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Bayes’ error and its sensitivity in statistical pattern recognition
in noisy eavironment

B. B. CHAUDHURIt

This work is concerned masinly with statistical psttern recognition in noisy environ.
ment. Analytical expreasions have been found for misclassification probability under
Bayes' rule for multivariste ease under cortsin conditions of noise statistica. Tho
case when noise denzity is norma! has been cunmdemd in dsull lnd lhe prnpeﬂlh hnvo
been studied with numerical results. The sensitivity of p ¥
has been formulated to atudy the effect of erall | y in imation on
misclassification probability both for ideal and noisy snvxronmonl and numerical result
pnnmbd lur both cases.  Also, the problemu of unsupervisad learning and recognition,
og. hsa been di d for noisy i The work is useful and
important in practicsl pattern recognition problems.

1. Introduction
One of the purposes of statistical pattern classification is to find the clasg
membership of a sample from a set of messurements made on the sample.
Assuming that the feature selection is complete, the object may be fulfilled in
two stages: (1) classifier modelling and training, whereby class feature
statistics are estimated using a set of prototypes or training samples and decision
criteria are optimally chosen ; and, (2) classification with the trained classifier,
which accepta the feature measurements of the test sample and classifies it to
one of the possible clesses, as shown in the block diagram of Fig. 1. If the
dtatistics estimation is perfect and the messurements are error-free, Bayes’
decision rule provides the minimum misclassification error probability.
BA)ea rule, however, haa found wider applications in statistical pattern
bl Tta usefulness in parsmeter estimation, error analysis,
luture seleof.lon and hypothesia testing is well documented {Andrews 1972,
Pukunagas 1972) and is etill & subject of research. Some of the recent work
indludes the application of Bayes’ rule to stochastic automata {Tsai and Fu
1979), sensitivity of error rule in feature selection (Ben-Bessat 1980, Ben-Bessat
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Figure 1. Stages of 8 pattern recognition system.
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¢ al. 1080), classification in a time-varying environment (Swain 1978) and
decision tree approaches including feat t cost (Dattatreye and
Sarma 1981). Apart from its various direct applications, Bayes' rule also
provides a standard scale to find the efficiency of other decision rules.

In practice, neither of the stages stated above can be performed ideslly.
In stage ) the deviation from idesl conditions is mainly due to (a) finite number
of prototypes and (b) noise or imprecision in feature measurement of the
prototypes, while in stage 2 noise or imprecision may be the main problem.
Another problem, i.e. the fuzziness in clasa description due to vagueness of
features falls under the premises of fuzzy set theory and is not dealt with here,

In general, therefore, there are four cases ; where either stage 1 or 2 or both
are perfect or imperfect. Of them the ideal case, when both 1 and 2 are perfect,
and when 1 has deviation (a)atated above have been evaluated for error perform-
ance in standard literature. The present work, on the other hand, includes
noise or imprecision of the measurement system using their statistical property
and proceeds to evaluate the effect of the deviation (a) by sensitivity analysis.

Sensitivity considerations have long been of concern with dynamic systems,
especially with modern control systems, where sensitivity analysis and
synthesis has been used for optimization and adaptation (Horowitz 1963). The
work has since been extended to diverse area, such as, microwave (Shamasundra
and Gupta 1978) and fibre-optic (Chaudhuri 1979) designs—where the basic
idea is to study the effectiveness of working perameters for better performance.
Ben-Bessat (1080) used the sensitivity analysis to test the effectiveness of
Bayes’ rule to feature selection. In the present work the tolerance of mis-
classification probability due to fluctuation of the parameters has been found
using the sensitivity analysis. The tolerance reflects the additional penalty to
be paid for the deviation (a) in stage 1 when the deviations are small. The
purpose of present analysis, therefore, is different from that presented by
Ben-Bessat. However, the problem of feature selection may also be included
in & more practical environment of noise and imprecision.

