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ON ZERO CELLS IN LOG-LINEAR MODELS

By RAHUL MUKERJEE
Indian Statistical Institute

SUMAMARY. This paper id the lyais of gorical data under the log-linoar
modal whon thoro are some obsorved zoro cell froquonciea. A linear programming fornwulation
is dovolopod for identifying the colls for which the i likalihood i (MLEs) exist

finjtely and also tho oslls for which only ‘extonded’ MLEs exist.

1. INTRODUOTION AND PRELDUNARIES

The analysis of frequency data under log-lincar models has attracted
considerable attention in recent yecars (for comprchensive lists of references
upto various stages, sce Haberman (1974, 1978, 1979) and Bishop, Fienberg
and Holland (1975)). In maximum likelihood estimation of the relevant
parameters under such models, sometimes problems arise because of observed
zero frequencies in some cclls. This paper attempts to provide linear pro-
gramming formulations for handling somo of theso problems.

To formalize the ideas, attention will bo restricted to the Poisson model,
but it is well known (vide Birch (1963), Haberman (1974, Ch. 2)) that the
rosults so obtained will cover somo other models (e.g. multinomial) as well.
Following Harberman (1974, pp. 6-7), in the Poisson modcl ono considers
tho random vector # = (n,, ..., ng)’, where n,, ..., n, aro independent Poisson
variates  with E(@r)=m (>0), t=1,...,,¢. Writing g = logmy,
= (&g, ..., Hg)'» it will bo assumed that g € A, whero fis 8 p (0 <p € q)
diinensional linear manifold containcd in 72¢ the g¢-dimonsional Xuclidean
space. In such & sct-up, if 24 > O for each 3, then tho maximum likelihood
estimate (MLE) jt of p exists finitely (Haberman, 1974, pp. 38), whileif ny =0
for somo values of § then the MLE may not exist finitely. In fact, in this
connexion, the following result holds (Haberman, 1974, pp. 38).

Theorem 1.: A necessary and sufficient condition that the MLE f exist
finilely is that there does not exist p € ¢ such that p 5% 0, p < 0 and n'p = 0.

If the above condition does not hold Haberman (1974, 402—404)
suggests extended MLE for p as follows. Lot I={1,2, .., g},
C={pes:pn+#0, £ <0, w'g =0} When C is non-empty, defino for
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reC, Ju)={iel:pg<0). Letl1®= ) J(pu) I, = I—I1*. Then Habe.
eC

man shows that finite MLE exists for e i:'l:' € I,, while if iel® the (extcndcd)
MLE of y4 turns out to be —co.

While the above results are thcoretically elegant, in practical applica.
tions, specially when tho number of classes is large, actual verification of the
condition of Theorem 1.1 or identification of the sets I, and I* may b
troublesome. The present work is concerned mainly with tho development
of an algorithm for identifying 7, and I°. It may be noted that the problen
of an algorithmic formulation of Theorem 1.1 is fairly straightforward (i
fact this might be alrcady known, although the author is not aware of any
references), but, for the sako of completeness, that has also been presented
23 a passing remark.

2. THE ALGORITHM

Adopting a matrix theoretic approach, let A = (a,, @,, ..., @) boa
pXq matrix whose rows form o basis of . Let I, ={iel:n<0),
I, = I—1I,. Cloarly, if I, be empty then finite MLE of g oxists. Suppos
I, is nonempty. Let A,(A4,) bo & submatrix of A consisting of the columns
ay for i ¢ I,(I,). Without loss of generality, suppose

4= (4, 4,). o (2)
Denote by As (g—p) % q matrix whose rows form a basis of the orthocomple
ment of 4 in 727 and supposo the partitioned form of A, corresponding to

(2.1), is A = (A, A;). Then the following can easily be recognized as an
equivalent version of Theorem 1.1,
Theorem 2.1 : A necessary and sufficient condition that the MLE fi enid
finitely is that there does not exist h such that h # 0, h > 0 and Ah =0.
The condition stated in Theorem 2.1 may be verified in a routino maonet
through lincar programming.
Turning to the problem of identification of I, and I°, the following
algorithmic steps arc suggested.
Algorithmic sleps :
I« 1,
k1
A Ap «submatrix of A consisting of a; for i ¢ I,,. If rank (Ap)=?
(which happens, in particular, when Iy; = I) go to D; otherwiso go to B.
B Iy «—I—1Iy
Ay submatrix of A consisting of a; for §¢ Iy
Ly «a matrix whose columns form a basis of tho orthoeompll‘m“"'
of column spaco (A;;) in the p-dimensional Euclidian space.
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Apply lincar programming technique to maximize 1'E [where
E=(.nE&..) €Iy and 1 is a vector with all clements unity]
subject to LiA,% =0, §> 0.

