Segmentation Based on Measures of Contrast,
Homogeneity. and Region Size
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Abstrac —Two siporithms are described for sutomatic image segments-

fion using 2 “homogeneity” measure and *Contrast™ measure defined oa
the cooccurrence matrix of (he image. The measure of confrast involves

the concepl of ithmic response (sdaptibility with back inten-
sity) of the human visual system. Provisions are also kepi in wo differemt
ways [0 remove the irable thresholds. The effecti of the

algorithms is demonstrated for a sei of {mages having diflerent ypes of
histograms. The performance of the sigoithres is compared fo ¢xlsting

ones.

L INTRODUCTION

One of the key problems in scene analysis is segmentation of a
scenc into dilferent regions. Segmeniation is essentially a pixel
classification problem where one tries 10 classily the pixels into
different classes such that each class is homogenrous and at the
same time the vnion of 00 two adjacent classes is homogcnmus
In other words, given a definition of
a partition of the picture into connected subsets, cach of whlch is
uniform but such that no union of adjacent subsets is uaiform
1.

Several techniques of image scgmentation exist, based on globa
and loca) mlonnauon of an image. One of the techniques based
on globa.l ion is b holding which seleets the
valley points as threshold levels. For i images where the histogram
docs not have sharp valleys (i.c., having flai minima or local
minima) the histogram is usually sharpened (2)-(6] by a suitable
transformation so that the lask of seclecling valleys becomes
easier. These transformations usually require some parameters
the choice of which has a significant impact in delermining the
number of thresholds. The cooccurrence malrix, on the othet
hand, uses local spatial information of an image and provides
information rcgudmg (he pumber of (ransilions between any (w0
Bray levels in the image. This information bas been used by
various authors, namely, Weszka and Rosenfeld [7), Deravi and
Pal [8]. and Chanda et al. [9). for segmentation.

The measures on the cooccurrence matrix reported by these
authors did not consider the fact of logarithmic response of the
human visua) system [10}-[13] in measuring “contrasi™ between
regions in an image. The present work atlempts 10 bring this
factor in1o consideration while defining a measure of contrast in
addition to defining another measure called homogeneity within
a region. The combination of these two measures made Lhe
algorithms effective in determining threshold levels. The contrast
measure ensures three things. First, it assures the fact that
transitions (change in the gray level) from i 1o i+/ and a
\ransition from i to i+ k. I# k, create different impressions.
Second, a constant changc in the gray level at different positions
on the gray scale results in dx!(crcnl nnpmons md ﬁnnllv. if
the object and backg the
contrast value remains unaltered.

Furthermore, provisions are also kept in two different ways for
eliminating undesirable segments. In the first approach noninfor-
mative single gray level regions are eliminated by a separate
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merging algorithm. The second approach, on the other hand,
inhereally attempts to eliminate such smaller regions irrespective
of their intensity width.

e eflecti of the algorithms, along with a compari
with Lhree other methods (7]-[9], bas been demonstraled on a set
of imsges. A Digilal computer EC-1033 has been used for the
analysis. o

II. COOCCURRENCE MATRIX AND SOME MEASURES
FOR SEGMENTATION

A. Cooccurrence Matrix

Let F={[f(x.y)) be an image of size P X Q, where /(x.y) is
the groy value at (x,y) and f(x.y) €G, = {0.1,2.---,L—1)},
the ¢et of gray levels. The cooccurrence matrix (or the transilion
matrix) of the image F is an L X L dimensional matrix that gives
an ides about (he transition of intensity between adjaceal pixels.
In other words, the (i, j)th entry of the matrix gives the number
of times the gray level j follows the gray level i (i.e.. the gray
level j is an adjacent meighbor of the level i) in @ specific
lashion.

Let a denote the (i, j)th pixel in F and b denote one of the
cight neighboring pixels of a, ie.,
bEa,-((l,j-l).(l.j+1).(i+l.j).(l—l.j).(l—l,}-l).

(F=1 1), (41, /-1 (i +1, j D)}
Define

=% 8
aGF
beay
where 8 =1 if the gray level value of a is / and that of b is k:
8 =0, otherwise.

