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Model for the epigenetic mechanism during embryogenesis: a study of
escillations in a multiple-loop biochemical control network

A. K. SAHAtY and P. K. TAPASWIt

A model is constructed for transcription and transation during embryonic develop-
ment, based on the principle of multiple-loop feedback inhibition in which the end
product can inhibit some of the intermedi ions. The di ion of the system
is reduced by applying the singular perturbation technique. By explicit construction
of a Lyapunov function for the reduced system, it is shown that the system is globally
stable. Using the Hopf bifurcation theorem and the Nyquist diagram, it is also
shown that for some range of values in the parametric space the system has a limit
cycle oscillatory solution around the unstable local equilibrium. The stability of the
limit cycle is then studied analytically using the fundamental Brujno theorem.

. Introduction

Oscillations in biological control systems are well-recognized phenomenon which
have drawn increasing interest, both in the experimental and the mathematical fields
of investigation. Examples of periodic variations in physiological and biochemical
systems are numerous (see Brahmachary 1967, Bunning 1973). Heart beats, mitosis,
cell divisions, and menstrual cycles are some of the obvious examples of biological
oscillations. Blood cell formations (Glass and Mackey 1979), synthesis of cyclic AMP
(Brooker 1973, 1975, Shaffer 1975, Roos et al. 1977), glycolytic mechanisms {Ghosh
and Chance 1964, Hess and Boiteux 1971, Pye 1973, Boiteux and Hess 1973, Gerisch
and Wick 1975), variations of leukocyte count in leukemia (Kennedy 1970, Chik-
kappa et al. 1976) and of reticulocyte count in dogs (Morley and Stohlman 1969,
Morley et al. 1970), membrane potential of neurone in aplysia (Junge and Stephens
1973, Eckert and Lux 1976) and many enzyme catalysed reactions, are some of the
examples of periodic physiological and biochemical processes. Mathematical analyses
of such periodic processes have been published by Chance et al. (1967), Walter (1970),
Hess and Boiteux (1971), Goldbeter and Lefever (1972), Cooke and Goodwin (1972),
Higgins et al. (1973), Boiteux et al. (1975), Hess et al. (1975), Hess (1976), Hammes
and Rodbell (1976), Heiden (1976), Othmer (1976), Sell (1976), Cronin (1977 a,
1977b), Goldbeter and Segel (1977), Heinrich et al. (1977), Murray (1977), Mees and
Rapp (1978), Glass and Mackey (1979), Rapp (1979) and many others. A vast
literature and elegant discussions on all these biological and biochemical oscillations
can be found in Chance er al. (1973), Pavlidis (1974), Murray (1977) and Rapp (1979).

This paper deals with the epigenetic control network at a sub-cellular level. A
realistic mathematical model has been constructed on the basis of the recognized
control mechanism for transcription and translation during embryogenesis, and
ascillations have been studied. Transcription and translation are oscillatory processes
that have been experimentally observed by Mano (1960), Mazia (1961), Cummins and
Rusch (1968), Brahmachary et al. (1971), Chance et al. (1973), Brodsky (1975) and
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others. Mathematical analysis of the oscillatory epigenetic control system can be
performed by constructing suitable non-lincar mathematical models containing single
or multiple loops based on the Jacob-Monod operon concept of gene regulation
(Jacob and Monod 1961). Studies of oscillations in single-loop negative feedback
biochemical control networks have been made by several researchers, such as
Goodwin (1963, 1965), Willems (1966), Griffith (1968), Knorre (1968), Walter (1969),
Viniegra-Gonzalez (1973), Walter (1970), Knorre (1973), Lighthill and Mees (1973),
Tyson (1973). Chowdhury and Atherton (1974}, Hunding (1974), Poore (1975), Tyson
(1975), Heiden (1976), MacDonald (1976a, 1976 b), Othmer (1976), Allwright
(1977 a, b), Cronin (1977 a, b), Hastings et al. (1977), Murray (1977), Rapp (1979).
Tapaswi and Saha (1986), Tapaswi er al. (1987) and others. An extension to multiple-
loop systems has been published by Mees and Rapp (1978) and Tapaswi and
Bhattacharya (1981). In this work we have constructed a multi-loop negative feedback
control network model which represents the entire epigenetic mechanism, from gene
activation to protein synthesis followed by end-product feedback control which
regulates the genes, transcribing different size classes of RNA that take part in the
template formations and protein synthesis.

