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Rep ion of Fuzzy Of Using Ordinary
Sets
CHIVUKULA A. MURTHY. SANKAR K. PAL, SENIOR MEMBER, IEEE,
AND DWDESH DUTTA MAJUMDER

Absiract —A different inlerpretation of mion, Intersection, and inclu-
sion in fuzzy sets in the light of messure theory is given. The existing
definitions of these operaiors are based only on the value of membership
funciioms characterizing fuzzy cets. The proposed definitions Lake inio
sccouni the nature (behavior) of the membership functions together with
their values. The uniqueness of the proposed definirion ks establiched.
These deflinitions are generalized for any arbitrary conhii function

that the definitions given by Zadeh [1) of union, intersection,
complementation. and inclusion are the standard ones. The appli-
calions of these concepts to various practical [i elds, such as
patiem : image ing. artificial intcll
management applications, elc., are available in Lhe litcrature
[21-[10]

In this paper new definitions for those orpenuons on (zzy seis
are p d. The p ies of the new d are discussed.
Itis also emphnsu.ed thal these definitions arosc only because of
the dilferent interpretation of the intuitive ideas. The proposed
definitions are based on the concepts in ordinary set theory.
taking for granted the definition of complementation by Zadeh
[1).

I PRELIMINARY EXAMPLES

In this section a few examples are discussed to pul forward the
intuitive ideas behind the proposed operalors.

- Example 1: Let Q represent the set of beights in centimeters
and / and g represcnt, respectively, the membership functions
for “tall” and * very tall.” A person whose membership value for
“very tall" is one has to have membership one for talt also.
Observe also that the membership function value for * very sall”
is a = the membership function value for tall is at lcast cqual 1o
4. The nature of the two membership functions considered is
similar, i.e., when one increases, the other also increases and vice
versa.

Now let us look at the usual st inclusion. We say that A€ 8
il x € A= x € B. Therefore, by generalizing the terminology of
ordinary sets to fuzzy sets it can be wrilten in the foregoing case
that gG /. From this definition it follows that if umon and
intersection are to be defined in this context, then fU g is o
equal to f and fNg is equal lo g (i.c. not based on the
definilions given by Zadeh).

Exiending these ideas to any two furzy sets A and B. it may
be stated that AC B if p,(x) € pp(x) for all x,

Baua(x) = max{u,(x),np(x))
Bans(x)= m(l‘A(*)-h(x))

where p represents the membership function. Zadeh [1] defined
the main operations as in the foregoing. Observe thal the
definitions depend oaly on the membership function values and
on no other characteristics of the membership functions.

Example 2: Lel f, g, and h be {uzzy membership functions
defined on Q=10,1) (Fig. 1). Let f(x)=x, g{x)=1-x. and
h(x)=x*

Let xo= (ﬁ ~1)/2 x,= 01, x,=02, and x, = 0.3 Let @,
= {x.xy.x,). Let f}, g,. and A, be fuzzy membership functions
/ g and rulnclcd o Q. Then h<fi<g forall x€Q,

defined 0a any bounded dosed interval. The existing definitions can also
be derived from the Iramework proposed.

INTRODUCTION

The [irst paper on huzy sets was published in 1965 1]. Later,a
few thousand papers appeared in various journals on different
aspects of fuzzy set theory [2]. The set operations on luzzy sets,
such as union, jon, inclusion, and were
initially defined by Zadeh (1}. The mathematical foundation of
these ideas was given by Bellman er al. {3) and Fu et al. [4]. Other
definitions, such as bold union and bold inlersection (5], were
also given in this regard. Now it is more or less accepled by all
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rding to the ition given in Example 1, f, is a fuzy
subset of g and h is also a luzzy subset of g However
observe thal the nature of g, is just opposite (o that of f; and
hy. In fact, g, is f-complement. Inwilively, f, cannot be 3
subset of g, since f, is a truncation of f 10 Q; and so also is g,.
and f/ and g are opposite in nature.

a) If two fuzzy sets are opposile in hature as just stated. can
one of them be a subsel of another?

Another aspect of the same problem is stated next. Let Q.=
{xg). Let fy. g, and h, be fizzy membership functions /. g.
and 4 restricted to Q,. Then obscrve that

Ang=hnhy=1-x
AUg=fiUhy=x,.

