CALCULUS ON POISSON MANIFOLDS

K. H. BHASKARA anD K. VISWANATH

ABSTRACT

We prove Lhe existence of a Lie bracket on the space of 1-forms on a Poisson manifold. This gives rise
to a calculus of skewsymmetric contravarianl leasors dual to Cartan's calculus of forms.

Introduction

The concept of a Poisson structure is currently of much interest and is being
studied by Lichnerowicz, Weinstein and others ([5, 10,8,4]). A Poisson structure is a
Lie bracket { , } on the multiplicative algebra N of smooth functions on a manifold
M satisfying the additional condition {fg.h} = flg, h}+g{f.h} for fg.heN. N
together with { , } is called a Poisson algebra.

If (M, w) is a symplectic manifold then {/f.g} = w(X,, X,) (where X, is the
hamiltonian vector field corresponding to f) defines a Poisson structure on M.
However, this is not the only way in which a Poisson structure arises. In general the
existence of a Poisson structure is equivalent to the existence of a skewsymmetric
contravariant 2-tensor G on M salisfying (G,G) =0 (where [, ] denotes the
alternating Schouten product [6,7]). If G is as above and P is any skewsymmetric
contravariant tensor on M then 0P = [G, P] defines a cohomology operator  (S). The
purpose of this article is to show that this operator § is part of an entire calculus of
skewsymmetric contravariant tensors which is dual to the Cartan calculus of forms
[1]. The key to this calculus is the possibility of defining a Lie bracket on the space
of 1-forms on a Poisson manifold. (This bracket coincides in the symplectic case with
the bracket defined in [1]). Since Cartan's calculus involving the operators L, i, and
d[f] is ultimately due to the existence of the Lie bracket of vector fields, it is possible
to use the Lie bracket on I-forms to define a calculus of skewsymmetric contravanant
tensors in terms of operators L,, i, and d where « is a {-form.

1. Definitions and notation

Throughout this article M denotes a Hausdorff, second countable and connected
C=-manifold and N denotes the algebra of C*-functions on M. As usual a p-form on
M means a covariant alternating p-tensor on M. We shall refer 10 a contravariant
alternating p-tensor on M as a p-field on M. Thus a 1-field is just a vector field. Let
(M) and g*(M) denote the spaces of vector fields and 1-forms on M respectively. The
space of all p-forms and the space of all p-fields on M will be denoted by Q?(M) and
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@, (M) respectively (so QM) =x*(M) and (M) =x(M)). If Xex(M) and
ae x*(M) then the contraction of a with X is written as either X{(«) or a(X).
Choose and fix Ge®(M). Define a map G*': x*(M) — x(M) by G'a)(f) =
Gla.f) for &, Be x*(M). For convenience we shall often write G*(a) as a'.
Finally, let us write (/. g} = G(df. dg)and X, = —(df)" for f, g€ N. Then X, is called
the hamiltonian vector field corresponding to f.

ProposITION 1.1, Let Ge®(M). Then the following are equivalent.
(a) Jacobi's identity holds for { | }.

(b)Y Xy 0 =—[X,X,] for f.geN.

() (M,{ , 1) is a Poisson algebra.

DermvtTION 1.2, If G satisfies any of the above conditions thea the pair (M, G) is
calied a Poisson manifold. Also, G is called a Poisson structure on M. In general any
unexplained notation will be that of [1].

NotaTioN. Throughout this article (M, G) denotes a Poisson manifold unless
otherwise specified: a, 8, y denote 1-forms on M; X, Y denote vector fields on M and
/. g h. denote C*-functions on A1,

2. The Lie bracket of |-forms on a Poisson manifold

Let (M, G) be a Poisson manifold.
DermiTion 2.1, If a,fex*(M) then let {(«,f} = L f— Lpa —d(G{, f))-
Lesma 22, {fa,28} = fe{o, )+ L, g) B—g(Lp /) .

