A CHARACTERISATION OF MOORE-PENROSE INVERSE AND RELATED RESULTS

By SUJIT KUMAR MITRA and P. BHIMASANKARAM Indian Statistical Institute

SULIMARY. In this paper we prove the following results.

- I(a) $G = A^+$ if $G = A_r^-$ and $[GG^+]^* = [(A^BA)^*]^-$ for some positive integer r > 2.
- (b) $G = A^*$ if $G = A_I^-$ and $G^{\oplus}(GG^{\oplus})^* = [(A^{\oplus}A)^* A^{\oplus}]^-$ for some positive integer *.
- 2. $G = A_L^{-}$ and $G = A_M^{-}$ if and only if $G = A^{-}$ and $GG^{\Phi} = (A^{\Phi}A)_L^{-}$.
- 3. $G = A^*$ if and only if $G = A^*$ and $GG^{\frac{1}{2}} = (A^{\frac{1}{2}}A)^*$.
- 4. If $GG^{\Phi} = (A^{\Phi}A)_{m}^{-}$ and $G^{\Phi}(GG^{\Phi})^{*} = [(A^{\Phi}A)^{*} A^{\Phi}]^{-}$ then $G = A_{1}^{-}$ and $G = A_{m}^{-}$.
- 5. Let A be a matrix such that $R(A) = R(A^2)$. Let Jurdan form of A be $A = L\begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} L^{-1}$ where C is nonsingular. Then G is a g-inverse of A with power property if and only if $G = L\begin{pmatrix} C^{-1} & J \\ F & FCJ \end{pmatrix} L^{-1}$ where J and F are arbitrary subject to the condition JF = 0. $\{A^{\frac{1}{2}}\}$ is defined as follows: $\{A_F, y\}_F = (x, A^{\frac{1}{2}}y)_F$ for all $x \in E^*$ and $y \in E^*$ where $\{.,...\}_F$ is a valid inner product in E^* .

1. NOTATIONS

We use the following notations. The vector space of n-tuples over the field of complex numbers is denoted by \mathcal{E}^n . Matrices are denoted by hold face capital letters such as A, B, C, G, H otc. Throughout the paper we consider matrices over the field of complex numbers. 0 denotes a null matrix. A^* , \mathcal{A}^* , \mathcal{A}^* , A^* , A^* , A^* , A^* , and A^* denote conjugate transpose, column space and rank of a matrix A. If A is square |A| denotes the determinant of A. Let A be a matrix of order $m \times n$. A^* elemets the adjoint of A. The adjoint matrix is defined by the condition $(Ax, y)_m = (x, A^*y)_n$ for all $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ where $(\cdot, \cdot)_m$ and $(\cdot, \cdot)_n$ are valid inner products in \mathbb{R}^m and \mathbb{R}^n respectively. If $(x, y)_m = y^*Mx$ and $(x, y)_n = y^*Nx$, then $A^* = N^{-1}A^*M$.

Various g-inverses considered in this paper are described in the following table:

	symbol	conditions
g-inverse	Α-	AGA = A
Reflexive g-inverse	47	$AGA \Rightarrow A, GAG = G$
Least square g-inverse	⊿1; ·	$AGA = A$, $(AG)^{\bullet} = AG$
minimum norm g-inverse	$A_{\vec{a}}$	$AGA = A, (GA)^{\bullet} = GA$
Minimum norm least squares g-inverso	A+	AGA = A, $GAG = G$,
(Moore-Penroso inverse)		$(AG)^{\phi} = AG, (GA)^{\phi} = GA$

SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS: SERIES A

A matrix which is both a minimum norm g-inverse and a least squares g-inverse of A is denoted by $A_{n,N}^{\perp}$. We sometimes use the notation $A_{n,N}^{\perp}$, $A_{n,N}^{\perp}$, and $A_{M,N}^{\perp}$ to indicate specifically the various norms that are involved.

2. A CHARACTERISATION OF MOORE FENROSE INVERSE

We prove

Theorem 2.1: $G = A^+$ iff either one of the following equivalent conditions hold

(i)
$$G = A^*$$
 and $(GG^*)^* = [(A^*A)^*]^+$ for some positive integer $v \ge 2$.

(ii)
$$G = A$$
; and $G^{\bullet}(GG^{\bullet})^{\bullet} = [(A^{\bullet} A)^{\bullet} A^{\bullet}]^{-}$ for some positive integer $\nu > 1$.

