
Handling Class Imbalance Using

Regularized Auto-Encoders with

Weighted Calibration

A dissertation submitted in

partial fulfilment for the degree of

Master of Technology

in

Computer Science

by

Anup Mandal

Roll no. - [CS2204]

under the supervision of

Dr. Swagatam Das

Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute, Kolkata

June, 2024

2

Acknowledgement

I would like to thank my supervisor, Dr. Swagatam Das for the opportunity pro-

vided to complete my dissertation. Most importantly, I would like to express my

utmost gratitude to Mr. Priyobrata Mondal, SRF, who helped me with every dif-

ficulty I faced and guided me with his knowledge of deep learning techniques and

PyTorch coding.

I also acknowledge the computational resources provided to me which helped

me carry out my research work. I would like to thank my friends for their help,

emotional support and invaluable companionship.

ii

iii

Declaration

I, Anup Mandal, with Roll No. CS2204 hereby declare that the material pre-

sented in the dissertation titled Handling Class Imbalance Using Regularized

Auto-Encoders with Weighted Calibration represents original work carried

out by me for the degree of Master of Technology, Computer Science at In-

dian Statistical Institute, Kolkata.

Furthermore, I affirm that no sections of this report have been sourced or copied

from external references without proper attribution. I am aware that any instances

of plagiarism or the utilization of unacknowledged materials from third parties will

be treated with utmost seriousness and consequences.

June,2024

Anup Mandal

Roll no.- CS2204

Abstract

DeepSmote uses the SMOTE technique in the latent space of an Autoencoder-

Decoder model to produce high fidelity images for imbalanced data. But it is be

limited by 2 essential artillery: over-fitting the data and a lack of continuity of the

latent space thus giving bad results. To overcome this, a number of regularized

autoencoders have been proposed. Furthermore, the latent space was oversampled

using a variety of approaches. Finally, a new method is a weighted calibration to

the latent space of minority classes and has proven to be pretty accurate compared

to other tested methods.

Keywords: Classification, Class imbalance, Calibration, Latent Space,

Regularized auto-encoders

iv

Contents

Certificate i

Acknowledgement ii

Abstract iv

1 Introduction 1

1.1 Imbalanced data and its problem . 1

1.2 Problems and limitations of usual SMOTE for imbalanced real image

data . 2

1.3 DeepSmote: Deep Learning and SMOTE 3

1.4 DeepSmote challenges and possible solutions. 4

1.4.1 Challenges . 4

1.4.2 Solutions . 4

2 Literature Review 6

2.1 Imbalanced Data in Machine Learning 6

2.2 Data-Level Approaches: Under-Sampling and Over-Sampling 6

2.2.1 Undersampling Techniques . 6

2.2.2 Oversampling Techniques . 7

2.3 Ensemble Approaches . 7

2.4 Algorithm-Level Approaches . 7

2.5 Advances in Deep Learning and Imbalanced Data 8

2.6 Generative Models for Oversampling 8

2.6.1 BAGAN and GAMO . 8

2.6.2 DeepSmote . 8

2.6.3 Addressing Overfitting and Continuity 9

2.7 Calibration . 9

3 Preliminaries and some useful algorithms 10

3.1 Synthetic Minority Over-sampling Technique (SMOTE) 11

3.2 DeepSmote . 11

v

vi CONTENTS

3.2.1 DeepSmote Algorithm . 13

3.3 ADASYN . 13

3.4 Denoising Autoencoder . 15

3.5 Sparse Auto-encoder . 16

3.6 Variational Autoencoder (VAE) . 17

3.6.1 VAE Loss Function . 17

3.7 Variational Autoencoder (VAE) Loss Function 19

3.7.1 Components . 19

3.7.2 Dependency . 20

3.7.3 Trade-Off . 20

3.7.4 β-VAE . 20

3.7.5 Benefits of β-VAE . 20

3.8 Gaussian Mixture Model (GMM) . 21

3.8.1 Significance of GMM . 21

3.9 Gaussian Multivariate Normal Distribution 21

3.9.1 Prior and Posterior Distributions 22

4 Our contribution and proposed methods 24

4.1 Solutions to DeepSmote Problems . 24

4.2 Regularized Auto-Encoders . 24

4.2.1 Denoising Auto-Encoder . 24

4.2.2 Sparse Auto-Encoder . 24

4.3 Ensuring Latent Space Continuity . 25

4.3.1 Training on Imbalanced Data 25

4.3.2 SMOTE in Latent Space . 25

4.3.3 Decoding . 25

4.4 Using ADASYN for Enhanced Oversampling 25

4.4.1 Training the Auto-Encoder . 25

4.4.2 Applying ADASYN . 25

4.4.3 Decoding and Classification 26

4.5 Weighted Calibration Balancing . 26

4.5.1 Class Partitioning . 26

4.5.2 Gaussian Mixture Model Partitioning 26

4.5.3 Minority Class Processing . 27

4.5.4 Synthetic Latent Vectors . 27

4.5.5 Median Class Processing . 27

4.6 Algorithm . 28

4.7 Overall Algorithm . 29

CONTENTS vii

5 Experiments and Results 30

5.1 Data Overview . 30

5.2 Evaluation Metrices . 31

5.2.1 Recall (Macro Average) . 31

5.2.2 Precision (Macro Average) . 31

5.2.3 F1 Score (Macro Average) . 32

5.3 Training Details . 32

5.4 Results . 33

5.4.1 MNIST . 33

5.4.2 CIFAR 10 . 35

6 Conclusion and Future work 37

Bibliography 39

List of Figures

1.1 On training for multiple epochs, a neural network gradually learns

the decision boundaries of the data points. 2

3.1 Pictorial view of SMOTE. 10

3.2 DeepSmote [1] . 13

3.3 Denoising Auto-encoder . 16

3.4 Sparse Auto-encoder . 18

5.1 Class distribution of data points in the Imbalanced MNIST dataset . 31

5.2 Class distribution of the Imbalanced CIFAR10 dataset 32

viii

List of Tables

5.1 Comparison of DeepSmote results with other results on Imbalanced

MNIST . 34

5.2 Comparison of DeepSmote results with other results includingWeighted

Calibration in Denoising Auto-encoder on Imbalanced MNIST 34

5.3 Comparison of DeepSmote results with proposed method’s results on

Imbalanced CIFAR10 . 35

5.4 DeepSmote results with proposed method’s results on Imbalanced

CIFAR10 . 36

5.5 Comparison DeepSmote results with proposed method’s results on

Imbalanced CIFAR10 . 36

ix

x LIST OF TABLES

Chapter 1

Introduction

1.1 Imbalanced data and its problem

Teaching machines from imbalanced datasets is one of the most interesting open

challenges in the field of machine learning [2]. For imbalanced class distributions,

the classifiers are always inclined to the major class, which may cause great er-

rors or even ignore the minor classes. This becomes an even larger problem in

mission-critical applications such as healthcare, where minority class detection may

represent identifying rare diseases to intrusion detection systems that have to un-

cover infrequent but dangerous security breaches, image recognition systems that

need to correctly classify rare objects or fraud detection systems that are meant

to expose rare fraudulent transactions. Therefore, dealing with the class imbalance

problem has been one of the main interests to the research community for more than

two decades [3].

It has become evident from recent developments that there are other problems

than class disparity. Limited sample sizes, minor disjuncts, challenging and bor-

derline cases, and the dynamic nature of streaming data are further contributing

factors [3]. As new fraud strategies surface, for example, the minority class in credit

card fraud detection—fraudulent transactions [4] is not only uncommon but also

ever-changing. For solutions to be developed that can effectively address these data

difficulties, these complexities call for ongoing research and innovation.

Deep learning has showed considerable potential in a variety of applications. It is

known for its extraordinary powers in cognitive and recognition tasks. Deep learning

models are particularly susceptible to unbalanced data distributions, notwithstand-

ing their advantages. In addition, they must cope with complicated data structures,

comprehend how unbalanced data affects the extracted embeddings, adjust to the

1

2 CHAPTER 1. INTRODUCTION

constantly changing nature of data, and absorb knowledge from a large number of

classes [5], [6]. In the field of medical imaging [7], for instance, deep learning mod-

els must reliably identify uncommon illnesses from big, intricate image datasets in

which the proportion of normal cases to abnormal ones is significantly higher [8].