Though f, and g, are opposite in nature, f; and A, arc similar
in nalure, the values of intersection are same, and 50 also Ly
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Fig 1. Fonctions /(). glx). and hts)

values of union, f and k are said to be similar in nature because
v/ increases at x) =(x:h increases at x). Observe that
gt v ) = hy(xy).

by Should it be the case that just because the rembership
function values for two functions g, and h, in the {orego-
ing are same, though their natures are differcat. that the
values of the inlersection with another function are 1o be
same?

As it transpired from Lhe previous discussion, Lhe nature or
behavior of the membership function, if it can be quantified,
would change the definitions of union and intersection very
drastically. la some discrete cases, because of the lack of infor-
mavon, il may be impossible 1o get the values of union and
intetsection based on the behavior of membership functions. In
Scction 11 the properties of union, intersection, and inclusion are
discussed on the basis of the behavior of the membership func-
tions.

Note here that the definition o( mmplcmhuon given by
Zadeh (1] s ble because d ideas have
alrcady been i d there. 'ﬁ'us is explained in Section 111

Exumple 3: A government has taken ten measures 1o diffuse
femion in a pagticvlar state, The ordinary people are asked 10
cxpress their opinions on these measures. Let the measures be
named My My,

An individual A suppaned M,. M,, and M, and thoughi the
ol sneffective. Therefore, let g,(x)=0.3; u represents the
niembenship function and X represents the support for govern-
ment Individual B supported M, M,, My, and M,, ie. py(x)
< 0.4 Individval C supported My, M, and M, ie., ur(x) =03
D supponied every measure by 0.3, ic., up(x)=0.3.

[tn practice, the previous representation is not followed, The
usual representation is g, (A) p,(B).---, etc. An example is
sated nexi 10 clarify the position

Evumple 4: Let of be the sct of all human beings: let @ be
the sct of all likings of haman beings, i.e., &= {music, dancing.
trasehing, - - - }, The membership functions can be written in wo
ways

1) Information on every individual on his liking of music is
recorded here:
Hunn: (@)
music € &,

2) For a specific human being a, his likings are recorded here:
uib) bed
de]

By using the definilion of intersection in Example 1, il can be
Been that
Buina(X) =03 =pnc( X) =pino(X) =sanc(X)

=panolX) =bcas(X).

aed

8

However, suppose the intersection is interpreted 28 common
points of suppon for the government. Then

Bang(X) =03
because both 4 and B supporied M, My, My;
Renc(X)=0

no common measures belween A and C.
Similarly,

BanolX) =009, pyac (X) =0, pgap( X)
=0.42, g p( X) =008
The values for union can be calculated similarly as
Baonl0) =04 p  (K)=06  pip(X) =051
Bauc(X) =07 pap{X) =058 ey p(X) =051
If the same reasoning is also lollowed for inclusion, then
BeSnpn GPe BeCHp

However, if the informauon is not provided about the points of
support, then it is impossible 10 make the foregoing statements.

In both Examples 1 and 2 the hehavior of one fusction with
fespect to another is taken inlo consideration. Ia Example 3 the
intuitive idea behind complementation is stated. The nature or
behavior of the functions, as stated in Examples 1 and 2 is
essentially the same as the points of support stated in Example 3.
A concise explanation of these intuitive ideas will be given in
Section 11,

From now on, Zadeh's union and inlersection for fizzy sets
will be denoted by ()., bold unioa and bold inersection will
be denoted by (L), and the proposed union and intersection
will be denoted by (@ @) The union and intersection for
ordinary sets will also be represented by U and (1 [t will be clear
from the context whether set theoretic operations are used or
Zadeh's operations are used.

Bp SR

1. Prorermies of () avo @)

In this section prop that unioa and i must
possess are discussed.
P
n,@,.(.x)-l). for all x.

Bold inlersection also satisfies this property. However, it depends
only on the memberstup function values. Zadeh's -iniersection
docs not satisly this property.

Example §: Supposc p (x)=03. Let

€=(C:uc{x) =03}
Banc(x) =03, loralCe?.
This is one way of looking al the problem. From another view
point. however, having differcnt p, Ay (x) for different C's

belonging to ¥ is cqually logical. This is a different interpretation
and another way of visualizing the problem.