2. Mathematical model
The model is based on the following well-known principles of transcription and

translation:
(1) each of the FRNA, mRNA and (RNA syntheses is proportional to the
activation of its respective gene, and inversely proportional to the con-
centration of the repressor (end-product negative feedback);

(2) formation of polysomes is directly proportional to the available amount of
rRNA and mRNA;

(3) protein synthesis is directly proportional to the available amount of tRNA and
polysomes;

(4) the synthesis of the repressor molecules is directly proportional to the amount
of protein;

Figure 1. Schematic diagram of the epigenetic mechanism. G,, G, and G, are the three genetic
loci transcribing FRNA, mRNA and (RNA, respectively. For details see § 2 of the text.
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{5) each of the components under investigation decays at a rate which is
proportional to its own amount of accumulation.

A schematic representation of the above theories is given in Fig. 1. We denote the
concentrations of rfRNA, mRNA, (RNA, polysome, protein and repressor per cell by
X\ X1 Xy, ... X, respectively (throughout the whole investigation these variables
will represent the respective concentrations per cell of the embryo).

Then, according to the principles (1)-(5), the rate of synthesis of the components
Xy Xz.... X will be determined by the following set of simultaneous ordinary
differential equations:

dX, a,

o " Takxg b
dX, a,

@ Temxp BN
dX, oy

it 1+ hXP —hXs
. > 2.1
_dl__a‘X (Xy—faX,
¢
—dl—s=“sxlxa—ﬂsxs
¢

d—le—ae s—BsXs

To obtain the dimensionless form we introduce the following dimensioniess variables:
1= [ayyas0ghl’™ (o, 2,)1 1"

o, o, o,
==X, x=—X,, XL——X
L L a3a

) Aot l/.\x
450,050 s 22
Xe=(h)"™ X

’slgt (i=1,23)

h= [(al’h)z/(“zﬂsﬂs“s ()18, (i=4,5,6)

&= [myayosaghi™/(a,2,)*1'P B,

and

p =1 real positive number (without dimension)
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This leads to the following dimensionless form of the governing equations (2.1):

dx; 1
E—= —NiXs

dt =l+)(§'
de,_ 1 «
@t Teap P2

dx, 1

f=2 = Xy
d 1+ x3°
! s L 23)

Xa _
T =X X2~ VaXe

dr
dxg
i PX3Xq—YsXs

dx‘—x— «
i s~ Y6Xs

3. Application of singular perturbation technique

The reduction in dimensions of the full system by singular perturbation is an
efficacious method for the qualitative analysis of the model. Using Tikhonov's
theorem (Tikhonov 1952) on singular perturbation, Othmer et al. (1985) have
successfully analysed a fifteen-dimensional model system for signal relay adaptation in
Dictyostelium discoideum. We shall (ollow the same method for the reduction of our
six-dimensional system as given by (2.3).

First we assume that the parameter ¢ is very small. From (2.2) the condition for
this is

ayayagagh™ «(a,a,)® (3.0

Now we write the system (2.3) in the following form:

dx
7 ==y
P (32
Y _
e =%y
where
X=(x4, X5, X6)TER?
y=(x1, %3, X;) e R?
X1 X2 = YaXy
S(x,9) = [ px3xq —VsXs
Xs —YeXg (33
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1
W—M:

1
glx,y)= oo —Y1X;

1
sz,—hxs

Tikhonov's theorem can be stated as follows.

Theorem 1

If the solution y = ¢(x) of g(x, y) =0 is unique and positively stable in a closed
bounded domain D c R, if the initial point x(0), 0) belongs to the domain of
influencet of this solution, and if the solution of the degenerate system given by

dx

i J(x, ¢(x)
belongs to D for 0 < 1 < T, then the solution (x(t, ), y{1, €)) of the full system (3.2) tends
to the solution of the above degenerate system as ¢ approaches 0, i.e.

limy(t,e) = ) =@(%. 1) (0<1<T°<T)
=0

and
hmx(l g=x(1) (0€:1<T°<T)

Now we shall apply Tikhonov's Theorem to our system (2.3).
On setting £ =0 in the second equation of (3.2), the unique solution is given by

x,=;ﬁ (i=1,23) (34)
We write the second equation of (3.2) in the form
aj—:: =Ky+F (3.5)
where
-n 0 0
K= 0 =—y; 0| y=(x;,%0.%)"
0 0 -y
and

