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ON THE ROBUSTNESS OF THE LRT WITH RESPECT 1
SPECIFICATION ERRORS IN A LINEAR MODEL
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SUMMARY. We consider the linear model (Y, X, o)) and a st of eetimablo pang,
trio funotionals AB. In this paper, wo cousider altornativo linear modols which diffor frg
(¥, X@, o*l) in tho disporsion of the obeorvationa or oxpoctation or both nnd obtain
and sufflolont conditlons for tho F-tost under (¥, X@, 0%l for tosting Ho: AR = 0 to bo iy
under the altoroative modsl also.

1, INTRODUOTION

The triplot (¥, X, o*¥) will denote a linear model with E(¥) = Xp
and D(¥) = oW, whero Y is an nx1 random vector, X is an nxXm know
matrix (the design matrix), B is an mx1 vector of unknown parameten,
V is an nxn positive definite matrix and ¢? > 0 is an unknown paramoter
We assume that ¥ has & multivariate normal distribution. Let AB bes
sob of cstimable parametric functionals. If L, and L respectively dencte
the likelihood ratio test statistics for testing H,: A® = 0 under (¥, X, ¢l
ond (¥, XPB, o*¥), thon tho F-tests are givon by the oritical regions L, > F
and L > F respectively, where F is a constant. Ghosh and Sinha (1950}
took ¥ to be the intraclass covariance matrix and obtained necessory and
sufficient conditions for L = L,. Later, Khatri {(1981) developed a genenl
solution to this problem, applicable to any form of ¥, positive definite.
Sinha and Mukhopadhyay (1980) considered another specified covariance
struoturo and obtained necessary and sufficient conditions for the equality of L
and L, All thoso authors have furnished necessary and sufficient conditions
under which the LRT atatistics retains the same form under various structural
forms of ¥, p.d. However, it is easy to observe that even if L and I, are
difforent, but it is known that L—L, 3 0 (or < 0) with probability 1, then the
rejeotion (or accoptance) of H, under (¥, X8, o*f) will imply its rejection
(respeotively acceptance) under (¥, XB, 03V) also. Assuming that the Best
Linear Unbiascd Estimator (BLUE) of A under (¥, X8, o*J) is also its BLUE
under (¥, X8, o°¥), we obtain in Seotion 2 nocessary and sufficient condi:
tions under whioch L—ZLg > 0 or L—L, § 0. For L = Ly, the result derived

Key words and phrases : Llnonr model, lﬁnhhood ndo tost luﬁ'hc, P-toat, best. Im'u

unbiased estimator.
AMS subjeot classification No: 62 JOB, 62 FOS.




SPEQSFIVATION EERORS IN A LINRAR MODEL 218
by Khatri (1981} follows as a corollary. As an example, we consider the

linesr model (¥, XB, o), with ¥ = (1—p)I+p1,1;, whore p ¢ (—1&, 1 )

and 1, i8 the n X 1 column veotor with each element equal to unity and provide
» vory simple proof to a result of Ghosh and Sinhs (1980). Assuming that
the column space of X contains 1,. for testing H, : AB = 0, we arrive ab the
following interesting conclusions, when L s£ L,

() L—Ly> 0 if and onlyif p <0,
(ii) L—Ly <0 ifand onlyif p> 0.

In Section 3, we consider the linear models (¥, X,8, ol) and (Y, XB, o1}
and in Bection 4, we consider (¥, X\8, o™f) and (¥, XB, o'¥). In both
cases, we obtain necessary and sufficient conditions under which the LRT
stutistic widar the alternative model for testing H, : AB = 0@ is the sume as
the LRT statistio for testing H, under (¥, X8, o*I). Here AP is estimable
under both the models.

