ZERO-SETS OF QUATERNIONIC
AND OCTONIONIC ANALYTIC FUNCTIONS
WITH CENTRAL COEFFICIENTS
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ARSTRACT

We prove that the zero set of any quaternionic (or octonionic) analytic funclion f with central (that
1, real} coefficients is 1he drsjoint union of codimension two spheres in R? o R* (respectively) and certain
purely real poims. dn particular, for polynomials with real cocfficients. the complete root-set ngzom:lmally
charactensable from the fay-out of the roots 1n the complex planc The rool-set becomes the union of a
finite aumber of codimension 2 Euchidean spheres togeiher with a finite number of real points. We aiso
find the pmmagn/“(A) for any qualcrmon {or octonion} A.

We that this surp of lete spheres being pant of the solution set
is very markedly a special “real’ phenamcnon For cxample, the quaternionic ar octonionic Nth roots of
any non-rel quaternion {respectively octonion) turm out to be precisely N distinct points, Al this allaws
us to do some interesting tlopology for self-maps of spheres,

Introduction

Let & = H be identified with the space of quaternions, correspondingly the
octonions are © = R,

Our aim in this note is to describe geometrically the solulion sets of analytic
equations {in particular polynomials) of the form V) = A where 4 is any quaternion
{or oclonion} and V) is any analytic funclion (Laurent series with real cocffictents
about real centres) over the quaternions (or octonions). Qur chiel method of attack
is 1o unlise certain geometrical interpretations of such guaternionic and octonionic
analytic functions which we had discovered and discussed in previous papers {1, 3],
We had called that the theory of the Fueler transform. It is important to recall that
the very nature of this transform imposed the restriction that the coefficients of our
analytic functions or polynomials be lrom the centre of the algebra H (or Q). Namely,
these coefficients must be real numbers.

In §2 we are able to provide dircct algebraic proofs of some of our results for the
case ol polynomials. Certain algebraic aspects of these proofs appear to be of
independent interest,

An amusing topological application of our results is to exhibit natural self-maps
of the Euclidean unit spheres of dimensions 3 and 7 (namely, the quaternionic and
ocloniomc unit spheres) which are of topological degree N (N any integer) such that
almost every fibre has precisely |V| disiinct points, while all the exceptional fibres
actually contain codimension | subspheres. The number of exceptional fibres is one
for & = 2 and 1wo otherwise. Using the Fueter transform we are also able to study
a natural generalisation of these scll-mappings on spheres of arbilrary dimension.
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RewARK.  Because of the noa-commulativity of H and O the only polynomial
equanons whxch arc unambiguously defined. independent of the posiuons of the
cocflicikents 10 cach term. are precascly of the gencral form AV) = A that we have
trealed in this article. Happily, noa-associativity in O never causcs any problems unce
any two OClOMIONS BENCrale an aisoxialive subalgebra.

§1. Zero-seis via the Fueter theory

fn |1, 3] we discussed some gencralisations of complex analylic mappings
obuained from holomorphi mappings by a gcometncal process of *rotation around
the real axis  Thus goes as follows.

Let D be s domain in the upper half planc U. Suppose
pul+i: D—C
is 1 holomorphx mapping. The -dimensional Fueter transform of ¢ denoled by £ (g)
13 & C* (10 fact C") mapping Irom ao open domain of R®, denoted by F (D). into
R* Here,
FUD) = {xy+e, x,+ . 4oy x0 (g (x2+ .. +xi WeDl < R® (h
and F,(p): F,(D) = R" 18 given by

x‘+r,x|+...+¢._,x._,»——-o((x,_x)+(w'—”;:i"x—"')q(x..x) )

where x = (x}+ ... + x4 _ )} (posive square root).

Note that if ¢ has real boundary values where the real axis abuts D then a direct
application of the reflection principlc guarantees that we can define Flig) real
analytically on the revolved domain F,(D) together with corresponding portions of
Xg-aXis.

