CALCULUS ON POISSON MANIFOLDS

K. H. BHASKARA AND K. VISWANATH

ABSTRACT

We prove the existence of a Lie bracket on the space of 1-forms on a Poisson manifold. This gives rise to a calculus of skewsymmetric contravariant tensors dual to Cartan's calculus of forms.

Introduction

The concept of a Poisson structure is currently of much interest and is being studied by Lichnerowicz, Weinstein and others ([5, 10, 8, 4]). A Poisson structure is a Lie bracket $\{$, $\}$ on the multiplicative algebra N of smooth functions on a manifold M satisfying the additional condition $\{fg,h\} = f\{g,h\} + g\{f,h\}$ for $f,g,h \in N$. N together with $\{$, $\}$ is called a Poisson algebra.

If (M, ω) is a symplectic manifold then $\{f,g\} = \omega(X_f, X_g)$ (where X_f is the hamiltonian vector field corresponding to f) defines a Poisson structure on M. However, this is not the only way in which a Poisson structure arises. In general the existence of a Poisson structure is equivalent to the existence of a skewsymmetric contravariant 2-tensor G on M satisfying $\{G,G\} = 0$ (where $\{f,g\} = 0$) denotes the alternating Schouten product $\{f,g\} = 0$). If G is as above and G is any skewsymmetric contravariant tensor on G then G is part of an entire calculus of skewsymmetric contravariant tensors which is dual to the Cartan calculus of forms $\{f\} = 0$. The key to this calculus is the possibility of defining a Lie bracket on the space of 1-forms on a Poisson manifold. (This bracket coincides in the symplectic case with the bracket defined in $\{f\} = 0$). Since Cartan's calculus involving the operators G is part of G is ultimately due to the existence of the Lie bracket of vector fields, it is possible to use the Lie bracket on 1-forms to define a calculus of skewsymmetric contravariant tensors in terms of operators G is only where G is a 1-form.

1. Definitions and notation

Throughout this article M denotes a Hausdorff, second countable and connected C^{∞} -manifold and N denotes the algebra of C^{∞} -functions on M. As usual a p-form on M means a covariant alternating p-tensor on M. We shall refer to a contravariant alternating p-tensor on M as a p-field on M. Thus a 1-field is just a vector field. Let $\chi(M)$ and $\chi^*(M)$ denote the spaces of vector fields and 1-forms on M respectively. The space of all p-forms and the space of all p-fields on M will be denoted by $\Omega^p(M)$ and

 $\Phi_{\rho}(M)$ respectively (so $\Omega^1(M) = \chi^{\bullet}(M)$ and $\Phi_1(M) = \chi(M)$). If $X \in \chi(M)$ and $\alpha \in \chi^{\bullet}(M)$ then the contraction of α with X is written as either $X(\alpha)$ or $\alpha(X)$.

Choose and fix $G \in \Phi_2(M)$. Define a map $G^*: \chi^*(M) \to \chi(M)$ by $G^*(\alpha)(\beta) = G(\alpha, \beta)$ for $\alpha, \beta \in \chi^*(M)$. For convenience we shall often write $G^*(\alpha)$ as α^* .

Finally, let us write $\{f,g\} = G(df,dg)$ and $X_f = -(df)^s$ for $f,g \in N$. Then X_f is called the hamiltonian vector field corresponding to f.

PROPOSITION 1.1. Let $G \in \Phi_1(M)$. Then the following are equivalent.

- (a) Jacobi's identity holds for { , }.
- (b) $X_{1,t,g_1} = -[X_t, X_g]$ for $f, g \in N$.
- (c) (N, { , }) is a Poisson algebra.

DEFINITION 1.2. If G satisfies any of the above conditions then the pair (M, G) is called a *Poisson manifold*. Also, G is called a *Poisson structure* on M. In general any unexplained notation will be that of [1].

NOTATION. Throughout this article (M, G) denotes a Poisson manifold unless otherwise specified; α, β, γ denote 1-forms on M; X, Y denote vector fields on M and f, g, h, denote C^{∞} -functions on M.

2. The Lie bracket of 1-forms on a Poisson manifold

Let (M, G) be a Poisson manifold.