F ] 1 1
T4 145 T+ xp

4 The domain of influence of a unique posmvely stable y = ¢(x) is the st of points {x*, y'*)
such Lhat the solulion of the iated adjoined system dy/ds = g(x®, y*) with initial oondmon

#0)= y* tends to ¢{x®) as s— oo (see Othmer et al. 1985).
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The eigenvalues of K can be found from the secular equation

(1o + Dy2 + Ay +H=0 (36)

which shows that all the eigenvalues are negative. This implies that the manifold y =
@(x) is exponentially attracting and the solution y* = @(x*) is unique and positively
stable. Hence, according to Tikhonov's theorem for 0 < ¢ < 1, the full system (2.3) can
be approximated to order ¢ by the reduced form (replacing x,, x5, x5 by y;, 2. ¥3,
respectively) given below:

v

& a0

dy: P .
(i) N 69
dy

d—:=y1—m3

4. Steady state

The steady-state values of y,o, y1 and yyo of y, (1), y{2), 3(2) as t - are given
by the following equations:

1

0z —m8o—
YL+ A+ 58 4o
PYro (4.1)
0=—F20 __
) YsYa20
0=y0—YeVs0

Now we show that system (3.7) possesses a unique steady state. To do so we write
system (3.7) in the following form:

d

L =Fin)

d

%=Fz(}’1-}’z-}’)) 42
t

d
£=F3(}'z-}'a)

where
Filyuyn)= l Y
e e T
PH
Faynyu )= —r—r—
W ynys ) Ys¥2
Fy(y2, y3) =y2—Ye)s
Lemma |

The system (4.2) possesses a unique steady state in the positive quadrant.
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Proof
The steady-state values y,q, Y20, y3o are given by
1
nnll+ 381+ y33)
PYo 43)
Teha = v
YeY30 = Y20

Solving these equations we get

s y
(‘H Y:) Yio=p / Il:l‘ (14 y38) = F(y30) (44)

[
Obviously F(y,o) is a decreasing function of y,, and so the graph of (l'l y,) Yso
-

YeYo=

and F( yyo) intersect exactly once in ( yyo > 0). Hence (4.4) has a unique solution giving
R ¥30)
= "¢
M

i=

Then from (4.3) it follows that y,, and y,, also have a unique solution. Thus the
system (4.2) possesses a unique steady state j ={y,q, ¥10. ¥30)- 8]

Now we prove that the system (4.2) is globally stable.

Lemma 2
The system (4.2) possesses a globally attracting set I containing the steady state j.

Proof

Since F,(y,, ;) is monotone decreasing in y, and monotone increasing in y, , we
ve

1
<R30 =—-
| 1 " Yedu
Define y§ by
1
a¥f = rh'
which has a unique solution. Then

»>yi=H <0

Define y§ and y; similarly. Following 2 similar argument, it can be shown that y, > y%
implies §, <0 and y; > y; implies j, < 0. Hence I, defined as {y]y, < yf }, is globally
attracting. From the above it is also obvious that yy is a decreasing function of y; and
the steady state jeI'.

Now we show that for the system (4.2) y is a global attractor. To do o we use the
following theorem due to Othmer (1976) and Mees and Rapp (1978).
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Theorem 2
Let F; in (4.2) be analytic functions and define
M =supfy'J,
yer
where y = diag (y;).j = 4.5, 6 and J is the jacobian (DF),. Then  is globally attracting
il M < 1. In fact, the values of the parameters y;(j=1,2,..., 6) can be chosen so that
there will always be M < 1. Consider a box [ in R}, with its sides as yf, 5 and y§ (see
Fig. 2).
I3

(0,0.95) C

B(o,y,0 Yo

Figure 2. Box T in RS with sides y¥, )5 and 5. The size of the box is inversely proportional to
the values of the constants 7.
From Lemma 2 we have
1

p
1= ’ = 5p > yIJ-= (4.9)
17274

Evidently, if the y; can be increased, the box [ gets smaller and sup ||J||, <sup |J[, =
r yélo

ye
a (say). Hence M <afy and so M <1 for all y sufficiently large. Hence j=
(Y10 Y205 Y30) i5 2 global attractor.

