults, we can recover the full key.

It is interesting to note that our attack might apply to other ciphers which are similar

in structure to NORX like FORK-256 [156], RIPEMD-160 [155] Keyak [157] etc. We

address a similar kind of fault attack on a hash function FORK-256 that forces the

compression function to act like an identical function. Further, it leads to full key

recovery if FORK-256 is used in the keyed mode as NMAC.

117



118



5
DIFFERENTIAL FAULT ATTACK ON

FEISTEL-BASED SPONGE AE SCHEMES

5.1 Introduction
Block ciphers can be primarily classified into one of two constructions: Substitution-

Permutation Networks (SPN) and Generalized Feistel Networks (GFN). Furthermore,

the Add-Rotate-XOR (ARX) structure represents another class of symmetric-key al-

gorithms, designed using only the following simple operations: modular addition,

bitwise rotation, and exclusive-OR. Traditionally, a classical Feistel Network (FN)

has been used to design a block cipher, typically consisting of only two branches,

making it the most popular variant. Further research has generalized FN to Gener-

alized Feistel Network (GFN), which can be considered a special case of GFN. Some

well-known examples of block ciphers are AES [62], PRESENT [65] (SPN), DES [52]

(FN) and SPECK [178] (a variant of ARX).

Feistel is one of the popular structures among the designers as it can be implemented

with a primitive of smaller state size. Moreover, in the decryption module, there is

no need to invert the Feistel round function for the implementation circuit.

Feistel was first introduced with the design Lucifer [179], designed by Feistel et

al.. It has been adopted in several block ciphers (with some variations) such as

DES [52], FEAL [53], GOST [54], Khufu & Khafre [55], LOKI [56], CAST [57],

Blowfish [58], and RC5 [59], DES being the most popular among them.

Later, Zheng et al. in [60], first described the general transformations of Feistel
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Networks as type-1, type-2, type-3, which are provably secure as well as can be

easily implemented with current technology. They also proved that generalized type-

2 transformation is an excellent building block for cryptosystems. Context wise, we

use the notation GFNf, to denote an internal function 𝑓 is used inside the GFN. The

designs are categorized as (all of these Feistel variants are described in Section 2.1)

– Unbalanced Feistel Networks [180] consists of either expanding or contracting

round functions,

– Alternating Feistel Networks [61, 181] with the rounds alternate between con-

tracting and expanding steps and

– Generalized Feistel Networks of type-1, -2, -3 [60] using an 𝑛-bit to 𝑛-bit round

function to create a 𝑘𝑛-bit block cipher for 𝑘 ≥ 2

Some well-known GFN are Skipjack [182] (unbalanced Feistel), BEAR/LION [61]

(the only alternating Feistel), CAST-256 [57] (type-1), RC6 [183] (type-2), and

MARS [184] (type-3). Several generalizations of Feistel networks and their anal-

yses [185, 180, 186, 187, 188] have been used in the new block cipher, MAC, and AE

proposals.

Authenticated encryption, also known as AE, is a type of encryption that provides

both encryption and authentication of data in a single process. Its significance can be

observed in numerous applications, including SSL/TLS, IPSEC, SSH, and hard-disk

encryption. Various modes are used to design AE schemes such as BC-based feedback

modes, OCB-based modes, SIV-based modes, and Permutation-based Sponge modes.

Sponge modes and their variants are the popular ones among the designers due to

their low state size. It consists of a sequential application of a permutation 𝐹 on

a state of 𝑏 bits. This state is partitioned into an 𝑟-bit rate (or outer part) and a

𝑐-bit capacity (or inner part), where 𝑏 = 𝑟 + 𝑐. It can also be visualized as stream

cipher modes with the block of 𝑏-bits injected to the state and the key is only used to

initialize the state. Some Sponge designs including one of its variant Beetle [189] only

use the key to initialize the state. Thus, the implementation of such designs does not

need any storage for the key. However, Sponge based AE does not provide security

bound more than 𝑐
2 bits in the state size, and later several variants like ASCON [190]
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(with Key XOR at the end), Beetle (with combined feedback) have been proposed to

increase the security bound.

Sponge modes are based on public permutation, and GFNf have been used as the

internal permutation in the sponge AE construction. There are several choices to

design f function, where SPN or ARX is a popular choice among them. If we increase

the number of branches, the length of each branch will become smaller. Thus, we

can use the round function f with a smaller state size. This is advantageous for

hardware-constraint lightweight applications.

In our contemporary world, Lightweight designs are necessary for the resource-constraint

devices in the research community due to the growing popularity of IoT (Internet of

things) applications. Recently, NIST has invited researchers to submit their designs

that must be suitable for use in resource-constrained environments. A significant

number of the NIST LWC submissions are based on Sponge (including GFN based per-

mutation). Along with the must-have properties, the submissions have also been

encouraged to be side-channel resistant. Most of the sponge-based designs have been

analyzed under the black-box model. However, they have not been analyzed signif-

icantly in the grey-box model. Observing the growing popularity of Sponge based

designs, we attempt to provide grey box fault attacks on generic sponge modes with

GFN based permutations. We follow the reasonable approach of using a GFN with

SPN-like structure. A few examples of fault attacks on AE schemes are available

in [191, 192].

To perform DFA on sponge AE scheme, the attacker needs to create a replay in each

encryption query. But due to the use of a unique nonce in each encryption, it may

become a difficult task to create a faulty state collision to satisfy the replaying crite-

rion. Whereas, the effects of this unique nonce are no longer valid in the decryption

query. Further, to create a replay of sponge AE in the decryption query, we might

need to create faulty forgery. Here, faulty forgery means an attacker repeatedly makes

queries by choosing a new tag 𝑇
′, and then injects faults in the intermediate rounds

of the state at the time of the last permutation call until he successfully gets at least

one tag forgery 𝑇
′ . Now, the immediate questions are

1. First question: what will be the probability of getting a faulty forgery?
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2. Second question: can we efficiently recover the full state by performing faulty

forgery?

Our research reveals that if the internal permutation of the sponge construction is

SPN-based GFN, then faulty forgery can be achieved with less number of queries com-

pared to other GFN-based structures. Then, to recover the state, we do the offline

computations based on the collected forgeries. Note that, in the case of a sponge,

the key is used to initialize the state. So, the state recovery is sufficient to recover

the secret key if there are no extra key injections in the sponge. Though it seems

to be a special case, there exist several designs that follow this case [193, 194, 195].

Our attack can work on several other examples. We have also taken the use case of

CiliPadi [196] AE from NIST LWC to verify our generic proof.

5.1.1 Summary of The Chapter

This chapter makes three significant contributions to the field of cryptanalysis. Firstly,

we investigate the applicability of the differential fault attack (DFA) on sponge-based

authentication schemes that utilize generalized Feistel networks (GFNs) as their per-

mutation function. Specifically, we focus on the scenario where the Generalized Feistel

Network (GFN𝑓 ) internally uses a substitution-permutation network (SPN). In other

words, the random function/permutation 𝑓 inside the GFN follows an SPN structure.

By analyzing this setup, we demonstrate the potential of DFA in compromising the

security of such schemes. Additionally, we provide a comprehensive estimation of the

required number of faults, as well as the associated time and memory complexities,

to successfully recover the full state. Furthermore, we explore the feasibility of ex-

tending state recovery to achieve full key recovery, opening up new possibilities for

exploiting vulnerabilities.

Secondly, we apply the DFA technique to recover the internal state and subsequently

extract the secret key of a specific cipher known as CiliPadi authenticated encryp-

tion. Through this practical application, we not only demonstrate the effectiveness

of the attack, but also provide detailed insights into the number of faults, time, and

space complexities involved in the recovery process. Lastly, we contribute to the field

of cryptographic security by proposing general countermeasures to mitigate the risks
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associated with fault attacks. These countermeasures are designed to enhance the

overall resilience of cryptographic systems against DFA.

5.2 Preliminaries
In this chapter, we will introduce a set of notations to facilitate the understanding and

clarity of the concepts discussed. These notations will be used consistently through-

out the chapter to represent various variables, parameters, and operations. These

notations are as follows.

– GFNf denotes an internal permutation in the sponge AE, whereas f denotes an

internal function in the GFN.

– f𝑖,𝑗,𝑘 denotes an internal function f in GFN, where 𝑖, 𝑗 represent the round num-

ber of f and the GFN respectively, and 𝑘 represents the branch number of GFN.

– f ′ denotes the internal permutation used inside the GFN at the last permutation

call to output the final tag in the sponge AE, i.e., in short, we denote it as GFNf ′
.

– 𝑇
′ denotes a new tag formed by the adversary before a fault is injected at GFNf ′

during decryption.

– 𝑚 denotes the total bytes/nibbles in the f state. If 𝑚 is a square number, we can

represent the f state as a
√

𝑚 ×
√

𝑚 matrix, i.e., (𝑖, 𝑗), 𝑖, 𝑗 = 0, 1, . . . ,
√

𝑚 − 1.

Otherwise, the f state can be represented as a rectangular matrix.

– 𝜆 denotes the all possible byte/nibble differences for the SPN state, i.e.,

𝜆 =

⎧⎪⎨⎪⎩ 28, 𝑓𝑜𝑟 𝑏𝑦𝑡𝑒 𝑐𝑎𝑠𝑒;

24, 𝑓𝑜𝑟 𝑛𝑖𝑏𝑏𝑙𝑒 𝑐𝑎𝑠𝑒; .

5.2.1 Sponge based Authenticated Encryption using GFN

Authenticated encryption (AE) and authenticated encryption with associated data

(AEAD) are used to assure both the confidentiality and authenticity of data. AE

schemes are designed using an efficient combination of a semantically secure encryp-

tion scheme and an unforgeable message authentication code (MAC) under chosen-

plaintext attack. Sponge mode has been introduced with the Keccak hash func-

123



CiliPadi- Algorithm Length of Number of rounds
[𝑛, 𝑟, 𝑎, 𝑏] Key Nonce Tag Block 𝑃 𝑎

𝑛 𝑃 𝑏
𝑛

Mild [256, 64, 18, 16] 128 128 64 64 18 16
Medium [256, 96, 20, 18] 128 128 96 96 20 18

Hot [384, 96, 18, 16] 256 128 96 96 18 16
ExtraHot [384, 128, 20, 18] 256 128 128 128 20 18

Table 5.1: CiliPadi parameters with the primary member as CiliPadi-Mild

tion [197]. Later several AEAD schemes have been proposed supporting Sponge

mode. Several sponges-based AE schemes have also been submitted to the ongo-

ing lightweight cryptography competition, initiated by NIST. We observed that 25

out of 56 NIST lightweight submissions are sponge-based, where the majority of the

underlying permutations inside the sponge are SPN/Feistel-like structures. In this

chapter, we only focus on the sponge-based AE schemes, where the internal permuta-

tions are Feistel-like structures. Following are the sponge-based AE with GFN as the

underlying public permutation, submitted to the ongoing NIST lightweight competi-

tion: ACE [198], CiliPadi [196], Oribatida [199], SPARKLE [200], SPIX [201],

SpoC [202].

5.2.2 Description of CiliPadi

CiliPadi [196] is a family of lightweight authenticated encryption with associated

data (AEAD). It is submitted to the NIST lightweight competition with four flavors

as CiliPadi-Mild, CiliPadi-Medium, CiliPadi-Hot, and CiliPadi-ExtraHot.

The CiliPadi [𝑛, 𝑟, 𝑎, 𝑏] mode of operation is based on the MonkeyDuplex [203, 157]

construction and is depicted in Figure 5-1, where 𝑛 denotes the state size in bits.

The bitrate is 𝑟 bits and the capacity is 𝑐 = 𝑛 − 𝑟 bits. The permutation (𝑃 𝑎
𝑛 ) for

the initialization and finalization phases has 𝑎 rounds while the permutation (𝑃 𝑏
𝑛) for

the associated data and message encryption/decryption phases has 𝑏 rounds, where

𝑏 > 𝑎. All the four variants and their security parameters are listed in Table 5.1.

The internal permutation function 𝑃𝑛 makes use of an unkeyed 2-round lightweight

block cipher LED [63] as the round and branch dependent 𝑓 function used inside

the type-2 GFN. It consists of 𝑙 branches with 𝑛
𝑙 bits each and uses 𝑙

2 calls to 𝑓 in

each round. If 𝑋1|| · · · ||𝑋𝑙 be the input to the 𝑖-th round type-2 GFN, then they are
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updated by the 𝑓 -function as follows:

𝑋𝑗 ←

⎧⎪⎪⎨⎪⎪⎩
𝑋𝑗 if 𝑗 = 1, 3, · · · , 𝑑− 1

𝑋𝑗 ⊕ 𝑓 𝑖
𝑗/2(𝑋𝑗−1) if 𝑗 = 2, 4, · · · , 𝑑

After applying 𝑓 -functions to the odd-numbered branches, all the branches are shuf-

fled by the permutation function 𝜋. For 𝑙 = 4, 𝜋 = {2, 3, 4, 1}. Type-2 GFN employed

in CiliPadi with 𝑙 = 4 and 𝑙 = 6 are given in Figure 5-2. In particular, the designers

have employed Type-2 GFN with 𝑙 = 4 when the (CiliPadi) state size is 256 bits,

whereas it employed Type-2 GFN with 𝑙 = 6 for 384 bits state. For CiliPadi, the

permutations 𝜋 for different 𝑙 are given in Table 5.2. The input to the LED cipher is

64 bits, which can be partitioned into 16 4-bit cells. Let 𝑥 = 𝑥1|| · · · ||𝑥16 denote this

input which can be viewed as a 4 × 4 matrix and entered row-wise. A single LED

round (see Figure 5-3) consists of the following four operations: AddConstants (AC),

SubCells (SC), ShiftRows (SR), and MixColumnSerial (MCS). The first two branches

are used to output the 128-bit tag 𝑇 = 𝑇1 || 𝑇2. More details about CiliPadi are

given in [196].
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Figure 5-1: CiliPadi mode of operation
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(a) 𝑙 = 4
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(b) 𝑙 = 6

Figure 5-2: Type-2 GFN employed in CiliPadi for 𝑙 = 4 and 𝑙 = 6
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Input length (𝑛) Number of branches (𝑙) Shuffle (𝜋)
128 2 {2,1}
256 4 {4,1,2,3}
384 6 {4,1,2,5,6,3}

Table 5.2: Shuffling used in the Type-2 GFN

5.3 Fault Attack on CiliPadi
To perform DFA for any sequential sponge AE schemes, the attacker needs to create a

replay which is actually a very difficult task. This is because a different nonce is used

to initialize the state in each encryption query so that an attacker can not create an

identical state to make a differential attack. Therefore, to perform DFA, we need to

repeat the nonce in each query. However, in decryption performing DFA is an easy

task as the attacker has no restrictions to make several queries for a fixed nonce. In

the decryption query, an attacker can repeatedly make faulty queries with a new tag

𝑇
′ but with the same nonce, associated data, and message, where faults are injected

at the last permutation call just before the tag verification is checked. We repeat

the queries to collect some valid tag forgeries 𝑇
′ . Therefore, based on the collected

forgeries on sponge-based AE, we can perform DFA to recover its internal state. We

now give a general idea to perform DFA on CiliPadi, which follows GFN-based sponge

AE scheme where an SPN has internally used inside the GFN. The attack targets the

last permutation call during a decryption query. A short description to recover the

internal state is given as follows.

1. First, collect multiple forgeries using several fault-injected forging attempts (a

fraction of them are valid) in CiliPadi.
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Figure 5-3: A single round of LED

126



2. Then, we recover the SPN state (i.e., one branch of GFN) by collecting multiple

forgeries at different locations in the CiliPadi state.

3. Finally, we will retrieve other branches of GFN separately by performing DFA

sequentially.

5.3.1 Random Fault Model

The fault model, we are considering here is that the effect of an induced fault is to

change one nibble of the state to a random one. The injected faults can be controlled

to corrupt the data in a specific round. In the context of DFA attacks, it is practical

and, in fact, the minimal assumption. For example, an attacker could attempt to use

a clock glitch/EM/laser to create a fault at the input of a particular round with a

certain probability.

5.3.1.1 The Fault Attack Description

In this attack, we first describe how we can recover the internal branches (i.e., an SPN

state of Type-2 GFN) of GFN in CiliPadi one by one by performing faulty forgery in

the decryption query. Then, we again perform faulty forgery to recover other branches

of GFN (i.e., a full CiliPadi state) and finally, we retrieve the master key. We present

the attack on CiliPadi-Mild with 256 bits state, which employed a GFN with branch

number 𝑙 = 4. This attack can be further applied in the same way for other CiliPadi

variants with 𝑙 = 4, 6.

5.3.1.2 The Forging Attack

To attack CiliPadi-Mild, we induce faults at the first round of LED state (before

the MCS operation). Let, Δ𝑖𝑛 represents the input difference correponds to faults

at any nibble position (𝑖, 𝑗) in the LED state and Δ𝑜𝑢𝑡 denotes the corresponding

output difference after the 2nd round of LED. Also, Δ′
𝑖𝑛, Δ′

𝑜𝑢𝑡 represent the internal

diffrences in the LED rounds (see Figure 5-4), where Δ′
𝑖𝑛 = AC ∘ MCS(Δ𝑖𝑛) and

Δ′
𝑜𝑢𝑡 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡). We further divide the differential states as Δ′

𝑖𝑛 = 𝛿0 ||

𝛿1 || 𝛿2 || 𝛿3 and Δ′
𝑜𝑢𝑡 = Δ0 || Δ1 || Δ2 || Δ3, where both 𝛿𝑖, Δ𝑖,∀𝑖 ∈ {0, 1, 2, 3}

denotes the 𝑖-th column difference. Further, 𝛿𝑖 can be divided into four nibbles as
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Figure 5-4: LED state recovery using faults

𝛿𝑖 = 𝛿0,𝑖 || 𝛿1,𝑖 || 𝛿2,𝑖 || 𝛿3,𝑖 and similarly, Δ𝑖 = Δ0,𝑖 || Δ1,𝑖 || Δ2,𝑖 || Δ3,𝑖. In particular,

for a nibble fault at the 𝑗-th column, we use another notations as Δ′
𝑖𝑛,𝑗 instead of Δ′

𝑖𝑛

and Δ′
𝑜𝑢𝑡,𝑗 instead of Δ′

𝑜𝑢𝑡. Like 𝑓
′ , LED′ represents the internal permutation used

inside the Type-2 GFN at the last permutation call in the sponge AE. These notations

are followed throughout this section.

A brief overview of how to create a faulty forgery is as follows. At first, we fix a nibble

(𝑖, 𝑗) in the 𝑗-th column before the MCS operation at the first round of LED′ where

we repeatedly induce faults during decryption, i.e., a random Δ𝑖𝑛 is injected during

decryption. Since we know which nibble position has a difference in Δ𝑖𝑛, then we

can easily observe which nibbles get affected in Δ′
𝑜𝑢𝑡 (see Figure 5-4) after the second

round SC operation in LED′ . Here, Δ𝑜𝑢𝑡 = MCS ∘ SR(Δ′
𝑜𝑢𝑡) can be easily obtained

because SR, MCS are linear operations. Further, due to the last round MCS operation,

it is clear from the Figure 5-4 that the number of active differences in Δ′
𝑜𝑢𝑡 are much

less than in Δ𝑜𝑢𝑡. Therefore in each query, we first fill the non-zero nibble differences

in Δ′
𝑜𝑢𝑡 (according to Δ𝑖𝑛) by random values (other nibble positions will be filled by

zeros) and form a new tag 𝑇
′ = 𝑇 ⊕ Δ𝑜𝑢𝑡. We repeat the queries (𝑁, 𝐴, 𝐶, 𝑇

′) to

collect 𝑞𝑗 different forgeries and store them in a list. Also, we have further estimated

the number of faulty decryptions to get more than one forgery in Theorem 1. We
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continue to make faulty forgery for other columns also. The following steps to make

faulty forgery in CiliPadi are described in Algorithm 1.

Theorem 1. For CiliPadi sponge AE, let 𝜒 denote faulty decryption queries to

collect 𝑞 different forgeries (i.e., to retrieve the 𝑖𝑡ℎ column of LED state uniquely) at

the 𝑖𝑡ℎ phase in Algorithm 1. Then, the expected number of faulty queries to collect

𝑞 distinct forgeries is less than 220 ·
[︁
1 + log

(︂
24

24−𝑞+1

)︂]︁
.

Proof. To make a valid forgery (according to Algorrithm 10), we have to satisfy this

condition: SC(Δ′
𝑖𝑛) = Δ′

𝑜𝑢𝑡. Now, for any phase 𝑖,

Pr[SC(Δ′
𝑖𝑛) = Δ′

𝑜𝑢𝑡] = 24 − 1
(24 − 1)× (216 − 1) ≈

1
216 = 𝑝(𝑠𝑎𝑦).

Let 𝜒 denote the trials to get a success, i.e., a valid forgery. So, for each trial,

Pr[𝑠𝑢𝑐𝑐𝑒𝑠𝑠] = 𝑝 and Pr[𝑓𝑎𝑖𝑙𝑢𝑟𝑒] = 𝑞 = 1− 𝑝. Therefore, Pr[𝜒 = 𝑗] = (1− 𝑝)𝑗−1 · 𝑝 =

(𝑞)𝑗−1 · 𝑝. It shows that 𝜒 follows a geometric distribution with probability 𝑝. Hence,

𝐸(𝜒) = 1
𝑝 .

For 1 ≤ 𝑗 ≤ 𝑞, let 𝜒𝑗 be the trials needed to collect 𝑗𝑡ℎ forgery after 𝑗−1 forgeries have

been collected. Since 𝜒 represents the independent trials to collect 𝑞 distinct successful

forgeries, we can write 𝜒 = 𝜒1 + · · · + 𝜒𝑞. Observe that the probability of collecting

Algorithm 1 Forging Strategy in CiliPadi
1. Make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ) pair.
2. Choose a branch (LED′ function) of GFN at the last permutation call in Cili-

Padi, which directly outputs one of the 64-bits tag 𝑇1 or is related to 𝑇1.
3. For each value of the phase counter 𝑗 ∈ {0, 1, 2, 3}:

3a. Fix a nibble position (𝑖, 𝑗), 0 ≤ 𝑖 ≤ 3 in the 𝑗-th column, where faults are
injected at the (𝑖, 𝑗)-th position in the first round (before MCS operation)
of LED′ .

3b. Make several faulty decryption queries (𝑁, 𝐴, 𝐶, 𝑇
′) by randomly choosing

the 𝑗-th column to form Δ′
𝑜𝑢𝑡,𝑗 such that 𝑇

′ = 𝑇⊕MCS∘SR(Δ′
𝑜𝑢𝑡,𝑗) = 𝑇⊕Δ𝑜𝑢𝑡

becomes a valid forgery. Store 𝑇
′ and the fault position (𝑖, 𝑗) in a list ℋ𝑗.

3c. Continue the step 3b to collect 𝑞𝑗 different forgeries.
4. Do offline computation (refer to Algorithm 2) to recover the LED′ state, i.e., a

branch of type-2 GFN in CiliPadi.
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𝑗𝑡ℎ forgery is 𝑝𝑗 = 24−𝑗+1
24×216 = 24−𝑖+1

220 . Therefore, 𝜒𝑗 has geometric distribution with

expectation 1
𝑝𝑗

. By the linearity of expectations we have,

𝐸(𝜒) = 𝐸(𝜒1) + · · ·+ 𝐸(𝜒𝑞)

=
𝑞∑︁

𝑗=1

236

24 − 𝑗 + 1

= 220
(︂ 1

24 + 1
24 − 1 + · · ·+ 1

24 − 𝑞 + 1

)︂
< 220 ·

[︁
1 + log

(︂ 24

24 − 𝑞 + 1

)︂]︁
.[︃

log(𝑥 + 1) <
𝑥∑︁

𝑖=1

1
𝑖

< 1 + log(𝑥)
]︃

5.3.1.3 LED State Recovery of Type-2 GFN in CiliPadi

For CiliPadi, two branches are directly outputed as the 128-bit tag 𝑇 = 𝑇1 || 𝑇2

by XORing with the master key 𝐾 = 𝐾1 || 𝐾2. Thus, the tag 𝑇 = 𝑇1 || 𝑇2 can be

viewed as the function of two branches (𝐵1 || 𝐵2) of the GFN and the master key 𝐾,

i.e., 𝑇1 = 𝐵1⊕𝐾1, 𝑇2 = 𝐵2⊕𝐾2 (see Figure 5-5). Therefore, we can recover the state

of LED′ by retrieving each columns separately based on the collected forgeries in the

list ℋ𝑗 , 𝑗 ∈ {0, 1, 2, 3}. Based on the collected forgeries according to Algorithm 1, the

LED′ state recovery is described in Algorithm 2.

2ℒ*,𝑗,ℎ = (ℒ0,𝑗,ℎ,ℒ1,𝑗,ℎ,ℒ2,𝑗,ℎ,ℒ3,𝑗,ℎ)

Algorithm 2 State Recovery of LED′

1. Initialize several empty lists ℒ𝑢,𝑣,ℎ, 0 ≤ 𝑢, 𝑣 ≤ 3 and 0 ≤ ℎ <| ℋ𝑣 |.
2. For each value of phase counter 𝑗 ∈ {0, 1, 2, 3}:

2a. for each ℎ ∈ {0, 1, · · · ,ℋ𝑗 − 1}:
2a.1. Take the forgery 𝑇

′ and the fault position (𝑖, 𝑗) from the list ℋ𝑗.
2a.2. Make all 24 𝑗-th column differences at the output of Δ′

𝑖𝑛,𝑗 = AC ∘
MCS(Δ𝑖𝑛) (see Figure 5-4), where Δ𝑖𝑛 has a nibble hamming weight of 1.
2a.3. Compute Δ𝑜𝑢𝑡 = 𝑇 ⊕ 𝑇

′ , and then, Δ′
𝑜𝑢𝑡,𝑗 = SR−1 ∘ MCS−1(Δ𝑜𝑢𝑡).

This Δ′
𝑜𝑢𝑡,𝑗 has a 𝑗-th column difference.

2a.4. For each (24 number of) 𝑗-th column differences Δ′
𝑖𝑛,𝑗:

2a.4.1. ListUpdate(𝑗, Δ′
𝑖𝑛,𝑗, Δ′

𝑜𝑢𝑡,𝑗,ℒ*,𝑗,ℎ)2.
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5.3.1.4 Branch Recovery of CiliPadi

To recover each branch of GFN using faulty forgeries, we need some strategy to do

that. A brief description to retrieve all 𝑙 branches of GFN is as follows:

1. Target one f ′ = LED′ function (one branch) at the last round of GFN which

directly outputs the tag part. Make faulty forgeries on this f ′ function and

retrieve its state as described in Section 5.3.1.3, i.e., one branch of GFN.

2. Then, target another f ′ function that either directly outputs the tag part, or it

is directly related to the f ′ function whose state value has already been retrieved

using faulty forgery. In either case, make faulty forgery on this f ′ function and

retrieve the full state.

3. In a similar fashion, we repeat step 2 until we recover all the 𝑙 branches of GFNf .

The strategy to recover the internal permutation in CiliPadi-Mild is to perform

faulty forgery to all the branches separtely which is depicted in Figue 5-5. In Figure 5-

5, both the functions f ′
1, f ′

2 represent two round LED ciphers. We use this notation

to present branch recovery of CiliPadi in a simple way. In the following way, we

will recover each of the four branches of CiliPadi-Mild. At first, we can recover a

branch (shown in red color in Figure 5-5) using the forging strategy and the state

recovery as discussed in Algorithms 1 and 2. We can also recover another branch

(shown in blue color in Figure 5-5) using Algorithms 1 and 2 because the output of f ′
2

is directly produces the tag by XORing with the key 𝐾2. Since we have retrieved both

the branches shown in red and blue colors in Figure 5-5, the branch shown in green

color is now known to us. Next, we target the third branch shown in violet color in

Figure 5-5. We inject faults at the first round of the SPN (f ′
1) state in the third last

round of the type-2 GFN. In each query, we choose a random state difference Δ′
𝑜𝑢𝑡 in

Algorithm 3 ListUpdate(𝑗, Δ′
𝑖𝑛,𝑗, Δ′

𝑜𝑢𝑡,𝑗,ℒ*,𝑗,ℎ)

1. Check ∀𝑖 ∈ {0, · · · , 3}, DDT[𝛿𝑖,𝑗][Δ𝑖,𝑗] > 0 or not? If yes, then do the following:
1a. For each nibble position 𝑖 in 𝑗-th column:

1a.1. For each 𝑥 ∈ {0, 1, · · · , 15}:
1a.1.1. If 𝑆(𝑥)⊕ 𝑆(𝑥⊕ 𝛿𝑖,𝑗) == Δ𝑖,𝑗 holds, then store 𝑥 in the list ℒ𝑖,𝑗,ℎ.
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f ′
1 state and produce 𝑇

′ as 𝑇
′ ← 𝑇 ⊕ f ′

1 ∘ f ′
1(Δ𝑜𝑢𝑡), where Δ𝑜𝑢𝑡 = MCS ∘ SR(Δ′

𝑜𝑢𝑡).

This computation f ′
1 ∘ f ′

1(Δ𝑜𝑢𝑡) is possible as we have already know both the internal

branches, shown in green and red colors in Figure 5-5. Thus, using Algorithms 1,2,

we can recover the branch shown in violet color.

The fourth branch shown in yellow color in Figure 5-5 can be recovered in the same

way. First, we inject faults at the second to last round of the f ′
1 function in the fourth

last round of the type-2 GFN. In each decryption query, we choose a random difference

Δ′
𝑜𝑢𝑡 in the f ′

1 state and make 𝑇
′ = 𝑇⊕f ′

1∘f
′
1∘f

′
1(Δ𝑜𝑢𝑡), where Δ𝑜𝑢𝑡 = MCS∘SR(Δ′

𝑜𝑢𝑡).

Then, by peforming faulty forgery as described in Algorithm 1, we can retrieve the f ′
1

state using Algorithm 2.
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Figure 5-5: Branch Recovery of Type-2 GFN
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5.3.1.5 Key Recovery of CiliPadi AEAD

We have discussed in the previous section how we can recover all the branches of the

GFN using faults. Moreover, we have outlined a branch recovery of type-2 GFN in

Figure 5-5. Thus, in the same way, we can retrieve all the branches of the type-2 GFN

in CiliPadi, and finally, the secret key directly retrieved by XORing the 128-bits

internal state with tag 𝑇 . Also, in CiliPadi mode, there are no extra key injections

used either after the initialization or before the finalization calls. Therefore, we can

go back up to initializing state by inverting the internal permutations and recovering

its secret key.

5.3.1.6 Attack Complexity

Practically, we have implemented3 the state recovery of CiliPadi and checked that if

𝑞 = 6, we can retrieve a column of LED state uniquely. So, according to Theorem 1,

we need to perform around 218.8 faulty queries to retrieve a column of LED state.

Also, for the key recovery in CiliPadi AE, we need to recover all the 𝑙 different

branches of GFN. Therefore, the required faulty queries to retrieve all the branches

of GFN will be 𝑙 × 218.8 = 4 × 218.8 ≈ 221 (for CiliPadi-Mild). Also, according to

Algorithm 2, the time complexity will be 22 × 22.5 × 24 × 22 × 24 ≈ 214.5. Further,

in Algorithm 2, there are several lists used to store the nibbles. Thus, the memory

complexity will be 22×22×22.5×4 ≈ 28.5 (as the maximum DDT entry is 4) nibbles.

5.3.1.7 Theory vs. Experiment.

In this section we present a set of simulations of our random fault model and compare

the expected number of required faults with the corresponding theoretical estimates.

The simulations were performed on a Intel(R) Core(TM) i5-8250U CPU @1.60GHz

computer. According to our simulation and the theoretical estimations, the total

number of faulty queries required to retrieve a column of the LED state for random

fault model is given in Table 5.3. Also, we have done this simulation by running the

procedure 1,00,000 times for this model.

3https://github.com/janaamit001/State-Recovery-of-LED-Permutation-in-the-CiliPadi-AEAD
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Number of Random Fault Model
forgeries (𝑞) Theory Simulation

1 216 215.5

2 217 216.7

3 217.7 217.3

4 218.2 217.9

5 218.5 218.3

6 218.8 218.6

Table 5.3: Expected Number of Faulty Queries corresponding to Theorem 1

5.4 Generalized Fault Attack on GFN-based Sponge

AE
In the previous section, we have introduced how an attacker can perform DFA to

make faulty forgery in CiliPadi. The CiliPadi family of AE is a GFN-based sponge

AE where LED is employed inside the Type-2 GFN. We observe that, for duplex

sponge mode with any GFN-based permutation, we might be able to recover the

full permutation state by performing faulty forgery in the decryption query. This

observation also makes the reasonable assumption that the round function f used in

GFN follows SPN-like structure, and at least one branch of GFN is output as the final

tag.

We now give a general idea to perform faulty forgery by inducing byte/nibble differ-

ences on the GFNf ′
-based sponge AE. The attack targets the last permutation call

during a decryption query. To recover its internal state, a short description is given

as follows.

1. First, collect multiple valid forgeries using several fault-injected forging attempts

(a fraction of them are valid). The number of forgeries depends on the underlying

construction. To be precise, random faults are injected at a fixed byte/nibble

position in the f ′ state (typically, at the second to last round in f ′) in GFN.

2. Then, we recover the full f ′ state of GFN (i.e., one branch of GFNf ′
) by collecting

multiple forgeries to different locations in the state.

3. Finally, we will retrieve other branches of GFNf ′
separately by performing DFA

sequentially.
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In general, a single SPN round consists of the following four operations: AddConstants

(AC), SubCells (SC), ShiftRows (SR) and MixColumnSerial (MCS). Like CiliPadi,

We first assume that the SPN inside the GFN have at least two rounds. In this case,

we inject random faults at the second to last round of the SPN and perform faulty

forgery on different byte/nibble positions to retrieve its state. still, there will be

another issue if a single round SPN is employed in GFN. In this case, we can recover

the state if we switch from the random fault model to the known fault model. We

inject known faults at the last round (before SC operation) in SPN and make faulty

forgery concerning different positions in the SPN state. Then, recover its state based

on the collected faulty forgery. Thus, we need two different fault models to overcome

the situation. In the first fault model, faults are induced at the 2nd last round in the

state. A state recovery of GFN (where SPN has at least two rounds) under this fault

model is described in Section 5.4.1. The second fault model is a known fault model,

where the fault is random, but its value is known to the attacker. Under this fault

model, we describe a state recovery of GFN (where SPN has either only one round or

more rounds) in Appendix 5.4.2.

5.4.1 Fault Attack on SPN-based GFN Sponge AE
In this attack, we first describe SPN state recovery (i.e., a branch of GFN) by perform-

ing faulty forgery in the decryption query. Then, we repeatedly perform this faulty

forgery to recover other branches of GFN. Further, we discuss the possibilities of the

key recovery to this scheme.

5.4.1.1 The Fault Model

Here, we have considered a random fault model whre the effect of an induced fault

is to change one byte/nibble of the internal state to a random one. For example, an

attacker could attempt to use a clock glitch/EM/laser to create a fault at the specific

byte/nibble position of a particular round with hign accuracy.

5.4.1.2 The Fault Attack Description

Assuming we have a duplex sponge with a permutation GFNf (f represents an SPN

based structure), where at least one full branch of GFNf is output as the final tag
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𝑇 . Assuming f ′ has at least two rounds. In this attack, we inject byte/nibble faults

at the internal state (before the SR operation) during the second to last round of

f ′ , i.e., at the f ′
a−2,b,k state. For the sake of simplicity, we describe the attack with

AES-like internal permutation f ′ , which seems practically relevant. Later, we will

explain that this attack can be extended to most of the SPN structures. One round

f ′ permutation can be viewed as a composition of four layers: AddConstants (AC),

SubCells (SC), ShiftRows (SR), and MixColumnsSerial (MCS).

A short description of forging and state recovery attacks is as follows. At the first

phase, we make an encryption query (𝑁, 𝐴, 𝑀) to get (𝐶, 𝑇 ). We choose a byte/nibble

position 𝑒0 inside the f ′
a−2,b,k state. We make several decryptions as (𝑁, 𝐴, 𝐶, 𝑇

′) by

repeatedly injecting faults on the byte/nibble position 𝑒0 and collect one forgery 𝑇
′ .

We again repeat this faulty decryption by injecting faults at the 𝑒0-th byte/nibble

position to collect 𝑞0 (say) different tag forgeries 𝑇
′ . The last round SR, MCS do

not have any impact on the state recovery attack of f ′ function. Let us assume

1Let us take the f ′ state difference as Δ𝑖𝑛 = (0, 0, . . . , 𝛿𝑒, 0), 𝛿𝑒 > 0 and 0 ≤ 𝑒 ≤ 𝑚 − 1. Then,
MCS ∘SR

(︀
Δ𝑖𝑛

)︀
= (𝛿′

0, 𝛿
′
1, · · · , 𝛿

′
𝑚−1), where 𝛿

′
𝑗 > 0, ∀𝑗 ∈ {𝑜1, · · · , 𝑜𝜎} and 𝛿

′
𝑗 = 0 for the remaining

𝑚−𝜎 positions. Based on the above example, we define a new function MC : {1, 2, 3, · · · , 𝑚} → 𝑆 ⊂
{1, 2, 3, · · · , 𝑚} such that MC(𝑒) = {𝑜1, 𝑜2, · · · , 𝑜𝜎}, where 𝑒 represent a byte/nibble fault position
and 𝑜1, 𝑜2, · · · , 𝑜𝜎 are different byte/nibble (non-zero difference) positions after applying SR, MCS
operations to Δ𝑖𝑛.

