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TWO CHARACTERIZATIONS OF DOUBLY
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SUMMARY. Two ohameterizations of doubly supyratochastic matrices aro given in this
papr. These have originated from some upon problema cited in Marahsll and Olkin {1079y,

1. IxTRODUCTION

Marshall and Olkin (1979) called a ¢x! matrix P doubly superstochastic
(ds.s.) if there exists a doubly stochastic matrix (d.s.) D such that P > D,
where > signifies elementwise inequality. They stated two necessary condi-
tions (to be mentioned as C2 and €3) in Proposition 2.D.3 (page 31) for &
matrix P to be d.s.s., and posed the open question whether any of these
conditions is sufficient for a matrix P to be d.s.s. A more interesting un-
settled question stated in Marshall and Olkin (page 31) is whether yP <= y
for all y ¢ B% implies that P is d.s.5. Let us recall that x ¢ /! is said to be
weakly supermajorized by y e B¢ (written as 2 <= y) if

13 &
'El ) 2 ’zl Y k=1,...,¢ .. (LD

where 2, € ... €y and ¥, € ... € yu, are ordered sets of components
of x and y, respectively. Hore R% denotes the non-negative orthant of the
I-dimensional real space Rt

In this paper we have resolved both the problems stated above. We
havo introduced a condition (C1) which is shown to be equivalent to either
C2or €3, and proved that a non-negative matrix P (> 0) is (.s.5. iff it satisfies
Cl. Moreover, we have shown that yP —~o y for all ye R iff P is dss.
Thus these results give two characterizations of d.s.s. matrices.

AMS (1080) aubject claasification : 16A08.

Rey sworde and phrases : Doubly suporstoohsstio matrix, o rieatl e
"ajortznd, 3.transform.
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2, PRBLIMINARIES
(i) For a matrix A = [ay] wo define

(4) = =Ty . (20)
and (A)y = :f- ? max{ay, 0) . (22

(ii) Consider a 2x2 submatrix

dy dy;
. (23)
[!I.; dd:]

of a ¢x¢ d.s. D = [dy] such that dj; > 0, and dy > 0. By S-transform of D
with respoct to this submatrix we mean another doubly stochastic matrix
which has all the elements the same as those in D except for the elements in
the above submatrix which are transformed to

diy—é dy+-8
e (24)
[d,j-f—& d,;;-—:SJ

where § > 0.

Given a ¢ x¢ matrix P we say that a d-transformation of a d.s. matrix D
is invariant with respect to P if (D—P), remains unchanged when I is re-
placed by its &-transform. For simplicity, we shall use the same notation
for a d.s. matrix or any of its invariant 8-transform.

(iii) Consider the class . of all ¢ Xt d.s. matrices. It is easy to see that

A is compact in R®. Note that for any ¢x¢ matrix P, the function (D—P),
is continuous in the elements of D. Hence there exists a d.s. matrix D
such that
(D—P), = inf (S—P),. o (28)
S8

Such a matrix D will be called a minimizer with respect to P.

(iv) By a permutational transform of a ¢x! matrix P we mesn the
matrix P with some of its rows interchanged andfor some of its columns
interchanged; i.c., P is transformed to m,Pr,, whera =, and m, are permutation
matrices. Note that a permutational transformation of & matwix P keeps
(P) or (P), unchanged.

Suppose D is a minimizer with respect to P. Then x,Dx, is 8 minimizer
with respect to x,Pr,. Note that the double super-stochastic property of a
matrix is invariant under permutational transformation. For simplicity,
we shall use the same notation for a matrix and any of its permut»utionﬂl
transform whenever any condition imposed on that matrix is also satisfied
by any of its permutational transform.
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3. THE BASIO LEMMA AND THE MATNX RESULTS

The following lemma is the key to all the results in this paper. Its proof
«ill be given later.

Busic Lemma :  Let P be a t X! matriz with all non-negative elements such

hat inf (S—P),. > 0. There exists a minimizer De B with respect lo P
Sed

wch thal D and A = D—P, after being subjected to a suitable permutational
wrangformation, can be partitioned as

Dy | Di| Dy —‘ P 4, Ay A4, |p
D=| Dy | Dy, | Dy

Dill | DSS D:lﬂ

I m n ! mn

(3.1
where pl > 0, and

(i) 4,y > 0 and all other elements of A are non-positive,
(i) 4, =0, 4, =0,
(i) each row of Az contains at least one negative element, and each column
of ;5 conlaing at least one negative element,
(iv) D=0, Dg3=0.