Obviously, 1, gives the number of limes the gray level &
follows gray level / in any one of the eight directions. The matrix
T=[1,];.cs, is. Lherefore, the cooccurrence matrix of the image
F. One may gel dilferent definitions of the cooccurrence matrix
by considering different subsets of gy, i.e., considering b & aj
where a; C a,.

The cooccurrence matrices may be cither nonsymmetric or
symmelric. One of the nonsymmetrical forms can be defined
considering

P Q
=L L3 (1)
=t jal
with
8=1, i f(i,j)=land f(i,j+1)=k
or f({,§)=1and f(i+1,])=k;
8=0, otherwise.

On the other hand, the following definition of 1, gives 2
symmetric coocclrTence malrix:

P Q

=) j=l
Bot, Uf(i/)=land (i, j+1) =k
or

S y=taod (1, j=1) =k
or 2)

S =tmd gy =k ¢
or

[0 ) =1and f(1-1, ) =k;

8«0, otherwise,
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Fig. 1. Pictorial representation of busyness measure.

B. Measures for Thresholding

Since the cooccurrence matnix contains information regarding
the spatial distribution of gray levels in the image. several workers
bave used them lor segmeniation. For Lhresholding at gray leve
5. Weszka and Rosenlfeld (7] defined the busyness measure a
follows:

L. 0

rmseljab

’ L-1 L-1
buy()=F L 1+ L

1a0ymsel

The cooccurrence matrix used in (3) is symmetric (using ().

The sum of the entries of the shaded portion in Fig. 1 repre-
sents the busyness measure for the level s. For an image with
only two regjoos, say, object and background, the value of s for
which the minimum of busy(s) occurs gives the threshold. Simi-
larly, for an image having more than wo regions. Lhe busyness
measure provides a set of minima corresponding to different
thresholds.

Deravi and Pal [8] have given a measure for the condilional
probability of transition from one region (o another using 3
nonsymmetric cooccurrence matrix:

P Q
=L rs (41
i=1 el
with
=1, S0, )=l fli.j+1) =k and (i +1. j)=k:
§=0, olherwise,

o] il

If the W is at s, the probability of the
intensity transition from the region (0, 5] to (s + 1. £ - 1), ie. the
probability of any intensity level from the class [0.s] being
followed by a level from the class [s+1,L~1] in the fashion
given by (4), is

1 L=l

r I,

S0 ymsel

I L1
LXu+l Lo,
1=0/=0

im0 mrel

P, (%)

Similarly. the conditional probability of the iniensity trapsilios
from he region [s+1,L~1) 10 (0, ] is
L-1
Ly,
i=5¢1/m0
T = N T
r ty+ r Xz by
IETEWETEN) t=g4] =0
The conditional probability F(s) of transiticn seross ihe
boundary is defined 88 o
b)

F(a)=(R+R)2

7

P= (s
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The lower Lhe value of P,(s), the lower is tbe probability of
(ransition across the between two classes (0,1] and
{s+1,L—1]. That means, a minimum of P,(s) will correspond
10 a threshold such that most of the transitioos are within the
class a0d few are across the boundary. Therefore, & s¢t of minima
of P.(s) would be obusined corresponding to differeat thresholds

in F.

Chanda e/ al. [9] have also used the cooccurrence matrix for
thresholding, They defined an aversge contrast (AVC) measure
L)

L=1 1
T Loet-y
(=141 j=0

T [}
1
’

snunmou\ll

.

’
=|_ ’
Iy 4
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SLoPE |
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OsVNIES ROSE REGION SLOPEr1/)

i i ty '(l‘j)1
+

1= el 1 I I
AVC(s) = T LT -1 3 . o 2 3 T
Y Ly L Ly tog®
I YEr f=s+lj=0 o Fig 2 Variation of log A 8, wilh log B tin arbitrary wale) |10}
AVCls) shows 2 sel of maxima ding to the thresholds valid only followed in 2 small restricted region.

amaag various regions in F.

In the computatioa of 1, they considered only vertical transi-
tions in Lhe downward direction. Note bere that all of the three
measures described before are basically based on some weighted
combinations of the number of entrics in Lhe shaded and blank
regions of Fig. 1.

