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SUMMARY. Tn this papor, thu statistical model for samwplo surveys is frst put in the conven.
tional sot-up of (0, a, ), and it is shown that o maxima) sufllcionay roduction iy shways possiblo for e
ssmplo survey modol. Tho carrosponding minimal wuffisient statisti: ls dorived. Wo examine the rolo
of the sufficioncy and likelihood principlvs in tho anslysia of xurvoy data and arrive at the revolutionary
but reasonable ronclunion that, oncw the kon-ple hen been druwn, tho inference ahiould not dopend in any
way on the sampling ilesign. Thiv poses the problum of designing o murvey which will yiold o good
(roprosuntativo) samplo. Tho randomisation principlo is oxamined from thin viow point and it is noticod
that thore ia very Liltlo, if any, uso for it in survay dosigs.

1. INTRODUCTION

This article was written with tho objoct of emphasizing the following four
points,

(s) Tho first point is only of pedagogical intorest. Recently, & series of
interesting papers have appeured [Pathak (1904), Godambe (1966), Hanurav (1088),
Joshi (1968) to mention only a fow] in whivch tho statistical model for sample surveys
has boon so formulated as to confuso convontional statistical mathematicians fordi-
narily incapable of speculating about anything excepting the trinity of (X, &, #)!]
into the beliof that the analysis of survoy type data falls outside the mainstream
of the theory of statistioal annlysis, In these formulations, one secs on the surface
a ‘sample rxpace’ S (of possible samples 8) with just one probability moasure p on S.
[How can thorv be any inference with just ono messure 1!] The pair (S, 2) is called the
sompling dusign. A typical sample ¢S is & subsot of (or & finite sequonce with its
mombors drawn from) a fixed pupulation 1 of individuals 1,2,3, ..., N. The parameter
is an unknown vector 0 = (Y, ¥,, ..., Yn). A statistic is a very apecial kind of &
function of tho sample s and the parameter §. [How can a statistioc bo anything but
& function defined on the sample space ?!)  And so on and on it (the new formulation)
goes, apparontly blazing o new trail in tho wildernees of statistioal thought. In this
articlo we point out that it is not really necessary to formulate the survey model in
the above ‘unfamiliar’ mamer. Wo need not abandon the trinity (X, «, #)!

(b) The second point emphasized here is also of a purely academic naturo.
If we assume that tho set of ‘possible’ values for the parnmetor 0 is uncountable, then
the family # in the sample survey mode! (X, &, #) would bv typically undominated.
This raises the possibility that there may not exist o meximal sufficiency reduction
of the survoy data (and other hair raising possibilities!). But tho saving grace for the
survey model i8 that each member of # is always a discreto measure. The existence

* This rosearch was portially supportod by Rosearch Orant No. ZU-2682 of tho National Solonoo
Foundation.
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of the maximal sufficiency reduction of tho data (the minimal sufficient statistic) is
always assured if we tuke every sot ns measurable. Also it is very casy to characterize
and use the minimal sufficient statistio.

(o) In this artiolo wo examine the role of the twin principles of sufficienoy
and likelihood in the analysis of survey data and arrive at the revolutionary but entirely
reasonable conolusion that at tho analysis stage the statistician should not pay any
attention to the nature of the sampling design. Indeed, the analyst need not even
know the sampling design that produced tho data.

(d) It goes without saying that there is a great need for designing the survey
very oarefully. How else can we oxpect to got a good (reprosentative) sample !
G ly. aurvey istioians make extonsive uso of the random number tables. In
this article, the author vory briofly examines tho randomization principle and comes
to the oonclusion that there is very little (if any) use for it in survey designs.

2. STATISTICAL MODELS AND SUFFICIENOY

The notion of a sampling (or statistical) experiment is idealized s o statiatical
model (X, a, ) where

(i) X is the sample space,

(ii) « is a fixed o-field of subsets of X, oalled the measurable seta or the
ovents, and

(ili) 2 = (Py|0eQ} is a fixed family of probability measures Py on .

The family # is indexed by the unknown state of nature (the parameter)
8. 'The set of all the pussible values of 0 is the parameter space Q.