Iy ¢ {i (€ Io4) : §1 > O in the optimal solution}. If Iy, is ompty go to
E; otherwise go to C.

C I kyy <1 Ul
k«k+1
Go to A

D Conclude that the MLE j exists finitely.
Goto F.

)23 Conclude that the MLE £ docs not exist finitely, ‘but extended MLE
may obtained with Iy = Iy I® = Iy

F End.

Since I is finite, tho algorithm clearly terminates after a finite number
of steps. The following example illustrates the algorithm. The proofs are
given in the next section.

Ezample : Consider & tri-attribute situation with attributes F, Fy, Fy
each at two forms 1,2. Tho 23 = 8 form combinations (f,, 1y, 1) (i; = 1, 2;
j=1,2,3) will be lexicographically ordered. Then I ={(1,1,1), (1,1, 2),
0,21, (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2). Under the log-lincar
model suppose that interactions FyFy and F,F,F, are absent. This means

Vp =0, where
(1, YxQ, =1xQ, =1)
Viexs) —
[(l, =1x(1, =1nx(, —l)]

and x denotes Kronecker product. Thus u € #, the orthocomplement of
row space (V) in 72%, p = 6, and one may tako

1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1

1 1 —1 -1 1 1 —1 -1
A= ,

1 —1 1 -1 1 -1 1 =1

1 1 —1 —1 -1 -1 1 1

1 -1 1 —1 -1 1 -1 1

tho rows of A forming a basis of 4.
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Let observed zero frequencies occur in the cclls (1, 1, 1), (1, 2, 1), (2,2,1),
Then I, = {(1,1,1), (1,2, 1), (2,2, 1)}, I, =I—1I, I, =1, and Ay, is th
6% 5 submatrix of A given by its 2nd, 4th, Sth, 6th and 8th columns. Sine
rank (A,,) = 5 (< p) ono goes to step B of the algorithm to define Iy = I-I,
and A, as tho 6x3 submatrix of 4 given by its 1st, 3rd and 7th column,,
One may take L, =(1 1 0 1 0 1)’ and consider the maximization of 1%
subject to LiA,E=0, E >0, whero E = (&, &, Esa)-  Sinee
LiA, = (4, 4, 0), this maximization problem has an unbounded optimal sol.
tion in which &y, =& =0 and &, > 0. Hence I =({(2, 2 1)
I, =1,,J I and A, is the 6X 6 submatrix of A formed by its 2nd, 4th,
5th-8th columns. Since rank (A;,}) = 5 (< p), one again goes to step B,
defines I, = I—1I;, and takes A,, as the 6X2 submatrix of .1 given by its
1st and 3rd columns. Since L, may be taken as L, = (1 10101) and
LA, = (4, 4), the problem of maximization of I'E subject to L,A.§=0,
E > 0 (with § = (B, Ein)) yields &y =&y, = 0. Hence Iy is emply
and one may draw the consluion of step E with I+ = {(1,1,1), (1,21}
Iy = I-I°

In the above the algorithm terminates at the second stage. As another
illustration, in the same tri-attribute situation suppose only interaction
F,F,F, is absent. Now if zero cell frequencies oceur in the cells (1, 1,1}
and (2, 2, 2) then it may be scen that the algorithm stops at the first stage
yielding I°® = {(1, 1, 1), (2, 2, 2)}, T, = I—1I°.

Although in tho above example, the algorithm performs quite satis
factorily, some problems may arisc in dealing with large, sparse multi-way
contingency tables. TFor example, storage of data may pose a problem.
Also, the number of steps may become prohibitively large. It appears that
further work should be done to settle these problems. Anyway, at least with
tables of moderate size, it is expected that the present algorithm will be
helpful.

