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SUMMARY. Mothods are doveloped to compare tosts with smno Bahadur ofiiciency.
Moasurcs of doficioncy ar introdused in the mawnor of Jlodges and Lohmana, Sinco two tests
which are oqually effiviont by Bahaduc's oriterion sro usually squally officiont by Cochran'a ori-
torion also, the problom of measuring doficioncy has also boon approached from Cochran's point
of viow. Itisshown that approsches basod on Bahadur's and Cochran’s idess lead to the
same moasure of doBiciency if ono uscs limits in probability in the dofinition of Babsdur slopes;
tbe squivalonce broaks down if one uses a.s. limits instead.

0. INTRODUCTION
In their paper Hodgoes and Lehimann (1970) studied tho problem of
discrimination betweon two statistical procedures which are according to somo
criterion, equally *‘officient”; deficioncy is ially a quantitativo
of this discrinination. In tho samo spirit, wo havo discussed hore tho problem
of discrimination bot two test proced which havo equal Bahadur-
officiency.

It is suggestod by Bahadur (1067 and 1971) that in many cascs nlternative
test procedures might be comperod on thoe basis of the associated limiting
“attained lovels”. Following his suggestion wo havo introduced tho notion
of Bahadur-deficioncy for two tost procedures which aro equally efficiont from
Bahadur's viow-point. It appoars that this appronch of discrimination
involves somo difficultics; for oxamplo, tho quantitics involved are, in general,
unlikely to Do constants almost surcly.

On tho other hand, Cochran (1052) measured the officioney of a tost proco-
duro Ly tho rato of convergonco {to zero) of its sizo, whon tho powoer is held
fixed against a spocified altomativo. Itis woll known that Cochran’s approach
to officioncy ususlly loads procisoly to tho samo conclusions ns Bahadur's
approach docs. Motivated by this fact wo have introducod in Soction 2 the
notion of Cochran-doficiency (to bo referrod to a3 BCD for roasons oxplained in
tho next paragraph) and havo shown by means of an oxamplo that at tho lovol
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of doficiency, the abovo equivalonco botweon Cochran’s and Bohadur’s view-
points is no longer truo. A nocossary and sufficiont condition for the oxistonco
of Cochran-deficioncy is proved. In most casos this condition docs not hold
and so Cochran-deficioncy wili raroly oxist, \Whon appropriato asymptotio
oxpansions of tho significanco lovols are availablo, an *“approximato” Cochran-
doficioney is caleulatod as a componsation. Conditions undor which tho said
expansions aro valid aro also investigated.

As Bahadur-doficioncy will, in gencral, bo random, ono may like to go
to tho considerations of taking somo sort of averago of Balmdur-dcﬁciorioy.
But since tho computations involved in such considerations appear to be quite
difficult, wo proceed along a somowhat difforent routo in Section 4, leading
to a now intorprotation of Cochran deficieney moro in lino with Bahadur's
approach. In viow of this interprotation wo shall refer to Cochran doficiency
as Bahadur-Cochran-deficioney (BCD).

1. NOTATIONS AND PRELIMINARIES
Lot (X, &) bo a moasurablo space; lot {P,; 0¢O} bo o family of probability
distributions on X, Let 8 = (z,, 2;, ...) bo an infinite soquenco of indopendont
obsorvations on z. Lot 7 ={T,(s):% > 1} bo a real-valued statistic such
that, for cach n, T,(s) depends on & only through (z,,...,z,). In tho noxt
paragraph, a briof synopsis of Cochwran’s efficioncy is givon; for dotails consult
Cochran (1952) and Bahadur (1967 and 1971),

Lot ©, be a proper subsot of @. Wo aro intorosted in testing H, : 066,
agoinst H, :0¢®—0, For this purposo, wo consider a tost proceduro which
is based on a test statistic T and which rogards large values of T,(s) lo be
significant; i.o., the critical rogion J7, of tho tost procodure is of tho form

Wo={aT\(s) > k). e (L)

Fix a 0 in ©—0, and & £ such that 0 < # < 1. Chooso {k,:n > 1} such
that

Py(I¥,) = g . (12)

asn-», Noto that k, will dopend on #as woll ason 8. Lot &, (8) = ,(0, B)
bo the rosulting sizo of tho test, i.e., lot

(0, 8) = sup {P, (I¥,) 1 0,¢0,). . (13)
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Cochran argued that tho rato at which «,(0, 8) converges (to zero) is an
indication of asymptotic officiency of 7' against 0. Equivalontly, one may
proceed i the following way which is moro suitablo for our purposo : for each §,
0< 8 <1, let M(8) = (0, B, ) bo tho least integer m > 1 such that a,(f) < &
for all n > m; and let JI(8) = oo if no such m exists. Honceforth, we shall
assume thal &, (8)— 0 as n— o0, which cnsures that M/(8) is finite for all &
and that a,(f) < 0 for all sufficiently large n, which ensures that M (8) —» c0
a8 8- 0. Tho Cochuran-efficioncy of tho test procoduro, when it oxists, is
equol to tho limit of [2log (1/8)/)(5)] as 6 — 0.

Consider now two testing procedures based on tho statistics T)(s) =
{Ti(8):n 2 1} and Tyfs) = {T,,f8) :n > 1} for tho problem of testing
By =060, ngainst M, :060—0, Fix o 0cO—0,andalso & # such that
0< g < 1. Wewant to discriminate botweon these two procedures whon 0
obtaing. Define M((8), i = 1,2, in the usual way. Clearly, the limit of
[M(8)/M((8)] as & — O gives the Cochan-cfficiency of T, relativo to T, when 0
obtaing. When this officioncy is 1, [M,(8)—AL,(8))/2,(5)~ 0. In typical cascs,
however, [M,(8)—21,(8)] remains bounded as & — 0, and so for the purpose of
a more subtlo distinction, one may uso tho limit of [M,(8)—2/,(8)] as & — 0,
whanovor this limit exists.

Definition 1.1: The lower (upper) Bahadur-Cochran-deficioncy (BCD)
at 0 of tho first testing procedure w.r.t. the sccond is

Dcl6, ) = lim inf [M,(8)—2.(8)]
40

(De(0, ) = lim sup [M,(8)—M,(8))).
80

In caso theso two doficiencics are equal, wo say that the BCD at @ oxists
and is equal to the common valuo.

