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SUMMARY. A stochostic formulation for geno activation and transcription during
cinbryonio development is presonted and annlysed.  Tho modol is based on the axiomatic funda-
mentals of the physiological characteristica and leadn to a non-linenr bivariate Markov process,
The timo-dependent approximato solutions of tho momonts aro obtained from the master equation
dexcribing tho biolugical process. Canditions for a atablo periodio solution which is biologically
significant havo been workod out and fluctuations have been measurod. In the abseneo of the
product term in the modol it is shown that ono of tho two variates oxhibits normal distribotion,
Thin indicales that both tho variables have approiximately nornal distributions. Tho invoatiga-
tion expl tho ad gea of stochastio modelling of a nonlincar biological aystom which is
determinixtically intractable, aa well sa lers informative,

1. INTRODUOTION

Rhythmic biosynthesis of various macromolecules during mitotic cycles
is an important biological phenomenon. Cyclic RNA synthesis in slime mould
cells has been observed by Cumming and Rusch (1968) and a rhythmic protein
biosynthesis in early cell cycles in sea urchins has been reported by Mano
(1968). Mazia (1961) and Brodsky (1968) have presented excellent roviews
on theso rhythmic biosynthesis of RNA, protein and other macromolecules.
Brahmachary et al. (1971) have also observed cyclic RNA synthesis during
early mitotic cycles in Limnaea.

A number of mathematical models of cellular development have been
contributed by several workers such as Weiss and Kavanau (1957), Goodwin
(1963), Simon (1973), Wheldon (1973), Cummings (1975), Alberghina (1975),
Thames and Elster (1976) and many others. A simplo mode! showing
oscillatroy biosynthesis of RNA and protein has been presented by Tapaswi
and Roy (1978). By constructing an extended mathematical model of RNA
and protein synthesis during embryonic development Tapaswi and Bhatta-
cherya (1081) have demonstrated stablo periodic (limit cycle) solutions for
the entire biological system of transcription (i.e., RNA synthesis) and transla-
tion (i.e., protcin synthesis). The general model of RNA and protein
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synthesis using a feedback mechanism in which the end product acts asa
repressor moleculo was discussed by Goodwin (1963, 1063), Griffith (1963,
Walter (1970), Rapp (1957a, b, 1976), Tyson and Othraer (1077), Murray (1973
amd others. Griflith observed that the model system possesses a stable
periodic behaviour provided the cooperativity of the repressor metaholite
as measured by the Hill cocflicient p exceeds a high value, namely p> 3
which is biologically not realistic. The model developed by Tapaswi and
Bhattacharya (1981) exhibited a stable periedic solution for p > 4 which was
much nearer to a realistic value. In a further modified model including time
delay, Tapaswi (1982) showed that the system exhibited a stable oscillation
for o much lower value of p(p=1), which is biologically realistic. The
object of tho present work is to develop stochastic formulations for a funda-
mental biological process like gene activation and RNA synthesis, a subject
which has been little studied.

Application of Markov processcs on biological growth has been dealt
with by Bharucha-Reid (1960), Bartholomay (1962a) and Dailey (1964).
Bartholomay constructed a stochastic model for enzyme-substrate reaction
and by assuming E{(e)(s)] = E[(e)]E((s)} at the carly part of the reaction,
showed that the stochastic mean agreed with the deterministic mean. Goel
and Richter-Dyn (1974) have made a condensed review of such studies.

The present work deals with a much more complicated biological
mechanism which is not so easily accessible as the ordinary chemical reaction
processes.  Gene activation and RNA synthesis are discrete random processes,
continuous in time, involving probabilities. Stochastic analysis will there-
fore be more appropriato than deterministic analysis in dealing with such 8
topic. Tho mathematical methods used herc aro similar to those followed
by workers in other systems. Onoc of the major difficultics that arises in the
analytical work in deterministic models is the nonlincarity problem involved
in most of the biological systems. The approximation method adopted here
successfully overcomes this difficulty.

The formulation and analysis of the stochastic model are given in Section
2, Secetion 3 presents the numerical analysis and computer simulation to
cstablish tho validity of the normal approximation made in Scetion 2.
Discussion and Conclusion appear in Section 4.

