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1
Introduction

Graph theory is a branch of mathematics that deals with the study of graphs, which are math-
ematical structures used to represent relationships between objects. In simple terms, a graph
is a collection of nodes, also known as vertices, connected by edges. These nodes and edges
can represent a wide range of entities and connections, such as cities and roads, computers and
networks, or even individuals and their friendships.

We now define some basic graph-theoretic notation and terminology that we shall need. For
a graph G, we denote by V (G) the set of vertices of G, and by E(G) the set of edges of G.
The graphs that we study shall be undirected, and so the edges of the graph are represented by
unordered pairs of vertices; for example for u, v ∈ V (G), we denote the fact that there is an edge
between u and v in G by writing uv ∈ E(G). The graphs that we study shall also be simple
and loopless, meaning that for every edge uv ∈ E(G), we have u ̸= v, and there is at most
one edge between a given pair of vertices. When uv ∈ E(G), we say that u is a neighbour of
v (and vice versa), or that u and v are adjacent. The edge uv is said to be incident on both u
and v, which are called the endpoints of the edge. Two edges that have a common endpoint are
said to be adjacent edges. The set of neighbours of a vertex u, also called the neighbourhood
of u, is denoted by N(u); i.e. N(u) = {v ∈ V (G) : uv ∈ E(G)}. The degree of a vertex
is deg(u) = |N(u)|. The maximum degree of G, denoted by ∆(G), is the maximum among
the degrees of the vertices of G; i.e. ∆(G) = max{deg(u) : u ∈ V (G)}. A set S ⊆ V (G) is
said to be an independent set in G if no pair of vertices in S are adjacent in G. On the other
hand, if every pair of vertices in S are adjacent, then S is called a clique in G. A graph H such
that V (H) ⊆ V (G) and E(H) ⊆ E(G) is said to be a subgraph of G. A graph H such that
V (H) ⊆ V (G) and E(H) = {uv ∈ E(G) : u, v ∈ V (H)} is said to be an induced subgraph of
G. The subgraph induced in G by a set S ⊆ V (G) is the induced subgraph of G having vertex
set S. We denote by G−u, where u ∈ V (G), the graph obtained from G by removing the vertex
u; i.e. it is the subgraph induced in G by V (G) \ {u}. By G − uv, where uv ∈ E(G), we denote
the subgraph of G obtained by removing the edge uv from G. Two graphs G and H are said
to be isomorphic to each other if there exists a bijection f from V (G) to V (H) such that for
u, v ∈ V (G), uv ∈ E(G) if and only if f(u)f(v) ∈ E(H).

5
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We now define some common kinds of graphs. A complete graph is a graph in which every
pair of vertices is adjacent. A complete graph on n vertices is denoted by Kn. A path graph
on n vertices (or simply a path on n vertices), denoted by Pn, is any graph isomorphic to the
graph having vertex set {v1, v2, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn}. The “length” of
a path is the number of edges in it; i.e. the length of a Pn is equal to n − 1. A cycle graph on
n vertices (or simply a cycle on n vertices), denoted by Cn, is the graph obtained by adding an
edge between the two vertices having degree 1 in Pn. The “length” of a cycle is the number of
edges in it, which is the same as the number of vertices in it, and therefore the length of a Cn

is equal to n. Given a graph G, a subgraph of G that is isomorphic to a path graph is said to
be a “path in G”, and a subgraph of G that is isomorphic to a cycle graph is said to be a “cycle
in G”. Graphs that do not contain cycles are called acyclic graphs, or forests. A graph is said to
be connected if for every pair of vertices in the graph, there is a path in the graph that contains
both of them. A connected acyclic graph is called a tree. A maximal connected subgraph of a
graph G is called a connected component (or simply component) of G.

1.1 Graph coloring

Graph coloring is a pivotal concept in graph theory, with numerous practical applications. It
involves assigning colors to different elements of a graph while adhering to specific constraints.
The most commonly studied types of graph colorings can be broadly categorized into vertex
colorings, where the vertices of the graph are assigned colors, and edge colorings, in which it
is the edges that are assigned colors. In most kinds of colorings, the quantity of interest is the
minimum number of colors required so that a mapping from the vertices or edges to these colors
exists that also satisfies the required constraints.

Many variants of graph colorings appear in the literature. In a proper vertex coloring, colors are
assigned to the vertices of a graph such that no two adjacent vertices share the same color. Thus,
the vertices that get the same color will form an independent set in the graph. The minimum
number of colors required in such a coloring of a graph is called the chromatic number of that
graph (see Section 2.2 for more details). Proper vertex coloring is one of the classical problems
that is almost as old as graph theory itself. The famous Four Color Theorem, which was proved
in 1977 by Appel and Haken [2, 3], after remaining an open problem for over a century, states
that every “planar graph” has a proper vertex coloring using at most four colors (see Chapter 2
for the definition of planar graphs). Observe that in a proper vertex coloring, the vertices that
get a common color form an independent set in the graph; or in other words, the “color classes”
(sets of vertices having the same color) of a proper vertex coloring are independent sets. Thus
the chromatic number of a graph is the minimum number of independents sets into which the
vertex set of a graph can be partitioned.

Proper edge coloring, on the other hand, involves assigning colors to the edges of a graph,
ensuring that edges incident on the same vertex are assigned different colors. The minimum
number of colors required in a proper edge coloring of a graph is called its chromatic index. A
classical theorem of Vizing states that the chromatic index of any graph G having maximum
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degree ∆ is either ∆ or ∆+1 [23]. Clearly, the edges that get one color in a proper edge coloring
form a matching in the graph, and hence the chromatic index of a graph is the minimum number
of matchings into which the edge set of the graph can be partitioned.