M. SEGMENTATION BASED ON CONTRAST AND
HOMOGENEITY MEASURES
\h

Under saturation, the visual increment threshold A B, does not
follow the Weber behavior, and this deviation lrom Weber behav-
ior is shown by the dashed line (10).

Therefore, if the brightaess value of an object is higher {lower)
than its surrounding or background or a reference intensity B by
such an amount that it corresponds 10 & point on or above the
curve (Fig, 2), the object will only then appear brighter (darker).
1., discriminable 1o the human visual system (HVS). Further-
more, an cqual amouny of A8 value created al a differeni
background intensity (B value) does not resull in an equal

In this section we present an aly for segs on the
basis of the information of contrast and bomogeneity (between/
withio the regions in F) as obuined from Lhe cooccurrence
matriz {1). The concept of the human visual system has been
incorporaled in the contrasi measure to make the segmentation
closer 10 the way & human being makes use of Lhe intensity
disiribution for segmentation (of course, human beings use high
level knowledge, 100). Such a segmented image, when used for
enhancement, will result in a better enhanced image as the
method of segmentation tries 1o simulate the way a human being
perceives the iniensily variation. Before describing the algorithm,
Jei_us first exolain same. facts of the human visual gvstem.

A. Human Psychovisual Focts
_ In psychophysiology contrast C refers 10 the ratio of difference
ing B

perceivable change 1o the HVS. For example. the discrimination
ability in the De Vries-Rose region is greater than in the Weber
region, and this ability decreases with an increase in the value of
B. The possible reason for this deterioration in discrimination
ability can be attribuled 10 noalinearities inherent in the visual
syslem.

B, Measures of Contrast and Homogeneity

Tt has already been discussed that the problem of segmentation
is to partition the set G, of gray levels inlo some nonintersecting
subsets such that each segment is as homogeneous as possible
while the contrasi between any segment and its neighboring
segments is as high as possible. Two such measures. namely, the
contrast of a segment with ils neighboring segments and the
bomogeneity of a segment, are defined in the following. A

in lyminssce of an object 8, and its i
2 ie,

AB
1By BYB= - ®

The perceived grayness of a surface depends on its local back-
wound and Lhe perceived conlrast remains constant if the mea-
sure C of the contrast between object and local background
Temains constant.

The visual increment threshold (or just noticeable differeoce) i
defined a3 the amount of light A By pecessasy lo sdd (0 8 visual
field of intcnsity B such that it can be discriminated [rom
telerence field of same intensity B. I, therefore, gives 8 limit lor
 perceivable change in luminance of intensity.

Al the low-intensity sear absolute visual Lhreshold (the mere
presence or absence of lLight inteasity detectabke under dark-
adapted condition), the visual increment threshold A By is coo-
sanl With increasing B, A By can be d by a ki
function of B, i.c., ABy =a-B (lbe [sclor a is called the Weber
tatiol. When lhis linear relationship is valid, one speaks of
“Weber bebavior.”

Fig 2 presents such a charactesistic response in the log A 8y —
log B plane. The Weber behavior is characterized by unit slope of
tbe curve. The preceding region with slope 1/2 is known as the
De Vrics-Raose region, characterited by A By = VB, which s &

posite measure of the two is then used 10 select the threshold
levels in the image F.

Let the gray levels ranging from K to M lorm one of the
segments, say R, of the image F ie, R =[X M) K<M.
Define CJf ,,, the conuast of the segment R, with respect to
other segments, as follows:

N
L LW
T E,”.wu .'-x,:'x" '
1R jeR, >N
Gu= CI'IZI):' - :( )]
3
mn./u,’ G L 2':,
i=K <K
o
el

From Section I11-A snd Fig 2 it is seen that because of the
logarithmic behavior of the HVS ihe discrimination ability de-
creases with an increase in the value of background intensity B.
This is what is also reflecicd by the conirasi measure C defined
in (8). To incorporate this property, we bave iniroduced the
weighting factor ¥, in (9).

However, note l.‘tll the direct use of AB/B for W, will
obviously change the contrast valve if the object aod
intensities are interchanged. Since this is not intuitively appeal-



1=
Fip. 3. Piclorial represeatation of contrast and homogentity measures.

ing, W,, may be defined as cither

Wy =li = jUCi+ j), (108)

W, =i - jy/max (i, j}. (100)
or

Wy =li= jymin{i, j}. (109)

It is, therefore, seen that W, easures equal contribution to (3)
when the object and background intensities are interchanged in
addition 1o the property of deterioration of discrimination ability
with increase in the background intensity.

