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SUMMARY. In this paper we describe a method of deriving linear relations among 

expectations of functions of order statistics. This unifies various adhoc methods used in deriving 

such relations. This method also sets up a one-to-one correspondence between these linear 

relations and a set of combinatorial identities. 

1. Introduction 

If A is a Borel measurable function from 72k to 72 and if W0, Wl9 ... 

are all ?-vectors of order statistics from a distribution, a relation of the form 

C0Eh(W0) 
? 2 CrEh(Wr) is termed linear if C/s are constants, independent r 

of the underlying distribution. Such relations are scattered in the literature, 

a large number of them finding mention in David (1981). By specializing 

(putting h == 
1) we get O0 

= 2 Gr which, in general, is a combinatorial 
r 

identity. It is remarkable that this combinatorial identity is equivalent to 

the linear relation in the sense that it can be used to derive the relation itself. 

We prove this equivalence and exploit it to prove a general theorem on linear 

relations. A large number of such relations are proved with the associated 

combinatorial identities. This paper, though in spirit is similar to that of 

Arnold (1977), goes beyond it. 

The method is essentially using expectation under summation in identi 

ties involving terms of the form p0?p?, ..., pkk where 2 pi 
= 1. 

2. Main results 

Suppose X has an arbitrary distribution with a continuous c.d.f. F(x) 

and h is any Borel measurable function from 72 to 72 such that E{h(X)} 
exists. Let Xr.n denote the r-th order statistic in a random sample of size 

n from the distribution of X. It is well known that 

E{h(Xr:n)} 
= 

r(n) J h(x)Fr-\x) (\-F(x))*+?F(z). W/ 72 
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We will write ri f 
as a(r, n). Then 

E{h(Xr:n)F?(Xr:n) (l-F(Xr:n))b} 
= a(r, n) J h(x)Fr+^(x)(l-F(x)^-rdF(x) 

n 
= 

(cl(t, n)lct(r+a, n+a+b))E{h(Xr+a:n+a+b)}, 
... (2.1) 

where a and b are integers such that n-\-a-\-b > r+a > 0. (2.1) is the funda 

mental result which we are going to exploit. In what follow we assume that 

all series considered are convergent absolutely and uniformly w.r.t. the para 

meters involved so that operations on them are justified. 

Theorem 2.1 : Let S be a subset of Z2 (where Z is the set of all integers) 

with K, a mapping from S to 72 and 8, a real number. Then the following 
three statements are equivalent : 

(i) S K(a, b)p?>q? = 8, 
<a,b)GS 

for all p e (0, 1), q=l? p. 

(ii) 8E{h(Xr.n)}= 2 K(a, b)(oc(r, n)?a(r+a, n+a+b))E{h(Xr+a:n+a+0)} 
(a, b) S 

for all r and n such that 0 < r+a < n+a+b. 

(iii) S K(a, b) (a(r, n)/oc(r+a, n+a+b)) = 8, 
(a, b)eS 

for all r and n such that 0 < r+a ^ n+a+b. for all (a, b) e S. 

Proof : (i)-> (ii) : If (i) is true then 

S K(a, b)F?(Xr:n)(l-F(Xr:n))o 
= * 

(a, b)eS 
or 

S K(a, b)h (Xr:n)F"(Xr:n)(l-F(Xr:n))b 
= 8 ?(Zf: J. 

(a, b)eS 

Taking expectation on both sides and using (2.1), we get 

S K(a, b)(*(r, n)l*(r+a, n+a+b)) E{h(Xr+a:n+a+b) 
= S E{{h(XrJ), 

(a, b)eS 

which is (ii). 

(ii) =? (iii) : Take h(. ) 
= 1 in (ii) we get (iii). 

(iii) -} (i) : Allowing r and n to tend to oo in such a way that r\n tends 

to p, using Stirling's approximation for factorials it is easy to verify that 

(a(r, n)l<x(r+a, n+a+b)) tends to paqb 

and the result (i) follows. 

This completes the proof of Theorem 2.1. 

