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Optimal design for the estimation of variance components
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SUMMARY

The design problem for the estimation of variance components by the method of
unweighted squares of means, under a multifactor random effects model, is considered.
First it is shown that with the numbers of levels of the factors fixed, a balanced design,
if it exists, is optimal. Next the numbers of levels are also treated as decision variables
and the derivation of minimax designs is indicated.
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1. INTRODUCTION

The development of a systematic optimal design theory for estimating variance com-
ponents has received attention in recent years. For previous work see Mostafa (1967),
Anderson (1975, 1981), Patterson & Thompson (1971), Thompson & Anderson (1975),
Muse & Anderson (1978), Ahrens & Pincus (1981) and also a recent review by Khuri &
Sahai (1985). The present paper employs a factorial calculus (Kurkjian & Zelen, 1963)
to derive results in an m-factor setting.

Consider a random effects model involving m factors F,, ..., F,, for the jth factor a
random selection of s; levels (1<j<m) being included in the experiment. A typical
‘cell’ is then i={(i,,...,i,) and let n; be the number of observations in the ith cell
(0=i;<s5-1,1<j=<m). The cells are assumed to be lexicographically ordered. A typical
observation, Y, the uth observation in the ith cell, is represented by the model

- m tm) . p012) (m=1.m) (2.
Yo=p+al+. +ta +all+  +al7 " a4, 1)

H 1) {m) 12 -1, 2. .
where p is a constant and ai)’,..., a7, @\, ... a7, el e, are inde-

pendently normally distributed with zero means and variances

@10.00s - -+ » X00.01> X11.00s + + -5 Xo0115+ -+ 5 Xy 1y X

respectively. Thus if T be the set of m-component nonnull (0, 1)-vectors, then the variance
components are a,, for x€ T, and also a,.
In most practical situations, the total number of observations

Yn=n, (2

is fixed. The method of unweighted squares of means will be used for the estimation of
variance components. This is an easily calculated analysis that can be used when all the
sub-most cells are filled, and the means of these cells are used as observations and
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subjected to a balanced data analysis, as suggested by Yates (1934); see Searle (197,
p. 365). In order that mean squares for all main efiects, interactions and residual can be
calculated

522 (1sj<sm), (3a)

all the I1 5; cells must have at least one observation, and at least one cell must have more
than one observations, so that

n> H 5. (3b)

With other methods of estimation, not all the cells necessarily contain observations.

This paper considers in two stages the problem of selection of decision variables
S15.-.,Sm and {n,}, subject to the constraints (2), (3a) and (3b), for the optimal estimation
of variance components. [n the first stage, the optimal choice of the cell frequencies {n,},
for fixed {s}, has been analytically investigated. The second stage, which is mostly
prospective, allows the {5;} also to vary and indicates an approach conceming derivation
of minimax designs.

2. OPTIMAL SELECTION OF THE CELL FREQUENCIES

For each i, let Y,=n;' % Y,, where the summation is over u, be the mean of the ith
cell. Let Y bea v X1 vector, where p=11 s;, with elements )7,’5, lexicographically ordered.
Denote by D a v X v diagonal matrix with diagonal elements given by the reciprocals of
the cell frequencies {n;} and Jet c=p™'tr (D). For 1<j<m, Jet ], be the 5, X 5; identity
matrix, E; the s;x 5; matrix with all elements unity,

vefl 7D (b e

E (=0 ' I5'E {x,=0). (4a)
For x=(x1,..., Xx) € T, define
T(X)zll-ll S/x’, ﬁ(x)=n (S]‘l),‘, Vx=® V;/' W’:é W",, (4b)
- ja j=1 N

where ® denotes a Kronecker product.