Definition 2.1. If
$$\alpha, \beta \in \gamma^{\bullet}(M)$$
 then let $\{\alpha, \beta\} = L_{\bullet} \cdot \beta - L_{\bullet} \cdot \alpha - d(G(\alpha, \beta))$.

LEMMA 2.2.
$$\{f\alpha, g\beta\} = fg\{\alpha, \beta\} + f(L_{\alpha}, g)\beta - g(L_{\beta}, f)\alpha$$
.

PROPOSITION 2.3. $\{\alpha,\beta\}^* = [\alpha^*,\beta^*]$ where $[\ ,\]$ denotes the Lie bracket of vector fields on M.

Proof.
$$\{\alpha, \beta\}^*(df) = -\{\alpha, \beta\}(df)^* = -\{(L_x, \beta)(df)^*\} - (L_{\beta^*}\alpha)((df)^*) - (d(G(\alpha, \beta)))(df)^*\}$$

 $= -[\alpha^*(\beta(df)^*) - \beta(L_x(df)^*) - \beta^*(\alpha(df)^*)$
 $+ \alpha(L_{\beta^*}(df)^*) - \beta((\alpha(\alpha, \beta)))(df)^*]$
 $= \alpha^*(\beta^*(df)) - \beta^*(\alpha^*(df)) + \beta([\alpha^*, (df)^*])$
 $- \alpha([\beta^*, (df)^*]) + (df)^*(G(\alpha, \beta))$
 $= [\alpha^*, \beta^*](df) + A(\alpha, \beta),$

where

$$A(\alpha, \beta) = \beta([\alpha^{\bullet}, (df)^{\bullet}]) - \alpha([\beta^{\bullet}, (df)^{\bullet}]) + (df)^{\bullet}(G(\alpha, \beta))$$

= $\alpha([\beta^{\bullet}, X_t]) - \beta([\alpha^{\bullet}, X_t]) - X_t(G(\alpha, \beta)).$

It is easy to check that A is a 2-field. To prove that A = 0, it is sufficient to prove that A is zero on exact forms, that is, that A(dg, dh) = 0 for $g, h \in N$. But

$$A(dg, dh) = \{g, \{h, f\}\} + \{h, \{f, g\}\} + \{f, \{g, h\}\} = 0$$

(by Proposition 1.1).

We will now prove a lemma which will be useful later.

LEMMA 2.4. Let G be any 2-field on a smooth manifold M Define

$$H(\alpha, \beta, \gamma) = \alpha^{\bullet}(G(\beta, \gamma)) + \beta^{\bullet}(G(\gamma, \alpha)) + \gamma^{\bullet}(G(\alpha, \beta))$$

- $(G(\{\alpha, \beta\}, \gamma) + G(\{\beta, \gamma\}, \alpha) + G(\{\gamma, \alpha\}, \beta)).$

Then H is a 3-field on M. If G is a Poisson structure on M, then H = 0.

Proof. That H is a tensor follows from (2.2) and the N-linearity of G. Now let G be a Poisson structure. It is enough to show that H(df, dg, dh) = 0

But

$$H(df, dg, dh) = 2(\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\}) = 0,$$

 $(\text{since } d\{f,g\} = \{df,dg\}).$

PROPOSITION 2.5. Let (M,G) be a Poisson manifold. Then (2.1) defines a Lie bracket on $\chi^{\bullet}(M)$.

Proof. By the above lemma, it is sufficient to prove that

$$\{|\alpha,\beta\rangle,\gamma\rangle + \{\{\beta,\gamma\},\alpha\} + \{\{\gamma,\alpha\},\beta\}\} = d(H(\alpha,\beta,\gamma)).$$
 (*)

Consider

$$\begin{aligned} \{\{\alpha,\beta\},\gamma\} &= L_{(1,\beta)}\gamma - L_{\gamma}\{\alpha,\beta\} - d(G(\{\alpha,\beta\},\gamma)) \\ &= L_{2}\cdot L_{\beta}\gamma - L_{\beta}\cdot L_{2}\gamma - L_{\gamma}\cdot L_{2}\beta + L_{\gamma}\cdot L_{\beta}\alpha \\ &+ L_{\gamma}(d(G(\alpha,\beta))) - d(G(\alpha,\beta),\gamma)) \end{aligned}$$

by (2.3) and $L_{|X,Y|} = L_X L_Y - L_Y L_X$. Writing the remaining terms and using $L_X d = dL_X$ one can see that (*) holds.