2. THE STOCNASTIO MODEL
For a probabilistic analysis of the reactions, wo consider that the wole-
cules of tho activating substance (A) and DNA (D) genomes initiato o chain
of random events which ultimately produces (or more correctly, stimulates
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the formation of) tho RNA molecules. Theso molecules are subject to random
collisions beeause of their Brownian-like motions in the system. Thus, the
question of certain probability is associated with the cvent that any pair of
different molecules of A and D will collide, resulting in tho formation of o
complex molecule (AD) ie., an activation of a DNA genome. Once formed,
such o molecule (AD) has the probability of two eventual outcomes:
(1) either AD stimulates the formation of one RNA (R) molecule, remaining
itself unchanged, or (2) AD decomposes into one A and one I molecule (i.c.,
one unit of genome) by the inhibitory action of RNA moledules on it. These,
added with the probability of degradution of one RNA molecule, givo riso
to the following transition probabilities which deal with all sorts of proba-
bilitics associated with the above reactions.

If n, is the constant number of the moleeules of A, which is continvously
replenished from a constant source insido or outside the cell and (n,, ny, 14, ¢)
is the state of the system at time £, where ny, #; and n, are the numbers of
genomes D, complex AD and molecules of RNA respectively, then the system
may undergo the transitions given below.

transition probability per unit time
(12, g, 1) = (Rg—1, ng+1, 7)) Afngn,

= (11, ng—1, ) Agigit g+ AT 0,

— (ny, ny, ny+1) Ay

= (ny, ng, ny—1) Aoy

npdny = ny where ny, is the initial number of DNA (D) genomes and
AL AL A (5=2.3,...,6) are the constant probability parameters of the
respective reactions.

Henee, the time derivative p’(n,, n,,t) of the probability function
g, ny, 8 is

IM&‘M = plig, ny—1, DAgng+p(na—1, ny, )(nag—ny+ 1A}y

AP0t T, g DngH DT HAg1) 4-plorgs n 4ok 1 ) gt D)X
— Py, g QD (rgg— A+ ng AT A ) Ay A .. (1)
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IFrom equution (1) we can cnsily calculate the time derivatives of the mea
value functions for the variables n,, n,.  These aro given by

dE[ny(] _ "2 2 ,
—(1:— - na)‘-o n‘)‘-o nsp (g e f) -y
'IE[(;—;'(I)] = 2 ;.. ngp'(ng, nyt).

ng=0 n =0

Substituting the value for p’(ng, ng, 1) given by equation (1) into equation (),
we get

’1E¢+'Il:] = A} nyE(ngg— n3)|— A7 E{ng]— A, E[ngn,)

. -
”%E — N E[ns]—AE(ng).
We must remember that E{ngn,} # E[n3]E[n ] here, since ny and n, are
not independent variables.

Since the biological process under investigation is a stable oscillatory
process as observed experimentally (Brahmachary el al., 1971a,b), we hare
to examine whether the model can prediet any stable periodic solution. In
order to do so we require the solution of the master equation (1) which is
similar to the forward Kolmogorov equation and due to its nonlinear nature,
scems to be analytically intractable. However, we shall attempt to obtain
the time-depent approximato solutions of the moments. Since, in the absence
of the product terms in equation (1), one of the variables, n,, tends to a norma!
distribution for sufficiently large n,, (sce Appendix) and for small A, n, is
practically a function of ny, we shall follow the normal approximation method
(Whittle, 1957) to obtain analytically the moments of n, and n,.

Writing ny = m, ny=n and p(n,, n;) = pinn, the master equation (1)
can be written as

d o o .
'%"' = pmn E fum, n)+2 pu_gou_x fr(m—j, n—k)
{2 N 1k
where Joy = ma,
Jo o =mnl,
So1 0= mA7 +mnd,
Sio = Afn(ng—m) e

and all other f;.; are zero,
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Hence, the moment pgencrating function defined by
o=y x b “
u o alv!
satisfies the differential equation (Bailey, 1964)

a

G = IR (z

% 0¢) M. e (5)

Using equation (4) and writing K = log M where KA is the cumulant generating
function, we find that K satisfics tho following cquulion (using equation (5)) :