Proof: The "only if" part is trivial and indeed too modest. For the "if" part consider a general singular value decomposition of A (see Rao and Mitra, 1970)

$$A = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} V^{\bullet} \qquad \dots (2.1)$$

where U and V are matrices of order $m \times m$ and $m \times n$ respectively such that $U^*MU = I$ and $V^*N^{-1}V = I$ and D is a diagonal matrix of order $r \times r$ with diagonal elements as the positive square roots of the nonnull eigen values of $A^{\bullet}A$ where r = R(A).

Now,

$$G = A^*_r \Longleftrightarrow G = N^{-1}V \begin{pmatrix} D^{-1} & J \\ F & FDG \end{pmatrix} \ U^*M$$

$$\iff G^{\bullet} = U \begin{pmatrix} D^{-1} & F^{\bullet} \\ J^{\bullet} & J^{\bullet}DF^{\bullet} \end{pmatrix} V^{\bullet}$$
 ... (2.2)

Define

$$X_s = D^{-1/2+r} Y_s D^{-r+5/8}$$
 ... (2.3)

where $Y_{\nu} = JJ^{*}$ if ν is odd, and $= F^{*}F$ is ν is even.

Observe that

$$(GG^{\bullet})^{*} = [(A^{\bullet}A)^{*}]^{-}$$
 $\Longrightarrow D^{-2r+in} ([I+X_{1r-1}) \dots (I+X_{1})-I)D^{-2rk} = 0$
 $\Longrightarrow (I+X_{2r-1}) \dots (I+X_{1}) = I$
 $\Longrightarrow \prod_{l=1}^{2r-1} |I+X_{l}| = 1$
 $\Longrightarrow X_{l} = 0, \quad i = 1, ..., (2r-1)$

since Xi's are semisimple with nonnegative eigen values.

 $X_1=0\Longrightarrow J=0,\ X_3=0\Longrightarrow F=0.$ Hence the if part of Theorem 2.1(i) is established. The if part of (ii) is obtained in a similar manner,

A CHARACTERISATION OF MOORE-PENROSE INVERSE

3. Some results on A; and A;

We prove

Theorem 3.1: Let $G = A^-$. Then

(a)
$$G = A_i$$
 iff $GG^{\phi} = (A^{\phi}A)^{-}$

(b)
$$G = A_b^*$$
 iff $GG^{\phi} = (A^{\phi}A)_b^*$

(e)
$$G = A_{lm}^{-}$$
 iff $GG^{+} = (A^{+}A)_{lm}^{-}$

(d)
$$G = A^{\varphi} \cdot i f = GG^{\varphi} = (A^{\varphi}A)^{\varphi}$$
.

Proof of (a): Theorem 3.1(a) is due to Rao and Mitra (1971). We however reproduce their proof for completeness.

'Only if' part of (a) follows trivially once we observe that $G = A_1 \Longrightarrow A^{\bullet}$. As prove the 'if' part of (a) we proceed as follows. Let $G = A^{-}$. Then

$$GG^{+} = (\Lambda^{+}\Lambda)^{-} \Longrightarrow (\Lambda^{+}\Lambda G - \Lambda^{+})(\Lambda^{+}\Lambda G - \Lambda^{+})^{+}$$

$$= \Lambda^{+}\Lambda GG^{+}\Lambda^{+}\Lambda - \Lambda^{+}\Lambda G\Lambda - \Lambda^{+}G^{+}\Lambda^{+}\Lambda + \Lambda^{+}\Lambda = 0$$

$$\Longrightarrow \Lambda^{+}\Lambda G = \Lambda^{+}.$$

This completes the proof of (a).

Proof of (b): Proof of (b) is complete in the light of (a) once we observe that $R(G) = R(A) \iff R(GG^{\bullet}) = R(A^{\bullet}A)$.

Proof of (c): For the 'only is' part of (c) observe that

$$G = A_{\tilde{l}n} \Longrightarrow A^*AA^*AGG^* = A^*AA^*G^* = A^*A$$

 $\Longrightarrow GG^* = (A^*A)_{\tilde{l}}^*$
 $\Longrightarrow GG^* = (A^*A)_{\tilde{l}}^*$

For the if part of (e), we first observe that $G = A^-$ and $GG^* = (A^*A)_i^- \Longrightarrow G = A_i^-$ which follows from (a).

Further,

$$GG^{\phi} = (\Lambda^{\phi}\Lambda)_{i}^{-} \Longrightarrow \Lambda^{\phi}\Lambda\Lambda^{\phi}\Lambda GG^{\phi} = \Lambda^{\phi}\Lambda$$

 $\Longrightarrow \Lambda^{\phi}\Lambda\Lambda^{\phi}G^{\phi} = \Lambda^{\phi}\Lambda$
 $\Longrightarrow G = \Lambda_{i}^{-}.$

This completes the proof of (c).