In case of a complex image, the visual system does not adapt
to a single intensity level; insiead, it adapts to an average level
which depends on the nature of the image [14]. It is, therefore,
more logical to choose (10a) for W, s In the denominator of (9)
the term LX1,, is used to make the measure independent of the
size of regions while the constanl C, is introduced to make
0<CP <1 €, obviously depends on the choice of W, and is
equal to the maximum possible value of ,,. Therefore,

(L-1)/(L+1),  for(102)
Gi={ (L-1)/L, for (10b)
(L-9. for (10¢)

where L is the maximum leve) in F. )

Therelore, it appears from (9) that if i = j, then Cf , =0, i¢.,
the cootrast in | K, M] is minimum. On the other hand, if /=1
and j= L, then the contrast is maximum ( =1) since lor all 7,
that are considered in Cy ; the values of W, become equal 10
C,. thereby making the numerator and denominalor same.

The ¢,,5 considered in (9) are shown by Ihe shaded portion in
Fig. 3, which gives the total number of transitions across the
boundary of the segment R,, i.e., from the region [ X, M] ta ils
oulside.

Aggin, define CY ,, the homogencity of the region [K, M), as

M M
MR L Loeli-fl
R RN E
. T 7
van e (LD .gu)_:.'u

)

The 1,8 considered in (11) are shown by the dotted portion in
Fig 3. €y i lies in the interval [0,1), i, 0K CF o <L I R, is
perfectly K =M (ie, the region conlaing only onc
aray level), then Cy =1 as | — j| =0 for all / and j.

With the decresse of the homogeneity of R,, |/ - j| increases
and approaches (L —1). As a result, the ratio in (11) approaches
1o unity and C , tends o zero. Thus Cf ., and CY,, are
found 1o increase with incresse in contrast and homogencity,
respectively, in a region [X, M) On lhe basis of these 1wo
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measures we define a composite measare:
B st{ O pr CBu) = Clag * CR - (13)

Since 0 < C¥ ,, <1 and 0< CF ,, <1, g also lies between 0 and
1. The level at which g attains 2 maximum value can, therefore,
be consi

a boundary (or threshold) between regions.

C. Extraction of Starting Regions — Algorithm |

To extract the thresholds in an image F, we slart with R, = [0,0]
and increase the size of R, one by one to the right side of the
gray scale until we get a local maximum of gy 4. i.¢., the process
is started with K =0, M =0, and M is incremenied one by one
until g , attains a maximum value. I the maximum occurs at
the gray level X,, then X, corresponds 1o a threshold and gray
levels ranging from 0 to K, represent a region of the image £
Then we start with K= M = K, +1, and he process is repeated
as described until we get the next maximum, say at K,. The gray
levels ranging from K, +1 10 X, thus constitute another segment.
In this way the process is carried on until the entire gray scale is
exbausted.

Merging of Single-Valued Regions: The composite measure
8x. u i found 1o be very sensitive 1o highly uniform regions. In
other words, a region conlaining only one gray level is likely o
be detected as a separale segment, although one does nol desire
to have such a segment. To avoid this we bave suggested bere a
merging algorithm whereby such a single-valued sepment i
accepled if the transitions within the segment are higher than
those across it. This criterion enables one 10 retain only Lhose
regions which have significant size in the spatial domain.

Therefore, the algorithm first of all finds out the regions of
single gray level and determines whether such regions should be
merged or not. If it decides 1o merge a region, then the next tak
is to delermine the adjacent region (left or right) 1o which it is lo
be merged.

Let R, =[M, M] be the region under consideration. Let T,
be lotal number of transitions within the region R,: then

Ty =lu.u- (13

If 7, is the total pumber of tramsitions trom R, lo all atber
outside regions, then

M
=L L (4

i=Mo M

Decision Rule: 1 Ty, >T,, then the size of the region can be
taken as reasonably big. Therefore, accepl the region: do not
mesge it; otherwise, merge Lhe cegion 10 either of its adjeceat
regions. Now the problem is to select Lhe adjacent region to
which il is to be merged.

