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Leamning with Mislabeled Training Samples Using
Stochastic Approximation

AMITA PATHAK-PAL anp SANKAR K. PAL,
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Abstract —For the problem of parameter learning In patem recognition,
the of stochastic ion-based learning i
have been investigated for the situation in which mislabeled training
samples are present. In the cases considered, it s found that estimates
converge to nontrue values In the presence of labeling errors. The genera
m-class N-feature pattern recognition problem Is considered. A possible
solutien to the problem is also discussed. Some simulation results are
provided to support the conclusions drawn.

1. INTRODUCTION

The learning of unknown parameters of dlassifiers is an indis-
pensible part of pattern recagnition problems. If a sufficieutly
large set of correctly labeled training samples is available, then
" bly good” esti of the p can generally be
obtained. o many real-life situations, however, it is either diffi-
cult or expensive lo obtain labels, so that mistabeling of training
samples can become one of the specters with which a pattern
recognition scientist hes to contend. It is, therefore, useful to
know how this problem can affect the learning procedure. A
reasonable amount of work has been done for the two-class
classification problem. The effects of random training errors on
Fisher's discriminant function have been studied by Lacheabruch
{1}, [2]. McLachlan [3], Michalek and Tripathi [4], O'Neill [s],
Krishnan (6], and Katre and Krishnan [7). They concluded that
the effect is to underesti distance, B error rate,
introduce bias into estimates of the discriminant function, make
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of the estimates, for any given class. A simple but realistic model
[14) is adopted to describe this sort of situation. Under this
model, the anthors have invesligated the convergence of recursive
learning procedures of the type mentioned above. It is found
that, under certain conditions, these estimates do converge
strongly, that is, with probability one, but to nontrue values,
more specifically, to convex linear combinations of true parame-
ters of all m classes. This conclusion is reached using some
results on multidimensic hastic approximation {15).

This result, in itsell, is not surprising, because the presence of
mislabeled samples in the training set is sure to affect the
behavior of the training process in some way. This work mercly
provides a mathematica! description of the effect on its conver-
gence.

As this work will seemn incomplete without a solution to the
problem considered, we have also discussed in Section V a
possible way of countering the effect of the presence of misla-
beled samples in the training set. The solution consists of
modifying the hastic approximation procedure in such a
fashion that it becomes restrictive, that is, it does not alfow all
training samples to be used for updating. At any given step in the
training process, 2 sample is used for updating only if it is closer
to the preceding estimate of the mean value than some specified
threshold. Otherwise, it is excluded from the training set. Some
results on the asymptotic behavior of such algorithms are stated.
It is found that under certain conditions these algorithms are
indeed better than the ones considered earlier. Some simulation
results are provided to-illustrate the conclusions arrived at in this
work.

1. STATEMENT OF THE PROBLEM
Let us consider a general m-class (C,, i=1,--*,m) patiem
problem for which an N-dimensional vector
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the of the d function
converge 1o nontrue values, and change the asymptotic relative
efficiency (ARE) relative to a completely correctly classified
sample of the same size.

In the context of recursive learning of parameters, the useful-
ness of ic approximati duses cannot be overem-
phasized [8).' Briefly, a pproximation procedure for
recursively estimaling a parameter § by §, (at the nth stage) with
the help of an unbiased statistic T is

b =0 —a,(8-%.))

where 8 is cither & constant or B,=T,, and {a,} is a suitably
chosen sequence of positive numbers. For instance, a recursive
dure for estimating the populati mean i of a varighle X

fnﬁlizing the sample mean X, is

P

inu"u_;(x-'_xmx)»
X, | being the (7 +1)th observation on X.