Of cpurso, Do = D¢ = +0 or —co if lim [M,(8)/21,(8)] oxists and # 1.
Thoe main uso of deficioncy is to discriminato tests for which lim [31,(8)//,(3)]
is 1. Noto that although tho rolative Cochran-efficiency of two test proce-
durcs is ususlly frco from £ (sco Proposition 11, Bahadur, 1967), their relativo
BCD need not bo so.

Lot ®(x) stand for tho distribution’ function of tho standard normal

distribution and ¢(z) stand for its demsity funetion. - For 0 < <1, wo

define z, by roquiring that ®(z,) = 1—p. The following results will bo neaded
in the soquel.

a3-8




256 TAPAS K. CRANDRA AND J. K. OHOSH

Lemma 1.1 (Sco Chapter VII of Follor, 1068.) If x is positive,
_g= 1 -
1—0(x) = £ (1 Z+0E).

Lemma 1.2 (Sco Chapter XV of Yeller, 1066.) Let {X} be i.i.d: random
variables with the common distribution F(x) and with E(X,) = 0, E(X%) = o2,
Let F(x) be the normalized n-fold convolution of F(x). If F(x) is nol a lallice
distribution and if my = E(X3) is finile then one has

Fofa) = )32 (1= 8 (2)+ya(a)on )

where yq(2)— 0 uniformly in z.

Yor the noxt result, lot {Y,} be a sequenco of ii.d. random veetors with
values in R™(m 3 1). Let fy, ..., fi bo real-valued Borel mensurablo functions
on Rm. In tho bolow, j stands for a positive integer > 2.

Assumo
(dy): E|MY)|I <400, i=12, ..,k
Writo
Z,=(fi(Y ) eon LY )
p#=EZ,, V = dispersion matrix of Z,
Assumo

(dg9 : V is nonsingular,
Lot I1 bo o real-valued function defined on some neighborhood 72 of ze.

Assume

(Asg): I has bounded continuous dorivatives on 7z of all orders up to
and including j.

Lot
L=ID\I, ..., Dell)ip)
where Dy denotes difforentiation w.r.t. tho i-th coordinato.
Asgsume
{dy: 10
Dofino /I arbitrarily (but mousurably) on »il of R¥. We are interested in tho
asymptotic expansion of tho distribution function of the statistic

W, = VallliZy—Hip),
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where

|-

- n
Z = L Z
1=

2

{3

Lemma 1.3: (Sce Theorem 2, Bhattacharya and Ghosh, 1978.) Assume
(i) (gg) Ufor some inteyer 533 2), (Ay) and (d) kold. If j > 3 we further-

more assume that the distribution function Q of (Z,—p) salisfies Cramer's
condition, namcly,

limsup {| f expli<t, x> QU <, !
e pE

then there exist polynomials g, | € r £ j—2, whose coefficients depend only
on the cumulants of (Z,—pt) (of order j and less) and the derivatives of Il ul p
(of order j—1 and less) such that

, ulg =2
sup | Prob (1), & u)— _L élv) [ 14+ 'Sl n""q,(v)] dv

ueR!

= o{n-"-2r2),

where ¢ is the variance of <1, Z,—pu >; where <, > slands for the uanal
Euclidean inner-product and || - || for the usual Euclidean norm.

In Bhattacharye and Ghosh (1978), the methods of computing the
polynomialr g, aro nlso given, Tor details, thoe reader is referred to this
paper.

2, COCHRAN’S APPROACT

In this section, wo shall discuss our problem from thoe standpoint of
Cochran’s theory of efficiency. It is proved thet for tho existence of a finito
BCD, tho sizo functionz of the test-procedures must Lo related in a very
special way, Under appropriate asymptotic expansions of these size functions,
hounds for the upper and lower BCD's aro obtained; also methods of
ovaluating theso deficiencios aro discussed.  All proofs aro deferred to the
appondix.

2.1, Existence of a finite BCD. TRecall that 0 is a fixed clement in
0—0, and fis » fixed real number 8.4, 0 < B < 1. aqy is tho sizo of tho
i-th tost proceduro, ¢ = 1, 2,
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Obviously, lim (31,(8)— M y(8)), if it exists, will bo oither an integer or,
50

-ono of the two infinitics; also
lim (3£,(8)—2L,(8)) oxists and is equal to an intogor
10
d =d(0;8), s (20)

iff for all sufficiontly smoll 8, M ,(8)—MLy(3) is identically equal to d. Thus
at loast in ono caso, o.g., when thoere exists an integer d such that

%y == &y, n4d for oll sufficiently large », . (21.2)

(2.1.1) holds truo and henco the BCD is d. Our main Theorem 2.1.1 of this
scction states that tho converso implication is also truo.

Theorem 2.1.1: Suppose that for each $=1,2, a4n is a decreasing
function of n for all sufficiently large n. Then (2.1.1) and (2.1.2) are
equivalent.

Remark 21.1: It should bo noted that the main reason. why the
existenco of & finite BCD imposes a strong condition like (2.1.2). on tho
functions ayn is the discreto nature of the quantities 3fy(8). Unfortunately,
any attompt to make tho sizes continuous by taking resort to mixtures, as
done by Hédges and Lehmann (1970), docs not scom to work here.

2.2. Bounds for the upper and lower BCD; the notion of approximale
BCD:+ As+we kiiow from the analysis of the provious soction that BCD
will oxist rarély, wo now turn to the problom of finding bounds for the uppor
and lower BCD's— of courso, undor suitable assumptions on tho significance
lovels of tho two test procedures.

We assumo that

Each of {&)n} and {az,s} is & decreasing function of » for all

sufficiently large n. . (221)
Tor each i =1, 2, thoro oxists » function {u;y} dofined for
all x> 0 a.t,
i) arz =0 if z is tho intogor n; . (2.2.2)

(1) az is o docronsing function of z, for all sufficiontly large = ;

(iii} if wo defino for cach'n 2 1, A resl number m(n) 8.8, aq, 5 = &y mony
then tho limit of (m(n)—un) oxiata (it may Lo infinito).
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Wo let d(#) = d(0, £) stand for this limit; in tho rest of this paper, d(f) wiill
Javo this meaning only (unleas otherwiso is stated). | Noto that d{(8) need not
be an integer.

EDefinition 2.2.1 ¢ Tho approximate BCD of the first testing procedure
w.r.t. the sccond ono is d(0, 8).

Noto that the approximete BCD deponds on tho particular extensions
{ais), $ = 1,2, wo oro using. We shall, howevor, suppress this dopendence,

The above assumptions (2.2.1)-(2.2.2) are valid under appropriato asymp-
totio oxpansions of {ay}. (Sce Lemma 2.3.1.)

