A NOTE ON λ AND (r, λ) SYSTEMS

By A. C. MUKHAPADHYAY Indian Statistical Institute

SUMMARY. For the λ - and $\langle r,\lambda \rangle$ systems defined by Mullin and Stanton (1966) with v varieties, δ blocks and average replication per variety \bar{r} ($\bar{r} = r$ for a $\langle r,\lambda \rangle$ -system), it is proved that $\delta > \frac{\bar{r}}{k_0}$ where $k_0 = \frac{\lambda(v-1)}{\bar{r}} + 1$, the equality implying that the system is a size. It is also proved that any such system with $\lambda(v-1) > \bar{r}(\bar{r}-1)$ is a symmetrical bids if $\delta = v$. A counter example to conjecture I in the reference is also provided.

1. PRELIMINARY DEFINITIONS AND NOTATIONS

The definitions of λ and (r, λ) systems occur in Mullin and Stanton (1968). λ systems do not include (r, λ) systems, because blocks consisting of a single element are not permitted in the former, while they are permitted in the latter. So, deleting the condition L_0 of λ systems in Mullin and Stanton (1966), let us define $(n + \lambda)$ systems as follows:

A collection of b subsets (called blocks) of a set V of v varieties is said to form a $(n \cdot \lambda)$ system when the following axioms are satisfied:

I: every pair of variotics occurs in precisely λ blocks:

II: sum of the block sizes, giving the total number of points in the system is n. Associated with every $(n \cdot \lambda)$ system there is a sequence of non-negative integers $B = (b_1, b_2, b_3, ...)$, where b_i is the number of blocks containing exactly i varieties, $i \ge 1$, b_i a being all zero after a certain stage. Also associated is a sequence of non-negative integers $(r_1, r_2, ..., r_r)$ where r_i is the number of blocks which contain i-th variety (also called the replication of i-th variety), $r_i \ge \lambda$, i = 1, 2, ..., v, the inequality being strict for at least one i.

Obviously for a (noh) system with v varieties,

$$\sum_{i=1}^{n} ib_i = \sum_{i=1}^{n} r_i = n$$

and

$$\sum_{i=1}^{n} \binom{i}{2} b_i = \lambda. \binom{v}{2}.$$

A $(n \circ \lambda)$ system becomes an (r, λ) system of Stanton and Mullin (1966) when $r = r_1 = r_2 ... = r_9$. For a $(n \circ \lambda)$ -system let us define average replication of the varieties as

$$r = \frac{\sum_{i=1}^{n} r_i}{n} = \frac{n}{n}.$$

SANKHYA: THE INDIAN JOHRNAL OF STATISTICS: SERIES A

2. MAIN RESULTS

Theorem 2.1: In a $(n \circ \lambda)$ system with v varieties, the total number of blocks b satisfies the inequality $b > \frac{n}{k_0}$, where $k_0 = \frac{\lambda(v-1)}{r} + 1$. The equality implies the system is a BBD with parameters v, b, $r = \overline{r}$, $k = k_0$, λ .

Proof : For a (nex) system with a varieties

$$\stackrel{\sigma}{\Sigma} \delta_i = \delta \qquad ... (2.1)$$

$$\sum_{i=1}^{n} ib_i = n = rF \qquad ... \quad (2.2)$$

$$\sum_{i=1}^{n} {i \choose 2} b_i = \lambda. {n \choose 2}. \quad ... \quad (2.3)$$

From (2.2) and (2.3),

$$\sum_{i=1}^{\infty} i^2b_i = \lambda v(v-1) + v^2$$

$$= vv(k_0-1) + v^2, \text{ from the given expression for } k_0... (2.4)$$

$$= vv^2k_0... (2.4)$$

By Cauchy-Schwartz inequality,

$$\left(\sum_{i=1}^{n}b_{i}\right)\left(\sum_{i=1}^{n}i^{2}b_{i}\right) > \left(\sum_{i=1}^{n}ib_{i}\right)^{2}$$

which on simplification gives

$$b > \frac{r\bar{r}}{k_a}$$
. ... (2.5)

Equality in (2.5) implies $\frac{i\sqrt{b_i}}{\sqrt{b_i}} = i$ is constant for all i > 1, which is impossible unless i takes only one value, say k. In that case $b_i = 0$ for all $i \neq k$ and $b_k = b$, i.e., $kb_k = r\theta$ and $k^ib_k = r\theta k_k$. Hence $k = k_k$. This implies that k_k must be a positive integer. The resulting $(s \Rightarrow \lambda)$ system with s varieties is such that there are b blocks, each of same size k_k and each pair of varieties occurs together in precisely λ blocks. Then by Theorem 2 of Mulin and Stanton (1000), the system is a sum with replication for each variety θ . This implies again that f is a positive integer.

It is to be noted that we did not assume f and L_0 to be positive integers, but the equality in (2.5) implies that they are so.

Corollary: Non-existence of a BIBD with parameters θ , h, r and $\lambda \Longrightarrow the non-existence of a (<math>n \times h$) system, n being given by v with v varieties and b blocks and in particular, the non-existence of at r, h system with v varieties and b blocks.

A NOTE ON λ AND (r, λ) SYSTEMS

Following Mullin and Stanton (1906), we can define a $(n \cdot \lambda)$ system to be elliptic, parabolic or hyperbolic according as the expression $\lambda(v-1)-F(F-1)$ is negative, zero or positive.

Theorem 2.2: A non-hyperbolic $(n \circ \lambda)$ system with v varieties and b blocks is a symmetrical DIDD if b = v.

Proof: As the (π+λ) system is non-hyperbolic,

$$f(\bar{r}-1) \geqslant \lambda(v-1)$$
. (2.6)

Defining

$$k_0 = \frac{\lambda(v-1)}{r} + 1,$$

 $\bar{r}(k_0-1) = \lambda(v-1) \leqslant \bar{r}(\bar{r}-1)$

Again, the result (2.5) with b = v implies

$$k_0 \geqslant \tilde{r}$$
. ... (2.8)

From (2.7) and (2.8), $k_0 = f$. This implies equality in (2.5). So, the system is BIBD by Theorem 2.1 and it is symmetrical because b = v.

3. CONJECTURE BY MULLIN AND STANTON

A counterexample is provided to conjecture 1 in Mullin and Stanton (1966), in the following lines. The conjecture states :

'For $\lambda \leq 2$ (and perhaps all λ), $\lambda(v-1) = r(r-1)$ implies v = b if the corresponding design is irreducible'.

Here by 'design' is meant an (r, λ) -system. In Mullin and Stanton (1966), a design has been termed irreducible if it contains neither a complete block consisting of all v varieties nor a set of v single element blocks whose union is v.

The following counter example disproves the conjecture for $\lambda=2$. The example gives an irreducible (r,λ) -system with r=4, $\lambda=2$ and v=7, so that $\lambda(v-1)=r(r-1)$, but b=8.

Blocks in the system are :

SANKHYÄ: THE INDIAN JOURNAL OF STATISTICS: SERIES A

Similar counter examples can be easily provided for (r, λ) systems with $\lambda > 2$. Hence, it can be asserted that the condition $\lambda(v-1) = r(r-1)$ is sufficient for an irreducible (r, λ) system to be a symmetrical BHDO only when $\lambda = 1$.

REFERENCE

MULLIN, R. C. and STANTON, R. G. (1966); Inductive methods for BIBD's. Ann. Math. Stat., 37, 1348-1354.

Paper received : October, 1971.