Tn this correspondence, the particular case in which erors
occur in the Jabeling of training samples is studied for an m-class
N-feature pattern recognition problem. The effect of mislabeling
is to cause “wrong” samples to be used in the recursive learning
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! Por instance, there are nupiber of works (9}-(13) by Fu and others In which
stochastic approximation techniques, a3 applicd 10 learaing in patien recognu-
Gon systems, are dlscussed. (Tt may be added, however, that thesa are ot
related to the present Jovestgatony

Xyxy=[ X% Ko, Xu ] X €RY
has been specified. Let us assume that

Al) the distribution of X in each cless is continuous:;

A2) the probability densities p(-|C,) of X for the classes G,
jal,- -, m, are of the same family, and they differ only
in respect of values parameters;

an unbiased statistic exists for the g-dimensional
parameter-vector @y with respect to the probability
density function p.

AJ

Let us suppose that for the purpose of learning we have been
given a set of independent samples XKL X k=
1,-+,m, where the superscripts k denotes the Iabels given to the
respective samples. For the learning itself, let us utilize a stochastic
approximation algorithm s defincd below.

Let 41 denote the estimate obtained at the ¢th step for the
class C,. Then

8 = f(x1*) (1)

and for 1>1,
iy =t - a (8 - S(X5),
whete {a,) is & sequence of positive real pumb »
a :Wf .’3a I Re’?—- RY is an unbiased statistic for g. This
lgorithm is a generalization of the usual hast oppro
ximation procedures used for recursive parameter estimalion.

k=1,,m (10)
ers such that

1. A MoDEL FOR LABELING ERRORS

i b)
The model to be used for this purpose was developed bY
Chitﬁcnmi (14]. It cen be specified as follows. Let w and W

denote, respectively, the true and the given labels. Clearly,

w,WE (1,2, m}.
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Let v, = P(w= i) denole Lhe a priori probability for the class
. t=L.---,m. Funher, let p,(X)=p(X|w=1) be the class-
conditional density of the feature vector X for C,. Also, let a,
dnote the probability that a sample from C, has been given the
tabel e

a,=P(W=itw=j). A j=leim. ()}
Clearly. we must have
n
L a,=1 (32)
=1

ie.

Axonx1 ™ Caxt (3v)

where
Gy =1 1 1--1)
and
A=((n,,)).
Now,
X,w=i
P(XIW"')'H
-mlg‘p(x,ﬁ-i.w-j)
1 m
- FEIR A
e EIP(XI i)
-P(0=ilw= j)P(w=j)
l - a 2
-mlglninup(xw-l.w-j). (4)
Huwever,
P(i=i)= Z‘P(v'/-l,w-j)
).
= L Pomibe= ) P(w=1)
=
=L, (3)
=1
Henee (4) becomes
prts== £ opliminm)) O
-
ahere
mwuﬂzmﬂ. ™
=1
I we are prepared to assume
A4) pUX|w = j)= p(X|W =i, w= j Vi, ],
then (6) becomes
ptts=) = £ ¢, p(xw= )
1o
=L ¢,p(X). U]
1=
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It may not be out of place to emphasize here that assumption Ad)
is perfectly reasonable in the sense that it merely requires thal the
distribution of X in any class depend not on the given lable &,
but only on the true label w,

IV.  CONVERGENCE OF THE LEARNING ALGORITHM

. For.:(udying the asymplotic behavior of the learning algorithm
given in Section 1, use will be made of the following results, due
1o Schmetterer 15].

Lemmu 1: Let {a,) be a sequence of positive real numbers
such that

Cl) Lr,¢}<ew.

Let x, and y, be k-dimensional random vectors that salisfy
C2) x,.,=x,-2a,y,.n>L

Let M, be o measurable mapping from R* 10 R* such that
3

Let . b, ¢ be nonncgative real numbers, and let

E(pln.xyeox) =M (x)  ac

CA)  E(p'ixy xye - ox,) K@+ bllx I+ clx I ae.
Also, for every x € R* and n31,

CS) =M, (x)30
1l x, is chosen in such a way that

C6)  Ellin*) exists,

then the sequence { x, ) converges with probability 1. i.c.. almost
surely and the sequence E{|lx, ||’ ) converges also.