For » matrix B, _#(B) and R(B) denotes the column spuce snd rank of
B respectively. B~ denotes ony matrix satisfying BB-B = B. For any
pd. matrix N, Py denotes B(B'NB)-B'N and Py stands for Pp

2, - SPECIFICATION MRRORS IN THE DISPEESION MATRIX

Let R(X) = r < m snd R(A) = k. Under the hypothesis H,: A8 =0,
tho model onn be rewritten as (¥, X,By, o'V), where X, = X(F—A4-4) is
1 axm matrix of rank r—k and B, is an unknown mx1 veotor, After
simplifications, the LRT statistios for testing H, under (¥, XB, ¢*I) and
(¥, XB, oV) oen be written respsotively as,

Y(I-P )Y
Ly = <=
b 1 & ) 4
snd
YV-HI-P, )Y
L=yvu—rp, ¥

Lot Z be & matrix of order nxn—r and Z, — (Z: Z,) be & matrix of
order nX(n—r+k) eatisfying 2Z'X.— 0, Z,X, =0, ZZ=1I4, and
2,Z, = Iy ¢,x. With thoso notations, wo state

42-12
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Lemma 2.1: A (&)= H(X'Z)=HXZ)

The lemma can be easily established by showing that A and zZX hany
the same null spaces.

It is known that the BLUE of AP under (¥, XB, o*I) is its BLUE ungy
(Y, XB, o*P) if and only if
V = 1+ XA X'+ ZAZ +XNZ +EA X',

where A, A, and A, are arbitrary except that AAZ' = 0 and V is p.d. (Rs
and Mitra, 1971 page 159) ¥ oan be equivalently represented as

V = I+ XA X' 420,72 + X AZ' +ZA X, . 2]

where A, A, and A, ure arbitrary subject to the condition that V is pd
It oan be verified that if a p.d. {or a n.n.d.) matrix ¥V admits the representation
(2.1), then the matrices XA, X’ and A; are symmetric and unique.

The following lemmn gives further necessary and sufficient conditioss
for the rapresontation (2.1) to hold.

Lemma 2.2 : The BLUE of A under (¥, X8, o*l) is its BLUE undv

(Y, XB, 0*V), or equivalently, the representation (2.)) holds, if and only i
yone of the following equivalen! condition holds :
(i) ZVZ, =0,

(i) PxV"(I—Px’ y=1) 18 symmelric,
(iii) (I—Px.' y_,)(I—Px’ vs) 18 symmetric,

(iv) There exists anorthogonal mairiz T suchthat T'(I—Pg)T, T —Pg)T.
T'V-I—Py, y)T and T'V-NI~Pyg_ )T ars diagonal marics

Proof : (i) A(X'X)-X"Y is the BLUE of AP under (¥, Xp, ¢*V) il
and only if

AX'X)-XVZ =0
&> 2 X(X' XY X'VZ = 0, using Lemma 2.1
=) Z,VZ <0, since 4(Z,) C H(X)
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(i) Py VYI—Py p.) is symmetric if and only if

ZZZ(ZYL,)Z; = BTV I\ 2,27
& ZVIZZ, = ZZLVE,

ZVZ o Zvz  zZvE,
[ , =

VAZAN 0 0
= 2'V2, =0,

This proves the oquivalence of (i) and (ii).

(iii) (I—th V-l)(I_Px, y=) I8 symmetric if and only if

Z(ZVE) B2\ BVEIZ = BZVIF T2 Z, VI T,
& L(TVE) T = L ZVEY
e 2,7 = LVEZVZ

I zvz
Ll = ( z'vz
0 vz
& ZVZ, =0,
The equivalence of (i) and (iii) is thus established.

The equivalent conditions (ii) and (iii) imply that the matrices 1-Py,
"Px,’ V'l(I—Px' ya) and V"’(I—Px“ ya) commute pairwise, which is
nocessary and sufficient for the existenco of an orthogonal natrix, whioh
liagonalises thew sinult ly (seo Rao aud Mitra, 1971, p. 124), The
I'roof of Lomma 2.2 is now complete,

Corollary 2.1: The BLUE of every estimable paramelric functional under
(¥, X8, o%1) ia its BLUE under (Y, XB, o*V) if and only if anyone of the
Jollowing equivalent conditions holds -

(i) X'PZ = 0 (Rao, 1067) ;

(ii) VPx is saymmelric ;
(iii) PX. y- 18 symumelric.