PROPOSITION 2.3. {a, B}’ = (o', 8'] where [ , ] denotes the Lie bracker of vector
fields on M.

Proof. {a.f}' (df) = —{a. B (df)

—ULy BYUdN) — (Lp ) ((df)") — (d(Go, B)) (d)")]

= —[a"(Ad)") — B(L+(df)") - F((df)")
+a(Lp(d)') = (dGla. /()]

=a'(f'(d)—F' (" (dN) + (=" (d)'D
=a{[B". (@) +(d) (G(x. B)

=", f)(d) + A(.5),

n

where
Ala,B) = e’ (dN)') — (" ()N +(d) (G(a, )
=a((f, X)) Blle’, X)) — X {G(a, B).

It is easy to check that A is a 2-field. To prove that 4 = 0, it is sufficient to prove
that A is zero on exact forms, that is, that A(dg, dh) = 0 for g,he N. But

Aldg, dh) = (g, {h. /D + L e} +{f (g, h)} = 0

(by Proposition 1.1).
We will now prove a lemma which will be usefu! later.
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LEMMA 2.4, Let G be any 2-field on a smooth manifold M Define
Ha.f.y) = &' (G(B. 7)) +4'(Gly. )+ 7' (Gla. )
—(Glla.B1. )+ GUB.y). @)+ Gy, ). ).
Then H is a 3-field on M. If G is a Poisson structure on M, then H = 0.

Proof. That H is a tensor follows from (2.2) and the N-lincarily of G.
Now Jet G be a Poisson structure. It is enough to show that H(df.dg.dh) = g,
But
H(df.dg.dh) = 24 fig. M} +{g (R S+ k(L8 = 0.

(since df f.g} = {df. dg}).

ProrosiTiON 2.5.  Let (M,G) be a Poisson manifold. Then (2.1) defines a Lie
bracker on ¢*(M).

Proof. By the above lemma, it is sufficient to prove that
{la Bt + (B yha) + {{p ) By = d(H(«. 8. 7). *)
Consider
Ha. B, v} = Ly, ey — Lot B = dGa. B, 7))

sLlolpy—LeLlyy—LoL B+ L Lea

+ LAd(Gla. ) — d(Gliae. B, v))
by (23) and L, =L,L,—L,L, Writing the remaining terms and using
Lyd=dL, one can see that (*) holds.

We observe that #: y*(M) > x(M)is a Lie algebra homomorphism by Proposition
2.3.So # is a representation of the Lie algebra x*(M) on N. Hence using the methods
of Chevalley and Eilenberg (3. p. 115]) one can define a cohomology operator ¢ on
O(M) =Y ,,0,(M). This operator coincides with [G. ] defined by Lichnerowicz 5]
The formula for @ is given by

I3

Py 2,) = ¥ (= Py, o Bor )

-0

+ Y (=D Pla o) G By &y )

i<y

where Pe® (M). Its cohomology is called Poisson cohomology.
In the course of the proof of 3 = 0 one comes across the operators L,: ®,(M) -
®@,(M) given by

(L P) (... &) = a'(P(ap..,.an))+)i (- D Planogd oy, .o @y )
and i;: ®,(M) — ®,_,(M) given by -
(P (o, ., ) = Plosag, .oa, )
for Pe®,(M) satisfying the relations
iap = Ladg— gL,
Loyg=L,Ly—LyL,
L,=i0+0i, and L,0=0L,
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Thus one can develop a dual calculus to Cartan's calculus on differential forms
1.
Brylinski (2] defined a canonical complex on Poisson manifolds

—‘Q"“(M)i-ﬂ"(M)—d—‘Q""(M)—O

where & is given by the formula:
SUodf A AdfY = T (= o SINDS A A A .. A,

+ ¥ (=Dfdffrdf A Adf AL AN A,
I€i<j<n
Iis homology is called the cancnical homology of the Poisson manifold M by
Brylinski.