There are other variants of coloring problems in which the constraint to be satisfied is not
defined as a property that has to be satisfied by a single color class, but rather is defined as a
property that has to be satisfied by several color classes taken together. For example, in acyclic
vertex coloring [1], we require that the union of any two color classes induces a subgraph that is
acyclic, in addition to the property that each color class is an independent set; or in other words,
it is a proper vertex coloring with the additional restriction that there must not be a cycle in the
graph that contains only vertices of two different colors. Other variants of coloring focus on how
many colors are required when the graph to be colored is not known fully in advance; i.e. parts
of the graph get revealed only after some colors are already assigned to some vertices (and these
cannot be changed later). An example of this kind of coloring problem is the problem of online
coloring [22], where the vertices to be colored arrive one by one and a color has to be assigned
to each vertex as they arrive. There is also a variant of coloring called total coloring [8], in
which both the vertices and edges are assigned colors. The requirement here is that no adjacent
vertices, adjacent edges or incident edges and vertices get the same color. Please refer [14] for a
survey of various kinds of graph coloring problems.

The main algorithmic question related to each coloring problem is the computation of a coloring
of the required type using the minimum number of colors for a given input graph. Unfortunately,
this problem turns out to be NP-hard for most variants of graph colorings. In fact, the problem
of deciding whether an input graph has a proper vertex coloring using at most 3 colors itself is
NP-complete [10]. Moreover, even for those coloring problems for which tight upper bounds are
known for the minimum number of colors required, the problem of computing the exact value
can be NP-hard. For example, deciding whether an input planar graph has a coloring using at
most 3 colors is NP-complete [10]. Similarly, deciding which one of ∆ or ∆ + 1 is the chromatic
index of a graph having maximum degree ∆ is NP-complete [15].

In this thesis, our primary focus shall be on a variant of vertex coloring called template-driven
rainbow coloring and the algorithmic question of computing such a coloring using the minimum
possible number of colors. A “template” here is just a fixed graph. The goal in template-driven
rainbow coloring, given a template T (or a set of templates), is to color the vertices of an input
graph G with the minimum number of colors so that every subgraph H of G that is isomorphic
to T (or some graph in the given set of templates) is “rainbow-colored”: meaning that no two
vertices in H have the same color. We give a full formal definition of this coloring and related
notation in Section 2.3.

Since the template-driven rainbow coloring problem (for arbitrary templates) is also NP-hard
for general graphs (see Proposition 2), we focus on “special classes” of graphs. This is a common
way of dealing with the intractability of graph problems. Many problems that we would like to
have solved in practice may be NP-hard for general graphs; i.e., the existence of a polynomial-
time algorithm that can solve the problem on all input graphs would imply that P = NP [11],
and therefore such an algorithm is unlikely to exist. But many a time, the graphs that arise
from a specific use-case have some special structure that can be exploited to solve the problem
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in polynomial time. That is, there can be polynomial time algorithms to solve the problem that
are guaranteed to produce the correct answer only when the input graph belongs to some special
graph class (a class of graphs that satisfies some special property). We discuss this notion in
detail in Section 2.1.

1.2 Motivation

Efficient and scalable implementation of parallel algorithms on multiprocessor architectures with
multiple memory banks depends on how fast the items in the underlying data structure can
be accessed in parallel. To simultaneously access the data items required for a computation by
multiple processors, the pertinent data must reside in different memory banks [7]. This problem of
conflict-free access to parallel memory systems can be formulated as rainbow coloring of templates
corresponding to the items to be accessed in a host graph representing the data structure.

1.3 Notations

The notations used in this thesis are summarized in Table 1.1.
G A simple graph
V (G) Vertex set of the graph G
E(G) Edge set of the graph G
deg(v) Degree of a vertex v
χ(G) Chromatic number of the graph G
Ck Cycle of length k
χR

T (G) Minimum number of colors in a TR-coloring with template T in G
χRB

T (G) Minimum number of colors in a TRB-coloring with template T in G
Kn Complete graph on n vertices
∆(G) Maximum degree in G
G − uv Graph G with edge uv removed
G − u Graph G with the vertex u removed

Table 1.1: Notations

1.4 Our contributions

We prove that template driven rainbow coloring with a cycle on 3 vertices as template is NP-
complete even for planar graphs. We show that the problem is however polynomial time solvable
for chordal graphs. We then show that if the template is a cycle on 4 vertices, then the problem
is NP-hard for chordal graphs, in fact, even for split graphs. Finally, we show that if the template
is a cycle on 5 or 6 vertices, the problem is in fact polynomial-time solvable for split graphs.
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1.5 Thesis Outline

We start with formally defining template driven rainbow coloring in Chapter 2. In Chapter 3,
we give some known results on template driven rainbow coloring of certain graph classes and a
small literature survey. In Chapter 4, we state and prove our original results. We conclude by
identifying some open problems in Chapter 5.



2
Preliminaries

2.1 Special classes of graphs

For many practical applications in which problems on graph need to be solved algorithmically,
the graphs that arise have some specific structural properties. A set of graphs that satisfy some
particular property is called a “graph class”. As mentioned before, many problems that are NP-
hard for graphs in general admit polynomial time algorithms when the input graphs are restricted
to be from special graph classes. For example, the class of planar graphs consists of those graphs
that can be drawn on the plane, with points representing the vertices, and curves between two
points representing an edge between them, in such a way that no two edges cross. It follows
trivially from the Four Color Theorem that the problem of deciding if an input graph is k-colorable
is polynomial time solvable for planar graphs for every fixed value of k ̸= 3.

