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INTRODUCTION

Oscillatlon in biological processes and chemical reactions has drawn
an increasing interest both in the experimental and the mathematical fields
of investigations. Experimeatal obgervations of biological oscillation have
been reviewed by Mazia [13) , Chance etal. [3) , Brodsky [2]) and
a few others. Mano [12] has reported a rhythm of protein blosyathesis
superimposed on a basal rate of Increase in early cell cycles of sea urchin
embryos. Cycllc RNA syanthesis In slime mould cells has beea observed by
Cummins and Ruach (4] . A similar rhythm of RNA syathesis in early
mitotic cycles of Limnaea has been observed by Brahmachary, Ghosal aad
Tapaswl [1] .

Mathematical investigations la this field have been carried out mostly
on hypothetical systems. These have been prioncipally based on the Jacob-
Moood operon coacept [10) utilislag the process of feed-backiahibltion
by the end product. Goodwin's model [6) of mRNA and protein synthesis
which may be claimed to be based on recognised blological theories has
been subsequently lavestigated exhaustively by several workers. Goodwln's
approach 18 a very simple one wherein he has considered only the three
component mRNA, protein and the repressor molecules In constructlng his
model of transcription and translation. He did not consider the other im-
portant elements of this process such as heterogeneous nuclear RNA, RI-
bosomal RNA, transfer RNA, Polysomes, etc. the incorporation of which
could make the model more reallstic.

Goodwlin's priaciple of feed-back inhibition has beea extended to lnves-
tigate the osacillatory nature of higher dimensional hypothetical blochemi-
cal reactions by several workers (Griffith [7] , Rapp [17, 18] , Wal-
ter [24] , Tyson [22) ,Hastlngsaad Murray [8] , Hastings et al. [8]



and others). Tapaswl and Roy [21) constructed a model of transcription
and translatlon considerlag only the three variables DNA, mRNA and pro-
tein. This model givea a stable periodic synthesis of mRNA and proteln.

In this paper an extended mathematical model of the real biological
process of tranacription and translatlon during embryogenesis has been de-
veloped. This has been more realistic and akia to nature as this conslders
the nearly entire geunetic machinery of transcription aod translation consist-
Ing of DNA, hRNA (heterogeneous nuclear RNA), rRNA (ribosomal RNA),
aminoacyl transfer RNA, polysome, proteln and the repressor molecules.

THE MATHEMATICAL MODEL

The model is based on the following recognized principles of transcrip-
tion and translation :

1) hRNA synthesis is dlrectly proportional to the act{vation of mRNA genes
and laversely proportional to the synthesls of repressor molecules (end
product negative feed-back);

2) rRNA syathesls 18 directly proportional to the activation of rRNA genes
aad inversely proportional to the concentration of tRNA molecules (negati-
ve feed-back) (Smith [20] , Davidson [5] );

3) tRNA syathesls Is directly proportional to the tRNA geaes and inversely
proportional to the concentration of tRNA molecules itself (self feed-back
{nhibition);

4) mRNA synthesls I8 directly proportional to the amount of hRNA;

5) Aminoacylation of tRNA is directly proportional to avaflable tRNA;

6) Formation of polysomes [s directly proportlonal to the available amouat
of rRNA and mRNA;

7) Protein synthesis is directly proportional to the available amouat of ami-
aoacyl tRNA and polysomes;

8) The synthesis of the repressor molecules {8 directly proportional to the
amount of protein;

9) Each of the components under investigation decays at a rate which is
proportional to Its own amouant of accumulation.

A schematic representation of the above theorles is given In Figure 1.



Fig. 1. - A schematic diagram of the eplgenetic process of
transcription and translation during embryogenesis. Gl’ G2

and G3 are the respective genes from which rRNA, hRNA

and tRNA are transcribed. The '— ' sign denotes the ne-
gative feedback. Amiao acld is avallable from the intracellu-
lar pool and RAT denotes the aminoacyl tRNA (i.e., tRNA
charged with amino aclid).