We observe that $\#: \chi^{\bullet}(M) \to \chi(M)$ is a Lie algebra homomorphism by Proposition 2.3. So # is a representation of the Lie algebra $\chi^{\bullet}(M)$ on M. Hence using the methods of Chevalley and Eilenberg ([3, p. 115]) one can define a cohomology operator ∂ on ∂ on

$$\begin{split} \partial P(\alpha_0, \dots, \alpha_p) &= \sum_{i=0}^p (-1)^i \, \alpha_i^* (P(\alpha_0, \dots, \hat{\alpha}_i, \dots, \alpha_p)) \\ &+ \sum_{i < j} (-1)^{i + j} \, P((\alpha_i, \alpha_j), \alpha_0, \dots, \hat{\alpha}_i, \dots, \hat{\alpha}_j, \dots, \alpha_p) \end{split}$$

where $P \in \Phi_p(M)$. Its cohomology is called *Poisson cohomology*.

In the course of the proof of $\partial^2 = 0$ one comes across the operators $L_z : \Phi_p(M) \to \Phi_n(M)$ given by

$$(L_{\alpha}P)(\alpha_1,...,\alpha_p) = \alpha^{\mathfrak{p}}(P(\alpha_1,...,\alpha_p)) + \sum_{i=1}^{p} (-1)^{i} P(\{\alpha,\alpha_i\},\alpha_1,...,\alpha_i,...,\alpha_p)$$

and $i_a: \Phi_p(M) \to \Phi_{p-1}(M)$ given by

$$(i_{\alpha}P)(\alpha_1,\ldots,\alpha_{p-1})=P(\alpha,\alpha_1,\ldots,\alpha_{p-1})$$

for $P \in \Phi_n(M)$ satisfying the relations

$$i_{(\alpha,\beta)} = L_{\alpha}i_{\beta} - i_{\beta}L_{\alpha},$$

$$L_{(\alpha,\beta)} = L_{\alpha}L_{\beta} - L_{\beta}L_{\alpha},$$

$$L_{\alpha} = i_{\alpha}\partial + \partial i_{\alpha} \quad \text{and} \quad L_{\alpha}\partial = \partial L_{\alpha}.$$

Thus one can develop a dual calculus to Cartan's calculus on differential forms

Brylinski [2] defined a canonical complex on Poisson manifolds

$$\longrightarrow \Omega^{n+1}(M) \xrightarrow{\delta} \Omega^{n}(M) \xrightarrow{\delta} \Omega^{n-1}(M) \longrightarrow$$

where δ is given by the formula:

$$\begin{split} \delta(f_0 \, df_1 \wedge \ldots \wedge df_n) &= \sum_{i=1}^n \, (-1)^{i+1} \{ f_0, f_i \} \wedge df_1 \wedge \ldots \wedge \widehat{df_i} \wedge \ldots \wedge df_n \\ &+ \sum_{1 \leq i, \leq j \leq n} \, (-1)^{i+j} f_0 \, d\{ f_i, f_j \} \, df_1 \wedge \ldots \wedge \widehat{df_i} \wedge \ldots \wedge \widehat{df_i} \wedge \ldots \wedge df_n \end{split}$$

Its homology is called the canonical homology of the Poisson manifold M by Brylinski.