We shall now take a look at some graph classes that will be relevant to this study. We do not
give individual citations for most of the details in the subsequent sections; the interested reader
may please refer [13] for more information regarding the graph classes mentioned.

2.1.1 Chordal graphs

Chordal graphs are the graphs in which every cycle of length greater than 3 has a chord, i.e. an
edge joining non-consecutive vertices of the cycle. Chordal graphs are a very important family
of graphs due to their diverse mathematical properties and various applications. Every chordal
graph contains a simplicial vertex — a vertex whose neighbourhood is a clique. Since every
induced subgraph of a chordal is also chordal, this means that the vertices of a chordal graph can
be removed sequentially, so as to finally eliminate all vertices, in such a way that at every step
the vertex being removed is a simplicial vertex. An ordering of vertices that corresponds to such
a sequence is called a perfect elimination ordering. The problem of deciding whether an input
graph is chordal, and if yes, generating a perfect elimination ordering of it, is polynomial-time
solvable. Several problems that are NP-hard on general graphs become polynomial-time solvable
when restricted to chordal graphs. For example, the problem of finding a maximum cardinality

10
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Figure 2.1: Interval graph (Image courtesy - Wikipedia)

clique is NP-hard on general graphs but can be solved in polynomial time on chordal graphs using
the perfect elimination ordering. Determining the chromatic number (the minimum number of
colors needed to color the vertices such that no two adjacent vertices share the same color) is
also NP-hard on general graphs but can be found in polynomial time on chordal graphs, as the
chromatic number of a chordal graph is equal to its maximum clique size.

We state below a folklore property of chordal graphs that we shall need.

Definition 2.1.1. An edge uv of a graph G is called a bridge if u and v are in different connected
components of G − uv.

It is easy to see that an edge is a bridge if and only if it does not lie on any cycle. The following
proposition gives a formal proof for this statement (a similar proof also appears in [24]).

Proposition 1. Every edge of a chordal graph is a bridge or is part of a triangle.

Proof. Consider a connected graph G which is also chordal. Let e = (u, v) ∈ E(G). If e lies
on no cycle, then the only path between u and v in G is the path consisting of the single edge
(u, v). So, removing the edge (u, v) will make the graph G disconnected. Hence, (u, v) is a
bridge. It remains to show that if (u, v) is part of a cycle then it is part of a triangle. Suppose
that the edge (u, v) lies on a cycle. Consider a shortest cycle C that contains the edge (u, v).
Let C = v0v1 . . . vk−1v0, where v0 = u and vk−1 = v. If k = 3, then C is a triangle, and we are
done. So we assume that k > 3. Then C is a cycle of length at least 4, and since G is chordal
the cycle C has some chord, say vivj, where i, j ∈ {0, 1, . . . , k − 1}. We assume without loss of
generality that i < j. Then v0v1 . . . vivjvj+1vk−1v0 is a cycle containing the edge (u, v) that is
shorter than C. This contradicts the choice of C. This completes the proof.
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Figure 2.2: Split graph (Image courtesy - Wikipedia)

2.1.2 Interval graphs

A closed interval on the real line, denoted as [a, b], where a, b ∈ R and a ≤ b, is the set
{x ∈ R : a ≤ x ≤ b}. If I = [a, b], we say that a is the left end point of I and b is the right end
point of I. A graph G with vertex set V (G) = {v1, v2, . . . , vn} is called an interval graph if there
exists intervals I1, I2, ..., In such that for vi, vj ∈ V (G), where 1 ≤ i < j ≤ n, vivj ∈ E(G) if
and only if the intervals Ii and Ij intersect [12]. When this condition is satisfied, the collection
of intervals I1, I2, . . . , In is said to be an interval representation of the graph G.

These graphs are used in scheduling problems in which a subset of tasks to be performed at
non-overlapping times have to be selected. Graphs that have an interval representation in which
each interval is of unit length are called unit interval graphs. Unit interval graphs are also called
proper interval graphs. It is easy to see that every induced subgraph of an interval graph is also an
interval graph, and similarly, every induced subgraph of a proper interval graph is a proper interval
graph. Since the graph Ck is not an interval graph for any k ≥ 4, all interval graphs are chordal
graphs; or in other words, the class of interval graphs forms a subclass of the class of chordal
graphs. This means that all the problems that are polynomial time solvable on chordal graphs are
also polynomial time solvable on interval graphs. Moreover, the problem of determining, given
an input graph G, whether G is an interval graph, and generating an interval representation for
it in case it is, is also polynomial time solvable. A left end ordering of an interval graph G is
an ordering of vertices of G according to the left end points of the corresponding intervals in an
interval representation of G (assuming that the endpoints of the intervals in the representation
are distinct; this is an assumption that can always be made, since every interval graph has such
an interval representation).

2.1.3 Split graphs

Split graphs are graphs whose vertex set can be partitioned into a clique and an independent set.
A chordal graph G is a split graph if and only if its complement, G is also chordal [9]. Thus
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split graphs form a subclass of chordal graphs, just like interval graphs do. But the classes of
split graphs and interval graphs are incomparable — there are split graphs that are not interval
graphs, and interval graphs that are not split graphs.