Case 1: 1f M =0, merge R, to the right adjacent reion.

Case 2: 1t M= L -1, merge R, to the lefl adjacent region.

Case 3: 11 0 < M < L —1, we proceed as follows. Let 7, be
the lotal number of Lransitions from R, to its left adjacent
region. 1f the left adjacent region conlains gray levels mnging
from L, 10 Ly, then

ML 9

Suppose 7 is Lhe total number of transitions from R, to the

right adjacent region and the righl adjscent region cootaing gray

levels ranging from R, to R,, then

MR
T~ ): 2 fy
=M |=A
I T) > T,, then merge R, to the left adjacent region; otherwise.
merge it to the right adjacent region.

)
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The foregoing decision rule can also be formulated in a more
general way as follows. Let 7, be the total aumber of transitions
fram R, 10 all regions including itself, i.c.,

M L)

(1)

and
8=T, /T, 8<L

Now if 8> 8, accept the region, otherwise, merge it, where 6,
is some preassigned Lhreshold valve. 8, = 0.5 obviously gives the
original decision rulc. The advaotage of defining the decision rule
in this manner is thal in an inleractive environment one can
change 8,,. if necessary, and compare the results to pick up the
most approprisle value of 8, for a particular type of image.

D. Incorporating Size of Region— Algorithm 2

In Algorithm 1 we have incorporaled a sepasate merging phase
to climinate the undesirable small (noninformative) regions. The
following algorithm introduces the concept of size of regions into
the composite measure gy (12) and thereby attempis to
clinnale the need of a separate merging phase.

Let us define

) A (1Y
8x.u™=Bk.m*® " i d_,

size of the region [K, M), i.c.. aumber of pixel intensities
in F which are in the range (X, M],
A size of the image, = P¢ Q,

a parameter, wilh 0 g agl,

dy, length of the region [K, M], =M - K +1.

The fint factor (Ax/A) gives more weight (o the regions of
greater size, resulting in an increase in the g} ,, value. Thus i
the hustogram of an image bas a sharp valley, the g ,, value is
wery likely (0 decrease when M is set at the valiey point. On the
other hand, for 2 small region with a weak valley, such a decrease
in g’ value {for detccling the region) is less likely to occur. ln
such a situation, pole that the following region (valley) becomes
much less likely to be detected because of the cumulative increase
of region size d, and hence A,.

To ircumvent this situation, a second factor (1/d,)* is intro-
duced which compensates the forcgoing effect by reducing the
value of g’ with an increase in d,. @ controls the rate of decrease
inthe g" value. As a increases, the aumber of regions is likely 10
increase To extract the thresholds under this algorithm we pro-
ceed in exactly the same way as we have menlioned earlier for
Algorithm 1, considering gy w fof gy -

IV.  IMPLEMENTATION AND RESULTS

The scgmentation algorithms are described in the Appendix.
The algonthms are implemented on a set of four different images
{14] having dimension 64 X 64 with 32 gray levels. Figs. 4(a), S(a),
6a). and () seprescnt Lhe original input images, while Figs.
4b). Stbs, 6(b), and I(b) represent the corresponding gray-level
histograms. These images are produced on a line printer by over
prinling diffcrent character combinations for differeat gray levels.

Fig. 4(a) represeats an image of Mona Lisa. Note that tbe
gray-level histogram (Fig. 4(b)) is almost unimodal (pmng some
local minima). When the proposcd Algorithm 1 (without merg-
wg) is applied to il, four thresholds, samely, 0, 1. 6, and 17 are
produced. The corresponding segmented image is shown in Fig,
4g), where different segments are represented by different tex-
wres, When the merging algorithm is applied to it, the segment
[L 1f (Table 1) is merged to its right adjacent segmenl. The
segmented image 50 obtained afler merging is shown in Fig. 4(c).

(1)

where
4

5

81

Fig. 4. (a] Inpuc image of Mona Lisa (b) Histopram. (c) Segmenied image
by proposed method 1. (d) Segmeated image by |7). {¢) Scgmentcd image by
[8) (1) Segmented image by [9], (g) Segmented image by propased metbod ¢
(before merging). (h) Sepmented image by proposed method 2.

