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Abstract

Many countries around the world depends on agriculture, as it helps reduce poverty,

increase national income, and improve food security. However, plant diseases of-

ten impact food crops, leading to significant annual losses and economic setbacks

in agriculture. The best solution of the problem is to identify the plant disease

as soon as possible so that necessary steps can take. Traditionally, humans have

identified plant diseases visually, but this method is often slow, and also the number

of domain experts are less. Recently, there has been significant progress in using

deep learning to classify plant diseases. However, the main problem is to collect the

sufficient annotated image data to train these models effectively for plant disease

classification. Also the limited training data can negatively affect the performance

of CNN models. To address this, we designed a Deep Convolutional Gener-

ative Adversarial Network (DCGAN) to overcome the issues of over-fitting

and to increase the dataset sizes. Here we worked on the dataset called DiaMOS

Plant dataset, consisting of 3006 images of pear leaves of four classes (3 diseases

and one healthy class). The dataset was very imbalanced, so we used DCGAN on

the minority classes separately to enhance the dataset. We developed some CNN

models for classification and compared with some Pre-trained models (VGG16,

ResNet50, Inception V3). The results showed an average increment of classifi-

cation accuracy.

Keywords: DCGAN, Plant disease classification, CNN, DiaMOS plant

dataset
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Chapter 1

Introduction

1.1 Motivation

Agriculture is very important for many countries. It helps reduce poverty, grow

the economy, and make sure there is enough food. However, plant diseases are a

big problem. They damage crops and cause huge losses every year, that impact

on farmers and the economy. With the world population growing and the demand

for food increasing, it is important to find faster and better ways to detect plant

diseases. Finding these diseases early is very necessary to protecting crops.

Traditionally, the domain experts check plants for diseases by looking at them.

But this is very slow method and also the number of good domain experts are very

less.

New technology, especially in deep learning and computer vision, offers good

ways to identify plant diseases quickly and accurately. This helps farmers take the

necessary actions to protect their crops. Using these systems makes finding diseases

faster and easier, which helps farmers grow more crops and better handle plant

diseases.

1.2 Introduction

Plant diseases are a big problem for farmers because they can reduce the amount

of crops produced and their quality. Traditional ways to find these diseases involve

experts looking at plants, which takes a lot of time and can be inaccurate. New

technology, like computer vision, machine learning and deep learning, offers faster

and more accurate ways to detect diseases.

Convolutional Neural Networks (CNNs) are very good at classifying im-

ages. They have been used successfully in many fields, including plant disease de-

tection. However, CNNs need a lot of balanced data to work well. If some classes

10



1.3. PROBLEM DEFINITION 11

of data are very less, the CNN might not perform accurately.

The DiaMOS[1] dataset is an example of an imbalanced dataset. It contains

images of pear leaves classified into four groups: healthy, curl, spot, and slug.

The healthy and curl leaf classes have fewer images, making it harder to train an

accurate model. This study aims to balance the dataset using DCGAN[2] and then

test the performance of a some proposed CNN classifiers and compared with them

and some pre trained models(VGG16[3], ResNet50[4], Inception V3[5]).

1.3 Problem Definition

The DiaMOS dataset presents an imbalanced distribution of classes, with the healthy

leaf and curl leaf classes. This imbalance can result in biased models that do not

accurately classify all types of leaves. The main goals of this work are to:

• Data Augmentation using DCGAN[2]: Utilize DCGAN to generate syn-

thetic images for the minority healthy and curl leaf classes. This augmentation

aims to balance the dataset, providing a equal distribution of samples across

all classes.

• Development and Evaluation of some CNN Classifiers: Train some

Convolutional Neural Network (CNN) classifiers on the upgraded dataset and

evaluate its performance in classifying the four classes of pear leaves.

• Comparison with Pretrained Models: Compare the performance of the

proposed CNN classifiers with some well-known pretrained models, including

VGG16[3], ResNet50[4], and Inception V3[5].