Noto that, under (2.2.1), -} (8) is simply the firat integer i 2> 1 such that

aim < 8.- Consequently, if we let, for each §(0 < & € 1), M yy(8) and M,4(d)
satisfy

%138y = “z,n(g(lb-xv % gt = Fargir . (22.3)
then
L8) € M) < Myg(d)+1. . (2.24)

Becauso of tho assumption (2.2.3), one has”
-Dct0, B) 3 O, A=, Det0, ;> A0, M+1;
or equivalently,

w[—di0, F)]-1 € Dct0, B) € Detd, f) S [0 AN+, © . (22

.q
w
e

whero {1] stands for the. greatest integor < &

Remark 2.9.1: It follows that tho BCD is 40 or —co necording as tho
approximate BCD is 400 or —00,

Remark: 2.2.2: 1f BCD oxists and is finite thon it must Lo oqual
to d and so d will bo an integer; d may, how over, bo an integor oven if BCD
docs not exint, (Sco Examples 2.4.1 and 2.4.2.)
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1€ d is non-integral (and finite), say, d = w41 (0 < ¢ < 1, mis an intoger),
thon the Lounds given Ly (2.2.5) are sharp onough to conclude that

D0, ) =m mnd Del0, B) = m+1.

In this cnse, it is possiblo to give the following interpretation of D¢ and De.
For ench 8(0 < 8 & 1), let M4(8) Lo the amallest integer k such that a, My
P o r Assumption (2,2.2) will then imply that

lim (Myy(8)— M o(8)) = m+1 = De.
430
Similarly for De.

Remark 2.2.3: 1f d is an integer, the bounds given by (2,2.5) eannot
immedintely Lo used to find out the values of D¢ and De. However, whon

m{n)—n nlways lies strictly on one side of d, ono of theso bounds ean Lo
improved upon as described in the next paragraph.

An improvement of the upper bound of JM(8) given by (2.2.4) is
MN(B) < [M4($)]+1; also from tho assumption (2.2.2), [M),(8)] = M,(8)+[d)
or My(8)+{d]—1 for all sufficiently small &.

Supposo now that d is an intoger and that m(n)—n—d < 0 for all

sufficiently largo n. Then [M(8)] € My(8)+d—1 and henco D € d. Clenrly
the BCD cannot exist. Thus onc has from (2.2.5)

De=d—1, Dp=d.

Similarly when d is an integor and mn)—n—d > 0 for all sufficiently largo n,
ono has D¢ = d, Dg = d+1,

When asymptotic expansions of tho sizo functions {ag), &= 1,2, aro
available, it may bo possiblo to determine the oxact rate of convergoneo (to
7010) of m{n)—n—d and henee to verify whether for all sufficiently largoe n,
m(n)~n—d is positive or negative, (Seo Section 2.4(A) for dotails.)

2.3 Determination of the approximate BCD. Wo fssumo throughout
this rection that the significanco lovels {een}s i =1, 2, of the test procedures
adnmit of the following asymptotic cxpansions ¢

log ain(0, ) = —nail0, f)+ vV (0, B)+-e1(0, fYlog n

+(0, fy+o()) (i=1,2)

. (23.0)
where a0, £)>0, i=1,2,
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Intypical cuses, a(0, B) will bo free from #; this will bo tho erso if
Batudur-xlopes of T, and T, oxist; for o preciso rexult, seo Theorem 2 of
Raghavachari (1070), Noto that My(8)/I4(8) — 1 iff «,(0, B)=ay0, f)=a(0, p),
aay. lencoforth wo shall sssumo that thix is tho ense, For convenienee,
wo shall auppress the dependence on 0, B of the quantitics ay, by, ¢, dy.

Tho following lonme connects the two sels of nssumptions mado in the
present and provious sections,

Lemmn 2.3.1 : Asswme that (23.1) kholds. Then (2.2.1) and (2.2.2)

exlensions {2}, § = 1,2, which sntiafy (2.3.1) for non-integral valucs (>Dof
z as well.

Wo shall work with those oxtensions {a;;} which satisfy (2.3.1) for ull real
zin(l,00). The next theorem gives tho possiblo values of approximate
BCD.

Thoorom 2.3.1: Let {ay, 8}, i=1,2, salisfy (2.3.1), Then one has
(n) ifby=byand ¢, = ¢y, then d = (d\~d,)]a;
(b)Y if by # by, then d is +00 or —o0, according as by > by or by < by;

{e) if by =bgand c; 7 ¢y, then d is 400 or —co, according as ¢, > ¢4 or
€ <€y

Remark 2.3.1 : From the dofinition of spproximato deficieney, it is
appuront that the veluo of d will depend on the perticular extensions {x;,}
of tho sizes {aa}. Howevor, from the elove theorem it is clcar that this
dependence is slight and that tho valuo of d will not depond on the extensions
{ais} wo aro using, o long as thoy satisfy (2.3.1) for all real z 61, o).

Remark 2.3.2: In goneral, tho value of the approximate BCD will
dopond both on @ end en f. However, in tho examples dixcussed hero, it will
be free from B. In theso oxamples, the situation () oceurs and d,(0, f)—
dy(0, B) is freo from both 0 and §; vs obsorved carlier, a(0, £) will usually b
froo from B,

24. Example: In this soction, wo discuss two oxamples. As thesa
oxamnples will elarify different points of the noxt soction 2.5, wo profer to go
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through the details, For simplicity, wo dotermine the constants k.(0, 8)
(ef. (1.2)) such that

PT, > ko (0, B)) = .

(A) In meny examples, the size functions {agm :nel ), i = 1,2 admit
of extensions {ay.: z€[l,0)}, i = 1, 2 which are deereasing functions of 2 and
morcover, for large values of z, the following asymptotic expansions of these
extensions aro valid :

log ayz(0, B) = —xa(0)++/x b{0, f)—14 log z4-di(0, B)
+e(0, fletoiz-i) (i=1,2 v (24)

whore a(0)> 0, b(0,8) =0 iff g=} and finully d,(0, £)—dy(0, B) is alweys
nonzero. Morcover, when f=14

log (0, §) = —za(0)—}log z+di(0, })+e(0, })=~
Hf0x ol ) (i=1,2 e (242)

From Theorem 2.3.1, the approximate BCD s d(0, §) = (d\(0, f)—
4,0, B))fat0). We want to compute Dc(0,8) and D¢ (0, 8), making
use of tho analysis made in Remark 2.2.3. For this let us first

abserve tho following result about rate of convorgence (to zero) of
ta = m{n)—n—d (8,8).