Figure 1.1: On training for multiple epochs, a neural network gradually learns the
decision boundaries of the data points.

1.2 Problems and limitations of usual SMOTE for

imbalanced real image data

The machine learning community was aware of the problem of class imbalance even

before to the emergence of deep learning. Thus, while new models of deep learning

were being created, scientists were also trying to make these models more resistant to

class imbalance. Since deep learning models were developed using solutions already

in existence for standard classifiers, this first appeared to be simple. Nevertheless,

this method soon showed its shortcomings, particularly with regard to end-to-end

deep learning models.

In the domain of deep learning, for example, SMOTE (Synthetic Minority Over-

sampling Technique) [9] and related oversampling techniques, which were very suc-

cessful for conventional classifiers, proved less successful for two key reasons. Feature

extraction and classification in end-to-end deep learning are linked processes that

are taught concurrently using backpropagation of a single loss function. Initially,

1.3. DEEPSMOTE: DEEP LEARNING AND SMOTE 3

SMOTE-type approaches create fresh samples in the feature space. Integrating

SMOTE into deep learning frameworks is difficult because of this reliance.

Second, to generate new samples and surround areas depending on a distance

measure, SMOTE use convex combinations of existing samples. However, there are

limitations to this method because deep learning models are often used to non-

vector datasets such as images, audio, and video. Convex combinations of samples

can produce inconsequential findings, and standard distance measurements are not

adequately characterized in these situations. For example, from the Fashion-MNIST

dataset, two T-shirts or tops that are more visually comparable based on Euclidean

distance may appear closer to each other than they actually are. Furthermore, the

MNIST dataset’s convex merging of two images of the ”9” yields no meaningful ”9,”

much less a recognizable number [10].

1.3 DeepSmote: Deep Learning and SMOTE

Even after twenty years of progress, handling unbalanced data is still a major prob-

lem for contemporary machine learning models. The necessity to solve this problem

has been made much more apparent by the development of deep learning. Over-

sampling instances and altering loss functions are the two primary methods that are

frequently employed. However, oversampling may lead to mode collapse and other

issues. Generative Adversarial Networks (GANs), for instance [11]. Consequently,

an oversampling method is needed to balance the dataset, enhance minority classes,

and process raw photographs while preserving their properties. This method must

also support deep learning models.

DeepSmote [1] successfully addresses this issue by utilizing an autoencoder’s

latent space. It consists of three main components: (i) an encoder-decoder archi-

tecture; (ii) SMOTE-based oversampling used in the latent space, which guarantees

that convex combinations are only used to combine the necessary encoded features;

and (iii) a specific loss function with a penalty term. This approach decodes im-

ages from a latent space where only significant features are modified, hence resolv-

ing the earlier problem of creating unrealistic images with SMOTE. In contrast to

GAN-based methods(e.g., BAGAN, GAMO [12], [13]), DeepSmote doesn’t need a

discriminator. It creates excellent synthetic images that are visually realistic and

information-rich, improving minority class representation and yielding a more bal-

anced training dataset.

4 CHAPTER 1. INTRODUCTION

1.4 DeepSmote challenges and possible solutions.

1.4.1 Challenges

Even though SMOTE oversampling is used in the latent space, DeepSmote has two

major flaws. Overfitting is the first thing that limits you. Since DeepSmote uses

a simple vanila auto-encoder, it overfits training data, which makes it less accurate

when it comes to test or new samples. DeepSmote might learn too much about the

specifics of the training images, for instance, if it is taught on a set of handwritten

numbers. So, when it comes across new images, like numbers written in slightly

different styles or variations, it works much less well.

The second problem is that there is no continuity in the hidden space. In the

latent space, when SMOTE is used, synthetic latent feature vectors are made. Still,

the input training examples are used to teach the auto-encoder how to make a cer-

tain set of encoded feature latent vectors. The decoder may make silly or unrealistic

pictures when it decodes generated latent vectors. As an example, the auto-encoder

could be taught to store data in a facial identification dataset about things like eye

position, nose shape, and mouth width. If SMOTE makes a fake latent vector that

is not in the same range as these learned properties, the decoder might make a face

or expression that doesn’t look right, with eyes or expressions that are in the wrong

place.

These problems make it clear how hard it is to use SMOTE and regular auto-

encoders in the latent space. They also show how important it is to find more

reliable methods that can work with new data and keep the continuity of the latent

space so that realistic fake images can be made.

1.4.2 Solutions

We talk about these problems in this report in a step-by-step way. We used two

different kinds of regularized autoencoders, each with its own unique penalty loss

function, to avoid overfitting. The first one is a Deep Denoising Autoencoder [14]

that adds Gaussian noise as a loss. The second type is a Deep Sparse Autoencoder

[15], which penalizes each node based on its average absolute value in the flattened

hidden layers. This pushes nodes toward zero to promote sparsity. In a later part,

we’ll go over these approaches in more mathematical detail.

Next, we used SMOTE on the latent space of these regularized autoencoders to

make fake latent vectors. Then, these vectors were turned into real pictures to fix

1.4. DEEPSMOTE CHALLENGES AND POSSIBLE SOLUTIONS. 5

the dataset’s imbalance by oversampling it. The results are much better when this

method is used, according to our research.

We then addressed the problem of continuity preservation in the latent space. In

order to do this, we used a Variational Autoencoder (VAE) [16], which makes use

of the KL divergence penalty loss to guarantee that the distribution of the latent

feature vectors is comparable to that of a multivariate standard Gaussian distribu-

tion. After applying SMOTE in the latent space, the autoencoder’s reconstruction

capacity may be compromised by adding the KL divergence penalty, leading to hazy

images. This problem is most noticeable when using intricate image datasets such

as CIFAR-10. Finally, we made the results even better by replacing the latent space

SMOTE with ADASYN [17], a method for adaptive oversampling.

At the end We introduced a novel technique called ”Weighted Calibration

Balancing” in the latent space of the minority classes in order to obtain better

results. Details will be discussed later in this report.

Chapter 2

Literature Review

2.1 Imbalanced Data in Machine Learning

Imbalanced data is a big problem in machine learning. Researchers like esearchers

like Japkowicz (2000) [18] and Chawla et al. (2002) [9] were the first to notice this

issue. The first studies showed that unequal class distributions can throw off model

predictions, which usually leads to poor results for minority classes. Traditionally,

this problem was dealt with by doing things like not sampling enough of the ma-

jority class and sampling too much of the minority class. The Synthetic Minority

Over-sampling Technique (SMOTE), which was created by Chawla et al. (2002)

and is a key part of this work, creates fake samples by connecting examples from

different minority groups.

2.2 Data-Level Approaches: Under-Sampling and

Over-Sampling

At the data level, under-sampling and over-sampling are two ways to deal with class

mismatch. Under-sampling tries to balance the dataset by reducing the number

of samples from the majority class. It causes the information loss of the majority

class. On the other hand, too much sampling increases the number of samples from

minority classes. Advanced methods have been created in this area, including:

2.2.1 Undersampling Techniques

Undersampling techniques aim to balance the class distribution by reducing the

number of majority class instances. One common method is Random Undersampling

6

2.3. ENSEMBLE APPROACHES 7

(RUS), which involves randomly removing majority class instances to match the

number of minority class instances.

Edited Nearest Neighbors (ENN), described by Wilson (1972) [19], removes ma-

jority class instances that are misclassified by their k-nearest neighbors, thereby

cleaning the dataset and improving classifier performance.

Tomek Links, introduced by Tomek (1976) [20], identify pairs of instances from

different classes that are each other’s nearest neighbors. Removing the majority

class instance in each Tomek Link pair helps to clean the class boundary, improving

classifier accuracy.

2.2.2 Oversampling Techniques

For example, Chawla et al. (2002)’s SMOTE (Synthetic Minority Over-sampling

Technique) creates fake samples by connecting minority class instances. ADASYN,

or Adaptive Synthetic Sampling, was created by He et al. (2008) [17] and focuses on

creating fake samples for more difficult minority class situations. KMeans-SMOTE,

created by Last et al. (2017) [21], combines k-means clustering with SMOTE to

create samples. According to Han et al. (2005) [22], Borderline-SMOTE aims to

create synthetic samples close to the decision border.

2.3 Ensemble Approaches

When working with uneven datasets, ensemble approaches combine many models.