2.1.4 Perfect graphs

A graph G is called perfect if every induced subgraph of G has same clique number and chromatic
number. It is known that the minimum number of colors required to color a perfect graph, and
so also the size of a maximum cardinality clique, can be found in polynomial time. The famous
Strong Perfect Graph Theorem of Chudnovsky, Robertson, Seymour and Thomas [6], which
was earlier a conjecture of Berge, states that a graph G is perfect if and only if neither G nor
its complement (the complement G of G is the graph having V (G) = V (G) and E((G)) =
{uv : u, v ∈ V (G), u ̸= v and uv /∈ E(G)}) contains an induced subgraph isomorphic to an odd
cycle of length at least 5. This implies that the complement of a perfect graph is also perfect
— in fact, this is the Weak Perfect Graph Theorem, that was proven in by Lovász [18, 17] (see
Figure 2.3 for an example of a perfect graph). The class of chordal graphs is a subclass of
the class of perfect graphs. Many natural problems on graphs like the problem of computing
a maximum cardinality clique, maximum cardinality independent set, and proper vertex coloring
using minimum number of colors are polynomial time solvable on perfect graphs [4].

Figure 2.3: A perfect graph and its complement. Optimal proper vertex colorings are also shown.

2.2 Graph coloring

Given a set C, called the set of “colors”, a function which assigns a value in C to each vertex of a
graph G is called a vertex-coloring, or coloring for short, of G using colors from C. A k-coloring
of a graph G is a map f : V (G) → S where |S| ≤ k. As mentioned before, the elements of S are
called colors, and the vertices of one color form a color class — the color class corresponding to
a color s ∈ S is f−1(s). A proper k-coloring of a graph G is a k-coloring of G with the property
that f(u) ̸= f(v) whenever uv is an edge of G. A graph that has a proper k-coloring is said to
be k-colorable. The chromatic number of G, denoted χ(G), is the smallest integer k such that G
has a proper k-coloring. Note that any proper k − 1 coloring is also a proper k-coloring. A graph
G is k-chromatic if it is k-colorable but not k − 1 colorable, or in other words, if χ(G) = k.
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2.2.1 Some facts about chromatic number of graphs

• A graph G is 1-chromatic if and only if E(G) = ∅; i.e. if G is an empty graph.
• The cycle Cn is 3-chromatic if n is odd and 2-chromatic otherwise.
• The complete graph Kn is n-chromatic.
• For any graph G, χ(G) ≤ |V (G)|. In fact, for any graph G, χ(G) ≤ ∆(G)+1, where ∆(G)

is the maximum degree of G. Further, Brooks’ Theorem [20] states that if a connected graph
G is neither an odd cycle nor a complete graph, Then χ(G) ≤ ∆(G).

• If H is any subgraph of G, then we have χ(H) ≤ χ(G). Thus, χ(G) ≥ ω(G), where ω(G)
is the size of a clique of maximum cardinality in G. There exists graphs G such that χ(G)
is much larger than ω(G). The Mycielski construction [19], for example, shows how, given
any integer k, one can construct a k-chromatic graph with no clique of size more than 2.

2.2.2 Algorithms for coloring

The algorithmic problem of deciding whether a graph G is k-colorable is defined as given below.
Colorability
Given a graph G and an integer k, decide if G has a proper k-coloring.

When the integer k is part of the input, the corresponding problem is called k-Colorability,
defined as given below.

k-Colorability
Given a graph G, decide if G has a proper k-coloring.

The problem Colorability is polynomial time solvable for special classes of graphs like
chordal graphs, interval graphs, and in general for the class of perfect graphs. The problem
2-Colorability is polynomial-time solvable for the class of all graphs (since it amounts to
checking whether the input graph is bipartite [21]), but 3-Colorability is NP-complete even
for planar graphs having maximum degree at most 4 [10].

2.3 Template driven rainbow coloring

A graph G with a coloring c is said to be rainbow colored if all vertices receive different colors;
i.e. c(u) ̸= c(v) for any two distinct vertices u, v ∈ V (G). Given a graph G with a coloring c, a
subgraph H of G is said to be rainbow colored if H is rainbow colored with respect to c; i.e. no
two vertices in H have the same color. A template-driven rainbow coloring of G with respect to
a graph H, called the “template”, is a coloring of G such that all subgraphs of G isomorphic to
H are rainbow-colored. We shall refer to a template-driven rainbow coloring of a graph G with
respect to a template H as a TR-H coloring of G. The minimum number of colors required in
any TR-H coloring of a graph G is denoted by χR

H(G).
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Figure 2.4: TR coloring with C3 as template

TR-colorability
Given a graph G, a template H and an integer k, decide if G has a TR-H
coloring using at most k colors.

When the template H is part of the problem definition (and not part of the input), the problem
is called TR-H colorability.

TR-H colorability
Given a graph G and an integer k, decide if G has a TR-H coloring using
at most k colors.

Figure 2.5: Proper coloring (minimum 3 colors required)

Figure 2.6: TR coloring with C4 as template (minimum 6 colors required)

An ideal TR-H coloring should be optimal, balanced, and explicit. Optimal coloring uses the
fewest colors possible, ensuring efficiency. Balanced coloring ensures that vertices are evenly
distributed among color classes, preventing any memory bank (corresponding to a color) from
being overloaded. This balance can be maintained by ensuring the difference between the largest
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and smallest color classes is minimal. Explicit coloring is crucial for practical applications, allowing
the color of any vertex to be computed quickly using a simple formula. This enables efficient data
management by ensuring the color assigned to a vertex can be determined in constant time. In
summary, effective TR-coloring algorithms aim to achieve optimality, balance, and explicitness,
thus enhancing performance in parallel computing environments.