Note : If uny of ¢, r, m, n is zero, the corresponding row and/or column
of both D and A will be absent in the above partitions.

Theorem 1: A tX! matrix P 2> 0 is d.s.s. iff it satisfles the following
wndition C1 :

Condition C1: For 1 k, 1« ¢, and any kX! submatrix B of P,
B) > k41—t

Proof :  First note that P is d.s.s. iff any of its permutational transform
Bdss.  Moreover, P satisfies the condition Cl iff any of its permutational
ransform satisfies C1.

If inf (S—P), = 0, we are done. Next we apply our Basic Lmmma to P.
Sel

430
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Suppose inf (S—P), > 0 and P satisfies the condition 01, Partition P g
Ses

in the basic lemma. Then

Py Dy
< = l—(Dy)
Py Dy
=l—7
=l—(—p—a) = I+(p+g)—t
This contradicts the condition C1. Hence P is d.s.s.

Suppose now P is d.s.s. Then there exists a d.s. matrix D such that
P > D. Consider o kx! submatrix P, of P, and without.loss of generality

suppose

P, | P |k D, D, |k

P= , D= .
P, | P, |i—k D, b, |t—k
o I

Then
(Py) 2 (D) = k—(D,)

= k—{U—H—(D,)]
= k4l—t+(Dyg) > k+i—L.
Theorem 2: 4 non-negalive matriz P: t Xt is d.s.s. iff yP —=y for all
ye R
Proof : Suppose P is d.s.s. Then thore exists a d.s. matrix D such
that P > D. Hence for any y ¢ R,
yP > yD.

yP < yD.
Since yD <y we have yP < y.
Suppose yP <= y for elly € RY. We shall show that P satisfies the condi-
tion €1, and hence, by virtue of Theorem 1, P is d.s.5.
Consider & kx! submatrix P; of P. Without any loss of generality,
suppose

Thus

P, P, (&
P=
P, P, |tk

[ ]
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Let & = (Ik, 0) : 1x¢, where 1x is the 1xk vector with all elements equal to
|. Since 8P —* dx, wo have

:
121 Zyy » max(0, I+k—4),

whore &xP = (LtPy 1iP;) = (24, ..., 7).

[
But (Py) = (L)) 3 'El Ziye
Hence (P,) =2 max(0, k+1—t) > k+41—t.

Marshall and Olkin have shown (2.D.4, page 31) that if P > 0 is d.s.8.
then P satisfies the following condition :
Condition C2: For 1 £ k, 1 £ ¢, and ¢x¢ matrix P
(the sum of elements in any & colurans of P)—k
> (the sum of eloments in the interseotion of the & columns
and any ! rows of P)—/I.
It is easily seen that the above condition is equivalent to the condition C1.
In this connection, Marshall and Olkin (1979) have introduced the following
wndition which is also equivalent to the condition C1 :
Condition C3: For & tx! matrix P and for } < k1 ¢
(the sum of elements in any ! rows of P)—{
> (the sum of elementas in the intersection of the I rows and
any & columns)—4&.
4. PROOF OF THE BASIC LEMMA
Let D be o minimizer with respect to P. Then (D—P), > 0. By
sitable permutational transformation of 4 = D—P it is possible to get a
loft-hand upper corner block of this matrix such that
{2) each row of this block has at least one positive element,
(b) each column of this block haa at least one positive element, and
(0} all cloments of the matrix outside this block are non-positive.
We shall show that all elementa of this block are positive, or can be made

lo be pousitive by applying suitable invariant 8-transformations on D. Such
ablock will be called the ‘‘positive blook” A4;;. It is clear that pl > 0.

If the above block has only one row and/or only one column (ie., p =1
andfor I = 1) tho block is trivially the positive block. Otherwise, consider
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an element z of this block which is not positive. Then there exists a 2x2
submatrix of this block which can be expressed, after suitable rearrangements
of its rows and columns, aa follows :

u v
B = [ :I.u>0.w>0. e (4

x w

Next wo use a 8-transformation on D such that the above submatrix B of A

is changed to
u—38 v+48
B, = [ ] e (49
r+d8 w-—8

while all other elements of A are unchanged.
If x < 0, then & > 0 can be suitably chosen so that x48 < 0, and

(By), < (B),- e (43

This contradicts the assumption that D is a minimizer. Thus z > 0.
Similarly » > 0.

If z =0 = v, & can be so chosen that both u—4 and w—4 are positive,

and
(By)y = (B),.

Thus this é-trensformation is invariant, and the resulting d.s. matrix D
is also a minimizer. In this way all non-positive elements of this block can
be changed to positive clements, We shall denote such a block by A,,.