It also works well. Specific variations on techniques like bagging, boosting, and

stacking can be made to help the minority class do better. Two well-known ensemble

methods that deal with class mismatch are Balanced Random Forest (BRF) [23] and

EasyEnsemble by Liu et al [24]. These methods integrate resampling techniques into

the ensemble framework to effectively handle imbalanced classes.

2.4 Algorithm-Level Approaches

Algorithm-level methods are techniques used to enhance learning algorithms in order

to effectively deal with imbalanced data. These methods involve modifying decision

thresholds, changing class weights in loss functions, and integrating cost-sensitive

learning techniques [25]. These changes guarantee that models provide greater focus

to minority classes during the training process.

8 CHAPTER 2. LITERATURE REVIEW

2.5 Advances in Deep Learning and Imbalanced

Data

With the rise of deep learning, the problem of uneven data has become even more

difficult. Deep learning models, which are great at finding trends in large amounts

of data, can become very biased toward majority classes. This bias makes it hard for

minority class estimates to work, as Buda, Maki, and Mazurowski (2018)[26] showed.

To deal with this, ideas have been put forward like changing the loss function. Lin

et al. (2017) [27] came up with the Focal Loss, which shifts the learning focus to

examples that are hard to identify. This makes the model work better on datasets

that are not balanced.

2.6 Generative Models for Oversampling

For example, Goodfellow et al. (2014) presented generative models called Generative

Adversarial Networks (GANs) that have been studied for their ability to make fake

data that can even out class distributions. Within a competitive setup, GANs use a

generator and a discriminator to create real-life data sets. GANs still can experience

mode collapse, which limits the output variety and makes it harder to make synthetic

samples that are varied.

2.6.1 BAGAN and GAMO

GAMO (2018) and Balanced GAN (BAGAN) by Mariani et al. (2018) are more

advanced methods that try to make GAN work better with uneven data. While

GAMO focuses on minority classes through an adversarial method, BAGAN uses

balancing techniques within the GAN framework to pull together diverse samples.

The mode collapse and training difficulty still exist for these new methods.

2.6.2 DeepSmote

An alternative to standard GAN-based methods called DeepSMOTE was created by

Damien Dablain, Bartosz Krawczyk, and Nitesh V. Chawla in 2021. DeepSMOTE

creates high-quality synthetic pictures by using SMOTE in the latent space of regu-

larized auto-encoders. This doesn’t let the mode fall apart. The three main parts of

the method are a system for encoders and decoders, oversampling based on SMOTE

in the latent space, and a better loss function with a penalty term. This way of

making latent vectors makes them more likely to be correct and keep the qualities

of the original data. This helps you work with numbers that aren’t balanced.

2.7. CALIBRATION 9

2.6.3 Addressing Overfitting and Continuity

Overfitting, where models perform well on training data but poorly on unseen data,

is a common deep learning issue. Regularized autoencoders, such as denoising au-

toencoders (Vincent et al., 2008) and sparse autoencoders (Ranzato et al., 2007),

add noise or enforce sparsity in hidden layers to enhance generalization. We used a

VAE with a KL divergence penalty to impose continuity in the latent space, hence

encouraging a smooth distribution in the latent space. By guaranteeing that syn-

thetic samples preserve the characteristics of the original data, this improves the

performance of the model as a whole.

2.7 Calibration

When the data is not balanced, calibration techniques are very important because

they change the classifier’s output probabilities to better match the real probabilities.

Isotonic regression and Platt scaling are two methods that are used to re-calibrate

models. The 2021 work ”Free Lunch for Few-shot Learning: Distribution Calibra-

tion” by Yang et al [28]. talks about advanced calibration methods that can be used

with datasets that are not balanced.

A lot of work has been done in the literature to deal with uneven data in machine

learning, but there are still problems, especially when trying to add these methods to

deep learning frameworks. Our method is based on these ideas and uses regularized

auto-encoders and new ways of manipulating latent space to make high-quality fake

data. We picked over-sampling methods because they avoid the information loss

that comes with under-sampling. This gives us a richer dataset for training and

makes the model much better at handling datasets that are not balanced.

Chapter 3

Preliminaries and some useful

algorithms

In this chapter we are going to discull some related methods and useful algorithms.

Definition 1. Imbalance Ratio (IR): IR = max{Ni

Nj
|i, j ∈ C; i ̸= j}, where Ni,

Nj are the total no. of data points in in class i and j respectively, when x is partioned

in to some calsses. Therefore, X can be considered as imbalanced if IR > 1.

Figure 3.1: Pictorial view of SMOTE.

10

3.1. SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE (SMOTE) 11

3.1 Synthetic Minority Over-sampling Technique

(SMOTE)

Algorithm 1 SMOTE

1: procedure SMOTE(T,N, k) ▷ T : Minority samples, N : Amount of SMOTE,

k: Number of nearest neighbors in the minority class

2: N ← min(N, 100)

3: N ← N/100

4: Synth← [] ▷ Array to hold synthetic samples

5: NewIndex← 0

6: for each sample x in T do

7: nnarray ← k nearest neighbors of x within the minority class

8: for i from 1 to N do

9: nn← random number from 1 to k

10: Synth[NewIndex]← interpolate(x, nnarray[nn])

11: NewIndex← NewIndex+ 1

12: end for

13: end for

14: return Synth

15: end procedure

16: function interpolate(x1, x2)

17: δ ← random number between 0 and 1

18: return x1 + δ × (x2 − x1)

19: end function

3.2 DeepSmote

DeepSmote is an advanced oversampling technique that addresses class imbalance

by generating synthetic samples through a deep learning approach. It combines the

benefits of traditional SMOTE with deep neural networks. DeepSmote incorporates

permutation loss to ensure diversity and prevent overfitting by generating synthetic

samples that are more varied and representative of the minority class. By leveraging

deep learning, it can capture complex data distributions, leading to improved per-

formance in imbalanced classification tasks. This method is particularly effective in

high-dimensional datasets where traditional oversampling techniques may fall short.

12 CHAPTER 3. PRELIMINARIES AND SOME USEFUL ALGORITHMS

Algorithm 2 DeepSmote

1: Data: B: batches of imbalanced training data
2: B = {b1, b2, . . . , bn}
3: Input:
4: Model parameters: Θ = {Θ0,Θ1, . . . ,Θj}
5: Learning Rate: α
6: Output: Balanced training set.
7: Train the Encoder / Decoder:
8: for e← epochs do
9: for m← B do
10: EB ← encode(B)
11: DB ← decode(EB)
12: CD ← sample(class data)
13: ES ← encode(CD)
14: PE ← permute-order(ES)
15: DP ← decode(PE)
16: PL = 1

n

∑n
i=1(DP i− CDi)

2

17: TL = RL + PL

18: Θ := Θ− α∂TL

∂Θ
19: end for
20: end for

1: Generate Samples:
2: for i← number of minority classes do
3: C ← select(class data)
4: E ← encode(C)
5: G← SMOTE(E)
6: S ← decode(G)
7: end for

3.3. ADASYN 13

Figure 3.2: DeepSmote [1]

3.2.1 DeepSmote Algorithm

3.3 ADASYN

The ADASYN (Adaptive Synthetic Sampling) algorithm improves class balance by

adaptively generating synthetic samples according to the difficulty of learning each

minority class instance. Instead of creating an equal number of synthetic samples

for each minority instance as in SMOTE, ADASYN uses a density distribution to

determine how many synthetic samples to generate for each minority instance. This

density distribution shows how hard it is to learn each instance. Instances that

are harder to learn, like those with more majority class peers, get more synthetic

samples. This targeted method not only evens out the dataset to the level of balance

that is set by a parameter, but it also forces the learning algorithm to focus on

the harder minority class examples, which leads to better performance all around.

ADASYN makes a more useful and varied dataset by focusing on difficult cases. This

helps the learning algorithm generalize better, which makes it better than SMOTE’s

uniform sampling method.

The core principle of the ADASYN algorithm is to use a density distribution r̂i to

automatically determine the number of synthetic samples needed for each minority

class example. The r̂i value measures the weight distribution of different minority

class examples based on their learning difficulty. Essentially, it indicates how chal-

lenging each minority instance is to learn. After applying ADASYN, the resulting

dataset not only achieves a balanced representation according to the desired balance

level set by the β coefficient, but also directs the learning algorithm’s focus toward

14 CHAPTER 3. PRELIMINARIES AND SOME USEFUL ALGORITHMS

Algorithm 3 ADASYN

1: Input: Training dataset Dtr with m samples {(xi, yi)} where xi ∈ Rn is an
instance in the n-dimensional feature space, and yi ∈ {1,−1} is the class label.
ms is the number of minority class samples, and ml is the number of majority
class samples such that ms ≤ ml and ms + ml = m.