3
Literature review and related work

Chandran et al. [5] gave an algorithm for optimal TR-coloring of proper interval graphs using
cycle templates. Given any interval graph, they take its left end ordering, say σ = (v1, v2, . . . , vn)
and then define pivot(vi) as the vertex vj with highest index j for which there is a cycle of length
k in G containing both vi and vj. They define the maximum distance from any vi to its pivot as
k-span of G, denoted as pk(G). Their algorithm works in the following manner. Given a proper
interval graph H, it finds the 2-connected components of G of H and works on each component
separately. It finds the left end ordering of each 2-connected proper interval graph separately.
It then computes pivot(v) for all v in G. Subsequently, it finds pk(G) and then compares the
k-span of all components to find the maximum one, say x. It then colors a vertex vi with color
i mod x. They prove that this is a valid TR-Ck coloring of the input unit interval graph G.
Their algorithm for computing a TR-Ck coloring of unit interval graphs has a time complexity of
O(k · |V | + |E|). Their algorithm gives an optimal, balanced and explicit TR-Ck coloring of the
input graph. For fixed k, their algorithm runs in O(|V |) time for sparse graphs.

Hong Yang et al [25] explored template driven rainbow coloring with a path of length 3 as
a template. They proved that in a graph G with n vertices and m edges, if there is a vertex v
with degree n − 1, then minimum number of colors required for template driven rainbow coloring
of G with respect to template P3 is same as chromatic number of G. They have found optimal
coloring number for different classes of graphs including but not restricted to ladder graphs, star
graphs, wheel graphs, cliques and prism graphs.

Chandran et al. [5] remark that a polynomial time algorithm for TR-Ck colorability for
interval graphs is likely to considerably more complicated, if at all one exists.

We study the complexity of TR-Ck colorability for the class of chordal graphs, which
contains the class of interval graphs.

17



4
Results

The following observation is a direct consequence of the fact that template-driven rainbow coloring
with template P2 is the same as proper coloring.
Proposition 2. TR-P2 colorability is NP-complete for general graphs.
Proof. We show a reduction from k-colorability for general graphs to TR-P2 colorabil-
ity for general graphs. Consider any graph G(V, E). Since a TR-P2-coloring of G using k
colors is the same as a proper k-coloring of G, we can decide if G has a proper k-coloring by
checking if G has a TR-P2-coloring using at most k colors. As k-colorability is NP-hard, it
follows that TR-P2 colorability is NP-hard for general graphs. It is easy to see that TR-P2
colorability is in NP, and therefore the problem is NP-complete.

It follows from the above proposition that TR colorability is also NP-complete for general
graphs. Note that any proper coloring of a graph will give different colors to the vertices contained
in a triangle, hence it is definitely a template driven rainbow coloring with C3 as template. Thus,
any proper coloring of G is also a TR-C3 coloring of G but it may not be an optimal one. That
is, there may exist a template driven rainbow coloring of G using less colors less the chromatic
number of G.

Figure 4.1: Proper coloring of a graph and a TR coloring with C3 as template

18
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Theorem 3. TR-C3 Colorability is NP-complete for planar graphs.

Proof. Since the it is clear that TR-C3 Colorability is in NP, we shall only show the proof
for NP-hardness of the problem. We show a reduction from Colorability, which, as we
noted before, is known to be NP-complete for planar graphs. it is easy to see that the problem
Colorability is NP-hard even for planar graphs having chromatic number at least 3. [16] Let
G(V, E) be a planar graph for which χ(G) ≥ 3. Construct a new graph G′ as follows: Take the
graph G and for every edge e of G, add a new vertex ve which is adjacent only to the endpoints
of e. Note that V (G′) = V (G) ∪ {ve : e ∈ E(G)}. Clearly, G′ is a planar graph (since we can
construct a planar embedding of G′ by taking a planar embedding of G and placing, for each
edge e of G, the point corresponding to the vertex ve very close to the curve representing the
edge e).

We claim that for any positive integer k, χR
C3(G′) ≤ k if and only if χ(G) ≤ k. Suppose that

χ(G) ≤ k. Note that k ≥ 3 since we assumed that χ(G) ≥ 3. Let c be a k-coloring of G. We
construct a coloring c′ of G′ using the same set of k colors as c, as follows. For each u ∈ V (G),
we let c′(u) = c(u). For each vertex ve ∈ V (G′), where e = uv ∈ E(G), we let c′(ve) be a
color from the color set of c that is different from c′(u) and c′(v). Note that we can always do
this since k ≥ 3. We claim that c′ is a TR-C3 coloring of G′. Consider any C3 having vertices
u, v, w in G′. If x, y, z ∈ V (G), then each has a distinct color in c, and therefore also in c′. If
one of them, say x, is in V (G′)\V (G), then it is must be the case that y, z ∈ V (G), yz ∈ E(G)
and x = vyz. Then we have by the construction of c′ that c′(x), c′(y), and c′(z) are all distinct.
Thus c′ is a TR-C3 coloring of G′, which implies that χR

C3(G′) ≤ k. Conversely, suppose that
χR

C3(G′) ≤ k. Then we have a TR-C3 coloring of G′, say c′, with at most k colors. Let c be the
coloring of G obtained by restricting c′ to V (G); i.e. we define c to be the coloring of G using
the same set of colors as c′ where c(u) = c′(u) for all u ∈ V (G). We claim that c is a proper
k-coloring of G. Consider any edge xy ∈ E(G). We have by the construction of G′ that x, y, vxy

form a C3 in G′. As c′ is a TR-C3 coloring of G, we know that c′(x), c′(y), and c′(vxy) are all
distinct. Thus c′(x) ̸= c′(y), and therefore c(x) ̸= c(y). This shows that c is a proper k-coloring
of G. We thus have that χ(G) ≤ k.

