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SUMMARY. A survoy of tho algorithms for converting integors, fractions and floating point
numbers from one radix to another is prosentod in this paper. A now algorithm, called “radix-difforence
algorithm** s proposcd for converting intogers a3 well ag fractions.

A luation of all theso sl is mado in torms of the number of arithmotio
oporations, as well as tho availablo arithmetiv facility, For this sake, numbere in the signod-mognitude
form, a¢ woll as ia the signod. ok y form aro i 2 and the minor changes nooded in the

algorithme to suit & givon reprosentstion are menlioned,

1. IxTRODUOTION

A number X in o positional number system with (base) radiy p is conventionally
represented as
X = a,p% 0,y 0" 002 oo p 7 a_p W (10)
where 0 < @  p—1, for all §, and n and m are positive integers.

It is often required to convert numbers from ono xadix to another cither by
built-in algorithms or by an externol prog Soveral techniques aro available in
literaturo (sco references at tho end of tho paper) for converting integers, fractions and
floating-point numbers; but as such neither a comprehensive survey nor a comparative
ovaluation of theso methods are availablo for computer users. It is the objeet of this
paper to fill up these needs. In addition to this a now algorithm, called “radix-
difference algorithm”, for conversion is suggested hero. The survey presented hero
deals, in particular, with tho suitability of each slgorithm for  given type of
arithmetio with particular cmphasis on the economy of tho number of arithmetio
operations when a computer hoa a speoified arithmetio facility. For this purpose,
number ions in signed-magnitude as well as in signed-complementary forms

are considered.

2. CONVERSION ALGORITIIMS FOR INTEGERS (FROM RADIX P T0 RADIX ¢)
Let Np = agp+...+00°
and No=bat"+... 4048
bo the representations of an integer N in radices p and ¢ reepootively.

Two methods are availablo (Booth and Booth, 1056; Ledloy, 1000; Richards,
1900) for this purposo. Theeo ato described in Sections 2.1 and 2.2. A new algorithm,
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called “radix-diffc \f hm” is doscribed in Section 2.3. A medification of the
method of Section 2.1 is pmontcd in Section 2.4. A comparative evaluation of theso
different algorithms is given in Section 2.5.

2.1, Algorithm 1: BMultiplication method (radiz-q arithmetic).

Case (8) p > q. In this caso ono oxpresses p in radix g in tho form,

k
Pe=Z digf v (210)

where ¢¥ ¢ p < g*¥1, snd the cocfliciot 8; as ay in radix g.
Then Ng is evaluated using the ive schomo
Zs = 21 1Pt 0inns e (212)

fori=1,2,...,n, with Z, = a,; and the rocursion terminates at the n-th step yiclding
Z,=N,

Naturally, ovaluation of (2.12) demands facilities for expressing a; initially
in redix ¢ a3 well a8 multiplication and addition in radix ¢.

Exzample (binary arithmetic) : p =10 and ¢ = 2. Convert {256}, to binary,
Using (2.1.2), we have,

Zy = 0010
= (0010 X 1010}4-0101
= 11001

Zy = (11001 X 1010)-+0110
= (100000000),.

Case(b)p < g. In this case a; nced not be expressed as ay, as they are already
valid digits in radix g. So, only tho facility for adding and multiplying in radix ¢
is needed to excoute the reoursive acheme

Zy = Zy_ypy+an-i . (2.13)

fori=1,2,...,n with Z, = a, and tho reoursion terminates at the n-th step yielding
Z,= N,

Exnmple (decimal arithmetic) : p = 2and ¢ = 10. Convort (1101), to decimal,
Using (2.1.3), wo havo,
Zy=1
Z,=1x241=3
Z,=3x2+0=0
Zy=0x2+1 = (13),.
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2.2, Algorithm 2: Division wethod (radir-p arithmetic).
Case (a) p> q. In this case wo use tho recursion
Zi=Ziygtn, i=0,1.,m w (22)

with Z, = N, obtaining a quotient Z,; and a inder 7. Tho ion termi

whea the quotient Z; = 0. The remainders 7; which are valid digits in radix ¢ form

the digits b, of N'g. Theso are to bo recorded in a reverse manner starting from the final

step to tho initial step. This method demands division facility in radix p.
Erample (decimal arithmetic) : p = 10 and g = 2. Convert (285),, to binary,
Using (2.2.1), we have computations as shown in Table 1.