We now deduce the relationship between ∂ and δ . Recall that there exists a duality map $\langle \cdot \cdot \rangle : \Omega^p(M) \times \Phi_p(M) \to C^\infty(M)$ such that $\langle \alpha_1 \wedge \ldots \wedge \alpha_p, X_1 \wedge \ldots \wedge X_p \rangle = \det(\langle \chi_j \rangle)$. If $P \in \Phi_{p-1}(M)$ and $\omega \in \Omega^p(M)$ define $i_p \omega \in \chi^{\bullet}(M)$ by $(i_p \omega)(X) = \langle \omega, P \wedge X \rangle$ for all $X \in \chi(M)$. For $\omega = f_q df_1 \wedge \ldots \wedge df_p$ it is not difficult to check that

$$i_{p}\omega = (-1)^{p} \sum_{i=1}^{p} (-1)^{i} f_{0} P(df_{1}, ..., d\hat{f}_{i}, ..., df_{p}) df_{i}.$$

It then follows easily that $\langle \omega, \partial P \rangle - \langle \delta \omega, P \rangle = (-1)^p \delta(i_P \omega)$ for $\omega \in \Omega^p(M)$ and $P \in \Phi_{p-1}(M)$. Consequently if $\omega \in \Omega^p(M)$ and $Q \in \Phi_p(M)$ such that $\delta \omega = 0$ and $\partial Q = 0$ then $\langle [\omega], [Q] \rangle$ is defined up to a function of the form $\delta(\alpha)$ with $\alpha \in \chi^\bullet(M)$. Hence there is a well-defined map from (the notation is obvious) $H_2^p \times H_2^p$ into H_2^n .

3. Lie algebras attached to a Poisson manifold

In this section we first define certain Lie algebras of vector fields on a Poisson manifold which were introduced and studied by Lichnerowicz [5]. Next we show that it is possible to define certain Lie algebras of 1-forms in an analogous manner.

Let (M,G) be a Poisson manifold. An element f of N is called a central function or a Casimir function [10] if $\partial f = 0$. Equivalent conditions are (i) $\{f,g\} = 0$ for all $g \in N$. (ii) f is constant on the leaves of the canonical symplectic foliation due to R, the range of G. Let \mathscr{A} denote the set of all central functions on M. Then \mathscr{A} is a multiplicative subalgebra of N and is a Lie ideal in $(N, \{\cdot, \cdot\})$. Since $-\{X_f, X_g\} = X_{\{f,g\}}$. \mathscr{A} is precisely the kernel of the map $f \mapsto X_f$ so that N/\mathscr{A} is anti-isomorphic as a Lie algebra to χ_m , the Lie algebra of hamiltonian vector fields on M. Consider $\chi_C = \{X \in \chi(M) \mid \partial X = 0\}$, $\chi_{LM} = \{X \in \chi(M) \mid f$ or x in M, there exists a neighbourhood U such that $X \mid U$ is hamiltonian},

$$\mathscr{R} = \{X \in \chi(M) \mid \exists \ \alpha \in \chi^{\bullet}(M) \ni \alpha^{\bullet} = X\}, \quad \chi_{Cont} = \{X \in \chi(M) \mid \exists \ f \in \mathscr{A} \ni L_{\chi} G = fG\}.$$

It is easy to see the following: (1) $\chi_H = \chi_L = \chi_C = \chi_{Conf}$, (2) $\chi_{LH} = \mathcal{R}$, (3) each of $\chi_{LH}, \chi_{CH}, \chi_{Conf}$ and \mathcal{R} is an \mathcal{A} -module and a Lie subalgebra of $\chi(M)$, (4) χ_H and χ_{LH} are Lie ideals in χ_{Conf} , (5) if (M, G) is a Poisson manifold of constant rank then $\chi_{LH} = \chi_C \cap \mathcal{R}$.

We will now consider $\chi^*(M)$, the Lie algebra of 1-forms. Let $\mathscr E$ be the space of exact 1-forms, and $\mathscr E$ the space of closed 1-forms. Call a 1-form α hamiltonian if α^*

is hamiltonian and let χ_N^a denote the set of all hamiltonian 1-forms. Define similarly χ_{LN}^a , χ_C^a and $\chi_{Conf.}^a$. Finally let Z denote the set of all 1-forms α such that $\alpha' = 0$.

PROPOSITION 3.1. (a) The spaces $\mathscr{E}, \mathscr{C}, \chi_H^{\bullet}, \chi_{LH}^{\bullet}, \chi_C^{\bullet}$ and χ_{Cont}^{\bullet} are all Lie subalgebras of $\chi^{\bullet}(M)$.

