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SUMMARY. For sequential Bernoulli trials, a necessary condition for a parametric 
function to be unbiasedly estimable is that it be continuous. Depending on the existence of the 

moments of the corresponding stopping time and the estimator, these functions are differentiable 

upto a given order. We also study the implications of these results to the problem of estimating 
min (p, 1 ?p) unbiasedly. 

1. Introduction 

Let (Xi), i> 1 be a sequence of i.i.d. Bernoulli r.v.'s with P(Xi=l)=p and 

P(Xi 
= 

0) 
= 

1?p, 0 < p < 1. Basu (1975) posed the problem of generating 
an event with probability p*, a > 0. Banerjee and Sinha (1979) pursued this 

problem and were led to the problem of estimability of g(p) 
= 

min(p, 1?p). 

Singh (1964) had proved that if (Xi), i ?> 1 are i.i.d. observations from 

some parametric family G0, 6 e ? and there is a fixed sample size estimator 

which estimates 6 unbiasedly, then a sufficient condition for a parametric 
function g(d) to be estimable on the basis of a random sample size N, is that 

it be in Baire class 0 or 1. 

This result is clearly applicable to the Bernoulli situation. However, 

Singh's sequential plans are not true sequential plans since he assumes. ?V 

to be independent of the entire sequence (Xi), i ?> 1. 

In the Bernoulli case, we consider the class of all true sequential plans 

(with no external randomization). By quite simple arguments, we are able 

to show that if a parametric function is (unbiasedly) estimable, it is necessarily 
continuous. Higher order smoothness can be proved under existence of 

moments of the sample size and the estimator. 

The original motivation for writing this paper was to see whether there 

are sequential plans allowing the unbiased estimability of the function 

g(p) 
= 

imn(p, 1?p). As a consequence of our main result, this is not possible 
if we restrict our attention to proper or bounded estimators and with expected 

sample size finite. 
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2. The main results 

Let (Xf), ? > 1 be a sequence of i.i.d. variables with P(X% 
= 

1) 
= p, 

P(Xi 
= 

0) 
= 

l?p, 0 <p < 1. Any realization of this sequence can be 

viewed as a path in the first quadrant of #2. Starting from the origin, at 

the i-th trial (i > 1), we move one step to the right if Xi = 0, and one step 

above if X< 
= 1. A non-randomised stopping rule tells us whether to stop 

or continue sampling after we have reached a given point?this depends on 

the path traced upto that point. Hence if T denotes the point where we 

stop, then PV(T 
= 

(x, y)) 
= 

K(x, y)px(l? p)y where K is an integer with 

0 ^ K (x, y) <? y y). Only closed plans are relevant and so we assume 

Pp(T<ao) 
= l, or in other words, 2 K(x, y)px(l?p)y 

= 1 for all^, 0<p < 1. 
?,2/5 0 

If T=(x, y), the random sample size Nt is given by Nt =x+y. An estimator 

e is a function defined on the possible points (x, y) of T. A parametric function 

g(p) is said to be (unbiasedly) estimable if there exists a stopping rule T and 

an estimator e such that 

2 \e(x,y)\Pp(T = (x, y)) <oo for 0<p< I 
x,y 

and 
2 e(x, y)Pp(T 

= (x, y)) = g(p) for 0 < p < 1. 

Theorem 1 : // g(p) is unbiasedly estimable, then g is continuous. 

Proof : Let e+ and e~ be the positive and negative parts of e and let 

g4p) = lle+(x,y)Pp(T = (x,y)) 

g_(p) 
= V e~ (x,y)Pv(T 

= 
(x,y)). 

Then g+(p) and g~(p) exist and g(p) 
= 

g+(p)?g-(p). It is enough to prove 

that g+(p) is continuous on any subset [a, b] of (0, 1). 

Define g%p) 
= S e+(x9 y)Pv(T = (x, y)). 

x+y^ n 

On [a, b] each g\ is continuous (in fact a polynomial in p) and g\ f g+ 

pointwise. Hence by Dini's theorem (page 248, Ap?stol, 1974), this con 

vergence is uniform, which in turn shows that g_,_ is continuous on [a, b]. 

Remarks : (1) As a consequence, if for a stopping time T, Ev(Nt) < oo 

for 0 < p < I, then p-+ Ev(Nt) is continuous. 

(2) We believe that continuity of g(p) is sufficient for its estimability 

but we have not been able to prove it. 

------ 
The following theorem strengthens continuity to differentiability under 

stronger conditions. 
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Theorem 2 : Suppose g is unbiasedly estimable by an estimator e and a 

stopping rule T such that Ep \ eN? | < oo. Then g is continuously differentiate. 

Proof : Fix [a, b] C (0, 1) and define g+, g\ as before. It is enough to 

show that g+ is continuously differentiable on (a, b) 

(g\(p))'= 2 
(^-^-)e+(x,y)Pp(T 

= (x,y)). 
z+y^n \ P i?pI 

Define Bn(p) = S 
(? --M e+(x, y)Pp(T 

= (x, y)). 
x+y^n+1 \ P 1?p/ 

Note that by the assumption that EP \ eNx \ < oo, Rn(p) exists and further, 

| Rn(p) | < cEp(NT e+ I(T > n+1)) I 0 for very fixed p 

by dominated convergence theorem. 