By the term statistic we mean a charncteristic of the sample z. A general
and abatract formulation of the notion of a statistic is that of a mapping of X onto
aspace Y. Thus, u statistic 7' = T'(z) is an arbitrary function with X as its domain.
Every statistic T defines an equivalence relation [z ~ z’ if 7'(z) = T(z')] on the sample
space X. This leads to a partition of X into equivalent classes of sample points.
As we need not distinguish b tatistics that induce the same partition of X,
it is convenient to think of a statistic 7 as a partition {7} of X into a family of mutually
exclusive and collectively oxhaustivo parts .

The statistio (partition) T = {n} is said to be wider (larger) than the statistic
T* = {n*} if every m ia a subsot of some #*— in other words, if every #* is a union of
o number of #’s. Given s statistic 7' = {n}, consider the class of all measurable sets
{members of @) that are unions of some n's. They constitute a sub-¢-ficld (sub-field)
of « and is donoted by ay. We call ar the sub-field induced by T. If T is wider
than 7™ then ar D) ag..

An abstract and vory general formulation of the notion of suffivient statistio
is the following :
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Definition :  The istio 7' is sufficient {a, 2] if, ponding to overy roal-
valued bounded, a- ble fi ion /, there oxists an ar -measurable f* such that
for all Beay and 660

JfdPy =1 [ dP,
3 B

The notion of sufficienoy has been studied in great details in statistioal litera-
ture. In the particular oase whore the family 0 of probability measures is dominated
by & o-finite measure A, we have the following factorization theorem of fundamental
importance.

Theorem : Let p, = dPy|dA be o fixed version of the Radon-Nikedym
derivative of Py ort A, A necessary and suffici dition for the sufficiency of the ata-
tistic T is that there exists, for each 06, an ar-measurable function g, and a fired a-measur-
able function k such that, for each 8¢ 2,

(%) = gjixh(x) aew(A).

In a dominated set-up, most of the proporties of sufficiont statistics Bow from
the above fi ization th For lo, if T is sufficient then any
T* that is wider (larger) than 7 is also sufficient. Agnin, with a soparability condition
on @, it is true that there exists a sufficient statistic T which is essentially smaller
(narrower) than every other sufficiont statistic T*.  Such a safficient statistio is celled
the minimal (or least) sufficicnt statistio.

That neither of the above twu propositions need hold for general undominated
set-upe has been oxhibited by Burkholder (1961) and Pitoher (1957). Cunsider the
fullowing two examples.

Ezample 1: Lot X be the real lino, @ the o-field of Borel sets and 2 the class of
all discrete two-point probability distributions P, on tho line that are symmetric
about the origin. [That is, tho ontire mass of P, is oqually distributed over the two
points — & and 0. where # >> 0.] Let E be a non-Burel set that excludes the origin
but is symmetric about it. Let T(z) = |z| and let

|z| if z¢E&
T(z) =
z if z¢ B
Clearly, 1™ is wider than 7. Bowever, in this example, 7 is sufficient but 7 is not.
Ezample 2: Let X, a and £ bo as in the previous example and let © = (P,}
be defined as follows. If ¢ £ then the whole mass of P, is equally distributed over

the points —& and 0. If 6¢E, then P, is degenerate at §. In this example, there
does not exist & minimal sufficient statistic.

In each of the above two examples, we are dealing with a family of measures
oach member of which is disorete. In le 1, eaoh has its entire mass
concentrated at two points only; in example 2, each measure hss ita entire mass
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distributed over at most two points. True, we are doaling, in cach osse, with an
undominated family of messures. But that is not whero the real trouble lies. In
these examplos, our difficulties stem from our artificially restrioting ourselves to Borel
sets only. If in the above two examples we take & to be the class of all subseta, then
we do not have to face the above kind of anomalous situations. The natural domain
of definition of disoret is tho o-field of all subsets. In sample survey theory,
we need not consider non-disorete probability measures. By & discrete model we
mean the following.

Definition : ‘The statistioal model (X, a, Py), 6 ¢Q, is called & disorete model

if
() oach P, is a disorete measuro,

(iif) « is the class of all subseta of X, and.