If for different C's different intersection values are to be
obtained, then u,@,-(x)-o when C =~ A%, Similarly, the next

property can be derived.
Py

H@l(-‘) =1

Again, Zadeh’s definition does not akso satisly this, but bold
union does.
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Py commutativity!
FA@I(‘) 'PH@A(‘)
h@l(x) ‘M@A(")
UM, and U,A satisty Py.
P, associativity:
Ba@ua@okx) = su@a@e(x)
Ba@® n@c;( x}= !‘u@n@c(l)

U.N and UM satisfy P,.
Py idempotency:
ra@alx) =pa(x)

PA@A(X) =pa(x)

U.N satisfy Py, but U and A do not.
P, distributive Jaws:

h@(a@n(x) - P(A@n@u@a(x)

“4@18@0(“) 'Fu@u)@u@c)(x)

U,N satisfy F,, but 1 and A do not.
P, identity:

Ba@elx) = palx)
Ba@x(x) =pa(x)

Here X is the universal set. U,N and b, satisfy P;.
Py: This property requites the following:
2) absorption Jaws;
b) De Morgans' laws;
¢) involution laws,

The three properties stated in Py are satisfied by U, as well as
by A
Py

0< pa@s < min(p, k)
1>F4@n > max( 4. is)-

i@ canniot be greater than any one of p, or p; because the

common properties of A and B caonot be greater than
min(p 1, #g) (similarly for 1, @)p and max(p,. k) NU satisfy
Py asdoland

Pyq: Ba@n Ba@2 must be dependent not only on 4, and
Ko puz also on their relative natures. This point was discussed in
Section 1. U,N and W,A do not satisty P,,.

Py A fu2zy set A is said to be a subset of B if

Ba@s=ha 04 1,05 =pa

This is another way of defining inclusion. In ordinary set theory
ACBif x€A=x€B which gives ANB=A and AUB= B,
We have laken the right side of the expression as the definition of
“subsel.” This point was also discussed in Example 1. U, satisfy
Py, but A do not.

In the nexi section a definition will be proposed which would
satisly the foregoing properties.

1. DEFINITIONS OF NEW OPERATORS

In Example 3 the reason the membership function has the

given values is clear because of the support for the governmental

measures. However, in Example 2 or Example 1 it is oot clear
what 10 be quantified. An example is stated next for this purposs.

Toht Not tail

Fig. 2. Explanation for complementation.

Example 6: Let Q represent the set of heights in centimetery

andlet f and g, ly, represent the membership functions
for “tall" and “not tall” Therefore,
g(x)=1-f(x), foralx.

For an ordigary set A, A7 is the set which conlains all elements
except those which are in 4, ie, all the elements which do oot
possess the properties of clements in A. Therefore. if (he defini-
tion has to be extended to fuzzy sets, when “ ot passessing the
properties of elements in A" is to be quaniified According to
Zadeh, if the membership function value for *1all" for x, is 03,
then for “not tall" it is 0.7, i.e,, x, possesses 0.3 of tall properties
and 0.7 of not tall properties. One way of representing it is given
in Fig, 2.

In Fig 2 the two vertical lines represent * tall” and “not tall”
Every point on the horizontal line denotes the position of an
individual x. If x is at a, he possesses all properties of “ tall” and
s0 zero properties of “not tall” Therefore, let the distance
berween a and b be one unit (e, b=a+1). and x, is at 0.7
distance from the “tall line” {i.c., X, is at @ +0.7). and so at 03
distance from the “not tall" line. The membership function value
0.3 can be characterized by a set of length 0.3. (ie..[2 +0.7,a +1])
or by a set of length 0.7 (i.e,, [a,a +0.7)). This is the idea being
used while defining Lhe operators.

Every membership function value can, therefore, be repre-
sented by a seL One may. however, get different sets for the same
value. A way of choosing the right sets is mentioned in this
section, but before that a few technicalities are to be taken care
of.