9K &_ + -8, —
T = (=g, (n,,, )+,\ e-i—1y 2K +,\,(e 1)m
+/‘a(¢‘_l) +/“(€' —l) ¢ e ()
Writing K = SE ky, 20° - )
ut v!
and equating coefficients of 0, &, 02, ¢2 and 0g, we get the following differential
equations :
o _ as Af i+ AT o= Adk,
= Tz — (A + A7)k o — Ak,
ik,
! d;a = Akye—Adko,
dfi“ = AF o — (A3~ A7 o — 2(AF 0 - A7 Yo Agky — 225K,
ﬂvi = Al kor— 22 iy 2Agkyy
Bt A g 1y AT 4 Ay — Ak 9
o = 20— (AT AT+ AN —Adky, P )]

Since the above system is nonhomogeneous, we apply the transformation
ky = kiy+Cy where Cy is given by
A g —(Afny+A7)C0—AC)y = 0
/\acm—/\;Co\ =0
Afmynge— (A 1, — A7 )Cy—2(A} 1, 4+-AT)Ch0+ 2,01y — 21,Cy = O .o (10)
/\30,n+/\‘CM—2/\.C'M+2/\,C" =0
A;,Cm—(/\fnl-l—/\,‘-l-/\,)C"-,\,Cu =0
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i.e,, Ciy i8 the equilibrium point of the system (the existence of a stable equili-
brium i3 cquivalent to the crgodicity of the Markov chain (ny(f), #,(1) for
which property sce the last purt of the Appendix).
Writing Afn,+A7 = 2 and Afn—A7 = B, the transformed homogencous
system becomes
dhiy = —akjy—A.k;,
dky,
dt

= Agkia—Akg,

dkyg
ar

— ko= 22K+ Ak, — 22,k - ()

:I_l]'i,.‘_ Ak o= A k5 —2A ks + 2A5k7,
d

Thar — Mo A ek

We now assume that the distribution of each of ny and a4 is approximately
normal since in the absence of the nonlincar terms in the master equation (1)
the distributions of n; tend to exact normal distribution shown in the Appendix
and n, = f(n,) when A, is small. Hence, keeping terms involving up to
second order cumulants, i.c., neglecting k;, and kf; in equation (11) and
assuming a solution of the form kj; = Ay e, the secular equation for kjjis
given by
(P+A)p+21,)
X[/73+P:(41+"|)+P(51?+31’\|“/\z’\:\)+212(1‘!‘/\4)“"2"3(1']'/9)) =0 .. (12)
Applying Routh-IHurwitz criterion (Uspensky, 1974), we ean show that this
cquation has a pair of complex conjugate roots with real part positive or
zero if
32(622+ 52+ A})

M2 Ty )
where y=atf< gé,‘iit:“" g<o.
! N
Thus, for Wlfiat LR N
A, = m’ﬂ‘ﬂ‘i, e (14
=73 (Hx+A;—7y)

cquation (12) has o pair of purely imaginary roots +iw, and for a higher
value of A, than this the oscillation is unstable and growing in nature, whereas
for a lower value thero will be a decaying oscillation approachnging the stable
equilibrium point. By Hopf bifurcation theorem it can be shown that in the
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neighbourhood of tho bifurcation point given by (14), there exists a stable
limit eyele around tho equilibrium point (Murray, 1977).

Thus, there exist some values of A, for which the stochastic approxima-
tion envisages a stablo periodie solution of the system under consideration,
which i3 biologically significant.

Tho dominating limit cyclo solution is given by

kiy = Cyy+dyjeos w (t—igy) e (15)
whero Cyy is given by (10) and Ay and ¢y are determined from equation (11)
and the initial conditions kg =a, by =0, k=L =k, =0at t =0.

As an example, let n,g = 200, #; = 10, A} = 0'1 and A] = 00 so that
f=—08and y=a+pf =02 Also, let A, = A = 1. Then, to geta limit
cycle solution we must require A, = 7-5 according to the condition (14). Thus,
the purely imaginary roots (for A; = 7-5) of the sccular cquation (12) will bo

p=405i ie, w=14/05.

The typical limit cyclo solutions of ky for the above values of tho para-
meters are shown in Figure 1.
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Fig. 1. Limit cycln (stablo poriodic) solutions of the first and socond
order momonts of n, and n, as obtained nnnlyticolly by tho
normal approximation methods.