- (b) Except for 8 and 8 all the rest of the spaces considered in (a) are A-modules. In fact, 2 is an N-module.
- (c) The space $\mathscr E$ is a Lie ideal in $\mathscr E$; $\mathscr Z$ is a Lie ideal in $\chi^{\bullet}(M)$; χ^{\bullet}_{H} and χ^{\bullet}_{LH} are Lie ideals in χ^{\bullet}_{cont} .
 - (d) (i) $\chi_H^{\bullet} = \mathscr{E} + \mathscr{Z}$
 - (ii) $\chi_{LH}^{\bullet} = \{\alpha \in \chi^{\bullet}(M) \mid \alpha \text{ is locally in } \mathscr{E} + \mathscr{Z}\}.$
 - (iii) $\chi_{C}^{\bullet} = \{\alpha \in \chi^{\bullet}(M) \mid L, G = 0\},$
 - (iv) $\chi_{Conf}^{\bullet} = \{\alpha \in \chi^{\bullet}(M) | L, G = fG \text{ for } f \in \mathcal{A}\}.$

Proof. We prove (d).(i) If $\alpha \in \mathcal{E} + \mathcal{Z}$ then $\alpha' = (df)^*$ for some $f \in N$ so that α is hamiltonian. Conversely if α is hamiltonian then there is an $f \in N$, such that $\alpha' = (df)^* = \alpha' - (df)^* = 0$. (ii) follows from (i). (iii) Since $L_x G = i_x \partial G + \partial i_x G = \partial \alpha'$, $L_x G = 0$ if and only if $\partial \alpha' = 0$, that is if and only if α' is canonical. (iv) follows from the fact that $L_x G = \partial \alpha' = -(G, \alpha') = L_x G$.

Note. If χ_{LH}^{\bullet} , χ_{LH}^{\bullet} , χ_{C}^{\bullet} and χ_{Conf}^{\bullet} are defined by the equations in (d) above then we may prove (a), (b) and (c) directly by using our calculus of ρ -fields.

ACKNOWLEDGEMENT. We are grateful to the referee for drawing our attention to Brylinski's article [2] and to Professor N. J. Hitchin for suggesting to us the nature of the relation between ∂ and δ .

References

- R. Abraham and J E. Marsden, Foundations of mechanics (Benjamin/Cummings Publishing Company, 1978)
- 2. J. L. BRYLINSKI, 'A differential complex for Poisson manifolds', IHES Preprint, March 1986.
- C. Chevalley and S. Eilenberg, 'Cohomology theory of Lie groups and Lie algebras', Trans. Amer. Math. Soc 63 (1948) 85-124.
- 4. R. Jost, 'Poisson brackets (an unpedagogical lecture)', Rev. Modern Phys. 36 (1964) 572-579.
- A. LICHNEROWICZ, 'Les vanétés de Poisson et leurs algèbres de Lie associées', J. Differential Geom. 12 (1977) 253-300.
- A. Nijenhuis, 'Jacobi-type identities for bilinear differential concomitants of tensor fields I'. Indag Math. 17 (1955) 390-403.
- J. A. SCHOUTEN, 'Über differential Komitanten zweier kontravariant Grossen', Proc. Kon. Ned. Akad. Wet. Ansterdam 43 (1940) 449-452.
 W. M. TULCZYIEW, 'Poisson brackets and canonical manifolds', Bull. Acad. Polon. Sci. Ser. Sci.
- Math. Astronom. Phys. 22 (1974) 931-935.

 9. W. M. Tulczyjew, 'The graded Lie algebra of multi-vector fields and the generalized Lie derivative of
- forms', Bull. Acad Polon. Sci. Ser Sci. Math. Astronom. Phys. 22 (1974) 937-942.
- 10. A. Weinstein, 'The local structure of Poisson manifolds', J. Differential Geom. 18 (1983) 523-557

Indian Statistical Institute Bangalore Centre RV College Post Bangalore 560 059 India School of Mathematics and CIS University of Hyderabad Hyderabad 500 134 India