(iii) for each z 6 X, thero oxists a 0 ¢ Q, such that, P, ({z})>0.

[Remark : Condition (iii) only ensures that we do not entangle ourselves with possi-
bilities that havo zoro probabilities for each possible valuo of the parameter 0. Condi-
tion (ii) ensures that all sets and functions are measurable.]

We, henceforth, deal with disorete models only. A discrete model is undomi-
nated if and only if X is uncountable. The Burkholder-Pitoher type pathologies oannot
occur in discrete models (Basu and Ghosh, 1967).

3. SUPFIOLENOY IN DISCRETE MODELS
Let (X, a, Py), 0 € Q, be a disorate modol. For each z € X lot
Q, = {0| Pyz) > 0}.
[We, henceforth, write Py(z) for Py({x}).] The sot €2y is tho set of parameter pointa
that are consistent with the observation (sample point) 2. No Q; is vacuous.

Por discrete models, the minimal sufficient statistic always exists and is uniquely
defined as follows. Consider the binary relation on X : "z~ 2’ if Q, = Q. and
P, (z)| Pyx’) is a conatant in ¢ for all O 2, = Q..

The above is an equivalence relation on X." The partition (statistio) induced

by the equivalence relation is the minimal (least) sufficient statistic, This is an ossy
of the following f ization theorem (Basu and Ghosh, 1967).

Theorem : If (X, @, P,), 0¢Q, be a diagrete model, then a necessary and sufficient
condition for a stalistic (partition) T = {n} to be sufficient is that there exists a
function g on X, such that, for all 0 Q andx ¢ X,

Pyfz) = glz)Pyin,),
where 7, is that part of the pariition {n} that conlains z.

The above faotorization theorem is a direct and easy consequence of tho defi-

nitions of sufficiont statistios and disorete models (s stated in Seotion 2).
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If T = {n} be a sufficient partition and if ¢ be defined as in the previous theo-
rom, then it follows that g{z) > 0 for all z ¢ X and that, for ench 7,

Zglz)=1.

Each part of a sufficient partition must be countable. What the above factorization
theorem is telling us is nothing but the intuitively obvious proposition that {n} is
sufficient if and only if, for each part 7, it is true that the conditional distribution of
the sample z given n is 0-free. This is indeed the original definition of sufficiency as
proposed by Fisher.

Another consequence of the above theorem is that if 7' = {n} is a suffisient
statistio then any statistio 7* that is wider than T' is noceesarily suﬁolent It also
follows thet (for disorete models) there exists a 1
pufficient statistics (partitions) and sufficient sub-flelds (Basu and Ghoah 1967).

An alternative (but equivalent) way of ch g the \ suffioi

statistic for a discrete model is the following. For each x ¢ X lot L ,(#) stand for the
likelihood function, i.e.

[ Pyz) for 0cQ2,
i 0 for 04Q,.
Let us standardize the likelihood funotion as follows.

L) =

7 .(0)
b0 = G Ly
Consider the mapping
ER Z,(O).
a mapping of X into a olass of real-valued functions on Q. This mapping is the minimal
sufficient istic. [A little reflection would ehow that tho partition (of X) induced

by the above mapping is the same gs the one induced by the equivalence relation
deecribed earlier in this section.]
4. THE SAMPLY SURVEY MODELS

The principal features of a samplo. survey situation are as follows. There
exista a well-defined population IT — a finite sot of distinguishable objects called the
(sampling) units. Typically, there exists a list of thees units—the so-oalled sampling
frame. Let us list the population as

n={,23,..N).
The unit ¢ has an unknown charactoristic ¥;. The unknown state of nature is
0 =(¥y Yy ..., ¥o).
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The statistician has some prior information or knowledge X about 0. This knowledge
K is largely of u qualitative and speoulative nature. For example, the statistician
knows that 8 is & member of a well-defined set Q (the parameter space). He also knows,
for eaoh unit ¢, some oharaateristic 4 of the unit 5. Let us denote this set of known
auxiliary chavacteristics by

A= (4, A, ... Ay).

Thus, 4 is & principal component of £. In X is also embedded what the st
thinks (knows) to be the true relationship between the unknown 6 and the known A.