Lemmu 2: Suppose that conditions C1)-C6) hold. II, further.
there exists for every > 0a 3 >0 such that for 1 >1

(o)) il x'M,(x)>3.
nepen’t
then x, converges almost surely (o the k-dimensional null vec-
tor 0.

Let us now prove the [ollowing,

Proposition I: Consider the selup given in Sections IT and I1L.
I1. in addition to assumptions A1)-Ad), we also have

X al<e

AS) Lig, <.
A6) p, = E(IISCX)F|w = 1) exists,

with respect to cach class-conditional deasity p,( X), then

m
as.
aky
§t= Z‘A,O,-
1=l

{da -5l
converges as 1 — o0, where
[ E ©,9.
s=1
G ko=l om isasin (D).
Proof of Proposition: The validity of the proposition can be

{nferred directly from Lemmas 1 and 2, ?rovid one can show
that the conditions C1)-C7) hold for y*} where
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We note that from (1a) and (1b) we have, for k=1, -+, m,
(X}, forr=l
W0 - a4 - 1 (X68)

(92)

W ot

where
8(X0=1(X)- L 4,9
j=t
Condition C1) is seen to be true because of AS). Condition C2} is
equivalent to (9b).
Condition C3) also holds, with M,(x)=x, as
E[W0 - s (X)W )]
=yt~ E[g (X)),

since X\ is mdependcm of X*),--, X% and bence of
o

Wl“ v

E[u - g (XD ]

=¥ - E[g(X) % =k]
=40 - E(f(X)19=k)+ ):l(.,w,
IS

]
as, by (8),

E(AX) o= K) 'éltm) -5
say. Similarly, we have
E(fwt - g (X v

= (T 2408, (X2)
o (X vt b )
= - 24 E (g ()1 = k) + E e (X) 19 =)
far the same reason as before;

=+ {200 -7 9= &)

since E(g, (X} =) =0;
=R Il + E( A= k)

. o=
<[yl +Hmit+ L o
j=1

)

because of our assumption AS);
<hnf+ /il(“ol“l +p) 8¢, <1 lorall k, /.
Thus C4) is seen 10 hold with
a-l)til(uw,u’w,). b=0,cm1.

Condition C5) is seen to be true as

M(x)=x'x>0.
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The validity of C6) follows because
£ T - He(x)f
= £(he(X)F13=4)
<IR + ‘)”_:l,l 4,0 <.
Finally, C7) follows because
[+M,(x)] =

inf

x=9>0.
a<lig<y™

inf
R<imey!
Hence the proposition.
Implications of Proposition |
1) If the matrix A is the ndenmy matrix, i.c., il there is no
mislabeling then under our assumplious,

§%e,

ted.
2) 1f A#1,, then clearly the estimates
classes converge 10 nontrue values

m
L Z 4,9
y=l

&*? for the different

i.e., a convex linear combination of the parameter vectors of all
the classes, as

-
Yoo, =Wk=looom
j=1

3) Yet another implication can be stated formally as follows,
Proposition 2: Consider the setup specified in Sections II and
111 If assumplions Al)-A6) hold, then

k=1,:--.m

TS e
j=1
where
L= (1),
is a generalized inverse [16] of the matrix
Epym= ((‘,,))‘-L- -
J=lom
satisfying
ET=1I, (10)

Proof: Firstly, we note that the matrix E is ol full-rank as
shown by (3b). Consequently,

rank(E) =r<m—1.
From proposition 1, il is known that if £ denotes the trans-
pose of E, then
SRR B CAENES

(ie., every element of the matrix on (he left-hand side converged
5. 10 the comresponding clement on the right-hand side).

