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Cla) TESTS AND THEIR USE

By JERZY NEYMAN
Universily of California, Berkeley

SUMMARY. This roviow papor was prosontod aftor tho Insuguration of the New Delbi
Campus of tho Indian Stotistical Instituto,® C(a) testa woro developed to deal with societal

that iably involve Jord ditions 1 dard ito hypoth.
dard H and  dlstributi if tho sociotal problom is really
important, ono can presumo onough obsorvations for tho uso of central limit thoorom.

P

1. IntroDUCTION

Whoever has participated in non-trivial research in any domain of scienco
involving statistical probloms must havo encountered tho difficulty that none
of the statistical procedures found in tho books fits exactly tho practical
situstion. In porticular, this applios to the uniformly most powerful tests.
Most usually, tho hypothescs that ono encounters are composite and refer to
non-standard distributions. Noxt, tho alternative hypotheses which it is
important to guard against are elso non-standard. Confronted with this
situation, tho statistician. is likely. to reour to non-parametric tests.
Unfortunately, whilo maintaining, at least approximately, the desired lovel
of significanco, it is only rarely that theso tests have proved proporties of
optimality with respect to intercsting classes of alternatives.

Considerations of tho above kind caused mo to sook ‘tests that have a
compromiso but a clear property of optimality and that aro relatively easy to
deduco. Tho caso in deducing these tests must bo paid for and tho price I
paid is composed of two items, Ono is my definition of optimality, which is
only & “local” and an “asymptotic” optimality. Tho other is that tho tosts
deduced aro optimal only within a cortain class of tosts, labeled C{x) tests.
Howover, Lucien Lo Cam proved that, quite frequontly, this local asymptotio
optimality is general,

With roferenco to tho many quostions I heard, I must oxplain the erigin
of tho symbol C{a). Moro a rofers to the possibility of prescribing an
arbitrarily choson lovel of significanco . Tho lottor C rofors to Harald Cramér,
whoso work I greatly admiro. Particularly I valuo greatly Cramér’s book, tho
Mathematical Methods of Statistics, which, first published in 1046, had a very

*Dccomtor, 1074,
al2.]
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strong and very beneficinl intluence on our discipline ;-it made mathematical
statistics considerably more mathematical than it was before, In 1859 a jubileo
volumo was published: in honor of Cramér. Tho busic theory of C(x) tests is
published in that volume. Originally, I thought of calling these tests the
Cramér tests.  This idea was abandoned because the use of Cramér's name
could have been interpreted as londing Cramér with the responsibility for
all the doficiencics of these particular tests, In the following, somo of thesc
deficiencies will be mentioned, My intention was, and 'is, ‘merely to
honor Cramér.

2, GENERAL IDEA OF ({x) TESTS

Consider a sequence of independent random varinbles {X (€, 0)}, possibly
vectors, all following the same distribution, with its deusity p(x| £, 0) depending
upon two . parameters, a scalar £ and possibly a veetor 0=(0,,0,,'..,0,)
of somo 4 > 1 components. Without loss of generality it will be aysumed that
£ ean have values in an intorval containing zero, cither as one of the boundarics
or ay an interior point. This paramoter £ will be the test parameter.
Specifically, we shall be concerned with the hypothesis I that usserts § = 0.
The alternatives may specify € < 0 or £ > 0 or, more gencrally, £ % 0. Tho
parameter # is o nuisance parameter.

The vector parameter & will be assumed to have an unknown value within
some open st ©. The following discussion presupposes certain’ properties
‘of regularity of p(x[¢, 0), including tho possibility of two differentiations under
tho sign of integral taken over all the samplo space of X, say II".

In order to defino a test of class C{a), consider an arbitrary measurablo
function f(z), defined for all x €1V, and that, for £ = 0, the random variable
J1X(0, 0)] has a finito variance o¥8). Let £,(0) bo the expectation of f[.X(0, 6)].
Then, by the central limit theorem, the function

P _ 13 X, 9))—£(0)

Zi = Vn 1):1 ’ a{0) - )
will tond to be normally distributed N(U, 1) as » — 0, Hence, if one doals
with an important problem involving the test of the hypothesis 17, tho problem
50 important as to justify a large number n of observations, tho statistio Z(0)
can bo used to tost 7/, Ior example, tho test proceduro may consist in the
rule of rejecting H when Z, > W@) or when Z, < —wx), cte. whore

1 < e
—_— ~ = . (2
Van 'J('”c du=a @
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More generally, in ordor to test H, we may select a set S(a) on the real
line (for the mild restriction, sce Noyman, 1959) such that the integral ovor
S(a) of the normal density functions (0, I} is equal to the chosen «, and
make a rule to reject /I whenever the observations yicld Z,(0) ¢ S(x).