It is within the powers of the statistician to find out or “‘okserve’ the charac-
teristic ¥, for any chosen unit i. A survey problem arises when the statistician plans
to gain further “information” about some function 7 = 7(f) of the parameter & by
observing the Y-characteristics of a set (sequence)

LENUNE PNV 8

of units selected from I1.
Let us denote the observed F-characteristics by

y=(¥,, Y, ., ¥,)
1 3 L
The problem is to make a “suitable” choice of  and then to make a "‘proper”
use of the observations x = (i, ) in conjunction with the prior “knowledge” K to

arrive at a “reasonable” “judgement” about 7.

Now, let us examine how probability theory comes into the pioture. If we
ignore observation errors, then there is no discernable source of randomness in the
above genoral formulation of a survey problem (excepting some very intangible
quantities like “'belief”, ‘'knowledge” ete. which the Bayesians try to formalize as
probability.) In any survey situation there are bound to be some observation errors
(the so-called non-sampling errors). Unfortuuately, in current sample survey research
it is not often that we find mention of this source of randomness. Tt is tacitly
assumed that the observation errors are negligible in comparison -with the so-called
“sampling error”’, This sampling error is the distinguishing, feature of the ourrent
sample survey theory. Here is a phenomenen of randomness that is not inberent to
the problem but is artificially injected into tho problem by the statistician himself.
The survey statistician does not lean on probability theory for the purpose of under-
standing and controlling the mess croated by an unavoidable source of randomness
or uncertainty (observation errors). He uses his knowledge of probability theory
to introduce into the problem a well-understood (fully controlled) element of
randomness and seems to derive all his strength (intellectual conviction) from
that.
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The “B&mpling error” is the rand that the istician injeots into the

blem by selecting the set (seq £ = (iy, 4, ..., 1,) in a random manner. Given

a s&mplmg plan 8, for oach possible { there exista a number p(¥) which is the probability
of ending np with . Usually, this p{i) does not depend on the paramoter &, although
quite often it is made to depend on the suxiliary information A. [However, one may
consider sequential sampling plans for which p(i) depends on 0. For instance, consider
the sampling plan—"'Choose unit 1 and vbserve ¥,. If ¥, (which we suppose is real
valued) is larger than b then choose unit 2, otherwise ohoose unit N*. For this plan
£ is either (1,2) or (1, N) and p{i) depends on & through ¥;.] Typically, the random
choioe of § is made in the sta*istical laboratory well in advance of the time that the
observation job is in progress. For such typical sampling plans, the probability
(i) for any poasible  does not depond on d at all. Howaver, even if we agroe to consider
soquential sampling plans of the type deseribed within the par is before, itis olear
that p{i) for such plens can depond on # =(Y,, Y, ..., Y) only through y = (¥,
1

th

Y, ..., ¥, ). As wo shall presontly see, this remark is important. In the sequel we
] n

write p(i|8) for p(i).
The sample is z = (i, ), the set i together with the observation y. [For some
pling plans—like ling with it is more natural to think of ¢
as a finite sequence of units with repemxons allowed.] The sample space X is tho set
of all possible samples z.

Now, each z, when observed, tolls us the exact Y-valuo of some population units,
i.e., tells us about some ooordinates of the veotor 0. Lot Q, be the set of parameter
points 0 that are consistent with a given sample 2. If Py(x) be the probability that the
sampling plan ends up with sample z = (i, y), then it is clear that

pli|6) for 0eQ,
Py(z) = { i
0 otherwise.

Thus, Q, is also the set. of sl purameter points that allot non-zero probabilities to x.

As we have said beforo, in typical sampling plans p(i|#) does not depend on
6. In sequentiel sampling plans (where the choice of a population unit at any stage
is made to depend on the obsorved ¥-values of the previously selected units) we have
noted before that p(i|8) depends on & through y. Thus, we make the following im-
portant observation that, for any sempling plan,

constant for feQ,
Pyfz) =
for feQ,.
This leads us to the following general characterization of a semple survey model.