A fundamental observation for our purposes is Lhat if @ has 3 Laurent expanson
with real coefficients about real centres (that is,

Pl2) = E ay(z—c)*+ E bo/lz—c)r™. (8]
Ll -—)
where a,, b, ¢ are reals; the annulus of convergence is 7 < lz—d < R), then
E@) = T au¥=or+ I busv-om, @

where V = x,+¢, X, +¢,x,+¢,x, i8 8 qualernionic variable. Similarly, £(g) will be
represented by the “same’ Laurent serics with ¥ an octonionic vanabl. Tbe
corresponding domains of convergence are the ring-domains 7 < [V —cl <R in
Euclidean spaces R* and R* respectively.

It is important to interpret tbe Fueter transforms of functions and domains vis
righd rotations around the real axis.

We can idenlify ‘R* = R* — {x,-axis} with U/ x $*~% using the mapping

(X.+¢.x,+---+t._.X.-.)'—°(x.+Lx.(%.....5;—“))eUxs--'

whore x » (xf+...+x4_ ). Hero $*~* & the dard Buclidean unit sphere in
Re-t,
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One can then think of U, = U x {g), for any o € S™7", as the rotated position of
\he standard half plane Ux{(},0,...,0)) in 'R”. Then €, = U, U{xpaxisiuU_,
becomes the new posilion of the siandard complex plane € = € x{(1,0...., 0)} sitling
in R™. The axis of rotation is of course the x,-axis.

The Fueter mapping on F(D) is thena the *funclion of revolution” oblained by
revolving the f{unction @ and its domain D around x,-axis. We slale Lhis as the
*Revolution Principle’: a Fueter map £, (@) prescrves each plane C,: that is, F,(@)
maps €, into itsell. [n fact, F(g) restricted to €,n £,(D) (for any geS™Y) is
identifiable with the original map g on D when C is identified with C, by rotation.

From this geometrical interpretation it is evident that, whenever @ has Laurent
expansion (3) we will have:

{VeR™: FUp)(V) = A} = F(lz: 9(2) = 4}) ®)]

for any real number A.
We sec immediately the following:

THEOREM 1.1.  Let @ be any Laurent series with central coefficients (in W or ©
variable V'), as in (4), convergeni inr < |V —c[ < R: namely

8V) = T au(V=0r+ T bp/(V—c)
n=90 m=1

@y, by € are reals). The zero-set of this function 8, namely {V: &V) = 0}, is simply
the aboue rotation-transform F, or F applied 1o the zero-set of the complex analytic
Junction @(z) (defined by (3)) inr < |z—¢f < R.

The set £, of a point is & 2-sphere orthogonal to each of the planes C, provided
the point is not on the xo-axis. On the x,-axis of course rotation changes nothing. In
fact, Fla+if}) ={V = a+e,x,+e,x,+e5xy: x1+x}+x2 = f1}.
Similarly for £

In particular, for polynomials we state what we now know separately.

CorOLLARY 1.2, Let {aytify. . .&mtiBr. ...y @, By, reals. > 0;
j=1,....mp=1,.. k) be the set of complex roots of the polynomial equation

ayV¥+...+a,V+a,=0, a¢eR;j=1,. N 6)
Then the quaternionic (octonionic) roots of (6) form the set

’L) S-,J, Uiys ey}
=1

where
Sanpy = Eullay£iBy)), n =4 (or8).

REMARK. In the above silvalion it appears rcasonable to think of the sphere

a,.4, 25 occurring with multiplicity 2m,, where m, is the multiplicity of the root
(a,+:ﬂ,) of the complex polynomal (6). The 10tal multiplicity over all components
of the quaternionic or octonionic solution sct then adds up 1o the degree N.

When we wish to solve (V) = A, A¢R, we can still apply our rolalion process.
Since A¢ R, all the roots must lic in precisely the same €, which contains A iself.
Therefore it only remains to rotate A into the standard position of the complex plane
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(namely, 4 =a,+E}5 e,a,0+a,+ia, where a= (L7 ' a})t > 0, n =4 {or B)) and
consequently the roots of B{¥) = A are nothing bul the roots of @{z) = 4,+ ia rotated
back inte the T, position. Note, o here is (e, /a, ..., a, /a)e 5"~ We state therefore
the following theorem

THEOREM | 3. The root-ser of (V) = A, AR, is
A=l
S= {u+ﬁ I e,'—:i; a+if isaroot of p(z) = ag+1a l'rrC}
)=

where A = ay+ L0 eja), a=(T)5 apd > 0. The multiplicity of a+PL} e a/a
is the same as that of @ +iB as @ rooi of ¢(z) = a,+ia.
[Here n = 4 or 8 according as ¥ is a quaternionic or octonionic vanable.]
RemarK. The set identity (5) for any qualernion 4 = @, +¢,a,+€,a,+ &, ,, is
{VeRn: F(@(V)eF(4)) = Fllz: p(@) = a; +ial} 7

where a = (af +a}+ad)l > 0.