Obviously, with a substantial n, such procedure would guarantee that,
if I is true, it will be rejected only with the relative frequency nearly equal
to the chosen . The troublo is that tho criterion Z,(0) cannot bo calculeted
from the observations alone, becauso generally it will depend on the valué of
the nuisance parameter 4, tho value of which is unknown. Thus the question
arises about “‘tho asymptotic distribution "of Z,(f) which is the result of
substituting into (1) an estimate § for 0. For the theory to he useful, tho
estimato # must be allowed to be “moderately” good. Any requirement of
heing unbinged andfor istont “in the large,” that is, for all possible values
of £, might lead to prohibitive difficulties.

My own choice of limitation on & was that it be “locally root » consiatent.”
This means that, for each possible ¢, the variable

|8—0—AE| v e (3)

must be bounded in probability. Merc 4 means a constant and A§ stands
for bias in the estimato §. If A = 0, then thero is no bias and the eatimator
8 is labelled “consistent in the Iargo.” Otherwise, it is only “locally”
consiatent.

For the caso £ = 0, ono of tho basie theorems in Neyman (1959) indicates
that, for Z,(0) to have tho samo asymptotic distribution as Z,(0), that is
normal N(0, 1), this irrospoctive of tho value of the nuisance parameter 8,
it is necessary and sufficient that the function f ho orthogonnl to all the
logarithmic dorivatives, say

a lo, R
Bilz, 0) = To?p“-n' =12 ., )

(Further on, this reault is referred to as Theorem 1.)

Starting with au arbitrary function f, it is easy to veplaoce it by one
orthogonal to the ¢y, namely, say

glx, 6) = flx, 0)—-5: a;dy(x, 6) .. (8)
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whero f(z, 0) = f(x) — fi(z) and whero tho cocficicnts a; aro solutions of a
systom of linear cquations and ropresent partial regression coofficionts of
N1X(0,0)] — £(0) on ¢;, 24, ...y §s.  All tho difficulty connccted with this,
usually not a grest dificulty, consists in using tho given density p(z]0, 0) to
compute tho variances and covariances of f and the ¢;. Onco this is done,
ono computes tho variance of g. Dividing (5) by tho squaro root of this
varianco, wo obtain tho “normed” form of g, say g°(z, 0). This is now inserted
into formula (3) to obtain tho critorion

l L]
Z(0 = v B ON)| - (8)

which is now certain to have the normal N'(0, 1) asymptotio distribution when
£=0

Kow wo aro in tho position to defino tho class of Cla) tests.

Definition : The rule of rejecting the hypothesis H that £ = 0 whenever
the computed value Z(8) of formula (6) falls within the set S(a) is called a
Cla) test.

Thus, each C{a) test is detormined by two (moro or less) arbitrary choices :
first wo select tho function f which ly dotermines g°, and sccond, we
sclect tho rejection sot S(a).

The next stop is to doduce a formula yiclding an approximate value
of the power

BE) = P(Z,(0) ¢ S(a) 1€} e {7)
In order to write this formuls we must consider the derivative

g a_‘gg_"h_, )
and also the expression, say
vz, 0= 8¢ — bty ()

whero, as in formuln (3), the coofficionts by are partial regression coofficients
of ¢; on the ¢;. Finally, lot o} stand for tho variancoe of i, and p for the
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correlation cocfficient of g* and . With this notation, the asymptotic formula
for tho power function B(£) is

1 f ~(u-¢iipay)ti

BlE)~ ‘/2—” st

du. e (10)

The particular passage to tho limit which determines this formula is to let
n - oo and, simultaneously, £ - 0.

Formula (10) allows to scleet the optimal C(x) test. If £ and p havo the
samo sign then the optimal rejection region S{x) extends from v{a) to infinity.
On tho other hand, if the product £p is negative, tho optimal rejection region
extends from —oo to —vfar). When thisis noticed, tho solection of tho optimal
[ is immediato, Obrviously, tho asymptotic power (10) depends upon f only
through tho corrclation coeflicient p whoso extremo values are 1. It follows
that tho greatest power for any given £ is attained if g* = , which ropresents
the solution of tho problem of the optimal C{a) test : the optimal test criterion
is, say

. LI
Z"‘\/_; v, Bo,. . (A1)

Against tho alternatives £ > 0 tho hypothesis I is rejected when (11) exceeds
v(a). Ageinst tho alternatives ¢ < 0, this hypothesis is rejected whon (11)
is less than —w(@). Finally, if the alternatives are £ 5 0, the rejection occurs
when the absolute valuo of Z° excceds v{aj2). In cach caso, the asymptotio
power function of tho optimal C(a) test is obtained from (10) by putting p =1
and by specifying the requisite S(a).