It is possible to partition A and corresponding D, (by suitable permuta-
tional transformations, if necessary) as in the basic lemma, =o that (i), (i) and
(iii) hold. If r = O there is noting else to prove.

Nest we shall show that Dy = 0 when r> 0, n > 0. Suppose there
is an element diy of D lying in the block Dy, which is not zero. Then there
exigt an element aq in Ay, and an element a,; in 4,3 such that both ey and ag
are negative. Note that ax > 0 and ay < 0. Now consider the 2x2

submatrix
3 5
B = .
aqx aqy

1t is possible to find a d-transformation on D such that the above submatrix
of A= D—~P is changed to

ag—8 a8
B, = |: ) .
ap+48 agy—38
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while the other elements of A remein unchanged. It is possible to chooss
§> 080 that ag+8 < 0, ay+3 < 0 and ay—38 > 0. Hence

(By)y < (B),,
which contradicts that D is a minimizer. Hence Dy, = 0.

Suppose r > 0, m > 0, and there exists an element dyj of D lying in the
block Dy, which is not zero. Then thero exists a 2 X 2 submatrix of 4 given by

Gy Gag
P
Gx  Cip
guch that ag < 0 i8 in A,;, a4y = 0 is in A,,, and a4 > 0 is in A;;. There
exists o J-transformation on D such that the above submatrix of A = D—P

is changed to
an—8 ay+8
n- | J

a8 an—o
while the other elements of A remain unchanged, and ag--8 < 0, ayg—38 > 0.
Then
(Bs)y. = (B),. e (4.4)
Such a §-transformation is invariant and it keeps the structure of A, (satisfy-
ing (iii)) unchanged, while changing a, to a positive element. In this way,
all the elements in A,; lying in the j-th column can be changed to positive

clements by suitable invariant é-transformations. Then this entire column
can be annexed to the block

r 4,
4y |,
Ay
thereby extending the positive block A,, by one more column. This process

is continued until the remaining elements of Dy, are zero. This process leads
to the following structure of A :

;“ annexed Ay AuT
columns

A=Ay l_——l Ay | Ag . (48)

y: | Axn An
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Although the new A;, would satisfy (iii), the new Ay, may not be 0. 1If thero
is any row in (new) Ay which contains at least one negative element, then
that entire row of A would be annexed to [Aj A, Ay) We then would
got the following structure of A :

Au All A“
y: Ay Ay
A=) ———— | — {4.6)
annexed rown‘ | () |
Ay Ay Ay

The new A,, would still satisfy (iii). Procceding as before, it can be shown
that the elements of D corresponding to the block (2), as indicated in (4.0),
are all zero. However, the elements of D corresponding to the block (1),
given in (4.6). may not be all zero.

At this stage, we repeat the above entire process until Dy, = 0. This
can be accomplished since the above process reduces the number of colurons
in A, while possibly increasing its number of rows subsequently. But at
some stage, there may not be any columns left in A;, so that no new rows
may be annexed. The final partitions of 4 and D would then satisfy all tho
conditions (i), (ii), (iii) and (iv) in the basic lemma.

Remark 1: Consider the matrix

1 1 1
P= 1 1 1
1 1 -1

although P satisfics condition C!, P is not non-negative.

Remark 2: As pointed out by Dr. Rahul Mukerjeo, our basic lemma
and consequently Theorem 3.1 could easily be generalised to the case when
P and D > 0 are rectangular mXn matrices with specified row sums and
column sums of D. In that ense our condition C1 neceds to bo modified
accordingly, and our proofs would go through except for trivial changes.
Furthormore, the above problom could be seen 28 o problem in transportation
theory.
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The above problem was solved by Mirsky (1968) when the elements of
p and D are all integers. However, Mirsky’s complete proof would be
exceedingly long. Mirsky has also pointed out in (Mirsky, 1971, p. 211)
that his result for integral matrices could be extended to real matrices. It
pas been noted by Mirsky (1971, p. 213) that a slightly more general result
was obtained by Kellerer (1961, 1964) from measure-theoretic viewpoint.

Theorem 1 sgain appears in a paper by Cruse (1975) where the author
hes also mentioned the generalisation to rectangular matrices. Our proof
of Theorem 1 is entirely different from the proof given in Cruso (1875).
Moreover, our Basic Lemme provides a new characterisation of matrices
which are not das. Although Theorem 2 follows from Theorem 1, the

statement of this thecorem along with a proof is not available in the existing
literature.
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