By addressing the class imbalance through data augmentation and data genera-

tion, this works mainly focus on the improvement of the accuracy of plant disease

classification systems, contributing to more effective and efficient disease manage-

ment in agriculture.



Chapter 2

Related Work

This section talks about new ways to classify plant diseases. In one study[6], authors

looked at diseases affecting 11 different plants and showed how to identify these

diseases from leaf images using deep CNN models. In this paper, we focus on

classifying the pear leaf diseases using deep CNN models.

Another study[7] explored factors that affect plant disease classification by an-

alyzing the same plants and diseases under different conditions. They used five

methods: MobileNetV2, EfficientB0, InceptionV2, ResNet50, and VGG16. The

study found that model performance drops a lot when using representative datasets,

but deep learning is still a good technique for classifying plant diseases.

In another work, researchers used the Convolutional Block Attention Module

(CBAM) to improve CNN classification accuracy. This module can be added to

the CNN architecture without much extra cost. They used several CNN models,

including ResNet50, EfficientNetB0, VGG19, MobileNetV2 and InceptionV3, and

for transfer learning in plant disease classification. The EfficientNetB0 and CBAM

combination achieved 86.89% accuracy.

One study[8] looked into using ensemble learning to create a strong network

for predicting four different pear leaf diseases. They tested several CNN models,

including InceptionV3, EfficientNetB0, MobileNetV2, and VGG19.

Another study[9] used an improved YOLOv4-tiny model for detecting root crops

with a single-board computer. The method could process up to 14 images of pixel

416 × 416 with 91% recall and 86% precision.

Balancing the data in deep learning is an important issue that has been re-

searched a lot. It’s crucial for good agricultural results, and it needs to be cost-

effective, accurate, sensitive, and easy to use.

While data augmentation is useful for handling limited training data, it’s not

always easy to apply. Choosing the right data augmentation method requires know-

ing a lot about the specific task and domain. Also, setting the parameters for these

methods can greatly affect the accuracy of the deep learning model.

12



Chapter 3

Dataset

3.1 Dataset Description

In this study, we use a field dataset known as the DiaMOS Plant[1] dataset to

diagnose and monitor plant symptoms. DiaMOS Plant is an experimental dataset

that includes images taken throughout an entire growing season of a pear tree,

from February to July. This dataset aims to provide a comprehensive sample that

captures the key cultural aspects of this plant. It is well-suited for applying machine

learning and deep learning techniques for classification and detection tasks. The

dataset comprises a total of 3505 images, with 499 images of fruits and 3006 images

of leaves.

Table: Dataset Description

DiaMOS Plant Dataset Description
Plant Pear
Data Source Location Italy
Type of data RGB Images
Annotation csv, YOLO
ROI (Region of Interest) leaf, fruit
Total size 3505 images (3006 leaf + 499 fruit)
Data Accessibility https://doi.org/10.5281/zenodo.5557313

Accessed on 17 October 2021

Table 3.1: Description of the DiaMOS Plant[1] Dataset

The images were collected using different devices, including a smartphone (Honor

6) and a DSLR camera (Canon EOS 60D). As a result, the images come in two

resolutions: 2976 x 3968 and 3456 x 5184.

In our study, we mainly focus on classifying the pear leaf images. There

are total 3006 leaf images of 4 different classes: healthy leaf, slug leaf, curl leaf, and

13
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14 CHAPTER 3. DATASET

spot leaf and the number of images are 43, 2025, 54 and 884 respectively.

Table: Distribution of Classes in Leaf Images

Leaves Images Leaf Symptoms Size
Healthy 43
Spot 884
Curl 54
Slug 2025

Table 3.2: Distribution of leaf images in the DiaMOS Plant Dataset

(a) (b) (c) (d)

Figure 3.1: Examples of pear leaves affected by different symptoms. (a)curl,
(b)healthy, (c)slug, (d)spot

3.2 Dataset Preprocessing

(a) (b) (c) (d)

Figure 3.2: Examples of pear leaves with the annotation (bounding box). (a)curl,
(b)healthy, (c)slug, (d)spot
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We have the dataset DiaMOS Plant[1] dataset, in which 4 classes are there

named; curl, healthy, slug and spot containing 54, 43, 2025 and 884 leaf image

respectively. All the images taken in real environment (not in the laboratory envi-

ronment).