For each x=(x,..., x,.) € T, the sum of squares corresponding to the factorial effect
Fj...Fip_is given by S,=Y'W'Y, while that corresponding to error is S,=
£3(Y, - Y,). Define the mean sum of squares M, =S,/B(x), for xe T, and M, =
S./(n —v). Under the model (1), ¥ is multivariate normal with covariance matrix

V=Y axV+eD. (5
xeT
Hence if one defines T, ={y=(y,...,yn): Y€ T, ;= x, 1 <j<m}, and observes that
by (4a) and (4b), for any y, g€ T,

ofr(@)}' W (qeT),

WVi=
[0 (€ T,), (6}

then it follows that

E(M,)=v "Z;_ {r(y)} e, +ca, (xeT), E(M.)=a,. )
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Let x* be the member of T having all elements unity. Then by (7), unbiased estimators
of the variance components are obtained as
Ge=0"r(x)(-D™ T (-1)*M,, xeT (x+x*),
yeT,

Go=Ma-cM., &.=M,. @®

By standard results on the covariances of quadratic forms in a multivariate normal
setting (Graybill, 1961),

cov (M,, M) =2 B(y)B(2)} " tr (WVYW*V), 9
for y,ze T, where V is as in (5). Now, by (5) and (6), W’V = £,(y) W’ + a, W'D, where
L(y)=v ZT {r(g)} e, (10)

qe T,

Also, by (42) and (4b), tr (W) = B(y),tr (WD) =v""8(y) tr (D) = B{y)and W*W* =0
for y+z Hence by (9), for y,ze T (y#2z),

var (M,) =2 By LD+ 2efu(9)a, + 2{ B(y)} ' h(y, )],
cov (M, M.)=2{B(y)B(2)} 'alh(y, 2),

where h(y, z) =tr (W' DW:D). Also, trivially, var (M,) = 2a3/(n— ), cov (M,, M,)=0
{y€eT). Hence by (8), after some simplification,

var(&,)=g.(x), xeT (x+x*),

var(é,-)=ga(x*)+252af/(n—u), var (&) =2a’/(n-uv), (11)
where, for xe T,
-1 2 f;(}’) ) (_l)l'(r,h-’) ]
= = fo(y)+ 2} +al 07 _
e [*;"B‘” Welnyaced el 1 5 gty M2 |- 2
For fixed 5y, ..., 5., under (2), the arithmetic mean-harmonic mean inequality shows

that ¢ is minimum when the {n,} are all equal. Also, by the lemma in the Appendix, for
each xe T,

ZZ; (=12 BB} k(. 2)

is a minimum when the {n,} are equal. Hence we have the following.

THEOREM 1. For fixed s,,..., 5., under (2), for each xe T, var(&,) is minimized,
uniformly in the unknown parameters a,, X€ T, and a., when the {n;} are all equal.

3. THE MINIMAX DESIGN

This section considers the optimal selection of the {s;}. In view of Theorem 1, it is
reasonable to compare the different choices of the {s;} taking the {n;} all equal. Then for
any fixed {5}, D=vn"'l, where I is the vxv identity matrix, c=vn™", h(y,y)=
v'n7’B(y), h(y,2)=0 (y+z2), and by (12), for xe T,

8. (x)=2{v"'r(x)}’ EZT (BN f(y)+ o™} (13)

The variances of &, (xe€ T) and &, are now given by (11) and (13).
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Two major problems arise in the optimal selection of the {s;}. First, for any particular
x € T, there is no single choice of the {5;} that minimizes var (&, ) uniformly in the unknown
parameters. Secondly, for any fixed set of values of the unknown parameters, no single
choice of the {s;} minimizes each of var (&,) (xe T) and var (&,).

To overcome the second difficulty, one may minimize

p= 5, wevar (&) +w, var (,), (19
xeT

where w, (xeT) and w, are known nonnegative weights. In particular, under the
A-optimality criterion, these weights are all equal. Difficulty, however, remains as no
single choice of the {5;} can minimize p uniformly in the unknown parameters. Hence,
bringing in the minimax criterion, suppose, as happens in most practical situations,

a,<é (xeT), ac<¢, (15)

where & (x € T) and ¢, are known positive quantities. Clearly, the maximum of p, subject
to (15), becomes p, obtained taking a, = £, (x€T) and o, =¢,.