AC SC

Random byte fault

∆in

SR MCS

AC

∆
′
in,0
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∆
′
out,0

SR MCS

Unknown (Key)

Tag Difference

∆out

Figure 5-6: An Example of Forgery for AES-like structure
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that the difference at the byte/nibble position 𝑒0 diffused to 𝑟0 bytes/nibbles after

going through the second to last round operations SR and MCS. Now, we aim to

recover these 𝑟0 bytes/nibbles uniquely by guessing those bytes/nibbles and invert

them up to 2nd last round’s 𝑆𝑅−1 operation and then check whether it leads to a

single byte/nibble difference at the position 𝑒0.

Next in the second phase, we choose another faulty byte/nibble position 𝑒1 at the

f ′
a−2,b,k state, and this difference propagated to 𝑟1 bytes/nibbles after the SR and

MCS operations. These 𝑟1 bytes/nibbles differences do not coincide with the previous

𝑟0 bytes/nibbles positions at the first phase. Then, We repeat this process to collect

𝑞1 (say) tag forgeries 𝑇
′ and recover 𝑟1 bytes/nibbles of the state uniquely. Similarly,

we will continue to recover other bytes/nibbles uniquely in the next phases until the

full f state is recovered uniquely. To perform faulty forgery, the following steps are

described in Algorithm 4.

We showcase an example of the above attack steps by taking AES-like f ′ , where the

Algorithm 4 Forging Strategy
1. Make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ).
2. Choose an f ′

a−2,b,k function at the last permutation call of the sponge function
where the 𝑘-th branch either directly ouputs the tag at the last round of GFN
or is related to the tag at the intermediate round of GFN.

3. Initialize a phase counter 𝑃ℎ𝐶 = 0 and a set 𝒜 = ∅ which store the byte/nibble
positions of f ′ state.

4. If | 𝒜 |= 𝑚, then goto step 8, else, goto step 5.
5. At the 𝑃ℎ𝐶𝑡ℎ phase, fix a byte/nibble position 𝑒 (0 ≤ 𝑒 ≤ 𝑚−1) from the 𝑃ℎ𝐶𝑡ℎ

column at the f ′
a−2,b,k state, where faults are repeatedly induced at this position

in each decryption query. Let Δ𝑖𝑛 and Δ𝑜𝑢𝑡 denote the corresponding input and
output differences respectively. Then, compute Δ′

𝑜𝑢𝑡,𝑃 ℎ𝐶 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡)
(see Figure 5-6). This position 𝑒 will be choosen in such a way that, MC(𝑒)1

∪𝒜, maximizes. Update 𝒜 ←MC(𝑒) ∪ 𝒜.
6. In each query, choose Δ′

𝑜𝑢𝑡,𝑃 ℎ𝐶 randomly. Make faulty decryption queries of the
form (𝑁, 𝐴, 𝐶, 𝑇

′) with 𝑇
′ = 𝑇 + Δ𝑜𝑢𝑡 (= MCS ∘ SR(Δ′

𝑜𝑢𝑡,𝑃 ℎ𝐶)) such that 𝑇
′

becomes a valid forgery. Store the forging tag 𝑇
′ in the list ℋ𝑃 ℎ𝐶 . Continuing

this step to collect 𝑞𝑃 ℎ𝐶 tag forgeries.
7. Increment 𝑃ℎ𝐶 by 1 and repeat steps 4-6.
8. Do offline computation to recover the full 𝑓

′ state, i.e., one branch of GFN.
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final tag is generated by XORing with the key and the output of f ′ function. The

byte (/nibble) fault will be injected at the second to last round of f ′ before the SR

operation. At the 0-th phase, we fix the fault position as (0, 0)-th byte (/nibble) of

the f ′
a−2,b,k function. Therefore, the input difference Δ𝑖𝑛 has only one byte/nibble

difference at the (0, 0)-th position, whereas the output difference Δ𝑜𝑢𝑡 has full state

difference. Now, the internal state diffrence Δ′
𝑜𝑢𝑡,0 only has a (1st) column difference

(see Figure 5-6), if we apply the SR−1, MCS−1 operations on Δ𝑜𝑢𝑡. Then, perform

several faulty decryption queries (𝑁, 𝐴, 𝐶, 𝑇
′) by choosing a random column difference

to form Δ′
𝑜𝑢𝑡,0 such that 𝑇

′ = 𝑇 ⊕MCS ∘ SR(Δ′
𝑜𝑢𝑡,0) becomes a valid forgery. Repeat

this procedure to collect 𝑞0 different forging tags, which helps to recover the first

column uniquely. Then, we change the fault position to (0, 1) and make several faulty

decryption queries with 𝑇
′ = 𝑇 ⊕ MCS ∘ SR(Δ′

𝑜𝑢𝑡,1) and expect one faulty forgery.

Repeat this procedure to collect 𝑞1 different forging tags, which helps to recover the

second column uniquely. In this way, we can recover other columns uniquely and,

finally, retrieve the full state of 𝑓
′ state.

Therefore, we need to estimate the required number of faulty decryptions to get one

forgery. Then, we have to estimate the number of faulty decryptions to get more than

one forgeries. The following theorems will give the answer.

Theorem 2. For any SPN (f ′) based GFNf ′
with sponge duplex AE, by attempting 𝜆𝜎

faults with respect to a fixed byte/nibble position in the decryption query of f ′
a−2,b,k

function (an associated branch that immediately outputs the tag part) and choosing

𝑇
′ = 𝑇 ⊕Δ𝑜𝑢𝑡 randomly in each query (according to Algorithm 4), we expect one tag

forgery.

Proof. In the decryption query, a byte/nibble fault Δ𝑖𝑛 will be induced at the fixed

byte/nibble position of the f ′
a−2,b,k state. Let Δ𝑜𝑢𝑡 denote the corresponding output

(tag) difference after the last round of f ′ function. Due to the linear operations

(SR,MCS), the byte/nibble difference will be propagated to some number of different

byte/nibble positions. Let Δ′
𝑖𝑛 denotes the output state difference before the SC

operation at the last round of f ′ , i.e., Δ′
𝑖𝑛 = AC∘MCS∘SR(Δ𝑖𝑛) (see Figre 5-6 for AES-

like f ′). In each decryption query, we randomly choose a Δ′
𝑜𝑢𝑡 = 𝑆𝑅−1∘𝑀𝐶𝑆−1(Δ𝑜𝑢𝑡)

such that 𝑇
′ = 𝑇 ⊕Δ𝑜𝑢𝑡 becomes a valid forgery. Let us assume that, Δ′

𝑜𝑢𝑡 have 𝜎
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(say) non-zero byte/nibble differences. Now, the total number of byte/nibble faults

for Δ𝑖𝑛 is 𝜆. Hence, the total number of Δ′
𝑖𝑛 is 𝜆. Again, the total number of

byte/nibble differences of Δ′
𝑜𝑢𝑡 will be 𝜆𝜎.

Therefore,

Pr
(︀
𝑆𝐶(Δ′

𝑖𝑛) = Δ′
𝑜𝑢𝑡

)︀
= 𝜆− 1

(𝜆− 1)× (𝜆𝜎 − 1) ≈
1

𝜆𝜎
= 𝑝(𝑠𝑎𝑦).

Let 𝒳 denote the independent trials to get a success, where Pr(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) for each trial

is 𝑝 = 1
𝜆𝜎 . Then,

Pr(𝑋 = 𝑖) = (1− 𝑝)𝑖−1 · 𝑝 = 𝑞𝑖−1 · 𝑝, 𝑞 + 𝑝 = 1.

It shows that 𝒳 follows a geometric distribution with probability 𝑝. Hence, 𝐸(𝑋) = 1
𝑝 .

Theorem 3. For any SPN (f) based GFN with sponge duplex AE, we can expect 𝑞

tag forgeries by attempting at most 𝜆𝜎+1 ·
[︁
1 + log

(︂
𝜆

𝜆−𝑞

)︂]︁
faulty decryption queries.

Let 𝒳 be the independent trials needed to collect 𝑞 successful forgeries. Let 𝒳𝑖 be

the trials needed to collect 𝑖-th forgery after 𝑖− 1 forgeries have been collected. Then

𝒳 = 𝒳1 + · · · + 𝒳𝑞. Observe that the probability of collecting a new forgery is

𝑝𝑖 = 𝜆−𝑖+1
𝜆𝜎+1 .

Therefore, 𝒳𝑖 has geometric distribution with expectation 1
𝑝𝑖

. By the linearity of

expectations we have,

𝐸(𝒳 ) = 𝐸(𝒳1) + · · ·+ 𝐸(𝒳𝑞)

= 𝜆𝜎+1

𝜆
+ 𝜆𝜎+1

𝜆− 1 + · · ·+ 𝜆𝜎+1

𝜆− 𝑞 + 1

= 𝜆𝜎+1
(︂ 1

𝜆
+ 1

𝜆− 1 + · · ·+ 1
𝜆− 𝑞 + 1

)︂
≤ 𝜆𝜎 + 1 ·

[︁
1 + log

(︂
𝜆

𝜆− 𝑞

)︂]︁
.

[︂
log(𝜆 + 1) ≤

𝜆∑︁
𝑖=1

1
𝑖
≤ 1 + log(𝜆)

]︂
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5.4.1.3 SPN State Recovery in GFN

According to the Algorithm 4, at the 𝑃ℎ𝐶𝑡ℎ phase, let 𝑟𝑃 ℎ𝐶 denotes the total

byte/nibble differences in Δ′
𝑜𝑢𝑡,𝑃 ℎ𝐶 . Also, let | ℋ𝑃 ℎ𝐶 |= 𝑞𝑃 ℎ𝐶 represents the to-

tal different forging tags 𝑇
′ . To recover the f ′ state (i.e., a branch of the GFN), the

following steps are in Algorithm 5 (see Figure 5-6 presents a differential to follow this

Algorithm 5).

5.4.1.4 Branch Recovery of SPN-based GFN

We have demonstrated that how to perform DFA that leads to a faulty forgery. In this

section, we give a concise description of how we can retrieve the state of the balanced

GFN (i.e., BFN) that internally uses SPN-based function f . We also show that at

least one branch as a part of the tag is sufficient to recover the GFN state. We can

use the same idea to recover all its 𝑙 branches which we have already discussed in

Section 5.3.1.4.

Therefore, by injecting faults at the four different branches of the type-2 GFNf ′
, we can
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retrieve all the four branches separately. In a similar fashion, we can recover all the

branches of type-1, and type-3 Feistel designs, shown in Figure 5-7a, 5-7b respectively.

The above analysis, especially for the branch recovery using faulty forgery at the

second to last round of the SPN structure of GFN-based sponge AE is summarized in

the following lemma.

Lemma 1. For any SPN-based BFN with branch number 𝑙 ≥ 2, we can retrieve each

of the 𝑙 branches by making faulty forgeries on 𝑙 different f functions separately in

the decryption query.

Similarly, instead of BFN, if UFN is used as the internal permutation of the sponge

AE scheme, where the underlying f ′ function inside UFN is the composition of SPN

and expanding/contracting function, then the same attack is also applied to recover

the branch for the UFN.

5.4.1.5 Key Recovery of Sponge AE

The sponge state will be retrieved when we successfully recover all the branches of

GFNf ′
. Thus, the state recovery will help to retrieve the secret key for the sponge AE

if there are no extra key injections used in the sponge design except to initialize the

sponge. Further, if there is an extra key injection to output the final tag (by XORing

the rate part of the last permutation call with the secret key), then we don’t need to

recover all the branches of GFN. Because, in this case, we can recover the secret key if

we can recover only those branches which directly outputs the tag part. Therefore, in

this case, we can significantly reduce all the complexities (data, time, and memory)

of this attack.

5.4.1.6 Attack Complexity

According to Theorem 3, 𝜇 byte/nibble faults are required to get at least one successful

forgery. According to Algorithm 4, the f ′ (SPN) state has (𝑃ℎ𝐶 − 1) phases to

retrieve its full state, where (𝑃ℎ𝐶 − 1) represents the columns in the f ′ state. So,

for any f ′ state, let 𝑞 = 𝑞1 + 𝑞2 + · · · + 𝑞PhC-1 (𝑞1 = . . . = 𝑞PhC-1) represents total

number of different forged tags to retrieve the f ′ state uniquely. Thus, we need at

least (𝑃ℎ𝐶 − 1) · 𝜆𝜎 ·
[︁
1 + log

(︂
𝜆

𝜆−𝑞1

)︂]︁
byte/nibble faults to recover the full f ′ state
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uniquely. Again, there are 𝑙 different branches for the GFNf ′
inside the sponge-based

AE. Hence, we need at least 𝑙 · (𝑃ℎ𝐶 − 1) · 𝜆𝜎 ·
[︁
1 + log

(︂
𝜆

𝜆−𝑞1

)︂]︁
byte/nibble faults to

recover the full sponge state.

5.4.2 Fault Attack on Single Round GFN-based Sponge

AE

In this attack, we first describe the fault model. Then, give a description of the state

recovery by repeatedly performing faulty forgery in the decryption query.

Algorithm 5 State Recovery of f ′

1. Compute all 𝜆 · 𝑚 possible differences at the output of MCS ∘ SR(Δ𝑖𝑛), where
the internal state difference Δ𝑖𝑛 of f ′

a−2,b,k has a byte/nibble hamming weight of
1. Store them in a list 𝒟. Initialize a phase counter 𝑃ℎ𝐶1 = 0.

2. At the 𝑃ℎ𝐶𝑡ℎ
1 phase, initialize two lists as ℒ′

𝑃 ℎ𝐶1 ,ℒ𝑃 ℎ𝐶1 ← ∅.
3. Consider the tag 𝑇 and a faulty tag 𝑇

′ from the list ℋ𝑃 ℎ𝐶1 out of 𝑞𝑃 ℎ𝐶 faulty
tags, where Δ𝑜𝑢𝑡 = 𝑇 ⊕ 𝑇

′ . Then, Compute Δ′
𝑜𝑢𝑡,𝑃 ℎ𝐶1 = SR−1 ∘MCS(Δ𝑜𝑢𝑡) (see

Figure 5-6).
4. If the list ℒ𝑃 ℎ𝐶1 == ∅, goto step 4a, else goto step 5.

4a. Make a list ℒ𝑃 ℎ𝐶1 which contains set of all possible 𝑟𝑃 ℎ𝐶1 byte/nibble val-
ues. These 𝑟𝑃 ℎ𝐶1 bytes/nibbles are corresponding to the non-zero differences
of Δ′

𝑜𝑢𝑡,𝑃 ℎ𝐶1 .
5. For all 𝑋 ∈ ℒ𝑃 ℎ𝐶1 :

5a. Create states 𝑋, 𝑋
′ , where 𝑋

′ = 𝑋 ⊕Δ′
𝑜𝑢𝑡,𝑃 ℎ𝐶1 .

5b. Compute the difference AC−1 ∘ SC−1(𝑋) ⊕ AC−1 ∘ SC−1(𝑋 ′) and check
wheather it is in 𝒟.

5c. If yes, then add 𝑋 to the list ℒ′
𝑃 ℎ𝐶1 .

7. Update ℒ𝑃 ℎ𝐶1 ← ℒ
′
𝑃 ℎ𝐶1 and ℒ′

𝑃 ℎ𝐶1 ← ∅.
8. Repeat step 3-7 for all pairs in ℋ𝑃 ℎ𝐶1 until the list ℒ𝑃 ℎ𝐶1 contains a unique

value.
9. Increment the phase counter 𝑃ℎ𝐶1 = 𝑃ℎ𝐶1 + 1.

10. Repeat steps 2-8 to retrieve the remaining byte/nibble values of the f ′
a,b,k state

uniquely.
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5.4.2.1 The Fault Model

We are considering a known byte/nibble fault model in which an attacker intentionally

injects a fault into a specific byte or nibble of a system or algorithm. This fault is

assumed to cause a fully biased distribution of faulty values, and the attacker has

complete knowledge of this statistical distribution.

5.4.2.2 The Fault Attack Description

In this attack model, we will inject a byte/nibble fault at the last round of SPN (f)

structure (before SC operation). Here, we assume that the last round of f permutation

has the MixColumnsSerial operation. The following steps, by an attacker to get

a faulty forgery using faults in the decryption query are given in Algorithm 6.

For better understanding, the above steps are explained for AES-like f ′ , where MCS

is used in the last round of f ′ permutation. In this attack, faults will be injected

at the last round of f ′ just before the SC operation. In the 1st phase, select 𝑖0-th

byte/nibble as the fault position. Then, repeatedly make faulty decryption queries

by injecting faults at the 𝑖0-th position to collect 𝑞0 tag forgeries. Next in the 2nd

phase, choose the 𝑖1-th byte/nibble as the fault position so that MC(𝑖1) ∩MC(𝑖0)

will be minimized or an empty set. Then, repeat the faulty decryption queries (with

faults at the 𝑖1-th position) to collect 𝑞1 tag forgeries. Finally, continue this for other

AC

Random fault

∆in

SC

∆
′
out

SR MCS

Unknown (Key)

Tag Difference

∆out

Figure 5-8: Forgery in Sponge-based AE with AES-based GFN as Underlying Permu-
tation
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faulty positions until we have MC(𝑖0) ∪MC(𝑖1) ∪ · · · ∪MC(𝑖𝑃 𝐶−1) = {1, 2, · · · , 𝑚}.

The number of required faulty decryptions to get one forgery is summarized in the

following theorem.

Theorem 4. Let 𝜒 denote the faulty decryption queries to collect 𝑞 distinct tag

forgeries, i.e., repeatedly induce nibble (known) faults at the fixed position in the state

(last round) until we get 𝑞 different forgeries. Then, 𝐸(𝜒) < 𝜆2 ·
[︁
1 + log

(︂
𝜆

𝜆−𝑞+1

)︂]︁
.

Proof. To make a valid forgery, we have to satisfy this condition: SC(Δ𝑖𝑛) = Δ′
𝑜𝑢𝑡.

Therefore, at any phase 𝑖, 0 ≤ 𝑖 < 4,

Pr[SC(Δ𝑖𝑛) = Δ′
𝑜𝑢𝑡] = 𝜆− 1

(𝜆− 1)× (𝜆− 1) ≈
1
𝜆

= 𝑝(𝑠𝑎𝑦).

Let, 𝜒𝑗 , 1 ≤ 𝑗 ≤ 𝑞 be the trials needed to collect 𝑗𝑡ℎ forgery after 𝑗 − 1 forgeries have

been collected. As 𝜒 represents the independent trials needed to collect 𝑞 successful

forgeries, we have, 𝜒 = 𝜒1 + · · ·+𝜒𝑞. Further, the probability of collecting 𝑗𝑡ℎ forgery

Algorithm 6 Forging Strategy
1. Make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ).
2. Choose an f ′

a−1,b,k function at the last permutation call of the sponge function
where the 𝑘-th branch either directly ouputs the tag at the last round of GFN
or is related to the tag at the intermediate round of GFN.

3. Initialize a phase counter 𝑃𝐶 = 0 and 𝒜1 = ∅.
4. If | 𝒜1 |= 𝑚, then goto step 8, else goto step 5.
5. At the 𝑃𝐶𝑡ℎ phase, fix a byte/nibble position 𝑒, 0 ≤ 𝑒 ≤ 𝑚−1 from 𝑃𝐶𝑡ℎ column

at the f ′
a−1,b,k state, where faults (𝛿 (say) is random but known to the attacker)

are repeatedly induced before the SC operation at the f ′
a−1,b,k state. Let Δ𝑖𝑛, Δ𝑜𝑢𝑡

denote the corresponding input and output differences (see Figure 5-8). Then,
compute Δ′

𝑜𝑢𝑡 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡). This position 𝑒 will be choosen in such a
way that, MC(𝑒)1 ∪𝒜1, maximizes. Update 𝒜1 =MC(𝑒) ∪ 𝒜1.

6. Choose Δ′
𝑜𝑢𝑡 randomly and make faulty decryption queries of the form

(𝑁, 𝐴, 𝐶, 𝑇
′) with 𝑇

′ = 𝑇 + MCS ∘ SR(Δ−1
𝑜𝑢𝑡) and expect one forgery. Store

𝑇
′ and the faulty value 𝛿 in the list ℋ𝑃 𝐶 . Continue this step to collect 𝑞𝑃 𝐶 tag

forgeries.
7. Increment 𝑃𝐶 by 1 and repeat steps 4-6.
8. Do offline computation to recover the full 𝑓

′ state, i.e., one branch of GFN.
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is 𝑝𝑗 = 𝜆−𝑗+1
𝜆×𝜆 = 𝜆−𝑗+1

𝜆2 . Therefore, 𝜒𝑗 follows geometric distribution and 𝐸(𝜒𝑗) = 1
𝑝𝑗

.

By the linearity of expectations, we have,

𝐸(𝜒) =
𝑞∑︁

𝑗=1

𝜆2

𝜆− 𝑗 + 1

= 𝜆2

𝜆
+ 𝜆2

𝜆− 1 + · · ·+ 𝜆2

𝜆− 𝑞 + 1

< 𝜆2 ·
[︁
1 + log

(︂
𝜆

𝜆− 𝑞 + 1

)︂]︁
[︃

log(𝑥 + 1) <
𝑥∑︁

𝑖=1

1
𝑖

< 1 + log(𝑥)
]︃

5.4.2.3 State Recovery of Sponge AE

Based on the collected lists ℋ𝑃 𝐶 according to the Algorithm 6, we have to recover the

f ′ state byte/nibble-wise since there is only one difference in Δ′
𝑜𝑢𝑡 (see Figure 5-8).

Let, 𝑟𝑃 𝐶 (=1) denote byte/nibble differences in Δ′
𝑜𝑢𝑡. The state recovery of f ′ is

described in Algorithm 7.

Algorithm 7 State Recovery of f ′

1. Initialize a phase counter 𝑃𝐶1 = 0.
2. At the 𝑃𝐶𝑡ℎ

1 phase, initialize two lists ℒ′
𝑃 𝐶1 ,ℒ𝑃 𝐶1 ← ∅.

3. Consider the tag 𝑇 and a faulty tag 𝑇
′ from the list ℋ𝑃 𝐶1 out of 𝑞𝑃 𝐶1 faulty

tags. Compute Δ′
𝑜𝑢𝑡 = SR′ ∘MCS−1(Δ𝑜𝑢𝑡), where Δ𝑜𝑢𝑡 = 𝑇 ⊕ 𝑇

′ .
4. If the list ℒ𝑃 𝐶1 == ∅, goto step 4a, else goto step 5.

4a. Make a list ℒ𝑃 𝐶1 which contains set of all possible 𝑟𝑃 𝐶1 byte/nibble values.
These 𝑟𝑃 𝐶1 bytes/nibbles are corresponding to the non-zero differences of
Δ′

𝑜𝑢𝑡.
5. For 𝑋 ∈ ℒ𝑃 𝐶1 , create two states 𝑋, 𝑋

′(= 𝑋 ⊕ Δ′
𝑜𝑢𝑡). Compute the difference

AC−1 ∘ SC−1(𝑋)⊕ AC−1 ∘ SC−1(𝑋 ′) and check wheather it is equal to 𝛿 or not.
If yes, then add 𝑋 to the list ℒ′

𝑃 𝐶1 .
7. Update the list ℒ𝑃 𝐶1 ← ℒ

′
𝑃 𝐶1 and ℒ′

𝑃 𝐶1 ← ∅.
8. Repeat steps 3-7 for all elements in ℋ𝑃 𝐶1 until the list ℒ𝑃 𝐶1 have a unique

byte/nibble value.
9. Increment the phase counter 𝑃𝐶1 = 𝑃𝐶1 + 1.

10. Repeat steps 2-8 to retrieve the remaining byte/nibble values of the f ′
a,b,k state

uniquely.
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Further, we can recover other branches of GFNf ′
in the similar way that we have

discussed in Section 5.4.1.4. Finally, the key can be recovered when either the key

is directly used to output the tag by XORing with the state (output of the last

permutation) or there are no extra key injections used after the initialization or before

the finalization calls.

5.4.2.4 Attack Complexity

According to Theorem 4, To get atleast one successful forgery we need to perform

𝜇(= 𝜆) faulty decryption queries. Let us assume taht, the retrieval of f ′ (SPN) state

has been done by 𝑧 phases using Algorithm 6. Now, let 𝑞 = 𝑞0 + 𝑞1 + · · · + 𝑞𝑧−1

(𝑞0 = . . . = 𝑞𝑧−1) represent the total different forging tags to retrieve the f ′ state

uniquely. Thus, we need at least 𝑧 · 𝜆 byte/nibble faults to recover the full f state

uniquely. Again, there are 𝑙 different branches for the GFNf inside the sponge-based

AE. Hence, we need approximately 𝑙 · 𝑧 · 𝜆 byte/nibble faults to recover the full GFNf

(sponge) state.

5.5 Countermeasures

The attacks demonstrated in this work can be thwarted or made more difficult using

two approaches. Our DFA attack can recover the state when at least one branch

is released as the tag. To counter this, a designer can make a slight modification:

instead of releasing a branch as the tag, form the tag by concatenating the partial

state of each branch. This way, an attacker only has partial state information of

each branch, making state recovery significantly harder. The first approach is to take

partial bits from all branches and concatenate them to output the final tag. The

second approach is to XOR the master key either after the initialization or before the

finalization call to the sponge construction. This makes the backward computation of

the sponge harder, even if the sponge state is recovered using DFA in the decryption

query.
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5.6 Conclusion
This work demonstrates that the CiliPadi family of AE schemes is susceptible to

DFA attacks if the final tag directly outputs at least one of the branches in the

underlying GFN structure. To perform a DFA on CiliPadi, a faulty forgery needs to

be created in the decryption query. Under the random fault model, we describe a

state recovery attack on CiliPadi based on the faulty forgery. The time, data, and

memory complexities of this attack are respectively 214.5, 221, and 28.5 nibbles.

We can recover the key in CiliPadi either by XORing the state with the tag or by

going back to the initialization through backward computations. This attack can be

extended to any sponge-based AE scheme that employs an underlying permutation

using an SPN-based GFN structure. Furthermore, we can also apply this attack to

recover the key when extra key masking is used to output the tag, or the extra key

masking is not used after initialization and before the finalization calls. This is the

first time such an attack has been demonstrated, and it can efficiently perform DFA

to recover the state of the sponge-based AE schemes, where the internal permutation

of the sponge uses an SPN-based GFN structure. The GFN structure may contain an

SPN with either one or more than two rounds. We describe two attacks to recover the

state under two different fault models. Finally, we provide general countermeasures

against these types of fault attacks.
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6
DIFFERENTIAL FAULT ATTACK ON SPN-BASED

SPONGE AND SIV-LIKE AE SCHEMES

6.1 Introduction

The Internet of Things [204] (IoT) is the evolution of the Internet in the modern era

that builds a network of small objects to connect millions and millions of devices from

various platforms. In IoT technology, the two most essential components, RFID (Ra-

dio Frequency and Identification) and WSN (Wireless Sensor Networks) are used in

several applications such as traffic control and environmental surveillance, home au-

tomation, and many more. Practically, these devices have a limited number of gates

for security, minimum storage, processing capacity, and limited power consumption.

The conventional cryptography methods such as AES (encryption), SHA-256 (hash-

ing) and many more work well within systems (like Servers, Desktops, Tablets, and,

smartphones), but they struggle in an IoT/embedded world due to too much process-

ing power, physical space, and consumption of battery power. These algorithms do

not fit into a world with embedded systems and sensor networks. Recently, lightweight

cryptography (LwC) methods have been proposed to overcome these problems of con-

ventional cryptography, which include constraints related to physical size, processing

requirements, memory limitation, and limited power consumption.

Nowadays, a large number of lightweight cryptography primitives have been proposed

and used over resource-limited devices. Symmetric key cryptographic algorithms can

be classified into Stream cipher, Block cipher, Hash function, Message Authentication
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Codes (MAC), and Authenticated ciphers. Some of the well known lightweight block

ciphers are PRESENT [65], PRINCE [205], LED [63], SKINNY [206], KATAN &

KTANTAN [207], and GIFT [64]. An extensive review of lightweight block ciphers is

available in the paper [208]. Also, in [209], the authors have systemized the knowledge

to better understand what “lightness” is in the area of lightweight cryptography.

Besides, the national (NIST) and international (ISO/IEC) organizations outline several

methods for lightweight cryptography, which could also be useful in IoT and RFID

devices [210]. In 2019, NIST initiated a process to solicit, evaluate, and standardize

lightweight cryptographic algorithms suitable for use in constrained environments.

Initially, it received 57 submissions out of which 56 were accepted for Round 1. Then,

after the evaluation, 32 candidates were selected for Round 2 from which 10 finalists

had recently been announced. Ultimately, Ascon [190] won the competition.

With the emergence of IoT and cloud computing, small-scale devices are becoming

more ubiquitous. These devices often perform cryptographic operations, which are

vulnerable to device-specific attacks. For example, the sensor nodes in WSN may be

deployed in unattended and possibly hostile environments where they may be exposed

to (un)intentional circumstances. This is an interesting implication of the IoT setting

and hence for the LwC, which leads to a switch focus from the traditional black-box

attack model that generally relies on classical cryptanalysis to the gray-box model

where an attacker gets access to additional side-channel information. The leakage

is passively observed via timing information, power consumption, electromagnetic

radiations, etc.. The leaked information has been shown to result in a catastrophic

breakdown of security.

One of the most popular attacks in the gray-box model is the Fault Attack (FA)

is shown to be powerful against common ciphers. Among them, the Differential

Fault Attack (DFA) is possibly the most commonly employed fault technique. It

is an extension of conventional differential cryptanalysis but augmented with extra

information in the form of the faulty output of a cipher. The NIST LwC Competition

presents an interesting premise where it becomes necessary to study the submissions

in the light of physical attacks like DFA which forms the main motivation of this

work. Moreover, “fault attacks” is one of the specific requirements according to
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design considerations in their LwC report in [210], which also motivates us to do this

work.

Some other kinds of fault attacks are based on fault models in which the distribution

of faults behaves non-uniformly. The non-uniform behavior is usually seen when

faults are injected in the device where some faulty values occur more often than the

other like a bit reset is more likely than a bit set when overclocking-based injection is

used. Some of the effective classes of such biased fault analysis are Statistical Fault

Analysis (SFA) [211] and Ineffective Fault Analysis (IFA) [212]. The most recent

biased fault attack is the so-called Statistical Ineffective Fault Analysis (SIFA), which

can break symmetric key cryptography [32, 33]. It combines the concepts of SFA

attacks with that of the Ineffective Fault Analysis (IFA). SIFA exploits ineffective

faults, which are those faults which, even if successfully injected, cannot make the

output faulty and result in a correct ciphertext. Methodologically, SIFA differs from

DFA in that, for DFA, the injected faults need to be effective, and the two states must

be identical for faults to be injected into one of the states. Moreover, SIFA becomes a

very powerful attack because it can bypass all existing fault attack countermeasures

(both detection and infection-based) even while they are combined with Side-Channel

(SCA) countermeasures like masking or threshold implementation (TI).

DFA on AE Schemes. An authenticated encryption (AE) is a cryptographic

algorithm where it is usually assumed that the nonce 𝑁 never repeats for encryptions

𝐸 under the same key 𝐾 that implicitly protects several classes of fault attacks [213,

26, 28]. In particular, during encryptions, it is almost impossible to perform DFA.

Hence, an attacker could not generate the correct and faulty output for the same

input. Some schemes claim a certain level of robustness even in misuse settings

such as repeated nonces, or release of unverified plaintext. Moreover, in contrast to

nonce-based encryption schemes, the decryption procedure (with a fixed nonce) is

still susceptible to DFA. Recall the term faulty forgery (see Chapter 5) as the ability

of the attacker to produce a plaintext 𝑃 ̸= 𝑃 * after inducing faults such that the

verification passes. This might lead to retrieving the internal state and then the

master key. However, under this scenario, the probability of the attacker producing

a faulty forgery is negligible. For sponge-based AE, to produce a state collision (faulty
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forgery) by injecting faults at the state during plaintext processing or by choosing a

plaintext 𝑃 *( ̸= 𝑃 ) is improbable. Because injecting fault at the state during plaintext

absorption might lead to a negligible probability of forgery. Whereas, for SIV-based

AE schemes with the non-empty messages, this kind of state collision never happens

due to its two-pass design structure. Another approach to defining faulty forgery

would be to inject faults at the last round permutation call just before outputting

the final tag. Based on the collected forging tags, we can recover the internal state.

Then we can recover the secret key, if no extra key is used in the sponge except at

the initialization.

Choosing an internal permutation inside any sponge-based AE can be categorized

into three types of structures as SPN, ARX (ADD Rotation XOR), and LRX (Logical-

Operations Rotation XOR). In general, the operations in ARX/LRX are word-wise

(32/64-bits), whereas it is byte/nibble-wise for the SPN structure. Moreover, another

structure called Generalised Feistel Networks (GFN), can be used in the sponge-based

AE as an internal permutation. It is evident that some sponge-based AEAD also

use GFN as the internal permutations inside it. The round functions of GFN inter-

nally used SPN, ARX, or LRX-based structures. For faulty forgery, we usually inject

faults at the last rounds of the cipher and randomize 𝑇
′ so that 𝑇

′ becomes a valid

forgery. The attacker can choose 𝑇
′ according to the non-zero differences at the last

round of the cipher. Thus, if an attacker injects a difference at the last/second-last

round in the state, the affected bits for SPN might be much lesser compared to the

ARX/LRX-based structures. Moreover, some LRX-based permutations are not invert-

ible. Therefore, faulty forgery will generally have an advantage with SPN designs

compared to ARX/LRX designs. This is because, structurally, if a GFN uses an SPN

internally and the tag is derived from one of its SPN states, fewer faulty queries will

be required to produce a forgery. It is true because, inside the sponge, the state

size of SPN inside GFN will be lesser than the full SPN-based permutation. Another

advantage is that the state recovery using differential analysis for lesser state-sized

SPN is much easier among other structures. A generalized fault attack on SPN-based

GFN permutation in the sponge AE can be found in [214].
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6.1.1 Summary of The Chapter

This work focuses on the Photon-Beetle [193] AE scheme, which has been selected

as one of the ten finalists in the NIST Lightweight Cryptography (LwC) competi-

tion. The Photon-Beetle scheme internally utilizes a permutation function called

Photon, which was originally used to design a lightweight hash function known as

Photon-hash [215]. The Photon-Beetle scheme employs the Beetle [189] mode,

which is a lightweight sponge-based AE scheme. One key observation in our research

is that the internal permutation used in the Photon-Beetle scheme exhibits a

structure similar to a substitution-permutation network (SPN). This observation mo-

tivates us to explore the possibility of performing a differential fault attack (DFA) in

the decryption query and subsequently recovering the internal state by leveraging dif-

ferential analysis techniques. Since the key is used to initialize the Photon-Beetle

state, we can recover the secret key by inverting the permutations after retrieving the

internal state. Building upon this finding, we extend our analysis to other NIST LwC

schemes, namely ORANGE [194], SIV-TEM-PHOTON [216], and ESTATE [217].

Although ORANGE and ESTATE were selected as round-2 candidates in the NIST

LwC standardization process, they did not make it to the finalist stage. Meanwhile,

the SIV-TEM-PHOTON scheme was reached to the round-1 candidate stage. For

all of these schemes, we apply the faulty forgery strategy in the decryption query and

recover their respective keys by retrieving the internal state based on the collected

forgeries.

To perform the faulty forgery in the decryption query, we propose a forging strat-

egy under three different fault models. The first model is the Random Fault Model,

where random nibble/byte faults are injected in the second last round before the

tag is produced. In the second model, the Random Bit-flip Fault Model, random

bit faults are injected in the last round during the final permutation call. The third

model, the Known Fault Model, assumes that the faults are random but known to

the attacker. For each of these fault models, we provide the attack complexities and

validate the attacks using software platforms. Additionally, we conduct a theoretical

analysis to estimate the number of faults required to reduce the keyspace to a prac-

tically acceptable level. We summarize these results in Table 6.1. Furthermore, we
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Table 6.1: Fault Attacks on Four Schemes Photon-Beetle, ORANGE, SIV-
TEM-PHOTON, and ESTATE reported in this work

Fault Model Schemes Expected
# Faults

Reduced
Key-Space Reference

RFM Photon-Beetle 237.15 20 Section 6.3.1

RBFM

Photon-Beetle
ORANGE

SIV-TEM-PHOTON
ESTATE

211.5

211.5

211.5

213.1

220

220

220

25

Section 6.3.2

KFM

Photon-Beetle
ORANGE

SIV-TEM-PHOTON
ESTATE

211.05

211.05

211.05

213.01

20

20

20

20

Section 6.3.3

KBFM Photon-Beetle 29.32 20 Section 6.3.3.6

Table 6.2: The Photon S-box

𝑥 0 1 2 3 4 5 6 7 8 9 a b c d e f

S-box c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

propose countermeasures specifically designed for SPN-based sponge AE schemes such

as Photon-Beetle and ORANGE. These countermeasures aim to increase the dif-

ficulty of retrieving the master key through our proposed attacks, thereby enhancing

the overall security of these schemes.