Bemarh 1 : (ii) gives a recurrence relation between the expected values 

of functions of order statistics whereas (iii) gives a combinatorial identity. 
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Remark 2 : The recurrence relations between the moments, moment 

generating functions, characteristics functions, and distribution functions 

(nontruncated and truncated), whenever they exist can be got by setting h(x) 
= xk, h(x) 

= 
exp(to), h(x) 

= 
exp(to) and h(s) 

= 
I^^u){x)^ Hx) 

= 
I(-oo,u)(%) 

I(a,b) (%) respectively. From distribution functions we can pass on to density 

functions (whenever they exist). 

We now obtain results based on joint distribution of two order statistics. 

Suppose Xr.n and Xs.n(l < r < s < n) are r-th and 5-th order statistics 

from a random sample of size n from a distribution with a continuous c.d.f 

F(x) and h is a Borel measurable function from 72* to 72- It is well known 

that, whenever it exists, 

E{h(Xr..n,XS:n)} 
= <x(r, s, n) ?i h(x, y)Fr^(x)(F(y)-F(x)Y-r-\\-F(y))^dF(x) dF(y) 

x<y 

where a(r, s, n) = 
n\?[(r? l)\(s?r? l)\(n??)!]. Then 

= a(r, s, n) Jf h(x, y)Fr+a-i (x) (F(y)-F(x))^-r-1(l-F(y))n+^8 dF(x)dF(y) 
x<y 

= 
(a(r, s, n)/cc(r+a, s+a+b, n+a+b+c)) E{h(xr+a:n+a+i>+c> Xs+a+bin+a+b+c)} 

... (2.2) 

where a, b and c are integers such that 1 < r < s < w, 1 < r+a < s+a+b 

< n+a+b+c. 

Theorem 2.2 : Let S ?^Z* (where Z is the set of all integers) with K, a 

mapping from S to 72 and 8, a real number. Then the following three statements 

are equivalent : 

(i) 2 K(a9 b, c)plp%pl 
= 89 for all pv p2, pz e (0, 1) ; px+p2+pz =1 

(a,btc)e8 

(ii) SE{h(Xr:n> XS:n)}= 2 K(a,b,c)(a(r,s,n)la(r+a, s+a+b, n+a+b+c)) 
(a,b,c)e8 

E{h(xr+a.n+a+b+C9 Xs+a+b.fi+a+b+c)} 

for all r, s,n, 1 < r < s ̂  n, 1 ̂  r+a < s+a+b ^ n+a+b+c, for 
all (a, b, c) e S. 

(iii) 2 K(a, b, c) (oc(r, s, n)?oc(r+a, s+a+b, n+a+b+c)) = 8, 
(a,btc)t8 

for all r, s, n, 1 < r < s < n, 1 < r+a < s+a+b < n+a+b+c, 

for all (a, b, c) e S. 

Proof of Theorem 2.2 is similar to that of Theorem 2.1. 

A 1-14 
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Generalization of Theorem 2.2 is now clear. Suppose Xf .n, Xf .n ..., 

-X" ?n are rrth, r2-th, ..., />-th order statistics (1 < rt < r2 < ... < rk < w) 

from a random sample of size n from a distribution with a continuous c.d.f 

?Xa;) and A is a Borel measurable function from 7?k to 7?. It is well known 

that, whenever it exists, 

EW?flW Xrrn> 
'~> 

Xrk- J) 
= 

a(rl> r2? > r^ *) 

? . . .. J %i> *2 -m a:*) A (F(xj+l)-F(x}))r^-r^ dF(Xl)dF(x2)...dF(xk) 
xx < ... < xk j=o 

where #0 
= 

?oo, xk+1 
= 

+oo, r0 
= 

0, r^+1 
= 

ra+1, and 

k 

a(rly r2, ..., rk, n) 
= 

n\\ II (rj+1?rj~l)\ 

It is now easy to see that, for integers a0, al9 ..., ak 

mXri'-n> Xr^ 
- 

\:n)no(%+1:J-i(IVJ)^ 

= 
Writ r2, ..., r*> ^)/a(rx+a0, r2+a0+ai, ..., rjfc+a0+ai+.-.+a*-i, ^)) 

E{h(Xri+ao:N> Xr2+a0+a1'N> 
* *> 

Zfj.+a0+ai+...+aif.1:-Y)} 
? (2-3) 

where iV = 
7&+a0+a1+...+aA;. If 6y 

== 
a0+ax+...+a^ the RHS of (2.3) 

may be written as 

(a(rv r2, ..., rk, ^)/a(rx+&0, r2+br, ..., rk+bk_x, N)) 

E{h(xri+bQ: N> Xr2+h'N> 
"' 

^tf-b^* N% 

provided 1 < ri+&0 < r2+bx < ... < rt+bk?x < N. 