Lommn 2.4.1: Assume that the size funclions {ag,n}, i=1,2 salisfy
(24.1) and (2.4.2). Then /i —(d(0, f)-bl0, )]2a(0). If p=1}, ut,—>
(0, $)i2a(0).

Wo assume Lolow, without luss of gonerality, that d(0, #) is positive for
all g. Three casos may ariso.

Cuse 1: Lot £ Vo such that (0, 8) > 0. In this caso, 4/ Iy convergos
to some positivo numboer. Consequently, m(n)—~n—d(0, #) is positivo for all
sufficiently lurge ». It then follows from Romark 2.2.3 that the BCD

doos not oxist and Del0, B = d(0, B)-+1, while De(0, A) = (0, B).

Case 11 Let # be such that b(0, ) < 0. In this caso, m(n)—n—d(0, f)

is negativo for all sufficiontly large #. So the BCD doos not oxist and z_)cm, £
= d(0, #) while D¢(0, §) = d(0, f)—1.
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Case 111 : Lot 8 bo such that b(0, 8) =0,i.0.,, lot g = —;— In this caso niy
converges to somo positivo boer. So tho lusions of Caso I are valid,

(B) Tho deficioney of ono tost procoduro rolative to another was dofined
in Seotion 1 for tho same testing problom. In tho following two examplos,
tho two tost procodures under comparison aro for two different testing eitua-
tions. Moro spocifically, wo want to comparo ono-sided test and two-sided
test in what is apporently an ono-sided tosting problem, Thero aro two good
rensons for doing this. Lot If, and H, correspond tho two-sided and ono-sided
alternativos respoctivoly (/1,(C I1;). Suppose now in o given problem the
natural alternative is I, but thoro is somo information (not entiroly reliablo)
that tho ronl alternativo is H,. In this caso under tho usual assumptions
tho likelihood ratio using /1, is as Bahadur-eficiont as tho ono using I7, for
all ¢in ;. So if Bahadur-efficiency woro the only criterion, ono should
cortainly ignore the information that /7, is the roal altornative. Qur
oxamples show tho choico is not 8o cloar if ono also considers tho deficiency.
Tho sceond reason for id I

ing theso plos is a mat) tical ono; thoy
are non-trivial and illustrate tho various technical aspocts of computing
deficiency.

Example 1: (The Normal Distribution): Let H bo tho real lino
(— 0, +), Hy = {0}. For 0cH,lot P, stand for the normal distribution
with moan @ and varisnce 1, Fixa Gst. 0> 0.

For tho testing problem H,: tho population mean js zoro against the
altornativo that it is non-zoro, the critical region of the most powerful unbiasod

invariant tost is givon by {|/AXa| > k,, s} whoro X, = a1 i: X; and by
-

is such that # = 1—O(kyy—v/A0)+O(—kyn—y/A0). Its powerat Ois #and

ita nizo i3 @,4(0, B) = 2(1—®(k;s)). Bohadur's (as woll as Cochran's) slope of

Ty={|viZ,| :n> 1} at G is 00

For tho tosting problom H,: tho population mean is zoro against the
alternativo that it ia positivo, tho critical region of the most powerful test is
givon by {4/ X, > &y, n} whoro k,,is such that g = 1—®(k,,—/70), i0.,
by = ‘/1'.0..].;,_ Its powor st 0 is # and its sizo is &;,(0, f) = 1—O(k,,).
Bahadur's (as woll as Cochran’s) officioncy at 0 of T, = (y/aX,:n> 1}
is 01,

Thus tho two tost procodures aro oqually efficiont. At tho lovol of
doficionay, howovor, thoir porformancos aro difforont. In this oxamplo, tho
A3-7
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situation doscribod in (A) abovo holds. In fact, for non-intogral valuos of z,
one dofinos,

o, =21—-0lk,)), @y, =1-0k;,) o (243)
whare %,z is determined from
B = 1—=0(k, ,—/20)+D(—k ,—1/z0) o (244)

and k,, = 4/z04z,. We cloim that (2.4.1) and (2.4.2) hold with «(0) = 622,
b0, f) = —z0, &0, B) = —(zi+log(2n0n))2+log 2, 40, B)= —(2+
log(2n0%)/2, (0, B) = —z,0* and f(0) = 0-%. From (A), wo can thereforo
conclude that BCD docs not exist and that the approximato BCD = 2 log 2J02,
Also, Dcf0, f) = 2log 2/0* 41 if B> } = 2log 2/0t if B <} whilo De(0, /)
=2log2/0® if B> 4 =2 log2/0®*—1 if #< 3} Thus the approximate
BCD does not dopend on . The uppor and lower BCD do depend on 4, but
in a very woak sense,

Wo now proceed to tho proof of our claim. That {x,} satisfies (2.4.1)
and (2.4.2) is easy — ono has to uso Lomma 1.1. To show the samoe for {,,},
it is sufficient to prove that as z— o0

exp (20%) (log &z —log a,e—log 2) = 0. o 12.4.5)
To this end, first observe that k,, serves as a good asymptotic approximation
to k,,; for (2.4.4) implios that (k,—+/Z0) — zy, i.0., (k,—k,,) > 0. In fact,

we havo

lim oxp (220°)(k,,—k, Y= 0; . (2.4.8)
e

for one has, from the dofiniticn of k,, ond (2.4.4),

1= Ok + vZ0) = (ky, —k,,)O(E())

for somo E(x) satisfying z, < E(x) < k;,—+/Z0. By what hus boon proved,
Eix) >z, 05 2 5 00. Thus

oxp (220%)(ky —F,) € "—’;;%) (1= O(ky+ v/20)

= O0(z~}), by Lemma 1,1,
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Thie complotes tho proof of (2.4.8). Now tho Lhis. of (2.4.5) is

exp(zl)ky,—k; JO(Z, ()1 — OlEy(x))

for somo () eatiefying k,, << §y(x) < kyz; in particular, y(x) = 4/Z0(1+0(1)).
So (2.4.6) and Lomma 1.1 now complote the proof of (2.4.5).