It should also be noted that the oscillation observed in the present
system is entirely duo to the nonlincarity present, and if A, = 0, i.c., when
the system turns into a linear one, there will bo no oscillation, sinco all the
roots of the sccular equation (12) will bo real and negative so that the system
will be ergodic as shown in the Appendix and Wwill asymptotieally approach
a stablo cquilibrium.

nl-8
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3. NUMERICAL ANALYSIS
Monte Carlo methods were used to check tho usefulness and validity of
tho normal approximation. The constants chosen for the given stochastic
model were the same as assumed in the examplo of the analytical approximate
solutions in Secction 2, satisfying the condition (14) for stable limit cycle
solution (for the approximated casc).
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An artificial realization was started with n; = 1 and n, = 0 and developed
by the standard ‘Monte Carlo’ techniquo (cf., for examplo, Bartlett (1955,
1957), and Leslie (1958)) and continued for 3,000 instants, each timo interval
being 0-01. Tho scrics so obtained using a simplotter is graphed in Figs. 2-6.
At first, each graph shows somo decaying and chaotic oscillations due to the
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presence of negativoe eigenvalues of tho characteristic equation (12), ag well
as somo initial ‘noises’ : Jater on they show nearly stablo oscillations, mimick.
ing the limit eyclo solutions of tho approximated analytical case.

Vor[rate]

Yor [n]

00 400 200 100 MO0 1000 NOO 100 00 NMCO &£CI 4400 400

¢ —
Fig. ¢
Tho results obtained abovo indicate that the method of normal approxi-
mation should play a key role in the study of complex nonlinear biological
situations which scem to defy a completo stochastic treatment analytically.

4. DISCUSSION AND CONCLUSION

The utility of stochastic models for tho investigations of biological pro-
cesses has been established by various workers [Singer (1953), Bharucha-Reid
(1953), Bartholomay (1962a, b), Kendall (1049) and meny others]. Biological
processes consist of discrete events at the molccular levels and are subject to
tho laws of chanco both individually and collectively at every moment.

In the present work the nonlincarity problem associated with the bio-
logical process under investigation has been tackled efficiently by the stochastic
approximation method. Emphasis has been given on the time-dependent
propertics of tho stachastic model. Tho approximato solutions of the moments
of n, (eetivated genomes) and of 2, (RNA molecules) envisage a stable periodic
solution for tho system, which is biologically significant.

It has been assumed that the distribution of tho variables n; and », ar¢
approximately normal, sinco in tho absenco of tho product terms in the
transition probability table, ono of tho variables, ny, is normally distributed
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as shown in the Appondix and the other variuble, ny, is directly o function
of ny when A, the degradation rate, is too low. The validity of this normal
approximation may still Lo questioned and a convincing answer to this is
not possible becauso tho cffect of the product terms in the master equation (1)
on the distribution of ny and n, cannot be ascertained analytically. How-
ever, sinco the condition of stable oscillation (14) depends upon the product
A Ay and not on A, alone, for large Ay and sufliciently small A, so that 2,24
satisfics (14) and at tho same time, tho effeet of the product terms in (1) be-
comes sufficiently small, tho assumption of normal approximation may Le
perfectly valid,  Also, the computer simulation presented here establishes
the validity of the normal approximation.

A rigorous justification of the results in this article can only come from
a proper sceling of timo and stato spnce or, more preeisely, scaling the para-
meter n,, a3 & function of time and letting time go to infinity. Although a
precise analysis is very complex, the article provides adequate justification
to indicate that if n,, is large and so i3 ¢, tho first two moments of ny(t), n,(t)
show a stablo periodic oscillation if A; is near a critieal value. Yor lower
values of Ay these moments .convergo to steady state values, while for higher
values of A; the moments grow exhibiting oscillations along tho way. This
paper also provides a calculation of tho critical value.

The stochastic model constructed here does not claim to depict tho
perfect biological picture of the transcription process, sinco this is a most
simplificd bivariate expression of a complicated multivariate process. This
work only gives a proccduro and methodology for utilization of stochastic
treatment for studying a real biological process.
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Appendix

To solve equation (7) we require some knowledge of the approximate
distribution of ny and n,.