4.1, Nyquist criterion, Hopf bifurcation and limit cycles

Now we show that the system (4.2), and hence the full system (2.1), possesses a
periodic solution. To do so we linearize the system (4.2) around the steady slate j =
(Y105 Y20+ Y20)» applying the transformation u, = y; — y, (i = 1, 2, 3) to obtain

du,

T =@ Uy —Yally

du

d—:=“z"1‘asl‘;-75“2 (46)
duy

dr YT Yels
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a = my Y58 (L 58) + may3s (14 ¥58)
! nv[(L+ YR8+ Y301

p pmyyio¥as”!

N T N T R
Linear stability analyses of single-loop systems have been performed by several
authors (Walter 1969, Viniegra-Gonzalez 1973, Higgins et al. 1973, Hunding 1974,
Othmer 1976, Rapp 1976 2, 1976 b and others). Mees and Rapp (1978) and Tapaswi
and Bhattacharya (1981) have investigated linear stability propertics and oscillations
in multiple-loop systems. The former authors have applied the Nyquist criterion to
investigate stability and oscillations in a single-loop system having a single open-loop
transfer function. Here we employ the Nyquist criterion in a multi-loop feedback
system with two open-loop transfer functions. Taking Laplace transformations

Gils) =a( (1)} (i=1,2,3), the linearized system (4.6) gives

(S +7)u(8) = —a,5(8)
(8 +75)62(5) = 8:4,(85) — 3385(5) 47
(S +76)63(8) =&1(S)

Combining the three equations in (4.7) gives £,(8) = — G,(S)a,a,&;(S) where

Gi($) = l/[(S+h){Gz"(S)+as}]} sy
G,(8) = 1/1(S +y5)(S + y6)]
are two open-loop transfer functions.
The linearized system can then be represented by the control system
_[ =6:(9aa,
&(8)= [m] 18 (4.9)

where I(S) is the perturbing input. The closed-loop control system (4.9) is as shown in
Fig. 3. The characteristic equation of (4.9) is 1 + G,(S)a, a, = 0. Now for local stability
anslysis we are to examine the Nyquist loci of G, (S) and G,(S).

! -&8 > 10 — Ea"’

Figure 3. Block diagram of the dosed-loop control (linearized) system.

We have
{

Gl = e )

?’=R1COS w“ W=Rl SiDW1} (4.10)

Je=Rycosy;, w=R;siny;
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which implies

G,(iw) =

1 .
RE, exp(—i(y, +¢,)) 41y

Therefore

1Gafin)] = — [ : ]m
W)= —X | —————s
= RE, (eI
which tends to 0 as w— co. Hence |G,(iw)| is monotone decreasing,
Again
Wys Y

tan (9, + ;) = 2076
TsY¥e— W
Let w, > w,, then

wilys +%) _ Walys+vg)
Ys¥s— Wi Ys¥s — Wi
Hence, tan (¢, + ¥, ) is monotone increasing. Therefore, arg G, (iw) is also monotone
decreasing. Following a similar procedure as above we can show that both |G, (iw)]
and arg G, (iw) are also monotone decreasing.
Now for stability analysis we use the Nyquist stability criterion which is stated as
follows.

> 0=>y576(W; — wp) + W wa(w; —wy) >0

Theorem 3: Nyquist stability criterion (Nyquist 1932, Ogata 1970)

If the Nyquist path in the S-plane encircles Z zeros and P poles of 1 + G(S)F(1?)
and does not. pass through any poles or zeros of 1 + G(S)F'(y?) as a representative
point § moves in the clockwise direction along the Nyquist path, then the correspond-
ing contour in the G(S) plane encircles the — (1/F(y?)) + jO point N = Z — P times in
the clockwise direction (negative values of N imply counter-clockwise encirclements).
If N> 0 in the clockwise direction then the system is unstable.

In our case when G(S)=G,(S)=(1/(S +ys)(S+¥s))F(y7) = —ay (<0), the
number of 2eros of t + G,(S)a, in the right half-plane is zero and the number of poles
of G,(S) in the right half-plane is also zero.

Hence, according to this theorem the number of encirclements of —(1/a,) by the
Nyquist contour in the G,(S) plane is zero. That is, the contour cannot encircle the
point —(1/a;) as shown in Fig. 4.

Therefore, G,(S) acting alone cannot make the system unstable if m, = 1.