Definition 1 (D1): Let a) the domain Q be a closed interval in
R. Let the membership functions f, and f, be such that

b) /: @ ~—(0.1] is continuous for all i=1,2;
o £(Q)={0,1) forall i=1,2
d) f(x)=0or 1 orundefined forall x € Q', foralli=l2

1t is clear from these assumptions that such a @ need not be
unique (11]. Uniqueness can be achieved if

%, = {8: § is a domain satisfying a)., b). c), snd )}

and

n s

S<Sn

This is the definition of Q.

Definition 2 (D2): Let f, g, nod Q=[a.b)] be a5 defined i
D1. Furtber,

] fad)c (01} glab)c (01}

ii) Let a < xg<b be such that / increases at xg. Thes x.x,
exists such that 2 & x, <xq < x, € b such that I(xu) l\l(h)
=1, and f is nondecreasing at all x & (x;, x3)
same holds for g also.

Qo=
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jiit Let @ < xg < b be such that / decreases at x,. Thea x,, x,
exists such that 4 < x, <xg <xy < b, [(x1) =1, f(x,)=0,and
is nonincreasiog al all x € (x,, x;). The same is the case with g

als'(I'th define the following:
[0./(x)). if / is nondecreasing a( x:
. [1-/(x)1), if / is nonincreasing at x;
Tt ) any finite set,  if f(x) =0;
[0.1). itf(x)=1;
[0.8(x)]. if g is nondccreasiag at x;
5. [1~g(x).1]. il g isnonincreasing at x;
ERICDE if g(x) =1;
any Mnite set, if g(x)=0.
Therefore, f(x)=A(A,) and g(x)=A(B,) where ) is the
Lebesgue measure on R.
Defimtion 3 (D3): Define
(/@ s)x) =M(4,08,)
(/@s)(x) =M(4,u8,).

fSgill) A, G B, lorall x, except where g(x)~=0and f(x)=
0:2) 4, is a finite set if g{x)=0.
Itis obvious from D3 that

(1@7)(x)=0
(10/)x) =1

where / is the complement of f.

Nuie: 1) In the definitions of union, intersection, and inclusion
the membership functions mentioned are all of the type mentioned
i;’Dl Let of = { f: f has the properties i), ii), and iii) stated in

for all x

for all x,

Definition: A membership function / is said (o be a type |
membership function if f € . Every membership function need
not be of type 1. A theorem is proved in Section V (o make D3
applicable 10 all f € &,

2) Observe that a) if /€., then every f(x) can be repre-
sented by a set from D2; b) / may also be expressed as union or
iniensevtion of two £, f, € for all i=1,2. This may result in
different sets for the same f(x)'s. A few theorems are proved in
Section 1V to show that definilion D3 is unambiguous.

3) A comparison of D3 with the earlier definitions can be
found in Section VI.

V. ProOF OF UNIQUENESS

Theorem I Let { be a type | membership function of the form
in Fig. 3,'ie, x,<x;= f(x)&/(x;). [(b)=] and
Jtay=0,and 0 < f(x) <1 for all x & (a,b), Let g and  be two
Membership functions, g, 4 €. aod (g()AXx)=/(x). Let
8,.C, be sets such that A(B,)= g(x) for all x €[a.b) and
MC) = h(x) for all x € [a,b]. where B, and C, arc obtsined
cording 1o D2. Let A, x €[a, b) be sets such that A(4,)=
Ix) for all x and A, are oblained according as D2. Then
B.NC, =4, forall x[a,b].

Proof: Observe that a point x, will always exist a1 which
Hxg)=1. x, can be 1) either a, 2) or b, 0r ) a<x, < b.
Case I: xy=a,ic., gla)=1.
Claim J: No point x € (a, b] exists such \hat g(x) =0.
Proof of chaim 1: 1 one such x, exisis, then (g(T)A)x,) = 0,
ie, f(x,)=0. However, f(x)>0 forall x> a.
Claim 2: g(x)=1 for all x E€{a,b}.
Proof of elaim 2: ¥ an x, exisis such that g(x,) <1, thea an
x> xy exists such that g(x,) =0 (from D2). Therefore, it is
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a b
Fig 3. Typc I membership funciion.

a X, b
Fig & Type | membership functions.

proved that g(x)=1 for all x €([a,b]if g(a)=1 = B, =(0.1)
for all x €a.b]

Claim 3: h{x)=f{x) for all x€[a,b}.