Overall, this work makes significant contributions to the field of cryptanalysis by

demonstrating the vulnerability of SPN-based sponge AE schemes to differential fault

attacks. It provides insights into the attack complexities, key recovery processes, and

potential countermeasures for various lightweight cryptographic schemes, ultimately

contributing to the overall understanding of cryptographic security in the context of

lightweight designs.

6.2 Notations and Cipher Specifications
Let us first introduce a set of notations that will be used consistently throughout the

chapter. These are as follows.

– A Photon state 𝑆 of 64 nibbles (i.e., 256 bits) can be viewed as 8× 8 matrix,
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i.e., 𝑆 =
[︁
𝑠𝑢,𝑣

]︁
8×8

, 0 ≤ 𝑢, 𝑣 < 8.

– |𝑍| denotes the cardinality of 𝑍, where 𝑍 may be a set, list or a string.

– 𝑇𝑟𝑢𝑛𝑐(𝑍, 𝑢) is a function that returns the most significant 𝑢 bits of 𝑍.

– 𝑃𝑎𝑑𝑟(𝑍) = 𝑍||1||0𝑟−|𝑍|−1, i.e., 𝑃𝑎𝑑 denotes the padding function that applies

10* padding on 𝑟 bits.

– For any round in the Photon permutation, AC, SC, SR, MCS represent the

AddConstants, SubCells, ShiftRows, MixColumnSerial operations respectively.

– Any Photon permutation is composed 12 rounds, i.e., 𝜎11 ∘𝜎10 ∘ · · · ∘𝜎0, where

𝜎𝑖 = MCS ∘ SR ∘ SC ∘ AC.

– The last permutation call to the Photon-Beetle primitive is denoted by

LPhoton, i.e., LPhoton is the last permutation call to output the tag from

its rate part.

– For 0 ≤ 𝑢, 𝑣 ≤ 8, let 𝛿𝑢,𝑣 denotes the fixed nibble difference in the state 𝑆 and

Δ𝑆𝑢,𝑣 is its corresponding differential state. For example, the differential state

Δ𝑆0,0 and its output corresponding to the following operations AC, SC, SR, MCS

are given in Figure 6-1.

– Any state difference Δ𝑆 can be written as Δ𝑆 = (Δ𝐶0, Δ𝐶1, · · · , Δ𝐶7), where

Δ𝐶𝑢 represents the 𝑢-th column difference of Δ𝑆. For example, Δ𝑆0,0 =

(Δ𝐶0, 0, · · · , 0).

– For a given 𝑢 (0 ≤ 𝑢 < 8) and a differential state Δ, we define 𝐶𝑜𝑙(𝑢, Δ)

is a function which extracts the 𝑢-th column from Δ. E.g., 𝐶𝑜𝑙(0, Δ𝑆0,0) =

(𝛿0,0, 0, · · · , 0)𝜏 , where 𝜏 is the matrix transpose.

– Throughout this chapter, faulty forgery means an attacker will inject a fault at

the last rounds of the permutation call and choose a random 𝑇
′ such that the

tag verification will succeed.

6.2.1 PHOTON Permutation

The Photon permutation [215] is first introduced to design a family of the lightweight

hash function called Photon-hash function. It is a family of unkeyed AES-like
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functions with five instances (denoted by 𝑃𝑡) corresponding to the state sizes 𝑡 =

100, 144, 196, 256 and 288 bits respectively. In Photon-Beetle AEAD mode, 𝑃256

is used as the underlying 256-bit permutation. It can be viewed as the state of

64 nibbles, which is represented as 8 × 8 matrix. 𝑃256 has 12 rounds with each

round composed of four operations: AddConstants (AC), SubCells (SC), ShiftRows

(SR), MixColumnSerial (MCS). Informally, AddConstants adds fixed constants to the

nibbles of the internal state. SubCells applies a 4-bit S-box (see Table 6.2) to each

of the 64 nibbles individually. ShiftRows rotates the position of the nibbles in each

of the rows of the state matrix, i.e., for 0 ≤ 𝑖 < 8, the 𝑖𝑡ℎ row will be rotated by 𝑖

positions to the left and MixColumnSerial linearly mixes all the columns independently

using serial matrix multiplication. In 𝑃256, the MixColumnSerial matrix 𝜇 is a MDS

matrix to achieve maximal diffusion, and hence it is invertible. A matrix is MDS if

and only if every square sub-matrices of it are nonsingular. These matrices are used

to provide perfect diffusion in block ciphers and hash functions. Both of 𝜇, 𝜇−1 are

given in Figure 6-2. All the details of 𝑃256 and its formal operations are depicted in

Figure 6-3.

Δ𝑆0,0 =

⎛⎜⎜⎜⎜⎝
𝛿0,0 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0

⎞⎟⎟⎟⎟⎠ MCS(Δ𝑆0,0) =

⎛⎜⎜⎜⎜⎝
𝛿0

0,0 0 · · · 0
𝛿1

1,0 0 · · · 0
...

𝛿7
7,0 0 · · · 0

⎞⎟⎟⎟⎟⎠ AC, SR/SC(Δ𝑆0,0) =

⎛⎜⎜⎜⎜⎝
𝛿0,0/𝛿

′
0,0 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0

⎞⎟⎟⎟⎟⎠
Figure 6-1: Differential States with respect to PHOTON Operations

𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 2 11 2 8 5 6
12 9 8 13 7 7 5 2
4 4 13 13 9 4 13 9
1 6 5 1 12 13 15 14
15 12 9 13 14 5 14 13
9 14 5 15 4 12 9 6
12 2 2 10 3 1 1 14
15 1 13 10 5 10 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) MixColumnSerial Matrix

𝜇−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 7 9 10 12 12 3 15
13 13 10 10 7 13 10 7
14 2 3 14 4 10 5 11
5 4 7 10 11 3 11 10
7 11 3 5 13 4 7 2
4 15 15 6 1 14 14 11
5 14 10 6 3 6 15 1
2 1 12 1 4 11 3 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(b) Inverse MixColumnSerial Matrix

Figure 6-2: Matrix form 𝜇, 𝜇−1

156



6.2.2 Photon-Beetle AEAD
Linear Functions 𝜌 and 𝜌−1. 𝜌 is a linear function that receives two inputs:

a state 𝑆 ∈ {0, 1}𝑟 and, an input data 𝑈 ∈ {0, 1}≤𝑟. It produces an output data

𝑉 ∈ {0, 1}|𝑈 |. 𝜌−1 is the inverse function of 𝜌, which takes the state 𝑆 and the output

data 𝑉 to reproduce the input data 𝑈 and update the state. The full description of

Figure 6-3: PHOTON256 Permutation
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Figure 6-4: PHOTON-Beetle
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𝜌 and 𝜌−1 can be found in Figure 6-3.

Specification. Photon-Beetle [193] is a Beetle [189] family of lightweight

sponge-based authenticated encryption (AE) instantiated with the Photon permuta-

tion 𝑃256. It take inputs as: an encryption key 𝐾 ∈ {0, 1}128, a nonce 𝑁 ∈ {0, 1}128,

an associated data 𝐴 ∈ {0, 1}* and a message 𝑀 ∈ {0, 1}* and returns a cipher-

text 𝐶 ∈ {0, 1}|𝑀 |, and a tag 𝑇 ∈ {0, 1}128. Similarly, the decryption algorithm of

Photon-Beetle take inputs as: a key 𝐾 ∈ {0, 1}128, a nonce 𝑁 ∈ {0, 1}128, an as-

sociated data 𝐴 ∈ {0, 1}*, a ciphertext 𝐶 ∈ {0, 1}*, and a tag 𝑇 ∈ {0, 1}128 as inputs.

It returns the plaintext 𝑀 ∈ {0, 1}|𝐶| with respect to 𝐶 if the tag 𝑇 is verified.

An initial state of Photon-Beetle is generated by simple concatenation of the

nonce 𝑁 and the master key 𝐾. Then, it absorbs the associated data 𝐴 identical to

the original sponge mode fashion, i.e., at each step the state is updated using 𝑃256

permutation and the first 𝑟 output bits (i.e., the rate part) of the permutation is

XORed with the next associated data block to produce the input (rate part) for the

next permutation call. Then, it absorbs the message 𝑀 to squeeze the ciphertext 𝐶

in the following way.

1. Shuffle the rate part of the state using 𝜌 after the permutation call 𝑃256.

2. Then, XOR it with the corresponding message block.

The first step differentiates this Beetle mode from the Sponge Duplex mode [67].

Both the state update and the ciphertext generation during the message processing are

handled by the function 𝜌. In the decryption, the state update and the message block

computation using the ciphertext blocks are mixed up by 𝜌−1. Also, 3-bit constants

are added in the capacity part after the associated data and message processing

for domain separation. Description of Photon-Beetle encryption with non-empty

associated data and message is depicted in Figure 6-4. Other descriptions for empty

associated data and/or empty message processing are given in [193].

6.2.3 ORANGE AEAD
ORANGE [194] is a Photon permutation-based sponge-like AE scheme. This mode

is very similar to the duplex construction except that it uses the full 𝑏-bit state
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absorption and squeezes the full state during plain/cipher-text processing. Here,

we only provide a summary of the details of ORANGE-Zest encryptions for two

different cases |𝐴| = |𝑀 | = 0 and |𝐴| ̸= 0, |𝑀 | = 0 which are needed to understand

our attack. In Figure 6-5, we have depicted the working principle of ORANGE-

Zest encryption for different cases of associated data and message processing. For

processing the message, the feedback function FB+ is used to absorb the full state-size

message block and outputs the ciphertext. Whereas for the associated data process,

each intermediate data blocks (of full state size) are absorbed by XORing with the

state following a permutation call 𝑃256. In the last associated data block process,

first, 𝛼𝛿𝐴 multiplication1 is applied to the most significant half of the state and then

padding the last data block and XORed it with the state. Here, 𝛼𝛿𝐴 takes 1 or 2

according to the full or partial-sized block. More details about ORANGE can be

found in [194].

1𝛼.𝑥 denotes the 𝛼 multiplication of an 𝑛-bit string 𝑥 = 𝑥𝑛−1 · · ·𝑥1𝑥0. For 𝑛 = 128, 𝛼 · 𝑥 is
defined as (𝑥 ≪ 1) ⊕ 012010000111, if 𝑥127 = 1 and (𝑥 ≪ 1), otherwise. Further, 𝛼𝛿𝐴 · 𝑥 denotes 𝛿𝐴
times repeated 𝛼-multiplication of 𝑥.

N

K P
2
5
6

bA0cn

z0

dA0en

P
2
5
6

bA1cn

z1

dA1en

P
2
5
6 ...

P
2
5
6

bAacn

�

αδA

za−1

dAaen

P
2
5
6

F
B

+

M1

C1

za−1

...

P
2
5
6

F
B

+
Mm

Cm

za+m−2

P
2
5
6

T

(a) |𝐴| = |𝑀 ̸= 0, |𝐴𝑖| = 2𝑛

N

K P
2
5
6

bA0cn

dA0en

P
2
5
6

bA1cn

dA1en

P
2
5
6 ...

P
2
5
6

bAacn

�

αδA

dAaen

P
2
5
6

T
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Figure 6-5: Different Cases of ORANGE-Zest Encryption
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6.2.4 SIV-TEM-PHOTON AEAD
SIV-TEM-PHOTON [216] is a SIV construction which utilizes Photon-based

tweakable block cipher, named TEM-PHOTON with 128-bit key and 128-bit tweak

as the underlying building block. The SIV scheme [218] is a combination of an en-

cryption scheme ℰ and a pseudo-random function ℱ to obtain an AEAD scheme.

The encryption and decryption algorithms are given in Figure 6-7. TEM-PHOTON

𝐸 : {0, 1}𝑘× (ℐ ×{0, 1}𝑡)×{0, 1}𝑛 → {0, 1}𝑛 is the underlying Photon-based tweak-

able block cipher (TBC), where 𝑘 = 128 is the key length, ℐ is the domain separation

space, 𝑡 = 128 (∈ 𝒯 ) is the tweak length, and 𝑛 = 256 is the block length. The round

function 𝑅𝑖 of the original Photon 𝑃256 is defined as

𝑅𝑖 = MixColumnSerial ∘ ShiftRows ∘ SubCells ∘ AddConstants, 𝑖 = 1, · · · , 12.

Whereas for TEM-PHOTON, the round function is defined as

ℛ𝑖 = MixColumnSerial∘ShiftRows∘SubCells∘AddDomain∘AddConstants, 𝑖 = 1, · · · , 20.
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The AddDomain operation XORs the domain separator 𝑑 to all cells of the second

column at each round. The design of TBC TEM-PHOTON is depicted in Figure 6-

6b. Also, the description of ℱ with the last message block of size ≤ 𝑛 + 𝑡 to generate

the tag 𝑇, |𝑇 | = 256 is presented in Figure 6-6a. More details about SIV-TEM-

PHOTON can be found in [216].

6.2.5 ESTATE AEAD
ESTATE [217] is a tweakable block cipher based AE scheme based on the SIV

paradigm [218]. Here the size of the key, nonce, and tag are 128 bits each. Also, this

mode can be viewed as the tweakable block cipher-based variant of SUNDAE [219].

The designers have proposed two dedicated tweakable block ciphers TweGIFT-128

and TweAES-128 to instantiate the mode. In this chapter, we only discuss the de-

signer’s primary recommended scheme ESTATE-TweAES-128 which is instantiated

by the ESTATE mode of operation with TweAES-128 block cipher. TweAES-128

is a 128-bit tweakable block cipher with 4-bit tweak and 128-bit key. It is identical to

AES-128-128/128 except for the injection of a tweak value at intervals of 2 rounds.

The pictorial description of ESTATE with associated data blocks and empty mes-

sage is given in Figure 6-8. More details about the specification of ESTATE can be

found in [217].

6.3 Differential Fault Based Forgery Attack
To recover the secret key of the NIST LwC schemes Photon-Beetle, ORANGE,

SIV-TEM-PHOTON, and ESTATE, the attacker injects faults in the state during

the decryption process and observes the resulting tag values. The attacker then uses

Algorithm 8 SIV.Enc𝐾(𝑁, 𝐴, 𝑀)
1. 𝑇 ← ℱ𝐾(𝑁, 𝐴, 𝑀);
2. 𝐶 ← ℰ𝑇

𝐾(𝑀);
3. 𝑟𝑒𝑡𝑢𝑟𝑛 (𝐶, 𝑇 );

Algorithm 9 SIV.Dec𝐾(𝑁, 𝐴, 𝐶, 𝑇 )
1. 𝑀 ← 𝒟𝑇

𝐾(𝐶);
2. 𝑇 * ← ℱ𝐾(𝑁, 𝐴, 𝑀);
3. if 𝑇 = 𝑇 * then return 𝑀 ;
4. else return ⊥;

Figure 6-7: The encryption and decryption algorithms of SIV scheme
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these tag values to recover the state and eventually the secret key. There are three

different fault models that the attacker can use to inject faults into the state. In the

first two models, faults are randomly injected at the intermediate rounds of the state

during the tag generation call. In the third model, faults are injected at the last round

in the state, but they are random and known to the attacker. For Photon-Beetle

and ORANGE, the tag generation process is similar (see Figure 6-9a), and the final

tag value 𝑇 is extracted from the rate part of the state. However, for SIV-TEM-

PHOTON (see Figure 6-9b) and ESTATE, the final tag value is the state after the

last TEM-PHOTON and TweAES-128 permutation calls, respectively.

The attacker will use the same strategy to perform faulty forgery on all four schemes.

The only difference is that for the Photon-Beetle scheme, each query will consist

of associated data blocks and a non-empty message, while for the other schemes, each

query will consist of associated data blocks and an empty message. By inverting the

rounds and comparing the resulting differences with the injected faults, the attacker

can recover the state from the collected forgeries. Once the state is recovered, the

attacker can use it to compute the secret key. The approach to recovering the state

and secret key will be the same for all four schemes. Therefore, we will first provide a

detailed discussion of how to perform fault-finding on the Photon-Beetle scheme,

and then we will apply similar techniques to the other three schemes: ORANGE,

SIV-TEM-PHOTON, and ESTATE. After that, we will describe the process of

state recovery for the Photon-Beetle scheme based on the collected forgeries, and

the same approach will be applied to recover the state of the other three schemes.
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6.3.1 Random Nibble Fault Model

In this section, we first give a fault model, then discuss the state recovery using faulty

forgery. Also, we give a theoretical estimation of faulty forgery. Finally, we validate

this attack by implementing it in software.

6.3.1.1 The Fault Model

In this particular fault model, an attacker can induce a fault by changing one of the

four-bit nibbles in the internal state of a cryptographic primitive to a random value.

This can be accomplished using various techniques such as a clock glitch, voltage

glitch, electromagnetic pulse (EMP), light pulse, or laser beam. For instance, an

attacker may attempt to create a single-nibble fault by applying a clock glitch to the

input of a particular round with a particular probability. Furthermore, attackers may

use other methods such as voltage glitching, EMPs, light pulses, or laser beams to

create faults at the input of a specific round. When a single-nibble fault is introduced,

it can significantly impact the security of the cryptographic primitive. For example, it

σ10

Rate Part

Capacity Part

σ11
Tag (T )

(a) Tag Extraction of Photon-Beetle and ORANGE

R18 R19

K N

K

Tag (T )

(b) Tag Extraction of SIV-TEM-PHOTON

Figure 6-9: The Last Photon Permutation Call before the Tag Extraction
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could cause the primitive to produce incorrect output, which could then be exploited

by an attacker to recover sensitive information like secret keys or plaintext.

6.3.1.2 The Fault Attack Description

In the decryption query of Photon-Beetle, we make a faulty forgery by repeatedly

inducing nibble faults at the last PHOTON permutation (LPhoton) call and choose

a random 𝑇
′ = 𝑇 ⊕ Δ. Precisely, we induce nibble faults at the second last round

(before the MixColumnSerial operation) of LPhoton in the decryption query.

A short description of forging and state recovery attacks is as follows. At the 𝑖𝑡ℎ

(0 ≤ 𝑖 < 8) phase, we make an encryption query (𝑁, 𝐴, 𝑀) to get (𝐶, 𝑇 ). We choose

a nibble position (𝑗, 𝑖) inside the LPhoton state. Due this nibble difference Δ𝑖𝑛(=

Δ𝑆𝑗,𝑖) at the 11𝑡ℎ round of LPhoton, the output difference after the last (12𝑡ℎ)

round SC will be of the form MCS ∘ AC ∘ SC(Δ𝑖𝑛) = (0, · · · , 0, Δ𝐶𝑖, 0, · · · , 0) = Δ𝑜𝑢𝑡
𝑖 .

Now, the total number of chosen differences of Δ𝐶𝑖 is 232. Therefore, we need to

perform 232 decryption queries as (𝑁, 𝐴, 𝐶, 𝑇
′) to expect one faulty forgery with a

high probability. After collecting one faulty forgery, we repeat the process by injecting

faults at the same nibble position until we collect 𝑞𝑖 different tag forgeries 𝑇 ′ with

high probability. Since the last round operations SR and MCS do not affect state

recovery, our objective is to uniquely recover the nibbles corresponding to Δ𝐶𝑖 (i.e.,

Δ𝑜𝑢𝑡
𝑖 ). We can accomplish this by guessing those nibbles, inverting them up to the

second last round’s MCS−1 operation, and then checking whether it leads to a single

nibble difference at the position (𝑗, 𝑖). To collect several faulty forgeries, the attacker

performs multiple encryption and decryption queries, and the steps for collecting

these faulty forgeries are given in Algorithm 10.

For better understanding, we explain the above algorithm only for the 0𝑡ℎ phase and

the remaining phases will work similarly. In this phase, we first fix the nibble position

as (0, 0), i.e., faults will be injected at the (0, 0)𝑡ℎ position (any nibble position in the

first column) of the second last round of LPhoton permutation in the decryption

query. Let, Δ𝑖𝑛 be the input difference due to a fault injected at (0, 0)𝑡ℎ position, i.e.,

Δ𝑖𝑛 = Δ𝑆0,0. This input difference Δ𝑖𝑛 now propagates to the final tag. Let Δ𝑜𝑢𝑡 be

the final state difference after the last round 𝜎11 of LPhoton1. The final tag 𝑇 is the
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rate part of this LPhoton permutation. Thus, we can write 𝑇 ⊕ 𝑇
′ = 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡),

where 𝑇
′ is a valid forgery. This scenario is depicted in Figure 6-10.

In this figure, to forge, we have to randomly choose a 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡) in each decryption

query. As 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡) = 𝑅𝑎𝑡𝑒(MCS ∘ SR(Δ𝑜𝑢𝑡
0 )), we have to randomly choose Δ𝑜𝑢𝑡

0

in each decryption query instead of choosing 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡). Continue this process until

we collect 𝑞0 forgeries and save them in the list ℋ0. In the 𝑖𝑡ℎ phase, choose a nibble

position from the 𝑖𝑡ℎ column and proceed similarly according to the Algorithm 10.

Each list ℋ𝑖 contains 𝑞𝑖 forging tags. This same strategy as discussed in Algorithm 10

can be applied to ORANGE scheme to collect faulty forgery. But, in this case, we

will consider the message (/ciphertext) to be empty, i.e., |𝑀 | = |𝐶| = 0. This is

because we can not invert the feedback function (FB+) although we recover the final

LPhoton’s state. Similarly, the same strategy as discussed in Algorithm 10 can

be applied with empty message query for other schemes SIV-TEM-PHOTON and

ESTATE.

Now the immediate question is how many number of faulty decryption queries are

required to get at least one forgery. We estimate the number of required faulty

decryption queries to get 𝑞𝑖 tag forgeries. The following theorems give an estimation

of the number of faults to make forgeries and finally, show that around 234.15 faulty

queries are necessary to produce 𝑞𝑖(= 4) tag forgeries.

Theorem 5. For Photon-based AE schemes (Photon-Beetle, ORANGE, and

SIV-TEM-PHOTON), let 𝜒 denote the faulty queries to collect a successful forgery

at the 𝑖𝑡ℎ phase in Algorithm 10. Then, 𝐸(𝜒) = 232.

Proof. To make a valid forgery (according to Algorrithm 10), we have to satisfy this

condition: SC∘MCS(Δ𝑖𝑛) = Δ𝑜𝑢𝑡
𝑖 . Now, for any phase 𝑖, Pr[SC∘MCS(Δ𝑖𝑛) = Δ𝑜𝑢𝑡

𝑖 ] =
24−1

(24−1)×(232−1) ≈
1

232 = 𝑝.

Let 𝜒 denote the trials to get a success, i.e., a valid forgery. So, for each trial,

Pr[𝑠𝑢𝑐𝑐𝑒𝑠𝑠] = 𝑝 and Pr[𝑓𝑎𝑖𝑙𝑢𝑟𝑒] = 𝑞 = 1− 𝑝. Therefore,

Pr[𝜒 = 𝑗] = (1− 𝑝)𝑗−1 · 𝑝 = (𝑞)𝑗−1 · 𝑝.

1Note that the tag difference is the rate difference of the state, but we can always map the tag
difference to its corresponding full state difference.
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It shows that 𝜒 follows a geometric distribution with probability 𝑝. Hence, 𝐸(𝜒) =
1
𝑝 .

Theorem 6. For Photon-based AE schemes, let 𝜒 denote faulty decryption queries

to collect 𝑞 different forgeries (i.e., to retrieve the 𝑖𝑡ℎ column uniquely by offline

computation) at the 𝑖𝑡ℎ phase in Algorithm 10. Then, the expected faulty queries to

collect 𝑞 distinct forgeries is less than 236 ·
[︁
1 + log

(︂
24

24−𝑞+1

)︂]︁
.

Proof. For 1 ≤ 𝑗 ≤ 𝑞, let 𝜒𝑗 be the trials needed to collect 𝑗𝑡ℎ forgery after 𝑗 − 1

forgeries have been collected. Since 𝜒 represents the independent trials to collect

𝑞 distinct successful forgeries, we can write 𝜒 = 𝜒1 + · · · + 𝜒𝑞. Observe that the

probability of collecting 𝑗𝑡ℎ forgery is 𝑝𝑗 = 24−𝑗+1
24×232 = 24−𝑗+1

236 .

Therefore, 𝜒𝑗 has geometric distribution with expectation 1
𝑝𝑗

. By the linearity of

expectations, we have,

𝐸(𝜒) =
𝑞∑︁

𝑖=1
𝐸(𝜒𝑖) =

𝑞∑︁
𝑗=1

236

24 − 𝑗 + 1

= 236
(︂ 1

24 + 1
24 − 1 + · · ·+ 1

24 − 𝑞 + 1

)︂
< 236 ·

[︁
1 + log

(︂ 24

24 − 𝑞 + 1

)︂]︁
.

6.3.1.3 State Recovery of Photon-based AE schemes

According to Algorithm 10, at the 𝑖𝑡ℎ (0 ≤ 𝑖 ≤ 7) phase, take a list ℋ𝑖 which store

the fault position as well as the forging (Photon-Beetle) state differences Δ𝑜𝑢𝑡.

Now at this phase, computing SR−1 ∘MCS−1(Δ𝑜𝑢𝑡) leads to Δ𝑜𝑢𝑡
𝑖 , a differential state

only have the differences at the 𝑖𝑡ℎ column (see Figure 6-10). Also, Compute all state

differences Δ′ = MCS(Δ𝑖𝑛) corresponding to all 24 values of Δ𝑖𝑛 in Photon-Beetle

state and store them in a list 𝒟. The formal approach to recover the state is as follows.

First, Take all possible (𝑖𝑡ℎ) column values and form two states 𝑋, 𝑋
′ = 𝑋 ⊕ Δ𝑜𝑢𝑡

𝑖 .

Then, invert the states 𝑋, 𝑋
′ up to the second round MCS and check whether their

difference is in 𝒟 or not. If yes, then store the possible values to the list ℒ. Repeat
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this for all 𝑞𝑖 Δ𝑜𝑢𝑡 in the list ℋ𝑖 to get a unique (𝑖𝑡ℎ) column value, i.e., recover the

actual column (𝑖𝑡ℎ) value of Photon-Beetle state after the last round SC during

the decryption process. In this way, other columns can be recovered from the lists

Algorithm 10 Forging Strategy
Input: Associated data 𝐴 and Plaintext 𝑀 .
Output: A List ℋ𝑖 and a fixed number 𝑞𝑖, 0 ≤ 𝑖 ≤ 7.

1. Make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ).
2. Choose the 11𝑡ℎ round 𝜎10 at the last permutation call LPhoton of the Photon-

Beetle sponge function where the nibble faults will be injected before the MCS
operation. It is denoted by 𝜎LPhoton

10 . Initialize a phase counter 𝑖 = 0.
3. For 𝑖 = 0 to 7:

4. At the 𝑖𝑡ℎ phase, fix a nibble position (𝑗, 𝑖)1 at the 𝜎LPhoton
10 state, where faults will

be injected repeatedly at this state position. Therefore, the input state difference
will be Δ𝑖𝑛 = Δ𝑆𝑗,𝑖 and MCS (Δ𝑖𝑛) gives a 𝑖𝑡ℎ column difference.

5. For each decryption query as (𝑁, 𝐴, 𝐶, 𝑇
′):

5a. Randomly fill the 𝑖𝑡ℎ column difference to form Δ𝑜𝑢𝑡
𝑖 (see Figure 6-10) and

compute Δ𝑜𝑢𝑡 = MCS ∘ SR(Δ𝑜𝑢𝑡
𝑖 ).

5b. Make 𝑇
′ = 𝑇 + 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡) and check whether 𝑇

′ is a valid forgery or not? If
this happens, then store both the fault position (𝑗, 𝑖) and final state difference
Δ𝑜𝑢𝑡 in the list ℋ𝑖.

5c. Continue this until we collect 𝑞𝑖 tag forgeries.
7. Do offline computation to recover the full LPhoton state, i.e., the Photon-Beetle

state.

σ10:

σ11:

AC SC SR

Random fault
∆in = ∆S0,0

MCS

AC SC

∆out
0∆

′

SR MCS

Rate Part
(Tag difference)

∆out = MCS ◦ SR(∆out
0 )

Figure 6-10: Faulty Forgery: Inducing Faults at the Second Last Round
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ℋ𝑖. Thus, the time complexity of this approach will be greater than 232. Now, the

question is whether we can improve the time complexity. The time complexity can be

enhanced by processing columns nibble-wise instead of processing the entire column

at once. This approach, detailed in Algorithm 11, is used to recover the full state

of Photon-Beetle more efficiently. In the same fashion, we can recover the states

of ORANGE and SIV-TEM-PHOTON schemes. The same approach can also be

applied to the AES-based scheme ESTATE to recover its state.

6.3.1.4 Attack Complexity

We verify that ∀𝑖 ∈ {0, 1, · · · , 7}, 𝑞𝑖 = 4 is sufficient to recover the 𝑖𝑡ℎ column

uniquely. To retrieve the 𝑖𝑡ℎ column uniquely, the attacker will have to perform

approximately 234.15 faulty decryption queries (according to Theorem 6) to collect

𝑞𝑖(= 4) forgeries. Therefore, the total faulty decryption queries to retrieve the state is

8×234.15 = 237.15. Now, to estimate the complexity of the above state recovery attack,

Algorithm 11 State Recovery of Photon-based AEAD
Input: List ℋ𝑖1 , 0 ≤ 𝑖1 < 8.
Output: A Photon state 𝑠𝑡[8][8].

1. Initialize a phase counter 𝑖1 = 0. Initialize several lists ℒ𝑖1,𝑗,𝑙 ← ∅, where 0 ≤ 𝑖1, 𝑗 < 8
and 0 ≤ 𝑙 < |ℋ𝑖1 |(= 𝑞𝑖1).

2. For each nibble fault position (𝑗, 𝑖1) and the final state difference Δ𝑜𝑢𝑡 in the list ℋ𝑖1 :
2a. Compute all 24 possible 𝑖𝑡ℎ

1 column differences at the output of Δ′ = MCS(Δ𝑖𝑛),
where Δ𝑖𝑛 = Δ𝑆𝑗,𝑖 has a nibble hamming weight of 1. Store them in a list 𝒟.
(Let us denote these 𝑖𝑡ℎ

1 column differences as Δ′
0, Δ′

1, · · · , Δ′
15, i.e., 𝐶𝑜𝑙(𝑖, Δ′

𝑚) =
(𝛿0, 𝛿1, · · · , 𝛿7)𝜏 , where 𝑚 ∈ {0, 1, · · · , 15} and 𝜏 is the matrix transpose.)

2b. Compute Δ𝑜𝑢𝑡
𝑖1 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡). This Δ𝑜𝑢𝑡

𝑖1 is a 𝑖𝑡ℎ
1 column difference, i.e.,

𝐶𝑜𝑙(𝑖, Δ𝑜𝑢𝑡
𝑖 ) = (𝛿′

0, 𝛿
′
1, · · · , 𝛿

′
7)𝜏 , 𝑚 ∈ {0, 1, · · · , 15}.

2c. For each (24 number of) 𝑖𝑡ℎ
1 column differences Δ′ :

2c.1. Check ∀ 𝑝 ∈ {0, 7}, DDT[𝛿𝑝][𝛿′
𝑝] > 0 or not? If yes, then do the following:

2c.1.1. For each nibble position 𝑗 in the 𝑖𝑡ℎ
1 column:

2c.1.1.1. For each 𝑥 ∈ {0, 1, · · · , 15}:
2c.1.1.1.1. Store 𝑥 in the list ℒ𝑖1,𝑗,𝑙 if 𝑆(𝑥)⊕ 𝑆(𝑥⊕ 𝛿𝑗) == 𝛿

′
𝑗 holds.

2d. For each nibble position 𝑗 in the 𝑖𝑡ℎ
1 column:

2d.1. Compute ∩𝑙ℒ𝑖1,𝑗,𝑙, which gives a unique nibble value and stores it in the state
𝑠𝑡, i.e., 𝑠𝑡[𝑗][𝑖]← ∩𝑙ℒ𝑖1,𝑗,𝑙.

3. Increment 𝑖1 ← 𝑖1 + 1 and continue steps 2-3 up to 𝑖1 = 7.
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we need first to calculate complexities step by step. According to Algorithm 11, the

phase counter (step 1) runs for 8 times. Step 2 runs up to |ℋ𝑖1 |, i.e., 𝑞𝑖1 times. Finally,

step 2c runs up to 24 × 23 × 24 = 211 times. Therefore, the overall time complexity

will be 23×22×211 = 216. Also, the memory complexity of this algorithm (maximum

entry of the DDT table is 4) is 4× 24 + (𝑖1 × 𝑗 × 𝑙 × 4) = 26 + (8× 8× 4× 4) ≈ 210

nibbles.

6.3.1.5 Software Implementation

Practically, we have implemented both our proposed algorithms (Algorithm 10, Al-

gorithm 11) to collect several forgeries and then, retrieved the sponge state uniquely.

The forgery verification in Algorithm 10 was performed on a Intel(R) Core(TM) i5-

8250U CPU @1.60GHz machine. Finally, the secret key was successfully recovered

approximately with the above-mentioned complexities. The source code of this attack

is available in [220].

6.3.2 Random Bit-flip Fault Model
The previous section discussed the difficulty of injecting a large number of faults

(around 232) to make one faulty forgery using nibble faults, making it impractical in

practice. This is because the faults have to be injected at the second to last round

of the Photon state (before MCS operation). Injecting random nibble faults at the

last round (before the SC operation) reduces the number of fault injections signifi-

cantly (around 24 injections to make one faulty forgery). However, the required faulty

forgery will become much higher to recover the state because there is no significant

information about the injected faults. This may result in the state not being uniquely

retrievable by collecting several faulty forgery corresponding to all the nibbles in the

Photon state. Therefore, instead of nibble faults, random bit-flip faults are consid-

ered as they are better suited in this scenario.

This section will introduce a fault model based on random bit-flips for the Photon-

Beetle scheme, which can be extended to the ORANGE, ESTATE, and SIV-

TEM-PHOTON schemes to recover their states through faulty forgery during de-

cryption. Additionally, we will provide a theoretical analysis of the required faulty

forgery and validate our attack using software implementations of all four schemes.
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0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Table 6.3: Difference Distribution Table

6.3.2.1 The Fault Model.

In this fault model, an attacker can induce a fault by precisely flipping a single bit,

thereby changing one nibble of the internal state. For instance, the attacker can use a

Laser beam to perform such precise faults [171, 170, 168] with high accuracy in both

space and time. Additionally, EM is another method that can be used to inject such

precise bit-level faults, without requiring chip de-packaging. In practice, an EM fault

injection setup such as the one described in [169] can be used to achieve this.

6.3.2.2 The Fault Attack Description

This attack model differs from the first one discussed in Section 6.3.1. In this model,

we induce nibble faults at the last round, just before the SC operation, in the LPho-

ton call. For each query, we randomly select a tag 𝑇
′ and repeatedly induce nibble

faults until we obtain a forgery. Additionally, we individually inject faults in each

nibble of the state to collect several forgeries and recover the nibbles individually.

A short description to make faulty forgery is as follows. At any phase 𝑖, (0 ≤ 𝑖 ≤ 7),

we make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ). We choose a nibble position

(𝑗, 𝑖), 𝑗 ∈ {0, 1, · · · , 7} just before the SC operation inside the LPhoton state. Due
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to this nibble difference Δ𝑖𝑛(= Δ𝑆𝑖,𝑗) at the 12𝑡ℎ round of LPhoton, the output

difference after the last (12𝑡ℎ) round SC operation will be of the form SC(Δ𝑖𝑛) = Δ𝑜𝑢𝑡
𝑗,𝑖

(see Figure 6-11).

Algorithm 12 Forging Strategy
Input: Associated data 𝐴 and Plaintext 𝑀 .
Output: A List ℋ𝑖,𝑗 and a number 𝑞𝑗,𝑖, 0 ≤ 𝑖, 𝑗 ≤ 7.

1. Make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ).

2. Choose the 12𝑡ℎ round (𝜎11) at the last permutation call LPhoton of the Photon-
Beetle sponge function where the nibble faults will be injected before the SC oper-
ation. We denote this as 𝜎LPhoton

11 .

3. Initialize a phase counter 𝑖 = 0 and a variable 𝑗 to denote the row position.

4. For each 𝑗 ∈ {0, 1, · · · , 7} at the 𝑖𝑡ℎ phase:

4a. Fix a nibble position (𝑗, 𝑖) at the 𝜎LPhoton
11 state, where a random bit fault

𝛿 ∈ {1, 2, 4, 8} will be injected repeatedly at this state position. Therefore, the
input state difference will be Δ𝑖𝑛 = Δ𝑆𝑗,𝑖, i.e., SC (Δ𝑖𝑛) has only a non-zero
nibble difference at the position (𝑗, 𝑖) (see Figure 6-12).

4b. For each decryption query as (𝑁, 𝐴, 𝐶, 𝑇
′):

4b.1. Randomly fill the (𝑗, 𝑖)𝑡ℎ nibble difference to form Δ𝑜𝑢𝑡
𝑖 (see Figure 6-12)

and compute Δ𝑜𝑢𝑡 = MCS ∘ SR(Δ𝑜𝑢𝑡
𝑖 ).

4b.2. Make 𝑇
′ = 𝑇 + 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡) and check whether 𝑇

′ is a valid forgery or not?
If this happens, then store both the fault position (𝑗, 𝑖) and the final state
difference Δ𝑜𝑢𝑡 in the list ℋ𝑗,𝑖.