§2. An algebraic proof of Corollary 1.2

The Corollary 1.2 can be proved by straightforward algebra. We deal only with
the quaternionic case since no new ideas come in for octonions.

Firsily note that any quaternionic polynomial with real coefficients can be factored
into the product of quadratic and linear polynomials with real cocfficients. Namely,

F¥4ay VN4 +a Ve, = (Vb Vic)
(b, Ve )V 4dy,,,). (M +dy) (8)
with bf —d¢; < 0:j = 1,...,m. Consider therefore such 2 quadratic polynomial
Vi4bV+c=0 9

where b, ce R, 6" —de < O(and thereforec > 0). I ¥ = x,+e, x, + e, x,+ ¢, x, 154 root
of (9} then one notes that | V|| = cand ¥* = 2x, ¥— | VI = 2x, ¥ —c. Consequently.
2x,+ b = 0. This implies that ¥ lies on the sphere

(V= xg+e X +e, 48,0y x5 = —b/2 xl+xb+ x} = (dc— bY)/4),

The Corollary 1.2 now follows since there are no zero divisors in M or ©,
I1is to be noted that when there exist infinitely many roots of a polynomial like
(8) then the polynomial actually allows infinitely many distinct factonsations,

§3. A recursive represeniation of powers of a hypercomplex variable,
with applications

As any non-zero quaternion is the product of a non-negaltive real number and a
quaternion of norm |, we will consider only quaternions or octonions with norm 1.

In fact,
¥ VN = A} = (lAIVN W WY = AL AL (B4)1MY > 0).

Now || ]| = 1 is equivalent to
Vi=2x,V—1, where V' =x,+e X, +e,x+eyx, (10)
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(Again ¥ could be an oclonion without any extra lrouble.) This gives, inductively,
V¥ = P(x,) ¥V~ Pri(xg). (ty

where P, is a real polynomial of degree (k — 1) in the single (real) variable x,. The 2,
satisfy the recursive relations
o= By + B =0 (12)

Note that P, = 1 and P, = 2x, from cquation (10). Equations (11) and (12) provide
a convenient representation of powers of a H or O variable.
As an application note the analysis of
V¥ = A=ay+e a,+e,0,+65a,. (k)]
Then Vis a root of (13) precisely when
Xo Pu(xo)— Py r(¥0) = 8, (14)
and Py(x)x, =@, j=123. (15)
If 4 is real then the solutions of (13) are described in Corollary 1.2 (and may be
obtained from (14) and (15) also). If A is non-real. then note that Py(x,) # 0, because
otherwise ¥~ = — P, _,(x,) would be rcal. In this case (14) has exactly N solutions,
all real. (Indeed, the real parts of the complex roots of z¥ = aq+i(a? +a}+adl are
precisely the roots of (14).) Therefore, by (15), ¥¥ = A has exactly N distinct solutions
in 4. This confirms the conclusion of Theorem 1.3.

NoTE. The roots of 1/V* = 4 also behave similarly, since
1w
AT

Remark. The polynomials P,(x) above are universal for all the algebras C. ¥, 0.
They are essentially related to Tchebyshefi's polynomials T, defined by 7,(cos6) =
cosnf. In fact, both systems are solutions of the same difference equation (12), with
the respective initial conditions:

{Pl(") =1 {7;(1)= t
Bx) =2 Ti(x) = x.
They are related by the following formulae:

2L, =P PR,

Paa s AT+ Ty +...).

In the case of C these formulae can be thought of as consequences of de Moivie's
formula. We are indebted to Dr B. Bagchi for suggestions generating this remark.