2: procedure ADASYN(Dtr, dth, β, K)
3: Calculate the degree of class imbalance: d = ms

ml
.

4: if d < dth then
5: Calculate the number of synthetic samples needed: G = (ml −ms)× β.
6: for each minority class sample xi do
7: Find K nearest neighbors of xi in the minority class.
8: Calculate ri =

∆i

K
, where ∆i is the number of majority class samples

among the K nearest neighbors.
9: end for
10: Normalize ri to get r̂i =

ri∑ms
i=1 ri

.

11: for each minority class sample xi do
12: Calculate the number of synthetic samples for xi: gi = r̂i ×G.
13: for j = 1 to gi do
14: Randomly select one of the K nearest neighbors of xi, denoted as

xzi.
15: Generate synthetic sample: si = xi + λ × (xzi − xi), where λ is a

random number between 0 and 1.
16: end for
17: end for
18: end if
19: end procedure

3.4. DENOISING AUTOENCODER 15

the more difficult-to-learn instances. If you compare to the SMOTE technique, which

creates an equal amount of synthetic samples for each minority instance without tak-

ing into account their unique learning problems, our adaptive sampling strategy is

a major improvement. ADASYN improves the model’s performance on imbalanced

datasets and helps it generalize by emphasizing the more difficult-to-learn examples.

3.4 Denoising Autoencoder

Denoising autoencoders are neural network models specifically designed to learn ro-

bust data representations by reconstructing the original input from its noisy version.

This approach compels the model to extract the most important features of the data,

enhancing its resilience to noise and corruption.

In this model, let x denote the original clean input, x̃ the noisy version of the

input, and x̂ = g(f(x̃)) the reconstructed output, where f is the encoder function

and g is the decoder function.

The reconstruction loss measures how well the autoencoder can recreate the

original input from the noisy input, typically using the Mean Squared Error (MSE):

Lreconstruction(x, g(f(x)) =
1

n

n∑
i=1

(xi − g(f(xi))
2 (3.1)

where n is the number of elements in x.

The denoising loss, which evaluates the model’s capability to denoise the input,

is often the same as the reconstruction loss when using MSE:

Ldenoising(x, x̂) =
1

n

n∑
i=1

(xi − x̂i)
2 (3.2)

The total loss for a denoising autoencoder combines the reconstruction loss and

the denoising loss, which can be weighted by a regularization parameter λ:

Ltotal = Lreconstruction + λ · Ldenoising (3.3)

Denoising autoencoders provide several advantages:

• Feature Learning: They efficiently learn compressed representations of fea-

tures, even from noisy data.

• Noise Robustness: They can effectively reconstruct the original data from

corrupted inputs, improving the model’s resilience to noise.

16 CHAPTER 3. PRELIMINARIES AND SOME USEFUL ALGORITHMS

Figure 3.3: Denoising Auto-encoder

• Generalization: By focusing on denoising, they prevent the network from

learning a trivial identity mapping, promoting the discovery of meaningful

data representations.

• Improved Performance: The robustness to noise and ability to extract

essential features often result in improved performance on subsequent tasks.

3.5 Sparse Auto-encoder

A sparse autoencoder includes a specific loss function to encourage sparsity in the

hidden layers. This loss function is composed of:

• Reconstruction Loss: This measures how well the autoencoder can recon-

struct the original input from the encoded representation, typically using Mean

Squared Error (MSE):

Lrecon(x, x̂) =
1

n

n∑
i=1

(xi − x̂i)
2

where x is the original input, x̂ is the reconstructed output, and n is the

number of samples or dimensions.

• Sparsity Penalty: This term encourages the activation of fewer neurons,

promoting a sparse representation:

Lsparse =
∑
l

1

ml

ml∑
j=1

|alj|

3.6. VARIATIONAL AUTOENCODER (VAE) 17

where alj represents the activation of the j-th neuron in layer l, and ml is the

number of neurons in layer l.

• Total Loss Function: The total loss combines the reconstruction loss and

the sparsity penalty:

Ltotal = Lrecon + λLsparse

where λ is a regularization parameter that weights the importance of the spar-

sity penalty.

There are several good things that happen when you add a sparsity limit to an

autoencoder:

• Activation with Selection only activates some neurons, which lets neurons

specialize in detecting certain traits or patterns.

• Reduction of Overfitting:Cutting down on overfitting: Cutting down on the

amount of active neurons makes it less likely that the model will remember

the training data. It can now handle new info better because of this.

• Efficient Data Representation:The best way to describe data is in a small,

meaningful way that takes into account the most important parts of the data.

This is useful for tasks like reducing the number of dimensions and extracting

features.

• Computational Benefits:The good things about computers are: With sparse

models, you can get things done faster and with less memory. This helps a lot

when you’re working with big numbers.

3.6 Variational Autoencoder (VAE)

A type of neural network called variational autoencoders (VAEs) learns a compressed

version of the input data and uses it to create new data points. To do this, the VAE

encodes the data into a hidden space and then decodes it back to its original pattern.

It is important to use VAEs because they make sure that the latent space is smooth

and continuous, and that similar points in the latent space match up with similar

data points in the original space. This function is needed to make new samples that

make sense.

3.6.1 VAE Loss Function

The loss function of a VAE is made of two main parts. The reconstruction loss

and the Kullback-Leibler (KL) divergence loss. The reconstruction loss confirms

18 CHAPTER 3. PRELIMINARIES AND SOME USEFUL ALGORITHMS

Figure 3.4: Sparse Auto-encoder

that the VAE accurately reconstructs the input data. And the KL divergence loss

regularizes the latent space to follow a prior distribution, typically a standard normal

distribution.

Reconstruction Loss

The reconstruction loss Lrecon is typically measured using Mean Squared Error

(MSE):

Lrecon(x, x̂) =
1

n

n∑
i=1

(xi − x̂i)
2 (3.4)

where x is the original input, x̂ is the reconstructed output, and n is the number

of elements in x.

KL Divergence Loss

The KL divergence loss LKL measures how much the learned latent distribution

q(z|x) deviates from the prior distribution p(z), usually a standard normal distribu-

tion:

LKL = DKL(q(z|x)∥p(z)) (3.5)

3.7. VARIATIONAL AUTOENCODER (VAE) LOSS FUNCTION 19

Total Loss Function

The total loss function for a VAE is the sum of the reconstruction loss and the KL

divergence loss:

Ltotal = Lrecon + LKL (3.6)

Effect of KL Divergence Penalty on Reconstruction Loss

As long as the KL divergence term is there, the latent space of the VAE will

follow the planned prior distribution. Regularization is needed to make sure that

changes and continuity in the latent space stay smooth. This is important for

getting real new samples. Focusing too much on the KL divergence can make the

reconstruction loss worse because the model has to find a balance between correctly

rebuilding the input data and keeping the latent space well-organized. When the KL

divergence gets bigger, the Variational Autoencoder (VAE) might focus on keeping

the structure of the latent space instead of correctly reconstructing the input, which

can cause a higher reconstruction error.

Ultimately, Variational Autoencoders (VAEs) achieve a delicate equilibrium be-

tween faithfully reproducing the original input data and preserving a well-organized

latent space. The KL divergence term encourages the development of a continuous

and smooth latent space, which is crucial for producing coherent and consistent

new samples. Nevertheless, this regularization may result in a higher reconstruction

error, emphasizing the intrinsic trade-off involved in training VAEs.

3.7 Variational Autoencoder (VAE) Loss Func-

tion

In a Variational Autoencoder (VAE), the total loss function combines the recon-

struction loss and the KL divergence loss. This can be expressed as:

L = Eq(z|x)[log p(x|z)]−DKL(q(z|x)∥p(z)) (3.7)

To convert this to a minimization problem, we use the negative of the ELBO:

Ltotal = −Eq(z|x)[log p(x|z)] +DKL(q(z|x)∥p(z)) (3.8)

3.7.1 Components

1. Reconstruction Loss: Measures how well the model reconstructs the input data:

Lrecon = −Eq(z|x)[log p(x|z)] (3.9)

20 CHAPTER 3. PRELIMINARIES AND SOME USEFUL ALGORITHMS

2. KL Divergence Loss: Regularizes the latent space to follow the prior distri-

bution:

LKL = DKL(q(z|x)∥p(z)) (3.10)

3.7.2 Dependency

The KL divergence term and the rebuilding loss depend on: When you raise the KL

divergence term, the latent space has to match the prior distribution more closely.