Also there was given an annotation file corresponding to each images. We first

extracted the main leaf images according to the annotation file.

(a) (b) (c) (d)

Figure 3.3: Examples of extracted pear leaves according to annotation. (a)curl,
(b)healthy, (c)slug, (d)spot

Since the images sizes are not fixed for all the images, it can be problematic in

work, so We resize all the images in 256 × 256 × 3.

(a) (b) (c) (d)

Figure 3.4: Examples of extracted pear leaves according to annotation. (a)curl,
(b)healthy, (c)slug, (d)spot

Figure 3.5 shows the histogram of the total image count for each plant disease

class in the DiaMOS dataset.

Here we see that, the DiaMOS dataset has a limited number of records and it

includes imbalanced data classes, which negatively affects plant disease classification
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Figure 3.5: The distribution of images for each class

accuracy. Thus, our main focus is to expand the DiaMOS dataset and balance the

number of records across all classes.

Here we see that ’curl’ and ’healthy’ classes data is very less. So we first augment

these data (which include rotation, horizontal flip, vertical flip, noise addition, etc)

and make it 5 times each to get variation in the dataset.

Then we built a DCGAN model and train the model separately on these 2 class

dataset to generate the new images such that we can overcome the imbalanced

problem.



Chapter 4

Data Generation

As we previously see that, the dataset is very much imbalanced, we apply Deep

Convolutional Generative Adversarial Networks (DCGAN)[2] method to

generate new synthetic images of the minority classes separately to balance the

dataset.

4.1 DCGAN Model

A Deep Convolutional Generative Adversarial Network (DCGAN) is a

type of neural network designed to generate realistic images. It consists mainly

two models; a generator and a discriminator. Generator creates images from

the random noise and the discriminator distinguished between real images and fake

images.

Figure 4.1: GAN Architecture

During training Generator trying to fool discriminator making the images as

real as possible and a discriminator is trying to distinguished real and fake images

properly. In this process generator produce highly realistic images over time. DC-

17



18 CHAPTER 4. DATA GENERATION

GANs are particularly useful for augmenting datasets, especially when dealing with

imbalanced data, by generating additional synthetic images for minority classes.

4.1.1 Generator Model

The Generator in DCGAN takes a random noise vector and generates synthetic

pear leaf images. Its architecture include:

• An input dense layer (taken input 128*1 vector from the latent space) followed

by reshaping it into an initial shape of (64, 64, 256).

• It then applies three Conv2DTranspose layers to upsample the image, gradu-

ally increasing the spatial dimensions to (256, 256) while reducing the depth.

• Each Conv2DTranspose layer is followed by BatchNormalization and LeakyReLU

activation to ensure stable and effective training.

• The final Conv2DTranspose layer uses a tanh activation to produce the output

image with shape (256, 256, 3).

Figure 4.2: Generator Model where input taken as noise dimension 128 and output
as an image of 256×256×3

4.1.2 Discriminator Model

The Discriminator in DCGAN evaluates the authenticity of pear leaf images. Its

architecture include:
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• The model consists of four convolutional layers, each followed by a LeakyReLU

activation and dropout for regularization.

• BatchNormalization is applied after the second, third, and fourth convolutional

layers to stabilize and accelerate the training.

• The final layer is a dense layer with a single unit, suitable for binary classifi-

cation tasks.

This model is designed to effectively distinguish between real and generated

images by progressively reducing the spatial dimensions and increasing the depth

through convolutional layers, followed by a dense layer for the final decision.