By Theorem 1, Ep(Nt e+ I(T > w+1)) is continuous in p and hence the 

above convergence is uniform. 

By dominated convergence theorem, as n ?> oo, 

(rt(p))WG>) = S 
(^-/-) *(z, y)PP(T = (x, y)) 

and as shown above, this convergence is uniform. 

On the other hand, g%(p) -> g+(p) for every fixed p. This g'+(p) exists 

and g'+(p) 
= 

f(p) (see Theorem 9.13 of Ap?stol (1974)). The .continuity of 

9+(p) follows easily (e.g. by Theorem 1). 

Remarks : (3) Exactly the same arguments show that if Ev \ eN% \ < oo 

for some integer k > 1, then g(p) is k times continuously differentiable. Hence 

if EV(N%) < oo then p-+ Ep(Nt) is continuously differentiable. 

(4) We conjecture that if Ep( \ e \ exp (aN?)) < oo for some a > 0, then 

g(p) is real analytic. 

3. Estimation of g(p) 
= min (p, 1?p) 

Since g(p) lies between 0 and 1/2, it is realistic to restrict attention to 

only bounded estimators. If we restrict ourselves further to stopping rules 

which have finite expected stopping times, then g(p) is not unbiasedly estima 

able. This follows immediately from Theorem 2. 

We give below examples of a large class of stopping rules which allow us 

to estimate g(p) (with possibly proper estimators). 

A 1-17 
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Define r? 
= 

p(l?p). Then it follows easily that 

. i_(i-4y)V? 
(?. 1-J?) 

=-^ 

(This relation also follows from the theory of random walks). Hence for any 

stopping rule for which (at least) the points (x, x) are boundary points, we 

can estimate g(p) by 

** *> ? 
(? J^gfe, y) 

??X = ^and T = {X' X) 
= 0 otherwise. 

However, it is easy to see that any such estimator is highly improper since 

K{z,x)<(2*). 
We have not been able to get a plan with a proper estimator of g(p). 

Note that any such estimator has to be positive at some points (x, y), x ^= y. 

Further, by Theorem 2, g(p) is not unbiasedly estimable by a bounded esti 

mator with finite expected stopping time for all p. This remains true for any 
other g(p) which is nondifferentiable. 

This leads us to the problem of characterizing all plans which yield (proper 
or improper) estimators of g(p). It is easy to see that a plan which includes 

as stopping points, the points {(1, 1), (x+l, x), (x, x+l) ; x = 2, 3, ...} enables 

to estimate g(p). This is because for any x, px+1 qx+px qx+1 
= 

px qx. This 

argument can be pushed further. For instance a plan including {(x, x), 

(Xq+2, x0), (x0, Xq+2) ; x ^ x0, x = 1, 2, ...} as stopping points, yields an 

unbiased estimate of g(p). These facts make the problem of characterization 

difficult to solve. 

Acknowledgements. The authors are grateful to the referee for his helpful 
comments. 

References 

Ap?stol, T. M. (1974) : Mathematical Analysis, Addison Wesley Publishing Company Inc. 

Banerjee, P. K. and Sinha, B. K. (1979) : Generating an event with probability pa, a > 0. 

Sankhy? B, 41, 282-285. 

Bastj, D. (1975) : Statistical information and likelihood. Sankhy? A, 37, 1-71. 

Singh, R. (1964) : Existence of unbiased estimates. Sankhy? A, 26, 93-96. 

Paper received : May, 1987. 

Revised : February, 1989. 


	Article Contents
	p. [127]
	p. 128
	p. 129
	p. 130

	Issue Table of Contents
	Sankhy: The Indian Journal of Statistics, Series A, Vol. 52, No. 1 (Feb., 1990), pp. 1-144
	Front Matter
	On Mixing for Flows of σ-Algebras [pp. 1-15]
	On the Characterization of Point Processes with the Exchangeable and Markov Properties [pp. 16-27]
	On a Generalized Stochastic Model for Estimating the Sizes of Spheres from Profiles in Thin Slices and an Associated Problem of Non-Identifiability [pp. 28-42]
	Quantum Stochastic Flows with Infinite Degrees of Freedom and Countable State Markov Processes [pp. 43-57]
	A Matrix Limit Theorem with Applications to Probability Theory [pp. 58-83]
	Characterizations of Continuous Distributions via Expected Values of Two Functions of Order Statistics [pp. 84-90]
	A Derivation of the Probability Density Function for a Modified Greenwood's Statistic and Testing the Uniformity [pp. 91-102]
	On Expectations of Functions of Order Statistics [pp. 103-114]
	Robust Prediction of Multivariate Stationary Processes [pp. 115-126]
	Existence of Unbiased Estimates in Sequential Binomial Experiments [pp. 127-130]
	On Two Conjectures about Two-Stage Selection Procedures [pp. 131-141]
	Book Review
	Review: untitled [pp. 142-144]

	Back Matter