Lommna 2.2(3) ennbles us to prove the following interesting rosult.
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Lemma 2.3 : If the LRT statislics for testing Hy: AP = 0 are (he o
under (¥, Xp, o) and (¥, XB, o'V), then the BLUE of Ap undy
(¥, XB, o*I) is its BLUE under (¥, X8, a*V) also.

Proof :

Y’V"(!-—me V—‘)Y_ YI(I_Px,)Y

YVI-P, W ~PI-P)Y

&= Y'Z(ZVZ,) "2 XYY'ZZ'Y
=Y'ZZVI'ZYY'ZZY ¥ Y.
Putting ¥ = VZ8, we get
OZ'VZZVZO —=CZ'VZ,ZVZ0 - 8
S ZVZ, =0.
Lemma 2.3 stands proved, in view of Lemma 2.2(i).
Remark 2.1 : The interesting observation made in Lemma 2.3 is implicit

in the main vesult derived by Khatri (1980), oven though this fact is not
stated in his paper.

Now consider the linear models (¥, X, o*I) and (¥, XB, o'F), where
V had the representation (2.1), or equivalently ¥ satisfies the conditions it
Lemma 2.2. Let T be the orthogonal motrix which reduces I—Py, I —Px'.

V-HI—Py p.,) snd V-YI—Py  .,) simultaneculy to diagonal forms. Th

columns of T' are the common eigonvectors of these four matrices. It can
bo verified that cach column of T belongs to JA(Z), A Zy) or X I
necessary, rearrange the columns of T' such that first a—r columns belond
o A\ Z), the noxt k columna belong to 4(Z,) and thelast r—k columns belong
to X)) Let Ay ond Ay (§=1,2,...,n—r) denote the non-zero eig?d
values of V-‘(I—Px' y-) wnd VY I—, X, P) respectively qorrespondind

to snme eigenveotor belonging to H(Z) and let A (i = n—r-+1, ..., n—r+ll
denote the nonzero sigenvaluea of V-YI-Py ) corresponding to0 e

eigenveotors bolonging to .#(Z;). Note that tho number of nont”
eigonvalues of W-XI—Py o) ond V-(I—Py ) ore reapeotivell
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a—r 80d n—r+k, their ranks. Let TY = ¢ = (1,4, ..., t,).  Then
we have

Ll ]

t’T’(I—Px.)Tl ‘E 4

Ly = gmmr—pom = e
T Px)Ttl 2"‘;‘31?

Similarly,

Thus wo have proved

Lemmn 2.4 : Lel L, Ly, Agt, Aq and ¢ be as defined above., Then

u-gk uz—:r 2 A
: —Ag
I—p = ——— ol

A=r n=T

Ex IE:I Adi}
Using Lemma 2.4, it 0an be easily established that
L—L,»0 with probability 1 if and only if
AP M fori=1,2, .., 0—r
and At 2 Ay for § = n—r+1, ..., 5—rtk
i=12,..,n—r

Since W is assumed to havo the representation (2.1) the condition (i)
in Lemma. 2.2 holds and hence

Z(ZYVZ,) 2,27 = LZVEYZ
V- (I-Py y ) I—PR) =VHI-Py p.)
&y A=A for i=1,2, .. ,n—r
Using this observation and Lemma 2.4, we have
Lemma 2.6: L—L, » 0 if ond only if
Ag P Aoy i =n—r+l, . n—-r+k

i= 152, ..., n—r.
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Next, we shall derivé conditions on V such that the eigenvalues 5,
(§=1,2, .., n—r+k) satisfy the condition stated in Lemma 2.5. Using
the ropxesenmtlon (2.1) for ¥ and recslling that 2Z,=(2Z : Z,) satigfis
2,2, =1, we get