Definition :  The model (X, «, Py), 8 6Q is called an SS-model if the model
is discrete and if Py(z) is & constant for all § ¢Q,, where
= {8] Pylz) > 0}.
From what we have said in Seotion 3, it then follows that
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Theorem : If (X, e, Py), @ € Q be an SS-model, then the minimal (least) sufficient
slatistic is the mapping® z—Q,.

The distinguishing feature of an 88-model is that for every pussible sample
the likelihood funotion is flat. That is, for every z ¢ X the likelihood function L,(0)
is 2ero for all § outside a set 2, and ia a constant for 8 ¢ Q,. The following is an oxample
of & nun-discrete modol with the abuve foaturo,

Ezample 3 : Lot z = (2, T3, -, %,) be n independent cbservations on a random
variable that has a continuous and uniform distribution over the interval (§—1/2,
6+1/2), where 8 is the parameter (—c0 < 0 < o0). Let Q, be the interval (m(z),
M(z)) where m{z)=max z—1/2 and M(z)=min 2(+1/2. Here, L (0)=1 for allf e Q,
and is zero for 0¢Q,. The mapping x— (m(z), M(z)) = Q. imthe minimal sufficient
statistio.

6. THE SUFFIOIENOY AND LIKELIHOOD PRINCIPLES

The twin principles of sufficiency and likelihood both attempt to answer the
same question. The likelihood principle, however, goes a great deal further in its
assortion.

The question is : *'What characteristic of the sample x is relevant for making
an inference sbout the parameter #7° In general, the sample z is & very complex
entity. Must we take into account the sample z in all its detail 2 Could it be that
somo characteritics of z are totally irrelevent for making any inference about the state
of nature @ 7 For instance, if in the observation z we have incorporated the outcome
u from a number of tosses of a symmetric coin, then it seems very reasonable to argue
that the characteristic » of # is totally irrelevent and must be ignored.

The sufficiency principle is the following. If T = T{(x} be a sufficient statistic,
then only the charsoteristic T(z) of z is rolevant for inference msking. That is, if
T'(z) = T(z') then the inference about 0 should be the same whether the sample is
z or 2. The relevant information core of z is then the statistic T'(x), we T\, is the
minimal sufficient statistic.

The sufficionoy principle has gained rather wide acceptance. The Neyman-
Pearson sohool of statisticians tend to justify the principle by proving some complete
olass theorem that tells us that it is not Y to ider decision rules {infe
procedures} that do not depend on z through To(2). On the other hand the Bayesians
have no objection to the sufficiency principle as they point out that the posterior
distribution for the parameter 6—whatever be its prior distribution—depends on =
only through the minimal sufficient statistic T'g(z).

As we have stated in Section 3, the mapping z— Z,(O), where L(0) is the
standardized (modified) likelihood function, is the minimal sufficient atatistio. Thus,

*In typioal survoy situations, the minimal sufilcient statistio {tho information coro of tho samplo)
is tho sot of {distinct) population unit-labols that are drawn in the snmplo togother with the corresponding
Y-valuoe.

448



SUFFICIENCY AND LIKELIHOOD PRINCIPLES IN SAMPLE SURVEY THEORY

according to the sufficiency principle, two sample points z and 2’ are equally infor-
mative if

L0) = L(8) for all 6,

Note that the sufficiency principle does not toll us anything about the nature
of the information supplied by z. The likelihood principle takes a big step forward
and asserts that the informetion supplied by z is the likelihood function I_(8). Whereas
the sufficioncy principle oan comparo two possible samples z and =’ only when they are
points in tho same sample space, the likelihood principle can compare thom even when
they are points in different sample spaces. Consider the following examplo.

Ezample 4: Let § be the unknown probability of head for a given coin.
The following is a Jist of three different experiments (among the many that one can
think of) that one may perform for the purpose of eliciting information about the
unknown §.

&, : Toas the coin & times

8y : Toss the coin until there are 3 heads

&,: Toss the coin unil there are 2 consecutive heada.

Wo give below an example z; of a possible sample point for each experiment
& (=123, (H=hesd, T =tai

zn: HTHHT
z: TTHHH
2z BTTHH

[Note that the sample spaces for the three experiments are different from one another,
Also note that z, cannot be a sample point for either &, or &;. Similarly, z; cannot
be a sample point for &,.]