It now follows that it can be decided in polynomial time whether G is k-colorable if it can be
decided in polynomial time whether G′ has a TR-C3 coloring using at most k colors. Since it is
easy to see that G′ can be constructed from G in polynomial time, we have a polynomial-time
reduction from k-colorability on planar graphs to TR-C3 colorability on planar graphs.
This completes the proof.

TR Coloring for Chordal Graphs

Theorem 4. For any connected chordal graph G, χR
C3(G) is 1 if G does not contain a triangle,

and is χ(G) otherwise.

Proof. If G does not contain any triangle, then clearly χR
C3(G) = 1. Let us assume that G

contains at least one triangle. Then χ(G) ≥ χR
C3(G) because any proper coloring of G is also a
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TR-C3 coloring of G but it may not be an optimal one. Given a TR-C3 coloring c of G, we say
that a bridge (u, v) of G is “bad” in c if c(u) = c(v).

uv

Figure 4.2: A TR-C3 coloring of a chordal graph

Let c be an optimal TR-C3 coloring of G having least number of bad bridges. Suppose that c
is not a proper coloring of G. Then there is an edge uv in G such that its end vertices u and v
receive the same color. Then clearly uv cannot be part of a triangle because then u and v cannot
get same color in a TR-C3 coloring of G. Hence, we have from Proposition 1 that uv is a bridge.
Remove the edge uv from G to obtain two connected components, say Gu and Gv containing u
and v respectively. Since G contains at least one triangle, we know that at least one of Gu or
Gv contains a C3. Without loss of generality, let Gu be that component. Let us assume without
loss of generality that the colors used by c in V (Gu) are {0, 1, . . . , k − 1}. Since Gu contains a
triangle, it is clear that k ≥ 3. The idea now is to “shuffle” the colors in Gu so that u and v get
different colors.

uv

Figure 4.3: Proper coloring after shuffling the colors

Formally, we define a new TR-C3 coloring c′ of G as follows. Let c′(x) = c(x) for all x ∈ V (Gv)
and let c′(x) = c(x)+1 mod k for all x ∈ V (Gu). Note that c′ restricted to Gu and c′ restricted
to Gv are both TR-C3 colorings (since the color classes of c and c′ are the same in both Gu

and Gv). Since any triangle has to lie entirely in Gu or entirely in Gv, we now have that c′ is a
TR-C3 coloring of G. Since c(u) ̸= c′(u) and c(u) = c(v) = c′(v), the bridge uv is not bad in
c′. Consider any bridge ab of G such that c(a) ̸= c(b). Clearly, ab ̸= uv and therefore both a
and b have to lie in either Gu or Gv. As noted before, the color classes of c and c′ are the same
when restricted to either Gu or Gv. This means that c′(a) ̸= c′(b). Thus c′ is a TR-C3 coloring
of G having lesser number of bad bridges than c, which contradicts our choice of c. We can
thus conclude that c is a proper coloring of G. This implies that χR

C3(G) ≥ χ(G), which further
implies that χR

C3(G) = χ(G).

From Proposition 1, it is obvious that a connected chordal graph contains a triangle if and
only if it is not a tree. We thus have the following corollary.
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Corollary 5. For any connected chordal graph G, χR
C3(G) = 1 if G is a tree, and χC3(G) = χ(G)

otherwise.

Note that if the input chordal graph G is disconnected, then each connected component can
be considered separately, and so we have χR

C3(G) = max{χR
C3(H) : H is a connected component

of G}. Since given a connected chordal graph G on n vertices and m edges, detecting whether it
is a tree and computing is chromatic number can both be done in O(n + m) time [13], we have
the following.
Corollary 6. TR-C3 colorability is linear-time solvable for chordal graphs.

Theorem 7. TR-C4 colorability is NP-Hard for split graphs.

Proof. We shall show a polynomial-time reduction from k-colorability for general graphs
to TR-C4 colorability for split graphs. Let G be any graph with n vertices and m edges
where m is at least 2. We shall assume that G contains no isolated vertices as k-colorability
can be easily seen to be NP-hard even for graphs with no isolated vertices. Construct a new
split graph H(K, I) (where K is the clique side of H and I is the independent set side) in the
following manner. Let I = {u′ : u ∈ V (G)} and let K = ⋃

e=(u,v)∈E(G){xe, ye}. Thus |K| = 2m
and |I| = n. Define E(H) = ⋃

e=(u,v)∈E(G){(xe, u′), (xe, v′), (ye, u′), (ye, v′)}. We claim that
χ(G) ≤ k if and only if χR

C4(H) ≤ k + 2m.