TABLE 1
] Z b=y
0 288 1
1 142 0
2 n t
3 35 1
4 17 1
1] 8 [
[ 4 0
7 2 0
8 1 1
9 [ -

So, (285),, = (1000 111 01),
Case (b) p < ¢. In this caso wo nced to oxprees g in radix p na

X
=2 Cop' . (22.2)
=2
where p* < ¢ < g%, and uso tho reoursion
Zi= Zia Gptri - (223)
fori=0, 1, ..., m with Z, = N obtaining a quoticnt Z;,; and a inder £y per-

forming dn'uion in radix p. Tho recuraion terminates at Z; = 0. The remainders
r; which are valid digits in radix ¢ aro in p-coded form and form tho digits b of N
which aro obtainable by translating theao p-coded digits into radix g.

Noto that the division method described hero is just a roverso of tho multipli-
cation method, considered earlior.
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Erample (binary arithmetic): p='8, g= 10 and ¢, = 1010. Convert
(11011), to decimal.
Using (2.2.3), computations are given in Table 2.

TABLE 2
[ Z LR
0o 11013 111
1 10 10
2 [} _
8o, (11011), = 10—111 in binary coded decimal

=(2The
2.3. Radiz-difference algorithms.
2.3.1. Case (a) p>g: Algorithm 3 (radizg arithmetic). Let Np—=
Bap™-...t-a,0°.

Let a; be coded in radix-g system as a;y and let r be the required number of
radix-g digits needed to code radix-p digits. Let X denote N, thus coded. Let us
denote by Y the number formed by the coefficients of X, in the radix ¢* viz.

Y = and@) ... +Bogl . .. (23)
Lot Z denote the converted number in radix ¢. Taking Y as the converted

number in radix ¢ (2.3.1) we overestimate X and hence to obtain Z we must subtract
& quantity AY from ¥, given by,

AY = (g —prang g —p " Nanonet o H@V —plare. - (23.2)
Faotoring out, one obtains from (2.3.2)
= (¢'—p)eot POst...+P™ g}
H — PN (B +POse+ ... +P"ang)

4.0 g —PXE ) g . (2.3.3)
To compute AY nnmerlully we use ndxx-q system. It is interesting to mnote that
AY can be obtained in a fi aa outlined below.

Lot X, denote the truncated X with truncation perf d up to (n—s)-th digit.
Thus,

X = i DI, e (2.3.4)
Jon—t

fori=0,1,...,n»
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Let ¥y denoto tho number formed by the coefficients of X in radix g7, Thus,

Yi= 2 aglgy-, . (235
Jant
for £ =0,1,..., n.
Let Z denoto the converted number in radix g equivalent to X;.
Then,
Zy= Y—Cp, fori=1,..,n
whore

[
Ci= (q'—p)[ z Z«-;(q')'"‘]. e (23.6)

which follows from (2.3.2) and
Zy = Gnq.

Clearly, Z,, Yy and Crare Z, ¥ and AY respectively.

Cy oan be obtained by the recursive relation

Ci = gCoy+ I —P)2is . {2.3.8)

fori=1,..,n with C, = 0.

Multiplication of C;_; by ¢ is equivalent to a ehift of C;_; by r digite (in vadix ¢)
to the left and multiplication of Z;_; by (g—p) can bo obtained by shifting to the left
by appropriate number of digits and adding. Thus all tho computations to obtain

Z are performed in radix-g arithmetio. However, initially one needs facilities to code
digits in radix p into radix q.

An example is given bolow to illustrato this algorithm,

Ezample (binary arithmetic): p=10, =2, r =4 and ¢¢ = 16. Convert
(126),, to binary, (125),, = 0001 0010 0101 in binary-coded decimal.

Using Algorithm 3, computations aro presented in Table 3.

TABLE 3
1 Yy Oy= 18014+02 Zim Y1 —C;
o 0001 0000 0001
1 0001 0010 0110 0000 1100
2 0001 0010 0101 1010 1000 00000 0111 1101

S0, (126);0 = (111 1101),.
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Notico that in binnry form multiplication by 16 is equivalent to a shift by
4 bits to tho left and multiplication by 8 is equivalent to two shifta and one addition.