It is easy to cheok that the likelihood function for #; (when it is referred to
experiment &) ia 63(1—06)* and this is irrespective of whether i is 1,2, or 3. The
principle of likelihood tells us that sample z, for oxperiment &, gives the same infor-
mation about ¢ as does sample z, from &, and sample z, from &,.

From the Bayesian point of view tho likelihood principle is almost a truism,
The starting point for a Bayesion (in his inference making effort) is a prior pro-
Dbabiltiy distribution over the p ter space Q. Let ¢ = g(0) be tho prior pro-
bability frequency funotion. Heving observed the sample z, the Bayesian uses the
likelihood funotion L {8) to arrive at the postorior distribution

aOL(0)
£,9(0) Z(6)
449
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To a Bayesian, the rolo of the sample z is only to ohange his prior scalo of preference
(probability distribution) ¢ = ¢{0), for various possible values of 0, to the posterior
soale ¢° = g (6). And thia ohange ir offected through the likelihood function Z,(6).
Possible sample points z and 2’ (whatever sampling experiments might gonorate them)
arc oquivalent aa long as they induce identical (mogified) likelihood fi i The
likelihood principlo is ially a Bayesian principle. It is hard to justify the
principle under the Neyman-Pearson set-up.

#. ROLE AND CHOIOE OF THE S8AMPLING PLAN

Let . bo the chosen sampling plan and let z = ({, y) be the data (sample)
genorated by §. In the matter of analyzing the data, how relevant is the plan & ?
Ifi=( .0 e0d y =(Y,,Y, ..., ¥, ), then Q, is the set of all f2
1 3
whose j-th co-ordinate is Yy (j = iy, iy, ... i,) —the set of 0 that are consistent with
the data Note that 1, depends only on z and €, it has nothing to do with the plan g

The t istic is the mapping z—» (1, and the likelihood function
L0) is
_ 1 for fef2,
L6)=
0 otherwise.

If ¢ = g(8) be the Bayesian prior distribution over Q, then the posterior
distribution is

4:(0) =
0 otherwise.

gL {o(z)q(o) for B0,
Z,919) L,(0)

The posterior distribution ¢;(0) is nothing but the restriction of ¢ to the set
Q,. And the plan 8 does not enter into the definition of 2,. Thua, from the Bayesian
(and the likelihood principle) point of view, once the data z is before the statistician,
he has nothing to do with the plan 8. He does not even need to know what the plan
8 waa. [This is beosuse, in sample snrvey situations, the plan § is an artificial source
of randomnees. In other etatistical i where d is unavoidable
and is an inherent part of the observation process, the statistician has to ‘‘understand”
the process wall enough to be able to arrive at his likelihood function.}

In the Neyman-Pearson type of analysis of the data, the statistician considers
not only the data x in hand but also pays a great deal of attention to what other data
z' he might have obtained. In other words, he needs to know the model (X, a, X)
as woll as tho sample z. The Bayesian needs to know only the likelihood funotion
L,(0), which, in a sample survey situation, is entirely independent of the model (the
sampling plan 8). Tho author does not think that any reconcillistion between the
two approaches to data analysis is pousible.
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A majority of statisticians of the Neyman-Pearson school would readily agroo
to the proposition that the Bayesian analysis of the data is sensible (acceptable) when
the following oondition holds :

Condition B : It is reasonable to think of the parameter 0 os o random vari-
able, and the random process governing 0 is at least partially discernable.

However, it is hard to understand how such statisticiane reconcile themsolves
to the contrary positions: (a) Only the data z (the likelthood function) is relevant (for
inference making} when condition B holds and (b} the whale sample spaca X(the model}
is relovant when B does not hold. There exists a continuous spectrum of conditions
between the extremes of B and not-B. But the shift of emphasis from the ssmple
z to the sample apace X is not continuous. (Fisher with his theory of ancillaty statistics
and choice of roference sets, made a bold but unsuccessful {see Basu, 1964) attempt
to bridge the gap betweon the above polarities in statistical theory.)