I+a, 0
¥, = ( 0 I+ZXAX'Z, )
Henoe,
I+4A,) 0 r
Z(ZVZ) 2y = Z : &) ( o P ) ( z,)
= ZU+A)Z'+ Z,(I + 2\ XA, X' Z,) 2. . (23

For i =1,2,...,n—r, Ay are the eigenvalues of Zy(ZW2Z,)-1Z, comes-
ponding to eigenveotors belonging to J#(Z) snd for ¢ = n—r+41, .., a—r+k
Ay are the eigenvalues corresponding to eigenveotors belonging to .#(Z,).
Tsing this, and the faot that Z and Z, ure chosen to satisfy Z'Z = I,_,and
2,2, = I, it follows from (2.2) that Ay (8§ =1, 2, ..., n—r) are the eigen-
values of (F+A,)-! and Ay (§ = n—r+-1,...,n—f+k) are the eigenvalues
of (I4+Z; XA X'Z,)*. Hence it follows that Ay » Ags for § = n—r+1,...
n—r+kondj=1,2,.., n—r if and only if the minimum eigenvalue of 4;
is greater than or oquel to the maximum eigenvalue of Z;XA,X'Z,. Thu
we have proved

Theorem 2.1: Let Ly and L respectively denote the LRT statistica for les-
tng Hy: AR = 0 under (¥, X@, o*l) and (Y, XB, o%V), where V has the repre:
sentation (2.1) and HA') C AH(X'). Then L-—Lo » 0 (or < 0) with probabi-
lity U if and only if the mins { ) eig l ofA., is greater than of
equal lo {less than or equal lo) the i [¢ ively ) eigenvatue of
Z\ XA X'Z,. Under this condition, the regectto»n {or acceptance) of H, unde
S;' XB, o) will imply its rejection (respectively acceptance) under (¥, XB, Ll

0.

In Theorem 2.1, we have i that ¥V admits the repr ti
(2.1). Howover, if we are interested in oonditions under which L =L,
then this nssumption always holds, in view of Lemma 2.3. Thus we have
alao proved

Theo.mm 2.2: Consider the linear models (¥, XB, o*I) and (¥, XB, ‘7"?,"
where V is pd. Let 4, Xy, Z and Z, be as defined before. Then, for testind
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Hy: AB =0, the LRT under (Y, XB, o'W) is the same as the LET under
v, XB, o*I) if and only if V admits the representation

V = I+ XA X' +(8—1)Z2'+ X,A,Z + ZA; X,;,

where Ay and By are arbilrary and § fe an arbitrary positive real number subject
lo the conditions (1) V is p.d. and (ii) Z,XA,X'Z, = (S—1)I,.

Corollary 2.2 :  The condition on V given in Theorsm 2.2 is equivalent to
anyone of the following equivalent conditions.

(i) U—Px)VI—Py) = o(I—Py ) for some a > 0

i) VHI—Py ) =all—Py) forcomea> 0

I-Py

(iii) (V—al)(I—Py : Pyll) = 0, for some 6 > 0
LPX

where I ig such that LX = A.

The equivalence of the condition (i) or (ii) in the Corollary with the condi-
tion stated in Theorom 2.2 can be easily established and the equivalence of
the condition (iii) in the Corollary with the one stated in Theorem 2.2 can e
proved in o straightforward manner, sppesling to Lemms 2.1. Corollary
2.2(iii) is the result obtwined by Khatri (1880). From Corollary 2.2(ii), we
have

Corollary 2.3: For testing H,: AB =0, if L, and L denote the LRT
slatistics under (¥, XB, o*1) and (¥, XB, 0'V), as defined before, then L,
ard L are the same if and only if the numeralor of L is proportional lo be numera-
for of L.