2.3.2. Case (b) p < g1 Aigorithm 4 (radiz-p arithmelic). Consider
Ny = app+...4a,p%

Let r bo the maximum positive integer such that p* ¢ ¢. Group the radix-p
digits ay, &y, ..., a5 into m groups of r digits each starting from a, and introducing
zeros boyond a, for perfect grouping which is necessary only when n+41 7 mr, for
any m. Let by, by, ..., by bo the magnitudes of these m groups of radix-p digits
considered as valid digits in xadix p7. bu_y, ..., by aro, howover, valid p-coded digits
in radix g also. So,

m-y
Np =X bp) . (23.8)
-0
Lot
mey
Y= Z by e (2.3.9)
=0

and Z denote the converted number in radix ¢. Then, as in the case (a),
Z=Y-AY o (23.10)
where,
AY = (g—p )bt 2bat . AHP) m}
Hg—p Yt rbt. A @) bn
+onHg—2 ) e (23.11)

Computation of (2.3.10) is performed in the samo fashion as in the case (a) and is out-
lined below.

my

Let Xi= 2 ryi-mEiFL (2312
= T @) (2.3.12)

Y mfl -mit1 3

‘—l-ﬂ-l-‘bﬂl . (2.3.13)

Z; = converted ber in radix ¢ equivalent to Xi,

fori=0,1,..., m—1.
Thon,
Zy= Y—C; v (23.14)
for Z,=b5,,, whero, using (2.3.11),
[
Ci= (=) E Zeg

=901 Hg—2)2,; . (2:3.8)
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for + = 2,...,m—1 and
C,=(g—7)2%
Multiplication of C;_; by ¢ in radix-g arithmetio can bo acoomplished by shifta.

Ezample (decimal arithmelic): p=2, =10, r =3 and p* = 8. Convert
(101 011 111), to deoimal.

Using (2.3.14) and (2.3.15), wo got from Tablo 4(101 011 111),=(637)y =
(351)50

TABLE 4
v ¥y g = 1000)_3+2Z1 Zy= Yi—04
0 5 —_ 5
1 &3 10 43
2 837 188 351

Another scheme for conversion whon p < g is given in Section 2.4.

24. Algorithm 6 (radiz-g arithmetic). 'To convert N, to N, group radix-p
digits into m groups of r digite each as in Algorithm 4 (Section 2.3.2) and then
evaluate N, using the reoursive scheme

L= Z 0 +hmo . (2:3.18)
fori=1,2,...,m—1, with Z, = b_; ond the recursion terminates at (m—1)-th step
Yielding Zp_, = N,

Ezample (decimal arithmelicy: p=2, ¢=10, r=3 and p=8. Convert
(101 011 111), to deoimal,
Using (2.3.16),
Z,=5
Z, = 5x8+3 =43
Zy = 43X 84T = (351)yp
2.8, Comparison of algorithms. In Tablo & is presuted a comparison of several
algorithma for ion of integers deseribed earlior. Noto that tho number of +

or — operati X or - operations and shifta needed to carry out a givon algorithm
is easily obtained from tho rocursive achems used.

In caso of Algorithm 4 and Algorithm 5 binary digits aro to bo grouped in
groups of 3 bits and each group s to bo treated as o BCD digit.

321



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Seaizs B

TABLE 5. COMPARISON OF CONVERSION ALGORITINMS OF (n+1) DIOITED
INTEOCERS FROM DECIMAL TO BINARY AND VICE VERSA

. of
algorithm no, of + or — no. of X or<- l.l':l‘}'t:by arithmotio
operations oporations 1 digit
1 n » —_ binary
Cosefa) 1 docimal to 2 — [in+1) logs10]+1° - docimal
binary
Eild 2=t 2n—1 binery
2n—1% noe in—i®
1 » n - docimal
— A1 2)+1° - binary
Com(b)t binary to [in+1) logie2)+
docimal assumo (n+1}
=3(m+l)forsomom. 4Nt —:—(n-}-l)—: —:(u+l)—!
dooimal
2 -3t 1 = Lin-tyt
.§(n+l) 3 5(n+2-1 3=
a1 3] - .
5 2+ =+ docimal

*{x] denotes the lowor integral part of z. In goneral for conversion from radix p to radix g{(n+1)
loge?)+1 X or = oporations aro ncoded.