Let us denote the conceatrations of rRNA, hRNA, mRNA, tRNA,
aminoacyl tRNA, polysome, proteln and repressor per cell by Xy Xgo o
x, reapectively. (Throughout the whole investigations these variables will

8
represent the respectfve concentrations per cell of the embryo).

Then according to the priaciples (1-9) the rates of syntheslis of the

components Xy» X --- Xg will be determined by the following set of simul-
taneous ordioary differential equations.
a
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aft=1,2,...,8,h(=1,2, 4and ,ﬂl (t=1, 2, ..., 8)are the rate

constants of synthests, {nhibition and degradation respectively of the res-
pective components whereas m (1 =1, 2, 8) denotes the stochiometry (Hill's

coefficient) of Inhibltion of the respective reactions. Note that the aystem
(1) consists of five nonlinear diff. equations coupled with three linear ones
and the nonlinear feed-back loops are associated with three members of this
aystem.



Agaln It (8 noted that a Bubayatem consisting of the first, the fourth
and the fifth equation can be picked up from the total system (1) the former
system being independent of the latter but not the reverse.

The system (1) can be represeated in a more elegant mananer by the
following dimensionless form.

Z = m1'1121

1+z4
.1
By = mz'rz‘z

1+1.8
237 % Ia%
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24" " m, * V5% Ya*a

3
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The steady states (z ZBO) of the aystem can be obtalned by

100 "
making the left hand slde of each of the equatlona in (2) equal to zero. Now
linearlzing the above aystem arouad this steady state after applying the

tranaformation yy =z -z we have
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The secular equation determining the solution for Yo1 Yg: Yo ¥q aad
Yg is given by

5 4 3 2 _
hi +p4) +p3X +p21 +pl4\+po_o (4)
with the eigen values 1 . where Py» Py Py and Py stand for the summatioas
of the constants Igr T3 YG' ben and s taking four, three, two and
- = 5
one respectively at a time, l.e. Py 212 )/3 !6 y7, p2 Ly, 1y 16
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It I8 clear that (f klk /k8 = 0 thea all the roots of the linearised

5 €7
system (3) will be purely negative real numbers in which case the system
(1) will be asymptotically stable without any oscillation. The oscillation is
possible only when this term Is not equal to zero since if we examine the
gecular equation (4) we can see that all the constants are poslitive 8o that
by Descarte's rule of signs we have all the roots are either negative or
at least one pair of roots are complex conjugate and there is no positive
root.

Since we are laterested in osclllation we are to find out the necessary
coaditlon which will conflrm the existence of complex roots in (4). To do



80 we are to take the help of the Routh-Hurwitz criterlon (Uspensky (23] ),
which gives the condition for all the roots of the characteristic equatloa to
have negative real parts.

‘Thus the violation of Routh~Hurwitz criterion (n the present case will
Iadlcate that at least one root of (4) will not have anegative real part and com-
bining this with Descarte's rule of signs which shows that there i8 ao purely
positlve roat {a (4) we can conclude that there la at least one palr of complex
coanjugate roots {n (4) having positive (or zero) real part.

Thus for the exlstence of a perlodic solution of (3) around aa unstable
equillbrium the criterion to be violated is :

PP, - PoPy > 0
i.e.
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(Zyprd >0 )

Following Canchy's lnequallty we have
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Then (5) can be written as
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The last Inequallty will be violated if

Ny,+q >5 M), (writlog My for y,0g Vg ¥y g



l.e. qa>40y, (8)

Again from (2) we have
m
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which [mplies that m, > 4.

