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Abstract: We describe a method, based on non-negative definiteness of moment matrices, for
deriving upper bounds on the number of consiraints in balanced arrays of sirength 7, involving
two or more symbols. It is seen that the method covers, in particular, those due to Rafier and
Seiden (1974) and Chopra (1982, 1983).
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1. Infroduction

Balanced arrays (B-arrays) are useful to various combinatorial areas of design of
experiments. In particular, in recent years extensive work has been done, mainly by
{he schools of J. Srivastava and S. Yamamoto, on B-arrays — see e.g., Chakravarti
(1936, 1961), Chopra (1975a,b, 1982, 1983), Chopra and Srivastava (1973a,b, 1974,
1975), Kuwada (1979, 1980, 1981, 1982), Kuwada and Nishii (1979), Longyear (1984),
Rafter (1971), Rafter and Seiden (1974), Shirakura (1976), Shirakura and Kuwada
{1975), Srivastava (1970,1972), Srivastava and Chopra (1971a,b,c,1973,1974),
Srivasiava and Ghosh (1977), Srivastava and Wijetunga (1981), Yamamoto,
Shirakura and Kuwada (1975, 1976), Yamamoto, Kuwada and Yuan (1985). For an
excellent review, we refer to Srivastava (1978).
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For ease of reference, we recall the definition of a B-array. A B-array of strengh
1 with two symbols, m constraints, N runs and index set { s, gy, ..., 4} is an mxn
matrix B whose clements are the two symbols (0 and 1, say) such that in every rxy
submatrix By of B, every t-vector (i.c., a vector with f elements) a of weigs ;
(i=0,1,,...,4; the weight of a is the number of 1's in it) appears as a column of 8
exactly g times. The constants m, N, f and g (i=0,1,...,/) are called the pan-
meters of the B-array, and we denote it by BA[m, N, 2,1; ug, ), ..., ;). Note thay
N=T)_q (j)u;. The definition of a B-array with s (22) symbols is presented laier
in Section 3.

Unfortunately, B-arrays may not exist for an arbitrary set of parameter values.
To construct such arrays with the maximum possible number of constraints is s
important problem both in statistical design of experiments and combinatoriy|
mathematics (for example, when a B-array is interpreted as a fractional factorig|
plan, with its rows identified with the factors, an investigation of the maximum pos.
sible number of constraints may lead to a solution to the relevant packing probl
This problem for some B-arrays with two symbols has been considered by Rafter
and Seiden (1974) and Chopra (1982, 1983). In this paper, we demonstrate the appii-
cation of non-negative definiteness (n.n.d.-ness) of moment matrices in the deriva-

tion of bounds for the number of constraints.
Essentially, for fixed values of the other parameters we derive here upper bounds

for m, the number of constraints. This means that if the value of m exceeds the
upper bound then the corresponding B-array is non-existent. In this sense, the
results presented in this paper may as well be interpreted as those on non-existence.
It may be remarked that possibly the most important single tool, available in the
literature, for checking such non-e:uslenoe is based on the theory of Dlophanum
equations. The pioneering work involving the application of Di ine

for examining the existence of B-arrays is due to Srivastava (1972) and for further
references one may see Longyear (1984). In fact, the methods developed in this
paper are also based on Diophantine ions (for le, the equation (2.1) pre-
sented later for the two-symbol situation is just another version of the equation (2.4)
in Srivastava and Chopra (1973)). The main new point in this paper is, however,
that while the previous authors makmg explicit use of Diophantine equations em-
ploy discrete and number-th ar for checking the exi of solu-
tions to such equati we apply i lities, based on the n.n.d.-ness of
certain matrices, for the same purpose. The moment method, in & sense, supple-
ments the discrete analysis, and a combination of the two may become a very power-

ful tool through a fuller utilization of the technique of Diophantine eq An
le in this jon has been p d later in Section 2. Morcover, it
appears that despite its th ical eleg the discrete analysis may become some-

what involved when B-arrays with more than two symbols are considered. In such
situations one may first apply the method of moments (see Section 3) to attain a con-
| o

siderable reduction of the problem and then the discrete analysis may be emp
1o achieve possible further imp:
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3. Bounds In the two-symbol case