We now deduce the relationship between @ and 8. Recall that there exists a duality
map <., D QUM)x D (M) - CH(M) such that (oA AG X A AXD=
det(a(X). If Pe®, (M) and weQ?(M) define i,wer*(M) by (i,w)(X)=
(o, PAX)Y for all Xex(M). For w=fydfiA...Adf, it is not difficult to check
that

0 = (=1 5 (=0 fy P s B A1)
=1

It then follows easily that {(w,dP)~{dw, P) =(—1)*d(i,w) for weQ”(M) and
Pe®,_ (M). Consequently if weQ?(M) and Qe®, (M) such that dw =0 and
20 = 0 then ([w].[Q]) is defined up to a function of the form d(at) with ae ¢*(M).
Hence there is a well-defined map from (the notation is obvious) Hj x H¥ into Hj.

3. Lie algebras attached to a Poisson manifold

In this section we first define certain Lie algebras of vector fields on a Poisson
manifold which were introduced and studied by Lichnerowicz [5]. Next we show that
it is possible to define certain Lie algebras of 1-forms in an analogous manner.

Let (M, G) be a Poisson manifold. An element f of A is called a central function
or a Casimir function [10] if 8/ = 0. Equivalent conditions are (i) {f.g} = 0 for all
g€ N, (ii) fis constant on the leaves of the canonical symplectic foliation due to R, the
range of G'. Let & denote the set of all central functions on M. Then & is a
multiplicative subalgebra of ¥ and is a Lie ideal in (N.{ , }). Since —{X,. X,] = X, ,,.
</ is precisely the kernel of the map f— X, so that N/ is anti-isomorphic as a Lic
algebra 1o x,,, the Lie algebra of hamiltonian vector fields on M. Consider y. = {X¢e
MY OX =0}, x,, ={Xe€x(M)| for xin M, there exists a neighbourhood U such that
X| U is hamiltonian}),

A={Xex(M)| Tacy* (M)3a’ = X}, Xcou ={Xex(M)| IfestaL,G=[G).

It is easy to see the following: (1) x,, € x4 < X < Xconns (2) Xow © &, (3) each of
X Xras Xer Xcon @A A is an of-module and a Lie subalgebra of (M), (4) x,, and
Zun are Lie ideals in e, (5) if (M, G) is a Poisson manifold of constant rank then
Ton =X NA.

We will now consider x*(M), the Lie algebra of 1-forms. Let & be the space of
exact 1-forms, and € the space of closed 1-forms. Call a |-form a hamiltonian if af
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is hamiltonian and let x% denote the set of all hamiltonian |-forms. Define similarly
284 x2 and x2,.,. Finally let 2 denote the set of all 1-forms a such that «’ = 0.

PROPOSITION 3.1. (a) The spaces &, €. x &, xu- x& and x .., are all Lie subalgebras
of x* (M)
(b) Except for & and € all the rest of the spaces considered in (a) are <f -modules.
In fact, 2 is an N-modile.
(c) The space & is a Lie ideal in €; 2 is a Lie ideal in x*(M); x% and 32, are Lie
ideals in 28
@) () gy =6+2
(i1) g2, =laex® (M)« is locally in 8 + 7},
(iii) x& = {aex*(M)|L,G = 0},
(iv) & = la€*(M)IL,G = [G for fe o).

Proof. We prove (d).(J) Il ae &+ 2 then a' = (df)’ for some fe N so that ais
hamiltonian. Conversely if « is hamiltonian then there is an fe N, such that a’ =
(df)’ = a' —(df)* = 0.(ii) follows [rom (1). (iii) Since L,G = i,0G+3i,G = da’, L,G =
0ifand only if da’ = 0, that is if and only if «* is canonical. (iv) follows from the fact
that L,G =da* = —[G.a'] =L, G.

NOTE. [ gh. 22 x® and 18, are defined by the equations in (d) above then we
may prove (a), (b) and (c) directly by using our calculus of p-fields.
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