In the following section Bayes' error probability has been formulated for
perfect and noisy systems. At first it is assumed that stage 1 is perfect and &
statistical density function exists to describe the feature measurement noise.
The noise density is assumed to be symmetrical about its mean, where the mesn
is the expected correct feature measurement. Properties of the error probs-
bility under the special case of class conditional feature density as well as noise
density being normal have been discussed. In §3 the sensitivity of Bayes’
error for both the ideal and noisy cases has been formulated for normal denasities,
thus including small deviation in stage 1 and noise in stage 2. The case when
stage 1 is also noisy is disoussed in § &6 while numerical results have been
presented in § 4. Another problem of learning in unsupervised environment,
e.g. clustering, has also been discussed in § 5 for noisy measurement.

2. Bayes’ error for noisy and nolse-free measarements
2.1, Bayes’ ervor for noise-fres measurementa

Consider multiclass pattern recognition problem with class probability
P(8,), 8, being the ith among I classes. Let x denote feature vector with
components z;, k=1, 3, ..., n optimally chosen and measured with infinita
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precizion and resolution in & noise-free environment. Lot the class conditional
feature probability density p(x|S,) as well as P(S) be known exactly over
prchr. Lot
Ag={x: P(S)p(x|8))> P(8))p(x|8)), ¥j #1} )
Bayes’ decision rule with symmetric cost function assigns sample s to S, if
tbe corresponding x(s)4,. The probability of misclassification is

1
P= -';1 ‘.[ P(8)p(x|8,) dx ©

where ¢ denotes complement.

It can be shown that the decision rule is best under the symmetric cost
function. It minimizes the average misclassification probability for any given
P(8)) and p(x|S,) over D*. Equation (2) accounts for error when both stage 1
ud 2 are perfect.

3.2. Bayes’ error for noisy measurements

Consider, now, the case when P(S,) and p(x|S,) are exactly known, ie.
stage 1 is perfect but feature measurement at the classification phase is noisy,
is. atage 2 has deviation (b) stated above. Considering this measurement as y
with noise =y —x we assume that :

(i) the distribution of e is independent of position in D* ;

(it} ply|x) is independent of the class to which x belongs ; and

(iii) ply|x) is symmetric about the true measurement x.

For gero-mean gaussian noise the assumptions are valid. If the decision
nile is same on Y, i.e. for an observed y we assign it to class S, if

P(S)p(x[8))xmy > PISPIX|S ) ueys Vi ®
then the probability of misclassifieation is (Chaudhuri e/ al. 1982)

1
P=1 ‘!_ P(s()p(xls‘)djﬂ ply|x) dy dx @

We have, after some algebraic manipulations
AP=P,-P

I
=L ] L (PShptxiS)-PSpxIS))  pybxidydx (3)

Using inequality (3) it can be easily proved that
AP20 (6)
It should be noted that eqn. (3) does not lead to minimum P, or AP if
piz|8,) for all § do not have identical shape. An example of identicul p(x|S;)
isthe normal densities having equal covariance matrix when A; is the same a8
i §2.1. The integral in eqn. (4) is actually a convolution of p(x|¥;) and
Pyjz) loading to p(y|S,). However, the present form of eqn. (4) is used
because it allows a direct comparison with P through eqn. (5) and the sensitivity
of error with density parameters—ae described in § 3—can be explicitly
txpressed in this form, Furthermore, some computational Y is possibl
in the general deoision making for olasaification.
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For p(x|S,) and p(y|S,) normal, the evaluation of eqna. (4) and (5) requires
multiple infinite integration over qusdratm hypersurfaces. For two-class
univariate problem with equal covariance we have

P= | 2|8y | plyle) dy dz @
where P(S,)= P(S,)=0-5 and
g\
2lz|8)= (2")0 (W) . Vi ®)
plyle)= (2 o, P T (‘/z: ) )
Zy= (1 + )2 (10)

have been assumed. It can be shown that AP is monotonic increasing with o,.
Furthermore, using the limiting conditions 0,0 and ¢,~co it can be shown
that the upper and lower limit of AP is 0-5— P and 0, respectively. Also, the
results are true for other densities p(y|z) satiefying the conditions (i)-(ii)
given above.