One may now attempt to select the {s)}, subject to (3a) and (3b), so as to minimize Py
The resulting minimax strategy will also be locally optimal for &, =¢, (xe T) and a, =¢,;
for a similar situation in the context of minimum normed quadratic unbiased estimation
theory, see Rao (1973, Ch. 4). Itis, indeed, hard to obtain the solution analytically, since
the {s;} have to be integer valued and, as a function of the {s}, p, is involved. At least
for moderate values of the total sample size n, numerical methods, essentially based on
a complete enumeration, are successful. Let p, attain a minimum when the {s;} equal
{s;0}. If n is an integral multiple of II 55 then a balanced design exists for the choice
{50}, and this wil}l be minimax over all possible selections of the {s;} and {n,}. If n is not
an integral multiple of II s then such a balanced design does not exist but a nearly
balanced design corresponding to {s,} can be expected to be highly satisfactory. As a
referee remarks, in the latter situation a subset of a balanced design may be optimal.
Incidentally, the optimal designs of Mostafa (1967) were nearly balanced.

Example 1. For m =2, it follows from (10), (11), (13) and (14) that

= 2“’01(5?(32_ l)}_l(slfol +éh+ U"_Ife)z+ 2wl0(3§(sl - 1))_|(Sz§|o+ ént U"_lfe)l

+2{(s, - 1)(s2— 1)}—‘(“’01-‘1—2"' W|052-2+ wi)(én+ U"_I§¢)2

+2(n—v)" (w0’ 7+ w,) €L
With n =350, wg, = wyo=0:35, w,; =0-20, w, =0-10, £;0= &, =3, £&,=2, & =1, it may be
shown that p; is minimum, subject to {3a) and (3b), when s, =6, s, =8, the corresponding
value of p being say, p* =3-20236. Clearly, for no choice of the {s;} and {n,}, subject to
(2), (3a) and (3b), the maximum of p, over the range (15), can be less than p*. For
n=50, 5,=6, 5,=8, a balanced design does not exist but nearly balanced designs are
found to be highly satisfactory. For example, for the design d with 5, =6, 5,=8, neo=n,, =
2, n,, =1 for every other (i, iz), by (10), (11), (12) and (14), the maximum of p, under
(15), becomes 3-21577. Comparison with p* shows that the efficiency of d is as high as
99-58%.

4. CONCLUDING REMARKS

It would be interesting to find optimal designs, under a general m-factor setting, using
other methods of estimation; for details see Anderson (1975, 1981), Thompson &
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Anderson (1975) and Muse & Anderson (1978) who present, among other things, interest-
ing results on optimal designs for nested random effects models. It will also be interesting
to know about a best combination of estimator and design in general settings.

Another important practical problem is to find the optimal design when the cost per
observation varies from celi to cell and (2) is replaced by a restriction on total cost. Then,
even with the method of unweighted squares of means, an optimal choice of the cell
frequencies, uniformly in the parameters in the sense of Theorem 1, is not possible.
Therefore analytical solutions will be hard to obtain, numerical studies may yield
interesting results.
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APPENDIX
A lemma and its proof

LemMma. For fixed {s;}, under (2), 2X a,a:h(y,z) is a minimum when the {n;} are all equal
provided that the a,, a. (y,z€T) are free from the {n,}.

Proof. From the definitions of D and h(y, z) (y, z€ T), one obtains
Y aah(y,z)=tr (WDWD) =YY wiinm)"',

yzeT

where W={((w;))=Za,W’, for i=(i,,...,in), j=(ji,...,Jm)- Now, W is symmetric and, by
(4a) and (4b), WW =X ol W”. Hence making use of (2),

T, wh=wo, Lowi=w, LY wi=vw, LT wjlm+n)=2mm,
where wy =X a2B(y)/v. By Hélder's inequality (Rao, 1973, p. 55),
LY wimn)™ 24 13 wilni+ ) 24QLY wiP (LY wiln+ m)} = v’n " wg,

under (2), with equality when the {n,} are all equal.
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