With reference to tho above sketch the reader will notice a briof remark
that tho tentativo test function f must satisfy certain conditions of regularity.
Tho samo applics to tho probability density (or froquency function) p(z|£, 6).
All theso conditions would take moro time than is availablo at tho present
meeting and tho audienco is referred to the original publication (Noyman, 1959).
Briefly, tho restrictions imposed on tho probability density p(x|£, 0) are similar
to thoso used by Cramér in his book already quoted, under which ho proves
tho consistoncy of the maximum likelihood estimates, In “ordinary” cases
encountered in applied work theso conditions aro satisfied.
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3. AN IMPORTANT PARTIOULAR CASE
Formuln (11), giving the optimal C{a) test eriterion, is bLasio, - As
mentioned before, the uso of this formula involves the evaluation of the
fogarithmie derivatives ¢, and ¢, for j =1, 2, ..., 5, the calculation of the
vagiance-covariance matrix of theso 241 variables and then tho finding of the
coeflicients &y in formula (9) that minimize the variance of 7. Granting the
conditions of regularity, including the independ of all the parameters,
the above ‘procedure is always applicable — even- though, occasionally, it is
somewhat laborious. In o moro recent papor in 1965, authored jointly with
Elizabeth L. Scott, wo isolated a particular case in which the labor in
colculating 3/ is greatly reduced. In addition, this pnmcular case presents

an independent interest, eapecially in probl of experi

Treating a case somewhat less general than in Neyman and Scott, 1963,
we consider o sequence of units of observation {U,}, each characterized by some
measurements which we denote by a single letter X, referring to U,. Tt is
axsumed that the typical X ia a random variable with known density p(x|0)
where 0 is A nuisanco parameter, usually a vector 0 = (0,,0,,...,0,) € ©.
A randomized expcriment is being performed on units U. For each of them
n figurative coin is tossed with known. probability 7 of falling heads. If the
coin falls heads, thon the “randomizing variable” T is assigned tho value / = 1
and the corresponding unit U is subjected to some experimental treatment.
If the coin falls tails, then 7' is given the valuc ¢ = 0 and the unit U is assigned
to go without treatment and to serve as a control. (Here, the letter T
connotes “treatment.”)

In consequence of t-ho ahove, to each unit of ohservation thero correapond
two observable random variables, the randomizing varisble T and tho
experimental variable .X, possibly a vector. If 7' = 0, then tho distribution
of "X is the given function p{x|0). Now we must apeeify our assumptions
regarding the distribution of X if T'=1, that is, if the given unit of
observation is aubject to the trentment studied. Not always, but frequently,
the statistician concerned is prepared to admit that for treated wnits U, the
varinble X' follows the same type of distribution na for the untreated units, but
with an altered value of tho nuiaanco parameter 6. To use a “baokish”
example, the distribution of X for control units U nay be assumed normal
with an unspecified mean y# and an unspecified variance 4%, For treated units
one frequently nssumes that the distribution of X continues to bo normal,
but possihly with a’ different mean, say i) = p+¢ and, possibly with a
modified variance, say o¥(¢). where £ stands for n conventional menswre of
tho effoct of treatment.
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Returning to tho general discussion, wo use the letter £ to denoto a
conventional measure of the effect of tho treatment studied.  We assume that
tho statistician wishes to havo a test especially directed toward tho discovery
of the ¢ficct of treatment § specitied in the following manner. Whatever
be tho nuisance purameter point 0 € ® corresponding to control units U, the
use of the trentment shifts this parameter point from the original position &
to anothor position 9§, 0)€ O, where tho function ¢ is specificd by tho
statistician's expectations,- undoubtedly derived from the discussions with the
experimenter.  If the treatment studied has no effoct, so that £ = v, then the
function 9(V, 0) assnmes the valuo of tho nuisance parameter corresponding to
the untreated units.

Certain discusions wo had with some applied statisticians lead me to
emphasize that the uso of any particular function $(£, 0) does not imply that
the statistician andjor the experimenter believe that the possible offeéts of
treatment must Lo accurately described by this function. Contrary to this,
the choice of a particular § corresponds to the desire of the statistician to
guard against the effects of the treatment specified by the chosen 3. In many
cases, the specilication of an appropriate 9(£, 0) requires somo soul-searching
which may appear troublasome. There is no law requiring the statistician
(or the experimenter) to go through this trouble. Howover, if his intercst in
‘tho study is compolling, then the following results might bo useful.

The only specific requi from the function 8(¢, 0) aro that at § = 0
we havo #(0,0) =0 and that, for each component 0y of the voctor 4,
wa have

3049, 0, .
PR | o= 0} - (12)

& known function of 6.

With referenco to tho above “bookish” example with the normal
distsibution of X the statistician may be particularly interested in tho effect
of t which ltiplies the original mean # > 0 and tho original
standard deviation & by the same positive factor, so that the cooflicient of
variation of X is not altored. If so, he muy wpecify

HE ) = poxpig), e (13)

al§, o) = o exp (¢}, o (14)
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in which caso tho partial derivatives at zero as in (12) aro p'(1) = g ond
&’(0) = . On tho other hand, if tho statistician’s (£, #) = p+£ and o(f) =0,
then ;i =1 and o' = 0, ete.

With tho above notation, tho frequency function of tho two random
variables 7’ and X can bo written as, say

ml(1—nm)-tplz ] 2(tf, 0)] o (15)

for £ = 0 or 1. Then it was found in Neyman and Scott (1965) that no cffort
is needed to calculato the coofficients b in formula (9) and that formula (11)
reduces to

n .,

L (4—m) Z 9 dylxi, )
t=1 =1

{””(1—71) var (E.x',}"")}r (16)

Hero #; equals unity or zero depending on whether the i-th unit of obscrvation
is nssigned to bo treated or not, Frequently, tho *‘randomizing probability”
7.i3 ono-half, which cnsures the greatest precision of tho experiment. In
this case formula (16) simplifics somewhat.