We now have the following generalization of Theorem 2.2. 

Theorem 2.3 : Let S (2zk+1 (where z is the set of all intergers) with K9 a 

mapping from S to 72 nnd 8, a real number. Then the following three statements 

are equivalent : 

(i) S k(a) pa = 8, 
aeS 

k 

where a = 
(a0, al9..., ak), p =p%? p"1 ... 

#?*, andpie(0,1) for all i with S pi= 1. 
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(ii) 
^{?(xri:w,zr2:w,...,xf?:w)} 

2 K(a) (cc(rl9 r2, ..., rk, n)la(r?+b0, r2+bv ..., rk+bk_v N)) 
aeS 

E{h(Xri+b0:N> Xr2+bi:N> 
? ' 

Xrk\^i:N% 

wherebj=aQ+a1+...+aj, N=n+bk, and l<r1+60<r2+61 <...<?>+&?_!<#. 

(iii) S K(a) (a(rl9 r2, ..., r^nj/cxi^+b^ r2+bv ..., rk+bk_x, N) 
= 8, 

aeS 

where 6?=a0+a1+...+a?, N=n+bk, and l<r1+60<r2+61<.B.< n+b^^N. 

Proof of Theorem 2.3 is similar to that of Theorem 2.1. Remark 1 and 

Remark 2 with obvious modifications are true for Theorems 2.2 and 2.3 also. 

3. Applications 

In this section we present some applications of each of our theorems of 

Section 2 separately. We notice that several known recurrence relations 

can be deduced from our results. But combinatorial identities are not em 

phasized and are treated only cursorily. 

3.1. Examples for Theorem 1.1. Example 1 : Let S = 
{(a, b)\a > 0, 

(m 
\ 
j. Then from binomial distribution 

a 

we have 

2 K(a, b)paq? = 2 (m) p'tf?-* = 1. 
(a, b)6S s=0 \ s ' 

Hence 

E{h(Xr:n)}=^ )(a(r9n)lot(r+s9n+m))E{h(Xr+8:n+m)}, 
... (3.1) 

and 2 ( ) (a(r, n)?OL(r+s, n+m)) = 1 

for positive integers n, m and r such that r ^ n. 

In particular if we take m = I, then S = 
{(0, 1), (1, 0)} and from (3.1) 

we get 

E{h(Xr:n)} 
= a(r9 n)[E{h(Xrin+1)}la{r9 n+l)+E{h(Xr+1:n+1)}la(r+l, n+1)] 

or (n+1) E{(h(Xr : J} 
= (n+r+1) E{h(Xr: n+1)}+rE{h(Xr+1: n+1)}. ... (3.3) 

Replacing n by (n?1) in (3.3), we get 

nE{h(Xr:n^)} 
= (n-r) E{h(Xr:n)}+rE{h(Xr+lln)}, 
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which is due to Srikantan (1962). Taking h(Xr.n) 
= 

X$.n> k = 1, 2, ..., and 

writing /4*n 
= 

E{Xr.n)> we get 

n ii?-i 
= 

{n-r) fi^+r ??$lin 

which is due to Cole (1951). (3.3) can also be obtained by using the identity 

(Johnson, 1957, 1978), 

(NK) [K-NF(Xr:n)] = N 
( (^ijlil-^ir:?))- (*"*) E(xr:n)}> 

where N and K are positive integers, 1 <; K < N. 

Example 2 : Using the identity 1 = 
(p^+l? p'1) , we have 

1= S ( )p-^l-p-1) 
-8 = S (?l)?-?p-?(l ?p)m"* 

Thus 

?{?(2rrs J}= S 
( )(-l)n?(a(rf n)/a(r-m, n-*))0{*(Xf.?,sll^)} ... (3.4) 

for m, w, r > 0 and m < r. 