Remark 2.2 Theorem 2.1 and Theorem 2.2 have been proved without
wsuming that the matrix 4 is of full row rank.

Ezample : Lot » > 1 und let ¥ be the intraclass covariance matrix
. 1
V = (—pMatplady ———=7 <P <L

whora T, is the # 1 column veotor with each element equal to 1. With ¥
dofined like this, we consider tho linear model (¥, XB, oV), where ¥ has
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» multivaviste normal distribution. Suppose we want to test the hypothe,
Hy: Ap =0, where AA'YC AHX'). Lot X, be defined as before, Fo
the intreclass covarisnce matrix ¥, Ghogh and Sinhe (1980) proved
‘Theorem 2.3: The LRT statistic L for testing Hy under (¥, Xg, o
1 . .
v TR ) if and only if 1, ¢ AX,).
It is an ensy matter to deduce Theorem 2.3 from condition (i) in Corollary
2.2, We present here sn extromely simple alternate proof of Theorom 23,
whioh, we feel, is of independent interest.

Proof of Theorem 3.1 : Let Z und Z, Lo us defined in the Degginning of
this section. For p = 0, if Ly donotes the LRT statistic for teating Ky, tha
Y'Z,Z,Y
Y'ZZ'Y

has the same value for all p e (

Ly =

and
L= Y'Z4Z,VZ,)\2}Y
Y'Z(ZVZ)'ZY

= zi1z,
V2| Inpp—~—FC ——— [z
H'T-_p 1.Z2,Z,1,

IL ZL0Z
YZ| I,_.— =P zy

1 FP—
H_E 1,221,
where r = R(X) wud k& = R(4).

1
L=1L,forollpe (—,:l, ) i£ ond only if
YZIANIEY gy

14 lip L.z,21,

R T
- yzf LZZY .y gy - @9
I+, k221,

¥Yandype (— 2 1),
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Sufficienoy of the condition 1, 6 J#(X,) is now obvious. To prove its necessity,
notice that if 1,Z =0, thon from (2.3), we get 1,Z, = 0. This proves the
thoorem. S0 we proceed under the assumption that 2,Z 3 0. For
i=1,2,..,n—r, lot E denote the columns of Z. Then for atleast one 3,
1;zz’g, #0. For this 4, putting ¥ = By in (2.3), we got:
1,2,Z,1, = 1,Z2Z'1,
= z,=0 o (24)
Using (2.4), (2.3) simplifies to
(Y’ZZ’I,)'Y’ZZ;Y =(Y'ZZ'1,)°Y'Z,ZX ¥ Y,
=271, =00 . (2.8)
{2.4) and (2.5) together imply Z;1, =0 and this completes the proof of
Theorem 2.3,

Now, we assume that the design matrix X satisfies the condition
1,6 AX). Then, it is easy to verify that X'V Z =0, and hence,
using o result of Rao (1967), we seo that the BLUE of overy eatimable para-
metrio functionsl under (¥, XB, o*l) is its BLUE under (¥, X8, o°F).
If wo also have the condition 1, ¢ #(X,), then Theorem 2.3 applies. So we
assume that 1, ¢ .#(X,), and we shall oxsmine tho applicability of Theorem
2.1 in this sctup.

Observe that ¥ can be written as
V =I+p(1 1,—X(X'X)X']-pZZ"
Comparing with (2.1) and using the assumption 1,6 #X), we gob
XA X = p(1,1,—-X(X'X)"X")
Ay = —pl, , and XA, =0.