Thus the necessary conditionsa that the system (1) will have a periodic
solution In the neighbourhood of equilibrium point are that

q >4n,2 .

and m, >4

Since all the perfodic solutioas of blological laterest should be stable,
we next lavestigate the stabllity of the periodic solution of the system (1).
To prove the existence In the small the Hopf Friedrich theory of bifurcations
can be used. MacDonald (11] has examiaed the appllication of thia theory
ia the light of Poore's [15, 16] methods In the case of a hypothetical sys-
tem of n equations coupled chainwisely of which only one has a nonliaearity
But Poore's method will be very tedious and cumbersome to apply in the pre-
sent system which has been developed oa the theories based oa real experl-
mental evidences so that too much slmplification of the model is not possible
within the natural domaln.

However, since at least one pair of the roots must be of the type u *
uuo where x and w, are positive, the equilibrium polnt ts unstable by

growing oscillations, From Hopf bifurcation theorem we then have at least
small amplitude 1imit cycle solutions in the neighbourhood of the bifurca-
tion values of N and eq which just make the polat Zio uastable (i.e., the

values for which x = 0) 80 that there are two purely Imagloary values
(Murray [14] ).



Hence, substitutiog 1= luo ia the secular equation (4), we have
S 4 2 _ _
i (uo - Py uo + blopl) + (pduo pZUO = po) = 0, when equating real and
imagloary parts separately to zero, we get,
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Sinceat 4 = +1 tJO. the routh-Hurwitz criterton (5) will be just violat—
ed we have PgPy = PyPy = 0.

Hence from (8) we get the relation

P, Py =pyl.e.,p,= Pyp, and p, = pyp,
Thus eliminating Py and Py from (4) we get,

(ﬂ+p4)(}4+p3]2+p1)=0

Then the purely imaginary roots are given by
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which are the critical values of A attained when
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Py P3 4
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The period 18 given by

27 _ . 2
2xoan/ Lafpyref-amptli

0
{.e., one full cycle and thus if we consider the duration of each mitetic cy-
cle equal to 360° the same pattern will be repeated in each mytotic cycle.
The amplitude of each cycle wlll be differeat ia the early stages and then it
will come to a stable value in the later stages of the embryoaic development.

Also, If Py =Pg~ 1, we will have «w_ =1 and the perlod = 2 1 = 360°,

As already mentioned the first, the fourth and the fifth equations of (1)
form an {adependent subsystem of the total, the behaviour of the former
subayatem can be analyzed separately.

The secular equation of the linearised form of these three equations

ara given by
I Dflygs D (p+d= - rJro @
4
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' 4
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From the fourth and fifth equatlon of (2) we see that at the steady ata-
te :
1+1 * Y250~ /4%a0 =0
40

and 240~ V5250 =0

Combining the above two equations we have
1

l+2

= 2 - -
» +z4o- ]4z40—o, l.e.,zw(l— ]4)4»240(1 ]4)1-1 0 which

glves
2, =—_2(1-1 7 [-a- yp+ {a- ,4)2 - 4(1- m}!] (11

Since z,. cannot be negative or imaginary we must have

40
Ys >1 (12)

Now the part under square root of (10) 1s positive and 8o the roots



,‘\2, )3 are real. Thua all the roots beiag real there cannot be any oscllla-

tion.

‘To fiad out the signs of the roots, we anote that
1 .2 1 2
g rs 7~ {rem s v 4]
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4
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Thus all the roota of the secular equatlon are both negative and real.
In other words the sub-system conslsting of Xy X, and Xg l.e., rRNA,

tRNA and amlnoacyl tRNA is asymptotically stable indlcating that the three
components unlike the reat of the system (1) asymptotically approach their
steady state values. The numerical and computer analysis is showa la Fi-
gures 2(b) and 3(b).