It seems to the author that the Bayesian analysis of the data  is very appro-
priate in sample survey situation. Given the data z = (i, y) the sampling plan 3—the
model (X, a, X)—ccases to be of any relevance for inference making about the para-
meter 0. Given the data z tho statistician arrives ot his posterior preferenco scale
¢:(0) for the parameter 8. If 7 = 7(0) be the parameter of interest, then the statisti-

cian can pute the inal p ior distribution g}(7) of the variable . The
question, “Given z, how much information we have about 7 ?”, can then be answored
by first agreeing upon a suitable definition of inf i [For ple, we may

agree to work with the Shannon definition of information or with the posterior
variance (or its reciprocal) of 7.]

Given a sample z, we can now tell how good (informative) the sample is. The
object of planning & survoy should be to end up with a good sample The term “re-
prosentative sample” has often been used in sample survey terminology. But no
one has cared to give & precise definition of the term. It is implicitly taken for granted
that the statistician with his biased mind is unable to select a representative sample.
8o a simplistic solution is sought by turning to an unbiased die (the random numder
tables). Thus, a deaf and dumb dio is supposed to do the job of selecting a “represen-
tative sample" better than a trained statistician. It is, however, true that we do not
really train our statistioians for the job of selecting and observing survey type data.
[In contrasst, tho medical praotitioner is given a much more meaningful training in
ding the many variables and their interrelations in his chosen field of spaciali-

zation.]

In a Boyesian plan for seleoting the sample z, there is no place for the symmetric
dio. Vory little attention has so far been paid to the problem of devising suitable
sampling strategics from this point of view. In a later document the author would
elaborate some of his own ideas on the problem. We end this section by desoribing
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a Bayesian sampling strategy for the very simplo caso where thoe statistician wants to
sclect and observe only ono unit. Supposo his prior probability distribution is
¢(0). If ho sclects unit i and observes Y, then his posterior (marginal) distribution
for 7 would bo, say, ¢°(7|f, ¥;). Onco a suitablo definition of “information” is agreed
upon, ho can uso tho above distribution to compute the quantity I(i, Yi)—the infor-
mation about 7 gained from tho samplo (i, Y1), At tho planning stago of the oxperi-
ment, the statistician does not know tho valuo of ¥y that he is going to obscrve for tho
unit i. Let J(i) bo the averago value of I(i, ¥} when the averaging is dono over all
possible values of Y7 (woighted by tho prior distribution of Yi). Thus, J() is the
“expected” information to bo gained from observing unit i, Faced with the problem
of deciding which unit § to solect (and then observe), tho statistician would not bo acting
unreasonably if he selects tho unit ¢ that has maximum J(i). [What if the J(i)a are
all equal 1 Such would De the case if the prior distribution of = (Y},Yy,...,Yy)
is 8 tric in tho linates. In this situation the statistician is indifferent as
to which & is sclected for observation. In principlo, ho cannot object now to a
random (with equal or unequal probabilitics) selection prodeduro for i. However,
this does not mean that ho will bo willing to let another person (say, a field investigator)
mako tho choice for him. If for nothing olso, o scicntist ought to bo always on his
guard against letting an unknown element enter into the picture.]

Of course, a non-Bayesian would encer at the arbitrariness inherent in tho difi-
nition of J(i). But the proceduro described above is cortainly more justifiablo than
our current naivo rolianco on tho symmetric dio. Any reasonablo Bayesian sampling
strategy would have tho following characteristics. (a) The sampling plan would usually
bo soquential. Tho statistician would continuo sampling (ono or & few units at a
time) until ho is satisfied with the information thus obtained or until ho reaches the end
of hisropo (time and cost). His docision to solect the units for a particular sampling
stage would depend (non-randomly) on tho samplo obtained in tho previous stages.
(b) Tho probability that the statistician would end up observing the units i = (i), i,
«.cidn) in this order, would depond on { and the stato of nature 0. This probability
would bo degencrato, i.e., zoro for some values of § and unity for the rest of the values
of 0.