Honco Z; XA, X'Z, = p(Z1,1,Z,—X). Since 1, ¢ 40X,), 21, £0. If g
denotes the positive cigenvalue of Z;1,1,Z,, then thecigenvalues of Z; XA, X'Z,
ore p{g—1) of multiplicity one and —p of multiplicity k—1. The eigenvalues
of &, aro each equal to —p. Now, applying Theorem 2,1, wo got
() L-L,>0 ifondonlyifp<0
(i) L—-Ly<0 ifsndonlyifp>0
(i) L=1, ifsud only if p = 0 (ie., ¥V = I).
A2-13
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Thus, when 1, ¢ JA(X,), we see that if p < 0 (or p > 0) then the Wlectmn
(or acceptance) of H, under (¥, X, ¢’f) implies its rojection (r
acooptance) under (¥, X, o*¥) also.

P ely

3. SPEOIFIOATIOR ERRORS IN THE DESIGN MATRIX

In this seotion we consider two alternative linear models (¥, X,8, o)
and (¥, XB, ¢*J) which differ in the design matrices and nat in the dispersio
of observations and obtain conditions on X such that the LRY statistic unde
(¥, Xp, o*l) for testing & hypothesia Hy: AR = 0 is same as the LR}
atatiatio for testing H, under (¥, X,8, o*I). Here AP is a parametric func
tional estimable under both the models. The LRT statistics for testing A,
under (¥, X,8, o*) and (¥, Xp, o) are respectively given by

Y'I—Pxa-2)¥
T T YA-Px ¥
and
YU-Py ¥
n Y(I-P )Y

L, is defined for ¥ ¢ .#(X,) and L is defined for ¥ ¢ #(X). Hence, for the
equality of L and L, to be mesningful, we should have J#(X)= X}
We now prove

Theorem 3.1:  Consider the linear models (¥, X,8, o) and (Y, XB,0°D.
where M X) = X, ) and a hypothesis H, : AR = 0, where A C AKX
Then, for testing Hy,, the LRT statistic under (Y, X8, o*I) is same as (he LRT
dtatistic under (¥, X,8, o*1) if and only if S X(I—A-4)) = X I—AA)

Proof : Consider L, and L as defined before. Since 4(X) = X))
Py =Py and honce it follows that L = L, if and only if
Pyira-4y=Pxyraa
& HMEXT—A-A) = (X (I—A-4)).

We shall now give a charaoterisation of matrix X satisfying,
HA) G AX) = pX;) and AXT—A-A) = pXI—AB)
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We need

Lemms 8".1 ¢ Lt A'be a given matriz and let E, and E, be such that (he
columns of Ey form an orthonormal basis for Lp(A') and those of E; form an

orthonormal basia for the orthogonal complement of AA'). Then, matrices X
satisfying HA") G AX') are given by

E,
X=(8 8, ( E ) , where S, and S, are arbilrary
£

excepl that 8, is @ malriz of full column rank and H(S,) [} MSy) = {0}.
Proof: We can write

e f S

X' =(E E;)( g ) for some 8, and 8,

(]

MA') C AX') & there oxists s motrix B satisfying
v [ S .
(ExE:)( & ) B=E

=(a)= ()

&= 8, is of full column rank and S;) () AIS,) = (0.
This completes the proof of Lemma 3.1.

Given X, with (A"} C #(X;), we now proceed to characterise matrices
X that satisfly AX) = X)) ond sX(I—AA)) = AX( —A-4)).

Let E, and JE; be as defined in Lemuma 3.1 and write

E, E,
) and X =(8, 8,) ( ).
E, E,

£ = (Sy Su) (

where 8, and 8, aro as defined in Lomma 3.1 and 8,, and S,, satisfy identical
conditions. From the proof of Lomma 3.1, wo see that we have to oborag-
terise §, and S, satisfying S;R =1, S;R =0 for some R and . #8,) = A(Su)
and S, Sy) = M(Sy : Sy). Lot By, Fy, Fybesuch that the columns of
F, form an orthonormal baais for L#(Sy,) and those of (P, : F,) form an ortho-
normal basis for (A8, :'Sy,), ond (F, Fy Fy) ia an orthogonal matrix. Choose
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8, any matrix estisfying A(Sy) = A(Su). Then S;R=0—R~p
+F & for somo K; and K, 8inco we wont JMS) C Sy 8,1y
S, = F,M,+F,M, Thon S;R =I=> MK, =1 Hence 8,isany matrig
of the form 8§, = F,M,+F,M, where M, is any nonsinguler matrix and M, i
arbitrary. It is easy to seo that 8, 50 chosen satisfies AH(S,.8,) = 8,8,