To investigate the existence of a globally stable periodic solution of (1)
we have adopted the method of numerical analysis prescribing different va-
lues for the constants satisfying the condition (7). The computor simulation
(Flg. 2(a) and 3(a))shows the existence of a stable limit cycle solution In
the large arouad an unstable equillbriim which supports the analytical find-

logs.
NUMERICAL ANALYSIS

The dimensionless form (2) of the system of simultaneous ordinary
non-linear differential equations (1) have been solved numerically by the
method of Runge-Kutta and by using an EC-1033 computer. Since It has
long been evident that the early embryogenesis starts with some maternal
store of ribosomal RNA, heterogeneous nuclear RNA, transfer RNA, etc.
(Davidson [5] ), two sets of {nltial values have been considered as fol-
low :

iyAtt=0:2 =2 =0

1=... '

ll)AH.=0:zl=66.2. z2=5, z4=10¢md za=zs=ze=z7=za=0.

The values of the consatants I and p 7 have been chosen in such a way
that the conditions (7) and (12) are satisfled. For example, we have chosen
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Fig. 2(a). - Periodlc solutions, with growing oscillation
approachiog a stable limit cycle of 2y 23, Zgy 2q and z8 of

the system (2) obtained by numerical analysis by Runge-Kutta
method on EC-1033 computer. 2y 234 Zgy 2, and zg are the
dimenslonless councentrations of hRNA, mRNA, polysomes,
protein and the represaor enzyme respectively. The [nitial
values are as In (i) and the coefficient values are as in (a) in
the text.
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Fig. 2(b). - Solutions of the stable sub-system represeanted
by the first, fourth and fifth equations of the system (2) ob—
tained by the same numerical analysis as in fig. 2(a). 2, 24
and zgare the dimensionless concentration of the rRNA,
tRNA and amlnoacyl tRNA respectively. The initial values
and the coefficient values are same as In flg. 2(a).
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Fig. 3(a). - Periodic solutions, with decaying oscillation

approaching (from outaside) the same stable 1lmit cycle, of
the same componeats 22, Zgs ZG' z,, and z8 with the same
{nittdl values as In fig. 2(a) but for different values of the

constants (as in (b)).
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Fig. 3(b). - Stable solutions of Zl, 24 and zs l.e., dimea-
slonless concentrations of rRNA, tRNA and aminoacyl tRNA
obtained in the same numerical analysis as {o fig. 3(a).



after scrupulous consideratlons of and speculatlons from the available blo-
loglcal informations (Davidson [5] ), two sets of values for these constants
in dimensionless units such as

a) N = 0,083, 4= 1.2, y5=0.e. rz = )'3 = Jg= Yq= 1‘8= 1 and
é,=1

b) 7,=8, r,=1.2, Jg=0.6, y,= J3= Jg= F7= Vg=0.4and

e,, =1, with m, =mg = 1 and m, = 5 in both the cases.

- .— 1 -
From a) we have k1 = z10 =008 (17 240) . Agaln putting y4 =1.21n

(11) weget z 0= 1.79. Then from the above expression we get, k1 =4.3

4
z ek, k
40 771 5
and k_ =2z__ = =2.98. Agalaz__ = 1 5
5 80 g 80y r3dg 17 1gh* 23y
12.81 6 — - =
5 {f.e., zeo + Zg0 = 12.81 = 0 which gives ZBO =1.5. Hence k8 =
1+2
80
(+2 127522 =2.92. Thusq=k k. ¢./k, =12.81/2.92=4.39 > 4=
80 80 e 1'5 =778 - . ‘
n,z,

Simllarly from b) we get, k1 =04, k5 =3 and k8 =2.,91 s0 that q =
0.046 > 4 H)’2 =.,041,

Numerical solut{ons of the system (2) with the initial values (i) and the
values of the coefficient as ln (a) have been plotted in Figures 2 (a) aad 2 (b).
The solutions of the same faitial values and with coefficieats as in (b) are
plotted la Figures 3 (a) and 3(b).

The results with the initial values (i1) are shown in Table 1 and Table
2 for coefficient values (a) and (b) respectively.