Erample 2: (The Siudent’s Distribution): Hero © = {(u,0): —co<pt
<0, 0 <o <™}, O, ={0}x(0,00). For 8 =(x,0) in O, lct P, stand for
normol distribution with mean g and variance o® Fix a 0, =(p,, o)
sty >0, 0,>0; put p=pmor!, 0=(r1) and 0,=(0,1). Put

Ty = Vak jo,and T, = | T,,| whore nst = i(K.-—x,)’. Noto that undor
1
Oy Vnf(n—1)T,, is. distributed as a Student’s {-variable with (n—1) d.f.

For tho testing problom X, : the population mean is zero against the
alternativo that it is non-zero (the 8.d. being unknown), tho “best” test is based
on the critical region {7y, > k,,} whero k,, is such that 8 = Py (T, > ky.).
Its power at 0, then is A and its sizo is «,, (0, f) = 2Pg (T4, > ki)
Bahadur’s (as well as Cochran’s) slopo at 0, of T is log(1+44*).

For the testing problem I, : the population mean is zero against the
alternativo that it is positive (tho 8.d, heing unknown), tho “best” test is based
on tho critical rogion {Ty, > k,,} whero k,, is such that 8= P (T, > k,,).
Its power at 0, is 8 and its sizo is «,,(0y, ) = P (Ty, > k,,). Bahadur's
(as well as Cocliran’s) slope at 0, of T is log (144%).

Hore too tho two test proccdures aro equally officiont, though their dofi-
ciency is not zoro. We shall show that {x;s :n6l,}, i = 1,2, satisly (2.4.1)
and (2.4.2) with a{0) = }log (14-x%), b0y, B) = —zpp(E 43D (1442 and
dy(0,, B)—d,(0,, B) = log 2. In this exemplo, wo cannot defino tho oxtensions
oz :ze(l,00)}, £ =1,2, as wo did in Examplo 1. One has to take linear
averages of log @in and 10g (.41 for dotails sco tho proof of Lemma 2.3.1.

From (A) wo therofore conclude that BCD docs not oxist and that the
approximate BCD is d(0;, 8) = 2 log 2flog (14-%). Also, De(0;, £) =d(0;, £)+1
€8> §=d(0, p) if <4 whilo Deldy, f) = d(0,, 8) if B §i = d(0n, /-1
if #< 3. Thus in this oxamplo too, tho approximate BCD is freo from 8.
Tho upper and lower BCD do dopond on B, but in a very woak sonso.

The proofs of tho differont facts mentioned abovo run cssontially along
tho samo lino as that of Examplo 1; howover, somo of tho stops Liave to be



268 TAPAS K. CHANDRA A¥D J. K. GHOSH

justified in difforent ways. Lemma 1.1, 0.g., is to bo roplaced by the following
ono, tho proof of which depends on intogration by parts,

Lemma 24.2: Lednp 5and a> 0. Put

I(a) = {.(l+x’)"" dz
and
7ala) = (n—2)"ta~ Y14 at) a0,
Then one has
a1 —(n—4) a1+ 1)) € 1(2) € Vala)[l—(n—4)Ha"t+1)
—3(n—4)}(n—6)"Ya"t+1)].
Using this lemms, one can verify
Lemma 243: Lel p, stand for Py (Ty, > 6y/R+b+en-d+dnl), a> 0.
Then
log p, = — log(1+0%)— v/ ab{l-+al)~—} log n
+Ky(a, b, )+ Kyfa, b, ¢, din-+oln-h),

where Ky and K, are constants (free from n) whick depend on a, b, ¢, elc., as
indicated above.

Wo also necd to use the following result, which is a dircct consequenco
of Lemma 1.3.

Lommo 2.4.4: Let W, =Ty,—+/np. There exist two polynomials Py
and P, whose coefficients are free from n such that

up APy 1V, > ud)— | ¢(t)df—(%:—) E CRPIN)

-0

where
& = (143at0.

Dofino @,(u) = 1—®(u)4(Py(u)n~t+4 Py(u)n1)3(u); determino tho cons-
tants (frco from %) &, d,, d, such that G (d+dn-t+dm—1) = g+o(n"1); ono
may verify that d =z, (we do not need the oxact values of 4, and d,). Put
kg = Vip+(d+dn-d+dn1)d. Then k,,—ki, = o(n~*)—for a justification
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imitato the prool of Lomma 2.5.1. What wo have achioved so far is simply
an approximation ky, of ky, which guarontoes that

log Py (Typ > kyn)—log Pg(Ty, > K'y,) = ofn~t);

to verify this, one uses Lommna 242, An application of Lomma 2.4.3 then
shows that {as,} antisfics (2.4.1) with tho said velucs of a(0) and b(0, 8).
Consider now tho caso of (a,,}. oro

B= Py W > kiy — AR+ Py (Vs < —kyu— o).

Because of Lemma 2.4.4, P,I(Il",, < —ky, — /1) i3 o(n~1). (In fact it can

bo.shown that it is o{n~) for cnch positive integer j.) This implies that
(kya—F3a) = o{n"1); and so

log Py(Ty,> ki) —log Pe(Tye> &) = ofn).

Thus log a,, = log 2+log a,,+o(n-1). This completes tho proof of the
fact that {a,,} satisfies (2.4.1) and that dy(0, B) —d,(0, ) =log 2.

Tho proof of tho fact that {a,} and {a,,} satisly.(2.4.2) should now
bo clear.

Remark 2.4.2: Suppose wo replace (1.2) by lim Py(Ifis) = # and put
Rial0, B) = Po(ln,.)—-ﬂ, {i =1, 2); thon in the abovo oxamplos it can bo
shown that (a) if R;al0, #) = ofn~1) then the value of the approximate BCD
romaing unchanged; (b) if Rya(0, ) = o(n-1) and Rys(0, }) = o(n-¥3), BCD
does not oxist and the velues of the upper and lower BCD remain unchanged.

2.6. On the validity of (2.3.1). Horo wo shall find conditions under
which tho asymptotic expansion of the form (2.3.1) of the significanco level of
e test proceduro is valid. We motivats curselves by considoring & test
procedurs in which tho critical region consists of large valuos of tho sum of
somo snquence of 1i.d. rendom veriebles. We havo the following goneral
reault in this diroction; it is comparable with tho results of Bahadur and
Ranga Rzo (1060).