This completes tho sketch of the theory of C{a) tests possiblo to give in
this paper. A number of gencralizations have Leen published, frequently
in joint papers, by soveral authors including Bartoo, Buhler, Davies and
Puri (1066, 1967). Somo time ago Professor Piotr Mikulski, present at this
conference, investigated tho conditions under whieh the optimal Cla) test
coincides with the uniformly most powerful test when such exists, but I do
not remember sceing his results published.

Tho defects of Cla) tests aro that their “‘optimality™ is only “local” and
that it is only asymptotic. In particular, tho all-important formula (10),
supposed to give an approximation to tho power function f(£), is based on the
passago to tho limit as » —» co whilo £ tends to zero in such a way that tho
product £4/7 tends to some fixed limit dilferent from zero, Of course, in any
actual caso tho test parameter £ has somo fixed value. - If £ = 0, then through
tho uso of tho contral Limit thecorem and of Theorem 1 abovo, tho thcory
guarantees tho approximate maintenanco of tho chosen level of significanco a.
If ¢ ig not zero, it may bo quito large or small and tho only thing that is under
our control is tho number of observations 2, which can bo mado largo. Until
further investigations aro mado (Buhler and Puri, 1966), tho information about
tho performenco of optimal C{a) tests must como from the Monto Carlo
simulation ecxperiments. In many cases studied thus far this performanco
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appears quite good and this justifics the present paper. Howover, as deseribed
bolow, this is not a goneral rule. Certain categories of cases were identified
in which tho actual power of tho optimal C(a) test is not comparable to
predictions of formula (10). Horo, then, thero is a challenging new field for
further theoretical studies, Some such rescarch is alroady in progress.

Most of tho remaining material in this paper is concorned with oxamples.
Somo of these examples illustrate the uso of the two basio formulas (11) and
(16), and arc somowhat “bookish.” The other examples illustrato somo
*“non-bookish” problems for which the C(a) techniquo provides an easily
attainablo solution.

4. TwoO BOOKISI EXAMPLES

Ezample 1 : Test of the hypotkesis of independence of two variables X and Y,
known lo have a joini bivariate Poisson distribution. Even though this problom
originated from a study related to ccology, it is really bookish. It is discussed
in Neyman (1959). Tho obscrvablo variables are n vectors {Xy, Yi}. The
joint probability generating function of X and Y can bo writton as

G, v) = exp(—E(1—uv)—0,(1—)—O,(1—v)). - (17)

If ¢ = 0, the two variables X and Y are independont Poisson variables
with expectations 0, and 0,. In all cases tho marginal distributions of X
and Y are Poisson, with expectations 0,+£ and 0,4, respectively. It follows
that tho means, say X, and 7, of n observations on X and Y aro locally
root # consistent estimates of 0; and 0, respectively : tho bias in each is oqual
to £, For any non-negative intogors z and g, we havo
“toap-ey SBUIY) gk 2=k Quk

P(X =z Y=y|6,0,,¢=¢ = F(I__—m' ... {18)

The first thing to consider is whether, in tho prosent caso, one can use the
formula (16) which is simplor than (11). The answer is in the nogativo and the
development of the optimal C(x) test requires tho calculation of all threo
logarithmic derivatives of (18), namoly

¢¢=0%"—_1 e (19)
z
= g~1 v (20)
=¥
h=4 @

Al 2-2
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Beeause of familiarity with the Poisson distribution, the caloulation of
tho variance of tho variance-covarianco matrix of (19), (20) and (21) presonts
no difficulty (romembor : theso calculations have to be performed on tho
assumption £ = 01), and the final result is tho criterion

"
2 E—E)Y=T)
X, Y}

The illustrative quality of this example depends on the fact that the
criterion (22) appeals to intuition and, perhaps, could have been guessed.
The numerator divided by = is & moment cstimato of the covariance of X and
Y. If it is divided by tho square root of the product of variances of the two
variablos, then the whole could bo considored as an estimato of the correlati
cocfficiont. Actually in the denominator thero is tho square root of 2X,¥,.
If X and Y aroreally independent Poisson variables, then the means X, and ¥,
aro actually estimatos of the two variances and it appears that tho optimal
C(a) test based on (22) is o test of the hypothesis that the corrolation of X and
Y is zero.

z= e (22)

1 should mention that, quito froquently, when the optimal C(«) criterion
is deduced, o littlo thought leads one to exclaim, moroe or less : I should have
guessed it}

Ezample 2: Test of the hypolhesis that the treatment does not increase
the mean of a normal random variable X with an unspecified mean pu and with
an unspecified variance, supposed not to be affected by the lreatment. Apart
from randomization, this is ono of the classical bookish casos for which a
vniformly most powerful tést exists, namely the Student-Fisher i-test. Ve

1
0SSuUmo 7 = 5.