4b.3. Continuing this to collect 𝑞𝑗,𝑖 tag forgeries.

5. Increment 𝑖← 𝑖 + 1 and repeat steps 4-5 up to 𝑖 = 7.

6. Do offline computation to recover the full LPhoton state, i.e., the Photon-Beetle
state.

σ11:

AC

Random
bit-flip

SC

∆out
0,0∆in = ∆S0,0

SR MCS

Rate Part
(Tag difference)

∆out = MCS ◦ SR(∆out
0,0 )

Figure 6-11: Faulty Forgery: Inducing Random Bit Faults at the Last Round
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If the (bit) faults are injected repeatedly at the (𝑗, 𝑖)-th nibble position in that case the

values of the (𝑗, 𝑖)-th nibble difference can be either 1, 2, 4, or 8, i.e., Δ𝑖𝑛 = {1, 2, 4, 8}.

Meanwhile, according to the DDT table (Table 6.3), there are 11 different output

differences after the SC operation, i.e., Δ𝑜𝑢𝑡
𝑗,𝑖 = {3, 5, 6, 7, 9, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. Thus, out of

the 11 differences, the attacker can randomly choose one difference Δ𝑜𝑢𝑡
𝑗,𝑖 in each faulty

decryption query. Also, the last round SR, MCS operations do not have any impact on

this attack. Therefore, by making 11 faulty (at the nibble position (𝑗, 𝑖)) decryption

queries (𝑁, 𝐴, 𝐶, 𝑇
′) with 𝑇

′ = 𝑇 ⊕ Δ𝑜𝑢𝑡 (= MCS ∘ SR(Δ𝑜𝑢𝑡
𝑗,𝑖 )) we can expect one

forgery. We repeat queries by injecting faults at the same nibble position to collect 𝑞𝑗,𝑖

different forgeries and store them in the list ℋ𝑗,𝑖. In this way, we individually perform

faulty forgery for other nibbles also. The whole steps are illustrated in Algorithm 12

to get faulty forgery for all the nibbles in the LPhoton state. A similar technique

to Algorithm 12 can be employed to perform fault injections and create forgeries for

other SPN-based schemes like ORANGE, SIV-TEM-PHOTON, and ESTATE,

and subsequently recover their states. The only difference lies in the fact that for

these schemes, the attacker needs to choose queries with the empty message.

Theorem 7. Let 𝜒 denote the faulty decryption queries to collect 𝑞 distinct tag

forgeries, i.e., repeatedly induce random bit faults at the fixed nibble position in the

state (in the last round) until we get 𝑞 different forgeries. Then, 𝐸(𝜒) < 44 ·
[︁
1 +

log
(︂

4
4−𝑞+1

)︂]︁
.

Proof. To make a valid forgery, we have to satisfy this condition: MCS∘SR∘SC(Δ𝑖𝑛) =

Δ𝑜𝑢𝑡. Therefore, for each nibble position (𝑗, 𝑖), 0 ≤ 𝑖, 𝑗 < 8, the attacker chooses the

difference Δ𝑜𝑢𝑡
𝑗,𝑖 randomly from the set {3, 5, 6, 7, 9, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. Thus, Pr[MCS∘SR∘

SC(Δ𝑖𝑛) = Δ𝑜𝑢𝑡] = 4
4×11 = 1

11 = 𝑝.

Let, 𝜒𝑗 , 1 ≤ 𝑗 ≤ 𝑞 (= 4) be the number of trials needed to collect 𝑗𝑡ℎ forgery after

𝑗 − 1 forgeries have been collected. As 𝜒 represents the number of independent trials

needed to collect 𝑞 successful forgeries, we have, 𝜒 = 𝜒1 + · · · + 𝜒𝑞. Further, the

probability of collecting 𝑗𝑡ℎ forgery is 𝑝𝑗 = 4−𝑗+1
4×11 = 5−𝑗

44 . Therefore, 𝜒𝑗 follows

geometric distribution and 𝐸(𝜒𝑗) = 1
𝑝𝑗

. By the linearity of expectations, we have,
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tiny

𝐸(𝜒) =
𝑞∑︁

𝑗=1

44
5− 𝑗

= 44
4 + · · ·+ 44

4− 𝑞 + 1

< 44 ·
[︁
1 + log

(︂ 4
4− 𝑞 + 1

)︂]︁
.

6.3.2.3 State Recovery of Photon-based AE Schemes

According to the Algorithm 12, for each nibble position (𝑗, 𝑖), we have a list ℋ𝑗,𝑖

which contains 𝑞𝑗,𝑖 number of pairs. Each pair contains the nibble position (𝑗, 𝑖)

and the corresponding forging state difference Δ𝑜𝑢𝑡. Further, the state difference

Δ𝑜𝑢𝑡 only has a column difference (𝑖𝑡ℎ column) and the remaining columns have

no differences. To, recover the state, we invert Δ𝑜𝑢𝑡 up to SR operations and get

Δ𝑜𝑢𝑡
𝑗,𝑖 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡) (see Figure 6-11). As a result, we have only a non-zero

nibble difference 𝛿
′ ((𝑗, 𝑖)𝑡ℎ position in the state) in Δ𝑜𝑢𝑡

𝑗,𝑖 and the input difference Δ𝑖𝑛 ∈

{1, 2, 4, 8}. We try through all the nibble values 𝑥 (with the associated difference 𝛿
′)

to go backward by inverting the SC operation and store them in a list if the input

difference 𝛿 (= 𝑆−1(𝑥) ⊕ 𝑆−1(𝑥 ⊕ 𝛿
′)) is equal to 1 or 2 or 4 or 8. Repeat this for

other pairs in the list ℋ𝑗,𝑖 and we can get a list of possible nibble values or might

get a unique nibble value. Thus, based on the collected forgeries from the list ℋ𝑗,𝑖,

we can get a list of possible values for other nibbles in the state. In Algorithm 13,

we have proposed a search procedure to retrieve all nibbles of the state for Photon-

based schemes. The same strategy can also retrieve all bytes of the AES state for

ESTATE.

6.3.2.4 Attack Complexity

We have observed that for Photon-Beetle, ORANGE, and SIV-TEM-PHOTON

schemes, if 𝑞𝑗,𝑖 = 3, then the number of possible values corresponding to each nibble

position in the state becomes at most 2. Hence, the reduced state space for these

schemes is around 218 when 𝑞 = 3. To recover the full state of Photon-Beetle using

faulty forgery, the attacker needs to collect three different forgeries at each (𝑗, 𝑖)-th

phase in Algorithm 12. To estimate the total number of faulty forgery, the attacker will
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have to perform 25.6 faulty decryption queries for each phase. Therefore, the total

number of faulty decryption queries required to retrieve the full Photon-Beetle

state is 64× 25.6 = 211.5.

Similarly, for ESTATE, we verify that the list of possible values corresponding to

each byte position in the AES state becomes at most 2 when 𝑞𝑗,𝑖 = 2. Based on the

DDT table of AES, there are 254 (≈ 28) possible output differences corresponding to

Δ𝑖𝑛 ∈ 1, 2, 4, 8, 16, 32, 64, 128. Using Theorem 7, the attacker needs to perform around

29.1 faulty decryption queries to collect two different forgeries for a byte position.

Therefore, the total number of faulty decryption queries required to retrieve the full

ESTATE state is 16× 29.1 = 213.1.

To estimate the complexity of the above state recovery attack, we need to first calcu-

late complexities step by step. According to Algorithm 13, both the phase counter 𝑖1

and step 2 run 8 times separately. The step 2a. runs up to |ℋ𝑗,𝑖1 | number of times.

Finally, step 2a.1.1. runs up to 24 times. Therefore, the overall time complexity is

8× 8× 3× 24 = 211.5. Since the maximum DDT entry of Photon S-box is 4 and for

Algorithm 13 State Recovery of Photon-based AEAD
Input: List ℋ𝑗,𝑖1 ,∀ 0 ≤ 𝑗, 𝑖1 < 8.
Output: A Photon-Beetle state 𝑠𝑡[8][8] (two dimensional list of size 8× 8).

1. Initialize a phase counter 𝑖1 = 0 and another variable 𝑗 = 0. Initialize several lists
ℒ𝑗,𝑖1,𝑙 ← ∅, where 0 ≤ 𝑖1, 𝑗 < 8 and 0 ≤ 𝑙 < |ℋ𝑗,𝑖1 |(= 𝑞𝑗,𝑖1).

2. For each 𝑗 ∈ {0, 1, · · · , 7}:

2a. For each state difference Δ𝑜𝑢𝑡 corresponding to the fault position (𝑗, 𝑖1) in the
list ℋ𝑗,𝑖1 :

2a.1. Compute Δ𝑜𝑢𝑡
𝑗,𝑖1 = SR−1 ∘ MCS−1(Δ𝑜𝑢𝑡). This Δ𝑜𝑢𝑡

𝑗,𝑖1 has only one non-zero
nibble difference at the position (𝑗, 𝑖1) as 𝛿

′ (say).
2a.1.1. For each 𝑥 ∈ {0, 1, · · · , 15}:
2a.1.1.1. Compute 𝛿 = 𝑆−1(𝑥)⊕ 𝑆−1(𝑥⊕ 𝛿

′).
2a.1.1.2. If (𝛿 == 1) or (𝛿 == 2) or (𝛿 == 4) or (𝛿 == 8) hold, then store 𝑥

in the list ℒ𝑗,𝑖1,𝑙.
2b. Compute

⋂︀
𝑙
ℒ𝑗,𝑖1,𝑙, which gives a list of possible nibble values and stores it in

the state list 𝑠𝑡, i.e., 𝑠𝑡[𝑗][𝑖]←
⋂︀
𝑙
ℒ𝑗,𝑖1,𝑙.

3. Increment 𝑖1 ← 𝑖1 + 1 and continue steps 2-3 up to 𝑖1 = 7.
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Schemes # Nibble
Forgeries (𝑞𝑗,𝑖)

Expected
# Faults

Reduced
Key-Space

Photon-Beetle 3 211.5 220

ORANGE 3 211.5 220

SIV-TEM-PHOTON 3 211.5 220

ESTATE 2 213.1 25

Table 6.4: Results on Expected Faults and Reduced Key-Space under Bit Faults

a given output difference, there are at most 8 possible nibble values 𝑥 which leads to

the input differences either 1 or 2 or 4 or 8. Thus, the space complexity of this state

recovery algorithm is 8× 8× 8 = 29 nibbles.

6.3.2.5 Software Implementation

We successfully implemented the faulty forgery attack (Algorithm 14) and the state

recovery attack (Algorithm 15) on all schemes and recovered their secret keys. Our

implementation used an Intel(R) Core(TM) i5-8250U CPU @1.60GHz machine, and

the secret key was recovered with the complexities listed in Table 6.4. The source

code for both attacks is available in [221, 222, 223, 224].

6.3.3 Known Fault Model

In this model, we first discuss the fault model, where we inject (nibble) faults that are

random but known to the attacker. Then, we retrieve the secret key by repeatedly

performing faulty forgery for each nibble and then recover its secret. Further, we

additionally give a software implementation of these algorithms to validate this attack.

6.3.3.1 The Fault Model

In this fault model, a random fault is induced to change one nibble of the internal

state but, the faulty value is known to the attacker. For example, an attacker could

attempt to create a nibble fault at the input of a particular round such that the

attacker perfectly knows the statistical distribution of the faulty value. The attacker

can use a Laser beam to induce such faults with high accuracy (space and time).
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6.3.3.2 The Fault Attack Description

In this model, the attacker induces nibble faults at the last round (before the SC

operation) in the LPhoton call. Then, in each query, repeatedly choose a random

tag 𝑇
′ and induce nibble faults until it becomes a forgery. Further, in this case, we

inject faults in each nibble of the state individually to collect several forgeries and

then, recover nibbles individually.

A short description to make faulty forgery is as follows. At any phase 𝑖, (0 ≤ 𝑖 ≤

7), make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ). Choose a nibble position

(𝑗, 𝑖), 𝑗 ∈ {0, 1, · · · , 7} just before the SC operation inside the LPhoton state. Due

to this nibble difference Δ𝑖𝑛(= Δ𝑆𝑖,𝑗) at the 12𝑡ℎ round of LPhoton, the output

difference after the last (12𝑡ℎ) round SC operation will be of the form SC(Δ𝑖𝑛) = Δ𝑜𝑢𝑡
𝑗,𝑖

(see Figure 6-12). Therefore, the total number of chosen differences of Δ𝑜𝑢𝑡
𝑖 is 24.

Also, the last round SR, MCS do not have any impact in this attack. So, choosing

24 faulty (with faulty nibble position (𝑗, 𝑖)) decryption queries (𝑁, 𝐴, 𝐶, 𝑇
′) by 𝑇

′ =

𝑇 ⊕ Δ𝑜𝑢𝑡 (= MCS ∘ SR(Δ𝑜𝑢𝑡
𝑗,𝑖 )) and expect one faulty forgery. Then, repeat queries

by injecting faults at the same nibble position to collect 𝑞𝑗,𝑖 different forgeries and

store them in the list ℋ𝑗,𝑖. This approach can be repeated for the other nibbles in

the LPhoton state to induce faults and obtain faulty forgery for each nibble. The

complete steps are presented in Algorithm 14 to obtain faulty forgery for all nibbles in

the LPhoton state. Therefore, Algorithm 14 can be used to perform faulty forgery for

Photon-Beetle, ORANGE, and SIV-TEM-PHOTON schemes. The approach

to performing faulty forgery for the ESTATE scheme is similar to Algorithm 14 and

can be applied accordingly.

σ11:

AC

Random fault

SC

∆out
0,0∆in = ∆S0,0

SR MCS

Rate Part
(Tag difference)

∆out = MCS ◦ SR(∆out
0,0 )

Figure 6-12: Faulty Forgery: Inducing Faults at the Last Round
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Theorem 8. Let 𝜒 denote the faulty decryption queries to collect 𝑞 distinct tag

forgeries, i.e., repeatedly induce nibble (known) faults at the fixed position in the

state (last round) to get 𝑞 different forgeries. Then, 𝐸(𝜒) < 28 ·
[︁
1 + log

(︂
24

24−𝑞+1

)︂]︁
.

Proof. To make a valid forgery, the attacker has to satisfy this condition: MCS ∘SR ∘

SC(Δ𝑖𝑛) = Δ𝑜𝑢𝑡. Therefore, at any phase 𝑖, 0 ≤ 𝑖 < 8, Pr[MCS ∘ SR ∘ SC(Δ𝑖𝑛) =

Δ𝑜𝑢𝑡] = 24−1
(24−1)×(24−1) ≈

1
24 = 𝑝.

Let, 𝜒𝑗 , 1 ≤ 𝑗 ≤ 𝑞 be the trials needed to collect 𝑗𝑡ℎ forgery after 𝑗 − 1 forgeries have

been collected. As 𝜒 represents the number of independent trials needed to collect 𝑞

successful forgeries, we have, 𝜒 = 𝜒1 + · · ·+ 𝜒𝑞. Further, the probability of collecting

𝑗𝑡ℎ forgery is 𝑝𝑗 = 24−𝑗+1
24×24 = 24−𝑗+1

28 . Therefore, 𝜒𝑗 follows geometric distribution and

𝐸(𝜒𝑗) = 1
𝑝𝑗

. By the linearity of expectations, we have, tiny

𝐸(𝜒) =
𝑞∑︁

𝑗=1

28

24 − 𝑗 + 1 = 28

24 + 28

24 − 1 + · · ·+ 28

24 − 𝑞 + 1

< 28 ·
[︁
1 + log

(︂ 24

24 − 𝑞 + 1

)︂]︁
.

6.3.3.3 State Recovery of Photon-based AE Schemes

According to the Algorithm 14, for each nibble position (𝑗, 𝑖), we have a list ℋ𝑗,𝑖

which contains 𝑞𝑗,𝑖 number of tripplets, which contains the nibble position (𝑗, 𝑖),

faulty value 𝛿, and the corresponding forging state difference Δ𝑜𝑢𝑡. Further, this

differential state Δ𝑜𝑢𝑡 only has a column difference (𝑖𝑡ℎ column) and the remaining

columns have no differences. To, recover the state, invert Δ𝑜𝑢𝑡 up to SR operations

and get Δ𝑜𝑢𝑡
𝑗,𝑖 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡) (see Figure 6-12). As a result, there is only one

nibble difference ((𝑗, 𝑖)𝑡ℎ position in the state) in Δ𝑜𝑢𝑡
𝑗,𝑖 as well as in Δ𝑖𝑛. Moreover, in

this case, both nibble differences in the differential states Δ𝑜𝑢𝑡
𝑗,𝑖 and Δ𝑖𝑛 are known.

Thus, try for all the nibble values and store them in a list if it pass through the

S-box. Do this for other tripplets in the list ℋ𝑗,𝑖, and finally, the (𝑗, 𝑖)𝑡ℎ nibble value

of the LPhoton state will be retrieved. In this way, the attacker retrieves all the

other nibbles from the list ℋ𝑗,𝑖. The procedure described in Algorithm 15 can be

used to recover all nibbles of the Photon-Beetle state. The same approach can
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also be applied to recover the state for other schemes such as ORANGE, SIV-TEM-

PHOTON, and ESTATE.

6.3.3.4 Attack Complexity

For all schemes, we verify that ∀𝑖, 𝑗 ∈ {0, 1, · · · , 7}, 𝑞𝑗,𝑖 = 2 is sufficient to recover

the (𝑗, 𝑖)𝑡ℎ nibble uniquely. According to Theorem 8, the attacker will have to per-

form 25.05 faulty decryption queries to collect two different forgeries at the 𝑖𝑡ℎ phase

in the Algorithm 14. Therefore, the total faulty decryption queries to retrieve the

full Photon-Beetle state is 64 × 25.05 = 211.05. Whereas for AES-based scheme

ESTATE, the attacker will have to perform around 29.01 faulty decryption queries

Algorithm 14 Forging Strategy
Input: Associated data 𝐴 and Plaintext 𝑀 .
Output: A List ℋ𝑖,𝑗 and a number 𝑞𝑗,𝑖, 0 ≤ 𝑖, 𝑗 ≤ 7.

1. Make an encryption query (𝑁, 𝐴, 𝑀) and get (𝐶, 𝑇 ).

2. Choose the 12𝑡ℎ round (𝜎11) at the last permutation call LPhoton of the
Photon-Beetle sponge function where the nibble faults will be injected be-
fore the SC operation. Denoting this as 𝜎LPhoton

11 .

3. Initialize a phase counter 𝑖 = 0 and a variable 𝑗 to denote the row position.

4. For each 𝑗 ∈ {0, 1, · · · , 7} at the 𝑖𝑡ℎ phase:

4a. Fix a nibble position (𝑗, 𝑖) at the 𝜎LPhoton
11 state, where a fault 𝛿 (known to

the attacker) will be injected repeatedly at this state position. Therefore,
the input state difference will be Δ𝑖𝑛 = Δ𝑆𝑗,𝑖, i.e., SC (Δ𝑖𝑛) has only a
non-zero nibble difference at the position (𝑗, 𝑖) (see Figure 6-12).

4b. For each decryption query as (𝑁, 𝐴, 𝐶, 𝑇
′):

4b.1. Randomly fill the (𝑗, 𝑖)𝑡ℎ nibble difference to form Δ𝑜𝑢𝑡
𝑖 (see Figure 6-

12) and compute Δ𝑜𝑢𝑡 = MCS ∘ SR(Δ𝑜𝑢𝑡
𝑗,𝑖 ).

4b.2. Make 𝑇
′ = 𝑇 + 𝑅𝑎𝑡𝑒(Δ𝑜𝑢𝑡) and check whether 𝑇

′ is a valid forgery
or not? If this happens, then store both the fault position (𝑗, 𝑖), fault
value 𝛿, and the final state difference Δ𝑜𝑢𝑡 in the list ℋ𝑗,𝑖.

4b.3. Continue this to collect 𝑞𝑗,𝑖 many tag forgeries.

5. Increment 𝑖← 𝑖 + 1 and repeat steps 4-5 up to 𝑖 = 7.

6. Do offline computation to recover the full LPhoton state, i.e., the Photon-
Beetle state.
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Schemes # Nibble
Forgeries (𝑞𝑗,𝑖)

Expected
# Faults

Reduced
Key-Space

Photon-Beetle 2 211.05 20

ORANGE 2 211.05 20

SIV-TEM-PHOTON 2 211.05 20

ESTATE 2 213.01 20

Table 6.5: Results on Expected Faults and Reduced Key-Space under Known Faults

to collect two different forgeries. Thus, the total faulty decryption queries to retrieve

the full ESTATE state is 16 × 29.01 = 213.01. Now, to estimate the complexity of

the above state recovery attack, we need first to calculate complexities step by step.

According to Algorithm 15, both the counters 𝑖1 and 𝑗 runs for 8 times. The step

2a. runs up to |ℋ𝑖1 |, i.e., 𝑞𝑖1 number of times. Finally, step 2a.2.1. runs up to 24

times. Therefore, the overall time complexity is 8× 8× 2× 24 = 211. Since the max-

imum DDT entry of Photon S-box is 4, the space complexity of this state recovery

algorithm is 8× 8× 2× 4 = 29 nibbles.

6.3.3.5 Software Implementation

We have implemented both the faulty forgery attack (in Algorithm 14) and the state

recovery attack (in Algorithm 15) to recover the secret key. For all the schemes, the

implementation was performed on an Intel(R) Core(TM) i5-8250U CPU @1.60GHz

machine, and their secret key was successfully recovered uniquely with different fault

complexities(given in Table 6.5). The source code of these attacks is available in [221,

222, 223, 224].

6.3.3.6 Further Improvement over Faults

To reduce the number of faults, an attacker can induce a precise bit fault to change

one nibble (at the input of SC operation) in the internal state instead of injecting

known nibble faults in the Photon-Beetle state. For example, the attacker can

use a Laser beam to induce such faults [171, 170, 168] with high accuracy (space and

time). Further, EM is also a good way of injecting such precise bit faults, and it does

not require any chip de-packaging. Practically, precise bit-level fault injections can

be achieved by EM fault injection setup in [169].
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According to the DDT (given in Table 6.3) of the S-box in the Photon-Beetle AE,

the input difference 1 has only 4 non-zero output differences. Also, the input difference

8 has only 6 non-zero output differences, whereas the other two input differences 2

and 4 have 7 non-zero output differences. According to Algorithm 11, the attacker can

repeatedly inject a bit fault 𝛿 = 1 (at the LSB) in the nibble position (𝑗, 𝑖) (i.e., Δ𝑖𝑛)

at the last round of LPhoton. In this case, the total number of chosen differences

of Δ𝑜𝑢𝑡
𝑖 is 4. Therefore, the attacker needs to repeat the bit fault injection in the

position (𝑗, 𝑖) 4 times and expect one forgery. Further, according to Algorithm 12,

the attacker needs 𝑞𝑗,𝑖 = 2 forgeries to uniquely retrieve the nibble. So, to reduce

faults, the attacker needs bit fault 𝛿 = 8 (at the MSB) in the nibble position (𝑗, 𝑖)

(i.e., Δ𝑖𝑛) at the last round of LPhoton. In this case, the attacker needs to repeat

the bit fault injection in the position (𝑗, 𝑖) 6 times and expect one forgery. Finally,

the attacker needs to perform (6 + 4) = 10 faulty queries to collect two different

forgeries. Hence, the total number of faulty decryption queries to retrieve the full

Photon-Beetle state is 64× 10 = 640.

Algorithm 15 State Recovery of Photon-Beetle
Input: List ℋ𝑗,𝑖1 ,∀ 0 ≤ 𝑗, 𝑖1 < 8.
Output: A Photon-Beetle state 𝑠𝑡[8][8].

1. Initialize a phase counter 𝑖1 = 0 and another variable 𝑗 = 0. Initialize several
lists ℒ𝑗,𝑖1,𝑙 ← ∅, where 0 ≤ 𝑖1, 𝑗 < 8 and 0 ≤ 𝑙 < |ℋ𝑗,𝑖1|(= 𝑞𝑗,𝑖1).

2. For each 𝑗 ∈ {0, 1, · · · , 7}:

2a. For each (faulty) difference value 𝛿, and the state difference Δ𝑜𝑢𝑡 corre-
sponding to the fault position (𝑗, 𝑖1) in the list ℋ𝑗,𝑖1 :

2a.1. Compute Δ𝑜𝑢𝑡
𝑖1 = SR−1 ∘MCS−1(Δ𝑜𝑢𝑡). This Δ𝑜𝑢𝑡

𝑖1 has only one nibble
difference at the position (𝑗, 𝑖1) as 𝛿

′ .
2a.2. If DDT[𝛿][𝛿′ ] > 0:

2a.2.1. For each 𝑥 ∈ {0, 1, · · · , 15}:
2a.2.1.1. If 𝑆(𝑥)⊕ 𝑆(𝑥⊕ 𝛿) == 𝛿

′ holds, then store 𝑥 in the list ℒ𝑗,𝑖1,𝑙.
2b. Compute ⋂︀

𝑙
ℒ𝑗,𝑖1,𝑙, which gives a unique nibble value 𝑥 and store it in the

state 𝑠𝑡, i.e., 𝑠𝑡[𝑗][𝑖]← ⋂︀
𝑙
ℒ𝑗,𝑖1,𝑙.

3. Increment 𝑖1 ← 𝑖1 + 1 and continue steps 2-3 up to 𝑖1 = 7.
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Table 6.6: Expected Number of Faulty Queries for Different Fault Models

Schemes Number of KFM RFM RBFM
forgeries (𝑞) Theory Simulation Theory Simulation Theory Simulation

Photon-Beetle 1 24 23.92 232 231.8 23.47 23.3

2 25.05 24.92 233.04 232.85 24.7 24.38

3 25.7 25.53 233.68 233.49 25.58 25.1

ESTATE 1 28 27.88 232 231.8 27.99 27.84

2 29.01 28.71 233.04 232.85 29.1 28.8

Note: "KFM", "RFM", and "RBFM" stands for Known Fault Model, Random Fault Model, and
Random Bit-flip Fault Model respectively.

6.3.4 Theory vs. Experiment

We present a set of simulations for the Photon-Beetle and ESTATE schemes to

evaluate the expected number of required faults and compare them with theoretical

estimates. The simulations were conducted on an Intel(R) Core(TM) i5-8250U CPU

@1.60GHz computer, and the software implementations are available in [225]. We

executed the simulation procedure 100,000 times for the second model, while for the

first model, we performed it 100 times due to the low complexity of making one

forgery. Table 6.6 summarizes the total number of faulty queries necessary to recover

a nibble/byte of the LPhoton/TweAES-128 state for different fault models, as

obtained from both the simulations and theoretical estimations.

6.4 Discussion and Countermeasures
In this section, we will first provide a brief description of the challenges in directly

applying the statistically Ineffective Fault Attack (SIFA) to SPN-based sponge AE

ciphers compared to Differential Fault Analysis (DFA) on such schemes. Next, we

will demonstrate that SIFA requires a significantly larger number of faults compared

to the DFA attack. Finally, we will propose potential countermeasures to prevent DFA

on SPN-based sponge AE schemes.

SIFA is a powerful technique that exploits the distribution of faults such that the faults

do not affect the outcome of a computation (ineffective faults). This distribution of the

values where an ineffective fault does not change the computation often behaves non-

uniformly in practice. Most of the active fault attacks thwart detection or infection-

based countermeasures, where faults are effective during computation. For SIFA,
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ineffective faults can easily bypass these countermeasures. Further, SIFA can break

the countermeasure (detection and infection-based) even while they are combined

with SCA countermeasures like masking. The basic concept of this technique is as

follows:

– Make several encryption/decryption queries by repeatedly injecting faults at a

bit/nibble/byte during the computation and collect some plain- or ciphertexts

where the fault was ineffective (i.e., for correct computations).

– Apply the SFA to retrieve the key bits.

Further, SFA can not be directly applied at the finalization phase in the sponge AE

even if the key is XORed before the tag is obtained. Because, in the finalization

phase, some partial bits of the internal state are output as the final tag. As a result,

we can not directly apply SIFA at the finalization phase. Therefore, to apply this

technique on nonce-based (sponge or stream cipher-based) AE, the attacker needs to

target the initialization phase. To do this, we first target the decryption of valid

messages (𝑁, 𝐴, 𝐶, 𝑇 ) in the presence of faults (at the intermediate rounds) that are

induced during the initialization phase. If the fault is ineffective, the tag verification

will succeed. Next, based on the collected forgeries (respective nonces), the attacker

finds the key bits that directly influence the value (the position where the faults are

induced). The wrong key guess leads to a uniform distribution, whereas the right key

guess leads to a non-uniform distribution.

In [192], Dobraunig et al. first applied this technique to attack sponge-based AE

Keyak and Ketje. In this paper, they choose to induce faults at the second round

(before the non-linear operation) in the initialization phase. Finally, by performing

around 24×250 ≈ 6, 000 faulty decryptions, they recovered 82 bits and 152 bits of the

key for Keyak and Ketje respectively. The remaining key bits can be determined

either by brute force or repeating key recovery for a different fault location. Recently,

in [212], Gruber et al. further applied this technique on GIMLI which is one of the

second-round candidates in NIST LwC competition. They induce faults at three dif-

ferent rounds (respectively 23rd, 22nd, and, 21st rounds) at the initialization phase

in the decryption query. They used three different fault models random-And, Stuck-

at-0, and probabilistic bit-flip model to simulate a fault in software implementation,
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which can further apply to hardware implementations with the same reasoning. This

simulation shows that the ineffectiveness rate for random-And (for byte faults) is ap-

prox 10−1 is much higher in comparison with the other two given fault models. Under

the random-And byte fault model, the attack needs around 180 and 340 ineffective

faults to recover up to 48 (for the 22nd round) and 176 (for the 21st round) key bits

respectively. Hence, the total number of faulty decryption queries to retrieve 48 and

176 key bits are around 180× 10 ≈ 1800 and 340× 10 ≈ 3400 respectively.

Countermeasures. To counter the attacks demonstrated in this work on SPN-

based sponge authentication schemes, the following approach can be employed. The

idea is to rearrange the nibble positions within the state from which the tag is gen-

erated, whether it originates from the rate part or the capacity part. In general,

the final tag in SPN-based schemes is produced from the rate part of the state. For

square values of 𝑚, such as when the state of an SPN cipher is represented as an

𝑚×𝑚 nibble/byte matrix, where 𝑚 = 4, 8, the rate part of these permutation-based

schemes consists of the first few rows in the 𝑚 × 𝑚 state, while the capacity part

occupies the remaining rows. Similarly, for an SPN state represented as a rectangular

matrix, the rate part consists of the first few rows, while the remaining rows consti-

tute the capacity part. By applying fault injection, we can accurately reproduce the

complete state differences based on the differences observed in faulty and non-faulty

tags. However, if the tag is generated from the first four columns of the state, it may

be challenging to deduce the full state difference from the tag differences caused by

faulty and non-faulty computations.

Therefore, if the tag is directly produced from the first four columns of the state,

meaning 64 bits from the rate part and the remaining 64 bits from the capacity

part, an attacker can only perform fault injection attacks on the first four columns.

Consequently, the attacker can only recover the state information corresponding to

these columns, while the other four (last) columns remain unknown. This significantly

reduces the attacker’s ability to fully recover the state. By rearranging the nibble

positions in the state, especially when the tag is generated from the first four columns,

the attacker’s task becomes more difficult. In such cases, the attacker can only recover

the state information for the first four columns, while the remaining columns remain
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unknown. This effectively increases the complexity of retrieving the full state for an

attacker attempting to exploit the device.

6.5 Conclusion
We first show the differential fault attacks on Photon-Beetle, ORANGE, SIV-

TEM-PHOTON, and ESTATE under three different fault models. We do this by

performing faulty forgery in the decryption query to collect some forging tags. Then,

we recover the state by doing offline computation based on the collected forgeries.

Once the state is recovered, the master key can be retrieved either by inverting the

sponge function or by retrieving the subkey from the state. Also, we give a theoretical

estimation to collect different forgeries corresponding to a fixed nibble/byte position

for the given fault models.

Under the first fault model, approximately 237.15 faulty forgery are required to retrieve

the state. Also, the time and the space complexities to recover the state are respec-

tively 216 and 210 nibbles. Then, to retrieve the state for Photon and AES-based

AE schemes under the second fault model, the number of faulty forgery are 211.5 and

213.1 respectively. The time and the space complexities of the given attack are re-

spectively 211.5 and 29 nibbles. Whereas, under the known fault model, we need to

perform approximately 211.05 faulty forgery to recover the state. Also, the time and

space complexities of this attack are 211 and 29 nibbles respectively. However, we

have reduced the number of faulty queries under the precise bit-fault model instead

of using known nibble faults. Under this bit-fault model, we have shown that around

29.32 faults are sufficient to recover the state. For validation purposes, we provided

software implementations of the complete attacks for all the proposed fault models.

Finally, in this work, we have shown that how we can recover the internal state by

performing DFA on SPN-based sponge and SIV-like AE schemes Photon-Beetle,

ORANGE, SIV-TEM-PHOTON, and ESTATE. Also, in the SPN-based sponge-

like constructions, if some designer uses an extra key injection just before the final

permutation call, still we can retrieve its secret key by performing the attack in two

steps. Because, in the first DFA attack we recover the internal state, then we repeat

the DFA attack again to recover the state before the final permutation and then
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retrieve its secret key. Also, for any SPN-based sponge AE, it is quite straightforward

that the number of faulty queries for the SIFA technique might be much higher in

comparison to our proposed DFA. However, we conjecture that our attack can also be

applied to any SPN-based sponge and SIV-like schemes.
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7
DEPEND ON DEEPAND: CRYPTANALYSIS OF

NLFSR-BASED LIGHTWEIGHT CIPHERS

TINYJAMBU AND KATAN

7.1 Introduction
The well-established block cipher design principle constitutes the construction of a

so-called weak round-function which is iterated (sufficiently) many times to create

a secure construction. One of the fundamental decisions in such an iterative block

cipher design is the number of rounds. This decision is a trade-off between security

and efficiency and plays an even more critical part in the context of Lightweight Cryp-

tography which is referred to as crypto tailored for resource-contained environments.

A typical way to decide this is to take into account the penetration of the best attack

available and then add some more rounds as the so-called security-margin. Tradition-

ally, designers try to prove how many rounds are sufficient to resist a certain kind

of attack. This in general is a rigorous task and primarily limited to a specific con-

struction. For instance, resistance against differential cryptanalysis [226] relies on the

number of active sboxes in the best available differential characteristic. It has been a

long-standing question if these seemingly critical tasks of cryptanalysis could be auto-

mated or aided in some generic way. Though there have been initial attempts in this

direction but the first major breakthrough in this direction is attributed to Mouha

et al. [48] who was one of the first to demonstrate how the cryptanalytic problems of

determining the minimum number of active sboxes could be modeled as an optimiza-
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tion problem which could in turn be solved by automated solvers. In particular, the

authors showcased how Mixed Integer Linear Programming (MILP) can be leveraged

as an ingenious cryptanalysis aid. This seminal work spawned an entirely new line of

research where the goal is one hand to increase the breadth of the strategy with new

modelings (applications to linear, division, and impossible differential cryptanalysis).

On the other hand, the idea is to improve upon the existing models to capture the

underlying crypto property as closely as possible. The current work aims to add to

state-of-art with better MILP modeling.

Interestingly, researchers have shown that there are mechanisms to precisely model

valid transition for many crypto properties [115, 116, 114]. However, the catch is that

this results in models becoming over-constrained thereby infeasible to be solved in

reasonable time. On the other end of the spectrum is an oversimplified model which

might lead to invalid transitions. There is a rich body of work that tries to reach a

middle ground by what can perhaps be referred to as balanced modeling [227, 117]. In

FSE 2020, Saha et al. made an interesting observation in this line of balanced model-

ing for the NIST-LWC [228] competition initial version TinyJAMBU [229] (version 1).

The authors pointed out that the correlation between multiple AND gates could lead

to them becoming dependent leading to joint propagation of differential characteris-

tics. Our research pushes the boundaries to reveal that further refinement is possible

and a generalized model can be devised to extend the findings to a class of Non-Linear

Feedback Shift Register (NLFSR) based lightweight block ciphers with specific results

on KATAN [230], NIST-LWC [228] competition finalist TinyJAMBU [231] (version 2)

and its previous version TinyJAMBU [229] (version 1).

7.1.1 Summary of The Chapter
Generalizes AND Modeling Framework. The current work proposes a general-

ized model to capture first-order correlation in single as well as multiple AND gates.

This is a direct improvement over the recent work [49] by Saha et al. where a new

MILP model was developed leveraging AND gate correlations. To be precise, the anal-

ysis by Saha et al. exploits two subsequent AND computations with a common input

position (for e.g the middle bit position 𝑏 out of three inputs 𝑎, 𝑏, 𝑐 to the subsequent

ANDs). The present work provides further insight into this interesting correlation by
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extending it to multiple AND gates. The findings show a significant impact on the

actual probabilities of the differential characteristics. More specifically, the common

input position in the two subsequent ANDs will be revealed when a particular differ-

ence pattern. For instance if (Δ𝑎, Δ𝑏, Δ𝑐) = (1, 0, 1) one has to pay a probability for

only the first AND whereas the second AND will pass freely. We further re-investigate

this case and observe that due to the difference (Δ𝑎, Δ𝑏) = (1, 0), the output differ-

ence (Δ𝑧1) of the first AND directly reveals the bit 𝑏, i.e., Δ𝑧1 = 𝑏. Once Δ𝑧1 is fixed,

passage through the second AND is for free. From another perspective, for an AND

gate with two inputs 𝑎, 𝑏, if we know the bit value of 𝑎, then for a given difference

pattern (Δ𝑎, Δ𝑏) = (0, 1), the output difference Δ𝑧 = 𝑎 will become deterministic.