Again starting with 1 = 
(q~1+l?q"1)m, we get 

E{h(Xr:n)} 
- S (-1)^ ( Wr,n)/a(r+ro-?, n-?)) i?{?(Zr+^:^)}...(3.5) 

for m, n, r > 0 and r+ra > s. 

(3.4) and (3.5) are the recurrence relations given by Krishnaiah and Rizvi 

(1966). 

Example 3 : Let S = 
{(a, 6) [a =m > 0, b > 0} and JT(a, 6) = 

(a+l~l) 
. 

We then have from negative binomial distribution, 

S K(a, b)paq*> = S (m+5~* 
W? = 1# 

(a, 6) i i=-0 ^ 5 f 

Hence 

^(Xr: J} 
= S 

(m+SQ 
+ 

1) (a(r, ?)/a(r+m, rc+m+s)) JS7{?(Xr+m:n+m+s)} 
... (3.6) 

for positive integers m, n and r such that r < n. 

Example 4 : From geometric distribution (a particular case of 

Example 3 with m = 
1) we have 

2 j) g* 
== 1. 

8=0 

Thus #{A(Xr:n)} 
= S (<z(r, n)?a(r+l, n+s+l)) E{h(Xr+1:n+s+1)}, 

... (3.7) 
s=o 

for positive integers r and w such that r ̂  n. 
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Example 5 : From (2.1) we can write 

E{h(Xut)Fr-\Xilt) (l-F(X1:t))n-t-r+i} 
= (a(i, t)la(r, n)) E{h(Xr..nn)} 

or S CrE{h(Xr:n)} 
r-i 

= S 
Cr[r[nr^tJE{h(X1.j)Fr^(X1.j)(l-F(X1:t))n-t-r+^ 

... (3.8) 

where Cr is a function of r. We now consider the following particular cases. 

Taking Cr = 
\?(n?r+\) in (3.8), we get 

S (l?(n-r+l)) E{h(Xr:n)} 
r=i 

= S (l/?)[r r j/ift-r+l^Mii:*)^1^!:?) (l-?1^^))?-?^} 
r=i > r f 

= 
S(l/?)( 

B 
l^fl^lfH^,))!-^,,)^!} r=i \ r?1/ 

= 
Jo(l/0 ( 

* 

)E{h(X1:t)Fr(Xut) (l-F(X1:t))n-r-t} 

= 
[(l-F(X1.j))~tlt][ n^(nr)E{h(Xut)Fr(X1:t)(l-F(Xllt))n-r}^ 

= 
[(l-F(X1:t))-tlt][E{h(X1:t)n-L ( 

U 

) Fr(X1:t)(l-F(Xut))n-r}l 

Putting t = 1, we get 

S (l/(?-r+l)) E{h(Xr: J} 

= 
E{h(X1:1)[(l-F?(Xi..i)W-F(Xi:i))]} 

= 
E{h(Xi:i) S J^(Zlsl)} 

= S ?{?(Zi:i)i*-i(Z1:1)} 

= 2 (a(l, l)/a(w, it)) E{h(XU:U)}, using (2.1) 
w=i 

= 
l(llu)E{h(XU:U)} 

= ? (l?r)E{h(Xr,r)}. ... (3.9) 
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Similarly with Gr 
= 

1/r in (3.8), we get 

?(llr)E{h(Xr:n)}=?(llr)E{h(X1:r)}. 
... (3.10) 

r=i r=i 

(3.9) and (3.10) are due to Joshi (1973). 

Taking Gr 
= r in (3.8), we get 

S rE{h(Xr:n)} 
= 

(nl2)E{h(Xi:2)}+(n2l2)E{h(X2:2)}. ... (3.11) 
r=l 

With Gr = 
(r? l)!*-1!, where a**] = 

&(#?1), ..., (#_d+1), we then 

have from (3.8), 

? (r-l)l?-H?{?(Zr. J} 
= fol?/*) S *(?, r)E{h(Xr.r))lr. ... (3.12) 

where s(d, fc)'s are Stirling numbers of the first kind defined as 

d 
xW = 2 s(d, k)x*. 