**Jf multiplication Yy 16 ia offocted by ahifts.

11f multiplication by 10 is offoctod by shift.

ttFacilitics for coding decimal digits to BCD and vico vorsa aro needod.

3, CONVERSION ALGORITIIMS FOR FRACTIONS (FROM RADIX P TO RADIX ¢)

Let
Nyp= a1 pi4apt+...+0opp . (31)

and
Nog = by b+ Hboag™ e (32)

bo tho representations of a fraction Ny with reapeat to radices p and g respeatively.

1t is to bo noted that, unliko tho caso of integers the conversion process for
fractions could bo non-terminating whon the fraction Ny (in radix p) has no exact
or finite representation in radix g. Thus, the extent to which the conversion process
for fractions has to bo carried out is decided by the acouracy requirements.

Two methods {Booth and Booth, 1958; Leadloy, 1060; Richards, 1060) axo avail-
ablo for this purposo. These aro described in Seotions 3.1 and 3.2, As in tho caso of
integers (Seetion 2.3) radix-differenco algorithms for conversion of fractions sro
deseribed in Section 3.3.
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A modification of tho algorithm of Seotion 3.1 is presented in Scction 3.4.
A comparative evaluation of theso algorithms is given in Secction 3.8.

3.1. Algorithm 6: Blulliplication method (radiz-p arithmelic).
Cass (») p < g. Expross g as

13
g9 = I d' o B1)

whore % is an integer such that pt g < pt¥.

The digits by, by, .., by Of Ny (3.2) are obtained by tho following
recursive scheme :

Jodp = botf it w (3.12)

for £ = 1,2, ..., ¢, whero & is decided by the acouracy nceded, #o that the recursive
process is not & finito terminating process, and by = [f_ig5], [£] denoting tho lower
integral part of the number z, with

S = Ny,
This can be easily verified as follows.

Horty = & o) (% o-)
i, m,
= ‘T_Jaam+,‘:‘-‘a-m". (say)

<gq v (8.13)
and

Nopq = by oy +... eto, w (3.1.4)

From (3.1.3) and (3.1.4), equating the integral pacts separately we got,
i
b= I apt e (3.1.5)
-0

= Carry past the radix point.

The procoss oan bo ropeated and the other digits b_y, by, ..., 6tc. 0an bo simi-
larly obtained.

Tho digits b_y, b_y, ..., of Nos aro obtained in prcoded form and theso must
bo translated into radix-g digits. The axithmotio is in radix p.

Ezample (binary arithmetic): p=2, ¢=10 and gp=1010. Convert
(.110101), to decimal.
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Using {3.1.2), we have computations in Tablo 6.

TADLE 6

[ y LX)

1 .110101 1000
2 010010 10
3 . 110100 1000
4 001000 1
5 010000 10
L] -100000 101
1 000000 -_

Thereforo (,110101), = 1000—0010—1000—0001—0010—0101 (i binary coded form)
= (.828128),,

Case (b) p>gq. Tho procedure hero is similar except that no translation of
radix-g digits in radix-p coded form is needed s g is a valid digit in radix p.

Ezample (decimal arithmetic) : p = 10and ¢ = 2. Convert (.825), to binary.

Using (3.1.2), we have computations in Table 7.

TABLE 7
825 1
1850 1
.300 [}

.600 1

1200 [

400 [

1

- a & s w8 o

800

So, (.825), = (.1102001), upto soven significant bita.
3.2, Algorithm 7: Division method (radizg arithmelic).
Cose(a)p < g. Nosis obtained from Ny using tho following reoursive schemo :
Zy= Ziyp ' ta_in_p o (3.2.)
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for i=1,2,..,n—1, with Zy = a_, and tho recursion terminatces at (n—1)-th step
yiolding Z, ; = N¢gs+ p 80 that
Nop= Znyp. e (32.2)

Note, howover, p~! may not havo exact ropresontation in radix ¢ and an approximate
value of this is to bo used for computation purposca.

Ezample (decimal arithmelic): p= 2 and ¢ = 10. Convert (.1101), to decimal.