Proof of (d): To prove (d), first observe that

$$GG^{+} = (\Lambda^{+}\Lambda)^{-} \iff GG^{+} = (\Lambda^{+}\Lambda)_{-}^{-}.$$

Now (d) follows from (b) and (c).

Let A be an $m \times n$ matrix. Let M and N be positive definite matrices of order $m \times m$ and $n \times n$ respectively. Define inner products using M and N as in Section 1,

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

We have the following corollaries.

('orollary 3.1.1.: Let $G = A^-$. Then

- (a) $G = A_{\ell(M)}$ iff $GM^{-1}G^* = (A^*MA)^{-1}$
- (b) $G = A_{RM}^{-}$ iff $GM^{-1}G^{\bullet} \Rightarrow (A^{\bullet}MA)^{\bullet}$
- (b) " $G = A_{0M}^-$ and $G = A_{m(X)}^-$ " iff $GM^{-1}G^* = (A^*MA)_{n(X)=1}^-$
- (d) $G = A_{MS}^{*}$ iff $GM^{-1}G^{*} = (A^{*}MA)_{N=1}^{*}$.

Corollary 3.1.2: Let $G = A^-$. Then

- (a) $G = A_{-}^{\perp}$ iff $G \circ G = (AA \circ)^{\perp}$
- (b) $G = A_{m_i}^+$ iff $G \circ G = (AA \circ)_i^+$
- (c) $G = A_{lm}^-$ iff $G \circ G = (AA \circ)_{lm}^-$
- (d) $G = A^f$ iff $G^{\bullet}G = (AA^{\bullet})^+$.

Corollaries 3.1.1 and 3.1.2 are easy to prove.

Theorem 3.2:

- (a) G = A_{lm} ⇒ G^Φ(GG^Φ)' = [(Λ^ΦΛ)' Λ^Φ]₁ for all positive integers v.
- (b) G[↑](GG[♠])* = [(A[♠]A)* A[♠]] for some positive integer v and G[♠]G = (AA[♠])_{int} ⇒ G = A[¬].

Proof of (a): Proof of (a) is computational.

$$G \bullet G = (AA \bullet)_{\overline{l}m} \Longrightarrow (G \bullet G)^r = [(AA \bullet)]_{\overline{l}m} \Longrightarrow (AA \bullet)^r (G \bullet G)^r$$

$$= (G \bullet G)^r (AA \bullet)^r \Longrightarrow (A \bullet A)^r A \bullet (G \bullet G)^r = A \bullet.$$

Henco

$$(G \bullet G) = (A \Lambda \bullet)_{in}^{-}$$
 together with $G \bullet (G G \bullet)^{r} = [(A \bullet A)^{r} A \bullet)^{-}$
 $\iff (A \bullet A)^{r} A \bullet = (A \bullet A)^{r} A \bullet G \bullet (G G \bullet)^{r} (A \bullet A)^{r} A \bullet = A \bullet G \bullet (A \bullet A)^{r} A \bullet$
 $\implies G = A^{-}$.

An appeal to Theorem 3.1(c) now completes the proof of (b).

Note: The condition $G^{\bullet}G = (AA^{\bullet})_{l=1}^{-}$ in Theorem 3.2(b) could be replaced by the condition $GG^{\bullet} = (A^{\bullet}A)_{l=1}^{-}$.

4. On g-INVERSES WITH THE POWER PROPERTY

Mitra (1968) raises the following question.

"Let G be a g-inverse of A such that $A^mG^mA^m=A^m$ and $G^mA^mG^m=G^m$ for all positive integers m. Does it follow that either $\mathcal{M}(G) \subset \mathcal{M}(A)$ or $\mathcal{M}(G^*) \subset \mathcal{M}(A)$!"

The answer in general is clearly in the negative. If $R(A) \neq R(A^2)$, we know (Mitra, 1968) that there does not exist a g-inverse G of A such that either $\mathcal{M}(G) \subset \mathcal{M}(A)$ or $\mathcal{M}(G^2) \subset \mathcal{M}(A^2)$. However the Scroggs-Odell pseudoinverse, G does exist and it possesses the property that

 $A^{m}G^{m}A^{m} = A^{m}$ and $G^{m}A^{m}G^{m} = G^{m}$ for all positive integers m.