7. SOME CONCLUDING REMARKS

(a}) Godambo (1966a) noted that the application of the likelihood principle
in the sampling situation would mean that the sampling design is irrelovant for datn
analysis, On page 317 ho writes, ““One implication of this, as can bo scon from (4),
is that tho inference about & must not depond on tho sampling design evon through the
probability p(i) of the i that has actually been drawn. In particular, the estimator of
7 should not depend on p(i) or tho sampling design”. [In this and in tho following
quotation tho author has taken the liborty of changing some of the notations. This
was done for the sake of bringing thom in line with the notations used in this artiolo].
It is interesting to obsorve that Godambo iramediately shics away from the rovolu-
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tionary implication of his romark and tries tu find somo oxouacs for not applying tho
Jikelihood principle in tho pling situati Ho writos {p 317, Godambo, 1066a),
“Tn connection with tho likelihood principle, it may bo further noted that here 0 is the
porameter and (#, y) is tho sample. Thus, possibly thero is somo kind of relationship
between the paramotric spaco and the samplo spaco (whon tho samplo is observed,
the paramoter cannot romain completely unknown) which forbids tho uso of the likeli-
hood principle. Tho relationships Letween paramotric and sample spaces restricting
tho uso of tho likelihood principlo are reforred to by Barnard, Jenkins and Winsten
(1962)”. In tho two 1960 papers referred to here, Godambo tries very hard to justify a
particular linear estimator as tho only reasonablo one for tho population total. Godam-
be's imator depends on the pling design. Tho nuthor finds Godambe’s
arguments very obscure.

(b) Let us repoat onco again that the posterior distribution of 7 depends
only on the prior distribution ¢ (on Q) and tho samplo z = (, y). It does not depend
on tho sampling design 8. Thus, any fixed ¢ on Q would givoe rise to a Bayes ‘ostima-
tion procedure’ B, that would tell us how to estimate 7 for each possiblo samplo z
—no mattor what design 8 is used to arrive at 2. [Note that By is well-defined as a
function on tho union of sample spaces for all designs 8.] Now, if we consider By
in relation to a fixed design 8, then it would bo classificd as an admissible estimator
in the senso of Wald. The findings of Godambe (1960) and Joshi (1068) thorefore
appent to the author as rather obvioua in nature. It is so ensy to recl off any number
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of such univorsally P

{¢) Tho mathematical content of this articlo is summarized in the theorom
of Section 4. This result has beon known (but never explicitly proved) to the author
{and among others to Godambe, Héjek, Hanurav and Pathak) for tho past cloven years
oreo. Inan yot unpublished articlo, ontitled “Classical sufficiency and its application
to sampling theory”, Pathak has proved this result for a particular (non-sequontial)
case.

Rererences

Daso, D. (1958):  On mampling with and without replacements, Sankhyd, 20, 287-204.

Basvu, D. (1084): Rocovory of ancillary information. Sankhya, 25, 3-10.

Basv, D. and Goosw, J, K. (1067) : Sufficiont statistice in sampling from & finito univorso. Bull. Int.
Stat, Inat, 42, DK. 2, 850-839,

Boaxitoroen, D. L. (1061):  Sufficiency in the undominated case. Ann. Mafh. Statist., 33, 1191-1200,

Gopausy, V. P. {1900): An admissiblo cetimate for any sampling design. Sankhyd, 23, 285.238,

{1968a): A now mpprosch to ssmpling from Sinito populstions, I: SuMiciency snd lincar

catimation. JRSY (sorica B), 28, 310.319.

{1006b): A now spproach ta sampling feom finite populations, II: Distribution.freo sufi-
cioncy. JRSS (sorica D), 28, 320.328,

Hanoray, T. V. {1004): Hyp issibility and optimum cetis for sampling finito populations.
Ann. Math, Statist., 89, 621-842.

453



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Srries A

Joaus, V. M. (1968) : Admimibility of the samplo mosn aa cetimato of the moan of & finito population.
Ann, Math, Statist,, 39, 600-620.

Pamuax, I, K. (1064):  Sufliciency in sampling thoory. Ann. MatA, Statist., 85, 785.809.

Prrcner, T, 8. (1957):  Sote of measurce not admitting necessarvy and sufllcient statistica or subfiolda.
Ann. Mash, Statis., 28, 207.208.

Paper received ; November, 1968.
Revised : 3ay, 1969,

454



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014