When p(y|8,) rather than p(x|S,} is given, a knowledge of p(y|x) can lead
to.p(x|8;) from p(y|S,) if the error e is d independent of x and all densit
functions normal. The above formulation and strategy can then be used to find
the performance of a classifier both trained and working in a noisy environment.
However, a complete relaxation of the requirement of large number of proto-
types at the training phase may not be accommodated in the present framework
and may be treated in terms of bounds of error. But if it is known with high
confidence that the fluctuation in parameters defining p(y|S,) or p(x|S,) due to
small number of prototypes is small, the following sensitivity analysis can be
used to advantage for classifier performance.

3. Sensitivity analysis
8.1. Parameler sensilivily
The sensitivity of one parameter z with that of y may be defined as

o

Sz.v="'

It is to be noted that the definition given above is not, usually, dimension-
less, Apart from this there are other problems regarding the definition of
sensitivity, Excellent review regarding these problems in control theory
given in Kukotovic and Rutman (19665).

Woe do, however, accept the above definition modified so that it becomes
dimensionless. Thus we acoept (Peikari 1974)

8, = — (11)

1t a characteristio C' is a funotion of several independent parameters y;.
§=1,2,.., 7, then the change in the characteristics AC is related to the
tolerance Ay, of y, by the relation

AC=C ‘Z:l (Ayc|y)Se,y, (2
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3.3. Sensilivily of Bayes’ ervor for ideal ease

To find the sensitivity of Bayes’ error probability in pattern classification,
we shall consider the density p(z|S,) normal. Since mean and standard
deviation are the parametera completely specifying the density, it is only
necexsary to find the sensitivity with these parameters.

However, even for the simplest two class univariate problem, there are two
means and two standerd deviations to be accounted. It is rather useful to
comhine the two mean p, and g, a8 a single parameter p, — i, = Ap because it is
the difference rather than individual values that are sensitive to misclassifica-
tion probability. For the simplest case P(S,)=P(8;)=0-5 we have, using
eqns. {2), (8) and (11)

Ap
SP,A‘= -ﬁp(ﬁlsx) (13)
which meens that the error sensitivity is proportional to the density at decision
boundary 2z, and d a8 Ap, the seperation between the two means
increases.

Under the same conditions as above, we have
A,
SP,:’{EP(’:I&) (14)

which means that the error sensitivity increases at the same rate us p(x,|S,)
increases with 0. It is interesting to note that eqns. (13) and (14) are the same
exeept for sign. However the variable and constants are different in the two
cages.

We can, however, combine the two parameters together in the form Apjo=z
and see that

A
8p,= ‘E%P(Illsx) (13)

which again has the same form as eqn. (13) but tolerance to both Az and o
flnctuation has been accounted here.

Let, now, p(x|S,) be & multivariate normal density with mean g, and
wvariance matrix [0,}]. Let [o,®)=[0,%]=[0?). Again, & straightforward
enaluation of error sensitivity is difficult because of multiple integration
involved over decision boundary. The misclassification probability derived
from the distribution of likelihood ratio (Fukunaga 1972) may, however, be
uwed to advantage.

The minus-log likelihood ratio k,4(x) for two classes S, and S, are defined as

Byg(x) = (g — ) (0]~ + } {18, T(0*) 1ty — it "[0%]1ea} (16)
tnd the decision rule is
P(8,) 8
h{x)SIn F(S—‘)—.xe{ S,

The distribution of hiy(x[S,) is also normal and its expected value and
wvariance are given, respectively, by

m=‘{hu(x|3,)}
= = g~ ) "[0*] (g — 1) & —7 (1)
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with
M=""
and
opt =& {hyy(x|S) -1}t =29 (18)
with

o' =o' =0,}
Note that 2n=2* for univariate case. To be consistent with this we define
2n=2* and find the error sensitivity with respect to this combined parameter .
Now, the error probability is

L] I
P=P(8)) i‘l Palhys|Sy) dhyg+ P(Sy) _,L Palbys|Sy) dhyy

-~ [P(sl) e Lagrpisy g e —%de] 19
where
t=ln (P(S,)[P(Sy)
from (12) and (19) we have,

B )

+28) (i45) o -1 (F22)] o

Note that eqn. (20) ia the same as (15) if P(S,)=P(S,)=0-5 and x becomes
univariate.