Proof of claim 3: Let x €[a,b) and h(x)=A(C,). Now
Six) =M€, N B)=\C, N[0,1]) =X(C,) = h(x). Therefore, in
case 1) il is proved that C, N B, = 4.

Case 2: x,=b.ie. g(b)=). Now since f(b) =1, h(b) has to
be equal to L. Let us assume that g(x) =1 for all x €[a, b] is
not possible since it has alseady been tackled in case 1). There-
fore, 3x, < b such that g(x,) =1.

Observe that if x,>a, then g(x,) =0 = f(.) =0, which is
not true. Therefore, g(a)=0and g(x)> 0 forall x>a.

Observe also that if g(x,) < f(x,) for an x,, 4 < x; < b, then

S(x) =X(8,0C,) $A(8,,) </(x:)

which is a contradiction, i.c., g(x)» f(x) for all x €[a, ). Let
%, € (a.b] be such that g(x,) =1 and g(x) <1 forall x<x,.
Observe that if an x, exists such that &> x> x, and g(x;) =0,
then/(x,) has to be equal to zero which cannot happea since
J(x)>0foralt x>a.ie, flx)=Lforall b3 x>,

Therefore. g is a continvous nondccreasing function from
[a.h) 10{0.1). and 8, =[0.g(x)) for all x €[a.b] and g(x) >
/(x). By following the foregoing argument. it can also be proved
that C, =[0.h(x)) for all x€la,b) and h(x)> fix). In ad-
dition, A(B,NC,)=min(g(x).A(x)=/ix) ie. BNC~
[0.min¢g(x). A(x))] = {0./(x)] for all x €[a.b] }

Case J: a < .x, <b. Observe that this case boils down to ither
case | or case 2.

Theorem 2: Let f, g, and h be as defined in the previous
theorem, except that (gQ)h)x) = /(x). Then (B,UG) =4,
for all x €[a.5].

Proof: 3 & point %, such that g(xp)=0, then citber 1)
x=b2) xp=a.0r3)a<xyg<b.

Case I: xg=b. Itcan be proved that g(x) =0 forall x € (a.5)
= h(x)=f(x) lor 2l xE[a.b].

Case 2: Let x, be such that g(x,) =0 and g(x) >0 for all
x> x, (se¢ Fig, 4). Thea it can be proved that g(x) =0 for all
agx<x,
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Fig. 5. Type | membership function.

By fotlowing the reasoning shown in casc 2 of Theorem 1,
making modifications for @ it can be proved that g is nonde-

creasing in {a.b] and g(x) < f(x) for all x €[a, b) and h(x) &
f(x) and h is nondecreasing, 1.c.,

B.=[0.g(x)]|
C.=[0.h(x)]
4,=[0./(x)]
B UG, =[0.max( ‘x),h(x))]
A(B,UC) = max(g(x). h(x)) = f(x).
Therelore, A, = [0, f(x)]= B,UC,.
Cuse 3: a < xy <b; this lollows from case 2.
Theorem 3: Let [ be as defined follows:
f:la.b]=[0.,1]
f(a)=1  f(b)=0, 0<f(x)<llorall x€(a,b)
xn<xn=f(x)2f(x). lorallx.x€la,b]
Let g a0d h be membership funclions of type I. Let 4,, 8,, and
C, be sets defined as in D2 for f, g, and h, respectively.
Therefore. A(4,) = f(x). \(8,) = g(x).and A(C,} = h(x). Then
1) A, =B UC, for all x if f=g(Q)h. or2) 4,=8,nC, il
/=3
Proof: The proof will be along the same lines as those of
Theorems 1 and 2.
Theorem 4: Let { be a membership function as shown in Fig.
5. ic. flay=f(b)=0. f(c)=1 where a<c<b. [ is nonde-

creasing in the interval (a,c), and f is nonincreasing in the
interval (¢, b). In addition,

0<f(x) <1, forall x&(a,c)u(c,b)
[0./(x)}, ixe(ac]
“'{[n—/(x),m, if xe(c.b).