3.2 Examples for Theorem 2.2. Example 1 : Let S={(a, b, c) \a, b, c > 0 ; 

a+&+c = ra > 0} and i?(a, b, c) 
= 

(m\ ?a\b ! c !). Then from trinomial 

distribution we have, 

S l?(a, 6, c)plp\p\ 
= S (m !/a ! 6 ! c !)?>??>|i>g 

= 1. 
(a,&,c)eS (a,fc,c)e? 

Hence 

E{h(Xr.n, Xs.n)} 
= S (m!/a!6!c!)(a(r, 5, ̂ )/a(r+a, s+a+c, n+a+6+c)) 

(a,&,c)?5 

E{h(Xr+a.n+a+i)+c, X8+<^C:n+a+?)+e)}. 
... (3.13) 

In particular if we take m = 1, then # = 
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} 

and from (3.13) we get 

E{h(Xr:n, Xs:n)} 
= 

a(r, s, n) [(E{h(Xr+1:n+1, Xs+1:n+1)}l<x(r+a, s+l, n+l)) 

+(E{h(Xr:n+1, Xs:n+1)}/a(r, s, n+l))+(E{h(Xr:n+1, Xm:w+1)}/a(r, s+l, n+l))] 
= 

(l/(n+l)) [rE{h(Xr+Un+1, Xs+a:n+1)}+(n-s+l)E{h(Xr:n+1, X8in+1)}+(s-r) 

E{h(Xr:n+1, Xs+Un+1)}l 
... 

(3.14) 

Taking h(x, y) 
= 

a%* and writing /##? 
= 

E{Xjr:n X*:n} in (3.14) we get 

(n+l)$'*)n 
= 

r/ir+^s+un+iMn-s+l^^n^^ 

Govindarajulu (1963) obtained this recurrence relation for j 
= k = 1. 

Let 
A(n, r, s) = Pr {xr:n < ?p < lq < a??:?} 

~ 
Pf \xr:n ^ ^P> x9'.n ^ ^g}> 5p < ?# 
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If h(x, y) 
= 

/(-oo,^, (x) /t{?i00) (y), then 

E{h(xr:n, xs;n)} 
= E 

{/(-oo,^] (xr:n) I 
l?Q,a) (xs:n)} 

= 
A(n, r, s), 

and (3.14) gives 

(n+1) A(n, r, s) = rA(n+l, r+1, s+l)+(s-r) A(n+\, r, s+1) 

+(n-s+l) A(n+1, r, s). 

which is due to Reiss and Ruschendorf (1976). 

If h(x, y) 
= 

g(y?x), we get from (3.14) 

(n+1) E{g(Xi:n-Xt:n)} 
= 

rE{g(Xi+1:n+1-XT+1:n+1)} 

+(s-r) E{g(Xg+Un+1-Xr:n+1)} 

+(n-s+l)E{g(XS:n+1-Xr:n+i)}. 

Taking g(u) 
= u and s = r+1, we have 

(n+l)i?(Zr+1:n-Xr:n) 
= 

ri7(Xr+2:B+1-Zr+1:n+1)+(?-r)i7)Z,+1:M+1-Zr:B+1) 

+E(Xr+2.n+1?Xr.n+1) 
or 

(n+l)E(Xr+Ua-XKn)^rE(Xr+2..n+i-Xr+1:nl)+(n-r)E(Xr+Un+1-Xr:n+1) 

+E(Xr+2'.n+l 
? 

Xr+l:n+l + Xr+i:n$i 
? 

Xr:n+i). 

Let Xn+r 
= 

E(Xr+1:n?Xr:n)9 then the above reduces of the form 

(n+VXn-.r 
= 

rXn+l:r+iMn-r)xn+1:r+(Xn+?-r+i+Xn+i:r) 

or (n+l)Xn:r 
= 

(r+l)Xn+?.:r+i+(n-r-l)xn+1:r, 

which is due to Sillitto (1951). Other results of Sillitto (1951) can be easily 
deduced from (3.14). 