By well-known resulls on almost sure convergence il foliowd
that

(et

Y Jelement-wise

1) S E oylesd o Joohuma-wise
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TABLE |
PARAMETER VALUES FOR THE THREE CLASSES
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pecti i for learning. ially, both
algorithms reject those samples that do not lic within a certain

Class neighborhood of the current estimate of the mean. We investigat-
k " " I ed the large-sample behavior of this class of restrictive-updating
Igorithms in (19] and arvived at the following conclusions.
| L 1020 I5 2 Let &%) denote the estimate for g, oblained at the th siep for
% ) 28 the kth class, using this family of algorithms. Clearly, then
6 0
2 < 0.5 [
3 o9 06 - HxD), fore=1 ay
E N U L E1-a®. fori>t
where
{i¢.. every column of the matrix on the left-band side converges YR = (45 - f(x), g xPec(pa)
as. (o Lhe corresponding columu on the right-hand side) by (10)). =0, otherwise (1)
It may be mentioned in passing that one such T' satisfying (10)
is the Moore-Penrose inverse [16) of E, viz, E* defined as (a) sequence of positive ourmbers,
3
’ J R¥ -+ R? is a continuous map defining an unbi-

1
E'= E —u,u
PR
where A, is the ith noozero eigenvalue of £, and #, the corre-
sponding eigeavector, i=1,--+,r.

Sonte Simulation Results

To make an empirical study of the problem considered in this
correspondence, we simulated the problem of learning of the
mean veclor in a Lhree-cl { pattern 3 i
problem. The mean vector p, and disperson matrices L, were
prespecilied and samples were generaled with the help of the
molines GOSEAF and GOSEZF in the Numerical Algorithms
(iroup (NAG) package, so that actually pscudorandom samples
were obtained. Tables I and II give the details of the parameiers
and the Lraining sets for each class. a,; denoles the numbers of
samples in the training set which have true labels ; but are
(ntis)labeled k.

We considered three ditferent cases, using a different value of
the matrix 4 =((a,)) defined in Section ITL. Tn cach case, we
ohtained a Lraining sé1 of size 20 [or cach class by combining
samples from all three classes in suitable proportions determined
by the clements of the respective A-matrix, The results obtained
with these training sets are given in Table M1 The distances of
the esimates from the respective true values arc also given (o
facilitate comparison of the effects of different sets of a,, values,
The inferences are obvious. An increase in the proportion of
mislabeled samples in the training set causes the estimates to
recede even further from the true values.

V. Discussion

. For the gencral m-class N-feature patiem recognition problem,
itis found that in the presence of labeling crrors for (raining
samples, the recursive estimates for class paramelers @, , defined
by means of (1), do converge strongly under certain conditions.
However, the values they converge 1o are not (he true class-
Purameter values but certain convex linear combinations of Lrue
values for all the m classes.

This result is not surprising because one can easily guess that
the presence of wrongly labeled training samples is bouad 1o
alfect the behavior of the leaming system in some way. This work
merely confirms this suspicion mathematically by quantifying the
elfeet on the asymptotic behavior of the system.

The next siep, therefore, is 1o sec how the learning procedure
may be modified so that such deviant behavior is laken care of.
One obvious method is 1o screen the training samples and weed
out "doubiful” or “spurious™ samples from among them, This
“pproach was adopied by Chien {17) and Pal ef of. [18] in their

ased stalistic for g,

[ (1= 1)th step estimate of p,:

(WA = (XX € RY, X0, pith) <))

dx,y) =(x-pYB(x=y)

B, symmelric positive definite matrix, which may or
ma) 0ot be a function of the training samples

)
A, p::dﬁve number suitably chosen.