Clearly, inthis caso tho optimal Cla) test critorion is determined by
formula (16). With obvious notation, easy manipulations yield

z,‘.=?‘/—:':'"_l —\-7*—1‘5? - 23)
PN
nohm

Hore, as n grows, tho first factor has a stochastio limit equal to unity, Ou
tho other hand, if ¢ is cstimated by tho usual mean squaro, the socond factor
is oxactly tho Studont-Fishor f. As n is incroased, ¢ tends to be normally
distributed, and so docs Z3.
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5. Two NOT 80 DOORISI EXAMPLES

Ezample 3: Does @ trealment affect Uhe learning ability of rats? In
a randomized training oxperiment with rats the obsorvablo variable X
represents tho time before o rat makes “‘a mistako.” Rats aro obsorved for &
fixed limited poriod of timo which wo can take a8 unity, so that 0 < X < 1.
No information on the distribution of X is available, but tho experimonter
expects, or hopes, that the treatment given to randomly sclected rats tonds
to increaso tho timo to error, X. Tho hypothesis to test, using obscrvations
on 2 rats, somo treated and somo not, is that the treatment has no effect on
tho distribution of X. How should ono test this hypothesis 1 Obviously,
sevoral non-parametrio tests are available. Also, by dividing tho unit interval
of variation of X into several sub-intervals, ono might use tho x? tost. Each
of these procedures will ensuro at least an approximate maintenenco of the
chosen levol of significance.

With reforonce to the chi squaro test, we note that, if the number n of
observations is large, tho number of sub-intervals can bo considerable. If
n is not very large, the numbor of sub-intervals must be limited, porhaps
only to threo. The following discussion of the possibility of using the C(«)
technique will be limited to this particular caso. The proceduro is as follows.

e divide the unit interval into three arbitrary disjoint sub-intervals and
denote by 0y the unknown probability thatthe control rat X will fall into the
#th of them, {=1,2,3. Becauss tho three probabilities §; must add up
to unity, tho distribution of X idered involves two nuisanco parameters,
say 0, and 0,. Now it is conveniont to introduco threo random variables
Iy X), for k = 1, 2, 8, which wo shall call indicators. For each k, the indicator
I{X) is defined to bo equal to unity if X falls into the k-th sub-interval and to
zcro othorwiso. Now wo have to define tho functions 94§, 0), for j=1,2,
80 a3 to incorporate into the definition the experimenter’s vaguo hopo that the
valuo of X for a troated rat is, gonorally, somowhat larger than that for a
control rat.  Clearly, this can bo dono in a great variety of ways, each adding
something to the vague idoa that the treatmont tends to incroase X.

One possibility, discussed in Neyman (1970), is as followa. e presumo-
thet the treatment offect on the least “trainable” rats, whoso X would
normally fall within tho first of the threo sub-intorvals, can incroase X to fall
into tho sccond sub-interval but hardly ever so that it falls within the third.
Similarly, we presumo that for somo of tho “middle” trainablo rats, with X
normally falling within the middle'of the threo sub-intervals, the application
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of tho treatment would make X fall into the last sub-interval. In order to
approximate these expectations, we write

(£, 0) = 6,(1—§), . (24)
with ¢ positive and not exceeding unity, and
946, 0) = Oa+£(6:,—0)). e (25)

Denoting by 9y = 1—9;—9, the frequency function of the randomizing
random varinble T and of the three indicators can now be written as

a1t 11 [oatf, O - (26)
-l

and the use of formula (16) leads to the optimal C(a) test criterion. The
formula for tho asymptotio power provides indications as to tho way of dividing
the unit time interval into three sub-intorvals 50 as to increass the sonsitivity
of the oxperiment. Through a set of Monto Carlo simulation experiments
it wag found that the power of the optimal C(x) test deduced as abovo excceds
substantially that of the corresponding chi square test.