Let g, h € . Therefore, 38, C, for every x € [a, b] correspond-
ing to g and h, respectively, such that A(B,) = g{(x) and A(C,)
= h(x). Let g@h = /. Then B,NC, = A, forall x.

Proof: Observe that g(c)=h(c)=1. Then tbe Theorem 4

boils down (o getting g and A in the intervals [a, c] and [c, b).
This procedure is shown in Theorems 1 and 3.

Theorem 5: Let f, g, and h satisfy the properties siated in the
hypothesis of Theorem 4, except that g@h = f. Then B, UC, =
A, forall x.

Proof: Observe that g(a) = h(a) = g(b) = h(b)=0. If
8(xy) > 0 for an x,, then 3x, € (a, b) such that g(x,) =1 (since
g€ ). We have g(x,) =1 f(x,)=1. However, exactly onc
point exists at which / is equal to one. Therelore, g(x)> 0 for

a cy €2 b
Fig 6. Type | membership function.

an x=s g is nondecreasing in the inierval (a. c) and nonincreas
ing in the interval (c, b). This is the case with h as well Then
from Theorems 2 and 3 the result follows.

Theorem 6: Let / be a membership function as shown in Fig,
6.ic.

f(a)=f(b)=0
f(x) =1,
f(x)>0,

/ is nondecreasing in the inlerval (a, ¢, ) and noaincreasing in the
inlerval (c,.b). Let g, h € of be such that g@h =/ Let 4,
B, and C, be delined as in D2 for /. g, and h, respectively.
Then B,NC, = A, forall x.

Proof: Observe that g(x)=h(x) =1, for all x€[c,, ¢}
Then from Theorems | and 3 the proof is obvious.

Theorem 7: Let f. g, h, A, B,. and C, be as defined in
Theorem 6, except that g@h =/ Then B,UC, =A,.forall x.

Proof: Observe that g(a)=g(b)=h(a)=h(b)=0. Ob
serve also thal g(x) = h(x) =0 for all x €(a.b]is not possible,
i.c.. there exists an x and a function among g and h (without
loss of generality g) such that g{x)> 0. Since f(x)=1 for al
XE e cy). Ix, €[6yu ¢y | such that g(x,) =1. Let x, and x; be
such that ¢, < x, € X, € €5, g{x;) = g(x;) = 1. and g(x) <l for
all x<x, and x> x,. Note that g(x) < f(x) for all x&[a,b)

If h(x)=0 for all x, then g(x)=f{x) for all x&[a,b}
Therefore, let h(x) > 0 for at least oac x € (u, b). Let x, and x;
be such that ¢, € x, € xs < ¢y, h(x,)=h(x) =1, and h(x)<]
for all x <x, and x> x,. Then

_[ o)
A {[1-3(1)‘11.

[0.k(x)].

[1=-A(x).1).

Observe that 4, U B, ={0.1) for all x € [min(x, x;}
max(x,.xs)). This is wrve for the following reasons.

1) A(4,UB)=1
2) A, and B, are closed intervals, so A, U B, is closed.
3) Let x,&A4,UB, and x; €(0,1). Let

forall x €[c,,c,) where a < ¢, <, <b.

for all x & (a.b).

forall x €[a.x,|
for all x €{x,.b]

forall x €{a.x,)

B~ forall x € x,.1).

\

';::([:; :T])} without loss of generality.
ie,
A =[0.xo-7). n>0
Belmendl n>0.

Thea MA, U B,)=1-n -7 <l=f(x),05&Q)=
X €A UB,
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Fig. 7. Type ] membership function.

Let
a, = min(x,,x,)

a, = max( xy, Xg).

To get the sets in the intervals (a, ;] and |ay,b), one has 1o
follow reasoning similar 10 that mentioned in Theorems 2, 3, and
S, hence the theorem.

Similar proofs can be given if the membership functions are of
the Iypes shown in Figs. 7 and 8.

V. EXTENSION TO ANY MEMBERSHIP FUNCTION

In the previous sections the union and intersection operators
were defined only for type [ membership functions and
combinations of them. However, (o calculate the same for any
wo arbitrary continuous functions, it is initially necessary to
exprexs them as a suitable combination of unions and inter-
sections of type I functions. To do this, it must be proved that 2
oollection of type [ functions always exists whose combination
gives rise to any such arbitrary continuous function. A theorem
to that effect is proved in this section.