This can make the reconstruction loss higher because the model has less room to

move. Cutting down on the KL divergence term makes reconstruction better, but

the latent space is less regularized as a result.

3.7.3 Trade-Off

Balancing these terms is key to the performance of a VAE:

Ltotal = Lrecon + β · LKL (3.11)

where β controls the trade-off. Higher β increases the emphasis on the KL

divergence, potentially leading to higher reconstruction loss.

3.7.4 β-VAE

The β-VAE (Beta Variational Autoencoder) [29] adds to the standard VAE by

adding a hyperparameter β that sets the balance between how well the reconstruc-

tion works and how well the latent representations are separated. The loss function

has been changed to include the term β:

Ltotal = Lrecon + β · LKL (3.12)

As β goes up, the KL divergence term becomes more important. This leads

to better detangling and a more structured latent space, but it also causes more

reconstruction loss.

3.7.5 Benefits of β-VAE

Better Disentanglement: Latent factors are better separated. Trade-off with Con-

trol:You can fine-tune the balance between rebuilding accuracy and latent space

regularization by changing β.

3.8. GAUSSIAN MIXTURE MODEL (GMM) 21

3.8 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a type of statistical model that thinks data

comes from a mix of different Gaussian distributions, each with its own mean and

covariance. In math terms, a GMM is written as:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.13)

The mixed weights are shown by πk and the Gaussian distribution for the kth

component is shown by N (x|µk,Σk). The mean is µk and the covariance is Σk. The

total number of Gaussian components is shown by K. Usually, the Expectation-

Maximization (EM) algorithm is used to predict the GMM parameters. This algo-

rithm improves the likelihood of the observed data over and over again.

3.8.1 Significance of GMM

GMMs are very useful because they can describe data with more than one underlying

distribution. By combining several Gaussian distributions, they can correctly show

data distributions with more than one peak. Because of this feature, GMMs can

be used for grouping, where the model puts data points into groups based on how

likely they are to be in those groups. Hard grouping is something that GMMs can

do. Each data point has an equal chance of being in each cluster. This isn’t the

same as hard grouping, which assigns each point to a group.

There is another use for GMMs density estimation. This is the process of finding

out the probability density function of a set of data. This feature is useful for

many things, like finding ”anomalies,” which are things that don’t fit the predicted

distribution and show that something isn’t right. In banking, GMMs are used to

model risk. In biology, they are used to put gene expressions into groups. And in

image processing, they are used to do things like split up images. Because it can

work with incomplete data and use what it already knows, the model is accurate

and flexible. This makes it more useful in many real-life scenarios.

Note that: In multi-dimensional data distribution, we have to deal with mean

vector and covariance matrix instead.

3.9 Gaussian Multivariate Normal Distribution

The standard Gaussian, commonly referred to as the standard multivariate normal

distribution, expands the one-dimensional normal distribution to encompass several

dimensions. The concept is characterized by a mean vector and a covariance matrix.

22 CHAPTER 3. PRELIMINARIES AND SOME USEFUL ALGORITHMS

The probability density function (PDF) of a multivariate normal distribution for

a random vector x in Rd can be expressed mathematically as:

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.14)

where:

• x is a d-dimensional random vector.

• µ is the mean vector.

• Σ is the covariance matrix, which is symmetric and positive-definite.

• |Σ| is the determinant of the covariance matrix.

• Σ−1 is the inverse of the covariance matrix.

Standard Gaussian Distribution

The standard Gaussian distribution is a specific example of the multivariate

normal distribution. The mean vector µ is zero and the covariance matrix Σ is

empty. This is an easier way to look at the probability density function (PDF) for

a regular Gaussian distribution with dimensions d :

p(x) =
1

(2π)d/2
exp

(
−1

2
xTx

)
(3.15)

In this special case:

• The mean vector µ = 0.

• The covariance matrix Σ = I.

The standard Gaussian distribution is used widely in many domains, including

as statistics and machine learning.

3.9.1 Prior and Posterior Distributions

Prior Distribution: This is what people knew or thought about a measure θ be-

fore any new data was seen. It is written as p(θ). It’s what we know or think

we know about the parameter from past experience, expertise, or information that

is specific to the subject. The posterior distribution is made by adding the prior

distribution and the chance of the data in Bayesian statistics. In math terms, the

prior distribution is written as: p(θ).

Posterior Distribution: The posterior distribution, shown by p(θ|x), shows
how the new information about the parameter θ changes the opinions about it after

3.9. GAUSSIAN MULTIVARIATE NORMAL DISTRIBUTION 23

observing the data x. Bayes’ theorem is used to mix the prior distribution and the

likelihood of the observed data. By using new information, the posterior distribution

gives a better estimate of the measure.

Bayes’ theorem is given by:

p(θ|x) = p(x|θ)p(θ)
p(x)

(3.16)

where:

• p(θ|x) is the posterior distribution.

• p(x|θ) is the likelihood of the observed data given the parameter θ.

• p(θ) is the prior distribution.

• p(x) is the marginal likelihood or evidence, which normalizes the posterior

distribution.

The posterior distribution takes into account both the old and new data, which

helps us get a better sense of the parameter θ.

Chapter 4

Our contribution and proposed

methods

4.1 Solutions to DeepSmote Problems

In this chapter, we present solutions to the challenges faced by DeepSmote, namely

overfitting and continuity in the latent space.

4.2 Regularized Auto-Encoders

To mitigate the issue of overfitting in DeepSmote, we employ two types of regularized

auto-encoders:

4.2.1 Denoising Auto-Encoder

This auto-encoder is designed to reconstruct input data from its noisy version. By

doing so, it focuses on learning the essential features of the data, thereby reducing

the likelihood of overfitting. The denoising mechanism ensures the model captures

the core structure of the data rather than memorizing the noise.

4.2.2 Sparse Auto-Encoder

This variant imposes a sparsity constraint on the activations within the network. By

penalizing the activation of too many neurons, the model is encouraged to learn a

more compact and generalized representation of the data, which helps in preventing

overfitting.

We apply the SMOTE technique in the latent space of these auto-encoders to

generate synthetic data. The regularization (denoising and sparsity) helps in main-

taining a balanced dataset without overfitting. After generating a balanced dataset,

24

4.3. ENSURING LATENT SPACE CONTINUITY 25

we retrain the model using a suitable classifier. Detailed experimental results are

provided in subsequent chapters.

4.3 Ensuring Latent Space Continuity

The continuity issue in the latent space is addressed using Variational Auto-Encoders

(VAEs) or Beta VAEs. These models are designed to maintain a continuous latent

space through regularization.

4.3.1 Training on Imbalanced Data

We first train the VAE/Beta VAE on the imbalanced dataset. The inherent regu-

larization in these models ensures a smooth and continuous latent space.

4.3.2 SMOTE in Latent Space

Post training, we apply SMOTE within the latent space to create synthetic latent

feature vectors.

4.3.3 Decoding

These synthetic latent vectors are decoded back into data samples, generating new

instances that help balance the minority classes.

After achieving a balanced dataset, the model is retrained using an appropriate

classifier. Detailed experiments and their outcomes are discussed in later chapters.

4.4 Using ADASYN for Enhanced Oversampling

In addition to SMOTE, we explore ADASYN (Adaptive Synthetic Sampling) within

the latent space of the Denoising Auto-Encoder to improve the representation of

minority classes.

4.4.1 Training the Auto-Encoder

Initially, the Denoising Auto-Encoder is trained on the imbalanced dataset to pro-

duce robust latent representations.

4.4.2 Applying ADASYN

ADASYN is then used in the latent space to generate synthetic samples, focusing

on creating more challenging samples that enhance minority class representation.

26 CHAPTER 4. OUR CONTRIBUTION AND PROPOSED METHODS

4.4.3 Decoding and Classification

The synthetic latent vectors generated by ADASYN are decoded to create new data

samples. These samples are used to balance the dataset, which is then employed to

retrain the classifier.