Using (3.2.1) and (3.2.2), wo have
Z,=1
Zy=.6+0=.5
2y = 26+1=1.25
Zy= 62541 = 1.625

So, Noy = (:8126),,.

Case (b) P> g: Express o asa_, and p s pg in radix g. Then Ny is
obtained by the recursivo scheme given by (3.2.1) and (3.2.2).

Ezxample (binary arithmelic) : p =10 and g = 2. Convert (.875);, to binary.
Using (3.2.1) and (3.2.2), wo have,
Z,= 0101
Zy = 140111 = 0111.1
Zy = 1141000 = 1000.1
So, Nos = 1000.11. 1010
=(.111),.

3.3. Radiz-difference algorithms.

3.3.1. Case () p>gq: Algorithm 8 (radizg arithmetic). Let X = app~+
«..4amp™™ be a fraction in a radix p. To obtain the radix- equivalent Z of X tho
following method, which is similar to that of Section 2.3.1, is used. Construct a number
Y in radix g7 with tho oocfficients a; representing X in g-coded form, denoted by ayq
that is, let

Y= E ag; . (33.0)
=1

here r denotes the number of radix-g digits nceded to codo radix-p digits. Thus,
os in Scction 2.3.1, wo can write,

Z = Y4AY, v (3.3.2)
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where,
AY = 0, g =) ..t imgp= =), . (3.33)
Factoring out, one obtaina from (3.3.3),
AY = (g"—p)r Hoq T +and ¥+t O ™)
Ha =PI Ko T+ ¥+ F Omgg-(m=Dir)

F oo g —P) P e e (33.4)
AY can be obtained by the following ive schome.
-1
Let X =I§0 Gmetygsr P, v (3.3.5)
[=1
Y, =E'° [P st e (3.3.8)

and Z; = the radix-g equivalent of X;, for §=1,2,...,m.
Then Zy= Y+ATy e (33.7)

where,

ATi=(@-p)'E Tegh - (338)
=0

which follows from (3.3.4).
(3.3.8) can be written in the rcoursive form
AY = p T +g—p)Ti} e (3.3.9)
for {=1,2,..,m, with ¥,=0. Tho reoursion terminates at { = m giving A¥p
=AY, Z is then obtained by adding ¥w to Y.
Ezample (binary arithmelic) : p = 10 and g = 2. Convert {.875),, to binary.

To use tho Algorithm 8 the arithmetio will have to bo carried out in binary. However,
for the sako of clarity the example is worked out using decimal fraotional arithmetic

a8 given in Tablo 8.

TADLE 8

[ b (] ¥

1 5 05
] LT )

3
»
7 L] 117 18 117 ki
Pt T e ra{ro“"la-‘} = @y
L] nuz 2163 1f 78 2103 1419
B Tl T T ol et
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2185 , 1814

So, e T T

3.3.2. Case (b) p <q: Algorithm 9 (radiz-q arithmetic). Let X =ap~'+
«.Fa,p" bo a fraction in radix p. To obtain tho radix-¢ equivalent Z of X the
following mothod, which is similar to that of Section 2.3.2, is used.

Lot 7 bo tho maximum positive integer such that pr  ¢. Group the radix-p
digits a,, a,, ..., @, into m groups of r digits cach etarting from a, and introducing
zeros aftor a,, for perfect grouping which is necessary only when n 5% mr, for any m.
Let by, ..., bm bo the magnitudea of these m groups of radix-p digits considered as valid
digits in radix p*. b;, ..., bm 6re, however, valid p-coded digits in radix ¢ also. Then
X can also bo written a8

X =% by . (33.10)
=1
m
Let Y=2% bg! e (3.3.11)
(=1
Thus, as in Section 3.3.1,
Z = T+AY, . (33.12)
where,
AY = (p'—q W+ ... H{p-""— g b, o {3.3.13)

Factoring out, one obtains from (3.3.13),
AY = (q—p)p g .. Ao g™)
HE—p o oot bt

+...Hg—p)p~™ bu . (33.14)
As in Scction 3.3.1 AY is obtained using tho reoursive schemo
AY = p{AT¥ e +(g—p)Tih . (3.3.15)

fori=1,2,...,m, whero ¥ is givon by
=1
Yi= 2 bn byt . (33.16)

and AYy = 0.
Tho recursion terminates at m-th step yiolding AY, = AY,

Ezample (decimal arithmetic) : p =2, g=10and r = 3. Convert (.101 110),
to decimal (101 110), = (.50},
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Using (3.3.15) and (3.3.18), we have computations in Tablo 9.