Next we show that G, (S) o G,(S) can encircle ~ 1/a, a,.

Now the number of poles of G, (S) = 1/[(S + y,){G; ' (S) + a3 }] in the right half §-
plane is zero and the number of zeros of 1 + G, (S)a, a, in the right half S-plane is two.
Hence, according to the Nyquist criterion, N = Z — P the number of encirclements of
the point — 1/a, a, by the contour in the G, (S) plane is two in the clockwise direction
(see Fig. 5). Therefore, although the single-loop problem cannot envisage a local
instability, the multiple-loop negative feedback control can effect a local destabili-
zation of the system even if m, = 1.

Next we find the critical value where local instability sets in. The open-loop
transfer function is given by

1
1w+ 7 ){(w +75)(Iw +7¢) + a3}

Gy(iw) = {
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Im

G (s)-plane

wa-oc wso

-L [AZY- - Re
%

Figure 4. Nyquist contour for positive w in the G,(s) plane. Arrows indicate the direction of
increasing w. The point — 1/a; is not encircled by the contour.

Im

Star-plare
Im

Figure 8. Closed contour in the s-plane and the corresponding Nyquist contour in the G,(s)-
plane. The Nyquist contour follows a clockwise direction as w increases and the number
of encirclements of the point —1/(a,a,) by the contour is two.

I._ﬂ us find the point where the Nyquist plot crosses the negative real axis. Let the
imaginary part of G, (iw) be zero. This gives

12
"=i(;xm'”’) , Jk=4,56
?
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Substituting the positive value of w in G, (iw), we obtain
n 1
G, ("(‘Z. Yt a)) ) =
_IY/(‘Z. Iht “J) +74(ysys +0y)
0

The critical value of p (p,) where instability sets in is obtained by equating this to
—1/a,a;, ic

1 {

-Iv,(l; It a;) +Va(ysys +ay)

a,a,

or
Iy, (/; Yt a;) ~Yal¥s¥s +ay) —a,8,=0

which implies

1+
pe= Ys(a—)’;&) [(EV}J; Y~ ?AYsYs)“ +Y38) = vsyems Y33 (vs + 75)] (4.12)

Hence the bifurcating value of p is given by (4.12). For a lower value of p than this
the system is locally unstable and for a higher value of p than this the system is stable.
Then, according to the Hopf bifurcation theorem, the system possesses a periodic
solution (limit cycle) in the neighbourhood of the critical value of p as given in (4.12).
The Nyquist contour encircling the point — 1/a, a, on the real axis is as shown in Fig. 5.

S. Stability of the limit cycle
Taking m, = m, = m, = |, the dimensionless system (3.7} can be written, without
loss of generalization, as

dn ! = Yoy

dt yn(leyy !

dy, 2

==y S.1)
& ylayy (
d

'}YA=}’2—76}'3

Using the perturbation y; = yjo + u; (i = 1, 2, 3) and expanding the right-hand side of
(5.1) up to third order in u,, we obtain

du, 2uy Jud 4u}
— =y, —_—— -
de Y ynad et nna
2
(i2-mp o))
340 340 2 I o 52
(ﬂ"H'; ,Vlo“))
o~ T4
Y3d  Yidq
du,
7;=“2_76":

where a5 = 1 + y3o.
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In matrix notation this can be written as

du
}:—=AU+F(U)+G(U) (5.3)
where
,
- _ 0 -2
" Y 7171“1’)
U=lal 4=l 2 _, oo
uy Y38g Vaa3
0 1 ~Ys
[ 2 [ 4
Yiv244 Y1243
FlU)= d =1 ou
S | I - TORN
T A Ysdo a
0 0
The characteristic equation of the lincar part of the system (5.1) with eigenvalues 2 is
[A=M]=2+p;47 4 p 2+py =0 (54)
where
YabPYro 2
= + +
Po=TarsYe a5 Yivvsay
P

=VeYs T VsVt VeVt —5
P1=VYaYs T YsVs T YeVa hal

Pr=Yet¥s+Vs
At the critical value of p=p, as given by (4.12) we have, by the Routh-Hurwitz
aierion. po = P, P, and (5.4) has a pair of purely imaginary eigenvalues + l'\/p_l anda

real pegative root —p,.
We assume, without loss of generalization, that y, =y =y, =y. Then