We would like to emphasize that the distribution of differences in AND gates under

conditionally known inputs might be well-known. However, in the current work, we

revisit this in the light of correlations that develop and can hence be exploited in

MILP modelings.

Improved Bounds for TinyJAMBU and KATAN. Our research constitutes a com-

prehensive study of all correlations that develop (and were perhaps missed in earlier

attempts) with or without conditionally known inputs. These correlations when in-

corporated in MILP models lead to the best characteristics known on NLFSR-based

ciphers TinyJAMBU and KATAN which in turn can be exploited to mount distinguish-

ing and forgery attacks. It is worth noting that correlated AND, though not a new

observation, earlier results were only restricted to the single AND gates. For NLFSR-

based ciphers employing multiple ANDs, the current work adds newer cases there also

bettering the size of the differential characteristic clusters generated. All findings are

consolidated into a new generalized refined model. Finally, we apply this new model

in the keyed-permutation of TinyJAMBU AE and to all the KATAN -variants and show

that our model captures all possible correlations between ANDs and provides better

optimal differential characteristics in comparison to previous models.

Notion of Conditionally Free Rounds. The work builds upon two fundamental

observations which are looked at from an information-theoretic way in terms of con-
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ditionally known inputs and how much reduction it leads to in terms of the overall

entropy of the values and differences that related to one/multiple AND gates. The

Observations 2 and 3 help identify the underlying principle behind the chained (a

term introduced in [49]) AND gates by introducing the notion of what we refer as

conditionally free rounds. The primary motivation is to redefine the notion of cor-

related AND operations (Lemma 2) using these observations referred to above. The

proof idea stems from the fact that for some specific differential inputs and output of

the AND gate, we gain some extra information about the actual bits of the internal

state thereby reducing the entropy. The observations are further exploited to develop

a generalized MILP model for differential cryptanalysis, referred to as DEEPAND,

which has the potential to capture all possible correlations between multiple ANDs

in NLFSR-based (AND based) block ciphers. Consider a NLFSR-based block cipher

with ℎ AND gates. Suppose, the AND gates compute (𝑎1
1 · 𝑏), (𝑏 · 𝑎2

1), · · · , (𝑎1
ℎ · 𝑏),

(𝑏 · 𝑎2
ℎ) across some rounds. We will show that these 2ℎ AND operations are corre-

lated. Essentially, if 𝑏 = 0 and out of these 2ℎ AND computations, 𝑚 AND gates are

active, then due to the correlated nature between the AND gates the output of these

AND computations can be fixed with probability 2−1 instead of 2−𝑚. The proposed

DEEPAND model employs the following properties to find differential characteristics

1. Captures all possible correlations between several AND computations

2. Exploits observations made to gain advantage thereby penetrating some extra

rounds freely in the differential characteristics.

As an immediate application, the DEEPAND model is applied on the KATAN block

cipher to find differential characteristics that are better than existing ones. We have

explicitly shown characteristics where the dependency between several AND compu-

tations are captured. The model is also able to improve the related-key boomerang

attacks on KATAN. To show the versatility of the model, it is also employed on keyed

permutation of TinyJAMBU (version 2). The model can converge faster while search-

ing for differential characteristics for TinyJAMBU in comparison to the refined model

which we believe is due to the notion of complete and conditionally free rounds intro-

duced in this work. Finally, a forgery attack on TinyJAMBU (version 1) is mounted

with a probability of 2−67.88.
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Figure 7-1: The Permutation 𝑃 𝑘𝑖

7.2 Specifications of TinyJAMBU and KATAN
In this section, we provide a brief description of two cryptographic algorithms: Tiny-

JAMBU and KATAN .

Table 7.1: TinyJAMBU Variants

AEAD Variants of Size in bits Number of Rounds in
TinyJAMBU Mode State Key Nonce Tag 𝑃𝑙 𝑃𝑙

TinyJAMBU-128 128 128 96 64 640 1024
TinyJAMBU-192 128 192 96 64 640 1152
TinyJAMBU-256 128 256 96 64 640 1280

7.2.1 TinyJAMBU
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Figure 7-2: The Initialization of TinyJAMBU [49]

TinyJAMBU [231] (version 2) is a variant of JAMBU that was selected as a finalist in the

NIST Lightweight Cryptography competition. It uses a 128-bit NLFSR-based keyed

permutation with 128-bit state size and 32-bit message block size. It offers better

security than JAMBU and duplex mode with nonce reuse. The permutation, denoted
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by 𝑃 𝐾
𝑙 , has 𝑙 rounds and supports key sizes (|) K|of 128, 192, or 256 bits. In short,

we use 𝒫𝑙 to denote an 𝑙-round keyed permutation of TinyJAMBU throughout the

chapter. The 𝑖𝑡ℎ round of the 𝒫𝑙 permutation transforms a 128-bit state to another

128-bit state. The transformation is defined by 𝑠𝑓 = 𝑠0⊕𝑠47⊕𝑠70𝑠85⊕𝑠91⊕𝑘𝑖 mod |𝐾|,

where 𝑠𝑓 is the transformed state and 𝑘𝑖 mod |𝐾| is the secret key. The permutation is

shown in Figure 7-1. The TinyJAMBU mode has three variations named TinyJAMBU-

128, TinyJAMBU-192, and TinyJAMBU-256, with specifications listed in Table 7.1.
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Figure 7-3: The Description of TinyJAMBU Mode [49]

The TinyJAMBU encryption process has four stages: Initialization, Associated Data

Processing, Encryption, and Finalization. In the Initialization stage, the state is

initialized through key and nonce setup. In the Associated Data Processing stage,

each data block is processed by XORing with the state, updating the state with 𝑃𝑙,

and XORing the associated data block with the updated state. In the Encryption

stage, each message block is encrypted by XORing with the state, updating the state

with 𝑃𝑙, injecting the message block into the first block of the state, and producing

the ciphertext by XORing the message block with the second block of the state. In the

Finalization stage, the authentication tag 𝑇 = 𝑇0||𝑇1 is generated by XORing with

the state, updating the state with 𝑃𝑙, extracting 𝑇0 from the state, XORing again

with the state, updating the state with 𝑃𝑙, and extracting 𝑇2 from the resulting state.

The overall structure of the TinyJAMBU mode is depicted in Figure 7-3, where the

permutations 𝑃𝑙 and 𝑃𝑙 are specified in Table 7.1. The only difference between the

initial version of TinyJAMBU [229] (version 1) compared to version 2 is the number

of rounds of 𝑃𝑙. In version 1, the number of rounds in 𝑃𝑙 is 384.
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7.2.2 KATAN
The KATAN family is a very efficient NLFSR-based hardware-oriented block cipher

with three variants, namely KATAN32, KATAN48, KATAN64 correspond to 32, 48,

and 64-bit block sizes. All these variants have 254 rounds and use the non-linear

functions 𝒩ℱ1 and 𝒩ℱ2. Also, they use the same LFSR-based key schedule which

takes an 80-bit key as an input. The general structure of the KATAN cipher is as

follows.

First, the plaintext is loaded into two registers 𝐿1 and 𝐿2. In each round, several

bits are taken from the registers to fed into the non-linear functions, and finally, the

output of 𝒩ℱ1 and 𝒩ℱ2 is loaded to the least significant bits (LSB) to the registers

𝐿2 and 𝐿1 respectively. The key schedule function expands an 80-bit user-provided

key 𝑘𝑖 (0 ≤ 𝑖 < 80) into a 508-bit subkey 𝑠𝑘𝑖 (0 ≤ 𝑖 < 508) by the following linear

operations,

𝑠𝑘𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑘𝑖, 0 ≤ 𝑖 < 80

𝑘𝑖−80 ⊕ 𝑘𝑖−61 ⊕ 𝑘𝑖−50 ⊕ 𝑘𝑖−13, 80 ≤ 𝑥 < 508.

Also, the two non-linear functions are defined as follows:

𝒩ℱ1(𝐿1) = 𝐿1[𝑥1]⊕ 𝐿1[𝑥2]⊕ (𝐿1[𝑥3] · 𝐿1[𝑥4])⊕ (𝐿1[𝑥5] · 𝐼𝑅)⊕ 𝑘𝑎

𝒩ℱ2(𝐿2) = 𝐿2[𝑦1]⊕ 𝐿2[𝑦2]⊕ (𝐿2[𝑦3] · 𝐿2[𝑦4])⊕ (𝐿2[𝑦5] · 𝐿2[𝑦6])⊕ 𝑘𝑏,

where 𝐼𝑅 is the pre-defined round constant value (see the specification in [230]), and

𝑘𝑎, 𝑘𝑏 are the two subkey bits. The selection of the bits 𝑥𝑖, 1 ≤ 𝑖 ≤ 5 and 𝑦𝑖, 1 ≤ 𝑖 ≤ 6

are defined for each variant independently, and are listed in Table 7.2. For KATAN32,

the 𝑖-th round function is depicted in Figure 7-4, where 𝑘𝑎 ← 𝑘2𝑖 and 𝑘𝑏 ← 𝑘2𝑖+1.

Finally, after 254 rounds, the values of registers are output as a ciphertext. For

KATAN48, the non-linear functions 𝒩ℱ1 and 𝒩ℱ2 are applied twice in one round

of the cipher, i.e., the first pair of 𝒩ℱ1 and 𝒩ℱ2 is applied, and then after the

update of the registers, they have applied again using the same subkeys. Similarly,

in KATAN64, each round applies 𝒩ℱ1 and 𝒩ℱ2 three times with the same key bits.

More details about the specification of KATAN-family of ciphers can be found in [230].
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Figure 7-4: Round Function of KATAN32

Table 7.2: Parameters of KATAN Variants

KATAN Variants | 𝐿1 | | 𝐿2 | 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

7.3 Introducing DEEPAND Modeling

In this section, we introduce the basic idea behind DEEPAND which attempts to

generalize the way AND gates are modeled by proposing a systematic way to capture

the correlation between AND gates. We first revisit the difference distribution of the

output of an AND gate under certain restrictions on the inputs. We then show how

the refined model given in [49] can be interpreted as a special case of DEEPAND. We

later show how DEEPAND can better capture correlations in both single and multiple

AND based NLFSRs.

Our first goal is to look at the difference distribution of an AND gate. Consider an

AND gate 𝐴1 with (𝑎, 𝑏) as its input, (Δ𝑎, Δ𝑏) as its input difference, and Δ𝑧 as

its output difference. Then, the output difference Δ𝑧 can be expressed as shown in

Equation 7.1.

Δ𝑧 = 𝐴1(𝑎, 𝑏)⊕𝐴1(𝑎⊕Δ𝑎, 𝑏⊕Δ𝑏)

= (𝑎 · 𝑏)⊕ (𝑎⊕Δ𝑎) · (𝑏⊕Δ𝑏)

= (𝑎 ·Δ𝑏)⊕ (𝑏 ·Δ𝑎)⊕ (Δ𝑎 ·Δ𝑏) (7.1)
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Table 7.3: Difference Distribution Table of AND Gate

𝑎 𝑏 Δ𝑎 Δ𝑏 Δ𝑧

0 0

0 0 0
0 1 0
1 0 0
1 1 1

0 1

0 0 0
0 1 0
1 0 1
1 1 0

1 0

0 0 0
0 1 1
1 0 0
1 1 0

1 1

0 0 0
0 1 1
1 0 1
1 1 1

The distribution of Δ𝑧 corresponding to all values of (𝑎, 𝑏) and (Δ𝑎, Δ𝑏), is shown in

Table 7.3 from where it is evident that for a given non-zero input difference (Δ𝑎, Δ𝑏)

of 𝐴1, Pr(Δ𝑧 = 0) = Pr(Δ𝑧 = 1) = 2−1, i.e., it behaves uniformly. However,

under certain conditions, Δ𝑧 behaves non-uniformly An example of this non-uniform

behavior is shown in Example 2. From Table 7.3, the following observations have

been made.

Example 2. Pr[Δ𝑧 = 0|(𝑎 = 0, Δ𝑎 = 0, Δ𝑏 = 1)] = 1

Observation 1. If the value of 𝑎, 𝑏, Δ𝑎, and Δ𝑏 are known, then Δ𝑧 becomes

deterministic1.

Observation 2. If Δ𝑎 = 0, Δ𝑏 = 1, and the value of 𝑎 is known, then Δ𝑧 can be

determined with probability 1. Similarly, if Δ𝑎 = 0, Δ𝑏 = 1, and the value of Δ𝑧 is

known, then ‘𝑎’ can be guessed deterministically.

Remark. If Δ𝑎 = 0, Δ𝑏 = 1, then from Equation 7.1, Δ𝑧 = 𝑎. This means, for

an input difference (Δ𝑎, Δ𝑏) = (0, 1), if 𝑎 is known, then Δ𝑧 is also known and vice

versa.
1Observation 1 may seem trivial but it has been included for the sake of completeness.
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Observation 3. If Δ𝑎 = 1, Δ𝑏 = 0 and the value of 𝑏 is known then Δ𝑧 can be

determined with probability 1. Similarly, if Δ𝑎 = 1, Δ𝑏 = 0 and the value of Δ𝑧 is

known, then 𝑏 can be guessed deterministically.

Remark. The explanation is similar to the explanation of Observation 2.

Based on the above observations from Table 7.3, it is evident that the distribution

Δ𝑧 directly depends on the input bits 𝑎, 𝑏 when the input difference (Δ𝑎, Δ𝑏) is fixed.

According to Equation (7.1), the Δ𝑧 can be rewritten in the following way.

Δ𝑧 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if (Δ𝑎, Δ𝑏) = (0, 0),

𝑎, if (Δ𝑎, Δ𝑏) = (0, 1),

𝑏, if (Δ𝑎, Δ𝑏) = (1, 0),

𝑎⊕ 𝑏⊕ 1, if (Δ𝑎, Δ𝑏) = (1, 1),

(7.2)

We refer to the view captured by Equation (7.2) as DEEPAND. With the DEEPAND

view of Δ𝑧 in place, we are in a position to revisit the refined model proposed by

Saha et al. [49] for TinyJAMBU.

7.3.1 Refined Modeling as a Special Case of DEEPAND
We start by restating the observation made by Saha et al. in the so-called Refined

Model. Consider two AND gates 𝐴1 with (𝑎, 𝑏), and 𝐴2 with (𝑏, 𝑐) as their inputs, i.e.,

they both share a common input as 𝑏 and hence referred to as correlated. Also, let (Δ𝑎,

Δ𝑏), (Δ𝑏, Δ𝑐) are the input differences, and Δ𝑧1, Δ𝑧2 are the output differences of

𝐴1, 𝐴2 respectively. The primary observation in [49] was that when (Δ𝑎, Δ𝑏) = (1, 0)

and (Δ𝑏, Δ𝑐) = (0, 1) then Δ𝑧1 = Δ𝑧2 = 𝑏. This implies that, for two correlated AND

gates 𝐴1 and 𝐴2, when (Δ𝑎, Δ𝑏, Δ𝑏) = (1, 0, 1), then both the output differences are

0 with probability 2−1 or 1 with probability 2−1. Whereas, for two un-correlated

AND gates this figure would have been 2−2. Lemma 2 gives a separate perspective

on the two correlated AND gates based on the Observations 2 and 3.

Lemma 2. Let the input difference to two correlated AND gates be (Δ𝑎, Δ𝑏) and (Δ𝑏,

Δ𝑐) respectively, and corresponding output differences be Δ𝑧1 and Δ𝑧2 respectively.

If Δ𝑎 = 1, Δ𝑏 = 0, Δ𝑐 = 1, then Pr[Δ𝑧1 = Δ𝑧2] = 1.
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Proof. First, the value of Δ𝑧1 is computed. For (Δ𝑎, Δ𝑏) = (1, 0), it follows from

Observation 3 that Δ𝑧1 = 𝑏. Also, for the second AND gate with (Δ𝑏, Δ𝑐) = (0, 1),

Δ𝑧2 = 𝑏 (from Observation 2). Hence, we have, Pr[Δ𝑧1 = Δ𝑧2] = Pr(𝑏) = 1.

Remark. It is worth mentioning that despite being one of the first attempts In [49],

the authors do not explicitly give a systematic way to capture the correlation between

two AND gates. Moreover, the authors have not considered the Observations 2 and 3

in their refined model. In this work, these two observations along with Observation 1

are exploited to penetrate more rounds for NLFSR-based ciphers.

7.4 DEEPAND Modeling of NLFSR-based Ci-

phers
A NLFSR is a shift register whose input bit, often called a feedback bit, is a non-

linear function of its previous state. In this section, we will first review some different

classes of NLFSRs based on the number of AND gates that are used to define a

non-linear feedback function. We will then state the explicit form of these NLFSRs.

Finally, we will describe how DEEPAND leads to a general attack framework to capture

correlations among single and multiple AND gates.

7.4.1 Case-1: Single AND Based NLFSR
Any 𝑛-bit cipher based on the NLFSR-based keyed permutation with single AND gate

can be further classified into two cases. In each round of the cipher, the first one

is to feed the feedback bit using the non-linear function to the most significant bit

(MSB) in the state and then shift each bit towards the least significant bit (LSB) (see

Figure 7-1). Similarly, for the second one, compute the feedback bit and then feed it

into the LSB, and then shift each bit towards MSB. We now give the explicit form of

these two NLFSRs.

7.4.1.1 Computing Forward Differential

Consider an 𝑛-bit NLFSR-based cipher
←
𝒞 with 𝑠0 being its initial state value, where

𝑠0 = (𝑠0
0, 𝑠0

1, · · · , 𝑠0
𝑛−1). Then, for each round number 𝑖, 1 ≤ 𝑖 ≤ 𝑙, the feedback bit

𝑓 𝑖 is computed first, in the following way:
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𝑓 𝑖 ← 𝑠𝑖−1
0 ⊕ 𝑠𝑖−1

𝑗1
⊕ · · · ⊕ 𝑠𝑖−1

𝑗𝑚
⊕ 𝑠𝑖−1

𝑢1 𝑠𝑖−1
𝑣1 ⊕𝐾(𝑖−1) mod |𝐾|.

where 0, 𝑗1, · · · , 𝑗𝑚 are the tap bit positions of the NLFSR and 𝑢1, 𝑣1 (𝑢1 < 𝑣1) are

the input bits to the AND gate. Then, the state bits in the next round (round 𝑖 + 1)

are updated as follows:

𝑠𝑖
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑠𝑖−1

𝑗+1, for 0 ≤ 𝑗 ≤ (𝑛− 2)

𝑓 𝑖, for 𝑗 = 𝑛− 1

Consider a similar cipher
→
𝒞 , whose tap bits are the same as that of

←
𝒞 . The only

difference is that the bits are shifted in opposite direction as that of
←
𝒞 and in the

feedback function 𝑠𝑖−1
𝑛−1 is XOR-ed instead of 𝑠𝑖−1

0 . The cipher
→
𝒞 is called reverse-fed

cipher of
←
𝒞 . The feedback bit 𝑓 𝑖 for

→
𝒞 is computed as follows:

𝑓 𝑖 = 𝑠𝑖−1
𝑗1
⊕ · · · ⊕ 𝑠𝑖−1

𝑗𝑚
⊕ 𝑠𝑖−1

𝑛−1 ⊕ 𝑠𝑖−1
𝑢1 𝑠𝑖−1

𝑣1 ⊕𝐾(𝑖−1) mod |𝐾|.

and

𝑠𝑖
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑠𝑖−1

𝑗−1, for 1 ≤ 𝑗 ≤ (𝑛− 1)

𝑓 𝑖, for 𝑗 = 0

To find the differential characteristics for such ciphers
←
𝒞 ,
→
𝒞 , the probability is only

paid for the active AND gates through rounds. Thus, given an 𝑙 round differential

characteristic, the overall probability can be calculated by counting only the total

active ANDs in the characteristic. Also, it is to be noted that, the whole state bits

become unknown after 𝑛 rounds. In another way, we can say that exactly 𝑛− 𝑖 state

bits are still known for the initial 𝑖 (1 ≤ 𝑖 ≤ 𝑛) rounds. Therefore, in the chosen

plaintext scenario, we can deterministically bypass some of the active AND gates by

fixing the message bits for up to some initial 𝑖 (≤ 𝑛) rounds. This characteristic of

any NLFSR-based ciphers
←
𝒞 ,
→
𝒞 is described in the following lemma.

Lemma 3. For cipher
→
𝒞 , forward differential characteristic for the first (𝑢1 + 1)

rounds is completely free. For the next (𝑣1 − 𝑢1) rounds, if the input differential to

the AND gate is 0 and 1 (i.e., Δ𝑠𝑢1 = 0, Δ𝑠𝑣1 = 1) then the output of the AND gate
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can be determined with probability 1 (conditionally free2). Similarly, for a cipher
←
𝒞 , (𝑛− 𝑣1) rounds are completely free and (𝑣1 − 𝑢1) rounds are conditionally free.

Proof. As both the inputs to AND gate are known for the first (𝑢1 + 1) rounds, the

output difference of the AND gate can be computed with probability 1. For the next

(𝑣1−𝑢1) rounds, the 𝑢1-th bit in the state, i.e., 𝑠𝑢1 is still known to us from the given

input message. Therefore, at the intermediate rounds 𝑖 (𝑢1 + 1 < 𝑖 ≤ 𝑣1) if the input

difference corresponding to the AND gate becomes (0, 1), i.e., Δ𝑠𝑢1 = 0 and Δ𝑠𝑣1 = 1,

then by Observation 2 the output difference of the AND gate can be deterministically

bypassed. The proof for the cipher
←
𝒞 follows a similar approach.

Note that, in the chosen plaintext attack model (CPA), Lemma 3 can be exploited

by carefully choosing the message bits. This, in turn, reduces the degrees of freedom

of the message space.

7.4.1.2 Computing Backward Differential

While computing the backward differential for a cipher
←
𝒞 , the feedback function

remains almost the same except only the index of the bits is changed. Consider that

the initial state is 𝑡0 and the intermediate state after the 𝑖th round is 𝑡𝑖. Then the

feedback bit, 𝑓 𝑖 for the 𝑖th round is computed in the following way:

𝑓 𝑖 ← 𝑡𝑖−1
𝑗1−1 ⊕ · · · ⊕ 𝑡𝑖−1

𝑗𝑚−1 ⊕ 𝑡𝑖−1
𝑛−1 ⊕ 𝑡𝑖−1

𝑢1−1𝑡𝑖−1
𝑣1−1 ⊕𝐾(𝑖−1) mod |𝐾|

and the state bits are updated as follows:

𝑡𝑖
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑡𝑖−1
𝑗−1, for 1 ≤ 𝑗 ≤ (𝑛− 1)

𝑓 𝑖, for 𝑗 = 0.

Similarly, for cipher
→
𝒞 , the feedback bit is computed as

𝑓 𝑖 = 𝑡𝑖−1
𝑗1+1 ⊕ · · · ⊕ 𝑡𝑖−1

𝑗𝑚+1 ⊕ 𝑡𝑖−1
0 ⊕ 𝑡𝑖−1

𝑢1+1𝑡𝑖−1
𝑣1+1 ⊕𝐾(𝑖−1) mod |𝐾|

2Conditionally free AND is a scenario where, if the input difference to the AND gate is either
(0,1) or (1,0), the output difference can be fixed by an attacker. This is done by selecting a message
bit that will be one of the inputs to the AND gate.
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and

𝑡𝑖
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑡𝑖−1
𝑗+1, for 0 ≤ 𝑗 ≤ (𝑛− 2)

𝑓 𝑖, for 𝑗 = 𝑛− 1.

Lemma 4. For cipher
→
𝒞 , backward differential characteristic for first (𝑛 − 𝑣1 − 1)

rounds is completely free. The next (𝑣1 − 𝑢1) rounds are conditinally free. Similarly,

for cipher
←
𝒞 , the first (𝑢1 − 1) rounds are completely free whereas the next (𝑣1 − 𝑢1)

rounds are conditionally free.

Proof. The proof is quite similar to that of Lemma 3

7.4.2 Case-2: Multiple AND Based NLFSR
Consider an 𝑛-bit NLFSR-based block cipher

→
𝒟 with the initial state value as 𝑠0 = (𝑠0

0,

𝑠0
1, · · · , 𝑠0

𝑛−1). At each round 𝑖, the feedback bit 𝑓 𝑖 is computed in the following way.

𝑓 𝑖 ← 𝑠𝑖−1
𝑗1
⊕ · · · ⊕ 𝑠𝑖−1

𝑗𝑚
⊕ 𝑠𝑖−1

𝑛−1 ⊕ 𝑠𝑖−1
𝑢1 𝑠𝑖−1

𝑣1 ⊕ · · · ⊕ 𝑠𝑖−1
𝑢ℎ

𝑠𝑖−1
𝑣ℎ
⊕𝐾𝑖−1,

where

– 𝑘𝑖−1 is the key bit used in the 𝑖th round,

– 𝑗1, · · · , 𝑗𝑚, 𝑛− 1 are the taps of the NLFSR,

– 𝑢𝑗 , 𝑣𝑗 are the inputs to the AND gate 𝐴𝑗 such that 𝑢𝑗 < 𝑣𝑗 ≤ 𝑛− 1, 1 ≤ 𝑗 ≤ ℎ,

– 𝑗1 < 𝑗2 =⇒ 𝑢𝑗1 < 𝑢𝑗2 .

Also, the state in the next round is updated in the following way.

𝑠𝑖
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑠𝑖−1

𝑗−1, for 1 ≤ 𝑗 ≤ (𝑛− 1)

𝑓 𝑖, for 𝑗 = 0.

Lemma 5. For a cipher
→
𝒟, in the forward differential, the output of gate 𝐴𝑗 is

deterministic for the first (𝑢𝑗 + 1) rounds. For the next (𝑣𝑗 − 𝑢𝑗) rounds, the output

of the AND gate is conditionally free. Similarly, for a cipher
←
𝒟, the reverse-feed

cipher of
→
𝒟, the output of gate 𝐴𝑗 is deterministic for the first (𝑛 − 𝑣𝑗) rounds and

conditionally free for the next (𝑣𝑗 − 𝑢𝑗) rounds.
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Proof. For cipher
→
𝒟, as 𝑠𝑖

𝑢𝑗
and 𝑠𝑖

𝑣𝑗
are known for 0 ≤ 𝑖 ≤ 𝑢𝑗 , so Δ𝐴𝑗 can be

deterministically computed for the first (𝑢𝑗 + 1) rounds as both inputs to the AND

gate are known.

Suppose, during the intermediate rounds, 𝑠𝑖
𝑣𝑗

is known and 𝑠𝑖
𝑢𝑗

is unknown for 𝑢𝑗 +1 ≤

𝑖 ≤ 𝑣𝑗 (round number 𝑢𝑗 + 2 to 𝑣𝑗 + 1). If Δ𝑠𝑖
𝑣𝑗

= 0 and Δ𝑠𝑖
𝑢𝑗

= 1, then by

Observation 3, Δ𝐴𝑗 = 𝑠𝑖
𝑣𝑗

. Hence, for round 𝑢𝑗 + 1 to 𝑣𝑗 , Δ𝐴𝑗 can be determined

with probability 1 when such conditions are met.

For cipher
←
𝒟, 𝑠𝑖

𝑢𝑗
and 𝑠𝑖

𝑣𝑗
are known for 0 ≤ 𝑖 ≤ (𝑛 − 𝑣𝑗 − 1). Hence, Δ𝐴𝑗 can

be determined completely free for the first (𝑛 − 𝑣𝑗) rounds. 𝑠𝑖
𝑢𝑗

is known and 𝑠𝑖
𝑣𝑗

is

unknown for (𝑛− 𝑣𝑗) ≤ 𝑖 ≤ (𝑛− 𝑢𝑗 − 1) (round number (𝑛− 𝑣𝑗 + 1) to (𝑛− 𝑢𝑗)). If

Δ𝑠𝑖
𝑣𝑗

= 1 and Δ𝑠𝑖
𝑢𝑗

= 0, then by Observation 2, Δ𝐴𝑗 = 𝑠𝑖
𝑢𝑗

. Therefore, for the next

(𝑣𝑗 − 𝑢𝑗) rounds, Δ𝐴𝑗 can be determined with probability 1 when such conditions

are met.

In the same fashion, computing the backward differential, the feedback bit 𝑓 𝑖 for 𝑖th

round is computed as

𝑓 𝑖 ← 𝑡𝑖−1
𝑙1+1 ⊕ · · · ⊕ 𝑡𝑖−1

𝑙𝑚+1 ⊕ 𝑡𝑖−1
0 ⊕ 𝑡𝑖−1

𝑢1+1𝑡𝑖−1
𝑣1+1 ⊕ · · · ⊕ 𝑡𝑖−1

𝑢ℎ+1𝑡𝑖−1
𝑣ℎ+1 ⊕ 𝑘′𝑖−1

and the state in the next round is updated as

𝑡𝑖
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑡𝑖−1
𝑗−1, for 0 ≤ 𝑗 ≤ (𝑛− 2)

𝑓 𝑖, for 𝑗 = 𝑛− 1.

Lemma 6. For cipher
→
𝒟, in the backward differential, the output of gate 𝐴𝑗 is

deterministic for first (𝑛− 𝑣𝑗 − 1) rounds. For the next (𝑣𝑗 − 𝑢𝑗) rounds, the output

of the gate is conditionally free. Similarly, for a cipher
←
𝒟, the reverse-feed cipher of

→
𝒟, in the backward differential the output of gate 𝐴𝑗 is deterministic for first (𝑢𝑗)

rounds and conditionally free for next (𝑣𝑗 − 𝑢𝑗) rounds.

Proof. For cipher
→
𝒟, as 𝑡𝑖

𝑢𝑗+1 and 𝑡𝑖
𝑣𝑗+1 are known for 0 ≤ 𝑖 ≤ 𝑛 − 𝑣𝑗 − 2, so Δ𝐴𝑗

can be deterministically computed for first (𝑛− 𝑣𝑗 − 1) rounds as both inputs to the

AND gate are known.
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Also, 𝑡𝑖
𝑣𝑗+1 is known and 𝑡𝑖

𝑢𝑗+1 is unknown for 𝑛 − 𝑣𝑗 − 1 ≤ 𝑖 ≤ 𝑛 − 𝑢𝑗 − 2 (round

number 𝑛 − 𝑣𝑗 to 𝑛 − 𝑢𝑗 − 1). If Δ𝑡𝑖
𝑢𝑗+1 = 0 and Δ𝑡𝑖

𝑣𝑗
= 1, then by Observation 2,

Δ𝐴𝑗 = 𝑡𝑖
𝑢𝑗+1. Hence, for round 𝑛 − 𝑣𝑗 to 𝑛 − 𝑢𝑗 − 1, Δ𝐴𝑗 can be determined with

probability 1 when such conditions are met.

In similar way, it can be proved for
←
𝒟.

7.4.3 Generalization of Chained ANDs

Consider an 𝑛-bit cipher 𝒞 with (𝑠𝑢1 , 𝑠𝑢2), (𝑠𝑢2 , 𝑠𝑢3) and (Δ𝑠𝑢1 = 1, Δ𝑠𝑢2 = 0), (Δ𝑠𝑢2 =

0, Δ𝑠𝑢3 = 1) are respectively two sequential inputs and their differences to the AND

gate. Suppose we have differential characteristics and at the round 𝑖, we see that the

internal difference Δ𝑠𝑢1 = 1, Δ𝑠𝑢2 = 0 happens at the AND gate and Δ𝑧 be the corre-

sponding output difference. Then, according to Observation 3, the internal state bit

𝑠𝑢2 will be revealed due to the relation Δ𝑧 = 𝑠𝑢2 . Thus, after the (𝑢2−𝑢1−1) rounds,

i.e., at the round 𝑖 + (𝑢2 − 𝑢1 − 1), Δ𝑠𝑢2 = 0, Δ𝑠𝑢3 = 1 becomes the input difference

to the AND gate. In this case, by Observation 2, this active AND gate will be freely

bypassed as we know the bit value 𝑠𝑢2 . Therefore, if the subsequent input differences

to the AND gate are 1, 0, 1 then instead of paying the probability of 1
4 , we only have to

pay the probability of 1
2 . In another way, we can say that when this subsequent 1, 0, 1

bit difference arises in the AND gate, we will count it as one active AND. Because,

out of two subsequent active ANDs, we only pay the probability for the first one (i.e.,

when Δ𝑠𝑢1 = 1, Δ𝑠𝑢2 = 0) whereas the second (where Δ𝑠𝑢2 = 0, Δ𝑠𝑢3 = 1) one will

pass with probability 1.

In the refined modeling paper [49] introduced for TinyJAMBU, the authors added

some extra constraints in the simple MILP model and recorded all the two subsequent

ANDs with 1, 0, 1 bit differences which helps to increase the overall probability of the

differential characteristic. We named this kind of two subsequent ANDs with 1, 0, 1

bit differences as Chained AND Bit Pattern (BAND). Now, if we consider a NLFSR

with multiple ANDs-based cipher, then there might arise more than two subsequent

ANDs with various bit difference patterns that might significantly increase the over-

all probability of the characteristic and we named it as Multiple AND Bit Pattern

(MAND). Before going to define it, we give one example to show how MAND increases
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the probability in the characteristic.

Example 3. Suppose, we have an 𝑛-bit cipher
→
𝒟 with two ANDs, where 𝑛 = 32 and

(3, 8), (10, 12) are the two different AND’s input positions in the NLFSR state. At

the round 𝑖, we assume that a particular bit difference Δ𝑠8 = 1, Δ𝑠5 = 1, Δ𝑠3 =

0, Δ𝑠1 = 1, and Δ𝑠-2 = 03 happens in the state. Also, we choose the bit difference 0

at the third position in the state as a pivot. In the subsequent rounds, this pivot will

activate some related AND gates, and then it helps to freely pass some subsequent

ANDs in the following way.

1. At round 𝑖, since Δ𝑠8 = 1, Δ𝑠3 = 0 happens, we get the information of the

state bit at the pivotal position according to Observation 2.

2. Then, at the round 𝑖+7, the pivot goes to the bit position 10 and activates the

second AND gate as Δ𝑠12 = 1, Δ𝑠10 = 0. Thus, according to the Observation 3,

this active AND will be freely passed.

3. Similarly, when the pivot goes to the 12th position in the state at the round

𝑖 + 9, the AND will be passed deterministically according to the Observation 2.

The above steps are summarized in the Table 7.4a. In this example, we have to only

pay the probability of 2−1 instead of 2−3, as the total number of active ANDs subject

to the pivot is 3.

Table 7.4: Examples of MAND and BAND

(a) An Example of MAND

Round NLFSR State Bit Positions4

Δ𝑠12 Δ𝑠10 Δ𝑠8 Δ𝑠5 Δ𝑠3 Δ𝑠1 Δ𝑠−2
𝑖 0 0 1 1 0 1 0

𝑖 + 5 0 1 0 - 0 - -
𝑖 + 7 1 0 1 0 - - -
𝑖 + 9 0 1 - - - - -

(b) An Example of BAND

Round NLFSR State Bit Positions5

Δ𝑠21 Δ𝑠24 Δ𝑠27
𝑖 1 0 1

𝑖 + 3 - 1 0

3This is an imaginary position. This bit difference value Δ𝑠−2 = 0 is shifted to the position at
0, i.e., Δ𝑠0 = 0 after two rounds.

4The bit values in Δ𝑠8, Δ𝑠5, Δ𝑠3, Δ𝑠1, and Δ𝑠−2 are shown in orange, green, red, violet, and
brown colors respectively.

5The bit values in Δ𝑠21, Δ𝑠24, and Δ𝑠27 are shown in blue, red, and green colors respectively.
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Let us denote Δ𝑠𝑖
𝑗 to be the state difference Δ𝑠𝑗 at round 𝑖 and 𝑠𝑖

𝑗 to be the state

value 𝑠𝑗 at round 𝑖. Also, for ciphers like
→
𝒞 and

→
𝒟, we use Δ𝑠𝑖

𝑢1 to be the the pivotal

bit difference at the position 𝑢1, the first AND bit position. We now furnish the

formal definitions of BAND and MAND for ciphers
→
𝒞 and

→
𝒟 respectively. They can

be defined similarly for ciphers like
←
𝒞 and

←
𝒟.

Definition 8 (Bi-AND Bit Pattern - BAND). Consider the cipher
→
𝒞 with (𝑢1, 𝑣1) as

its input position of the AND gate. BAND of a pivotal bit difference (Δ𝑠𝑖
𝑣1 = 0) is

denoted by ℬ
→
𝒞
𝑖 and is defined as a bit string in the following way.