TABLE 9
$ b (] Yq
[ 1, 8 [
1 % FET " ®
5,6 56 1[8 ., 88) _ 12
N AR i{‘_oﬂ,m}- - 10875
8o, Z = .50+4.15876

= (.71876)4.

Another scheme for converting fractions from radix p to radix ¢, for p < g, is given
in Scction 3.4, This is similar to Algorithm 6.

8.4. Algorithm 10 (p < g radiz-q arithmelic). To convert s fraction X=
ap~14-...-+azp~" in & radix p into its equivalont Z in radix-p digita a,, ..., as into m
groups of r digits each aa in Algorithm 0 (Section 3.3.2) and then evaluato Z using
X a9 the reoursive achemo

Zy= Zy o+ . (340)

for i=1,2,...,m, with Z; = 0 and the rccursion terminates at m-th step yielding
Z.¢" = Zr whence

Z = Zppt. e (342)

Example (decimal arithmelic) : p=2, g=10andr = 3. Convert (.101 110);
to decimal {.101 110), = (.56),

Using (3.4.1) and (3.4.2), we have,
Z,=5

Z,= %.,.o = P;g 48 = (.T1876),,.

3.5. Comparison of the algorithms. In Tablo 10 is prescnted a comparison
of the algorithms described in Sections 3.1, 3.2, 3.3 and 8.4. The number of 4 or

fons, X or - uperations needed to carry out a given algorithm ie easily obtained |
from the recursive schomo used. It is worth noting that Algorithms 7, 8,9 and 10
are finite terminating processcs although p~! may not have an exact ropresontation in
radix ¢ and an approximate value of this ia to bo used for computation purposce and
hence tho converted number may not be oxact. Algorithm 6, on the other hand,
can bo carried through any arbitrary large ber of stops to a given degreo of pre-
cision of tho converted numbor.
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TADBLE 10, COMPARISON OF ALGORITINIS FOR CONVERTING n
PRECISION FRACTIONS FROM DECIMAL
TO BINARY AND VICE VERSA

no. of no.of no. of

algorithm + of — X or + arithmetio

oporations  oporationa
Cuss (n) L] - da* binary
decimat 1 el n docimal
to
binary 8 n 2n binary
Cas (b} [ - de docima!
binary 7 n=1 " binary
to 2
ot LA = docimal

decismal 3 3
asums n = Im
for some m 10* ; ‘: docimal

*d is equal to tho numbeor of digits in the convorted fraction in radix-g dosirod.
1Binary digits aro grouped in groups of threo bits cach and cach group is treated as BCD digit.

4. COXVERSION ALGORITHMS TSING RADIX-COMPLEMENT ARITHMETIO
(FROXM RADIX p TO RADIX @)

4.1, For inlegers (E. V. Krishnamurthy et al, 1963). If a number Npis in true
complementary form in radix p the usual method to get Ny in radix g is to reconvert
the number Ny in truo form, convert it to radix g and then put it back in the comple-
mentary form in radix ¢.

This would mean that wo would have once to go up the characters to find the
sign of tho string and then come down the characters, recomplement and then perform
conversion.

A more economio proceduro i to convert the most significant character alono
fo true form by taking its p's complement, translate into radix ¢ and then evaluate

[{@nePg—ain-110) Pe—a(n-no}pe—--- et0.]
Using the reoursive acheme
Zi = Z4yPg~ipairg for i=1,2..,n e (4.1.2)
with Z, = 4,, and tho recursion terminates at the n-th step yiclding Zy = Ny in truo
form in radix g. This can bo cnsily proved as outlined below.