Also, let A, (1) denole the event (w: X(w) € G(wi*}.A,)).
Result 1: Under the setup considered 1n Section LI and defined
by assumptions Al)-A6), if we also have

AT it = PUA R = K] > 3,
for some 3, € (0,1) lor all 1.

then
[T ):‘ﬂ‘,(m)o,’i'o.
<

the N-dimensional null vector. Also, E(8417E78, (1 + g}
converges as 1 — <. Here,
P(A(DIX.F=k.w=j)ay, s,
31,(0)“_—”6_,‘.“(’)) .
=P(A(DIX,  w=kow= ) P(A(1)/¥=k).
(13)

Result 2: 11, in addition Lo assumplions A1)-A7), we also have
for some k,

A8) By (1) =By, forall k, j=1(1)m as 1= c0,
where 8, €(0.1] and

koj=1,--

A9) cither L7 6,9, > L7 B9, > 91y
or @y > L7 181y, > a1y, 9y, for each g,

then (13" ~ @1~ I8 - @ I} converges almost surely to some
strictly positive quantity /; which is dependent on the paramcters
of the class C,.

The implication of Result 1 is that the estimates §** converge
strongly with Lhe sequence, say,

L A, (14 )g =30
j=t

In particular, if A8) is also true, then this implies that these
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TABLE Il
@) AND §u VALUES
@, , for First Set 4, lor Second Set a;, for Third Set N
kjal j=2 ja3 g 21 je2 =3 @ =l je1 =3 @
109 00 01 (1019 080 005 015 (551775 010 010 020 (9.165)
2 00 09 01 ({55 005 080 015 (265 005 0 025 (0.7
301 01 08 (%000 010 020 070 (B.I0) 025 020 035 (8.119)
n, = Way,
TABLE 1l
LEARNING OF THE MEAN VECTOR USING (1)
First Set Second Set Third Set
Class
o fe-al @0 el W 16 -wl
1 (9981897 1.0} (9.76.18.46) 156 (9.18.17.62) 152
2 10.16.6.23) L4 (0.56.6.41) 152 (1.09,6.48) L84
3 (99.11.02) L9 (8.36.10.46) |Wa) (8.76.11.42) 189
TABLE IV
LEARNING OF CLASS-] MEAN VECTOR
liera-
ion XM w8 [a@-el d A Updae Y M-
1 9.08.2461 1 9.8 246] 470 - - y 9.08, 24.61 41
210501820 1 979,214 143 - -y 9.19.2041 142
3 11671091 3 10421791 213 42 9.8 y 10.42,12.9¢ 213
4 1121,2058 1 10621838 15§ 088 135 y 10,62, 18.58 158
s 9161901 1 10321868 136 L9 095 o 10.62. 18.58 155
6 8R7.1661 1 10081834 166 146 154 y 1033, 1825 L7
7 5151251 2 9381751 57 522 468 a 10.33. 1828 178
R 9N2.1457 3 9431714 19 099 225 y 10.26,12.79 n
9 £57,1592 1 9341700 3.07 9 1 a 10.26,17.79 222
10 10762465 1 9481177 219 190 4.69 y 10.)2.1848 1.55
1110392062 1 957.1803 202 0.55 158 y 1012, 18.67 137
12 8651762 1 949.17.99 207 216 152 [ 10.32, 1867 137
13 48,1068 3 911743 n mm 16 ° 10,02, 1867 13?7
14 1134128) 3 9211709 3.00 205 4M y 10.40, 18.24 1.80
15 1068.2165 1 936,12.39 269 099 2717 y 1041, 18.47 158
16 797225 1 927177 239 3S6 1S5y 1026187 L3L
17 288,897 2 8%0.12.20 301 84 1829 n 10.26.18 2 131
1IR1351.1622 1 9151718 297 360 278 1 10.26, 18.12 13l
19 8951866 1 9141723 2% 142 0.89 [ 10.26.18.72 131
20 990,2505 1 9181762 252 175 430 y 10.25,19.04 059
di-): dtx!". ")), y: updating done: n: no updating
estimates oo, converge strongly to nontrue values, viz, where A, and A, are, respectively, the lower and upper
m bounds 10 3, derived in [19).
= Z pllvl
-1
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