ℬ
→
𝒞
𝑖 = 𝑙1

pivot⏞  ⏟  
Δ𝑠𝑖

𝑢1 𝑟1, where

⎧⎪⎪⎨⎪⎪⎩
𝑙1 = Δ𝑠𝑖

𝑢1 when Δ𝑠𝑖
𝑢1 is at 𝑢1

𝑟1 = Δ𝑠
𝑖+(𝑣1−𝑢1)
𝑢1 when Δ𝑠𝑖

𝑢1 is at 𝑣1

Example 4. Consider an NLFSR-based block cipher
→
𝒞 with 𝑛 = 32 and (24, 27) as

the inputs to the AND gate 𝐴1. Let us assume that, at round 𝑖(> 42), particular bit

differences of Δ𝑠21 = 1, Δ𝑠24 = 0, and Δ𝑠27 = 1 occur in the state (see Table 7.4b).

Then the BAND of the pivot Δ𝑠𝑖
24 = 0, ℬ

→
𝒞
𝑖 is given as below.

ℬ
→
𝒞
𝑖 = 𝑙1 Δ𝑠𝑖

24 𝑟1 = Δ𝑠𝑖+3
24 Δ𝑠𝑖

24 Δ𝑠𝑖
27

= Δ𝑠𝑖
21 Δ𝑠𝑖

24 Δ𝑠𝑖
27, [∵ Δ𝑠𝑖+𝑎

𝑏 = Δ𝑠𝑖
𝑏−𝑎]

Definition 9 (Multiple AND Bit Pattern - MAND). Consider the cipher
→
𝒟 with

(𝑢1, 𝑣1), · · · , (𝑢ℎ, 𝑣ℎ) denoting respectively input positions to ℎ AND gates. The

MAND of a pivotal bit difference (Δ𝑠𝑖
𝑢1 = 0) is denoted by ℳ

→
𝒟
𝑖 and is defined as a

(2ℎ + 1)−bit string in the following way:

ℳ
→
𝒟
𝑖 = 𝑙ℎ 𝑙ℎ−1 · · · 𝑙1

pivot⏞  ⏟  
Δ𝑠𝑖

𝑢1 𝑟1 · · · 𝑟ℎ−1 𝑟ℎ, where, ∃ some 𝑝 ∈ {1, · · · , ℎ}

such that

⎧⎪⎪⎨⎪⎪⎩
𝑙𝑝 = Δ𝑠

𝑖+(𝑢𝑝−𝑢1)
𝑣𝑝 when Δ𝑠𝑖

𝑢1 is at 𝑢𝑝

𝑟𝑝 = Δ𝑠
𝑖+(𝑣𝑝−𝑢1)
𝑢𝑝 when Δ𝑠𝑖

𝑢1 is at 𝑣𝑝

When there is exactly a single 𝑝 ∈ {1, · · · , ℎ} such that 𝑙𝑝 = 𝑟𝑝 = 1, ℳ
→
𝒟
𝑖 collapses

to a BAND which can hence be interpreted as a specific instance of a MAND. With
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the above formalisms in place, we can now revisit Example 3 where the MAND of the

pivot Δ𝑠𝑖
3 = 0 can be captured as below.

ℳ
→
𝒟
𝑖 = 𝑙2𝑙1 Δ𝑠𝑖

3 𝑟1𝑟2 = Δ𝑠𝑖+9
10 Δ𝑠𝑖+5

3 Δ𝑠𝑖
3 Δ𝑠𝑖

8Δ𝑠𝑖+7
12

= Δ𝑠𝑖
1Δ𝑠𝑖

−2 Δ𝑠𝑖
3 Δ𝑠𝑖

8Δ𝑠𝑖
5, [∵ Δ𝑠𝑖+𝑎

𝑏 = Δ𝑠𝑖
𝑏−𝑎]

We can demonstrate that the probability of a particular characteristic in an AND-

based cipher (
→
𝒟) can be significantly increased due to the occurrence of MANDs.

To detect the MANDs, we need to introduce variables that represent the output

differences of the AND gates in the intermediate rounds. For 𝑝 ∈ {1, · · · , ℎ}, we

define Δ𝐴
𝑖,𝑢𝑝
𝑝 and Δ𝐴

𝑖,𝑣𝑝
𝑝 as the output differences of AND gate 𝐴𝑝 when the pivotal

bit difference Δ𝑠𝑢1
𝑖 moves to positions 𝑢𝑝 and 𝑣𝑝, respectively. When certain MANDs

occur at the intermediate rounds (out of a total of 2ℎ + 1 bit patterns), we can

establish relationships among 𝑠𝑖
𝑢1 , Δ𝐴

𝑖,𝑢𝑝
𝑝 , and Δ𝐴

𝑖,𝑣𝑝
𝑝 . These relationships can help

us understand how the occurrence of MANDs affects the characteristic probability.

We have already established how BAND is a special case of MAND. The following

lemma captures the behavior of BAND with regards to variables Δ𝐴
𝑖,𝑢𝑝
𝑝 , and Δ𝐴

𝑖,𝑣𝑝
𝑝

introduced above. Later we use the notion of ℳ
→
𝒟
𝑖 -weight in subsequent lemmas

to highlight the gain in characteristic propagation probability that ensues due to

MANDs.

Lemma 7. Consider a BAND with ℬ
→
𝒞
𝑖 = 𝑙1 Δ𝑠𝑖

𝑢1 𝑟1. If 𝑙1 = 𝑟1 = 1, then Δ𝐴𝑖,𝑢1
1 =

Δ𝐴𝑖,𝑣1
1 .

Proof. According to the Observation 3, if 𝑙1 = 1 and Δ𝑠𝑖
𝑢1 = 0, then Δ𝐴𝑖,𝑢1

1 = 𝑠𝑖
𝑢1 .

Similarly, as 𝑟1 = 1 and Δ𝑠𝑖
𝑢1 = 0, we have Δ𝐴𝑖,𝑣1

1 = 𝑠𝑖
𝑢1 . Hence, we can conclude

that Δ𝐴𝑖,𝑢1
1 = Δ𝐴𝑖,𝑣1

1 .

Definition 10 (MAND-weight). The weight of a MAND ℳ
→
𝒟
𝑖 , denoted by 𝑤𝑡(ℳ

→
𝒟
𝑖 )

captures its Hamming weight.

Lemma 8. Consider a MAND with ℳ
→
𝒟
𝑖 = 𝑙ℎ · · · 𝑙1 Δ𝑠𝑖

𝑢1 𝑟1 · · · 𝑟ℎ and 𝑤𝑡(ℳ
→
𝒟
𝑖 ) =
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𝑝 + 𝑞. For {𝑤1, · · · , 𝑤𝑝} and {𝑦1, · · · , 𝑦𝑞} ⊂ {1, · · · , ℎ},

𝑙𝑤1 = · · · = 𝑙𝑤𝑝 = 𝑟𝑦1 = · · · = 𝑟𝑦𝑞 = 1

=⇒ Δ𝐴
𝑖,𝑢𝑤1
𝑤1 = · · · = Δ𝐴

𝑖,𝑢𝑤𝑝
𝑤𝑝 = Δ𝐴

𝑖,𝑣𝑦1
𝑦1 = · · · = Δ𝐴

𝑖,𝑣𝑦𝑞
𝑦𝑞

Proof. By Observation 3, if 𝑙𝑤𝑔 = 1 and Δ𝑠𝑖
𝑢1 = 0 then Δ𝐴

𝑖,𝑢𝑤𝑔
𝑤𝑔 = 𝑠𝑖

𝑢1 holds ∀𝑔 ∈

{1, · · · , 𝑝}. Similarly, as 𝑟𝑦𝑔 = 1 and Δ𝑠𝑖
𝑢1 = 0, 𝐴

𝑖,𝑢𝑦𝑔
𝑦𝑔 = 𝑠𝑖

𝑢1 holds ∀𝑔 ∈ {1, · · · , 𝑞}.

Hence, we can conclude that Δ𝐴
𝑖,𝑢𝑤1
𝑤1 = · · · = Δ𝐴

𝑖,𝑢𝑤𝑝
𝑤𝑝 = Δ𝐴

𝑖,𝑣𝑦1
𝑦1 = · · · = Δ𝐴

𝑖,𝑣𝑦𝑞
𝑦𝑞 .

Lemma 9. Let 𝑤𝑡(ℳ
→
𝒟
𝑖 ) = 𝑚 and 𝑚 ≥ 2. Then the subsequent output differences

of 𝑚 active AND gates can be increased to probability 2−1 instead of 2−𝑚.

Proof. As 𝑤𝑡(ℳ
→
𝒟
𝑖 ) = 𝑚, then Lemma 8 implies that output differences of 𝑚 AND

gates should be equal to 𝑠𝑖
𝑢1 . Thus the output differences are correlated and the joint

propagation probability increases from 2−𝑚 to 2−1.

7.4.4 Experimental Evidence of MAND

The effect of MAND is observed in the 60-round related-key differential character-

istic of KATAN48. The characteristic is listed in Table 7.14 with input difference

0x820031400000 and output difference 0x00018000c000.

The feedback function 𝑓𝑏(𝐿2) of KATAN48 consists of two AND gates. 𝐿2[6] and

𝐿2[15] are inputs to one AND gate whereas 𝐿2[13] and 𝐿2[21] are inputs to another

AND gate. Using the NLFSR description from Section 7.4.2, the following values can

be fixed.

𝑢1 = 6 𝑣1 = 15 𝑢2 = 13 𝑣2 = 21

Now we find the MAND with respect to the pivot Δ𝑠103
𝑢1 (= Δ𝑠103

6 ). In particular, we

are finding the expression for ℳ
→
𝒟
103. (

→
𝒟 = KATAN48). From Definition 9,

ℳ
→
𝒟
103 = 𝑙2𝑙1𝑠103

6 𝑟1𝑟2

The values for 𝑙2, 𝑙1, 𝑟2, 𝑟1 are needed to be computed. Again from Definition 9, in

this case 𝑝 ∈ {1, 2}. Thus,
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𝑙2 = Δ𝑠103+(𝑢2−𝑢1)
𝑣2 = Δ𝑠

103+(13−6)
21 = Δ𝑠110

21 = 0

𝑟2 = Δ𝑠103+(𝑣2−𝑢1)
𝑢2 = Δ𝑠118

13 = 1

𝑙1 = Δ𝑠103+(𝑢1−𝑢1)
𝑣1 = Δ𝑠103

15 = 0

𝑟1 = Δ𝑠103+(𝑣1−𝑢1)
𝑢1 = Δ𝑠112

6 = 1

Hence, ℳ
→
𝒟
103 = 00011. Now using Lemma 8, we have 𝑦1 = 1 and 𝑦2 = 2 and the

following,

Δ𝐴103,𝑣1
1 = Δ𝐴103,𝑣2

2 =⇒ Δ𝐴103,15
1 = Δ𝐴103,21

2

The above equality can also be verified from the characteristic given in Figure 7-5

(in both cases, the key difference is 0). The figure 7-5 shows the last few rounds

characteristic of the 60-round (120 iterations) KATAN48 related-key distinguisher.

In the figure, the left, middle, and right columns refer to the iteration number, and

bit-differences in 𝐿2 and 𝐿1 register respectively. In the 𝐿2 register, the red-colored

bits denote the positions 6, 13, 15, and 21 (starting from left).

Now, as 𝑤𝑡(ℳ
→
𝒟
103) ≥ 2, thus from Lemma 9 it can be concluded that MAND is able to

deliver an advantage to increase the probability of the differential characteristic. Note

that, the above pattern 00011 can only be captured through MAND. Whereas BAND is

not able to capture such patterns.

In the next section, we showcase, how the advantage that MAND provides can be

leveraged in the DEEPAND modeling of NLFSR-based ciphers using MILP.

7.5 MILP Based DEEPAND Modeling for NLFSR

For a given differential characteristic in NLFSR-based ciphers, the probability is cal-

culated by counting the total active AND gates in each round. The objective is to

find the optimal characteristic with the minimum active AND gates in a fixed round.

In the simple MILP model, the goal is to minimize the non-zero input differences to

the AND gates in each round. The authors of [49] studied the impact of AND gates
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Figure 7-5: Experimental Demonstration of a MAND Occurrence.

on the characteristic probability for the single AND-based NLFSR cipher TinyJAMBU.

They found that subsequent AND gates may depend on each other and form what

we in the current work defined as a BAND, which has a significant effect on the

characteristic probability. To capture such a BAND, they proposed a refined MILP

model for TinyJAMBU. However, as per our investigations, it has been observed that

further refinement is possible and a generalized model can be devised to extend the

findings to a class of NLFSR-based ciphers. The refined model for capturing BANDs

is described in Section 7.5.1. In Section 7.5.2, we describe how to capture MAND for

multiple AND based NLFSR ciphers, which automatically includes BAND.

7.5.1 MILP Modeling of BAND

To model
→
𝒞 leveraging the BAND ℬ

→
𝒞
𝑖 , we use 𝛾𝑖 to capture the correlation among

two subsequent active AND gates. For each round, we compute 𝛾𝑖 as 𝛾𝑖 = 𝑙1 Δ𝑠𝑖
𝑢1 𝑟1.

According to Lemma 7, we have Δ𝐴𝑖,𝑢1
1 = Δ𝐴𝑖,𝑣1

1 . Thus for the pivot position at 𝑢1

in the consecutive rounds of the state, the following constraints will be added to the

MILP model to capture the correlation in BAND.
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𝛾𝑖 = 𝑙1 Δ𝑠𝑖
𝑢1 𝑟1, Δ𝐴𝑖,𝑢1

1 −Δ𝐴𝑖,𝑣1
1 ≤ 1− 𝛾𝑖, Δ𝐴𝑖,𝑣1

1 −Δ𝐴𝑖,𝑢1
1 ≤ 1− 𝛾𝑖

7.5.2 MILP Modeling of MAND

The valid patterns of MAND, which captures the dependency among the output

differences of subsequent active AND gates, is described in the following Lemma 10.

Lemma 10. The valid patterns (𝜆) of a MAND ℳ
→
𝒟
𝑖 of an NLFSR-based cipher

→
𝒟

with ℎ AND gates is equal to
2ℎ∑︀

𝑚=2

(︀2ℎ
𝑚

)︀
= 4ℎ − 2ℎ− 1.

Proof. Consider a MAND with 𝑤𝑡(ℳ
→
𝒟
𝑖 ) = 𝑚. There are

(︀2ℎ
𝑚

)︀
valid patterns of

ℳ
→
𝒟
𝑖 which shows the dependency between 𝑚 subsequent active AND gates. By

Lemma 9, for a MAND, if 𝑚 ≥ 2, then we have shown a dependency between

the output differences of AND gates. Therefore, the total valid MAND will be(︀2ℎ
2
)︀

+
(︀2ℎ

3
)︀

+ · · ·
(︀2ℎ

2ℎ

)︀
= 4ℎ − 2ℎ− 1.

We would like to emphasize here that MAND captures all possible first-order corre-

lations.4 For modeling the dependency among the subsequent active AND gates, the

approach is quite similar to the model given in [49]. To do so, first, a constraint is

used to identify which AND gates are correlated and then pairs of AND gates are

considered to model the dependency between them. So, to capture any bit difference

4Consider a MAND ℳ
→
𝒟
𝑖 = 𝑙ℎ · · · 𝑙1 Δ𝑠𝑖

𝑢1 𝑟1 · · · 𝑟ℎ of an NLFSR-based cipher
→
𝒟 with ℎ AND

gates. A higher probability is achieved when pivot Δ𝑠𝑖
𝑢1 = 0 and 𝑤𝑡(ℳ

→
𝒟
𝑖 ) ≥ 2. In other words, for

the following two cases, there is no increase in the probability

(i) Δ𝑠𝑖
𝑢1 = 1, or

(ii) Δ𝑠𝑖
𝑢1 = 0 and 𝑤𝑡(ℳ

→
𝒟
𝑖 ) < 2.

As discussed in Section 7.3, for a single AND-based NLFSR, only when the input differential
pattern corresponding to (Δ𝑎, Δ𝑏, Δ𝑐,) is (1,0,1), an advantage on the output differential of
two AND gates is gained. If Δ𝑏=1, then there is no advantage for first-order correlation. This
can be naively extended for NLFSR with multiple AND gates and thus it can be concluded
that when Δ𝑠𝑖

𝑢1 = 1 there is no increase in the probability.
Case (ii) implies that there is at most one active AND gate, thus there is no possibility for
first-order correlation between two or more active AND gates in such cases.
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pattern in the MAND with 𝑚 ≥ 2, we have added some extra constraints correspond-

ing to the chained active AND gates in the simple MILP modeling. As the MAND

ℳ
→
𝒟
𝑖 has 𝜆 different valid patterns, we take 𝛾𝑧, 1 ≤ 𝑧 ≤ 𝜆 to capture the correlation

among 𝑤𝑡(ℳ
→
𝒟
𝑖 ) active AND gates.

Thus for the pivot position at 𝑢1 in the consecutive rounds 𝑖 of the state, we have 𝜆

𝛾𝑧 and compute them in the following way.

𝛾𝑧 = 𝑙𝑤1 · · · 𝑙𝑤𝑝 𝑙
𝑤

′
1
· · · 𝑙

𝑤
′
𝑝

′
Δ𝑠𝑖

𝑢1𝑟𝑦1 · · · 𝑟𝑦𝑞 𝑟
𝑦

′
1
· · · 𝑟

𝑦
′
𝑞

′

Where,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑙𝑤1 = · · · = 𝑙𝑤𝑝 = 𝑟𝑦1 = · · · = 𝑟𝑦𝑞 = 1

𝑙𝑤′
1

= · · · = 𝑙𝑤′
𝑝′

= 𝑟𝑦′
1

= · · · = 𝑟𝑦′
𝑞′

= 0

Such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{𝑤1, · · · , 𝑤𝑝} ∪ {𝑤
′
1, · · · , 𝑤

′

𝑝′} = {𝑢1, · · · , 𝑢ℎ},

{𝑤1, · · · , 𝑤𝑝} ∩ {𝑤
′
1, · · · , 𝑤

′

𝑝′} = ∅,

{𝑦1, · · · , 𝑦𝑞} ∪ {𝑦
′
1, · · · , 𝑦

′

𝑞′} = {𝑣1, · · · , 𝑣ℎ},

{𝑦1, · · · , 𝑦𝑞} ∩ {𝑦
′
1, · · · , 𝑦

′

𝑞′} = ∅

Lemma 8 implies that Δ𝐴
𝑖,𝑣𝑤1
𝑤1 = · · · = Δ𝐴

𝑖,𝑣𝑤𝑝
𝑤𝑝 = Δ𝐴

𝑖,𝑣𝑦1
𝑦1 = · · · = Δ𝐴

𝑖,𝑣𝑦𝑞
𝑦𝑞 . There-

fore, for each of 𝜆 valid bit difference patterns of a MAND, the correlation is captured

by the constraints given in Table 7.5. There constraints constitute the DEEPAND

model for MILP that is used to find the better differentials for KATAN and TinyJAMBU

leading to improved attacks on both the lightweight ciphers which are discussed in

the subsequent sections.

Table 7.5: MILP Constraints Pertaining to DEEPAND

𝛾𝑧 = 𝑙𝑤1 · · · 𝑙𝑤𝑝𝑙𝑤′
1
· · · 𝑙𝑤′

𝑝
′

Δ𝑠𝑖
𝑢1𝑟𝑦1 · · · 𝑟𝑦𝑞𝑟𝑦

′
1
· · · 𝑟𝑦

′
𝑞

′

Δ𝐴
𝑖,𝑢𝑤𝑡
𝑤𝑡 −Δ𝐴𝑖,𝑢𝑤𝑥

𝑤𝑥
≤ 1− 𝛾𝑧,

Δ𝐴𝑖,𝑢𝑤𝑥
𝑤𝑥
−Δ𝐴

𝑖,𝑢𝑤𝑡
𝑤𝑡 ≤ 1− 𝛾𝑧,

⎫⎪⎬⎪⎭ 1 ≤ 𝑡 < 𝑥 ≤ 𝑝

Δ𝐴
𝑖,𝑢𝑤𝑡
𝑤𝑡 −Δ𝐴𝑖,𝑣𝑦𝑥

𝑦𝑥
≤ 1− 𝛾𝑧,

Δ𝐴𝑖,𝑣𝑦𝑥
𝑦𝑥
−Δ𝐴

𝑖,𝑢𝑤𝑡
𝑤𝑡 ≤ 1− 𝛾𝑧

⎫⎪⎬⎪⎭ 1 ≤ 𝑡 ≤ 𝑝, 1 ≤ 𝑥 ≤ 𝑞
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7.6 Attacks on TinyJAMBU
The DEEPAND model has been applied to mount attacks on variants of keyed permu-

tation 𝒫𝑙, 𝒫𝑙 of TinyJAMBU. We start with a brief discussion of the relevant previous

attacks before sharing the results obtained in this work to give a perspective on the

degree of improvement.

7.6.1 Summary of Relevant Previous Attacks

In this section, we are going to describe the previous results regarding the differential

properties of the keyed permutations 𝒫𝑙, 𝒫𝑙 of TinyJAMBU and the forgery attack in

the TinyJAMBU mode respectively.

7.6.1.1 Differential properties of the keyed permutation 𝒫𝑙.

The designers of TinyJAMBU [232] have specified four different constraints regarding

the input-output active-bit positions of 𝒫𝑙 while searching for its differential charac-

teristic.

Type-I. Input differences only exist in the 32 MSBs. No restriction on the

output.

Type-II. No restriction on the input. Output differences only exist in the 32

MSBs.

Type-III. Both the input and output differences only exist in the 32 MSBs.

Type-IV. No restrictions on both the input and output.

Out of these four types, Type 3 is the most relevant to attack the TinyJAMBU mode,

whereas Type 4 is useful to analyze the pseudo-randomness of the internal keyed

permutations 𝒫𝑙 and 𝒫𝑙. Note that, in 2019, the initial submission document of

TinyJAMBU AEAD [229, 232] has 384 rounds in 𝑃𝑙. According to the designer’s claim,

using the simple MILP model, the best probability of a 384-round Type 3 characteristic

is approx 2−78. The designers have considered differential trails where each AND gates

are treated independently. Then, in 2020, Saha et al. [49] have developed a new refined
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MILP model, where the authors have formed a cluster differential characteristic on

full 384 rounds with the probability of 2−70.64 by considering the correlations between

two different AND gates. For different rounds, a comparison of the active AND gates

of the best Type1, Type2, Type 3, and Type 4 characteristics corresponding to the

simple model and refined model can be found in [49].

Also, for 320-round Type 4 differential characteristic of 𝑃𝑙, the designers claimed

probability is 2−13 (using simple model), whereas it is 2−12 according to the refined

model.

7.6.1.2 Forgery Attacks on TinyJAMBU Mode.

In order to carry out a forgery in the TinyJambu mode, the attacker must first attempt

to create an internal state collision by inducing differences in two consecutive data

blocks. This can be achieved by either altering the nonce, associated data, plaintext,

or ciphertext in such a way that after one permutation call, the resulting difference

is canceled out by the next block difference. The second method involves more than

two data blocks and requires at least two permutations. For example, consider two

consecutive permutations (𝒫𝑙/𝒫𝑙) using three nonce/associated data blocks. The

attacker can first induce a Type 1 difference by altering the 32 most significant bits

in the first data block. Then, in the next permutation, a Type 2 difference can

be applied so that a specific 32-bit difference can cancel out the state difference.

According to their previous submission [232], the probability of a differential forgery

attack on nonce/associated data is at most 2−73, while for plaintext/ciphertext it is

at most 2−115.

7.6.2 Attacks on Keyed Permutation 𝒫𝑙

In their security analysis of the mode, the designers consider 𝒫𝑙 to be an ideal keyed-

permutations which means under a chosen plaintext attack, 𝒫𝑙 cannot be distin-

guished from a random permutation. This gives us the motivation to evaluate the

security of 𝒫𝑙 against differential cryptanalysis as a stand-alone keyed permutation.

Furthermore, based on our proposed DEEPAND model, we show that the keyed per-

mutations 𝒫𝑙 and 𝒫𝑙 do not behave as a pseudo-random permutations.
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7.6.2.1 MILP Modeling for Finding Differential characteristic

As the design of TinyJAMBU is similar to the cipher described in Section 7.4.1, from

Lemma 3 it can be concluded that the first (128− 85− 1) = 42 rounds are completely

free and the next (85 − 70) = 15 rounds are conditionally free. For the rest of the

rounds, refined modeling [49] is employed. It is worth mentioning that our findings

with complete and conditionally free rounds lead to improvements in the results

reported in [49].

To find the differential characteristics of 𝒫𝑙, in addition to the refined model, the Ob-

servation 1 and Observation 2 are employed to improve the probability. By Lemma 3,

it can be concluded that the first (128− 85− 1) = 42 rounds is completely free, but

some of the next (85− 70) = 15 rounds are conditionally free when a particular dif-

ference pattern (Δ𝑠70, Δ𝑠85) = (0, 1) occurs in the input to the AND gate and 𝑠70 is

completely known. This conditional free scenario is demonstrated in Table 7.6.

Consider the bits 70 and 85 in rounds numbers 43 to 57 of the characteristic given in

Table 7.7. It is evident from the table that in rounds 49 and 52, Δ𝑠49
70 = Δ𝑠52

70 = 0

and Δ𝑠49
85 = Δ𝑠52

85 = 1. As 𝑠49
70 and 𝑠52

70 are known, the output difference of the

corresponding AND gate is deterministic. Hence, this gives a factor of 22 advantage

in the probability. Notice that, although it gives a factor of 22 advantage in the

probability, parallely it also decreases the message space by the factor of 22. However,

in general, in both the free and conditionally free cases, the characteristic probability

can be increased by fixing some of the input message bit values. So, for the differential

Table 7.6: Part of Differential Characteristic of TinyJAMBU Showing the Effect of
Observation 2.

#Rnd Δ𝑠70···85 Conditionally Free
42 0000000000000000 No
43 0000000000000000 No
... ... ...

48 0000000000000000 No
49 0000000000000001 Yes
50 0000000000000010 No
51 0000000000000100 No
52 0000000000001001 Yes
... ... ...

57 0000000100100000 No
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attack, we need a trade-off between the probability and the message space (the data

complexity of the attack).

Table 7.7: Type 4 Differential Characteristics of 𝒫384 with Probability 2−14

Input: Δ𝑆127···0 0x00000000 0x88040000 0x00000248 0x02000043
Δ𝑆255···128 0x00000000 0x80000000 0x00010000 0x00000012
Δ𝑆383···256 0x00000000 0x80000000 0x00000000 0x00000000

Output: Δ𝑆511···384 0x04080000 0x80004000 0x00010200 0x00000010

It should be noted that the use of a single AND gate in TinyJAMBU means that the

dependencies between the AND gates (BAND) will remain the same. Our analysis took

into account the keyed permutation of TinyJAMBU, so these conditions will remain

unaltered. A similar type of differential analysis was performed in [233] using a refined

MILP model, which showed that the first 43 rounds are free when both inputs to the

AND gate are known. Additionally, we have shown that even when only one input bit

of the AND gate is known, the output difference of the AND gate can be deterministic

(for rounds 43 to 57). This property was not captured in previous works [49, 233],

but we have identified it as the underlying factor behind the DEEPAND model. This

same property leads to the modeling of the correlation among multiple AND gates

when used in a block cipher like KATAN. If we compare our model with [49], we need

to omit the initial free rounds and our model will be similar to theirs. However, if

we want to take advantage of the known plaintext scenario, then our model can be

better or at least as good as that of [233].

Having said that it is worth highlighting that the completely/conditionally free gates

lead to lesser constraints for the initial 57 rounds for the TinyJAMBU permutation

which in turn allows the solver to converge faster towards the optimal solution for

DEEPAND than the refined model for the same number of rounds. This is one of the

possible reasons that DEEPAND model is able to find differential characteristics for

more rounds in comparison to the refined model in a stipulated amount of time.

7.6.2.2 Cluster Differential characteristic of 𝒫384

By employing the DEEPAND model in MILP, we are able to find better differential

characteristics. A comparison of these three models for both Type-IV and Type-I
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differences with respect to different rounds is summarized in Table 7.8. For 320

rounds, our model gives a differential characteristic with probability 2−8 which is much

better than previously reported results. For 𝒫384, a Type-IV differential characteristic

with probability 2−14 is found. The characteristic is shown in Table 7.7. We obtained

4 differential characteristics with the same input and output difference as shown in

Table 7.7 each with probability 2−14, 2−15, 2−16 and 2−17. Thus the overall probability

for the differential is 2−13.17.

Table 7.8: Best Results for Type-IV and Type-I characteristics of TinyJAMBU Corre-
spond to Different MILP Models.

Number of Simple Model [231] Refined Model [49] DEEPAND Model
Rounds Type-IV Type-I Type-IV Type-I Type-IV Type-I

128 2 6 2 6 0 5
192 4 13 4 12 2 11
256 8 22 8 20 5 19
320 13 33 12 29 8 28
384 – 45 19 41 14 40?
480 – – 29? – 22 –
640 – 88 53? – 42? 79?
1024 – – – – 108? –
“?” denotes that the solver has not stopped. Here each entry equals − log2(characteristicProbability)

Also, using the DEEPAND model, we have found a Type-III differential trai of 𝒫384

with probability 2−71. The input and output differences are given in Table 7.9 that

consists of a total of 84 active AND gates among which 6 gates are completely free,

0 gates are conditionally free, and 13 gates are correlated. Therefore to satisfy this

Type-III characteristic with probability 2−65, we need to fix precisely 6 bits in the

input message. As a result, the message space will become reduced from 2128 to 2122.

We then evaluated its probability by finding multiple differential characteristics with

the same input and output difference, given in Table 7.9. We found 50 distinct charac-

teristics with probability 2−70 or more, whose distribution is listed in Table 7.10. By

taking account of all these distinct characteristics, the overall probability to satisfy

this Type-III differential will become 2−61.88
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7.6.2.3 Differential characteristic of 𝒫640,𝒫1024

The MILP model developed in this work has also been applied to the keyed permuta-

tions 𝒫640 and 𝒫1024 to find the best Type-IV differential characteristic. For, 𝒫640, we

have found Type-IV and Type-I differential characteristics with probabilities of 2−42

and 2−79 respectively. We also searched for the best Type-III characteristic of 𝒫640

and were able to find a characteristic with probability 2−93 (see Table 7.9). However,

for 𝒫1024, we could only find a differential characteristic with probability 2−108. Note

that the solver is unable to find the best characteristics due to a higher round in both

the permutations 𝒫640,𝒫1024.

7.6.2.4 Related-key Differential characteristic of 𝒫128
1024,𝒫192

1152, and 𝒫256
1280

The designers have mentioned that if two related keys are available, then TinyJAMBU

has the sliding property which can be prevented by adding the frame bits to the

state. Although, for the keyed permutations 𝒫𝑙 in the TinyJAMBU mode, the related-

key differential attack is less practical compared to the single-key differential attack,

we have applied our DEEPAND model for the keyed permutations 𝒫128
1024,𝒫192

1152, and

𝒫256
1280 in the related key setting and found characteristics which are summarized in

Table 7.11.

7.6.3 Fixing Saha et al.’s Forgery Attack [49]
In this subsection, we show that the forgery attack furnished in [49] has a flaw which

makes it ineffective. To be precise, the flaw originates from the lack of entropy or

degrees of freedom in generating sufficient messages to create a favorable event for the

Table 7.9: Differential Characteristics of the TinyJAMBU Keyed Permutation 𝒫𝑙

Keyed Differential characteristic
Permutation Type probability Masks

𝒫384
Type-III 2−65 Input Difference: 0x048a2000 0x00000000 0x00000000 0x00000000

Output Difference: 0x40800441 0x00000000 0x00000000 0x00000000

𝒫640
Type-III 2−93 Input Difference: 0xc3804381 0x00000000 0x00000000 0x00000000

Output Difference: 0x00000100 0x00000000 0x00000000 0x00000000

𝒫640
Type-IV 2−42 Input Difference: 0x00000204 0x10000080 0x00412000 0x01020800

Output Difference: 0x20409200 0x88000480 0x00001020 0x00024001

𝒫1024
Type-IV 2−108 Input Difference: 0x00308080 0x00002129 0x00000808 0x00420000

Output Difference: 0x40110000 0x02040920 0x00800048 0x00000102
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Table 7.10: Multiple Type-III Characteristics and Their Probabilities of 𝒫384

Probability 2−65 2−66 2−67 2−68 2−69 2−70

Number of characteristics 3 3 7 10 13 14

Table 7.11: Related-key Differential Characteristics of the TinyJAMBU Keyed Per-
mutations 𝒫128

1024,𝒫192
1152, and 𝒫256

1280

Keyed Differential characteristic
Permutation Type probability Masks

𝒫128
1024

Input Difference: 0x00000000 0x00000000 0x00000004 0x00000000
Type-IV 2−14 Output Difference: 0x00000000 0x00000000 0x00000004 0x00000000

Key Difference: 0x20000000 0x00020000 0x00000000 0x00000000

𝒫192
1152

Input Difference: 0x00000000 0x00000000 0x00000000 0x20000000
Type-IV 2−10 Output Difference: 0x00000000 0x00000000 0x00000000 0x20000000

Key Difference: 0x01000000 0x00001000 0x00000000 0x20000000
0x00000000 0x20000000

𝒫256
1280

Input Difference: 0x00000004 0x00000000 0x00000000 0x10000000
Type-IV 2−8 Output Difference: 0x00000000 0x00000000 0x00000000 0x10000000

Key Difference: 0x00800004 0x00000800 0x00000000 0x10000000
0x00000000 0x00000000 0x00000000 0x10000000

forgery. We restate the attack in order to highlight flaws in the arguments furnished in

[49] followed by our fix. In their work Saha et al. discuss the forgery attack that can

occur during the nonce setup or data processing phase. The attack involves injecting

a 32-bit difference Δ𝑖 into the 𝑖-th input block and then canceling the state differences

by injecting another 32-bit state difference Δ𝑖+1 into the (𝑖+1)-th input block, which

maps to Type-III difference. The attack is based on the existence of a differential

characteristic that maps the state difference (Δ𝑖||096) to (Δ𝑖+1||096) through 𝒫𝑙 with

probability 𝑝.

There are two types of attacks mentioned in the paper. The first one is called the

“probabilistic nonce-reuse almost universal forgery” where the length of the associated

data must be at least two blocks. The attacker repeatedly makes queries to the

encryption oracle with the same nonces to observe the tag 𝑇 . If the observed tag 𝑇
′ is

matched with the tag 𝑇 , the attacker succeeds in making a forgery. This attack breaks

the 64-bit security if the differential characteristic Δ𝑖 → Δ𝑖+1 of 𝒫𝑙 has a probability

𝑝 ≥ 2−64. The second attack is called the “nonce-respect almost universal forgery

with reforgeability” where the attacker can choose the first 64 bits (out of 96 bits) of
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the nonce 𝑁 = 𝑁0||𝑁1||𝑁2, and can make a forgery for any (𝐴, 𝑀) immediately after

finding 𝑁 and 𝑇 that satisfy the nonce-respect requirement. The attacker repeatedly

makes queries to the encryption oracle with different nonces to observe the tag 𝑇 . If

the observed tag 𝑇
′ is equal to 𝑇 , the attacker succeeds in making a forgery. The

success probability of this attack is 𝐷 × 𝑝, where 𝐷 is the number of distinct nonces

examined by the attacker. Once the attacker finds a collision, they can obtain a valid

tag for any (𝐴, 𝑀) by choosing the last 32 bits of the nonce arbitrarily.

Now to satisfy the characteristic Δ𝑖 → Δ𝑖+1 for 𝒫𝑙, the distinct state pairs (𝐷) should

be at least 1
𝑝 . Equivalently, we can say that the expected number of state pairs to

satisfy a given characteristic Δ𝑖 → Δ𝑖+1 will be 𝐷×𝑝. For the second forgery attack,

by choosing different 𝑁0, the distinct state pairs (𝑆, 𝑆
′) with 𝑆 ⊕ 𝑆

′ = Δ𝑖 at the

processing of the first nonce block will be 𝐷 = 231. Note that, in this scenario,

altering 𝑁1 does not affect the quantity of state pairs (𝐷). In [49], the authors found

a differential characteristic Δ𝑖 → Δ𝑖+1 for 𝒫338 with probability 𝑝 = 2−62.68 (by

considering multiple characteristics). Thus, for 𝒫338, using the second forgery attack,

the attacker can find a state collision after exhausting the first two nonce blocks with

probability 231 × 2−62.68 ≈ 2−31.68(≪ 1). Therefore, for 𝒫338, the proposed attack

cannot effectively find a state collision to break the 64-bit authentication security,

i.e., the probability to make a state collision at the first two nonce processing blocks

will be 2−31.68 even though the attacker can make 231×231(= 262) number of Q1 and

Q2 queries.

In order to carry out a forgery attack in the nonce-respect scenario, the attacker needs

to perform two queries repeatedly:

Q1: The attacker makes a query to the encryption oracle with inputs (𝑁0||𝑁1

||𝑁2, 𝐴*, 𝑀*) in order to observe the tag 𝑇 .

Q2: The attacker makes a related query to the encryption oracle with inputs (𝑁0||𝑁1⊕

Δ𝑖||𝑁2 ⊕Δ𝑖+1, 𝐴*, 𝑀*) in order to achieve a successful forgery if the observed

tag 𝑇
′ is equal to 𝑇 .