Example 4 :  Is it true that, as suggested by some meteorologists, the seeding
of clouds during cerlain unidentified lypes of stormy days tends to increase the
rainfall, 10hile on some other days, the effect is negative, so that the average effect
iszero ¥ Suggostions of the abovo kind seom to have beon first made
by E. J. Smith of CSIRO, Sydnoy, Australia (Smith, 1967). Later they
wore echoed by othor authors. The kind of evidence supporting
theso suggestions ja illustrated- in Figuro 1, which is based on a cloud
secding exporimont performed in Quobee (Godson, Crozicr and Holland, 1966).
Threo ofual square arcas 37 miles on tho sido wore involved, labeled North,
Buffer, and South. Seeding of clouds was performed on all “suitable™ days
either over tho North or ovor the South area, chosen at random (this is the
so-called cross-over dosign). It was hoped that tho Jarge Buffer arca would
prevent conteminati The ovaluation by the throo authors indicated that
the averago apparent effect of scoding was practically zero. If the true effoct
woro 80, then tho joint distribution of X = rain in tho South and ¥ = rain
in tho North on “North-socded days” would havo beon tho same as on *South-
seeded days.” A glanco at tho scatter diagrams in Figuro 1 tonds to contradict
this assurption and to support tho suggestion of E, J. Smith. Tho difficulty
is that this support depends on tho presumption that tho presenco of the
Buffor aroa did, in fact, prevent the contamination of rain over ono of the two
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oxperimental arcas by sceding over tho other. Sinco this is subjoct to
uncertainty, tho judgment about Smith's suggestion must bo based on
experimonts with a simplo randomized sced-no-scod design, Here, then, the
problem arises of deducing’a tost of tho hypothesis I of no offect of sceding,
promising to be particularly powerful against tho somowhat vague alternatives
that yes, tho truo offect of sceding exists but is occasionally positive and
ocensionally negativo, averaging out to zero. (Tho first test of this kind, but
referring to a cross-over design and assuming a joint normal distribution of X
and Y, was the subjcct of a thesis by Kulkarni. Iis results were reported in
Smith (1967). The application of this test to Quebee data leaves little doubt
that either thero was a variablo” effect of treatmont or thero was some

$ominntl lL )

In tho following a procedure is described loading to tho optimal Cla) test
of tho hypothesis /7, Tho basic assumptions will be () that tho non-zero
rainfall on both sceded and not-sceded experimental units {days, storms,
ete.) follows a Gamma distribution, and (b) that the effect of sceding, if any,
alters the scale parameter, not tho shapo parameter, of tho Gamma density.
(Thero is no certainty about this point, only somo littlo evidenes in its favor.
However, the adéquacy of this presumption is not tho subject of the present
discussion.)

Tho Gamma density can be written in tho form, say

0. 0 = 0:1 0,~1 —8,¢

o]0y, 0,) = To‘)x [ « {(27)
with two nuisanco parameters, the shapo parameter 0, and the reciprocal of
tho scale .0,, both positive numbers. When trying to deduco the optimal
C(a) test of IT, against tho alternativo, asscrting what may bo called a fixed
effect, wo assumo that 0, is not affected by tho treatment, but that 0, may
be, and introduce $,(£, 0) = 0, e-%. If £ is positivo, the fixed offect is also
positive, that is, tho treatment tends to incroase tho rainfall, and vico versa.
Howevor, in tho present case the contemplated alternatives do not assert tho
presenco of a fixed offect. They assert that for somo unspecified experimental
units tho offect is positive and on some others it is ncgnti‘;e. In fact, it is
admitted, somoJof theso offects may bo quite large and somo others small.
Obviously, in order to incorporato such possibilities into the theory underlying
tho deduction of an optimal C(a) test, ono must assumo that for treated
oxporimontal unita the scalo paramoter (and hienco its reciproeal 0,) is o random
varisble with somo unspecificd distribution. This ean bo dono in &overal
different ways, but tho way that I found convoniont is as follows,
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The basic assumption is that tho random variation in 0, due to tho random
effect of treatment is such that tho logarithm of 0, has a finito variance which
wo denote by £ > 0. Also, wo nssumo that this distribution is rogular enough
to allow differentivtion under tho sign of certain integrals. - Denoting by
los 08 the meon of log 0, we can writo

log 0,—log 02
3

Here, then, U is & random variablo, with expectation zero and unit
variance, Denote by F(u) the distribution of U which is unspecified but is
uniquely determined by the postulated distribution of log 0,. It follows that

=U. )

0, = 02 eUNT. e (29)

Tor any particular treated experimental unit the variabloe U has some fixed
value. Given that value, the probability donsity of the rainfall X is given by
(27) with 0, replaced by (29). For any oxperimental unit, whether treated
or not, the joint distribution of the randomizing 7' and of the non-zero rainfall
X is given by

It ]
0,1 00y —103 041 00
zU 0} e E ) o E
[(l—n) Tth)] [" Ty ~ J oxp Omvi—aten vt }dF(u)]
(30)
whoro tho integral oxtends from —co to 4co.

It is gcen that the joint distribution of T and X for £ > 0 differs from that
corresponding to £ = 0 by morc than just a chango in the nuisance parameter
0. Tt follows that tho deduction of tho optimal Cla) test must be based on
formula (11) rather than on the simpler formula {16).

Taking the logarithm of (30) and differentiating (the differontiation under
tho intogral sign being nssumed legitimate), wo gradually find

(0,

By(%) = log x—log 03— r:wl) (31
iy = DB )

P = IO, —0 2P— 18 )2 - (39
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Furthor calculations dopond upon tho naturo of the estimators of the
two nuisanco paramoters to bo used. In order to gain an intuitive feeling of
the working of the teat, let us nssume that the two parameters aro estimated
by tho mothod of maximum likelihood. In other werds the cstimators 0,
and 83 will be roota of the equations

% g0 = E g = 0 . (39)
(L3 [£9)

whero tho summations extend over all the n observations, thoso with treatment
and controls. In '\ , tho tor in formula (11) will reduce to
the sum of terms depending upon ¢, alone and woe shall have

z = ,% W0, — 83 zP— 03 2o /. e (39)
Comparing (34) with (32) it is scen that

=0z .. (36)

where % stands for the mean of all the n observations, under treatment and
controls. Substituting (36) in (35), simplifying, and remembering that f; =0
for all tho control obsorvations, it is easy to sce that the use of the criterion
Zn amounts to checking whether for observations under troatmont the sum
of squares Z(x;—Z)® oxceods significantly what would be cxpected with no
variable offoct of treatment.