Comparing Fig. 4(c) and Fig. 4(g), ¢ find that an undesirable
region exists inside the hair of Mona Liss, which after being
merged resuls in 8 more meaningful segmentation (Fig. 4(c)).
Fig. 4(g) is shown, as an illustration, only to demonstrate the
effect of Lhe merging algorithm in selecting final threshalds.

Fig. 8(a) is an image of Abraham Lincoln, and the correspond-
ing gray-level histogram (Fig. 5(b)) is found to bave a number of
deep valleys. The thresholds (before and after merging) generated
by the proposed method | are shown in Table L The output
segmented image is shown in Fig, 5(c).

To demonstrale the validily of the method 1 for images with
flat and wide valleys in heir histogram, the algorithm is applied
10 the image of a je1 (Fig. &a)). One can sce in Fig. 6{a) that Lhe
right wing of the jet has vanished inside the cloud in such a way
that apparently it is very difficult to trace the boundary of the
right wing. Algorithm 1 is lound to be successful in separating
out that wing from the cloud. Fig. &(c) represenis the segmented
image, while the thresholds are shown in Teble I As a typical
{lusiration, Fig. 6(i) shows the plot of the g, ,, value for the
image of the jet.

Fig 7(a) represents the image of a biplane having two domi-
nant modes iq its histogram (Fig. 7(b)). From Fig. 7(c) the object
is found 10 be clearly sepanated [rom the background.
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Fig. S. (a) Input image of Lincoln. (b) Histogrom. (c) Sepmented Image by proposed method 1. (d) Segmented image by 17]. (c)
Scgmenicd image by [R). (1) Segmenied image by [9) (4) Segmented image by propoacd method 2.
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Fig 6. (8) Input imsgs of . () Histopram. (c) Scpmented image by propased method 1. (d) Segmented image by [7) t¢) Segmeniod
l‘m.e by [X). {F) Scamenicd image nby {9). (g Segmcoled image by proposed method | with @ = 0.75, th) Scgmenied image by
proposed method 2 (i) Plot of gy y. () Plob of g5, fof = 0.,
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Fig 6. Continued.
TABLE |
THALSHOLDS FOR VARIOUS METHODS
Proposed Metbod Method of Metbodof  Method of
Before After Waska and Deraviand  Chanda
Image Merging Merging  Rosenfeld[7]  Pal[g) eral. [9]
MonaLia 0,617 0.6,17 [ 03617, 0.3.6.17,
Fig 4 28,30 2%
Lincoln 0490317, 04913, 0491217 491217 L0110
Fig § 18,24 17224 u30 .30 1130
Ja 0.3.2.23, 03724, 03878, ERATRES 1, ILIR,
Fig 6 U6 2% » bl .3
Biplane 0.1.2,10 11017 01017, 021017, 0101417,
Fig. 7 17,18,3 i) 030 n3% 1.9
TABLE 11
‘THRESHOLDS FOR DIFFERENT &
Image a=0] _ a=04  a=05 a=07 a=0k aal0
Monaliss 1728 6 062828 Q61T 061624 038914
Fig 4 ) 2.0 LUBB
Lincola s 4 4917 WS 4L 247008
Fig § k] 2.9
o 1 R i ER 1] L1623, 0230,
Fig 6 2 131,19,
BUB
Biplane 10 10 810 10 0210 219,

Fig? n»




IEKE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS; VOL. SMC-17, NO. 5, SEFTEMBER /OCTOBER 198)

Mmber of occurrence

|

)

Fig 7. (a) Input imoge of biplane. {b) Histogram. (¢) Scgmenticd

b

Grey leval

™

1

image by proposed meihad 1. {d) Scgmented image by [7] ()
b3

Sepmenicd image by (8. (1) Scgmentcd image by [9). (g) Scgmented image by proposcd method

‘The aforementioned results were obtained by using (108) while
computing W, of the coatrast measure. Experiments were also

The threshold a1 17 or its around again appeared for a > 0.7, The
case for je is similar, baving an aimasi flat and wide valleyed

camed aut with {10b), and the were
found 10 be almast similar.