Let Bbe a BA[m,N,2,1; jtg. ty, ..o iy), for £22. Let k; be the number of unities
in the i-th column or run for {=1,2,..., V. Since a B-array of strength ¢ is also a
B-array of strength less than 4, it is obvious (cf. Chopra (1983)) that

Ntk m\ ' (1-j

EC)-CIE( D s e
whence it is possible to express L, &/ (j=1,2,...,1) as linear combinations of
Hop My oo My

For giVen yig, .-, fys it may be checked whether the expressions for T, k/
(j=1,2,...,) satisfy the different well-known moment inequalities or not and non-
existence results may possibly be obtained. In particular, one may note that for
every positive integer v, the matrices

Y Tk . Tk}

W, z.k, z.kf z'kr"
LSk THY - ThP |
and _
[tk TH - Ta!

9+2

Wy = i z‘kf )::kl
LTk TR e TP

where the summations extend over i=),2,...,N, are n.n.d. This follows by ob-
serving the n.n.d.-ness of the quadratic forms

N N
T G+ Bkt + &R and T (tok) 24 1)k 4o b g k22 V2,
i=l im)

in variables {5, {1, ..., §, and 1y, 7), ..., 7, respectively. For even f (=2v), the inequali-
ties arising from the n.n.d.-ness of Wy, and W,,_, may be employed 10 derive
upper bounds for m or to prove non-existence results. For odd 7 (=2v+1), the in-
equalities arising from the n.n.d.-ness of Wy, ,, and W,, may be employed for the
same purpose. Theorems 3.2 in Rafter and Seiden (1974), 2.1 and 2.2 in Chopra
{1982) or 2.1 in Chopra (1983), concerning upper bounds for m, follow from such
a.n.d.-ness. It may be remarked that whereas these authors make elegant applica-
tions of particular inequalities implicit in the n.n.d.-ness of the moment matrix we
propose 10 make an explicit use of such n.n.d.-ness in its entirety.

A comparison between the results obtained from the n.n.d.-ness of moment
matrices &s indicated above and those obtained from similar n.n.d.-ness of informa-
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tion matrices arising out of balanced arrays (see c.g., Srivastava and Chopna
(1971b), Yamamoto, Shirakura and Kuwada (1976), Kuwada (1981), Yamamoto,
Kuwada and Yuan (1985)) shows that none of these methods Is uniformly superior
to the other. The results based on the information matrix approach, as reported in
the literature, mostly relate to arrays of even strength. Therefore, in applying them
1o arrays of odd strength (2=2v+ 1) one has to interpret the array as one of strength
2v and hence considerable information is lost. On the other hand, for 1=2u+1, the
inequalities arising from the n.n.d.-ness of W, ,, make an explicit use of the fact
that the array is of strength 2v+ 1. Hence for odd ¢, the moment method appears
to be superior to the information matrix approach. An examination of the simple
case =3 provides plenty of examples in support of this observation.

On the other hand, for even ¢ (=2v), it may be seen that there exists a matrix L,
such that Wy, =L, #L;, where & is the information matrix arising from the B-array
interpreting the array as a resolution (2v + 1) plan. Hence the inequalities obtained
from the n.n.d.-ness of # can never be weaker than those obtained from Wy,
Although it is hard to prove the same theoretically for the inequalities obtained from
W,,-1, numerical studies make us believe that for even t, the moment method,
based on both W, and W,,_,, will be inferior to the information matrix approach.
Anyway, for even ¢ (=6) and general s, results based on the information matrix are
not yet available in the literature and are hard to obtain. Hence in such situations
concerning even f, the moment method, because of its considerable simplicity, may
have some merit at least as an ad hoc procedure.

The following example illustrates how the application of n.n.d.-ness may improve
upon the previously obtained results based on simpler moment inequalities and also
how, combined with a discrete analysis, it may lead to an almost saturated exploita-
tion of the technique of Diophantine equations.