Definition 4 {D4): Le1 { be a continuous membership function
from [a, b) to {0,1] such that f sausties D1, Then

=0 ((nog)o)e - o8) (V]

where g, & of for all i=1,++,n, and n is a positive integer and
=@ or @ fx)=A (o (Bre By By) oo e
for all x &[a,b) where B, for all x€[a,b] are the sets ob-
tained from g, for all {=1,---,n and o = or U as the notation
* stands in (1),
Assumption: For a hip function / defined
on[a.hl, M, = (x: x &(a,b).x is 2 maximum or a minimum of
/). Then M, is cither Ginite, or the set of connecied componeats
of M, is finite [13),
previous assumption is made to avoid membership func-
which do not appear in real life.
Theorem 8: Let / be a continuous membership function from
12.6) 10 10,1) such thar f satisfies DI and M, is finite. Then
BB g, € of such hat /= (- ((g) 423 80" - °8u)

Wwhere o -@ or @

b Proof: From DI the function / takes either 0 or 1 al a and
We have the following cases:

)

tions

D fay=o  so)=1
) fa)=0 f(5)=0
Y f@=1 g8)=0
9 Hay=t  pp)=1.

Proof for case I: Let x),%3,**, X0 Yyu)3s+*. ¥, b€ such
'h.-u X<y forall i=1-.. nand y <x,, forall i=1,.,
"~ 1).a0d the x, are local maxima and the y, are local minima,

SEPTEMDER /OCTOBER 1987 us

Fig- 8. Type | membenhip funcuon.

1,
0,

forall x < x, Viml, - 0
forall x> x,,,.i=1 0 (x,.,=b)
L) - 108 - /5]

IO+ === 1)

[

0,

8y-a(x) =
X,€xK),
—x+x.

PR ]/U‘.)‘ KEXLX )i

ilagxgy foralli=0,---,n, py=a
f(x), ilxela.x]|andi=0
1+f(x)=g(x). ifxe[x.y]andi=0
1, x>y adi=0
0, ifxgy foralls=1
1, ifx2y. forall 1=l
J(x)= gy, i{x),

forall i=l.---,n. x€[y.x.,]
L4 f(x}- gy a(x),
forall 1=l ,(n=1).xE[x,.1.5.,).

-(n-1)

g lx)=

hl‘(!n@!t)
h=hy Qs
":u:"’:.@l:..n-
LL:( By,. By, . By, be the seis oblained (rom gg. 8. " . 81
t

forall i=1.2,-,n

imleee(n=1)

A= By, NB, ., forall x

Ay e=Ag, 1 YBy,. foralli=12.-- n forall x
Ay = A3 N By, .y, forall im) 2.+ (n~1), forall x.
Observe that A(Ay,,)=/f(x) for all x. The proofs for other

cases are similar.

A similar proof holds when the set of connevied components
of M, is finite. An example is given next 1o make the aforemen-

tioned theorem clear. .
Example 7: Let f:[0,1] = [0.1] be as shown in Fig, 9. Le.,

H(0)=0
f(x)=a<l
fx)=b<a

()=t

in (0.5 in [x, 0} and

[is
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Observe that

M(Boa N B,V B, ] =f(x),  forall xe[0,1],

1= [(Bo@t:)@hl .

VI. CoMPARISON BETWEEN THE DEFINTTIONS
The properties ( P1- P11) mentioned in Section I of @ @
and inclusion are trvial to prove because the operations are
ordinary sct operations, and the Lebesgue measure satisfies simi-
lar properties in connection with ordinary sets [12]. Before making