Sinoe when Np is in pl -y form xep ! by
Ny = alprt.alp® e (4.0.3)
it haas a value given by
Np = —((p—az—1)pr+...+{p—a;—1)p'+(p—a)p®}
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Np = —{(p—adip*+{—pP+(p—ai )" ... +(p—a))}
= =& ph—ayy prl—..—agpf}
thoroforo, Np = —(arp*—oy_p*1—...—ay ") w(4.1.4)
whoro the bar Indicates the complement in radix ¢. This polynomial is to be eval-
uated in tho usual manner (4.1.2). Thon tho comploment of this result in redix ¢ is
takon,
Ezampls (binary arithmetic): p =10 and ¢ = 2. Convert Nyy=1" 5° to
binary in complementary form. N, = (—25); = —(11001),.
Ueing (4.1.2), we have
Zy = 1010—111 =11
Z; = 11X 1010—101

= 11001
8o, Ny = —(11001), = {0° 0° 1° 1° 1°),,
4.2, For fracti Conversion algorithm for fractions in the 1 t

from in radix p to fractions in complemontuy form in radix ¢ is simpler than ﬂmt
for integers.

Let f; be the truo compl t tation of & fraction —fj in radix p
and let f¢ bo the representation of f; in rndlx ¢. Then fg = 1—f,, where f is the
representation of f, inradix g. This is because f} = (1—f3)p, and also converting both

sides to radix ¢ wo shall get

o= Q0~foder
Since the true compl tary rep ion for a fraction in any radix is obtained
by subtracting the fraction from unity, which has the same representation in all radices,
f; is obtained dircctly from f; using any of the algorithma described in Scotion 3. Note
that this is different from the case of integers.

Ezample: p =10 and g = 2. Convert f}, = (.7° 5*),y to binary in comple-
moent form
1o = (7" 8%y = (—28)y0 = (—.01)y = (:1° 1°)
and (18 =(1"1"=4;
So, f3 can be direotly obtained from fJ, in the true complementary binary form.

5, CONVERSION ALGOBITHMS POE FLOATING POINT NUMBERS (FROM RADIX p
TO RADIX ¢) (KRISINAMURTHY el al, 1063; yaNCINO, 1960)

Thore aro two differont sohomes availablo for converting o floating point
number {n radix p to a floating point pumber in radix ¢. In proctice, ono can uso
cither of the two schomes or o combination of theso. Those schemes aro desoribed
below.

8.1, Polynowmial approximation method. Lot tho representations of a number
X bo Npp'® and Npq' in radicos p and g rospeotively. Given Np, ep exprossed in
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radix p to gob Ng and €, expressed inradix g.  Np oan bo considered as cither a pure
integor or o pure {raction with propor oxponont ¢p.  Ngand ¢, suoch that

X = Npp'? = Nog't A {511)

is satisficd, onn bo_obtained as follows, Equating 27 =", and toking logarithm
to tho baso g wo got,
€ = ¢y loge p
= I+ (sny) v (6.1.2)

where I is an integer and fis a fraction. Tako g =1I. N, con bo obtsined In any ono
of the following two waya.

(s) Obtain X converting Np to radix ¢ and tuen get Ng = N3¢/

(b) Obtain X} = Npg/ and then get Ng converting N} to radix g,

Conversion of N'p(or N}) to Ny{or N ) can bo perfornied using suitable algorithms
for integral and fractional parts of Np(or N}) scparatoly. Tho valuo of the single
constant log} is to bo stored and ¢/ may bo obtained by an appropriato polynomial
approximation using stored constants. The arithmetio in obtaining Ny is in
radix ¢ (or in xadix-p) if Ng is obtained using () (or (b)). Theso aro illustrated in
tho following examples.

Ezamples: Case {(8): p>gq, p=10and ¢=2 (binary arithmelic). Wo
can approximate the function of 2/ to 8 significant digits by wsing tho fullowing
polynomial approximation (Lyaternik, Churvonenkis and Yanpolski, 1065).