This approach aims to improve the classifier’s performance by focusing on difficult-

to-classify samples. The effectiveness of this method is validated through experi-

ments and detailed results presented in later chapters.

4.5 Weighted Calibration Balancing

In the end, we developed a novel algorithm to balance imbalanced data based on

DISTRIBUTION CALIBRATION. We will elaborate on this novel technique called

“Weighted Calibration Balancing” to balance each dataset class. Below, I discuss

the whole method.

4.5.1 Class Partitioning

First, mark the data classes as Majority class, Median class, and Minority class

according to their cardinality. The Majority class is the class with the highest

cardinality. Now let c be the cardinality of a particular class andm be the cardinality

of the Majority class. Then if 10c < m, the corresponding class with cardinality c is

defined as the Minority class. The remaining classes are marked as Median classes.

4.5.2 Gaussian Mixture Model Partitioning

Next, partition all the classes other than the Minority class into ni components of a

Gaussian Mixture Model (GMM). Now let ci be the cardinality of such a class and

suppose that s be the minimum cardinality among those Minority classes. Then ni

is defined as follows:

ni =
ci
s

After each class’s GMM components, we would have a mean vector and a covari-

ance matrix. After, save the particular mean vector and the covariance matrices of a

specific class in two lists and save their indices. Do this according to the increasing

class labels and append the lists after the execution of each class.

Note that all of these classes represented here are the encoded latent

representations of them.

4.5. WEIGHTED CALIBRATION BALANCING 27

4.5.3 Minority Class Processing

For each sample in a Minority class:

1. Find the k-nearest neighbors from the saved list of mean vectors.

2. Compute µxc and Σxc for each sample using the following formulas:

µxc =

∑k
i=1

(
1

dxc,i

)
µi + xc

1 +
∑k

i=1

(
1

dxc,i

) (4.1)

Σxc =

∑k
i=1

(
1

dxc,i

)
Σi + Σc

1 +
∑k

i=1

(
1

dxc,i

) (4.2)

where dxc,i is the distance of xc from the i-th mean vector in its k-nearest

neighbors and Σi is the corresponding covariance matrix for the same index i.

The Σc is the covariance matrix of a minority class after taking one component

from the Gaussian mixture distribution.

4.5.4 Synthetic Latent Vectors

Use µxc and Σxc pairs as parameters of a multivariate Cauchy distribution to sample

synthetic latent vectors. Sample synthetic latent vectors to balance a particular

Minority class with cardinality c. Let k number samples in Minority have to be

sampled. Then k can be written as follow:

k =
m− c

c

synthetic latent vectors for each µxc ,Σxc pair.

4.5.5 Median Class Processing

Apply SMOTE in the latent space to generate synthetic latent vectors for the Median

classes.

Decoding: Finally, the decoder decodes each synthetic latent vector from each

imbalanced class to balance the dataset.

28 CHAPTER 4. OUR CONTRIBUTION AND PROPOSED METHODS

4.6 Algorithm

Algorithm 4 Weighted Calibration Balancing

1: procedure WeightedCalibrationBalancing

2: Input: Dataset with multiple classes

3: Output: Balanced dataset

4: Step 1: Class Partitioning

5: Mark classes as Majority, Median, and Minority.

6: Majority class: Class with the highest number of samples.

7: Minority classes: Classes where 10 ∗ cardinality < Cardinality of the Majority class.

8: Median classes: All other classes.

9: Step 2: Gaussian Mixture Model Partitioning

10: for each class that is not Minority do

11: Partition class into ni components of a Gaussian Mixture Model, where ni =
Cardinality of the class

cardinality of the minimal minority class .

12: Save the mean vectors and covariance matrices.

13: end for

14: Step 3: Minority Class Processing

15: for each sample xc in each Minority class do

16: Find the k-nearest neighbors from the saved list of mean vectors.

17: Compute µxc
and Σxc

using:

µxc =

∑k
i=1

(
1

dxc,i

)
µi + xc

1 +
∑k

i=1

(
1

dxc,i

)

Σxc
=

∑k
i=1

(
1

dxc,i

)
Σi +Σc

1 +
∑k

i=1

(
1

dxc,i

)
18: dxc,i is the distance of xc from the i-th mean vector in its k-nearest neighbors.

19: Σi is the corresponding covariance matrix for the same index i.

20: Σc is the covariance matrix of a minority class after taking one component from the

Gaussian mixture distribution.

21: end for

22: Step 4: Synthetic Latent Vectors Generation

23: for each Minority class do

24: for each µxc
,Σxc

pair do

25: Sample synthetic latent vectors using multivariate Cauchy distribution.

26: Generate (m−c)
c synthetic latent vectors for each µxc

,Σxc
pair.

27: end for

28: end for

29: Step 5: Median Class Processing

30: Apply SMOTE in the latent space to generate synthetic latent vectors for the Median

classes.

31: Step 6: Decoding

32: Decode the synthetic latent vectors to balance the dataset.

33: end procedure

4.7. OVERALL ALGORITHM 29

4.7 Overall Algorithm

The ”Weighted Calibration Balancing” algorithm is designed to address class

imbalance in datasets by generating synthetic samples. It begins by classifying data

into Majority, Median, and Minority classes based on their sample sizes. Majority

classes have the most samples, while Minority classes have fewer than one-tenth the

samples of the Majority class.

Next, it applies Gaussian Mixture Models (GMM) to partition Majority and

Median classes, saving their mean vectors and covariance matrices. For each sample

in the Minority class, the algorithm computes new mean vectors and covariance

matrices by considering the nearest neighbors from the saved mean vectors.

Using these parameters, the algorithm generates synthetic latent vectors via a

multivariate Cauchy distribution for Minority classes. For Median classes, it applies

SMOTE in the latent space to create synthetic vectors. Finally, it decodes these

synthetic latent vectors to achieve a balanced dataset.

Chapter 5

Experiments and Results

This chapter presents the results of our extensive experiments and our observations

and interpretation of those results. We have mainly worked with two datasets (

Imbalanced MNIST and Imbalanced CIFAR10) and compared the performance on

some key metrics with existing methods known in the literature.

5.1 Data Overview

This set of data from MNIST includes handwritten pictures of numbers. This set

has 60,000 pictures for training and 10,000 images for testing. With a resolution of

28x28 pixels, each picture is grayscale, and there are 10 different classes that show

the numbers 0 through 9. To make the dataset less balanced, a certain number

of samples were picked at random from the training set’s respective classes. Using

the MNIST dataset, the numbers of unbalanced samples in each class were [4000,

2000, 1000, 750, 500, 350, 200, 100, 60, 40]. Therefore, there was a mismatch of

100:1, meaning that the largest minority class had 100 times fewer samples than the

smallest majority class.

The CIFAR-10 dataset is a widely used benchmark dataset in computer vi-

sion and machine learning. It is designed for fine-grained object recognition tasks.

CIFAR-10 consists of 10 classes, each containing 6000 images, resulting in a total

of 60,000 images. The dataset is divided into a training set of 50,000 images and a

test set of 10,000 images. Each image in CIFAR-10 has a fixed size of 32x32 pixels.

The images are RGB (color) images, meaning they have three color channels (red,

green, and blue) for each pixel. Using the CIFAR10 dataset, the numbers of unbal-

anced samples in each class were [5000, 2500, 1000, 1000, 600, 400, 300, 150, 90, 50].

Therefore, there was a mismatch of 100:1, meaning that the largest minority class

had 100 times fewer samples than the smallest majority class.

30

5.2. EVALUATION METRICES 31

Figure 5.1: Class distribution of data points in the Imbalanced MNIST dataset

5.2 Evaluation Metrices

To check the performances of imbalanced MNIST and CIFAR10 datasets.The perfor-

mance metrics used are recall(macro average), Precision(macro average), F1 score(macro

average). These metrices are very popular in the literature.

5.2.1 Recall (Macro Average)

Recall measures the ability of the model to correctly identify all relevant instances

within a class. The macro average recall is computed by taking the average recall

of each class, treating all classes equally, regardless of their size. It is defined as:

Recall (macro average) =
1

N

N∑
i=1

True Positivesi
True Positivesi + False Negativesi

where N is the number of classes.