Let {¥, :n > 1} bo a sequence of i.id. r.vs. with the mgf M(). Put

T,= a-ig Yr. Lotz bo a constant (3 0) and {g,} be a bounded sequonce of
1

real numbers. Define p, = Prob (T, > +/ap+q,). Assume that the distri-

bution of Y, and s satisfy the following conditions : the distribution of ¥,

is non-lattico; if 7' stands for {¢ : JI(l) is finite}, thon 7' ix » nondegonerato

intorval; thero oxists o positivo 7 in tho interior of T such that oxp (—p7)M(7)
=inf {exp (—pu) M(t) : £ in T} = p suy.
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Proposition 2.6.1 :  Assumo tho abovo set-up. Thon
1
log p,, = n log p—+/Rag,— log n—{a+g32)+o(l) ... (26.1)
whero @, a, p aro constants (freo from n); >0, 2> 0,0<p < 1.

Remark 2.5.1: If we assumy that the distribution of Y satisfies Cramér’s
condition, wo ean get an asymptotic expansion of log p, similwr to tho ono
given in Theorom 2 of Bahadur and Ranga Rao (1960).

Considor now tho set-up of Section 1, Qur main intorest is to find an
asymptotic oxpansion of Pp(P, > k,) whero k, is to bo determined from the
condition (1.2).

Assume that the distributions of {7} under Py and {Py, : 0,60} satisly
tho following conditions :

Thero oxist constants (froe from ) g = x(0) and G=¢(0)> 0 and a
polynomial g, such that if we lot F,(z) = Py(T',—+/np < o), then

F(z) = §(z)4-n-igy(z)p(z)+o(n~1), uniformly in z, ... (2.6.2)

Whenover 4 is & real number and {g,} is & bounded scquence of resl
numbors, (2.56.1) holds good with

P =8up {P(T, > 1/ap+g,): 6yin O . (2.6.3)

Lomma 2.5.1: Assume (2.6.2). Then there exists a constant d = d{6, §)
such that k, = v/ip+zg 3+n-Hda+o(n-t),

Theorom 2.5.1 : Assume (2.5.2) and (2.6.3). Then
loga, =nlogp—+/Razy5—}logn
+(a—add—}zy 59 4-0(1).

Remark 2.6.2: Tt is woll known that {n-t $ Y :n > 1) satisfies (2.5.2)
1

whero {¥¢:4 > 1} is a soquonco of i.id. r.v.s, with a finito third moment. The
main rosult of Bhattacharya and Ghosh (1878} indicates that (2.5.2) is satisfiod
for a largo colloction of statistics.
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3. DBANADUR'S APPROACH
In this soction, wo shall consider two possible ways measuring doficionoy
from tho standpoint of Bahadur’s theory of officioncy. It is shown by menns
of an oxamplo that Buhadur-deficioncy in the strong sonso need not oxist even
though Bahadur-Cochran-doficiency exists. A new interpretation of the
Inttor is suggested in Secction 3.2,

3.1. Bahadur's approach. Assumo tho sot-up of Scction 1. For each
real ¢, lot Fyalt) = sup (I’,“(’l',,l > 1):0,60,} and dofino Lis(s) = Fin(T'tnls)).
For ench §{0 < § < 1) and for cach s, let Ny(3, 8) = N¢ Lo tho lonst integor
m » 1 such that Lyals) < & for all n » m; and lot Ny (8, 8) = o0 if no such
m exists.

Definition 3.1.1: The random lower (upper) Bahedur-doficioncy at 6 of
tho first tosting proceduro w.r.t. tho sccond is

Ds(0; B) = (a.8. Py)lim inf (N,(3, 8)— N8, 9))

(Ds(8; §) = (n5. Py) lim sup (Ny(6, &)—N,(8, 8)).
In caso tho above two deficioncies aro equal, wo say that tho Bahadur-
deficiency exists and is oqual to tho common value.

Asin tho cass of Cochran-doficioney, the main uso of studying theso random
dofici is to diseriminato tests with the same Bahadur-cfficicney, i.e.,
tosts for which the (a.8. Py) limit of (Vy(8, 8)/Ny(d, 8)} is 1.

In this approach, the main sourco of difficulty is that the quantities
sup (Lis (8) : » > m}, m > 1 aro difficult to oxpand —any possible expansion
would scem to depend on tho particular samplo soquonco considered.

Ezample 3: (The Uniform Disiribution) : Lot 0 bo such that 0 <0 < 1;
let f,(z) and f,(x) bo respoctively the donsitics of tho uniform distributions over
[0,0] and [0,1). Consider tha problem of testing Hy:f=fy va. Hy:f=f,
on tho basis of tho following two statistics, Tyn = Zn), Tyn = Ym) Whero
Ziny = MAX (2, g, veer Tgn) ORA Yimy = MAX (Ty, Tyy o0y Tzaa)y (8D 2)- [Here
wo deviato slight}y from our basic convention that T must bo o function
of tho first n obsorvations; but wo hopo this will not lead to any confusion.]
Wo chooss the constants kis(0, f) such that Py(Tin > (0, S =pi=1,2
(of. (1.2)). Thon a;s = B07-3 whilo a,, = 0% so that tho BCD oxists and
is 1 for all .

Wo aro going to show that tho (a.s. or stochastio) limit of (N ,(3, 8)—
N, (3, ), if it oxists, cannot bo dogonorate. Noto that Lia(s) = (z(n))—!
and Lyn(s) = (y,m)%  Cloarly, Py(Ny(s, 8) = m) = Py(,(s, 8) = m+1), for all
m 3 2. The lomma bolow gives tho oxact distribution of Ny(s, 8) under P,.
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Lemma 3.1.1: Let p(8) = p(0, &) be the inleger such that

log 8 log 8
log0 < PO <prptl e (300)

Then the distribution function of N (8, s) hus the following expression

(8105-1) ezp [1og 5 :::'.’l )] ¥ m<r-2

+
Po(Ng(3v < m)= ajor-1 if m=p-—1
1 if m=p
(p = plé)
(3.1.2)

The proof is straightforward.

Tho noxt lemma studios the wosk convergence undor P, of p(8)—N,(s, 8)
a3 8 0.

Lomma 3.1.2: For each ¢, 0L c 1, let X, be a rv. such thal
Py(Xo=0) =1-0° and Py(Xc=i) = (1—0)0c-1, > 1. Lel e(8)bethe
excess over (p(8)—1) of log 8Jlog 0, (0 < e(8) < 1). Then

(0) if elba) > and 85 =0, then p(dp)—Ny(dn; 8) converges weakly lo
X, under Py

() if P(8a)—Ny(8x; 8) converges weakly to X under Py and 8y — 0, then
{e(8a)} is @ convergent sequence; moreover, X can be taken to be X, where ¢ is the
limit of ¢(8x).