Figure 4.3: Discriminator Model to check the image is real or fake

4.1.3 Training Process

• The training of a DCGAN involves alternating between optimizing the Gen-

erator and the Discriminator in a minimax game. The Generator aims to

fool the Discriminator, while the Discriminator strives to correctly classify real

and fake images.

• During each iteration, the Discriminator is first updated to maximize its ac-

curacy in distinguishing real from fake images.

• Next, the Generator is updated to minimize the Discriminator’s ability to

distinguish its outputs from real images.

• This adversarial process continues until the Generator produces images that

are indistinguishable from real images.
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4.2 Generated Data

Since there are two classes named ’curl’ and ’healthy’ has very very less images, so

we train our DCGAN model on these two classes separately for 5000 epochs each

and saved the models. Before training we resize all the images in 256 × 256 × 3 .

After training using the saved models, we generate 1500 new synthetic images

of size 256 × 256 × 3 for each of these two classes to made the dataset balanced.

Figure 4.4: Examples of generated ’healthy’ pear leaves using our DCGAN model

Figure 4.5: Examples of generated ’curl’ pear leaves using our DCGAN model

After data augmentation and data generation there are total 6394 leaf images of

4 different classes: healthy leaf, slug leaf, curl leaf, and spot leaf and the number of

images are 1715, 2025, 1770 and 884 respectively.

Table: Distribution of Classes in Leaf Images after annota-

tion and data generation using DCGAN[2]
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Leaves Images Leaf Symptoms Size
Healthy 1715
Spot 884
Curl 1770
Slug 2025

Table 4.1: Distribution of leaf images after augmentation and data generation using
DCGAN

Figure 4.6: Distribution of new upgraded dataset
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Methodology

In our research, we worked on both the original pear leaf dataset and the upgraded

dataset after augmentation and data generation using DCGAN to enhance the clas-

sification of pear leaf images.

(Original dataset) (Upgraded dataset)

Figure 5.1: Distribution of original and upgraded datasets

We utilized three pre-trained models (VGG16[3], ResNet50[4] and Inception

V3) along with our proposed CNN models to perform the classification tasks. We

compare the models performance in the both dataset mention above and observe

the enhancement of the performance in original dataset to upgraded dataset.

5.1 Dataset Splitting

To conduct the study, we divided the dataset into training and test sets in a 8:2

ratio. Before training, we preprocessed the data to ensure compatibility with CNN

networks. All images were resized to 224×224 pixels with three color channels and

reshaped to fit the network’s expected input dimensions. We also scaled the pixel

values to the [0,1] range and converted the images into float32 arrays. Then for

training we divide the training set into train and validation set in 8:2 ratio.

22



5.2. SOME PRE-TRAINED MODELS 23

(Training data) (Test data)

Figure 5.2: Distribution of training and test datasets

5.2 Some Pre-trained Models

Here in our research work we trained two pre trained models; VGG16 and ResNet50

to check the performance on the original and the upgraded datasets.

VGG16

[3] VGG16 is a convolutional neural network model proposed by the Visual Geometry

Group (VGG) at the University of Oxford. Known for its simplicity and depth,

VGG16 consists of 16 layers, including 13 convolutional layers followed by 3 fully

connected layers. It uses small 3x3 convolution filters throughout the network,

which allows it to capture fine features in images. VGG16 is widely used for image

classification and has achieved excellent performance on benchmark datasets like

ImageNet.

ResNet50

[4] ResNet50 is a deep residual network introduced by Microsoft Research. It con-

sists of 50 layers, utilizing a unique architecture with residual blocks that allow the

network to learn residual functions. This design helps to train much deeper net-

works compared to traditional architectures. ResNet50 has become a standard for

image classification tasks due to its high accuracy and efficiency, and it has been

instrumental in advancing the field of deep learning.

Inception V3

[5] Inception V3 is a type of deep learning model used for recognizing images. De-

veloped by Google, it looks at images in different ways to understand them better.