“?‘ the comparison of the various definitions, let us define in some
e other way the union and intersection operations.
R Defimtion 5 (D5): Define the following for any two functions /
0 4 % ! and g on any domain Q:
Fig. 9. ip function / 13 d a of type |
functions go. g, and g,.
' A=l
nondecreasing in [y, 1] Let orall x €.
oo B,=10.5(x)
2(0) =
J(x), forall x < x, Define
so(x) = {1+ /(x)-g(x),  Ux€[x. ] fcg ifA.CB, foral
1, ifx>y.
Let { union g=A(4,UB,)
L dxgx / intersection g=X(4,NB,).
(/(’)'/(Yl))(l'/()'l)) . X
(x)= 1n)+ f(x)-f(n) i gxen Observe that Zadeh's definitions are obtained from D5.
aix 1 ! i Definition 6 (D6): Define the following for any two functions
-x in O:
: 1), if xe 1] and g on any domain Q:
N
Lt A=[0./(x) Ac=[1-f(x)]]
0 {0. fxgy B, =[1-g(x).1] B, =[0.8(x)].
Bi{x)= _ .
[()-a(x).  idxelnl]. Define
Therefore,
[0./(x)). H0gxgx / union g=A(A,UB,)
%g-;]*‘/(-‘)'ﬂl(x)]- :-;Xe["l-h] / intersection g = A(4, N B,).
AN X2y
. Observe that bold union and bold intersection (ollow from D6.
_Joa ifx<x From DS and D6 it can be concluded that D2, D3, and D4
- i . provide other ways of defining union and intersection mathe-
[1 si(x).1], xn<xck matically. From definitions D2 to D6 it can be seen thar the
itxgy proposed definitions (0) and (@ are » mixture of Zadeh's
o' - s if e xgl; definitions (U.N) and bold union and intersection (L) for type |
[ ORLIC) n functions. Tables I-111 show the same resuls.
forall xx, Note: 1) If two membership functions are defined on the same
domain, then one can always consider intersection and union of
By N By, = those membership functions. 2) Nothing has been mentioned

ifx €x&y

[1-&(x).1], it x>y

[0./(x),  x<x

[1-g(x)1+/(x) - ()],
ifx&x<y

[1- g (x).1JV[0.1(x) ~ ()],
forall x» y.

(Bo N By )U By, =

[0.(x)].
(1= g (x).1+ f(x) - ()],

aboul the membership functions defined on a finite domain U
information is available about the factors which influence the
membership function values (Example 3), then unioas and igter-
sections can be calculated.
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TABLE 1

ZADEH'S UNION AND INTERSECTION®

/ 8 h & /ng [Nh [NF gNh gng KNG [Ug UK JUg guk guj hug
05 025 DS 075 025 05 05 025 025 05 05 05 05
OR God 02 036 084 02 036 02 0% 02 08 08 0 ou v ?,3:
03 009 07 091 009 03 03 005 005 07 03 07 0% 07 09 om
1010 0 0 10 00 0 6 0 0 10 10 16 16 in o
0 0 1010 0 0 0 0 0 10 0 10 10 10 1o 1o
ey =5, gty = xt, h{xy =) - x, gx)+1-x forall xe(0.1).
TABLE 1T

BoLp UMON AND Bowo INTersecTion®
/ _y h & [ng [Ah [NE gAh gng hAg [ug [Uh [ug guk g hug
0502505075 0 0 025 0 0 03 0I5 (0 lo 0% 10 10
0% 064 02 036 044 0 016 0 0 0 10 10 10 ot 10 0%
03 009 07 091 0 0 02 0 0 08 03 10 (D uN g 10
1010 0 0 10 0 0 0 0 Q0 10 10 10 14 16 o
0 0 1010 0 0 0 0 0 10 0 10 10 10 15 v

M) m s gl = h(x) =1 - x gl =1-x forall x€10,1)

TABLE it
PropOsED UNION AND INTERSECTION'

/g ok

i @ O 10z O i *@i O O+ O O O

O

05 025 05 075 025 00 025 00 0.0
0% 064 02 036 064 00 016 00 00
03 009 07 09t 009 00 02 00 00
10 10 00 00 10 00 00 00 0.0
00 00 10 10 00 00 00 00 00

X
1
14
m
iy

0.7%
0.4
0.79
10
10

075
032
091
0.0
10

(61w, glxd =l h(x)=l-x gx)=1-x? for all x€[0.1]. The defintions of . 1. U, und 1 are au follows:

(U g k) = max(fy(x) g0k (A 0 g x) = min(fiteh gtk (VK

maxi0. fi(v)+ g (x)-1)
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minfL A+ g0k (g X =

(2]
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