6. GENERAL PROBLEM OF VARIABILITY IN RESPONSE
TO TREATMENTS

Tho above discussion doponds explicitly on cortain preconceptions
connected specifically with rain stimulation and with the idea that in a certain
situation whon the averago effect of cloud seeding is zero, tho seeding may bo
increasing rain in somo cascs and in some other cases it may bo docreasing it.
In other words, tho solution described rofers to a very particular caso, involving
gammo density, ‘with only the scalo parameter being subjected to possibl
chango due to troatment, ete. It is of somo interest to generalize the problem.

Considor o randomized experiment intonded to discover whether the
experimental units (storms, mico, oto.) oxhibit a variable responso to the
troatment studied. For examplo, to quoto Professor Kompthorne : is it truo
that ponicillin is occasionally holpful and occasionally harmful!  As formerly,
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the randomizing variablo 7' can havo only two values : unity, with known
probability 7, and zoro, If T =1, the particular experimental unit is subjected
to tho troatmont, but not otherwiso. Tho statistician is prepared to act on
the assuraption that with T = 0, tho obsorvablo variable X, possibly a vector,
has & known distribution doponding on some nuisanco paramoters. There
may bo soveral of them but for our purposes hero it will bo sufficient to assume
that there are only two nuisanco paramoters 0, and 0,. Symbol p(z|0,, 0)
will ropresent tho corresponding density or frequency function.

If T =1, so that tho particular exporimental unit is subjested to tho
troatment, tho statistician is prepared to act on tho assumption that the
distribution of tho samo X may bo difforent. More specifically, ho is
prepared to assumo that this distribution is characterized by a function, say
q(x]0,, 0y, £, u) depending upon four | ters. Tho first of them g, is tho
somo as that in the distribution corresponding to T' = 0. Tho next nuisanco
paramcter 0y ia a new ono. Tho third paramoter ¢ » 0 is & convontional
moasuro of tho variability of responso to tho treatment. If ¢ = 0, then all
the oxperimental units respond to tho treatmont similarly, in tho sense that
tho corresponding distribution is fully characterized by g¢(z]0,, 05 0, 0).
On tho other hand, if £ > 0 thon tho distribution of X Jfor a particular
oxperimental unit depends also on a number « ckaraclerizing this particular unit.
This number % is considered as a particular value of a random variable U with
an unspecified distribution F(u), oxcopt that it satisfies tho conditions
EU = 0 and EU? = 1. (In addition, of courso, all tho distributions mentioned
satisfy certain conditions of rogularity, rathor obvious but too long to
deseribo in this paper). Tho particular values of U are not obscrvablo,
In quence, for a randomly sclocted cxperimental unit the distribution
of X corresponding to 7 =1 is characterized by tho marginal,

Qx| 0y, 0y, £) = Ja(z] 0y, Oy, £, w)AF(n), - (37)

whore the intogral extonds from ~co to o0,

With theso assumptions, the joint distribution of tho two obscrvablo
random variables 7' and X is givon by tho formuls

[ —m)plz| 0, O~ [mQ(x| 0y, 05, £)F, - (38)

whoro ¢ stands for tho value of 7' cithor %oro or unity.
Al 2-3
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The reader may enjoy the deduction of an optimal C(z) test for the presence
of variability ‘of rosponso to treatmont in a situation different from that in
Soction 5. Ono possibility is to continuo considering the general set-up
roferring to cloud sceding, including Gamma donsity in formula (27), cte., but
just drop tho assuwption that, apart from tho possiblo variablo offccts, the
treatment does not influence the average rainfall. Tho casential difference
betweon tho earlier approach and the one now suggested consists in admitting
that the “typical” valuo of tho reciprocal of tho scale paramter for control
units is an unknown positive number 0,, whilo for the treated units it is
possibly a different positivo number 0, with & consoquent slight change in
formula (30). In tho first factor 6 would bo roplaced by 0, and in tho sccond
factor by 0,. Tho throe logarithmic derivations (31), (32), and (33) would
have to bo replaced by four. Also, there would be threo rather than two
nuisance parameters to cstimate. If the maximum likelihood mothod is used,
then 6, would be estimated using all tho n obsorvations, with and without
treatment, 0y using only the obsorvations on controls and 05 only thoss
with treatment,

Another interesting application of the theory might consist in considering
experiments other than thoso with rain stimulation and involving distributions
of the obscrvable X other than Gamma. Also, it is likoly to be important to
consider a different specification of the convontional measuro £ of variability
of response to treatment. Someo remarks to this effect will bo found in the
next soction,

7. SOME DIFFICULTIES AND A CNTALLENGE

The treatment of practical probloms roquires not only an easily
computablo test criterion having an intelligiblo property of optimality, but
also a rcasonable approximation to its power function. When approaching
s significant study, it is important to bo ablo to compute how many
observations must bo mado in order to have & reasonable chance to “detect”
the offect of the troatmont if it exists and is of specificd magnitude. Horo an
appropriate spocialization of formula (10) comes to one’s mind. But how
good is the approximation provided by this formula ?