A CHARACTERISATION OF MOORE-PENROSE INVERSE

We shall now give a counter example even in the case where $R(A) = R(A^2)$. Before we do this, we shall first determine the class of all g-inverses of A with power property (i.e. $A^mG^mA^m = A^m$ an $G^mA^mG^m = G^m \neq m$) in the case $R(A) = R(A^2)$.

Let $R(A) = R(A^2)$. Then the Jordan Form of A is $A = L \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} L^{-1}$ where C is nonsingular. We now prove the following.

Theorem 4.1: Let $R(A) = R(A^{1})$. Then G is a g-inverse of A with power property iff $G = L \begin{pmatrix} C^{-1} & J \\ R & RCJ \end{pmatrix} L^{-1}$

where F and J are arbitrary subject to the condition that JF = 0, C is nonsingular and

$$A = L \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} L^{-1}$$

las for example in the Jordan representation of A).

Proof: 'If' part follows by straightforward verification.

For the 'only if' part we observe that any g-inverse G of Λ can be written as

$$G = L \begin{pmatrix} C^{-1} & J \\ F & II \end{pmatrix} L^{-1} \text{ where } F, J \text{ and } II \text{ are arbitrary.}$$

$$GAG = G \Longrightarrow L \begin{pmatrix} C^{-1} & J \\ F & II \end{pmatrix} \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C^{-1} & J \\ F & II \end{pmatrix} L^{-1}$$

$$= L \begin{pmatrix} C^{-1} & J \\ F & FGJ \end{pmatrix} L^{-1} = L \begin{pmatrix} C^{-1} & J \\ F & II \end{pmatrix} L^{-1}$$

 $\Longrightarrow II = FCJ.$

Further

$$A^2G^2A^2 = A^1 \iff L \begin{pmatrix} C^3 + C^4 & JFC^4 & 0 \\ 0 & 0 \end{pmatrix} L^{-1}$$

= $L \begin{pmatrix} C^1 & 0 \\ 0 & 0 \end{pmatrix} L^{-1}$
 $\implies JF = 0.$

The following corrolaries are easily established.

Corollary 4.1.1: Let A be a square matrix such that $R(A) = R(A^s)$. Then G is g-inverse or A with power property if and only if $G = A_r^s$ and $G^s = (A^s)^{-s}$.

Corollary 4.1.2: Let A be an $n \times n$ matrix. If $R(A) = R(A^0) = n-1$ and $A = L\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} L^{-1}$ Then every g-inverse G of A with power property can be written as $L\begin{pmatrix} C^{-1} & J \\ E & 0 \end{pmatrix} L^{-1}$ where either J or F or both are null.

SANKHYA: THE INDIAN JOURNAL OF STATISTICS: SERIES A

Form Theorem 4.1 and Corollary 4.1.2 it clearly follows that the class of g-inverses G such that $\mathcal{M}(G) \subset \mathcal{M}(A)$ or $\mathcal{M}(G^*) \subset \mathcal{M}(A^*)$ is a subclass of the class of all g-inverses with the power property in the case where $R(A) = R(A^*)$. Further if $R(A) = R(A^2) = n-1$ then by Corollary 4.1.2 these two classes are identical. Thus the answer to Mitra's query is in the affirmative in the case where $R(A) = R(A^*) = n-1$.

5. CONCLUDING REMARKS

It is interesting to observe that the condition that G is A_r^* in Theorem 2.1 may not be replaced by a weaker condition. In fact $G = A^-$ and $G^*GG^* = (A^*AA^*)^-$ need not imply that $G = A_r^-$ or $G = A_r^-$. Thus is demonstrated in the following example. Take $A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 1 & 1 \\ 0 & 3/2 \end{pmatrix}$, M = N = I. The condition that $G^*G = (AA^*)^-$ in Theorem 3.2 may not be replaced by a weaker condition. In fact, $G^*G = (AA^*)^-$ and $G^*GG^* = (A^*AA^*)^-$ need not imply that $G = A^-$. This is demonstrated in the following example. Take $A = \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$, M = N = I.

$$G = \left[\begin{array}{cc} \frac{1}{\sqrt{5}} & 1\\ 0 & \frac{3}{5} - \frac{1}{2\sqrt{5}} \end{array} \right]$$

REFERENCES

Mitra, S. K. (1968): A new class of g-inverse of square matrices. Sankhyā, Series A, 30, 323-330.

Rao, C. R. (1967): Cakuba of generalized inverse of matrices, Part I: General Theory. Sankhyā, Series A, 29, 317-341.

RAO, C. R. and MITRA, S. K. (1971): Generalized Inverse of Matrices and its Applications, John Wiley and Sons. New York.

Paper received: November, 1970.

Revised: November, 1971.