It uses smaller pieces to process images quickly and accurately. This model is good
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at figuring out what’s in a picture and is often used because it’s both powerful and

efficient.

5.3 Classification Models

In this study, we propose some Convolutional Neural Network (CNN) architecture

to classify pear leaf diseases effectively. The model is designed to classify the leaf

images into four classes: curl, healthy, slug, and spot.

Here we consider 4 different CNN models with different number of convolution

layers. Train all the models and see the performance of the models on the test set

and compared.

Model-1

We can summarized the model as:

• Here, we used a Sequential Convolutional Neural Network (CNN) model for

classifying images.

• The model starts with a convolution layer that has 32 filters, followed by a

layer that normalizes the data.

• A pooling layer that reduces the size of the data, and a dropout layer that

helps prevent overfitting.

• This pattern is repeated with increasing complexity: first with 64 filters, then

with 128 filters, and finally another layer with 64 filters. Each convolution

layer is followed by normalization, pooling, and dropout.

• After these layers, the model is flattened, which means converting the data

into a one-dimensional array. Then, the data passes through three dense (fully

connected) layers with 64, 128, and 64 units, respectively.

• Each dense layer uses ReLU activation to introduce non-linearity and L2 reg-

ularization to prevent overfitting.

• The last layer of the model is a dense layer with 4 units and softmax activation,

which is used for classifying the images into one of four categories.
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Figure 5.3: Model-1 Architecture where input taken as 224×224×3 size image and
output saying the corresponding class labels

Model-2

In Model 2, we extend the architecture of Model-1 by adding an extra convolutional

layer with 32 channels while keeping all other components the same. This additional

layer allows for capturing more complex features in the image data.

The subsequent structure remains identical to Model-1, including flattening the

data, passing through dense layers with ReLU activation and L2 regularization,

and ending with a softmax output layer for classification. The training process,

optimizer, learning rate, loss function, and evaluation metric are consistent with

Model-1.

Model-3

In Model-3, we extend the architecture of Model-1 by adding 2 extra convolutional

layer with 128 channels and 32 channels while keeping all other components the

same. This additional layer allows for capturing more complex features in the image

data.

Model-4

In Model-4, we extend the architecture of Model-1 by adding 3 extra convolutional

layer with 128 channels, 32 channels and 16 channels while keeping all other com-

ponents the same. This additional layer allows for capturing more complex features

in the image data.

The models are compiled with the Adam[10] optimizer, using a learning rate of

0.001. The loss function is categorical cross-entropy[11], appropriate for multi-class
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Table 5.1: Hyperparameters and Model Details

Hyperparameter Value/Description
Input Size 224 x 224 x 3 (Height x Width x Channels)
Number of Classes 4 (curl, healthy, slug, spot)
Batch Size 16
Epochs 200
Learning Rate 0.0001
Optimizer Adam
Loss Function Categorical Cross-Entropy
Metrics Accuracy, Precision, Recall, F1 score
Activation Functions ReLU, Softmax

classification, and for evaluation here we use accuracy, precision, recall, F1 score

and the ROC curve.
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Experimental Results and

Observations

6.1 Environmental Setup

The models are developed using our institute’s GPU and various free cloud-based

Python development environments such as Kaggle Notebooks and Google Colabo-

ratory. For this project, we utilized several libraries: TensorFlow, an open-source

library for numerical computations and machine learning; Keras, which is used for

building neural networks; NumPy for data analysis and mathematical operations;

Matplotlib for graph visualization; etc.

6.2 Evaluation Metrics

In this study, we evaluate the performance of the models using several standard

metrics: accuracy, precision, recall, and F1 score, ROC-curve. These metrics

give a comprehensive understanding of the model’s performance as a result we can

properly understand the model is good or not.

We can’t tell the models performance only seeing the accuracy of the model be-

cause in the case of imbalance data , a dumb model also can give the good accuracy.