3.3. Senstlivity of Bayes' error for noisy measurement

For the practical case of noisy measurement there are three parameters to
be considered for sensitivity analysis. If however, the noise statistics is
assumed accurately known we are left with Ap and 0. Error sensitivity with
respect to Ap and o can be derived individually. But a close look into eqn.
(7)(9) clarifiea that no closed form expression exists for the sensitivity with
respect to z= Aufo defined earlier. This is because Ay is involved through
in the limit of second integration while o is a parameter of the first integral.
However the tolerance of error probability when both Ap and o are fluctuating
is found from individual sensitivities using eqn. (12) above.

It can be shown by straightforward calculation that for two-class univariate

case with equal variance

Sp...a,= I \/(21')0 —(I LD 2(z,]2) dz (21)

and
1 ® r @ 29)
8p,0= -P _]; l—; p(z|81)‘j plylz) dy dz (2

where p(z, |) is the value of p(y|z) at y =2z, with mean at z.
It is seen that the eqns. (21) and (22) require integration over infinite runge
and hence a simple extension of the equation to multivariate case will involve



Bayes’ error in statistical patiern 565

multiple such integrations. A straightforward simplification of the prublem
even for [0,%]=[o4?] a8 in eqn. (19) for the ideal case is not pussible because of
double integration involved in P,.

But if o* and o,® are added 8o that o ' =02+ ¢,' and pu,; =g, + p, the sensiti-
vity with respect to these parameters can be found using (13)-(15) and (20).
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Figure 2. (g) Exoses Bayes’ error for noisy measurement (¢=1-0). (b) Maxima of
exoeas Bayes’ error for noisy measurement.
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4. Numerical results

In Fig. 2 (s) the excesa probability of misclassification AP has been plotted
against Ap for different o, using eqns. (7)~(9). The plots show that AP
increases with g, for a fixed Ap. For Ap=0, AP =0 because the two classes are
statistically indistinguishable and P,=P=0-5=P(8,) for any value of o,, the
worst possible case of classification. The decision strategy is to assign z or y
to S, or S, according as z > p, = p, or not and hence o, is immaterial. The other
limiting case AP—0 as Ap—oo occurs because P,—0, P—0, the order of
convergence of the former depending on o,. The function AP shows a maxi-
mum which can be found by differentiating it with respect to Ap. The
maximum occurs at lower Ap with o, decreasing and vanishes with o, vanishing
with AP—0 also.

In Fig. 2 (b) the maximum of AP is plotted agsinst o, for different values
of 0. The maximum is quite significant in pattern recognition problems. It
describes the optimum sensitivity of excess misclassification probability at the
particular situation and indicates the noise immunity necessary for the system
to overcoms it.

The magnitude of sensitivity of misclassification probability Sp ,, has been
plotted against Au for different values of o in Fig, 3. It is shown that the
megnitude increases with p for a fixed o, i.6. Sp ,, decreases with Ap. Fora
fixed Au, the magnitude increases with o decreasing, the error being less
sensitive. This is because the densities p(z|S;) becomes more flat and absolute
value of its slope at any point decreases with ¢ decreasing.

In Fig. 4 the sensitivity of misclassification probability with o, i.e. §p , has
been plotted againat o for different values of Ap. The sensitivity sharply
decreases around o=0-2 and falls linearly thersafter. It decreases also with
Ap for a fixed o, the reason again being flattening of slope for large Au.

The magnitude of sensitivity of misclassification probability with respeot
to z has been plotted in Fig. 5. The nature of the curve is similar to those in
Fig. 3 and can be used for multivariate case also. However, for multivariate
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Figure 3. Bensitivity of Bayes’ error with mean separation (ideal case).
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Figure 5. Sensitivity of Bayes' error with variable z (ideal case).

case the relationship with the direct parameters ; and [0,%] is implicit and it
isnecessary to use eqns. (17)-(18) to find the exact tolerance of misclassification
probability to these parameters,

The magnitude of eensitivity of misclassification probability with noisy
messurement has been plotted against Ay in Fig. 6. It is seen that the magni-
tude decreases with increasing o, The value of sensitivity for noiseless
measurement has been shown for comparison of relative magnitudes. Although
the change in sensitivity is low, it should be mentioned that P, is higher than P
for all values of Ap.