Both the Figures 2(a) and 3(a) show oscillatory pattern of synthesis of
hRNA, mRNA, protein and the repressor molecules. In Figure 2(a), each
of the protelin and the repressor molecules exhibits a growing oscillation
terminating Into a stable periodic nature whereas each of the hRNA and
mRNA shows all along an almost stable periodic solution except an outburst
in the first cycle. On the other hand, Flgure 3(a) shows a decaying oscilla-
tion for each of the components followed by a stable periodicity. These two
figures strongly suggest that there exists a stable limit cycle in the large
which is approached by all the trajectories lylag in Its nelghbourhood.



Figures 2(b) and 3(b) show the pattern of synthesis of rRNA, tRNA and
aminoacyl tRNA. Each of these three componenta {ncrease in the first few
cycles of division after which each tends to a stable steady state.

Tables 1 and 2 are the results of numerical analysis with some Initial
values a8 given In (1) and coefficient values as in (2) and (b) respectively.
From Table 1 it caa be seen that hRNA and mRNA follow the similar pattern
with growlng oacillatlon as in Figure 2(a), although protein and the repres-
sor enzyme have a decaying oscillation unlike Figure 2(a). But the existen~
ce of the same stable llmlt cycle as in Figure 2(a) can be traced here also.
Regarding rRNA and tRNA, table 1 shows a continuously decreasiag nature
of accumulation of these molecules from their [nitial values which ultimate~
ly approach asymptotically the same stable steady state values for these
molecules as fa Figure 2(b).

Table 2 Is to be compared with Figures 3(a) and 3(b). From this table
it ls apparent that all the osclllatory components follow the same pattera
of decaying osclllatlon which ultimately approaches the same stable perio~
dic solutlon as in Figure 3(a) proviang the existeace of the unique stable 11-
mit cycle. rRNA decreases sharply below the stable steady state value and
then approaches it like Figure 3(b) whereas tRNA decreases to Its atable
steady state value.

From the analytical findlags we have already seen that the system con-
sisting of the five components represeated by the second, third, sixth, se-
venth and eighth equations of system (1) has a stable perfodic solution in
the small around the unstable equilibrium. The aumerical results coofirm
the existence of a stable periodic solutioa In the large.

CONCLUSIONS

Mathematical investigations on the complicated process of transcrip-
tion and translation have been carried out la this paper. A compact dyna-
mical model parametrised by time based on the known blological facts and
comparisiog the main components of this fundameatal process has been de-
veloped first, The model has then been analysed with particular emphasis
to ita stability and oscillatory properties.

The merit of this work may be claimed due to the fact that unlike moat
of the previous hypothetical ones this is on a perfectly real and complicated
biological system with due considerations to most of the cardinal components
playing equal roles in the process. Analytical investigations of the model
reveal a stable periodic solution for five out of the elght componeats with
asymptotically stable solution for the rest three. The coanditioas for a sta-
ble periodic solution has also been worked out and finally this analytical
findings has been confirmed by numerical lavestigatlons,



t s, Time for x, Time for 7, z,
poaks (p) peaks (p)
toughs (t) wughs 1)
] 88.20 5.0 2.0 10.0
1 81.064 2.0817 2.0077 4.20804
1.08 (p) 2.0081
10 30.6733 0.0003 . 0025 2.3237
s .0001 12.8 ) - 0003
15.4 (p) L4187 18.0 (p} L2171
20 15,5688 . 0053 L0281 1.9778
22,1211 .0009 2.1 . 0027
25.8 {p) 4518 26.45 ) .3227
30 9.1338 . 0098 L0437 1.8552
21.85 (1) .0023 2.8 M 0060
35.88 (p) .5094 38.25 ) L3797
40 8.3887 .0102 . 0458 1.8130
41.37 (0 004 42.32 (1 . 0098
45.2 (p) .5438 45.85 (p) L4159
80 8.2000 .0081 .a38s 1.71986
91.7 (g .5658 82.35 (py 4449
100 4.9 07,05 (t) .0083 85 () .0178 1.791)