Example. Consider the problem posed in Srivastava and Chopra (1973; Theorem
7.3) regarding the existence of a B-array with t=4, m=8, u,=5, N=66. From
their Theorem 7.3, it follows that for the existence of such an array it is necessary
that g, +uy=8, uy+p,=4. This, together with (2.1), yields

Tk =823+ 25+ a1, Tk} = 8(58+ 161y +8uy),
Lk} =8(128+86u,+64u), Tk} = 8(268+ 352+ 512,).

Interchanging the roles of 0's and 1's, it is clear that if a BA[m,N,2,4;y, =5,
(i=0,1,...,4)] is non-existent, then a BA[m,N,2,4; y;=y,_; (i=0,1,...,4)} is also
non-existent. This observalion, together with the n.n.d.-ness of W, and W, implies
that all choices of yy and p,, except possibly uy=3, py=1; uy=S$, py=3; yy=4,
He=2, are impossible. A reduction to this extent cannot be achieved through sim-
pler moment inequalities; for example, the inequality (L k)L k)= (LA, em-
ployed by Chopra (1983), cannot eliminate the case uy=3, p,=1, whercas a
consideration of n.n.d.-ness is successful in doing so. Hence if /=4, m=8, N=66.
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#y=S5, then it is necessary that the other index parameters must be of one of the
following forms: (i) so=3, =5, my=3, me=1; (i) =1, =3, py=5, }=3;
(i) po=2, my=p3=4, =2, It may be checked that inequalities based on the
information matrix approach (se¢ Theorem 3.2 in Srivastava and Chopra (1971b))
{ail to eliminate any of these three cases. Furthermore, it may be mddy verified
that in each of these three situations the fund: | Dioph (see
(2.4) in Srivastava and Chopra (1973)) admit integral-valued solutions implying
thereby that the technique of single Diophantine equations cannot be utilized in
achieving a further reduction of the problem. Thus the present approach, coupled
with the discrete analysis, leads to a quick and complete exploitation of single

i

Diophantine ions for the problem under ion
1. Bounds in the s-symbol case
In the s-symbol case, the algebraic expressions become involved and, theref

it becomes cumbersome to express the bounds in a compact form. Even if the alge-
braic expressions for the bounds are given, such expressions are likely to become
difficult to comprehend. Hence, in the s-symbol case, instead of deriving algebraic
expressions for bounds, we suggest some methods using which the bounds may be
calculated in any particular situation. These methods are obtained by generalizing
the procedure mentioned in Section 2. It may be noted that the multi-symbol situa-
lion has been effectively taken into account through the consideration of essentially
multivariate inequalities like those obtained from n.n.d.-ness of a dispersion matrix.
A B-array of strength { with s symbols {0, 1,...,5~1}, m constraints, N runs and
index set {g;...,  :(iiy-eesis—t) €T}, where
T = {(iy,.
isan m X N matrix B whose elements are 0, 1, ..., or s—1 such that in every (XN
submatrix By of B every f-vector with iy I’s, i 2's, ..., i) (s-1)'s appears as a
column of By iy ...;, times for (i, .., ;)€ T¥. [This definition slightly differs
from the standard one, but is equivalent to the standard one and i with that
in Section 2.] Such a B-array is denoted by BA[m, N,s.6; gy .o {yy--ofe-1) €T
Clearly

1) 0y B SH o i ST,

.3 !

T et i Lo i (== =iy

Let B be a B-array as defined above. A B-array of strength / is known (o be

also a B-array of strength w (<1), i.e., for w<t, B is a BA[m,N,sw; "l. o
thyooe dy ) €T, where

M

E (t—w)!
a ey @yl L (f=w=ay == )]
XU tayod140,4 (3.0

“}I'> hay =(‘
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In particular, the special cases w=1,2 (for ¢22), w=1,2,3 (for ¢ 3) will be helpful
for our purpose.