That’s why we checking the precision, recall, F1 score and the ROC-curve

6.2.1 Accuracy

Accuracy is the ratio of the correctly predicted outcome to the total outcomes. It

is a simple and commonly used metric to measure the overall performance of the

model.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)
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where:

• TP (True Positive): The number of correctly predicted positive instances.

• TN (True Negative): The number of correctly predicted negative instances.

• FP (False Positive): The number of incorrectly predicted positive instances.

• FN (False Negative): The number of incorrectly predicted negative instances.

6.2.2 Precision

Precision, also known as positive predictive value, is the ratio of correctly predicted

positive instances to the total predicted positive instances. It provides insight into

the accuracy of the positive predictions made by the model.

Precision =
TP

TP + FP
(6.2)

6.2.3 Recall

Recall, or sensitivity, is the ratio of correctly predicted positive instances to the

total actual positive instances. It indicates how well the model can identify positive

instances.

Recall =
TP

TP + FN
(6.3)

6.2.4 F1 Score

The F1 score is the harmonic mean of precision and recall. It provides a single metric

that balances both precision and recall, especially useful in cases of imbalanced

datasets.

F1 Score = 2× Precision× Recall

Precision + Recall
(6.4)

6.2.5 ROC Curve

The Receiver Operating Characteristic (ROC) curve is a graphical representation

that illustrates the ability of a binary classifier system. The curve is plotted with

the True Positive Rate (TPR) or (recall) on the y-axis and the False Positive Rate

(FPR) on the x-axis.

The Area Under the ROC Curve (AUC-ROC) is a scalar value that indicates the

performance of the model. A model with an AUC of 0.5 indicates that the model

has no discriminative ability, and an AUC of 1.0 indicates perfect classification.
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TPR or (Recall) =
TP

TP + FN
(6.5)

FPR =
FP

FP + TN
(6.6)

The ROC curve provides an aggregate measure of performance across all possible

classification thresholds, making it a useful tool for evaluating the trade-offs between

sensitivity and specificity.

6.2.6 Confusion Matrix

The confusion matrix is a table that is used to describe the performance of a clas-

sification model on a set of test data for which the true values are known. It allows

visualization of the performance of an algorithm.

The matrix itself is straightforward but provides a powerful insight into the types

of errors being made by the classifier:

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 6.1: Confusion Matrix

The confusion matrix provides insight into not only the accuracy of the model

but also the types of errors it is making, thus helping to fine-tune the model further.

These metrics together offer a robust evaluation of the model’s performance, ad-

dressing both the accuracy of the predictions and the model’s capability to correctly

classify both positive and negative instances.

6.3 Results and Discussion

In this section, we compare results from two different approaches:

• first, we described about the experiments that we did on the original pear

leaf dataset DiaMOS Plant[1] dataset with the pre trained models VGG16

and Resnet50 models, also with proposed models.

• and second, apply these models to the expanded DiaMOS dataset that

includes additional images generated by DCGAN.

For both the approaches, we analyse the following parameters: Accuracy, Precision,

Recall, F1 score, etc.
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Firstly , we train the models over the original DiaMOS dataset. Since the

data was imbalanced therefore obviously the model performance will be not so good.

As we see from the confusion matrices (Figure 6.1) that in the pre trained model

the minority class data is fully null, it may be for overfitting because the pre trained

models are heavy and the number of data is very less.

VGG16 ResNet50

Inception V3

Figure 6.1: Confusion matrices for the original DiaMOS dataset of pre-trained
models

From the Table 6.2 we observe that for the pre trained models; VGG16 and

ResNet50 give the accuracy around 77% where as the Inception V3 gives 82%.

And for proposed models; Model-3 give the best performance among them which

is approximate same as the Inception V3 model. Here we also see the precision ,

recall and F1 score .