Example 2 : Let S = 
{(a, b, c) \ a > 0, b > 0, c = m > 0} and K(a, b, c) 

= 
(a+b+c-? 1) \fa\b\ (c?1) !. We then have from bivariate negative bino 

mial distribution, 

2 K(c, b, c)plp\$% = 2 [(a+6+c-l) \\\a\ b\ (c-1)!] p\p\p% = 1, 
(a, 6, c)eS (a, b, c)eS 

8 

2^=1. 

Hence 

E{h(Xr:n, Xs:n)} 
= S [(a+6+c-l) I/a ! 6 ! (c-1) !] 

(a(r, s, n)/a(r+a+c, s+a+c, n+a+b+c)) 

E{h(Xr+a:n+a+b+t> Xs+a+c: n+a+b+c)}- ... (3.15) 
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Example 3. From bivariate geometric distribution (a particular case of 

Example 2 with m = 
1) we have 

S [(a+b) \?a ! b !]pjpgp8 =l,?p%=l. 
(ab)es *=1 

Hence 

E{h(Xr:n? Xs:n)} 
= S 

(a+ ) (a(r, s, n)/a(r+a, s+a+l9 n+a+b+c)) 
(ab)es x # / 

E{h(Xr+a;n+a+b+1, As+a+1:w+a+&+1)}. 
... (3.16) 

3.3 Examples for Theorem 2.3. Example 1 : Let ? = 
{(a0, av ..., a#) 

* 
/ m \ 

a0, av ..., ak > 0; S a$ = m > 0} and K(a) 
= 

( ). We then have 
?=o \a0, al9 ...,ak' 

from multinomial distribution 

S K(a)p?= S 
( 

m 
)ifo?, ...,*?= 1; I * = 1. 

oeS oeS v?o, ?i> ??*' ?=o 

Hence 

= S 
( W?-j, r2, ..., rto ̂ /a^+feo, r2+61; ..., ?+&*_!, iV)) 

06?\ ?0> al> > a* ' 

E{h(Xri+b0--N> Xr2+h--N> 'Zr*+6t_1:^)}- 
? (3-17) 

Example 2 : A generalization of negative binomial distribution gives 
the identity 

t? / m+r?1 S S ( 
a0 

== m 

A; 

where ?i's are nonnegative and S jp? 
= 1. 

?=o 

Hence 

Eih^Xryn> Xr%'-n> 
' > 
^J} 

o? 
y m+r?1 \ / r v 

S S (afo, r2, ...,a*, rc)/ 
r = 

0a[+oa+..,+afc 
= r\ ** / \ dv d2, ..., ak / 

aQ 
= m 

a(rx+60, /-a+fti, ..., rk+bk_v N)) 

E{h(Xri+b0'-N> Xr2+b^W 
? > 

Zr1.+&ifc-.1^)}' 
- (3'18) 



expectations of functions of order statistics 113 

Example 3 : This is a particular case of Example 2 and is from a genera 

lization of geometric distribution. This is got by setting m = 1. We state 

the result 

E{h(xn..n,xr2:n,...,xfk:n)} 

oo , r 
= 2 2 ( )(cc(r1,r29 ...9rk,n)? 

r=Q ai-\-a2 + ...+ak = rv ai> #2> > ak j 

a0 
= 1 

?(?i+V r2+bv ..., r.+b^, N)) 
E{h(Xri+bo:N,..., Xr^i?N)}. 

... (3.19) 

Note : A general procedure for getting certain type of identities and 

recurrence relation for expectation of functions of order statistics can be given 
as follows. We give it only for 'one order' statistics, but the generalization 
is obvious. 

(i) Whenever we have an identity of the form 

2 K(a, b)p*q* 
= 8 for all pe(0,l), ... (3.20) 

(a, b) eS 

we can get the recurrence relation 

SE{h(Xr:n)}= 2 K(a,b)(a(r,n)/a(r+a;n+a+b))E{h(Xr+a:n+a+b)}... (3.21) 
(a,b)eS 

(ii) Whenever we suspect a recurrence relation of the form (3.21) we can 

settle it by proving (3.20). 

Conclusion : All the recurrence relations are essentially 'linear' in 

character. These are got by interchanging the order of summation and 

expectation. Such a method obviously will work for conditional expectations 
too. Authors of this paper are exploring in detail conditional expectations 
of order statistics in a separate paper. 
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