Foru=1,2,....Nij=1,2,...,5~1, let k;, denote the number of times the symbol
J appears in the u-th column of B. Then for each fixed u, k20, I Sjss-1;
)'_‘;:: ki, sm. Let for 1<jss-1; r=1,2,3,¢, be an (s~ 1)-component row vector
with r at the j-th position and 0 at every other position and for 1 s j</ss-1,§,
be an (s - 1)-component row vector with | at the j-th and /-th positions and 0 at every
other position. Then the following are easily verified (for 12 3):

N ok
r ( "'):(m)pi". 1sjss-1;r=1,23,
ysl \ T r ”

N 3.y

f,l ki =m(m-Duf), 1sj<Iss-1,
where, by (3.1), the right-hand sides of the expressions in (3.2) can be expressed a
linear combinations of ; ..., 's. [For =2, the second refation in (3.2) holds and
the first relation holds for r=1,2.}

At this stage it is possible to start from known inequalities in descriptive statistics
connecting moments (both univariate and multivariate) of different orders and em-
ploy (3.1) and (3.2) for getting bounds on m for given m N5,6,ty ...;, (i}, .15 )€
T™). In fact, scores of results will follow and here we present only a few of them.

Let 1=2. The first relation in (3.2) with r=1,2 gives

N N
L Gu = Mgy, L kilkju~1)=m(m=1) g2,

N
L kh=mlm=1) g+ mys), ¢

e,
uml n

¢ = mim =)+ ol - (maN, 1< jss-1,

where M
o= L ®u=Fk, =K. 1sjslss~1,

N
k=N"'Y ky, 1sjss-1.
u=|
Similarly, from the second relation in (3.2),

¢p=m(m-1) y}f’- muNmulV/NY, 15 j<iss—1. 34

"
Defining, for j</, ;=9 and ®((s-1)X (s-1))=((¢y)), clearly, & is non-nega-
tive definite (n.n.d.) and hence all its principal minors are non-negative. By (3.1).
(3.3) and (3.4), this observation leads to a large number of inequalities involving
m,5,4, By i, (e oenndy-)) € T®), and for given s, £ and .., ,'s, these inequali-
ties may be utilised in obtaining feasible ranges or bounds for m. In particular, the
following Inequalities may be considered:
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N N 2
020, ie, “E| lr,-’..z(zl k,,,) /N, 1sjss-1,
ytuz ey, 1<j<iss-1.

These ideas will later be explained with examples.
For 123, further results will follow considering the third order moments. Then
\he first relation in (3.2) with r=3 gives

@.s)

N
El kplkp= 1)k, =2) = m(m—1)(m -2, 1sjss-1,

0

which, together with (3.3), yields

N
2. K= mGm = 1)(m =2 )+ 3m(m - 1) 2 + mpD. (3.6)
s
Since
N ) N N 2
Lk L bz ( L k}.) . an
P um
applying (3.1), (3.3) and (3.6), one may again proceed to find bounds on m for given
5, by gy, 'S0

In fact, for values of ¢ greater than 3 one may consider inequalities of the type
(3.7) involving still higher order moments or even Liapounoff type inequalities com-
bining all possible inequalities of the form (3.7). Furthermore, inequalities involving
higher order multivariate moments may as well be considered. Basically, each in-
equality in descriptive statistics involving univariate or multivariate moments up to
order ¢ has the potential of dictating a feasible range for m, and the intersection of
all such feasible ranges is likely to yield sharp bounds for m. Although keeping nota-
tions general and proceeding algebraically the task seems formidable, in any given
context, for numerically specified s, £, g,...,,_'s, it is usually a routine matter to
follow the above procedure and that is possibly the most important thing for all
practical purposes. Actually, often good bounds for m may be obtained from in-
equalities involving only the relatively lower order moments.