3. Proors
Temma 3.1: For each k, there exists yi (> 0) such that Ay = An.
Proof : Let n™ = (...,m4,...)'s iel,. Then nt >0 and trivially
Aynt = An, ie. the result holds for £ = 1 with y, = nt. To apply the
method of induction, suppose the result holds for & = m. Then there exists
ym (> 0) satisfying
Ay Y = An. .. 3D
Denote by Aym the submatrix of A,,, consisting of the columns a; for ey
Also if Em = (..., Em, --.), £ € In bo the optimal solution of the linear pv
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gramning problem at the m-th stago, write €, = (...,&m,...), i€ Jgm.
Clenrly, dymEm = AymEn and E5 > 0. Now,

L;.AamE.'. = L;v'lzmgm =0.
Since the columns of Ly form a basis of tho orthocomplement of column spaco
(Apn) it follows that there exists g, such that
Akl = Aimgm. . (32)
As Lt agm =0, for sulliciently small positive ey, Yyn—a,m > 0. By (3.1),
a—d 0+

3.2),

Alm(.‘lm—angm)‘i'fl:m(aot:u) = Alm!lm = An
i.e. AymaYmyy = An,
Ym—Gm

whero Apmyy = (Ayn Agm) and ymyy = ( g
0m

) (> 0).

Thus the lemma follows induction. Q.E.D.
Theorem 3.1: The step D in the algorithm leads to a correct decision.
Proof : Step D is reached if rank(A,;) = p for somo k, say for k = m.
Clearly, by Lemma 3.1, there exists yp, (> 0) such that Aypym = An. Now,
ag rank(A;n,) = p = rank(.A1), defining as usuval A,, as a submatrix of 4
consisting of the columns ay for i € I—1I,,,, there exists a matrix Z such that
Aom = AmZ. Let 1=(1,1,.., 1Y, with as many components as tho number
of columns of Aym. Since Lt aZl = 0, for sufficiently small positive ag,
asb Ot
ym—aZ1 > 0. Then
Aym(Ym—oZ1)+ Aym(2l) = Ay —toZ1)+ A Z(ay1) = An,
ie. Ay = An, whero y = (y”‘;—;‘!"Zl) > 0, and the result follows by
0

Theorem 2.2 of Ilaberman (1974). Q.E.D.

Theorem 3.2: The step E in the alyorithm leads lo a correct decision.

Proof : The proof employs the following lemma from Gale (1960, p. 49) :

Lemma 3.2: Given any matrix T either there exists £ > 0 (L 3 0) such
that T°t & O or there exists g > 0 such that Tg > 0.

Now observe that step E is reached provided for some k, I,¢ is nonempty
but I, is empty. Let this happen for X = m. Denoto by A, a matrix
whose columng form an orthonormal basis of column apaco (/1,;n) and suppose,
without loss of generality, the columns of L,, are orthonormal. Then the
matrix (M, L,,) iy orthogonal and there exist matrices B, BB, such that

Aym = MpB+ LB, o (3.3)
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Since Iym is cmpty, L.A;mE=0, £ > 0 imply E = 0. Also by (3.3),
L, A,, = B,. Thercfore, an application of Lomma 3.2 shows that there
exists 20 such that

Bao > 0.
With A = (A;m Aym), let pg = —A’Lpto. Clearly poe 4t. By (3.3),

a4, 1]
Ho= — (A;,.) Ly = (—B;w ). w (35)
i.c. by (3.4), g, < 0, #, # 0. From the above it is also elear that n'uy =
sinco tho positivo elements of » correspond to zero elements of ;. Thus a,
belongs to the set C defined in Seetion 1. Therefore, C is nonempty and by
Theorem 1.1, non-existence of (finite) MLE g follows. Obviously, by (3.4),
(3.5), J(uo) = Iym, which yields L, I°.
. N , 4,
Again, for any g € C, ono can write g = A'® = (A ‘p) for some &,
e

with A}, ® <0 as p < 0. If yu(> 0) beas in Lemma 3.1, the condition
n'p = 0now yields y,A; & =0, whence clearly A;,& = 0. This shows
that for no peC, J(p) contains any element of I,,;. Consequently,
Iim C Io, which together with the fact I,m (C I°, proves that Iy =1,
Iym = 1°. Q.E.D.
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