Table 1. ~ Results of the numerical analys!a of the system (2) (in dimea-
slonless units) for inftlal values (t = 0) : 2, = 66.20, 2, = 5.0, z, = 10.0,

z3=z5=z6=z7=z8=0and /1=_033' ,4_—.1_2. )’5=0.6. lyz=
Y3= Vg=7ry=1/Vg=1 e,=1,m;=m, m1andm, =5by Runge -

Kutta method on EC-1033 computer. Interpretation of the results are
given ia the text,
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Time for Ly Time for Ty Time for 2, Time (or £
peaks (p) poaks (p) peaks (p) peaks (p}
toughs (t) toughs (1) toughs 1ty toughs @)
0.0 0.0 0.0 0.0
4.5880 61,7085 02,0726 18,099
.15 1) 5.1881 1.9 () 88,2067 2.95 366. 7383 3.9 FIT ]
4.0546 0.5079 8.4330 2.1
1.5 .004 Kw.2m 3582 14.98 ity 0.88
16.85 (p) 4.2844 17.75 o) 12,4610 10.7 (py 10.92
J.36828 1.1354 6.9028 9.9
n.® .0839 24.0100) .5368 28.3 () 0.87
27.25 p) 2.749 28.15 7.1512 20.15 (@ 8.50
3.1152 0.9798 4.9232 6.98
3.6 (1 L1028 34.3501) 0.55 35.06 @ 0,83
37.08 (p) 2.1818 38.0 (p) 5.60844 38.95 (p) 5.08
J.0298 0.7211 3.6043 4.51
a.1wn L1140 43.85 Q) .5630 44.6 (1) 0.82
46.85 (p} 1.831) 47.55 (p} 4.8890 48.5 (o 4.38
3.0004 L4950 2.6208 3.54
93.2 (p) 1.5999 94.1 () 4.1849 $1.08 () 0.91
2.9855 98.9 (t) . 1327 9.5 Q) . 5949 5 (9} 3.7

Table 1. - (Coatinuation).



t Time for 5 Time for z, Time for L
peaks (p) peaks (p) Peaks (p)
toughs (t) tougha (t) toughs i1}
° 68.20 5.0 0.0
1 0.0458 1.8768 3.8867
L4 0.0270 2.5 (s 3.2148
10 0.0375 0.1059 1.0541
19.5 (1) 0.0032
20 0.0418 0.005 0.0397
28.8 (P 1.7503 21,8 0.0290
30 0.0438 1.5107 3.3642
30.4 p) 3.3958
40 0.0444 0.0132 0.3767
4a.0wm 0.0152 5.5 m 0.040%
0.0447 0.8540 0.6901
32.7 19 1.1783 .4 ip 2.8944
0.0447 0.1403 1 9655
88.3 ) 0.0192 €. 7 9. 1054
70 0.0448 0.1019 0.1324
75 0.0448 1.3229 1844
7.6 2.7987
89.5 (1 .0202
99.1 (p1 L 99.9 @ 0.1099
100 . 0448

Table 2. - Results of the numerical analysis of the system (2) (ia dimen-
slonless units) for the same Initlal values (t = 0), as in table 1 but with
values of the coefficients : y, =8, y,=1.2, y.=.6, vy, = ys= /)¢

= )’7 = YB =0.4, q= 1, m, =m, = 1 and m, = 5. The method used is
the same as in table 1. Detailed interpretation is to be found in the text.