Table 11 shows the thresholds [of these images oblained by the
proposed Algorithm 2 for different values of a. As discussed in
Section 111-D, the number of segments is found 1 increase with
increases in the value of a. Note, 100, [rom Table I1 that the level
17 for Mona Lisa (unimodal histogram), which was detected at
a=0.2, was found lo be missing for values of a=0.4 and 0.6.

gram where the level 7, which was detected at a =02, wa
lost al a=0.4, 0.6, and 0.7 and reappeared for higher a vatues.
Such a situation did not arise for the Lincoln and biplanc images,
which have deep valleys. This fact can be cxplained as follows.
Suppose the first threshold is detected at a gray level /=4, for
a= a;, which means that g’ kepl on increasing up lo gray kevel /,
and at (/, +1), g’ started falling. Now if for a higher vahue of
a=a,, a;>a, the fist threshold is detected carlier a1 a gy
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kvel I=1,, )y <), then we can say thal [, is detecied, as
(1/d2)* has reduced the value of g* at (/, +1) to a value which
is less than the value of g* at /,. The threshold at /= /,, which
was elecled with a = a,. may not now be detected with an a not
much higher than @, because no sharp fall will occur in the g
value as the histogram has weak valleys. Moreover, the value of
(1/d 1" with dyy = 1| +1 0d @ = a, may be smaller than (1/d,)*
with dg =, =1y, a0d a = a, as d, in the second case is reduccd
of, 1, Irom }, + 1, unless a, is very high. Therefore, unless a,
is sufficiently high, the threshold at 1, will not be detected.
Howcver, il the histogram has a deep valley at /, it will be
detected because the fall in the g value will be sharp.

Figs dth). S(g), 6(b), and 7(g) show the segmented images for
Algorithm 2 when a is considered 1o be 0.7, as an lustration.
Fig. 64) shows the plot of the gy ,, value for the image of the jel.

Comparison with the Existing Algorithms
To compare the performance ot tne aigorithms with those of
some of the existing algorithms based on the

ma-
feld (3)

7

V. CONCLUSION AND DiscussioN

Two algorithms for imege scgmentation are described using the
mcasures of homogeneily and contrast within/between regions of
an image. The first algorithm has a separate merging phase to
climingte the undesirable segments. The second algorithm, on the
other hand, eliminated the need of such a separate merging phase
by considering the region size while extracling the thresholds.
Both of the algorithms simulate the way in which human beings
perecive brightness variation i an image.

Note here that when a human being aitempts 1o segment an
image, in addition to his logarithmic response to contrast he
makes use of certain other higher level knowledge which is aot
considered in the proposed algorithms. Hence il is nol expected
that the proposed algorithms would scgment an image exactly in
the same way a human observer does However, the incor-
poration of the weighting function W, to simulate only the
contrast response of the human visual system has resulted in
consistently better segments for images with diflerent types of
histograms.

Tt is found that ponc of the existing methods could generate as

Inx, we have dered algorithms of Weszka and R
|7. Deravi and Pal (4)-(6) (8], and Chanda e al. (7) [9). The
thrxhalds obtained by these methods arc also shown in Table I.

Equation (3) is found to fail to extract all the meaniogful
regions of the image of Mona Lisa It has selecied only three
scgments (Fig. 4(d)) with thresholds at 0 and 30; as a result, most
of the important information is lost.

Equations (4)-(6), oo the other hand, detected two extra
scgmenis ia the chest and one extra region in the hair (Fig. 4,
while [7) also produced two similar sepments (one of them is of
smallcr size than the comesponding one produced by (4)-(6) (Fig.
&Iy From Fig. 4(c) il is seen that the regions generaled by the
proposed method 1, where these additional regions are absent,
reate a better impression to the eye. However, for Algorithm 2
{for a = 0.7) the hair of Mona Lisa did not split, and it has two
extra regions in her chest (Fig, 4(h)).

For the image of Lincoln (Fig. S) all the methods except the
peesent ones have divided the forehead inlo two regions. Further-
more, Algorithm 1 and the method by Weszka and Rosenfeld
have divided the beard into 1wo regions, which is not the case for
the other three methods. Finally, Algorithm 2 created the sma)-
lest number of segmenied regions (Fig. 5(g)) and created a better
impression the cye.