?, 2
=y’ + _‘_(y + _)
Po=Y V34 Yio N
(20 (5.5
= 3yt 4 o
n=Y vsa
=¥k
Now we reduce the matrix A to Jordan canonical form given by

A=pdiag(~py, /p,, —i/p)p™!

where
1 2

2
N®  ynad+ive)  nrna-i/p)
p=
~% )'+l\/P_n 7"\/1;
1 1
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and
N _n 44y
P1Y280 +m 7 p
nn@Ay-i/p) | Gr-ipod A fo=0/p) __ 4
2/p, N VAR AN y-i/ny
nndA+i/p)  (Br+i/p)A A [(wi\/i)_ 4 ]
2/p, N AN AR Y ATV
(56)
where
_r+n
9'Y1+P1
The substitution
2,
U=pZ, 2=2, (57
z,

andf' = ‘/p_,- t, where iL/E denote pure imaginary values of the matrix of the linear

part, reduces the system (5.3) into diagonal form

. ;
27 = 928 (=pa. /i, ~i/p)

3 3
12,2 buZ,Z,2,
I=zl AZ:A nlslr IZ:I I-Zl nzx MESEAT
3 3 3
+| Y Y ahzz, |+ Y ¥ bhzz,z,
1A= Jeix=tam}
3 3 3 3 3
Y 42,2, Y Y Y buzZzz,
J=1a=1 J=1A=]1 k=]

The coefficients ay,, by, are complex and symmetrized, that is
dp=aj;, bl =identical (ij,hk=1,23)
where { jhk} denotes any permutation of j, h and k. Here

| (=1)'B,

ay =4 ——

1Y

(=18,

—A+

@ =4 N17263%

—1)'B

d} =A+( !

33 t h?zﬂsx
, (—1)'3,(2 1)
+ah, =24+ -
R e

(58)

(59

]
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(l
-+
X

dhy+dhy =24+

(-1)'2B,
11283

1713

3

(~1)'B,; {2 1
&+ =24 +—'(___)
BT y a3 \x Ty
| - 200
= |3xz-
' ao(2v+x)(zy+x)["" V28
T X o
A=Ay —————— 3+ 2%
o yao(x—x)(2v+x)[ v;aéi]
2p. [
Bj=—y——— B =-B=— _FC
Ung 0@ +0 T madlx- 0@+ 0
(-l)‘D‘
a=Ci+
T nad
_— —-1)2D
blHl:b‘H.\:Cl-L#
YiYaapx
(=20, /1 1
blyy + b5y +bhyy =3C+ ===
12 11 m i 7])’1“(’) v X
—1y
b‘ll)+b‘|31+b'3|l=3cl+( )2?'(1—1.)
N1¥280 \Y X
(=D, /1

biap+ by + b5y =3C +
bisy + g3+ by = 3C+
Bray+ by + b3, =3C,

Bras+ Bhay +bh32 =3C,—

Ihathjk=1,23h#j#k) =6C,+ ,

G
Cz=cs=

D,

Y20
(=1'p,
Y:'i:ﬂa
(=1)2D,/2
717103 (_
(-1)2p,
Nha

X

¢

G5
G-

)
;)

)
+ =
%

(- 12D,

2

T+ a2+ D

X

2,

172
[P:Jho
nag

X.
a(x =2y +x)

122
@ \y x %
_zxx-]

[4 . ﬂ.y.)o_]
Y¥38oX

(5.10)

S ya 02+
PeXX
yrsag(x ~ X)(2y + x)%

where x=y +im\/p,, i=1,2,3.

D,=-by=
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Theorem 4. Fundamental Brujno theorem (Brujno 1971)
There exists a reversible complex change of variables (normalizing transform)

Z,= W+ Lal W W, + SR W W, + . (i=123)

(00t = @l Bygmm = identical; i, l,m,n=1,2,3) (5.1
which reduces the system (5.8) to the normal form
W,
%=A,W,+ w,);g‘qw,'-w;-wg» (i=1,23) (5.42)

such that g,q are non-vanishing only for those Q that satisfy the resonant equation
(A Q) =21,q,+ 4,9, + 434, =0 (5.13)

Here A =(A,, 1,, 4,)"is a vector formed from the diagonal elements of the linear part
of the system (5.8) and Q =(q,. g,.4,)" is a vector wilh integer components, and the
set 4, of Q for the ith equation is