§4. The 1apology of the maps Vs V¥

Consider the natural maps fy(V) = V¥, (N = £ 1, £2,....), as self-maps of the
unit spheres 8% or §7 - V being a quatemionic (respectively octonionic) variable of unit
norm. From Theorem 1.3 and by §3 we know that the preimage via fy of every non-real
point is precisely N distinct points. The preimages of the two real points + 1 are
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described in Corollary 1.2, Let us denote by A(N. 1 1) the number of codimenston one
subsphcres which are contained in f3}( + 1). Then. Corollary 1.2 implies:

lNlT_I if n is odd.
AN ) =
@-—I if ¥ is even,
(16)
lNIT—l if N is odd,
AN 1) =
ﬁ2| if Nis even.

It is convenient to note that we need not restact Lo spheres of dimensions } or
7 only because we have the Fueter transform of gy (2~ zV) at our disposal in any
dimension. Thus fy = £, (pv) is again a real-analytic selfl-map of §7. The fibres of
these general f, mappings are also describable just as above because the * Revolution
Principle” of §1 applies.

Ttis natural to ask for the lopological degree of the maps f, and whether their
restriction above S¢—{+(1.0,.... 0)} is a |N|-sheeted covering space or nol. The
answers are interesting and provided below.

First of all we notice from Corollary 1.2 that the A(N, 1)+ 4N, — )(=IN|-1)
codimension one subspheres in S¢ separate 4= { +(1,0...., 0)} into |M| cylinders (that
is, §4-1 x (0. 1)) each of which maps homeomorphically onto $¢ —{ +(1,0,....0)}. The
\wo ideal boundary components in each cylinder are getting collapsed to the points
(,0..... 0)and (- 1.0,...,0). Thus:

ProposiTION 4.1, The restriction of fy 10 ST—{f3(£(1,0,...,00) is a trival
|N|-fold covering of $¢ —(+(1.0..... 0)}.

As for the degree, the answers are given in:

PROPOSITION 4.2, If d is odd, [ S% — §9¢ has degree deg(fy) = N. If d is even,

+1 of Nisodd,

des = {
" 0 ifNiseven.
REMARK.  Algebraic topologists have alrcady been interested in special cases of
the above. Sce Dold |2, p. 65] for the complex and quatcrnionic case.
It is convenient 10 prove a lemma first.

LeMMa 4.3, For N 2 1, fu is homotopic 1o [+ (=)o ds(=1)e..o((=D¥7).
Here I denotes the identity map on S9, —{ denotes the antipodal map, and o denotes
the usual operation by which maps are composed in the homotopy group rg(SY). (We
will give a formal definition of « in the proof.)
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Proof. Let us paramcinise S7 by polar coordinates (f,. ... O4.1):
xq = cos 8,
x, =3inf, cosd,,
Xy = sinf, sin 6, cos §,,
on
Xg-, = sinf, sind, sing,..... cosfy ;.
Xg=sinf,sinb, sinf,... sinb,_,,
8,.....04.,€(0,x), Bye[—n,x). In that case onc realises (say by the ‘Revolution
principle’) that Ky, (@x)(8,. ..., 84.,) = (NG, 8, ... 84.0)-

Now define o as follows: we will say two sel-maps f.g: % — 5* are s-com-
posable if

£(0.6,..... 8s.)=ltnB,.....6,_)forall(8,..... B4_,) €0, m)*-!
Then define

£26,.9,.....6,.) iro,e[ z 5]

220
Ueg)bs.....04)) = (18)
£(28,-n.0,.....0,.) ifﬂ,E[—l.-;]U[;—.x].

This is clearly the usual » product in the definition of composition in ng(S%). It is now
urivial to check that

Te(=Dyele . o((=1)¥"1)B,....00.) = (N0 0,....04.)
for all (8,,....04_)€[—n.r)x [0, n)Y "
Proof of Proposition 4.2, Recall the following standard facts aboul the degree:
deg (f og) = deg(f)-deg (g). (19
deg(f ¢g) = deg (/) +deg (g). (20)

Using these relations we immediately obtain the claimed values of deg(/fy) for ¥
positive. For N negative, notice that

VN = V=WVl PN g 1Y)
where j is the *conjugation map’, that is,
JXgu Xy a Xg) = (Xgo =Xy, ... — Xg).

Butdeg () = (— 1)? (see for ple Vick [4)), quently the proposition is proved
compietely.
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