In the case of the jet, (7) failed to discriminate berween the
cloud und the right wing (Fig. (1)) while the other two methods,
fike ours, are successful in doing so (Fig. 6(c)~(¢)). Algorithm 1
and (3) produced comparable results, while the resull produced
by (4)-16) (Fig. 6{¢)) seems 10 crealc a better impression 1o the
eye. but if we aller the value of §, from 0.5 to 0.75 ip the
merging algorithm, the first iwo regjons (Table Iy are merged and
the resulting image (Fig. 6(g)) is found 1o be much improved.
However, Fig, 6(h) (by Algorithm 2), which has least number of
segments, created the best result.

In the case of the biplane all the methods were able 1o detect
its comowr (Fig. 7). However, (4)-(6) are found 1o generate 1wo
additiuna) regions inside the tail of the biplane which are absent
for other cases. The background is found 1o be clusiered in two
paris by all but our methods. Furthermore, &ll the methods
except ours divided the shade of the biplane into threc or more
regions, which is 1wo and onc for Algorithms 1 and 2, respec-
tivel

ty.

From Table T it appears that (3), (4)-(6). aad (7) detecied,
except for the jel, a threshold 2t the end of the grey scale (e.g., 30
for Mona Lisa, Lincoln, and the biplane). These thresholds
correspand 10 some undesirable regions at the (rame of the
images The incorporation of the factor W,, in (9), which ac-
counts for the nonlincar behavior of HVS, bas been found to be
ahle 1o climinale such occurrences. However, Algorithm 2 [ailed
Io climinate such segments for higher value of a.

g0od segments as those of the proposed algorithms
for all images. Some of the exisling methods gencrated vxtra
segments for some images, while some methods have failed o
detect meaningful segments. Both of the proposed algonthms arc
suitable for an interactive environment.

Ttis seen that the choice of a 1n Algorithm 2 is critical. As a
increases, the number of regions also increases. resulting in an
acceptable segmentation around 0.5, However, for 3 gond image
baving sharp valleys in the gray level histogram, the ypical value
of & may be less than 0.5. On the other hand, an a geeater than
0.5 can be 1aken for images having weak valleys in the histogram
or a unimodal histogram.

The proposed methods are expected to be less sensitive to
noise as the psychovisual facts have heen comsidered. The work
can be extended to three-dimeasional images.

APPENDIX

Algorithm 1: Extraction of Inital Thresholds

Stepl K=0, M =0, number of thresholds = 0.

Step 2 Compute previous value = g, .

Step3 M=M+l
10 M is greater than L -1, then go 10 step 6: othurwise,
compute cwrent vohue =g, .

Step 4 1 currens value is ool less than prerviow rojue, then
previous value = current value and go 1o Step 3

Siep 5 Number of thresholds = numbcr of thresholds » 1,
THRESHOLD (number of threshulds) = M = | (thresh.
old is an array that stores the theeshold levels), K = A7,
80 to Step 2.

Step 6 End of extraction of thresholds.

Merging Algorithm (Output of Algorithm 1 is Input to This
Algorithm)

Step 1 Find the nexi region of single gray level. If there is none,
then stop.
Step2  (Suppose the region under consideration is R, = [ M. M)
Compute T, = the number of transivons within R,.
Compute 7, = the total numiber of transilions (rom R, to
all other regions including itself. Compute 8 =7, /7,
11 8 is greater than 6, (s predetcrmined vuluc), then go
10 Step 1.
If M is the first gray level with nonzero frequency, then
merge the region R, 10 its right ndjacent region and go
to Step L.
If M is the last gray level with nonzeny frequency, then
merge the region R, to its lelt adjacent region and go to
Step 1.

Step 3
Step 4

Step §
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Step 6 Compute 7, and 7;, the number of irantitions from R
10 its right and [eft adjacent regions, respectively.

Stiep 7 If T, is greater than 7, then merge R, to its left
adjacent region. Otherwise, merge R, 10 its right adjac-

ent region.
Step® GotoStepl.
Algorithm 2

Replace g4 by 8%, in Algorithm 1. (Nete that Algorithm 2
does not need the merging algorithm of Algorithm L)
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