Qv Gi-11Qivry -2 40 20

42~ )::q,z 1 1
System (5.12) with this property is called a normal form.
In the case under consideration
(A Q) =4q,+ 2,0+ 439y = - p,9, +i(g,—9,) =0 (5.15)
This implies
=0, g;=¢, (5.16)

which means g, + ¢, + g, = 2q; and the terms with even powers vanish, while for the
odd (2r + 1)st power terms we have ¢, =gy =r(r=1,2,..).
The normal form (5.12) can now be written as

aw, L]

T‘l= -pW + W Zlg,'W;'W,'

aw, 2

VLR AL (510
aw,

o _'.\/;IWJ*' LA ; aWw;

which, within cubic terms, becomes

aw,
d_t‘l= =W\ + 8l W W, W,

aw,

Sl VN ST H (5.18)
aw,

R NN AT A

Since only the symmetrized coefficients of the normal form are distinct from zero,
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and in the present problem the normal forms have no second-power terms, we have
(Starzhinskii 1980)

2 3
Cimy = blmp + 5 ;‘-‘):1 [a}al, + aimahs + d)yata] (5.19)
whee §1,,, denote the symmetrized coefficients of the third-order terms of the normal

form (5.17) and where i,l,m,p=1,2,3.
Hence,

81=6815,=6b};,+4 ? (“}/“’ﬂ"‘a;;“&‘*‘a;)“‘n)
=t

g1=3¢n=3bin+2 Y (2a},hs + adjds)
=i (5:20)

&=38=3b3 + 2L IZI s (203,«5, + "i‘l"{s)]

Now putling values of each term in the right-hand side of (5.20) rrom_(5.9) and
comparing cach term of g and g3, it can be casily shown that g=g=-a.
Multiplying the second equation of (5.18) by W, and the third by W, and then adding
them, we obtain

A
i 0
which implies
W, W; = C, (constant) (5.21)

where C, = |W,(0)]%.
Substituting (5.21) in the first equation of (5.18) gives
4w,

- =C-p¥ (G=giC) (5.22)
This implies that the system decomposes into cylinders C, = const. in the neighbour-
hood of its equilibrium point. Each cylinder has an equalor representing a limit cycle
which is stable for C, < p, and unstable for C, > p,. For some suitable choice of the
parameter 7 and initial value W,(0) it is possible to have C, < p,. in which case the
system (5.1), and hence the original system (2.1), possesses a stable limit cycle.

& Discossion

In this paper, a model of the epigenetic mechanism has been constructed. The
epigenctic mechanism involves transcription of different size classes of RNA, each
controlled by end-product feedback inhibition, according to the Jacob-Monod
operon coneept (1961), followed successively by mRNA-ribosome complex (template)
formation and protein synthesis during embryonic development. The model proposed
ia six-dimensional multiple-loop control network based on recognized physiological
principles. Using singular perturbation theory, this six-dimensional system has been
reduced to a three-dimensional one. Stability and oscillatory properties of this system
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have been investigated using and extending the studies of Mees and Rapp (1978) ina
generalized multiple-loop negative feedback biochemical system and of Tapaswi and
Bhatiacharya (1981) in an eight-dimensional multiple-loop negative feedback
epigenetic control system where, unlike the present case under investigation, not all
the feedbacks were exerted by the same end product. With the help of a Lyapunov
function il has been shown, as a particular case of Mees and Rapp, that the system is
globally stable.

As already discussed in the Introduction, RNA and protein synthesis during
embryonic development is an oscillatory process. Hence, the mathematical study of
oscillation in this system is a very relevant project. We have investigated this
important property by applying the Nyquist criterion. Using the Hopl bilurcation
theorem and Nyquist criterion we have shown that the system possesses a limit cycle
oscillation for some critical values of the parameters. We have also established the
stability of the limit cycle by power series expansion of each equation of (5.1) around
the equilibrium up to third order, and then applying Brujno’s theorem on normal
transformation which reduces the non-linear system to a normal form of three
equations. two of which constitule a complex conjugate pair. The solutions of the
reduced normal form thus become surprisingly simple and give rise to cylinders,
the equator of each of which represents a stable limit cycle for some certain values
of the parameters and initial conditions.

This work deals with a real biological system which, like other realistic systems, is
very difficult for mathematical analysis. [n this paper we have attempted to tackle the
problem efficiently with standard mathematical tools.
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