5.2.2 Precision (Macro Average)

Precision indicates the accuracy of the positive predictions made by the model. The

macro average precision is the average of precision values for each class, giving equal

32 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.2: Class distribution of the Imbalanced CIFAR10 dataset

weight to all classes. It is calculated as:

Precision (macro average) =
1

N

N∑
i=1

True Positivesi
True Positivesi + False Positivesi

5.2.3 F1 Score (Macro Average)

The F1 score is the harmonic mean of precision and recall, providing a single measure

of a test’s accuracy. The macro average F1 score is the average of F1 scores for each

class, ensuring equal consideration for all classes. It is given by:

F1 Score (macro average) =
1

N

N∑
i=1

2× Precisioni × Recalli
Precisioni +Recalli

These metrics are particularly useful in imbalanced datasets to provide a bal-

anced view of model performance across all classes.

5.3 Training Details

We designed our auto-encoders using convolutional layers for the encoder, followed

by a latent space representation, and inverse layers for the decoder. The encoder

architecture comprises four convolutional layers, each followed by batch normaliza-

tion and the LeakyReLU activation function. The dimensions of the hidden layers

are set to 64. The final layer is a linear layer, resulting in a latent dimension of 300.

For the decoder, we used four convolutional transpose layers, mirroring the struc-

ture of the encoder. These layers also utilize batch normalization and the Rectified

5.4. RESULTS 33

Linear Unit (ReLU) activation function, except for the final layer, which employs

the Tanh activation function.

The models were trained for a duration of 50 to 350 epochs, stopping once the

training loss plateaued. The training was conducted using the Adam optimizer with

a learning rate of 0.0003. All implementations, including DeepSMOTE, were carried

out using the PyTorch framework.

Since MNIST’s digits are gray-scale images we use a Multi-Layer-Perceptron(MLP)

with two hidden layers for the classification task of imbalanced MNIST data set.

For the classification purpos of CIFAR10 data, we take a ResNet-18[?] architec-

ture with Adam optimiser and a learning rate of 1e−1. ResNet-18 is a part of the

ResNet (Residual Network) family of Convolutional Neural Networks. The basic

building block of this family of neural networks is the ’residual block’ which has

skip connections across layers to promote better flow of information between layers.

Some modifications are made to adapt the network to the CIFAR data image size of

32x32 pixels, like the initial 7x7 convolutional layer with stride 2 and max pooling is

replaced with a 3x3 convolutional layer with stride 1 and no max pooling. ResNet-

18 has been shown to achieve high accuracy on CIFAR-10 and is widely used as a

baseline model for benchmarking image classification performance on this dataset.

5.4 Results

5.4.1 MNIST

The results, detailed in Table 5.1, demonstrate the superior performance of regular-

ized auto-encoders compared to the Baseline and DeepSmote methods. The success

of regularized auto-encoders can be attributed to their ability to prevent overfitting

to the training data. Specifically, DeepSparseSmote showed better performance than

DeepSmote, while DeepDenoisingSmote outperformed all other methods.

Additionally, BetaVAE also surpassed DeepSmote in terms of performance. How-

ever, it was observed that BetaVAE produced a higher reconstruction loss during

training. This increased reconstruction loss is a consequence of the trade-off be-

tween disentanglement and reconstruction accuracy. As a result, BetaVAE some-

times generated blurrier images, which occasionally led to confusion for the classifier,

particularly in the case of imbalanced MNIST data.

These findings underline the importance of regularization in auto-encoders for

handling imbalanced datasets. Regularized auto-encoders not only improve the qual-

ity of generated samples but also enhance the overall performance of the model by

ensuring it does not overfit to the training data. The trade-off observed in BetaVAE

highlights the challenges of balancing different aspects of model performance, such

34 CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.1: Comparison of DeepSmote results with other results on Imbalanced
MNIST

Methods Recall Precision F1 score
DeepSmote 0.8286 0.8363 0.8251
βVAE, β= 1 0.8608 0.0.8713 0.8533
βVAE, β= 2 0.8243 0.8462 0.8164

DeepSparseSmote 0.8546 0.8628 0.8529
DeepDenoisingSmote 0.8637 0.8715 0.8612

Table 5.2: Comparison of DeepSmote results with other results including Weighted
Calibration in Denoising Auto-encoder on Imbalanced MNIST

Methods Recall Precision F1 score
DeepSmote 0.8286 0.8363 0.8251
βVAE, β= 1 0.8608 0.0.8713 0.8533
βVAE, β= 2 0.8243 0.8462 0.8164

DeepDenoising with Weighted Calibration 0.9230 0.9202 0.9216

as disentanglement and reconstruction accuracy.

From Table 5.2 we can be assured that our novel ”Weighted Calibration Bal-

ancing” method beats all other methods. The ”Weighted Calibration Balancing”

method works really well because it carefully changes the weight of each synthetic

sample. This makes sure that minority classes are better reflected without adding

too much noise to the model. This calibration works really well at keeping the qual-

ity and variety of the samples that are made, which makes the classification model

more accurate and fair.

5.4. RESULTS 35

5.4.2 CIFAR 10

From the Table 5.3 it is clear that DeepDenoisingSmote beats others here also. For

the same reason in the case of MNIST. From From the Table 5.4 it is observed that

our DeepDenoising and Weighted Calibration also performs better than DeepSmote.

Finaly from the Table 5.4 we can say that DeepAdasyn outperforms all.

DeepADASYN outperformed other methods on the CIFAR-10 dataset, which

contains complex color images with diverse objects, by effectively addressing its

unique challenges through adaptive synthetic sampling. Unlike traditional SMOTE,

ADASYN focuses on generating more synthetic samples for the minority class in-

stances that are harder to learn, ensuring the classifier pays more attention to these

challenging examples. This adaptive approach promotes greater diversity and a

more balanced training set by targeting underrepresented and difficult-to-classify

instances, enhancing the classifier’s ability to generalize. Furthermore, integrating

deep learning models for feature extraction before applying ADASYN captures in-

tricate patterns in the data, producing higher-quality synthetic samples that are

especially beneficial for high-dimensional datasets like CIFAR-10.

The Weighted Calibration Balancing algorithm works here but not significantly.

The CIFAR-10 dataset presented the greatest challenge for deep oversampling algo-

rithms. We believe this is due to the diverse nature of the CIFAR-10 classes, which

do not share common attributes, unlike datasets such as MNIST where all classes

represent different digits. For instance, CIFAR-10 includes varied categories such

as cats, dogs, airplanes, and frogs. This diversity means that models cannot easily

transfer knowledge from the majority class, which has more samples, to the minority

class, which has fewer samples. Additionally, we observed that there is significant

feature overlap among some of the CIFAR-10 classes, further complicating the task

for these models.

Table 5.3: Comparison of DeepSmote results with proposed method’s results on
Imbalanced CIFAR10

Methods Recall Precision F1 score
DeepSmote 0.4443 0.3547 0.3945
βVAE, β= 1 0.4304 0.3370 0.3780
βVAE, β= 2 0.4438 0.3549 0.3944

DeepSparseSmote 0.4651 0.3708 0.4126
DeepDenoisingSmote 0.4725 0.3844 0.4239

36 CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.4: DeepSmote results with proposed method’s results on Imbalanced CI-
FAR10

Methods Recall Precision F1 score
DeepSmote 0.4443 0.3547 0.3945
βVAE, β= 1 0.4304 0.3370 0.3780
βVAE, β= 2 0.4438 0.3549 0.3944

DeepDenoising with Weighted Calibration 0.4468 0.3709 0.4053

Table 5.5: Comparison DeepSmote results with proposed method’s results on Im-
balanced CIFAR10

Methods Recall Precision F1 score
DeepSmote 0.4443 0.3547 0.3945
βVAE, β= 1 0.4304 0.3370 0.3780
βVAE, β= 2 0.4438 0.3549 0.3944

DeepDenoising with Weighted Calibration 0.4468 0.3709 0.4053
DeepAdasyn 0.5048 0.4225 0.4600

Chapter 6

Conclusion and Future work

Using Deep Denoising SMOTE for oversampling gave us better results than other

auto-encoders in terms of macro-average recall, accuracy, and F1 score when we

tested it on unbalanced MNIST data. This achievement shows that regularization

is a good way to stop overfitting. Also, our new ”Weighted Calibration Balancing”

method worked 4 percent better than Deep Denoising SMOTE when used in the

Deep Denoising Auto-Encoder scheme. This shows how effective this method is.