£ L Time for z, Time for , Time for ty
poaks (p) peaks (p) peaia (p)
loughs () toughs (1) toughs (1
10.0 0.0 0.0 0.0 0.0
0.4 (p) 2.8674
4.2004 4.3880 3.5765 5.2788 3.015
5. 1889 3,29 21,4395 5.0 m 40,717
2.7 4.0340 0.2780 8.8380 27,7407
1.9778 3.26829 0.0168 0.4818 3.2988
2.2 m 0.0078 28,1 (ty 0.1371 27,2 0.6403
1.8852 3.8 0.2338 0.96880 1.2716
32.8 5 0.3036 T 2.0108 LN 4.4982
1.8130 3.0207 0.1001 1.2500 3.9841
Ly ©0.01R8 9.3 0.2213
1.7988 3.0004 0.0426 0.2333 0.847¢
56.5 Ip) 0.2670 58,7 (p) 1.7339 s2m 0.7832
1.7938 2.9905 0.1946 1.6239 1.2
8.0 tp 3.0890
1.792) 2.9872 0.0217 0.3358 1.4990
70.7 My 0.020? T2.8 ) 0.2380 4.4 0.8a71
1.7918 2.9884 0.1002 0.3926 0.6245
10.7 (M 0.2583 82 (p) 1.6624 4.3 ip) 37784
93.8 1 0.0211 95.7 0.2381 97.6 ) 9.8128
1.7913 2.0855

Table 2, - (Coatinuation),
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Although from the Figures 2(a), 2(b) and 3(a), 3(b), the pattern of syn-
thesls of different slze classes of RNA caa be easily visualized, tables 1
and 2 serve more practically the purpose of comparing the theoretical re-
sults with the experimental findings. This is because all the living organisms
start the process of embryogenesis with some amount of maternal RNA pre-
pared during oogenesis (Davidson [5] ) and Tables 1 and 2 are the results
after consideration of the initial values of RNA at t = 0. Enough experimen-
tal evideaces are there that both the ribosomal and tranafer RNA synthesls
18 very much repressed during the early part of embryogeneals aad not
cleary vivid in most cases before the blastula stage from which the rate of
syathesis goes on increasing. A detalled discussion on this toplc can be
found la Davidson [5) and Welssbach and Pestka [25] . Both table 1 and
table 2 show a simllar oscillatory pattera of syntheslis approaching a stable
periodic nature for each of the five components represented by Zys 23 Zge

2z, aad Zg- The marked outburst of protela synthesis ia the first cycle late-
restiagly coincides with experimental evidences.

Regarding rRNA lzl), tRNA (24) aad aminoacyl tRNA (15). the final

fnterpretation as obtained from the figures and tables is that the three va-
riables Zys 24 and zg approach the stable steady state fn a decreasing or

an Increasing manner according as the initial values are respectively above
or below these steady state values.

The rhythmic pattern of hRNA, mRNA, proteins etc. has been experi-
mentally observed in many organlsms (Mazla [13) , Mano [12] ). Both
the figures (2a and 3a) and the tables (1 and 2) simulate these patterns qua-
litatively. In fact the most important property of biological interest of this
model s that it exhibits a stable periodic solution with the Hill coefficient
for the repressor molecules m, > 4. Griffith [7] working with Goodwin's

type of model in the three variable case observed that for m, > 8 there wlll

be always one limlt cycle. But experimental iavestigations indicate that the
value of the Hill coefficieat i.e., the number of molecules required to co-
operatively inactivate a gene cannot be of such a high order as obtalned by
Griffith. The present result {8 definitely more In the line of biologlcal rea-
lity. A stable perlodic solution for the componeats rRNA, tRNA aad amino-
acyl tRNA which have shown aperiodicity In this iavestigation, can be ob-
tained by introduciog a time lag In one of the equations representing the ra-
te of synthesis of these molecules. The time lag analysis 1a.based on the
concept of threshold concentration of tRNA at which the process of feed-
back self inhibition is switched on,

Due to the meagre supply of reliable biological data such as the speci-
fic rate constants, Initial values etc. true simulation of the blological pro-
cess {8 Impossible. The degree of simulation of the natural systems depends
on the accuracy of these values for different specles of organlsms. Ounly a
mathematically oriented experimental investigation i.e., a combined effort
of the Mathematicians and the Blologists can pave the way to the deslred
goal of establlshing the validity of the mathematlcal models.
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