Proof: (v) By definition of ¢(8), 8 = §P-V+® go that 8,67V =
6%, ¢, (3.1.1) implies that
ALyDA-b-1 ¢ | & G181,
Thus for cech k> 1, 6:.’("‘)_4)-!—» 6. 1t thon follows from Lomma 3.1.1
that Py(p(dn)—Ny(8n, 8) = m) = Py(Xe = m) m > 0, which complotos tho
proof of (a).

(b) Becauso of (a), every convorgont sub-soquonco of {e(8s)}, which is
& bounded scquonce, converges to tho samo real number.

It follows from the abovo lomma that the (a.s. P, or tho stochastio) limit
of (Ny(8, 8)—Ny(d, 8)) cunnot bo degonerato; to soo this, ono nood only to noto
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that N;(8, &) and Ny(8, ¢) aro independent und then uso Theorem 3.2, Chaptar
VIII of. Feller (1968). So in this cuse wo cmnnot hopo to get o single
numorical valuo of deficiency from Bahadur's point of view.

3.2, Another interprelation of BCD. In his papers (1067} and (1971)
Bahadur discussed asymptotic stochastic cfficiencies in terma of almost suro
convergonce only. Howover, it is possible to dofine asymptotic stochastic
efficioncics in terms of convergonco in probability. Although oxact alopos
aro casicr to interpret in tho almost suro convergonco case, tho CONvVergenco in
probability definition is not only casier to uso but perhaps moro basic and
stable. For theso reasons, wo now look at tho convergence-in-probability
case.

The following result is duo to Raghavachari (1970) (sco his Thoorom 2).
The sot-up is the samo as that given in Section 1.

Lomma 3.2.1: For all f(0 < g < 1),
lim w~tlog an(0, f) = —cl0), 0 <c(0) <0
iff
Pl
n=t log Ln(s) = —c(0).
This fact loads to the following definition,

Definition3.2.1: Fix 0 0¢0p, an € with 0<e<1 and a & with
0<d< 1l Then V(e 8) = F(0,¢,3) is tho smallest integer m > 1 such
that whenovor n > m, Py(L,(8) < &) > 1—¢, andlet V (¢, 8) ‘= 4o if no
such m oxists.

Tho noxt lemma gives the asymptotic bohavior of J(e, §) as § — 0.

Lemma 3.2.2:  Assume that
r,
n~ilog L(8)— —c(0) 0 < c(0) < 0.
Then for each €, 0 <t < 1, we have

log &
s O
g §= 0.

Proof: Fix 0 adl ¢, Wo abbrovinto 1(e,8) and c(¢) as V(8) and ¢
roapoctivoly.

A3-8
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Since ¢ is finito, it follows that V(8) tonds to co as & tonds to 0, Clearly
then tho proof of the lomma will be comploto whon wo have established tho
following two inoqualitios.

A log &
1’,”1,‘{,“[“_‘1/(3)—1 IEX: . (32)
. log &
lim sup ["V(T)] < . (32.2)

Supposo (3.2.1) is falso. Then thore oxists 7 and a sequenco {§,}8.4. 0 <y <,
5,0 as a—co and

_logs,

V) <o

From the definition of V(8), wo have

PO{ Lpypale) < 5.} < 1-¢

log L (s)
log 8, s -1
P, Vo)1 2 ~ VeI -1 }>e

So certainly

log Ly, 4 9) } c

Po{e=1> Vg =T
Letting 7 — o0, wo got & contradiction,
The proof of (3.2.2) is gimilar.

Lemma 3.2.2 suggests tho following measure of deficiency; consider the
sot-up of Soction 1 and dofino V,(€, 8) and Ve, 8) similarly using Lyn(s), Lon(s)
for L(s).

Definition 3.2.2: Fix a 0¢0, an & with 0<e <l Then the
lowor (upper) doficiency of tho first testing procodure w.r.t. the second at 4 is

lim inf (Vy(¢, §)—= Ve, 6))
40

(liam_)sgp (Vile, 8)—Vofe, ).
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Lot Fya(t) o & strictly decreasing continuous function of ¢, § = 1,2. For
each 0¢0,, wo mako the same assumption about P, {Ten > 8.

For oach & (0 << & < 1), lob 4(8) = F5!(8). Consider the soquonce of
tests @in{d) :
Rejoot Hy iff Ten > tin(8).
Thon the error of first kind for this test is & Wo denote its power by fin.

Fix 0¢ 0, For oach 0 < f< 1, dofine tho test y(,(f): Rejoct o, iff

Tin > ¢n(B) whoro csn(B) is such that Pp(Tis > ¢,(8)} = A. Lot its orror of
first kind bo donoted by ays.

Using tho tosts Yualf) define M(p, 8) = M0, p, 8) asin Soction 1. Then

M(B, 8) = Vi(1-5,6). . (32.1)

To soo this, noto that if n > Vi(1—p, &) then by definition of ¥y, the tests
$un have orror of first kind = & and powoer (at 0) > £. Honco for » > Vi(1—8, 8)
the tests iy which have power = g, must havo orror of first kind
ags < 8. By dofinition of My(#, &) this means I (8, &)< Vi(1-4,38,.
Similarly tho reverso inoquality can bo proved.

Thus BCD, upper, lower or approximate, agrees with the corrosponding
notion as dofined hore.

Appendix
PROOFS OF THE RESULTS GIVEN IN SECTION 2

Proof of Theorem 2.1.1: Lot {&s} Vo decreasing function of n if n > m
ond Iot (2.1.1) hold. Then thoro exists 8, > 0 8.4.21y(8) = d-4-M,(8) if & < 8.
Assumo that (2.1.2) doos not hold, ie., that e, i O nged whoro
M <n <ny<.. . Chooso and fix & n4 8.t w>m, &) L.e <& and
%y < 4. We may assumo without any loss of gonerality that &, e <% nite.
Then if § = & porar () > ntd and M;(8) € ng. Contradiction,

Proof of Lemma 2.3.1: Assume (2.3.1). (2.2.1) is then immediato.
For (2.2.2) wo dofino {;} for non-integral z as follows : lot n < z < n+1;
thon z = nA4(n+1)x for some A and g such that 0 <A <1, Afp =1
Dofine ay, by

log &z = Alog @y 4 2 Jog &ygpeyy $=1,2.
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Tt i obvious that the conditions (i) and (ii) of (2.2.2) hold. The proof of
the fact the condition (iii) of (2.2.2) hold is included in that of Theorem 2.3.1,

Sineo n = x—p and n1 = x4, one hna

A VR4 g/l = /F Folz).
and

Alog n + e log (n+1) = log x+o{x2).
(2.3.1.) then shows that tho last part of tho lemma holds.