Figure 4.4: Original graph

Suppose that χ(G) ≤ k. Then there exists a proper coloring c of G using the colors
{1, 2, . . . , k}. Define cH : V (H) → {1, 2, . . . , k + 2m} as follows. Recall that V (H) = K ∪ I.
For each u′ ∈ I, we define cH(u′) = c(u). For each vertex z in K, we choose as cH(z) a
unique color in {k + 1, k + 2, . . . , k + 2m}. We claim that cH is a TR-C4 coloring of H. Con-
sider any cycle of length 4 in H. If all vertices of the cycle are from K, then in cH , each of
them has a unique color in {k + 1, k + 2, . . . , k + 2m}, and hence we are done. If exactly one
vertex from the cycle is in I, then that vertex has a color in {1, 2, . . . , k} and the remaining
three vertices have unique colors from {k + 1, k + 2, . . . , k + 2m}, and again we are done. Fi-
nally, let us consider the case when there are exactly two vertices from I in the cycle (note that
there cannot be three or more vertices from I in the cycle), say u′ and v′. Let the cycle be
u′wv′zu′ where w, z ∈ K. By the way we constructed H, it is clear that w = xe for some
e = (a, b) ∈ E(G) and that NH(w) ∩ I = {a′, b′}. Since u′wv′zu′ is a cycle, we now have
that {u′, v′} = {a′, b′}. Thus we can conclude that uv ∈ E(G). Then we have c(u) ̸= c(v),
and therefore cH(u′) ̸= cH(v′). Since cH(u′), cH(v′) ∈ {1, 2, . . . , k} and cH(w) and cH(z) are
two distinct colors from {k + 1, k + 2, . . . , k + 2m}, we again have that each vertex of the
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Figure 4.5: Constructing split graph from the original graph

cycle has a different color. This shows that cH is a TR-C4 coloring of H. Next, we shall show
if χR

C4(H) ≤ k + 2m, then χ(G) ≤ k. Suppose that there exists a TR-C4 coloring cH of H
using colors {1, 2, . . . , k + 2m}. Clearly, |K| ≥ 4, since m ≥ 2. Since K is a clique, any four
vertices of K lie on a cycle of length four, and therefore each of the 2m vertices of K must have
gotten a different color in cH . We assume without loss of generality that these are the colors
{k +1, k +2, . . . , k +2m}. We claim for each vertex u′ ∈ I, cH(u) /∈ {k +1, k +2, . . . , k +2m}.
Suppose that there is a vertex u′ ∈ I such that cH(u′) ∈ {1, 2, . . . , 2m}. Let w be the vertex
in K such that cH(w) = cH(u′). Since G contains no isolated vertices, there is some edge
e ∈ E(G) incident on u in G; i.e. e = (u, v) for some v ∈ V (G). Then in H, we have the edges
(u′, xe) and (u′, ye). If w /∈ {xe, ye} then u′xewyeu

′ is a cycle on four vertices and therefore
we have cH(u′) ̸= cH(w), which is a contradiction. On the other hand, w ∈ {xe, ye}, we can
assume without loss of generality that w = xe, and then we have that u′xezyeu

′ is a cycle on four
vertices, where z is any vertex in K \ {xe, ye}. Again, this means that cH(u′) is different from
cH(xe) = cH(w), which is a contradiction. Thus we have that cH(u′) /∈ {k+1, k+2, . . . , k+2m}
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for any u′ ∈ I, or in other words, cH(u′) ∈ {1, 2, . . . , k} for each u′ ∈ I. We shall now define
c : V (G) → {1, 2, . . . , k} as follows: we simply let c(u) = cH(u′) for each u ∈ V (G). From
our observations above, it is clear that c(u) ∈ {1, 2, . . . , k} for each u ∈ V (G). We claim that
c is a proper coloring of G. Suppose for the sake of contradiction that there exists an edge
e = (u, v) ∈ E(G) such that c(u) = c(v). From the construction of c, we now have that
cH(u′) = cH(v′). Also, from the construction of H, it is clear that xeu

′yev
′xe is a cycle of length

4 in H. But this contradicts the fact that cH is a TR-C4 coloring of H. Thus we can conclude
that c is a proper coloring of G. This shows that χ(G) ≤ k, and we are done. Since it is
easy to see that the graph H can be constructed from G in polynomial-time, this completes the
proof.

Theorem 8. For each k ≥ 5, TR-Ck colorability can be solved in polynomial time for split
graphs that have at least k − 2 vertices on the clique side.

Proof. Let G(K, I) be a split graph where K is the clique side of G and I is the independent
set side of G. We assume that |K| ≥ k − 2. Since a vertex of degree one cannot be contained
in any cycle, if G contains a degree one vertex u (then clearly, u ∈ I), then we can construct
a TR-Ck coloring of G − u, and then color u with any color so as to get a TR-Ck coloring of
G using the same number of colors. Since any TR-Ck coloring of G, when restricted to G − u,
gives a TR-Ck coloring of G − u, a TR-Ck coloring of G that we construct from an optimal
TR-Ck coloring of G − u will also be optimal. So we can reduce our problem to the problem of
computing an optimal TR-Ck coloring for split graphs having at least k − 2 vertices on the clique
side, and containing no degree one vertices.

Next, if there exists u, v ∈ I such that u and v have degree 2 and N(u) = N(v) then clearly,
no cycle of length k can contain both u and v, since k ≥ 5. Thus, we can construct a TR-Ck

coloring c of G − u and then color u with the color c(v) to get a coloring c′ of G using the same
number of colors as c. If there is a cycle of length k that is not rainbow in c′, then clearly that
cycle contains u and not v, but then replacing u with v gives a cycle of length k in G − u that is
not rainbow in c, which is a contradiction. Thus c′ is a TR-Ck coloring of G that uses the same
number of colors as c. Again, for the same reason as before, if c is an optimal TR-Ck coloring of
G − u, then c is an optimal TR-Ck coloring of G. This means that we can reduce our problem
to the problem of computing a TR-Ck coloring for split graphs having at least k − 2 vertices on
the clique side, and containing no degree one vertices, and containing no pair of degree 2 vertices
having the same neighbourhood.

From the above discussion, we can assume that G contains no degree one vertices and no pair
of degree two vertices having the same neighbourhood.