Figure 7 shows the senaitivity of misclassification probability with respect to
cunder noisy environment conditions. The sensitivity shows & peak that shifts
towards larger o for higher o, It increases with Au decreasing and vanishes
uAu—~co, The peaks denote the positions where the error is most sensitive.
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Figure 6. Sensitivity of Bayes' error with mean separation (for noisy measurement
.., denotes §;, , for 0=0-5).

Figure 7. Sensitivity of Bayes’ error with standard deviation (for noisy measure-
ment, —for ¢,=025, ..., for g,=05).

s, Ap PorP, |[AP|or|AP,)

— 06 038208 1144 x 1074
— 10 030854 1004 x 107¢
05 { 06 0-39427 1358 x 10~
10 032727 10-59 x 10¢
10 { 06 0415982 1147 x 107
10  0-38176 9-68 x 10~
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The Table gives an idea about the tolerance of P or P, to 1%, fluctuation
in Au from their true values. Thus, for o, =05, Ax = 1-0, the system will suffer
sdditional error +0-059%, if Au deviates 119, from its true value due to
estimation from a finite number of prototypes.

s, Di

‘I'he formulation and underlying assumptions in § 2 is useful and important
in pattern recognition problems. Situations like this occurs when the
recounizer is trained in good laboratory conditions with large numbers of
prototypes and utmost precaution can be taken to make the feature measure-
ments noise-free while the sample data to be recognized may be telemetric and
hen-c susceptible to noise and imprecision. An inverse situation is less likely
to uceur. However, when this occurs, the assumptions about p(yjx) allow an
estimation of p(x]8,) from p(y|S;) and hence the formulation of § 2 can be used
thereafter. Nevertheless, when the assumptions are invalid should be treated
carefully.

The problem of recognition error due to finiteness of prototypes in estimating
the parameters of p(x|S;) can be treated using the sensitivity analysis. Ifit is
known with & given risk that the deviation of the parameter p from the true
value p, has s small range Ap, sbout p, the excess misclassification probability
can be found as discussed above.

Sometimes Bayes’ error probability is used for feature selection problems.
The analysis presented in § 2.2 may be used for the more general case of noisy
feature. However, as Ben-Bessat pointed out for the noise-free case, the
sensitivity of Bayes’ error is sometimes quite low and should be treated care-
fully. It should be mentioned that the sensitivity is lower for noisy than for
noise-free case.

The numerical results presented with the help of a VAX 11/780 computer
in double precision covers the workable range of parameters and can be used
directly, if necessary. The formulation and results have been presented for
normal p(y|x) 80 a8 to include the most common electrical white gaussian noise.
Other forms of density finctions may also be used in & similar manner. There
is a problem of computing the misclassification probability for noisy multi-
variate case which involves several infinite integrals. The problem may be
attempted either using the approach of Fukunaga (1972) or through the

approaches of finding error bounds.
Another problem that needs attention is unsupervised learning and recogni-
tion under noisy envi t. Of the pervised techniques clustering is

one of the most important for its applications beyond pattern recognition
problems. Both hierarchal and non-hierarchical agglomerative and devisive
methods have found wide use and a new approach that has drawn considerable
attention recently is the fuzzy set theoretic approach. While the former
techniques define hard sets, the later describes each cluster as a fuzzy set with a
grade of membership for each eloment over the demain. But none of the
approaches considers noise, imprecision or ambiguity. Hence any such
tlgorithm will produce inconsistent clustering of the data produced by a noisy
generating system at different instances. Although there is no general solution
to the problem, some properties may be studied if the noise statistics is known.
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Let the noise density be zero-mesn normal with a standard deviation o 8o that
any noise-free datum remaining within + 30 of the observed value has a
probability 0-99. Now if a clustering algorithm is used on two positions of the
data 30 away from the observed value, we get two sets of cluaters. The
intersection of the elements of the corresponding clusters in two cases may be
called a consistent cluster with high confidence. A degree of inconsistency
may be defined on the number of data in consistent cluster in relation to the
total number in the original cluster. The region of consistent cluster is useful
as a region more immune to the noise and the data falling in that region may be
used as prototype in modelling a pattern recognizer. The problem of clustering
for practical noisy data will be discussed elsewhere in details.
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