When compared to normal Deep SMOTE, the Beta VAE also did better. By

using SMOTE in the Beta VAE’s latent space, we were able to make samples with

more variation while keeping the latent space continuous and smooth. This is very

important for getting true and varied data samples. It is important to keep in mind,

though, that Beta VAE’s gains in disentanglement and variability often come at the

cost of more reconstruction loss. This makes samples less clear, making it hard for

classifiers to correctly put them into groups.

We had the same problems when we used unbalanced CIFAR-10 data. The re-

building loss in Beta VAE made it hard to classify the samples because they were

not as different from each other.

To address these challenges and further improve our methods, we plan to ex-

plore advanced auto-encoders such as Beta-TCVAE and Wasserstein Autoencoders

(WAE). These models aim to maintain a continuous latent space while ensuring

smooth and high-quality sample generation. We will apply our current techniques

to these models and investigate whether they can yield even better results. Aslos

note that literature shows Beta-TCVAE can get better disentanglement managing

the reconstruction loss.

Additionally, we will continue experimenting with the latent spaces of these auto-

encoders, applying various oversampling techniques to discover new methods that

can further enhance performance. Specifically, we will focus on identifying novel

techniques that can improve both the quality and diversity of generated samples

37

38 CHAPTER 6. CONCLUSION AND FUTURE WORK

while minimizing reconstruction loss.

We also intend to refine and develop better strategies for Deep SMOTE. By

experimenting with different configurations and incorporating additional regulariza-

tion methods, we aim to enhance its capability to handle highly imbalanced datasets

more effectively.

In conclusion, our work demonstrates the potential of combining regularization

techniques with advanced auto-encoders to address the challenges of imbalanced

data. The promising results from our ”Weighted Calibration Balancing” technique

encourage us to continue exploring and innovating in this area, striving for improved

methodologies that provide robust solutions to imbalanced data problems.

Bibliography

[1] D. Dablain, B. Krawczyk, and N. V. Chawla, “Deepsmote: Fusing deep learning

and smote for imbalanced data,” IEEE Transactions on Neural Networks and

Learning Systems, 2022.

[2] B. Krawczyk, “Learning from imbalanced data: open challenges and future

directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp. 221–232, 2016.

[3] A. Fernández, S. Garćıa, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera,

Learning from imbalanced data sets, vol. 10. Springer, 2018.

[4] U. Fiore, A. De Santis, F. Perla, P. Zanetti, and F. Palmieri, “Using genera-

tive adversarial networks for improving classification effectiveness in credit card

fraud detection,” Information Sciences, vol. 479, pp. 448–455, 2019.

[5] F. Bao, Y. Deng, Y. Kong, Z. Ren, J. Suo, and Q. Dai, “Learning deep land-

marks for imbalanced classification,” IEEE transactions on neural networks and

learning systems, vol. 31, no. 8, pp. 2691–2704, 2019.

[6] X.-Y. Jing, X. Zhang, X. Zhu, F. Wu, X. You, Y. Gao, S. Shan, and J.-Y.

Yang, “Multiset feature learning for highly imbalanced data classification,”

IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 1,

pp. 139–156, 2019.

[7] L. A. Bugnon, C. Yones, D. H. Milone, and G. Stegmayer, “Deep neural archi-

tectures for highly imbalanced data in bioinformatics,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 31, no. 8, pp. 2857–2867, 2019.

[8] Z. Wang, X. Ye, C. Wang, Y. Wu, C. Wang, and K. Liang, “Rsdne: Explor-

ing relaxed similarity and dissimilarity from completely-imbalanced labels for

network embedding,” in Proceedings of the AAAI Conference on Artificial In-

telligence, vol. 32, 2018.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intelligence

research, vol. 16, pp. 321–357, 2002.

39

40 BIBLIOGRAPHY

[10] S. Das, S. S. Mullick, and I. Zelinka, “On supervised class-imbalanced learn-

ing: An updated perspective and some key challenges,” IEEE Transactions on

Artificial Intelligence, vol. 3, no. 6, pp. 973–993, 2022.

[11] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved techniques for training gans,” Advances in neural information pro-

cessing systems, vol. 29, 2016.

[12] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi, “Bagan: Data

augmentation with balancing gan,” arXiv preprint arXiv:1803.09655, 2018.

[13] S. S. Mullick, S. Datta, and S. Das, “Generative adversarial minority oversam-

pling,” in Proceedings of the IEEE/CVF international conference on computer

vision, pp. 1695–1704, 2019.

[14] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Deep learning with

denoising autoencoders,” Journal of Machine Learning, vol. 27, pp. 49–50, 2008.

[15] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,

pp. 1–19, 2011.

[16] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[17] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling

approach for imbalanced learning,” in 2008 IEEE international joint confer-

ence on neural networks (IEEE world congress on computational intelligence),

pp. 1322–1328, Ieee, 2008.

[18] N. Japkowicz et al., “Learning from imbalanced data sets: a comparison of

various strategies,” in AAAI workshop on learning from imbalanced data sets,

vol. 68, pp. 10–15, AAAI Press, Menlo Park, 2000.

[19] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using edited

data,” IEEE Transactions on Systems, Man, and Cybernetics, no. 3, pp. 408–

421, 1972.

[20] I. Tomek, “An experiment with the edited nearest-nieghbor rule.,” 1976.

[21] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning through

a heuristic oversampling method based on k-means and smote,” Information

sciences, vol. 465, pp. 1–20, 2018.

BIBLIOGRAPHY 41

[22] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-sampling

method in imbalanced data sets learning,” in International conference on in-

telligent computing, pp. 878–887, Springer, 2005.

[23] M. Bader-El-Den, E. Teitei, and T. Perry, “Biased random forest for dealing

with the class imbalance problem,” IEEE transactions on neural networks and

learning systems, vol. 30, no. 7, pp. 2163–2172, 2018.

[24] T.-Y. Liu, “Easyensemble and feature selection for imbalance data sets,” in 2009

international joint conference on bioinformatics, systems biology and intelligent

computing, pp. 517–520, IEEE, 2009.

[25] F. Li, X. Zhang, X. Zhang, C. Du, Y. Xu, and Y.-C. Tian, “Cost-sensitive

and hybrid-attribute measure multi-decision tree over imbalanced data sets,”

Information Sciences, vol. 422, pp. 242–256, 2018.

[26] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class im-

balance problem in convolutional neural networks,” Neural networks, vol. 106,

pp. 249–259, 2018.

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense

object detection,” in Proceedings of the IEEE international conference on com-

puter vision, pp. 2980–2988, 2017.

[28] S. Yang, L. Liu, and M. Xu, “Free lunch for few-shot learning: Distribution

calibration,” arXiv preprint arXiv:2101.06395, 2021.

[29] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,

and A. Lerchner, “Understanding disentangling in \beta-vae,” arXiv preprint

arXiv:1804.03599, 2018.

[30] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Dbsmote:

density-based synthetic minority over-sampling technique,” Applied Intelli-

gence, vol. 36, pp. 664–684, 2012.

[31] L. Ma and S. Fan, “Cure-smote algorithm and hybrid algorithm for feature

selection and parameter optimization based on random forests,” BMC bioin-

formatics, vol. 18, pp. 1–18, 2017.

[32] R. T. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud, “Isolating sources of

disentanglement in variational autoencoders,” Advances in neural information

processing systems, vol. 31, 2018.

[33] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-

encoders,” arXiv preprint arXiv:1711.01558, 2017.

42 BIBLIOGRAPHY

[34] K. Boonchuay, K. Sinapiromsaran, and C. Lursinsap, “Decision tree induction

based on minority entropy for the class imbalance problem,” Pattern Analysis

and Applications, vol. 20, pp. 769–782, 2017.

[35] S. Datta, S. Nag, and S. Das, “Boosting with lexicographic programming: Ad-

dressing class imbalance without cost tuning,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 32, no. 5, pp. 883–897, 2019.

[36] X. Zhang, Y. Zhuang, W. Wang, and W. Pedrycz, “Transfer boosting with

synthetic instances for class imbalanced object recognition,” IEEE transactions

on cybernetics, vol. 48, no. 1, pp. 357–370, 2016.

[37] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures

for classification tasks,” Information processing & management, vol. 45, no. 4,

pp. 427–437, 2009.