In this scenario, the number of chosen state pairs at the input of the second nonce

block for 𝒫𝑙 would be 232 × 231 = 263. This means that if a given characteristic
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Δ𝑖 → Δ𝑖 + 1 has a probability 𝑝 ≥ 2−63, then after making queries of Q1 and Q2 for

all nonces 𝑁0, 𝑁1, it is expected that there will be at least one state collision at the

third nonce block position, which will immediately lead to the forgery. Additionally,

if 𝑁0||𝑁1||𝑁2 and 𝑁0||𝑁1⊕Δ𝑖||𝑁2⊕Δ𝑖+1 are two 96-bit nonces that result in a state

collision, then the attacker can choose the last 32 bits of nonce 𝑁2 ( ̸= 𝑁2, 𝑁2⊕Δ𝑖+1)

arbitrarily to obtain a tag 𝑇 for (𝑁0||𝑁1||𝑁2, 𝐴*, 𝑀*) through an encryption query.

Then 𝑇 will also be valid for (𝑁0||𝑁1 ⊕Δ𝑖||𝑁2 ⊕Δ𝑖+1, 𝐴*, 𝑀*) implying a forgery.

According to our analysis using the DEEPAND model for 𝒫384, we discovered a dif-

ferential characteristic with a probability5 of 2−65 when an attacker has the ability

to manipulate 6 bits in the input message during encryption. After taking into ac-

count multiple characteristics for a differential, the probability increases to 2−61.88.

However, in this forgery attack, the attacker has no control over the initial bits in

the message and cannot freely bypass some initial AND gates. Therefore, by not con-

sidering the manipulation of the message bits at the initial 57 rounds of TinyJAMBU

state, the overall probability decreases to 2−67.88, which is higher than the original

estimations made by Saha et al. and the designers. Our DEEPAND model analysis for

𝒫384 suggests that the security margin against differential cryptanalysis is less than

4 bits.

7.7 Attacks on KATAN

In this section, to find the best differential characteristics of any rounds in the KATAN

ciphers, we will show how the DEEPAND model efficiently captures the correlated

ANDs and significantly increases their characteristic probability. First, we will show

that the differential characteristics using our DEEPAND model for some initial rounds

of KATAN give a much better probability than the designer’s claims in [230]. Then, we

show that the related key boomerang attack on KATAN in [234] can also be improved

by employing this new model.

5The attack scenario does not allow for the attacker to control the input message bits in the
encryption process, thus we have taken into account the cost of fixing the message bits by multiplying
the overall probability by 2−6.
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7.7.1 Improved Differential Cryptanalysis of KATAN

7.7.1.1 MILP Modeling of Free Rounds.

In KATAN, there are three AND gates where the tuples (𝑦3, 𝑦4), (𝑦5, 𝑦6), and (𝑥3, 𝑥4)

represent the input bit-positions to the AND gates 𝐴1, 𝐴2, and 𝐴3 respectively. Then

by Lemma 5, the differential output of the gates 𝐴1, 𝐴2 and 𝐴3 in the forward

differential characteristic are deterministic for the first (𝑦4 + 1), (𝑦6 + 1), and (𝑥4 + 1)

rounds respectively. Also, they are conditionally free from the round number (𝑦4 + 2)

to (𝑦3 + 1), (𝑦6 + 2) to (𝑦5 + 1), and (𝑥4 + 2) to (𝑥3 + 1) respectively.

Similarly, by Lemma 6, it can be concluded that in the backward differential char-

acteristic, the output differences of the gates 𝐴1, 𝐴2 and 𝐴3 are deterministic for

the first (𝑛 − 𝑦3 − 1) rounds, first (𝑛 − 𝑦5 − 1) rounds and first (𝑛 − 𝑥3 − 1) rounds

respectively and conditionally free from round number (𝑛−𝑦3) to (𝑛−𝑦4−1), (𝑛−𝑦5)

to (𝑛 − 𝑦6 − 1) and (𝑛 − 𝑥3) to (𝑛 − 𝑥4 − 1) respectively. Here 𝑛 denotes the state

size of KATAN.

7.7.1.2 Modeling the Dependency Between AND Gates

For KATAN, there is only one AND gate in the 𝐿1 register. In this case, a BAND can

happen during intermediate rounds. To capture all the BANDs in rounds, we have to

track the BAND for each round and then we add the respective constraints according

to the MILP model discussed in Section 7.5.2.

In 𝐿2 register, there are two AND gates and the dependency between two different

AND gates is not captured in the refined model. Consider a bit 𝑠𝑖
3 in register 𝐿2. For

KATAN32, the MAND of the pivotal difference Δ𝑠𝑖
3 = 0 is

ℳKATAN32
𝑖 = Δ𝑠𝑖+9

10 Δ𝑠𝑖+5
3 Δ𝑠𝑖

3 Δ𝑠𝑖
8Δ𝑠𝑖+7

12 = Δ𝑠𝑖
1Δ𝑠𝑖

−2 Δ𝑠𝑖
3 Δ𝑠𝑖

8Δ𝑠𝑖
5

Now by Lemma 10 there are
(︀4

4
)︀
+
(︀4

3
)︀
+
(︀4

2
)︀

= 11 patterns for which output differential

of several AND computations are inter-related. The MAND and its corresponding

differential bit patterns with refined probabilities are shown in Table 7.12.
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Table 7.12: MAND of Δ𝑠𝑖
3 and The Corresponding Differential Value of Related Bits.

MAND Δ𝑠𝑖
8 Δ𝑠𝑖

5 Δ𝑠𝑖
3 Δ𝑠𝑖

1 Δ𝑠𝑖
−2 Naive Prob. Improved Prob.

11 0 11 1 1 0 1 1 2−4 2−1

11 0 10 1 1 0 1 0 2−3 2−1

11 0 01 1 1 0 0 1 2−3 2−1

10 0 11 1 0 0 1 1 2−3 2−1

01 0 11 0 1 0 1 1 2−3 2−1

11 0 00 1 1 0 0 0 2−2 2−1

10 0 10 1 0 0 1 0 2−2 2−1

01 0 10 0 1 0 1 0 2−2 2−1

10 0 01 1 0 0 0 1 2−2 2−1

01 0 01 0 1 0 0 1 2−2 2−1

00 0 11 0 0 0 1 1 2−2 2−1

7.7.1.3 DEEPAND Based New Differential characteristics for KATAN

In [230], the designers have claimed that for 42-round KATAN32, the best differential

characteristic has probability 2−11. However, for the initial 42 rounds, the DEEPAND

MILP model is able to find two identical differential characteristics with probability

2−7.

For 43-round KATAN48 and 37-round KATAN64, the best differential characteristic,

as claimed by the designers, can be found with probability 2−18 and 2−20 respectively

whereas for both variants our model finds differential characteristics with probability

2−14 and 2−17 respectively.

7.7.2 Related Key Differential Attack

In the related-key setting, the DEEPAND model was applied to the KATAN32 cipher

and the best characteristic probabilities for various rounds are summarized in Ta-

ble 7.14. This model outperforms previous simple and refined models in capturing

multiple correlated ANDs. These correlated ANDs not only increase the trail proba-

bility but also aid in finding longer differential characteristics. As a result, this model

can be used to identify better related-key differential characteristics for the KATAN48

and KATAN64 ciphers compared to the simple and refined models.
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Table 7.13: Differentials of KATAN Variants.

Cipher #R Active Gates Difference Probability
𝑡 𝑓𝑟 𝐶𝑓𝑟 𝐶𝐴 Input Output 𝑝𝛼 𝑝

KATAN32
42 7 4 1 0 0x08020040 0x00200420 2−7 2−11

74 29 2 0 0 0x0000c010 0x40880101 2−29 2−31

81† 29 5 0 4 0x10802004 0x00000800 2−29 2−34

KATAN48 43 14 10 0 0 0x000008442c10 0x040000000229 2−14 2−24

KATAN64 37 17 3 2 0 0x4000002001000800 0x0444200000001000 2−17 2−20

#R ← number of rounds, 𝑓𝑟 ← number of ANDs to be freely passed, 𝐶𝑓𝑟 ← number of conditionally free ANDs, 𝐶𝐴

→ number of correlated ANDs, 𝑡 ← number of required ANDs where probability should be paid, 𝑝𝛼 and 𝑝→ refer to
probabilities with and without bit-fixing.

†Note that, this characteristic has the probability 2−34 if we do not consider any message bit fixing.

So, this 81-round characteristic can not be verified because the message space for KATAN32 is 232.

Table 7.14: Related-key Differentials of KATAN.

Cipher #R
Active Gates Difference7 Probability

𝑡 𝑓𝑟 𝐶𝑓𝑟 𝐶𝐴 Input Output Key 𝑝𝛼 𝑝

KATAN32
60 3 0 0 0 0𝑥00004000 0𝑥00𝑏80084 Δ𝑘[9, 39, 50, 54, 64] = 1 2−3 2−3

70
7 0 0 0 0𝑥00042000 0𝑥00880801 Δ𝑘[1, 11, 53, 64, 68, 78] = 1 2−7 2−7

6 1 0 0 0𝑥80031000 0𝑥01200400 Δ𝑘[0, 3, 5, 13, 55, 70, 72] = 1 2−6 2−7

4 3 0 0 0𝑥𝑎4020010 0𝑥00𝑏80084 Δ𝑘[3, 4, 7, 10, 17, 2−4 2−7

29, 59, 70, 74] = 1
84 16 0 1 1 0𝑥𝑎0048000 0𝑥01180263 Δ𝑘[1, 4, 23, 31, 42, 61] = 1 2−16 2−17

KATAN48

50 0 7 0 0 0𝑥000000301800 0𝑥000180000000 Δ𝑘[17] = 1 20 2−7

59
6 3 0 0 0𝑥000003018000 0𝑥000000001460 Δ𝑘[13] = 1 2−6 2−9

6 2 3 0 0𝑥820031400000 0𝑥000060003000 Δ𝑘[5, 24] = 1 2−6 2−11

60
7 2 3 1 0𝑥820031400000 0𝑥00018000𝑐000 Δ𝑘[5, 24] = 1 2−7 2−12

6 14 0 0 0𝑥𝑑𝑏0000643018 0𝑥180000000005 Δ𝑘[6, 25] = 1 2−6 2−20

KATAN64
56 11 4 0 0 0𝑥0000001𝑐00𝑒00000 0𝑥000020000001𝑐𝑐𝑒0 Δ𝑘[11] = 1 2−11 2−15

57 13 3 0 1 0𝑥0000004801𝑐00000 0𝑥00000380001𝑐0𝑒00 Δ𝑘[1, 7, 20, 26] = 1 2−13 2−16

#R ← number of rounds, 𝑓𝑟 ← number of ANDs to be freely passed, 𝐶𝑓𝑟 ← number of conditionally free ANDs, 𝐶𝐴

→ number of correlated ANDs, 𝑡 ← number of required ANDs where probability should be paid, 𝑝𝛼 and 𝑝→ refer to
probabilities with and without bit-fixing.
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7.7.2.1 Improving Isobe et al.’s Related Key Boomerang Attack [234]

The related-key boomerang attack is a combination of the boomerang attack and the

related-key differential attack. Such attacks are useful to build distinguishers when

it consist of two shorter differential characteristics with high probabilities.

In [234] for KATAN32 (= 𝐸1 ∘𝐸0), the authors devise a 140-round boomerang distin-

guisher, where both 𝐸0 and 𝐸1 have 70-rounds. Based on their efficient differential

characteristics search for both 𝐸0 and 𝐸1, the authors provided maximum probability

differential characteristics of each set in [234, Table 5,6]. In the construction of the

boomerang distinguisher, the authors choose a differential characteristic of 𝐸0 corre-

sponding to the set 8 [234, Table 4] with probability 2−9 and of 𝐸1 for the set 10 [234,

Table 4] with probability 2−8. Thus the probability to form a simple boomerang

will be (2−9)2 × (2−8)2 = 2−34. Whereas for KATAN32, the attacker only has 231

input message pairs with a fixed difference. To reduce the data complexity for this

boomerang attack, the authors have considered multiple characteristics with the same

input and output difference. As a result, the overall probability for the characteris-

tics in 𝐸0 and 𝐸1 improves to 2−7.1 and 2−6.5 respectively. Therefore by combining

these two differential characteristics, the overall probability of the above 140-round

related-key boomerang distinguisher is increased to (2−7.1)2 × (2−6.5)2 = 2−27.2.

Table 7.15: Sets of Key Difference Considered in [234].

Set 0 1 2 3 4 5 6 7 8 9 10

Key

Difference
0,19 1,20 2,21 3,22 4,23 5,24 6,25 7,26 8,27 9,28 10,29

Plaintext

Difference

𝐿2[9]

𝐿1[12]

𝐿2[18]

𝐿1[2, 7, 12]

𝐿2[8]

𝐿1[11]

𝐿2[17]

𝐿1[1, 6, 11]

𝐿2[7, 18]

𝐿1[10]

𝐿2[16]

𝐿1[0, 5, 10]

𝐿2[6, 17]

𝐿1[9]

𝐿2[15, 18]

𝐿1[4, 9]

𝐿2[5, 16]

𝐿1[8]

𝐿2[14, 17]

𝐿1[3, 8]

𝐿2[4, 15]

𝐿1[7, 12]

Using the DEEPAND model, we have verified all the characteristics corresponding to

the differential characteristics of each set in [234, Table 5]. For set 0 and set 10, we

have respectively identified three and one correlated AND gates in the characteristics

with probabilities 2−12 and 2−10 (without considering free and conditionally free AND

gates). Whereas, according to their search strategy, the characteristic probabilities
7Note that, for larger rounds, the DEEPAND model could not find the best characteristics due to

too many constraints in the model.
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Table 7.16: Verified Related-key Boomerang Distinguisher of KATAN32 .

KATAN32

No. Prob.
Input Diff Output Diff Key Difference

Upper Lower Upper Lower
1. 2−22 0𝑥00026000 0𝑥48008𝑏00 0𝑥𝑎0800000000002001504 0𝑥52𝑐0𝑎267036154𝑓𝑐4𝑐36

In hexadecimal notation, the most significant bit (MSB) is placed on the right side and the least significant bit (LSB)
is located on the left side.

for set 0 and set 10 are 2−15 and 2−12. For other sets, the DEEPAND model did

not find any extra advantage in the characteristics. Moreover, if we do not consider

the predefined sets in Table 7.15, the DEEPAND model can find much better 70-

round characteristics of probability 2−7 (> 2−9). So, by choosing two characteristics

of probabilities 2−7, 2−7 for both 𝐸0, 𝐸1, we can form a boomerang distinguisher

with probability (2−7)2 × (2−7)2 = 2−28. Also, in the similar fashion, we can fur-

ther reduce the data complexity of this 140-round boomerang attack by choosing

the multiple differentials that correspond to the same input/output difference. For

the first boomerang in Table 7.16, the input and key difference of 𝐸0 is represented

by 4 characteristics of probability 2−7, 8 characteristics of probability 2−8, 16 char-

acteristics of probability 2−9, and 32 characteristics of probability 2−10. Similarly,

the output and key difference of 𝐸1 is represented by 4 characteristics of probability

2−7, 8 characteristics of probability 2−8, and 32 characteristics of probability 2−9.

The overall probabilities of 𝐸0 and 𝐸1 are approximately 2−5.52 and 2−5.5, respec-

tively. The overall probability of the boomerang distinguisher can be calculated as

(2−5.52)2 × (2−5.5)2 = 2−22.04 which is greater than 2−27.2. Note that for the distin-

guishers given in Table 7.16, we have not considered any message-bit fixing in order

to take advantage of the cluster of characteristics.

7.8 Conclusion
In this work, we have developed DEEPAND, a new generalized MILP model designed

to capture first-order correlations in single and multiple AND-based (NLFSR) ciphers.

This model is primarily based on three key observations: Observation 1, Observa-

tion 2, and Observation 3, and it introduces the concept of fully free and conditionally

free rounds. Our model demonstrates that dependencies can exist among multiple
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AND gates in NLFSR-based ciphers.

Saha et al. previously demonstrated the correlation between two subsequent AND

gates sharing one common input for the NIST-LWC finalist TinyJAMBU, which follows

a single AND-based NLFSR. To capture such correlations, which we have redefined as

BAND, they built a MILP-aided tool and found improved differentials compared to

the designer’s claims. In our work, we expand on this by explaining the generalized

view of when two subsequent ANDs will be correlated in a single AND-based NLFSR.

Additionally, we systematize the multiple correlations of different subsequent ANDs

to significantly increase the probability for multiple AND-based NLFSRs.

To accurately capture the dependencies of multiple ANDs in an NLFSR, we introduce

MAND. Furthermore, we show that if one of the inputs of an AND gate is known,

then for certain input differences, the output difference becomes deterministic. Using

the DEEPAND model, we have primarily investigated the differential properties of

TinyJAMBU’s keyed permutations. For the full-round 𝒫1024, we found a differential

characteristic (Type-IV) with a probability of 2−108, highlighting its non-ideal nature.

For 𝒫640, the probability is 2−42.

For KATAN , we report the best differential characteristic for 42 rounds with a practi-

cal probability of 2−7, challenging the designer’s claim. We also improved the related-

key boomerang attack by Isobe et al. using DEEPAND. Finally, we enhanced the

differential characteristics for 43-round KATAN48 and 37-round KATAN64 , demon-

strating the broad applicability of the DEEPAND model. The DEEPAND model de-

veloped in this work is an effective tool for probing into the correlations that develop

during differential propagation, warranting further investigation.
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8
CONCLUDING REMARKS

In conclusion, this thesis has focused on the cryptanalysis of a selection of SPN and

NLFSR-based symmetric-key ciphers. Our main results and contributions are out-

lined in Chapters 3, 4, 5, 6, and 7. In this section, we provide a summary of the work

presented in this thesis, highlighting the key findings and methodologies employed.

We also provide a discussion offering insights into new design criteria for symmet-

ric cryptography derived from our DFA attacks. Furthermore, we provide insights

into how these findings integrate with existing research, emphasizing the connections

between our DFA under the gray-box model and differential cryptanalysis on NLFSR-

based ciphers under the black-box model across various cryptographic frameworks.

Additionally, we discuss the future scope of this work, suggesting potential avenues

for further research and exploration in the field of cryptanalysis and symmetric-key

ciphers.

8.1 Summary
The thesis focuses on the cryptanalysis of various lightweight private-key ciphers

based on SPN and NLFSR structures. The main objective of the thesis is to identify

vulnerabilities in these ciphers and develop new techniques for analyzing their secu-

rity. The thesis is organized into several chapters, each of which presents new results

and contributions to the field of cryptanalysis. Chapter 3 introduces a new theo-

retical problem that is a variant of the generalized coupon collector problem. This

problem is used to estimate the number of faults required for successful differential
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fault attacks on several cryptographic schemes. Chapter 4 demonstrates differential

fault attacks on the CAESAR and NORX ciphers with a level of parallelism of 2 and

4, respectively. The attacks demonstrate that these schemes are vulnerable to differ-

ential fault attacks even when a nonce is used. Chapter 5 presents differential fault

attacks on several AE schemes based on GFN and SPN structures, using faulty forgery

in the decryption query. These attacks highlight the vulnerability of these schemes

to fault attacks and the importance of careful design and analysis of cryptographic

schemes to ensure their resilience against such attacks. Chapter 6 extends the analysis

to other SPN-based sponge/SIV-like AE schemes, including Photon-Beetle, OR-

ANGE, SIV-TEM-PHOTON, and ESTATE. Differential fault attacks are shown

to be effective in breaking these schemes in the presence of faulty forgery in the de-

cryption query. Finally, Chapter 7 proposes a new model called “DEEPAND” that

captures correlations among multiple AND gates in NLFSR-based lightweight block

ciphers. The model is applied to TinyJAMBU and KATAN and is shown to detect

correlations that were missed by earlier models, leading to more accurate differential

bounds for both ciphers. Overall, the thesis provides new insights into the design and

analysis of secure lightweight cryptographic schemes in the presence of fault attacks

and contributes to the ongoing research efforts in the field of cryptanalysis.

8.2 Discussion
In the realm of cryptographic security, differential fault analysis (DFA) has emerged as

a critical method for assessing the robustness of cryptographic schemes, particularly

those utilizing nonce-based authenticated encryption (AE) mechanisms. DFA involves

deliberately introducing faults into a cryptographic system to analyze the resulting er-

roneous outputs, revealing sensitive information such as secret keys or internal states.

Despite the added protection that nonces provide by ensuring unique outputs for each

encryption session, recent research has demonstrated that nonce-based schemes are

not invulnerable to differential fault attacks. These studies reveal that faults can still

be exploited to compromise the security of such schemes, challenging the notion that

nonces alone are sufficient to prevent DFA vulnerabilities.

Also, our thesis contributes to this understanding by exploring how nonce-based
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Sponge AE schemes can be fortified against DFA attacks. Specifically, it addresses

the complexities associated with retrieving keys when only partial state information

is available. By analyzing how outputting tags from partial state information can

complicate DFA attacks, this work highlights the challenges and provides strategies

to mitigate these issues, such as selecting carefully chosen partial bits from the state

to hinder effective key recovery.

Additionally, this research extends beyond fault attacks by investigating differential

cryptanalysis within a black-box model applied to NLFSR-based ciphers. We have gen-

eralized correlations among AND operations in single and multiple AND-based NLFSR

structures, revealing how these correlations can significantly enhance the probability

of successful attacks. This differential cryptanalysis can complement DFA efforts by

either reducing the number of faults required or directly aiding in key recovery due

to the established correlations.

The integration of these findings shows a comprehensive approach to cryptographic

security. By bridging the gap between DFA under a gray-box model and differential

cryptanalysis in a black-box context, this work provides a unified perspective on the

vulnerabilities and defense mechanisms applicable to modern cryptographic schemes.

Future research can build upon these insights to develop more robust cryptographic

solutions, leveraging the understanding of both fault and differential attacks to en-

hance overall security.

8.3 Future Research
Based on the research presented in the thesis, there are several interesting directions

for future work that can be explored to further improve the security of lightweight

cryptographic schemes against fault attacks.

Firstly, the differential fault attack on the NORX cipher demonstrated in Chapter 4

raises concerns about the vulnerability of ciphers with a high degree of parallelism

to fault attacks. It would be interesting to investigate other ciphers with similar

structures to NORX and explore whether the same attack can be applied to them.

Additionally, further research can be conducted to design countermeasures that can

protect ciphers from such attacks. Then, the use of faulty forgery in the decryption
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query, as demonstrated in Chapters 5 and 6, can be extended to other types of au-

thenticated encryption schemes, such as MACs and modes of hash functions. Further

research can be conducted to evaluate the vulnerability of these schemes to differ-

ential fault attacks and explore new countermeasures to protect them. Finally, the

proposed DEEPAND model in Chapter 7 can be further improved to effectively search

for best trails for larger rounds. One direction for future research could be to minimize

the constraints in the model to make it more efficient in searching for optimal trails.

Additionally, the model can be extended to explore other types of differential-related

attacks and identify previously unknown vulnerabilities in lightweight cryptographic

schemes.

Overall, the findings presented in this thesis provide valuable insights into the security

of lightweight cryptographic schemes against fault attacks, and the future research

directions identified above can contribute to further strengthening the security of

these schemes.

230



BIBLIOGRAPHY

[1] David Kahn. The Codebreakers: The Comprehensive History of Secret Com-
munication from Ancient Times to the Internet. Scribner, rev sub edition,
December 1996.

[2] Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech.
J., 27(3):379–423, 1948.

[3] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech.
J., 28(4):656–715, 1949.

[4] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976.

[5] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Com-
puter Science, pages 37–51. Springer, 1997.

[6] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, 1996.

[7] Auguste Kerckhoffs. La cryptographie militaire. In Walter Fumy, editor, Jour-
nal des sciences militaires, vol. IX, pp. 5–38, Jan. 1883.

[8] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, Selected Areas in Cryptography, 9th Annual Interna-
tional Workshop, SAC 2002, St. John’s, Newfoundland, Canada, August 15-16,
2002. Revised Papers, volume 2595 of Lecture Notes in Computer Science, pages
250–270. Springer, 2002.

231



[9] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9 Work-
shop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised Papers,
volume 2696 of Lecture Notes in Computer Science, pages 1–15. Springer, 2002.

[10] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015, pages 1058–
1069. ACM, 2015.

[11] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards prac-
tical whitebox cryptography: Optimizing efficiency and space hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
126–158, 2016.

[12] Jean-Philippe Aumasson. Serious Cryptography: A Practical Introduction to
Modern Encryption. No Starch Press, USA, 2017.

[13] Kazuo Sakiyama, Yu Sasaki, and Yang Li. Security of Block Ciphers from
Algorithm design to Hardware Implementation. John Wiley and Sons Singapore
Pte. Ltd., 2015.

[14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
Chapman and Hall/CRC Press, 2007.

[15] Kevin M. Igoe and Jerome A. Solinas. AES galois counter mode for the secure
shell transport layer protocol. RFC, 5647:1–10, 2009.

[16] David A. McGrew and Kevin M. Igoe. AES-GCM authenticated encryption in
the secure real-time transport protocol (SRTP). RFC, 7714:1–48, 2015.

[17] David A. McGrew and Daniel V. Bailey. AES-CCM cipher suites for transport
layer security (TLS). RFC, 6655:1–8, 2012.

[18] Chunju Shao, Hui Deng, Rajesh S. Pazhyannur, Farooq Bari, Rong Zhang, and
Satoru Matsushima. IEEE 802.11 medium access control (MAC) profile for
control and provisioning of wireless access points (CAPWAP). RFC, 7494:1–
13, 2015.

[19] Hugo Krawczyk. The order of encryption and authentication for protecting
communications (or: How secure is ssl?). In Joe Kilian, editor, Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139
of Lecture Notes in Computer Science, pages 310–331. Springer, 2001.

[20] Thai Duong and Juliano Rizzo. Here come the XOR ninjas. In White paper,
Netifera, 2011.

232



[21] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the
TLS and DTLS record protocols. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 526–540. IEEE
Computer Society, 2013.

[22] CAESAR:. Competition for authenticated encryption: Security, applicability,
and robustness.

[23] Kerry McKay, Lawrence E. Bassham, Meltem Sonmez Turan, and Nicky
Mouha. Report on lightweight cryptography. 2017.

[24] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology -
CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 2–21. Springer, 1990.

[25] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory
and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages
386–397. Springer, 1993.

[26] Johannes Blömer and Volker Krummel. Fault based collision attacks on AES. In
Luca Breveglieri, Israel Koren, David Naccache, and Jean-Pierre Seifert, editors,
Fault Diagnosis and Tolerance in Cryptography, Third International Workshop,
FDTC 2006, Yokohama, Japan, October 10, 2006, Proceedings, volume 4236 of
Lecture Notes in Computer Science, pages 106–120. Springer, 2006.

[27] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[28] Sung-Ming Yen and Marc Joye. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Trans. Computers, 49(9):967–970,
2000.

[29] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard
and François-Xavier Standaert, editors, Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer
Science, pages 320–334. Springer, 2010.

[30] Zhiqiang Liu, Dawu Gu, Ya Liu, and Wei Li. Linear fault analysis of block
ciphers. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, Applied
Cryptography and Network Security - 10th International Conference, ACNS
2012, Singapore, June 26-29, 2012. Proceedings, volume 7341 of Lecture Notes
in Computer Science, pages 241–256. Springer, 2012.

233



[31] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault at-
tacks on AES with faulty ciphertexts only. In 2013 Workshop on Fault Diagno-
sis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013,
pages 108–118, 2013.

[32] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Florian
Mendel, and Robert Primas. Statistical ineffective fault attacks on masked AES
with fault countermeasures. In Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceed-
ings, Part II, pages 315–342. Springer, 2018.

[33] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):547–572, 2018.

[34] Navid Vafaei, Sara Zarei, Nasour Bagheri, Maria Eichlseder, Robert Primas,
and Hadi Soleimany. Statistical effective fault attacks: The other side of the
coin. IEEE Trans. Inf. Forensics Secur., 17:1855–1867, 2022.

[35] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, pages 513–525, 1997.

[36] NIST Lightweight Cryptography Standardization Process, January 4, 2019.

[37] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Dirmanto Jap, and Dhiman
Saha. A survey on fault attacks on symmetric key cryptosystems. ACM Comput.
Surv., 55(4), nov 2022.

[38] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and
Willi Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of
Lecture Notes in Computer Science, pages 348–359. Springer, 2004.

[39] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in
Computer Science, pages 105–125. Springer, 2014.

[40] Dhiman Saha and Dipanwita Roy Chowdhury. Scope: On the side channel vul-
nerability of releasing unverified plaintexts. In Selected Areas in Cryptography
- SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August
12-14, 2015, pages 417–438, 2015.

234



[41] Dhiman Saha, Sukhendu Kuila, and Dipanwita Roy Chowdhury. Escape: Di-
agonal fault analysis of APE. In Progress in Cryptology - INDOCRYPT 2014
- 15th International Conference on Cryptology in India, New Delhi, India, De-
cember 14-17, 2014, Proceedings, pages 197–216, 2014.

[42] Dhiman Saha and Dipanwita Roy Chowdhury. Encounter: On breaking the
nonce barrier in differential fault analysis with a case-study on PAEQ. In
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
pages 581–601, 2016.

[43] Amit Jana, Dhiman Saha, and Goutam Paul. Differential fault analysis of
NORX. In Chip-Hong Chang, Ulrich Rührmair, Stefan Katzenbeisser, and
Patrick Schaumont, editors, Proceedings of the 4th ACM Workshop on Attacks
and Solutions in Hardware Security Workshop, ASHES@CCS 2020, Virtual
Event, USA, November 13, 2020, pages 67–79. ACM, 2020.

[44] Amit Jana, Anirban Nath, Goutam Paul, and Dhiman Saha. Differential fault
analysis of NORX using variants of coupon collector problem. J. Cryptogr.
Eng., 12(4):433–459, 2022.

[45] Amit Jana. Differential fault attack on feistel-based sponge AE schemes. J.
Hardw. Syst. Secur., 6(1):1–16, 2022.

[46] Amit Jana and Goutam Paul. Differential fault attack on photon-beetle. In
Chip-Hong Chang, Ulrich Rührmair, Debdeep Mukhopadhyay, and Domenic
Forte, editors, Proceedings of the 2022 Workshop on Attacks and Solutions in
Hardware Security, ASHES 2022, Los Angeles, CA, USA, 11 November 2022,
pages 25–34. ACM, 2022.

[47] Amit Jana and Goutam Paul. Differential fault attack on spn-based sponge
and siv-like AE schemes. J. Cryptogr. Eng., 14(2):363–381, 2024.

[48] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun Wu,
Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology -
7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2011.

[49] Dhiman Saha, Yu Sasaki, Danping Shi, Ferdinand Sibleyras, Siwei Sun, and
Yingjie Zhang. On the Security Margin of TinyJAMBU with Refined Differen-
tial and Linear Cryptanalysis. IACR Transactions on Symmetric Cryptology,
2020(3):152–174, Sep. 2020.

[50] Amit Jana, Mostafizar Rahman, and Dhiman Saha. Deepand: In-depth mod-
eling of correlated and gates for nlfsr-based lightweight block ciphers. Cryptol-
ogy ePrint Archive, Paper 2022/1123, 2022. https://eprint.iacr.org/2022/
1123.

[51] H. Feistel. Cryptography and computer privacy. In Scientific American, v.228,
n. 5, May 1973, pages 15–23, 1973.

235

https://eprint.iacr.org/2022/1123
https://eprint.iacr.org/2022/1123


[52] NBS FIPS PUB 46 National Bureau of Standards. Data encryption standard.
In National Bureau of Standards, U.S. Department of Commerce, Jan 1977.

[53] Akihiro Shimizu and Shoji Miyaguchi. Fast data encipherment algorithm
FEAL. In Advances in Cryptology - EUROCRYPT ’87, Workshop on the Theory
and Application of of Cryptographic Techniques, Amsterdam, The Netherlands,
April 13-15, 1987, Proceedings, pages 267–278, 1987.

[54] Gosudarstvennyi Standard 28147-89 GOST. Cryptographic protection for data
processing systems. In Government Committee of the USSR for Standards,
1989.

[55] Ralph C. Merkle. Fast software encryption functions. In Advances in Cryptol-
ogy - CRYPTO ’90, 10th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1990, Proceedings, pages 476–501,
1990.

[56] Lawrence Brown, Matthew Kwan, Josef Pieprzyk, and Jennifer Seberry. Im-
proving resistance to differential cryptanalysis and the redesign of LOKI. In
Advances in Cryptology - ASIACRYPT ’91, International Conference on the
Theory and Applications of Cryptology, Fujiyoshida, Japan, November 11-14,
1991, Proceedings, pages 36–50, 1991.

[57] C.M. Adams and S.E. Tavares. Designing s-boxes for ciphers resistant to differ-
ential cryptanalysis. In Proceedings of the 3rd Symposium on State and Progress
of Research in Cryptography, Rome, Italy, 15-16 Feb 1993, pages 181–190.

[58] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher
(blowfish). In Ross J. Anderson, editor, Fast Software Encryption, Cambridge
Security Workshop, Cambridge, UK, December 9-11, 1993, Proceedings, volume
809 of Lecture Notes in Computer Science, pages 191–204. Springer, 1993.

[59] Ronald L. Rivest. The RC5 encryption algorithm. In Bart Preneel, editor,
Fast Software Encryption: Second International Workshop. Leuven, Belgium,
14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer
Science, pages 86–96. Springer, 1994.

[60] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the construction of
block ciphers provably secure and not relying on any unproved hypotheses. In
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 461–480, 1989.

[61] Ross J. Anderson and Eli Biham. Two practical and provably secure block
ciphers: BEARS and LION. In Fast Software Encryption, Third International
Workshop, Cambridge, UK, February 21-23, 1996, Proceedings, pages 113–120,
1996.

[62] Joan Daemen and Vincent Rijmen. AES and the wide trail design strategy. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the
Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings, pages 108–109, 2002.

236



[63] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Cryptographic Hardware and Embedded Systems - CHES
2011 - 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings, pages 326–341, 2011.

[64] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 321–345. Springer,
2017.

[65] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–
466. Springer, 2007.

[66] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Crypto-
graphic sponge functions (Version 0.1). https://keccak.team/files/CSF-0.
1.pdf.

[67] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications. In
Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography - 18th In-
ternational Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011,
Revised Selected Papers, volume 7118 of Lecture Notes in Computer Science,
pages 320–337. Springer, 2011.

[68] Phillip Rogaway and Thomas Shrimpton. The SIV Mode of Operation for Deter-
ministic Authenticated-Encryption (Key Wrap) and Misuse-Resistant Nonce-
Based Authenticated-Encryption, Aug 20, 2007.

[69] M. Dworkin. Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM)
and GMAC. https://www.nist.gov/publications/
recommendation-block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac,
NIST Special Publication 800-38D, November 2007.

[70] M. Dworkin. Recommendation for Block Cipher Modes of Operation: The
CMAC Mode for Authentication. https://nvlpubs.nist.gov/nistpubs/
specialpublications/nist.sp.800-38b.pdf, NIST Special Pulication 800-
38B, May 2005.

[71] Dan Harkins. Synthetic initialization vector (SIV) authenticated encryption
using the advanced encryption standard (AES). RFC, 5297:1–26, 2008.

237

https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/CSF-0.1.pdf
https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac
https://www.nist.gov/publications/recommendation-block-cipher-modes-operation-galoiscounter-mode-gcm-and-gmac
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-38b.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-38b.pdf


[72] JunHyuk Song, Radha Poovendran, Jicheol Lee, and Tetsu Iwata. The AES-
CMAC algorithm. RFC, 4493:1–20, 2006.

[73] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 531–545. Springer, 2000.

[74] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. J.
Cryptol., 21(4):469–491, 2008.

[75] Tatu Ylönen and Chris Lonvick. The secure shell (SSH) transport layer protocol.
RFC, 4253:1–32, 2006.

[76] Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol
version 1.2. RFC, 5246:1–104, 2008.

[77] Stephen T. Kent. IP encapsulating security payload (ESP). RFC, 4303:1–44,
2005.

[78] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsid-
ering generic composition. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes
in Computer Science, pages 257–274. Springer, 2014.

[79] Charanjit S. Jutla. Encryption modes with almost free message integrity. In
Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, In-
ternational Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture
Notes in Computer Science, pages 529–544. Springer, 2001.

[80] Charanjit S. Jutla. Encryption modes with almost free message integrity. J.
Cryptol., 21(4):547–578, 2008.

[81] Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication:
XCBC encryption and XECB authentication modes. In Mitsuru Matsui, editor,
Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama,
Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in Com-
puter Science, pages 92–108. Springer, 2001.

[82] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings of the 8th ACM
Conference on Computer and Communications Security, Philadelphia, Pennsyl-
vania, USA, November 6-8, 2001, pages 196–205. ACM, 2001.

238



[83] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of
operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, 2003.

[84] Doug Whiting, Russell Housley, and Niels Ferguson. Counter with CBC-MAC
(CCM). RFC, 3610:1–26, 2003.

[85] Mihir Bellare, Phillip Rogaway, and David A. Wagner. The EAX mode of oper-
ation. In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption, 11th
International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised
Papers, volume 3017 of Lecture Notes in Computer Science, pages 389–407.
Springer, 2004.

[86] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance
conventional authenticated encryption mode. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption, 11th International Workshop, FSE 2004,
Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes
in Computer Science, pages 408–426. Springer, 2004.