Now if |V (G)| < k, then there cannot be a cycle of length k in G. So we assume that G has
at least k vertices. We are given that |K| ≥ k − 2.

For any vertex u ∈ I and v ∈ K, it can be seen that u, any two vertices in N(u), and any
k − 3 vertices from K − N(u) form a Ck in G (recall that each vertex in I has degree at least
2). Thus there is always a cycle of length k that contains both u and v. Thus the vertices in I
all receive colors different from the colors of the vertices in K in any TR-Ck coloring of G.
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We now claim that any two vertices in I are contained in a Ck in G. Since all vertices have
degree at least 2 and no two degree 2 vertices have the same neighbourhood, we have that for any
pair of vertices u, v ∈ I having degree 2, one of the following happens: either |N(u)∩N(v)| = 1
(shown in Figure 4.6) or |N(u) ∩ N(v)| = 0 (shown in Figure 4.7). It is not difficult to see that
there are cycles of length k containing u and v in both the cases. Even if u and/or v have degree
more than 2, at least one of the configurations shown in Figure 4.6 or 4.7 can always be reached
by deleting some edges in the graph. So there is a cycle of length k containing u and v in this
case too. Thus any two vertices in I have to receive different colors in any TR-Ck coloring of G.

Figure 4.6: |K| = k − 2, N(u) ∩ N(v) ̸= ∅ (here k = 8)

Figure 4.7: |K| = k − 2, when N(u) ∩ N(v) = ∅ (here k = 8)

We now show that no two vertices in K can receive the same color in any TR-Ck coloring of
G. Let us first consider the case when |K| = k − 2. Since we have assumed that G contains
a Ck, we know that |I| ≥ 2. Now consider any distinct u, v ∈ I. From the observation in the
previous paragraph, we have that there is a Ck containing u, v and all the vertices in K. This
means that if |K| = k −2, then each vertex of K receives a different color in any TR-Ck coloring
of G. Next consider the case when |K| = k − 1. Then since G contains a Ck, we know that
|I| ≥ 1. Then as observed previously, any vertex in I together with the vertices in K forms a
Ck in G. Thus in this case too, each vertex of K has to receive a different color in any TR-Ck

coloring of G. Finally, if |K| ≥ k, then any two vertices u, v ∈ K together with k − 2 other
vertices of K lie on a cycle of length k in G. Thus no two vertices in K receive the same color
in any TR-Ck coloring of G in this case too.

We have thus proved that every vertex of G gets a different color in any TR-Ck coloring of
G if G contains a cycle of length k. Clearly, giving every vertex a different color always results
in a TR-Ck coloring of G, and by our arguments above, such a coloring is optimal when there is
a cycle of length k. Since it can be checked in polynomial time whether the graph G contains
a Ck, and in case it does not, giving every vertex the same color is an optimal TR-Ck coloring
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w

v

u

Figure 4.8: TR coloring with C6 as template

of G, we can conclude that TR-Ck colorability is polynomial time solvable for split graphs
that contain at least k − 2 vertices on the clique side.

Corollary 9. TR-C5 colorability is polynomial time solvable for split graphs.

Proof. Let G be a split graph with K denoting its clique side and I denoting its independent
set side. Any cycle on 5 vertices in G can have at most 2 vertices from I. Thus every C5 in
G contains at least 3 vertices from K. Thus, if |K| < 3, then there cannot exist any C5 in G,
hence TR-C5 coloring of G can be done optimally with just a single color. So we assume that
|K| ≥ 3. Then we have |K| ≥ k − 2 (here we let k = 5), and therefore we can use the previous
theorem to find an optimal TR-C5 coloring of G in polynomial time.

Corollary 10. TR-C6 colorability is polynomial time solvable for split graphs.

Proof. Let G be a split graph whose clique side is K and independent set side is I. As in the
proof of the previous theorem, we can assume that G contains no vertices of degree 1, and that
no two vertices I having degree 2 have the same neighbourhood. If |K| ≥ 4, then we can apply
the previous theorem setting k = 6, to conclude that an optimal TR-C6 coloring of G can be
computed in polynomial time. Again if |K| < 3, then there cannot exist any C6 in G, and
therefore we can generate an optimal TR-C6 coloring of G by giving every vertex a single color.
So let us assume that |K| = 3. If |I| < 3, then |V (G)| < 6, and then again there is no C6 in G,
and we can produce an optimal TR-C6 coloring of G as before. So we can assume that |K| = 3
and |I| ≥ 3. Let u, v, w be any three vertices in I. Then since no two degree 2 vertices in I
have the same neighbourhood, we can reach the configuration shown in Figure 4.8, by removal
of some edges, if necessary. Then clearly, there is a C6 that contains all the vertices in K and
each of u, v, w. This means that any pair of vertices in G lies on a C6, which implies that every
vertex of G has to get a different color in any TR-C6 coloring of G. Thus we can generate an
optimal TR-C6 coloring of G by just giving every vertex a different color. This completes the
proof.



5
Future work and conclusion

It would be interesting to try to construct a polynomial time algorithm for template driven rainbow
coloring for split graphs with a cycle Ck as a template, where k is a fixed integer greater than 6.
We feel that by exploring the structure of pairs of vertices in I that do not together lie on any Ck,
some progress can be achieved on this problem. One could also try solving this problem for split
graphs for templates other than cycles, but the problem seems to be quite difficult. Considering
that the problem is NP-hard for the template C4 even in split graphs, it seems plausible that the
problem could be NP-hard to solve for interval graphs with Ck as a template.
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