Remark 3.1 : It is not true that equality of the LRT statistics for test;
H,: Ap = 0 under the models (¥, X,@, ¢*I) and (¥, X8, ¢*I) implies 1,
equality of the BLUES of 4B under both the models. However, if the BLUp
of AP under (¥, X8, o*I)is unbiased for A under (¥, XB, o*I), then equality
of the LRT statistios for testing H, implies equality of the BLUES.

4, SPEOIFICATION EBRORS IN TEE DESIGN AND DISPERSION MATRIOES

Consider the linear models (¥, X;8, ¢®I) and (¥, XB, ¢*V), which
differ both in the oxpectation and the dispersion of the observations. Here,
Vis & p.d. matrix. Woe are interested in teating the hypothesis H, : Ap =0,

where AB is estimable under both the models. We prove

Theorem 4.1 : Congider the linear models (¥, X,B. o*I) and (¥, XB,oT),
where SX) = AX,) and V i positive definile and a hypothesis H, : AB =10,
A being a subspace of LA(X,). Then, for testing H,, the LRT slatislics under
(¥, XP, o'V) is same as the LRT statistic under (¥, X,8, o°I) sf and only if

(i) AMXT—A-A)) = HX,(I-A-4))
and

(i) (I —Px“)V(I —Px") =a(l—-P x“) for some a >0
where X, = X(I—A4-A).

Proof: Let Xy, = Xy(I—4-4) and let X,=X(I—A-4). Also It
W,=(W: W) and Z, = (Z: Z,) be matrices satisfying WX, = 0.
WX, =0, ZX,=0, ZX =0, ZZ, = I and W;W, = L Sin®
X)) = AX)), wo take Z = W. Thon tho LRT statistio for testing Jo
under (¥, XB, ¢*V) is same as that under (¥, X,p, of) iff

Y'Z(ZVZ)'ZY YW WY

T T i e —__0 0" 3.0
YWW VW) WY =~ TWWY o B

) . WwWvw W'vz,
Binoo ZVZ, = ( , tho submotrix appenring in the top
ZvwW  Zve,
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loft hend corner of (ZeVZ,)-1 is
(WVYW) (W VW)WV 2,(2,VZ,— Z,VW(W VW)W VZ,]
Z,YW(W VW)

Henco putting ¥ = W0, and observing that ZiW = 0, wo get from (4.1),
W'VZ, =0, Henoe (4.1) simplifies to

Y'Z(Z,VZ,)'Z.Y _ ¥Yw,wy

YWWYw)- WY~ YWwY e (42
Tutting ¥ = W0, + W, in (4.2), wherc W, is such that W W, W)
is an orthogonal matrix, we got

Z,W; = 0, which, together with Z{W = 0 shows that MZ,) C. MW,).
Rimilarly one omn show that J#(W,) C . #(Z,). Thus
AMHW,) = SHZ,)
S WW =22,
= WW AW.W, = 22'+ 2.2,
& HX(1-4-4) = #X(I-4-4)).
Hence (4.1) can be written as
YW W, VW )WY YW, YW WY
YWWVW)"WY = YWWY
which is equivalent to the condition (ii) given in the theorem, in view of
Theorem 2.2 and Corollary 2.2. This completes the proof of the theorem.

Remark 4.1 : Equivalent conditions on ¥ can be derived as in the case
of Theorem 2.2 and Corollary 2.2.

Remark 4.2: The observation made in remark 8.1 is valid here also.
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