Distribution of ny(t) (when A, =0): In the absence of the product
terms in the master equation (1) the marginal distribution of 7, is obtained

from the following lincar differential equation (taking p(n,, 8)= T p(ny, n,,1)):
ng=0

LU (=gt 1= 1, D4 A7 (1t D plg 1,1
—[Af ry(n25—ng) - AT na]p(0y, £). . (AD)
Lot P(x,t) = flo P(ny, )2"8 be the probability generating function.
ny=0

Then

opP
o

with initial condition P(z, 0) =

= E— DAy P—[Af 2t — (A my—AD)e—Ap ]% . (A2)

Tho subsidiary equations are

de dpP dx

T 7 DXl Nrg—(Nn—Ane—ay " (43)
The first and second expressions in (A.3) gives
di dx
g . o (A
1~ XnGe—a @
whero Vo = AT gna Yy—¢ = Ay
Afny Atn,
ie., V4 /\'1_ and ¢=1
Hence, integrating (A.4) gives
At = 1 +
= iy Ve g
or ﬂ e~ AP _ congtant
Ty
or, putting the values of ¢ and 3
/\‘*n,(x—l) Pty afnt _ constant. .. (A3)

/\+nlz+/\-
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From the sccond and third expression in (A.3) we have

ar_  (x=))e
Ayl A YN (e —9)
. P de _
ie. ol & (since ¢ = 1). oo (AL6)

Integrating (A.6) gives
P(z4Y¥) ™" = constant
. A3 ~"20 _
ie. r (x+m) = constant, v (AT
Hence the general solution is

AT -'”_ Abnm(e—1) ~tamsatay
Pl el T e

Using tho initial conditions P(z, 0) = 2% gives

AT YR [ Almy(z=))
s (z+/\r"1) =t { Arh } e (A)
We now put
Mny—1) _ — A WAAn,
m =W, ie, z= W“, e (A10)
and substitute in (A.9) to give the explicit functional form
(W) = (’\l_+/\|+”1)_'”(al-"y"'AT"l)a_ o (AD)
A (1—TF
Using this in (A.8) finally yiolds after romo computation
= O At 20 _AMTHAT AT (2—1)g
P(x, t) = (A; +Afny) XrnyeFAr — A n(e—1)7 . (A12)
where ¢ = e“l_“r"l)'.

Now wo can writo (A.12) ns

Pla, 1) = A7+ A¢nyy "0 _ {HAT9+ A m)+A7(1—g))e
(fn2(l—q) 4 AT+ 2 g)* ™

=(AT+A?1'1)""1L"'+:_‘)"(x+u)'(-r+v)"'°“ e (A13)

Aty (l~g)
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AT A g

.) = . T Atat—q)
where n ATq T AR A (t—q)

For convenicnce we choose a = 0.
Henco (A.13) can be written as
"D g oy n,0=Rs 0.
X Y0 Ay (120 3 2 20~"3,"3, o
(AT H-AFny) 7oAty (1—1)} "f'_o( - ) v -z (AL
Then

nu) AT 4Afng 207"

Pers.) = Q7 +a1n) o=y () { S

which after somo computation can be written in the suitable form

I Atm(1=g) \" [ AT+ A{ngq "
Pln )= ( o ) { e } { S } e (ASS

This is a binomial distribution with mean

.
Bny(t)) = Netim(l—g) o (AL
[n(0) = et (A.16p)
and variance
— . A= g)AT+Atng) ;
Var E[ny()] = n,y 212 CrtAngE e (AT))
At tlsw, q= e"“l-“r"')’ — 0.
Hence,
p _ Afmn, A8
E[ny(o0)] = It e (AN9)

which absolutely agrees with tho ateady stato value of E[ny()] obtained from
equation (3) in the nbsenco of the nonlinear terms.
Also we havo
AT,
Var[ny(eo)] = g i ATy - o (A19)
[l = o Xy
Since tho distribution of n; when there is no nonliear effect (A, = 0h
is, a3 evident from (A\.15), o binomial distribution, for sufficiently large 1w
this tends to a normal distribution.
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Ergodicity of the process when Ay = 0. Tho limiting distributions of ny(t)
and n,(t) in the absence of the produet terms in the master equation (1) are
gisen by ¢

A Aty "3 AT "m—":_
pd= O )55) )™ e -

by AR Ao\ ™, A Agiingey ™
d )= AL Aamunge) ) AT Agiyrae) ¢ . (A2
ang f,.(,','i,.) (n‘)( Abr ) ( Abr ) 2(ny) (A.21)

both of which are independent of the initial states. Hence the process 1s
ergodic when A, = 0, i.c., lincar.
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