One sourco of unccrtainty in this rospeet is the method by which it has
beon deduced. Invented in 1936 (Neyman, 1937) and since usod in countless
studios of asymptotio relative officiency, this mothod utilizes a “doublo”
passage to limit : The number n of obsorvations is increasod while the “error”
{ in tho hypothosos tostod goes to zoro, so that tho product £4/7 tonds to a
finito limit 7 5 0. The oxprossion on the right in formula (10) is just tho
limit of the powoer with 7 replaced by ¢v/i.
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The adequacy of the formula was first chocked in Buhlor and Puri (1966)
and many times later with varying results. The mothod of vorification was
empirical; through Monto Carlo simulati Ina bor of situations the
working of the formula proved satisfactory, but in a ber of othors it was
hopelossly bad. One catogory of cases in which formula (10) proved usoless
was found in an unpublished work by Robort Traxler, then our Ph.D, studont,
currently at the University of Maryland.

Traxlor considered a problem closely related to tho problem of variability
of response, but a simplor one. This problem was to test the Hypothescs
that an observable X follows a DPoisson distribution with an unspecified
parameter Ay, rathor than an unspecified mixturo of Poisson distributions.
His sot-up and the dofinition of £ were very similar to thoso discussed in
Scction 6. LEach obsorvation on X was supposed to be Poisson distributed
with expectation

A 0xp {uy/E} v (39)

where « is o particular valuo of a random variablo U, such that EU = 0 and
EU* = 1. Tho casily deduciblo optimal C{at) criterion happons to bo equivalent
to that proposed long ago by R.A. Fisher, with obvious notation S3X,
The thing that interosted Traxler was tho power of the test corrosponding to
a fixed value of £ and to soveral different distributions U. Ono possibility
was that U is uniformly distributed in an interval centered at zero. The other
possibilities studied wero two point distributions of U, one value being negative
and tho other positive. All tho rosults obtained through Monte Carlo
simulations proved interosting but one of them was rathor distressing, Also,
it was instructivo.

When Traxler assumed that U could have only two valuos a < Oand b>>0
with g rather small and froquent, \vlulo [ fad to bo largo and rare, the powoer
of the optimal C(a) test, corresy toa substantial ber of observations,
was found to be rather closo to «, tho intended lovel of significanco. At the
same timo, formula (10) prodictod a roasonable probability of detocting the
falschood of tho hypotheses tested !

While at first disappointing, this result proved instructive. It showed
that tho conventional measure £ of the error in the hypotheses tosted, dofined
in (39) is not appropriato. The motivation behind this formula, as well as
that behind formula (29), was brsod on o rathor universal custom of using
variance es & measuro of. variability, Howover, the tosts undor discussion
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aro not reslly dealing with variability of tho scalo parameter in one case and
the Poiscon paramoter in the other. All these tests could do is to distinguish
between two distributions ¢f tho observablo X, one of them fixed and the
other n mixture. If the mixturo of distributions is very similar to the one
fixed, thon a power of a test cannot be Jarge, And it happens that, with a
fixed varianco ¢, and Traxler's & very small, the resulting mixture of
distributions is very closo to a fixed Poisson distribution,

The moral of theso findings is that, in order to have a reasonable hope for
the conformity with tho asymptotic power function (10) a now definition of
what wo call the conventional measure of the error in the hypothesis tested
must be invented. Could one gomchow develop #he theory by defining

£= suzp|F/(z|0)—Fm(:|f) |

whero Fy and Fiy designato the fixed and tho mixturo distributions of the
obscrvable X, each with somo nuisanco parameters ?

This is one of tho probl awaiting soluti Hero is another. It
consists in developing relinblo methods of estimating the power of tho already
oxisting optimal C{z) test. One remark is obvious {Buhler and Puri, 1966).
Ths is that tho actual power must depend upon the identity of the locally root
n consistent estimators of the nuisance parameters. Recently, I tried my
hand in this direction, but with littlo success. Now my hopes center on
two pepers (Singh and Zhurbenko, 1975; Zhurbonko, 1976) symbolizing an
international offort to solve an important problom. Tho sonior author of the
carlier paper is Igor Zhurbenko of the University of Moscow who was our
several months’ guest in Berkoloy: Tho junior author is Avinash Singh, at
the time our Ph.D. student from India.. The subsequent paper by Professor
Zhurbenko, represents a version of the samo study. It is o great pleasuro to
noto this truly international cooperative research cffort.
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