Example. Let 1= 2. Consider a BA[m, N, §2; ..., Hy, (0Sjss=1r=1,2), 4y,
Usj<tss-1). Trivially, g%, =#;..;,., and clearly

3=1 =1 1-1
N=pg..0+ +2 + ,
Han--0 j)-:l Hen [ 1);1 Han I;Igl ”/"]
i

U 0= topo+ I):",I Heyr (3.8)

=1 1=
”s,l.)=l‘q-+“'n+l )1: Iu,,+ zn”’" 1sjss-1.
A e
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Since, by (3.3) and (3.4),

¢”=m(m-l)u,n+mp,/'l) [myj"]’/N 1<j<s-1,

0= mm 1), ~ (mp Ym0V, 1 j<lss-1, B

inequalities arising from non-negative definiteness of ®=((¢,)) (or in particular,
those in (3.5)) may, together with (3.8), be employed to obtain possible bounds oa
m for given s, ..., 's. In particular let pgg...o= =Hy, =0 (lsjs.r l) and [
= (1sjss-1, Is;(lss—l) Then by (3.8), N=sy+:(s-l)/l y, -(;-m",

(I<jss-1), and hence

¢y =ms-DA-m@A-p)s), 1sjss-1,

&y = —m[A-m(A-p)/s), Isj<iss~1.
Hence

@ = (o) = mA~mQA —w)/s{sls = ;1)
where J,_, is the identity matrix of order s—1 and J, _, is a square matrix of order
51 having all elements unity. Since @ is n.n.d., it follows that A — m( ~ u)/s20,

and hence
m<As/(A-py), provided A>p. (3.10)

In particular, if #=0, (3.10) yields m<s, which is attainable if s is a prime ora
prime power (cf. Nair and Rao (1948)).

Example. In the above example, the second inequality in (3.5) was not used ex-
plicitly. The present example makes an explicit use of this inequality. Consider a
BA[m,N,3,2; ppo=2, t=pg=3, to=Ho =2, iy =4). Then N=24. By (3.8)
3.9),

11 = b1 = Im(m — 1) +9m — (9m)*/24 = m(6 - 3Im/8),
@12 = 4m(m —1)— (Sm)*/24 = m(5m/8 - 4).

Hence the first ineguality in (3.5) gives m <16, while the second inequality in (3.5)
gives, on simplification, (2 +m/4)(10-m)20, i.c., m<10. Hence one gets m<10

ultimately. R
In fact, it is interesting to see that this bound is sharper than those one can obizia

through the existing results in the two-symbol case through suitable collapsing of
symbols. Thus if one merges the symbols 1 and 2 (to get a symbol, say 1), then fo
the resulting two-symbol balanced array of strength two, gg=2, pt, =4, uy= 14,50
that u} <uqu; and Theorem 3.2 of Rafter and Seiden (1974) cannot be applied.
Again if one merges the symbols 0 and 2 (o get a symbol, say 0), then for the resul-
ling two-symbol BA, gg=9, p; =6, py=3. Hence u} — g 2>0 and an application
of Theorem 3.2 of Rafter and Seiden yields m < uy( g+ 20, + )/} ~ o p12) = 16.
Similarly, merging the symbols 0 and 1 of the original three-symbol BA yields
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m<16. Thus, application of the existing results for two-symbol arrays, through a
collapsing of symbols, yields m <16, which is weaker than the bound obtained by
our methods. This is expected since our methods are essentially based on multi-
variale inequalities which are stronger than the univariate ones.

Similarly for 123, examples may be constructed to illustrate applications of in-
equalities involving higher order moments.

4. Concluding remarks

1t is well-known that the incidence matrix of a ¢ — (v, k,4,) design is a BA[v, 5,2, 1;
Yoo Hs oo 1) With = 123 (<1 (')A, for j=0,1, ..., 1. It may be easily veri-
fied that for a B-array derivable from a /-design as above, equality holds in many
of the inequalities [in particular, in those line £ &7 2 (£ k,)!/N and (SKNE k)2
(£47)* and so on) considered in Section 2. Hence such B-arrays attain Lhe relevant
upper bounds on the number of constraints. For further details, we refer to Saha,
Mukerjee and Kageyama (1983).

In the case of s-symbol B-arrays, $>2, an analogous criterion for equality could
be: ¢=0, a null matrix. One can easily check that the s-symbol B-arrays having
=0 are the incidence matrices of some proper and equireplicated block designs
{hat can be considered as s-ary versions of I-designs
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