Then Secondly, we train the same models on the extended DiaMOS dataset

which was made by adding some synthetic minority class leaf images usingDCGAN
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Model-1 Model-2

Model-3 Model-4

Figure 6.2: Confusion matrices for the originalDiaMOS dataset of proposed models

architecture.Here the dataset is not so skewed , so it is natural that the model

performance will be increased.

From the confusion matrices (Figure 6.3 & 6.5) and from the Table 6.3 we

observe that the models classify the dataset in a good manner. And the performance

of proposed models as well as the pre trained models increase.

Moreover, after expanding the dataset using the DCGAN architecture, we see

that the classification accuracy enhanced approx 10% for proposed models as well

as pre trained models. And also increase the other performance measure as well,

like, precision, recall, F1 score.

Here comparing all our models, we observe that Model-3 give the best per-

formance among them. It also give the better result as compare to VGG16 and

ResNet50 models and give approx same performance as Inception V3.

In addition, we compared proposed model-3 with the other existing pre trained

models with respect to the complexity of the models. And we observed that the

model-3 give approx same performance with existing pre trained models (VGG16,
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Table 6.2: The results obtained from different models using the original DiaMOS
dataset

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)
VGG19 77.91 75 78 77
ResNet50 77.57 75 78 75
Inception V3 82.39 84 82 83
Model-1 77.57 80 78 78
Model-2 76.25 80 76 77
Model-3 82.23 81 82 82
Model-4 78.74 83 79 79

VGG16 ResNet50

Inception V3

Figure 6.3: Confusion matrix results for the extended DiaMOS dataset

ResNet50, Inception V3) with a very less memory and less time. Also the number of

parameters in Model-3 is very less as compare to the existing pre trained models,

so it can be fit in a small device also.
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VGG16 ResNet50

Inception V3

Figure 6.4: ROC curve for the extended DiaMOS dataset

Table 6.3: The results obtained from 3 different models on the extended dataset
using DCGAN

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)
VGG19 90.54 91 91 91
ResNet50 84.91 84 85 84
Inception V3 91.01 91 91 91
Model-1 88.74 89 89 89
Model-2 89.44 89 89 89
Model-3 91.95 92 92 92
Model-4 88.51 91 89 89

Table 6.4: Complexity comparison of proposed model and existing models.

Architecture Accuracy (%) Size (MB) Parameter(M) Time(s)
VGG16 90.54 56.13 14.71 11
ResNet50 84.91 89.98 23.59 16
Inception V3 91.01 83.17 21.80 15
Model-1 88.74 2.96 0.77 7
Model-2 89.44 0.99 0.25 5
Model-3 91.95 1.35 0.35 6
Model-4 88.51 3.04 0.79 7
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Model-1 Model-2

Model-3 Model-4

Figure 6.5: Confusion matrix for proposed models on the extendedDiaMOS dataset
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Model-1 Model-2

Model-3 Model-4

Figure 6.6: ROC curve for proposed models on the extended DiaMOS dataset



Chapter 7

Conclusions and Future Work

In this research, first we built a DCGAN model and using it we generate some

synthetic image data. In the dataset there were 2 classes ’curl’ and ’healthy’ which

has very less data which made all the dataset imbalanced. therefore we utilize the

DCGAN approach on these two classes to generate 256 × 256 × 3 pixels leaf images

using a minimal data source to make the dataset more or less balanced.

After a series of experiments, we see that the new dataset using the DCGAN

architecture has improved the accuracy of pear disease classification. Moreover,

recall, precision, and F1-score are also increase as well on the new dataset.

Also in this work, we develop some CNN models to identify and classify 4 class

classification. And compared with some pre-trained models (VGG16, ResNert50,

Inception V3).

The resulting metrics describes that our models are giving approximate same

results as compare to these pre-trained models but the running time is very less.

Also the number of parameters in our models are very less as compare to them so

it can be fit in a small device also.

In future research, we plan to explore more advanced deep learning methods to

further enhance classification accuracy, recall, precesion, F1 score, etc. Also plan to

explore some technique that gives better results in less time and also in less memory.
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