. 4 3912
= ([( L)Y o
where,
Gg=1
a, = 0.086 643 306 713
a, = 0.003 753 601 712
a, = 0.000 108 419 178 11
a, = 0.000 023 181 769 517.
Thus by using a tablo with the cocfficients ay, ..., @, in fixed point binary form and tho
relation
Ny=DN;- (2, e (8.1.4)
where N is the binary equivalont of Ny, it is possiblo to obtain N, in fixed-point
binary form ovaluating the polynomial (5.1.3) using binnry avithmetio only.
Case (b): p<q, p=2 and q=10 (binary arithmelic) Tho function 10/
can bo approximated to 8 significant digits (Hastings, Hayaward and Wong, 1055;
Lyunternik, Chervenenkis and Yanpolski, 1865) by
(100° = ot /480 S+ +ar /T, e (B18)
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whore,

By =1

a,=1151 202 776 03

a, = 0.602 730 B84 20

a, = 0.264 303 674 8

a,=0072 051 730 60

a,=0.017 421 119 88

a,=0.002 664 01T 06

a,=0.000 932 642 67
So by using a tablo with tho coofficionts ag, ), ... @, in fixed-point binary form and the
rolation

N} = Ny (100 e (6.1.6)

it is possible to obtain N7 in fixed-point binary form evaluating the polynomial (5.1.5).
Then Ny can bo obtained converting Ny using binary arithmetio oaly.

8.2. Table look-up method. The usual method of conversion of o floating-
point decimal number to a normalized floating-point binary number and vico versa
is ofton performed by a sub-routine that converts from radix 10 to radix 2 using a table
of tho powers 107 and from radix 2 to radix 10 by using a tablo of tho coefficionts of
o polynomial approximation of 10:(0  z < 1) [o.f. (5.1.5)]. Mancino (1966) suggested
a modification of these conversion schemes and has shown that conversion in both
dircctions can bo performed by using a single small table of the powers 10% We
briely deseribe the modified schemes of Mancino for conversion of a floating point
number d = Npp” in radix p to o normalized flooting-point number b= N,»q" in
radix ¢ and vico versa usinga singlo small table oftho powers p! and radix-g arithmetio.

6.2.1. Conversion from radiz p to radiz g. By suitably choosing the expo-
nent ep wo can make N an integer which is converted into & normalized floating-point
number Ag in radix ¢. Then tho final exponent ep of d is converted into a radix-g
integer 2. Finally b s obtained

bpp? >0
b=dq ¢ o (6.21)
wipll, i <o
using normalized floating point radix-g arithmotic. the value of p"’l being available
in & tablo in normalized floating point radix-¢ form.

8.2.2, Conversion from radiz q o radixz p. A radix p fraction f and a radix p

integer 7 aro dotermined so that
Npd'? = fop. . (522
Then f, and iq axo converted into their radix-p oquivalents. Mathomatically tho com-
putation of fg and iq is based on two formulus obtained as follows. Let u ond v be
tho integral and fractional parts of tho product e, by logl. Then.
Nor g0 = Ngo propr. e (5:2.3)
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Sotting z=vand j=uifn > 0 or 2 m v41and j = u—1if » <0 (5.2.3) may be
writton as

Npg't = Nop=p? e (8.24)

where 0 € 2 <1 and j is a relative integer, Comparing (5.2.2) and (6.2.4) one has
Jo= Nep* o (5.2.8)

te= g . (8.2.6)

Usually f; is obtained from (5.2.5) wing o polynomial approximation for %, but in
Mancino's schemo fg is obtained as

1
fo=Fodlpn.
So.
sl ge>o0
Jo= . v (8:27)
sl i e 0.
523, Use of single amall table of the powers p* in Mancino's scheme. As
deacribed in sub-Sections 5.2.1 and 5.2.2 fon in both directions can be performed

using a singlo table of the powers p! in floating-point radiz-g form and using normalized
floating point radix-g arithmotio.

Moreover, if § denotes the greatest positive integer such that p* is expressible
exactly 8a 8 singlo precision normalized foating-point radix-g number, tho division of
|7g] by !leads to an integral quotiont g and to an integral remaindor ¢ sach that

pl'd < iy - \5:28)

Honco the tabulation of tho singlo-precision normalized floating-point redixg
equivalonts of pt, ..., p! sufices for the exccution of (5.2.1) and (6.2.7). Finally, from
(6.2.5)

Icr<s . (5.29)

Thia iraplies that tho exponent & of f, can assume only the values 0, 1, ..., ¢, whero ¢
is the minimuw integer such that ¢! > p, so that the mantissa of f;, left-shifted of
a-places, gives fy in fixed-point radix-g from which can bo converted into radix p 08
Ny,
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