Proof of Theorem 2.3.1: Firat noto that sinco log a,/n — —a for cach
i=12,mn)fn 1.

{a) From tho dofinition of m(n), and tho last part of Lomma 2.3.1
ono has

ie., (m(n)—n) [a-ﬁ ] —¢, log 1_"%)4 (d,—dy)

m{n)—n — (d,—d,)fa.
(b) Hero wo have,

m(n)—n

Wi [ "Tﬁ_’ﬁ]—(”l—be'cz'

log m(n) L logn
T —c - 0.

VR
So (m(n)—n){y/7 = (b,=bypfe. From this, (b) is immediate.

() 'The proof of {c} is similar to that of (b).

Proof of Lemma 2.4.) : Similar to that of Theorom 2.3.).
Proof of Proposition 2.5.1: Wo shall follow Bahadur and -Ranga Rao
(1970). Let I, bo tho distribution function of the standardized =n-fold

convolution, and v tho s.d., of tho conjugato distribution of Y;—g. Puta = 7.

Proceeding oxactly in tho same way of Lomma 2 of Bahadur and Rangs
Rao (1970), we havo p, = pnl,

where
- S
I,=f e Vnes dil ().
in
Beenuso of Lenuna 1.2,

11.4) = D4 K ('\;f” D)+ y, @)

where y, (x) > 0 uniformly in 2 and K is a constant,
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(I) The contribution of g(z} to I, is

< e _ oxpl—+/it ag,—q3/2) [,_ 4, , 9i—1 _
Jerdresaga = SEERER (1 e + S o)
(use Lomma 1.1).
(ITy The contribution of K(1—zx?) ¢ (z)/+/% to I, is
K Jevreps_sgmde
v e

- Kopll) (= vRer—Su—yia) g0y

_ exp(—+/ag,—¢i(2))
==Vhvhe o(1).

(III) Lot € > 0. As sup|y.(x)| < €f2 for all sufficiontly largo =,
z

n 'I'exp(—«/ a2) dy,(5) < & J oxpl— i anll 7o) -p.daldz

< entexp(—v/iag,).

Thus the contribution of n-ty,(x) to I, is

nboxp (—+/a ag,—g3[2) + o(1).
From (1), (IT) and (I11), (2.5.1) follows,

Proof of Lemma 2.5.1: Beeause of the uniformity condition involved
in (2.5.2),

Fo(zg+dni) = Ofzg)+n(d+ g5{z)) @ zg) +0ln~).
Thus if wo lot d = ~—gy(za), thon

Fofzp+dn) = (1—f)to{ni).
Put

Galz) = Blx)+-n-Igy(x)g(x),

€, = Aup| Fy(2)—Galx) |
and *

€n = Falzp4dn-)—(1-2).
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Chooso g5~ O(7s 5 0) such that niti, = ofga) for oach §=1,2 Thon

l_‘;f—l (Fales+d+gninH—(1— )}
/1 _ -4

= m {GulzeH(d+9a)n3)—Calz,+-dn No(l)
= (B T Oinrol)

for some £ lying botwoon z,4 ‘%_‘ and z,+7d; + %; in particular,
Eq —>2z,. As{G,(u)}is bounded away from zero in a neighborhood of z,, one gets

|q» {Fules+(d+ 92| Jn=t—Fa (k—Tﬁ”)} >0

for all sufficiently Iarge =.

This implies that (kn—+/7 u)/o < zy+dn¥+ |9a|n—t for all sufficiently
large n. Similarly, (Ea—+/% p))5 > zg+dn—d—|qa|n-t for all sufficiently
large #.  As 9,—» 0, the proof of Lomuma 2.5.1 is complete.

Proof of Theorem 2.5.1: Lot
ks = V3 pbzy6rdom?
and
oy = sup (Pa., (T < k7)1 6,6 O,}.
Bocause of (2.5.3),
log af = nlogp—+/n az,&—% log n+(a—-a¢'7d - -;—- z}«'r’) +o(1).
It suffices to show that
log &, — log a} = o(1). e (A)

Put gn = (ka—+/np)}& ond g} = (K3—+/Bp)/3. Then both the sequonces
{g,} and {g7} are bounded. By (2.5.3), uno gots
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log an—log ax

= Vi elgi—gn) 5 (g —gh)+ol1)
= vaelzh) Ly Bich) )

=o(l) by Lemma 2.5.1.

This completes tho proof of (A.1).

Acknowledgement, Tho suthors wish to thank Professors R. R. Bahadur

and K. K. Roy for their interesting ts and invaluablo help.
RErFERzNcEs
Bamipur, R. R. (1967): Ratos of 'S of oati and toet istics. Ann. Afath.
Stad. 38, 303-304.
(1971):  Somo limis th in statistics, S7AM, Philsdelphi

Bamaoom, R. R. snd Rao, R. Raxoa (1960): On dovintions of the samplo mean, Ann, Math,
Stat., 81, 1015.1027.

Baarracmanya, B, N, sad Gaosm, J. K. (1978): Oa the validity of the formal Edgeworth
expansion. Ann, Sial., 8, 434.451.

Coommax W. G. (1052):  Tho y3-goodnoas of fit test. Ann. Math, Stat., 23, 493-507.

Feuize, W. (1808):  An Introduction to Probability Theory and ite Applications, Vol. 1, John
Wiley snd Sons Ino,

(1968):  An Introduction to Probability Theory and ita Applications, Vol. II, John
Wiloy and Sons Ino.

[+] B. V. and K 5 A. N, (1054):  Limit thooroms for sums of independont
roadom varisblos, English translation by K. L. Chung, Addison.Woaloy, Roading,

Hoooes, . L., 3n. and Lzowaxy, E. L, (1970): Deficionoy. Ann. Math. Siat., 41, 783.801.

Enugy, T. J., Herraxsezroza, T. P. and Sizveas, G. L. (1972): An olomontary theorem
on tho probability of large doviations. Ann, Math. Stat,, 43, 181.192.

Raomavacmant, M. (1970): On o theorom on tho rate of convorgonoo of tost statistics. Ann.
Math, Siat., 41, 1005-1909.

Paper received : August, 1977,
Revised : May, 1978.



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025