[87] Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, and
Tadayoshi Kohno. Helix: Fast encryption and authentication in a single cryp-
tographic primitive. In Thomas Johansson, editor, Fast Software Encryption,
10th International Workshop, FSE 2003, Lund, Sweden, February 24-26, 2003,
Revised Papers, volume 2887 of Lecture Notes in Computer Science, pages 330–
346. Springer, 2003.

[88] Philip Hawkes and Gregory G. Rose. Primitive specification for SOBER-128.
IACR Cryptol. ePrint Arch., page 81, 2003.

[89] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a:
a new version of grain-128 with optional authentication. Int. J. Wirel. Mob.
Comput., 5(1):48–59, 2011.

[90] Christian Forler, Stefan Lucks, David McGrew, and Jakob Wenzel. Hash-CFB-
authenticated encryption without a block cipher. https://hyperelliptic.
org/DIAC/slides/hash-cfb-talk.pdf, Directions in Authenticated Ciphers
(DIAC), 2012.

[91] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
https://keccak.team/files/KeccakDIAC2012.pdf, Directions in Authenti-
cated Ciphers (DIAC), 2012.

[92] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA, November 18-22,
2002, pages 98–107. ACM, 2002.

[93] Tetsu Iwata and Kan Yasuda. HBS: A single-key mode of operation for de-
terministic authenticated encryption. In Orr Dunkelman, editor, Fast Software

239

https://hyperelliptic.org/DIAC/slides/hash-cfb-talk.pdf
https://hyperelliptic.org/DIAC/slides/hash-cfb-talk.pdf
https://keccak.team/files/KeccakDIAC2012.pdf


Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, Febru-
ary 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes in
Computer Science, pages 394–415. Springer, 2009.

[94] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of
almost foolproof on-line authenticated encryption schemes. In Anne Canteaut,
editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume
7549 of Lecture Notes in Computer Science, pages 196–215. Springer, 2012.

[95] Mitsuru Matsui. On correlation between the order of s-boxes and the strength
of DES. In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT
’94, Workshop on the Theory and Application of Cryptographic Techniques,
Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture Notes in
Computer Science, pages 366–375. Springer, 1994.

[96] Alex Biryukov and Ivica Nikolic. Automatic search for related-key differen-
tial characteristics in byte-oriented block ciphers: Application to aes, camellia,
khazad and others. In Henri Gilbert, editor, Advances in Cryptology - EU-
ROCRYPT 2010, 29th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 322–344. Springer, 2010.

[97] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search for
the best trails in ARX: application to block cipher speck. In Thomas Peyrin,
editor, Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume 9783
of Lecture Notes in Computer Science, pages 289–310. Springer, 2016.

[98] Joan Daemen and Gilles Van Assche. Differential propagation analysis of kec-
cak. In Anne Canteaut, editor, Fast Software Encryption - 19th International
Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Se-
lected Papers, volume 7549 of Lecture Notes in Computer Science, pages 422–
441. Springer, 2012.

[99] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for trail
bounds and application to differential trails in keccak. IACR Trans. Symmetric
Cryptol., 2017(1):329–357, 2017.

[100] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. Milp-based auto-
matic search algorithms for differential and linear trails for speck. In Thomas
Peyrin, editor, Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume
9783 of Lecture Notes in Computer Science, pages 268–288. Springer, 2016.

[101] Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of linear
trails in ARX with applications to SPECK and chaskey. In Mark Manulis,
Ahmad-Reza Sadeghi, and Steve A. Schneider, editors, Applied Cryptography
and Network Security - 14th International Conference, ACNS 2016, Guildford,

240



UK, June 19-22, 2016. Proceedings, volume 9696 of Lecture Notes in Computer
Science, pages 485–499. Springer, 2016.

[102] Nicky Mouha and Bart Preneel. A proof that the ARX cipher salsa20 is secure
against differential cryptanalysis. IACR Cryptol. ePrint Arch., page 328, 2013.

[103] David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March
24-26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer Science,
pages 156–170. Springer, 1999.

[104] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang
attacks against reduced-round MARS and serpent. In Bruce Schneier, editor,
Fast Software Encryption, 7th International Workshop, FSE 2000, New York,
NY, USA, April 10-12, 2000, Proceedings, volume 1978 of Lecture Notes in
Computer Science, pages 75–93. Springer, 2000.

[105] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rect-
angling the serpent. In Birgit Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, International Conference on the Theory and Application
of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding,
volume 2045 of Lecture Notes in Computer Science, pages 340–357. Springer,
2001.

[106] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rect-
angling the serpent. In Birgit Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, International Conference on the Theory and Application
of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding,
volume 2045 of Lecture Notes in Computer Science, pages 340–357. Springer,
2001.

[107] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and
rectangle attacks. In Joan Daemen and Vincent Rijmen, editors, Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February
4-6, 2002, Revised Papers, volume 2365 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2002.

[108] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3g telephony. J.
Cryptol., 27(4):824–849, 2014.

[109] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, vol-
ume 10821 of Lecture Notes in Computer Science, pages 683–714. Springer,
2018.

[110] Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe. Bivium as a mixed-
integer linear programming problem. In Matthew Geoffrey Parker, editor,

241



Cryptography and Coding, 12th IMA International Conference, Cryptography
and Coding 2009, Cirencester, UK, December 15-17, 2009. Proceedings, volume
5921 of Lecture Notes in Computer Science, pages 133–152. Springer, 2009.

[111] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security anal-
ysis of SIMD. In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors,
Selected Areas in Cryptography - 17th International Workshop, SAC 2010, Wa-
terloo, Ontario, Canada, August 12-13, 2010, Revised Selected Papers, volume
6544 of Lecture Notes in Computer Science, pages 351–368. Springer, 2010.

[112] Andrey Bogdanov. On unbalanced feistel networks with contracting MDS dif-
fusion. Des. Codes Cryptogr., 59(1-3):35–58, 2011.

[113] Shengbao Wu and Mingsheng Wang. Security evaluation against differential
cryptanalysis for block cipher structures. Cryptology ePrint Archive, Paper
2011/551, 2011. https://eprint.iacr.org/2011/551.

[114] Siwei Sun, Lei Hu, Ling Song, Yonghong Xie, and Peng Wang. Automatic
security evaluation of block ciphers with s-bp structures against related-key
differential attacks. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors,
Information Security and Cryptology - 9th International Conference, Inscrypt
2013, Guangzhou, China, November 27-30, 2013, Revised Selected Papers, vol-
ume 8567 of Lecture Notes in Computer Science, pages 39–51. Springer, 2013.

[115] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic security evaluation and (related-key) differential characteristic
search: Application to simon, present, lblock, DES(L) and other bit-oriented
block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptol-
ogy - ASIACRYPT 2014 - 20th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in
Computer Science, pages 158–178. Springer, 2014.

[116] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
Danping Shi, Ling Song, and Kai Fu. Towards finding the best characteristics
of some bit-oriented block ciphers and automatic enumeration of (related-key)
differential and linear characteristics with predefined properties. Cryptology
ePrint Archive, Paper 2014/747, 2014.

[117] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of differen-
tial characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129, 2017.

[118] Chunning Zhou, Wentao Zhang, Tianyou Ding, and Zejun Xiang. Improving the
milp-based security evaluation algorithm against differential/linear cryptanal-
ysis using A divide-and-conquer approach. IACR Trans. Symmetric Cryptol.,
2019(4):438–469, 2019.

[119] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, pages 513–525, 1997.

242

https://eprint.iacr.org/2011/551


[120] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD. In Cryp-
tographic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, pages 77–
88, 2003.

[121] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis
on A.E.S. In Applied Cryptography and Network Security, First International
Conference, ACNS 2003. Kunming, China, October 16-19, 2003, Proceedings,
pages 293–306, 2003.

[122] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. A
diagonal fault attack on the advanced encryption standard. IACR Cryptol.
ePrint Arch., page 581, 2009.

[123] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. In Informa-
tion Security Theory and Practice. Security and Privacy of Mobile Devices in
Wireless Communication - 5th IFIP WG 11.2 International Workshop, WISTP
2011, Heraklion, Crete, Greece, June 1-3, 2011. Proceedings, pages 224–233,
2011.

[124] Junko Takahashi and Toshinori Fukunaga. Differential fault analysis on CLE-
FIA with 128, 192, and 256-bit keys. IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci., 93-A(1):136–143, 2010.

[125] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New differential fault
analysis on PRESENT. EURASIP J. Adv. Signal Process., 2013:145, 2013.

[126] Ling Song and Lei Hu. Differential fault attack on the PRINCE block cipher.
In Gildas Avoine and Orhun Kara, editors, Lightweight Cryptography for Se-
curity and Privacy - Second International Workshop, LightSec 2013, Gebze,
Turkey, May 6-7, 2013, Revised Selected Papers, volume 8162 of Lecture Notes
in Computer Science, pages 43–54. Springer, 2013.

[127] Wei Cheng, Yongbin Zhou, and Laurent Sauvage. Differential fault analysis
on midori. In Kwok-Yan Lam, Chi-Hung Chi, and Sihan Qing, editors, Infor-
mation and Communications Security - 18th International Conference, ICICS
2016, Singapore, November 29 - December 2, 2016, Proceedings, volume 9977
of Lecture Notes in Computer Science, pages 307–317. Springer, 2016.

[128] Fred Roberts and Barry Tesman. Applied Combinatorics, Second Edition.
Chapman and Hall/CRC, 2nd edition, 2009.

[129] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. Birthday paradox,
coupon collectors, caching algorithms and self-organizing search. Discret. Appl.
Math., 39(3):207–229, 1992.

[130] L. Holst. On birthday, collectors’, occupancy and other classical urn problems.
Internat. Statist. Rev., 54:15-27, 1986.

243



[131] D. C. Van Leijenhorst and Theo P. van der Weide. A formal derivation of heaps’
law. Inf. Sci., 170(2-4):263–272, 2005.

[132] Toshio Nakata. Coupon collecto’s problem with unlike probabilities. Journal
of Classical Analysis, Volume 14(Number 2):177–180, 2019.

[133] J. D. Newman and L. Shepp. The double dixie cup problem, 1960.

[134] Jakub Breier, Wei He, Shivam Bhasin, Dirmanto Jap, Samuel Chef, Hock Guan
Ong, and Chee Lip Gan. Extensive laser fault injection profiling of 65 nm
FPGA. J. Hardw. Syst. Secur., 1(3):237–251, 2017.

[135] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Castro,
Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David Hély,
Régis Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Papadimitriou,
and Bruno Rouzeyre. Laser fault injection at the CMOS 28 nm technology
node: an analysis of the fault model. In 2018 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2018, Amsterdam, The Netherlands,
September 13, 2018, pages 1–6. IEEE Computer Society, 2018.

[136] Brice Colombier, Lilian Bossuet, Paul Grandamme, Julien Vernay, Emilie
Chanavat, Lucie Bon, and Bruno Chassagne. Multi-spot Laser Fault Injec-
tion Setup: New Possibilities for Fault Injection Attacks. In 20th Smart Card
Research and Advanced Application Conference - CARDIS 2021, Lübeck, Ger-
many, November 2021.

[137] W. Feller. An Introduction to Probability Theory and Its Applications. John
Wiley and New York, 1950.

[138] M. Sharif and B. Hassibi. Delay considerations for opportunistic scheduling in
broadcast fading channels, 1960.

[139] Weiyu Xu and Ao Kevin Tang. A generalized coupon collector problem. CoRR,
abs/1010.5608, 2010.

[140] H. von Schelling. Coupon collecting for unequal probabilities. American Math-
ematical Monthly, 61:306-311, 1954.

[141] Aristides Doumas and Vassilis Papanicolaou. The coupon collector’s problem
revisited: Asymptotics of the variance, 03 2012.

[142] Emmanuelle Anceaume, Yann Busnel, and Bruno Sericola. New results on a
generalized coupon collector problem using markov chains. J. Appl. Probab.,
52(2):405–418, 2015.

[143] Petra Berenbrink and Thomas Sauerwald. The weighted coupon collector’s
problem and applications. In Hung Q. Ngo, editor, Computing and Combina-
torics, 15th Annual International Conference, COCOON 2009, Niagara Falls,
NY, USA, July 13-15, 2009, Proceedings, volume 5609 of Lecture Notes in Com-
puter Science, pages 449–458. Springer, 2009.

[144] P. Neal. The generalised coupon collector problem. Journal of Applied Proba-
bility, 45(3), 621-629, 2008.

244



[145] Pierre-Simon Laplace. Théorie analytique des probabilités. pp. 194–195, 1812.

[146] Paul Erdős and Alfréd Rényi. On a classical problem of probability theory.
Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei,
6: 215–220, MR 0150807, 1961.

[147] Farzaneh Abed, Christian Forler, and Stefan Lucks. General classification of
the authenticated encryption schemes for the CAESAR competition. Computer
Science Review, 22:13–26, 2016.

[148] Dhiman Saha and Dipanwita Roy Chowdhury. Internal differential fault anal-
ysis of parallelizable ciphers in the counter-mode. Journal of Cryptographic
Engineering, Nov 2017.

[149] Alex Biryukov and Dmitry Khovratovich. PAEQ: parallelizable permutation-
based authenticated encryption. In Sherman S. M. Chow, Jan Camenisch,
Lucas Chi Kwong Hui, and Siu-Ming Yiu, editors, Information Security - 17th
International Conference, ISC 2014, Hong Kong, China, October 12-14, 2014.
Proceedings, volume 8783 of Lecture Notes in Computer Science, pages 72–89.
Springer, 2014.

[150] J. Aumasson, P. Jovanovic, and S. Neves. NORX V3.0. https://
competitions.cr.yp.to/round3/norxv30.pdf, 2016.

[151] J. Aumasson, P. Jovanovic, and S. Neves. NORX V1. http://competitions.
cr.yp.to/round1/norxv1.pdf, 2014.

[152] J. Aumasson, P. Jovanovic, and S. Neves. NORX V2.0. http://competitions.
cr.yp.to/round2/norxv20.pdf, 2015.

[153] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX8 and
NORX16: authenticated encryption for low-end systems. IACR Cryptology
ePrint Archive, 2015:1154, 2015.

[154] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Analysis of
NORX: investigating differential and rotational properties. In Progress in Cryp-
tology - LATINCRYPT 2014 - Third International Conference on Cryptology
and Information Security in Latin America, Florianópolis, Brazil, September
17-19, 2014, pages 306–324, 2014.

[155] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Dieter Gollmann, editor, Fast Software
Encryption, Third International Workshop, Cambridge, UK, February 21-23,
1996, Proceedings, volume 1039 of Lecture Notes in Computer Science, pages
71–82. Springer, 1996.

[156] Deukjo Hong, Donghoon Chang, Jaechul Sung, Sangjin Lee, Seokhie Hong,
Jaesang Lee, Dukjae Moon, and Sungtaek Chee. A new dedicated 256-bit
hash function: FORK-256. In Matthew J. B. Robshaw, editor, Fast Software
Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-
17, 2006, volume 4047 of Lecture Notes in Computer Science, pages 195–209.
Springer, 2006.

245

https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
http://competitions. cr.yp.to/round1/norxv1.pdf
http://competitions. cr.yp.to/round1/norxv1.pdf
http://competitions.cr.yp.to/round2/norxv20.pdf
http://competitions.cr.yp.to/round2/norxv20.pdf


[157] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Caesar submission: Ketje v2. https://competitions.cr.
yp.to/round3/ketjev2.pdf.

[158] Deukjo Hong, Donghoon Chang, Jaechul Sung, Sangjin Lee, Seokhie Hong,
Jaesang Lee, Dukjae Moon, and Sungtaek Chee. A new dedicated 256-bit
hash function: FORK-256. In Matthew J. B. Robshaw, editor, Fast Software
Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-
17, 2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer
Science, pages 195–209. Springer, 2006.

[159] Sourav Das, Subhamoy Maitra, and Willi Meier. Higher order differential anal-
ysis of NORX. IACR Cryptology ePrint Archive, 2015:186, 2015.

[160] J. Aumasson and W. Meier. Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi. NIST mailing list, 2009. http:
//aumasson.jp/data/papers/AM09.pdf.

[161] Nasour Bagheri, Tao Huang, Keting Jia, Florian Mendel, and Yu Sasaki. Crypt-
analysis of reduced NORX. In Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, pages 554–574,
2016.

[162] Ashutosh Dhar Dwivedi, Milos Kloucek, Pawel Morawiecki, Ivica Nikolic, Josef
Pieprzyk, and Sebastian Wójtowicz. Sat-based cryptanalysis of authenticated
ciphers from the CAESAR competition. In Proceedings of the 14th Interna-
tional Joint Conference on e-Business and Telecommunications (ICETE 2017)
- Volume 4: SECRYPT, Madrid, Spain, July 24-26, 2017., pages 237–246, 2017.

[163] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jérémy Jean, and Jean-René
Reinhard. Cryptanalysis of NORX v2.0. IACR Trans. Symmetric Cryptol.,
2017(1):156–174, 2017.

[164] Alex Biryukov, Aleksei Udovenko, and Vesselin Velichkov. Analysis of the
NORX core permutation. IACR Cryptology ePrint Archive, 2017:34, 2017.

[165] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer
Science, pages 612–643. Springer, 2020.

[166] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain Moëllic,
Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced single-bit faults in
flash memory: Instructions corruption on a 32-bit microcontroller. In IEEE In-
ternational Symposium on Hardware Oriented Security and Trust, HOST 2019,
McLean, VA, USA, May 5-10, 2019, pages 1–10. IEEE, 2019.

[167] J. Aumasson, P. Jovanovic, and S. Neves. C-source code of NORX v3.0, 2016.

246

https://competitions.cr.yp.to/round3/ketjev2.pdf.
https://competitions.cr.yp.to/round3/ketjev2.pdf.
http://aumasson.jp/data/papers/AM09.pdf
http://aumasson.jp/data/papers/AM09.pdf


[168] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise laser
fault injections into 90 nm and 45 nm sram-cells. In Naofumi Homma and
Marcel Medwed, editors, Smart Card Research and Advanced Applications -
14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 193–205. Springer, 2015.

[169] Sayandeep Saha, Rajat Subhra Chakraborty, Srinivasa Shashank Nuthakki, An-
shul, and Debdeep Mukhopadhyay. Improved test pattern generation for hard-
ware trojan detection using genetic algorithm and boolean satisfiability. In Tim
Güneysu and Helena Handschuh, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer
Science, pages 577–596. Springer, 2015.

[170] Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, Anne-Lise Ribotta,
Assia Tria, and Thierry Vaschalde. Fault round modification analysis of the
advanced encryption standard. In 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2012, San Francisco, CA, USA,
June 3-4, 2012, pages 140–145. IEEE Computer Society, 2012.

[171] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache,
Anne-Lise Ribotta, and Assia Tria. How to flip a bit? In 16th IEEE Inter-
national On-Line Testing Symposium (IOLTS 2010), 5-7 July, 2010, Corfu,
Greece, pages 235–239. IEEE Computer Society, 2010.

[172] Sheldon Ross. A first course in probability. Prentice Hall, New York,7th edition,
2005.

[173] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Morisset, and
Sébastien Ermeneux. Laser-induced fault injection on smartphone bypassing the
secure boot. In 2017 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, FDTC 2017, Taipei, Taiwan, September 25, 2017, pages 41–48. IEEE
Computer Society, 2017.

[174] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. Statistical fault attacks on nonce-based authenticated encryp-
tion schemes. In Advances in Cryptology - ASIACRYPT 2016 - 22nd Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, pages 369–
395, 2016.

[175] Christoph Dobraunig, Stefan Mangard, Florian Mendel, and Robert Primas.
Fault attacks on nonce-based authenticated encryption: Application to keyak
and ketje. In Selected Areas in Cryptography - SAC 2018 - 25th International
Conference, Calgary, AB, Canada, August 15-17, 2018, pages 257–277, 2018.

[176] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,

247



volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer,
1989.

[177] Ivan Damgård. A design principle for hash functions. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer,
1989.

[178] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The simon and speck lightweight block ciphers. In Proceedings of the 52nd An-
nual Design Automation Conference - DAC 2015 pp. 175:1–175:6 ACM (2015).

[179] Arthur Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22–42,
1984.

[180] Bruce Schneier and John Kelsey. Unbalanced feistel networks and block cipher
design. In Dieter Gollmann, editor, Fast Software Encryption, Third Interna-
tional Workshop, Cambridge, UK, February 21-23, 1996, Proceedings, volume
1039 of Lecture Notes in Computer Science, pages 121–144. Springer, 1996.

[181] Stefan Lucks. Faster luby-rackoff ciphers. In Dieter Gollmann, editor, Fast
Software Encryption, Third International Workshop, Cambridge, UK, February
21-23, 1996, Proceedings, volume 1039 of Lecture Notes in Computer Science,
pages 189–203. Springer, 1996.

[182] National Security Agency. Skipjack and KEA algorithm specifications”.

[183] Ronald L. Rivest, Matthew J. B. Robshaw, and Yiqun Lisa Yin. RC6 as the
AES. In The Third Advanced Encryption Standard Candidate Conference, April
13-14, 2000, New York, New York, USA, pages 337–342. National Institute of
Standards and Technology„ 2000.

[184] IBM Corporation. MARS - a candidate cipher for AES.

[185] Andrey Bogdanov and Kyoji Shibutani. Generalized feistel networks revisited.
Des. Codes Cryptogr., 66(1-3):75–97, 2013.

[186] Viet Tung Hoang and Phillip Rogaway. On generalized feistel networks. In
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 613–630,
2010.

[187] Kaisa Nyberg. Generalized feistel networks. In Kwangjo Kim and Tsutomu
Matsumoto, editors, Advances in Cryptology - ASIACRYPT ’96, International
Conference on the Theory and Applications of Cryptology and Information Secu-
rity, Kyongju, Korea, November 3-7, 1996, Proceedings, volume 1163 of Lecture
Notes in Computer Science, pages 91–104. Springer, 1996.

[188] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized feistel.
In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption, 17th In-
ternational Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised

248



Selected Papers, volume 6147 of Lecture Notes in Computer Science, pages 19–
39. Springer, 2010.

[189] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[190] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[191] Debapriya Basu Roy, Avik Chakraborti, Donghoon Chang, S. V. Dilip Kumar,
Debdeep Mukhopadhyay, and Mridul Nandi. Two efficient fault-based attacks
on CLOC and SILC. J. Hardw. Syst. Secur., 1(3):252–268, 2017.

[192] Christoph Dobraunig, Stefan Mangard, Florian Mendel, and Robert Primas.
Fault attacks on nonce-based authenticated encryption: Application to keyak
and ketje. In Carlos Cid and Michael J. Jacobson Jr., editors, Selected Areas
in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers, volume 11349 of Lecture
Notes in Computer Science, pages 257–277. Springer, 2018.

[193] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi,
Thomas Peyrin, and Kan Yasuda. PHOTON-Beetle: Authenticated encryption
and hash family, 2021. Submission to the NIST Lightweight Competition, May
17, 2021.

[194] Bishwajit Chakraborty and Mridul Nandi. ORANGE, 2019. Submission to the
NIST Lightweight Competition, September 20, 2019.

[195] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform
permutation. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture
Notes in Computer Science, pages 299–320. Springer, 2017.

[196] Muhammad Reza Z’aba, Norziana Jamil, Mohd Saufy Rohmad, Ha-
zlin Abdul Rani, and Solahuddin Shamsuddin. The CiliPadi family of
lightweight authenticated encryption. https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
cilipadi-spec.pdf.

[197] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic sponges. http://sponge.noekeon.org.

[198] Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal, and Raghven-
dra Rohit. ACE: An authenticated encryption and hash algorithm. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/ace-spec-round2.pdf.

249

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/cilipadi-spec.pdf.
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/cilipadi-spec.pdf.
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/cilipadi-spec.pdf.
http://sponge.noekeon.org
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ace-spec-round2.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ace-spec-round2.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ace-spec-round2.pdf.


[199] Arghya Bhattacharjee, Cuauhtemoc Mancillas López, Eik List, and Mridul
Nandi. The oribatida v1.3 family of lightweight authenticated encryption
schemes. J. Math. Cryptol., 15(1):305–344, 2021.

[200] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and
Qingju Wang. Schwaemm and Esch: Lightweight authenticated en-
cryption and hashing using the Sparkle permutation family". https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf.

[201] Riham AlTawy, Guang Gong, Morgan He, Kalikinkar Mandal, and Raghvendra
Rohit. Spix: An authenticated cipher.

[202] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar Mandal,
Mridul Nandi, and Raghvendra Rohit. SpoC: An authenticated cipher.

[203] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
https://keccak.team/files/KeccakDIAC2012.pdf.

[204] Internet of things global standards initiative. https://www.itu.int/en/
ITU-T/gsi/iot/Pages/default.aspx, 2015.

[205] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications -
extended abstract. In Advances in Cryptology - ASIACRYPT 2012, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658, pages 208–225. Springer,
2012.

[206] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, vol-
ume 9815, pages 123–153. Springer, 2016.

[207] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A family of small and efficient hardware-oriented block ci-
phers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 272–288. Springer, 2009.

[208] George Hatzivasilis, Konstantinos Fysarakis, Ioannis Papaefstathiou, and Char-
alampos Manifavas. A review of lightweight block ciphers. J. Cryptogr. Eng.,
8(2):141–184, 2018.

[209] Alex Biryukov and Léo Perrin. State of the art in lightweight symmetric cryp-
tography. IACR Cryptol. ePrint Arch., page 511, 2017.

250

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf.
https://keccak.team/files/KeccakDIAC2012.pdf
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx


[210] Kerry A. McKay, Lawrence E. Bassham, Meltem Sonmez Turan, and Nicky W.
Mouha. Report on lightweight cryptography. NIST Interagency/Internal Report
(NISTIR),National Institute of Standards and Technology, Gaithersburg, MD,
[online], 2017.

[211] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault at-
tacks on AES with faulty ciphertexts only. In 2013 Workshop on Fault Diagno-
sis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013,
pages 108–118. IEEE Computer Society, 2013.

[212] Michael Gruber, Matthias Probst, and Michael Tempelmeier. Statistical in-
effective fault analysis of GIMLI. In 2020 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2020, San Jose, CA, USA, De-
cember 7-11, 2020, pages 252–261. IEEE, 2020.

[213] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, pages 513–525.

[214] Amit Jana. Differential fault attack on feistel-based sponge AE schemes. J.
Hardw. Syst. Secur., 6(1), 2022.

[215] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, pages 222–239. Springer, 2011.

[216] Tetsu Iwata, Ling Song, Zhenzhen Bao, and Jian Guo. SIV-TEM-PHOTON
authenticated encryption and hash family, 2019. Submission to the NIST
Lightweight Competition, March 28, 2019.

[217] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez,
Mridul Nandi, and Yu Sasaki. ESTATE, 2019. Submission to the NIST
Lightweight Competition, March 29, 2019.

[218] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In Serge Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science,
pages 373–390. Springer, 2006.

[219] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.
SUNDAE: small universal deterministic authenticated encryption for the in-
ternet of things. IACR Trans. Symmetric Cryptol., 2018(3):1–35, 2018.

[220] Amit Jana. Unoptimized C-implementation of PHOTON-BEETLE state
recovery under random fault model. https://github.com/janaamit001/
PhotonBeetle_state_recovery_under_RfaultModel.git, 2023.

251

https://github.com/janaamit001/PhotonBeetle_state_recovery_under_RfaultModel.git
https://github.com/janaamit001/PhotonBeetle_state_recovery_under_RfaultModel.git


[221] Amit Jana. Unoptimized C-implementation of PHOTON-BEETLE state re-
covery under different fault models. https://github.com/janaamit001/
PHOTON-BEETLE.git, 2023.

[222] Amit Jana. Unoptimized C-implementation of ORANGE state recovery under
different fault models. https://github.com/janaamit001/ORANGE.git, 2023.

[223] Amit Jana. Unoptimized C-implementation of SIV-TEM-PHOTON state
recovery under different fault models. https://github.com/janaamit001/
SIV-TEM-PHOTON.git, 2023.

[224] Amit Jana. Unoptimized C-implementation of ESTATE state recovery under
different fault models. https://github.com/janaamit001/ESTATE.git, 2023.

[225] Amit Jana. Unoptimized C-implementation of faulty forgery simulation
of PHOTON-BEETLE and ESTATE. https://github.com/janaamit001/
Faulty_Forgery_Simulation.git, 2023.

[226] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
J. Cryptol., 4(1):3–72, 1991.

[227] Christina Boura and Daniel Coggia. Efficient MILP modelings for sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–
361, 2020.

[228] National Institue of Standards and Technology. Lightweight Cryptography.
Technical report, Aug 27 2018.

[229] Hongjun Wu and Tao Huang. TinyJAMBU: A Family of Lightweight Au-
thenticated Encryption Algorithms. https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
TinyJAMBU-spec.pdf. NIST LWC Round1 Candidate, 2019.

[230] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. Katan and
ktantan — a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, pages 272–288, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[231] Hongjun Wu and Tao Huang. TinyJAMBU: A Family of Lightweight Authen-
ticated Encryption Algorithms (Version 2). https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/tinyjambu-spec-final.pdf. NIST LWC Finalist, 2021.

[232] Hongjun Wu and Tao Huang. TinyJAMBU: A Family of Lightweight
Authenticated Encryption Algorithms. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/
spec-doc-rnd2/TinyJAMBU-spec-round2.pdf. NIST LWC Round2 Candi-
date, 2019.

[233] Ferdinand Sibleyras, Yu Sasaki, Yosuke Todo, Akinori Hosoyamada, and Kan
Yasuda. Birthday-bound slide attacks on tinyjambu’s keyed-permutations for

252

https://github.com/janaamit001/PHOTON-BEETLE.git
https://github.com/janaamit001/PHOTON-BEETLE.git
https://github.com/janaamit001/ORANGE.git
https://github.com/janaamit001/SIV-TEM-PHOTON.git
https://github.com/janaamit001/SIV-TEM-PHOTON.git
https://github.com/janaamit001/ESTATE.git
https://github.com/janaamit001/Faulty_Forgery_Simulation.git
https://github.com/janaamit001/Faulty_Forgery_Simulation.git
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf.
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf.
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf.


all key sizes. In Chen-Mou Cheng and Mitsuaki Akiyama, editors, Advances
in Information and Computer Security - 17th International Workshop on Secu-
rity, IWSEC 2022, Tokyo, Japan, August 31 - September 2, 2022, Proceedings,
volume 13504 of Lecture Notes in Computer Science, pages 107–127. Springer,
2022.

[234] Takanori Isobe, Yu Sasaki, and Jiageng Chen. Related-key boomerang attacks
on KATAN32/48/64. In Colin Boyd and Leonie Simpson, editors, Information
Security and Privacy - 18th Australasian Conference, ACISP 2013, Brisbane,
Australia, July 1-3, 2013. Proceedings, volume 7959 of Lecture Notes in Com-
puter Science, pages 268–285. Springer, 2013.

253



254


	Declaration of Authorship
	List of Publications/Manuscripts
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Private-key Cryptography
	Attack Models
	Security Goals
	Security Notion
	Other Private-key Primitives
	Cryptanalysis
	Brute-force Attack
	Differential Cryptanalysis
	Linear Cryptanalysis
	Side-channel Attack
	Fault Attacks
	Differential Fault Attack



	Motivation and Objectives
	Thesis Outline and Our Contributions
	Difference-based Fault Analysis on AE Schemes
	Analysis of NORX using Variants of Coupon Collector Problem
	Analysis on Feistel-based Sponge AE Schemes
	Analysis on Sponge and SIV-like AE Schemes

	Traditional Cryptanalysis of NLFSR-based Lightweight Ciphers: TinyJAMBU and 


	Background
	Generalized Feistel Networks (GFN)
	Classification of GFN
	Parameterized Definition of GFN

	Substitution Permutation Networks (SPN)
	Sponge Construction
	Synthetic IV (SIV) Construction
	Authenticated Encryption
	Differential Cryptanalysis
	Boomerang Attack
	Related-key Boomerang Attack
	MILP-based Cryptanalysis
	Differential Fault Analysis
	Statistical Fault Analysis
	Counting Elements Having at Least m Properties

	New Variants of Coupon Collector Problem
	Introduction
	Summary of Known Variants of the Coupon Collector Problem
	Generalized Problem Statement
	Solution for Different Cases

	Consecutive Coupon Collector Problem
	Non-Circular Consecutive Coupon Collector Problem
	Solution to a Boundary Case of Non-Circular Consecutive Coupon Collector Problem
	Solution to All Cases of Non-Circular Consecutive Coupon Collector Problem
	Total Number of Hypothesis Testing

	Circular Consecutive Coupon Collector Problem
	Solution to a Boundary Case of Circular Consecutive Coupon Collector Problem
	Solution to All Cases of Circular Consecutive Coupon Collector Problem
	Total Number of Hypothesis Testing


	Some observations
	Conclusion

	Differential Fault Analysis of NORX Using Variants of Coupon Collector Problem
	Introduction
	Summary of The Chapter
	Related Works

	Specification of NORX
	Attack Scenario
	Creating a Replay on NORX with Parallel Encryption 
	Feasibility of the Counter Fault
	Injecting Fault at the ldiag(S) Call

	Our General Strategy to Perform DFA on NORX
	Random Byte with Known Fault Model
	Random Bit-flip Fault Model
	Case 1: Faults on word b
	Case 2: Faults on word c
	Theoretical Analysis of the Model

	Random Byte-flip Fault Model
	Case 1: Byte-Flip on the word b
	Case 2: Byte-flip on the word c
	Theoretical Analysis of the Model

	Consecutive Bit-Flip Fault Model
	Case 1: Consecutive Bits Fault on b
	Case 2: Consecutive Bits Fault on c:
	Theoretical Analysis of the Model 1

	Experimental Results
	Random Byte with Known Fault Model
	Random Bit-flip Fault Model
	Consecutive Bit-Flip Fault Model


	Discussion
	Fault Attack on FORK-256
	Countermeasures

	Conclusion

	Differential Fault Attack on Feistel-based Sponge AE Schemes
	Introduction
	Summary of The Chapter

	Preliminaries
	Sponge based Authenticated Encryption using GFN
	Description of CiliPadi

	Fault Attack on CiliPadi
	Random Fault Model
	The Fault Attack Description
	The Forging Attack
	LED State Recovery of Type-2 GFN in CiliPadi
	Branch Recovery of CiliPadi
	Key Recovery of CiliPadi AEAD
	Attack Complexity
	Theory vs. Experiment.


	Generalized Fault Attack on GFN-based Sponge AE
	Fault Attack on SPN-based GFN Sponge AE
	The Fault Model
	The Fault Attack Description
	SPN State Recovery in GFN
	Branch Recovery of SPN-based GFN
	Key Recovery of Sponge AE
	Attack Complexity

	Fault Attack on Single Round GFN-based Sponge AE
	The Fault Model
	The Fault Attack Description
	State Recovery of Sponge AE
	Attack Complexity


	Countermeasures
	Conclusion

	Differential Fault Attack on SPN-based Sponge and SIV-like AE Schemes
	Introduction
	Summary of The Chapter

	Notations and Cipher Specifications
	PHOTON Permutation
	Photon-Beetle AEAD
	ORANGE AEAD
	SIV-TEM-PHOTON AEAD
	ESTATE AEAD

	Differential Fault Based Forgery Attack
	Random Nibble Fault Model
	The Fault Model
	The Fault Attack Description
	State Recovery of Photon-based AE schemes
	Attack Complexity
	Software Implementation

	Random Bit-flip Fault Model
	The Fault Model.
	The Fault Attack Description
	State Recovery of Photon-based AE Schemes
	Attack Complexity
	Software Implementation

	Known Fault Model
	The Fault Model
	The Fault Attack Description
	State Recovery of Photon-based AE Schemes
	Attack Complexity
	Software Implementation
	Further Improvement over Faults

	Theory vs. Experiment

	Discussion and Countermeasures
	Conclusion

	Depend on DEEPAND: Cryptanalysis of NLFSR-based Lightweight Ciphers TinyJAMBU and 
	Introduction
	Summary of The Chapter

	Specifications of TinyJAMBU and 
	TinyJAMBU
	

	Introducing DEEPAND Modeling 
	Refined Modeling as a Special Case of DEEPAND

	DEEPAND Modeling of NLFSR-based Ciphers 
	Case-1: Single AND Based NLFSR
	Computing Forward Differential
	Computing Backward Differential

	Case-2: Multiple AND Based NLFSR
	Generalization of Chained ANDs
	Experimental Evidence of MAND

	MILP Based DEEPAND Modeling for NLFSR
	MILP Modeling of BAND
	MILP Modeling of MAND

	Attacks on TinyJAMBU
	Summary of Relevant Previous Attacks
	Differential properties of the keyed permutation Pl.
	Forgery Attacks on TinyJAMBU Mode.

	Attacks on Keyed Permutation Pl
	MILP Modeling for Finding Differential characteristic
	Cluster Differential characteristic of P384
	Differential characteristic of P640,P1024
	Related-key Differential characteristic of P1024128,P1152192, and P1280256

	Fixing Saha et al.'s Forgery Attack

	Attacks on 
	Improved Differential Cryptanalysis of 
	MILP Modeling of Free Rounds.
	Modeling the Dependency Between AND Gates
	DEEPAND Based New Differential characteristics for 

	Related Key Differential Attack
	Improving Isobe et al.'s Related Key Boomerang Attack


	Conclusion 

	Concluding Remarks
	Summary
	Discussion
	Future Research




