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Minimizing the maximum variance of the difference
between two estimated responses

By S. HUDA axp RAHUL MUKERJEE

Division of Theorelical Statistics and M athemalics,
Indian Statistical Institute, Calculla, India

SUMMARY
Minimization of the variance of the difference between estimated responses at two
points maximized over all pairs of points in the design space is taken as the criterion for
selecting designs. Optimal designs under the criterion are derived for second-order
polvnomial models when the design spaces are ypherical.
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1. INTRODUCTION

It has been recognized in recent years that even in response surface designs the
response at individual locations may not always be the main interest (Herzberg, 1967;
Atkinson, 1970; Hader & Park, 1978: Box & Draper, 1980). Often the difference between
estimated responses at two points may be of greater interest. If the possibility of bias in
the assumed model (Box & Draper. 1959) is excluded, then in such situations the designs
minimizing the variance of the difference maximized over all pairs of points in the design
space may be preferable to others. In this paper the optimal designs under this minimax
criterion are derived for second-order polynomial regression in spherical regions.

Consider the design set-up where the k quantitative factors x,, .... x, take values in the
kball ¥ = {x = (2,,...,5,); L2} € R?} and the expected value of the observation y(r) at
puint r is given by

k L3 i
Ey@} =@ B = ot 2 bt X ¥ By, m

a polynomial of degree two. It is assumed that the observations are uncorrelated and
have & commen variance a2 which without loss of generality is taken to be unity. A
design ¢ is a probability measure on &'. The design is of order two if it allows the
estimation of all the parameters in (1). If N experiments are performed according to ¢
then
Noovfy=M~"&), Nvar{jz)=f1(z)H &)/ ().

where f is the least squarea eatimator of §, j(x) is the corresponding estimated reaponse
stz end M(E) = [ f{z)f'{x) é(dx) is the information matrix of ¢.

2. THE OBJECTIVE FUNCTION

1t can be shown that for polynomial regression in spherical regions, the optimal
designs under the type of criterion considered are also rotatable (Kiefer, 1060). Hence
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only rotatable designs (Box & Hunter, 1957) need be idered. For a d-order
design ¢ the conditions for rotatability are

J‘x.’s‘(dz) =4y |2t §ldn) = 3J‘z,’z}¢(d:) =34 (%)), Ag>k(k+2)7" 43,

and all other moments up to order four are zero.

Herzberg (1967) showed that. for a rotatable design, the variance of the difference
between estimated responses at two points depends on the distances of the points from
the centre and the angle subtended by the points at the centre. Herzberg (1967) also
showed that for a second-order rotatable design.

Nvar{glz) =iz} = A7 vy + 240 [r] = {(k+2) 2~ kAF} !

x(Ac=23) (p-p1)’). 2
where

pi=Xxl. pf=Xz. 1j=(pt+p}-2pkpicos’8). 8 =cos”{Zxzlp, 07"}
Hence. our objective is to find
minmax V{;.2,.0,.0:.9).
A3, 44
where the maximum is over p,, p, € [0. B|. 8 € [0.n] and where V(1;,,.p,.p,.0) is the
right-hand side of (2). Without loss of generality. in what follows, we assume that R = 1.

Then 4, < k¥ and A4 < A,k +2) " . equality being achieved if the design is supported at
the centre and the surface of the k-hall onty.

3. THE MINIMAX SOLUTION
Equation {2) may be rewritten as
Vids A, £y £ 0) = A7 ' 1y 1200 {(k +2) Aa— A3} H{(k + 1) A — (k= 1) A3}
x(p2—p)* +45" p2 p2(1 —cos?0),

from which it is readily seen that for fixed 4, and any p,, p, and 8 the variance function is
strictly decreasing in A,. Therefore, we only need to consider the designs with
Ag = A3k +2)” '. For these designs, writing

Vidy, put.0) = V{43, 430k +2) ", p,, p.. 6}
where p, = lp,, we get
Vidy, pr.8.0) = (24,;) 7 {202(1 + 12 — 2t cor 0) + 202 13 (k + 2) (1 —coa? §)
+ 51 =P (k4 1))+ (1~ k2y) 7 pi(1 =12, 3

From (3) it can be seen that for any fixed 4, and any .8 the value of V(4;.p,.1.8) is
maximized by making p, as large as possible. Therefore, we can take p, = 1 and rewrite
the specifications as
min max V(3,.4,8),
A

where the maximum is over! € [0, 1], § € [0, x] and where V(4,,¢,0) is given by the right-
hend side of (3) with p, = 1.
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Partial derivatives dV(d,,4,8)/06 and 0* V(4,,4,0)/36* show that § = 0 always gives &

minimum and 6 = = gives a maximum when 0 < ¢ < (k+2)"*. For (k+2)"! <t < 1, the

maximum is at 6 = coa”'[—{{(k+2)} ') and 8 = x is a minimum. Therefore, writing
V(d,.¢) for V(4;,4,0) maximized with respect to 8, we have that

VilA2,8) = (243) 121+ + (k+ 1) (1 —¢2)%)

Vit = + (1= kdy) M1 =32 O<t<(k+2)™h,
ni=
Va(ds, ) = (245) 7 (2{1 4 (k+8) 2} + (K + 1) (1 —i%)3]
+{k+2) 43} + (1 —kdy) (1 —2)? (k+2)"' <t< 1)

The problem, therefore, is to find the 4, which minimizes ¥(1,), the value of V(1,.2)
maximized with respect to 1. The solution is given by the following lemma, the proof of
which is provided in the Appendix.

Lenua 1. For k 2> 2 the variance function V(A,) is minimized by A3 which is the root of
the equation
,(2C+27 (10— 0~ ) +20{1 =24, C) "' }¥2) = 4(k+3)2(k+2)"", (4)
where C = (k+1) (24;) 7" +(1—k4y) ™!

The roots of (4) provide the momenta of designs optimal for minimizing the maximum
variance of the difference between two estimated reaponses. Numerical solutions of (4)
can be quickly found and the first row of Table 1 gives these for k = 2 to k = 10. Like the
D-optimal designs our optimal designs put all the mass at the centre and the surface of
the k-ball. The moments of these designs are fairly close to those of the D-optimal
designs. However, the latter designa put slightly greater mass at the surface. The
opposite holda when & = I as shown in the London Ph.D. thesis of 8. Huda.

The designs obtained seem to perform well when judged by the more usual criteria. As
an example, the D-efficiencies of these ‘minimax’ designs are given in the second row of
Table 1, which shows that the efficiencies are always greater than 0-99. The efficiency at
0-9910 is a minimum for & = 2, then strictly increases and reaches 0-9998 for £ = 10

The performance of various designs under the criterion introduced may be judged by
taking as a meaaure of efficienoy the ratios of the maximum variance of the difference
for these designa to that of the optimal designs. The third row of Table 1, for example,
provides the efficiencies of the D-optimal designs under the criterion. As expected, the D-
optimal designs perform well but not so well as our optimal designs do under the D-
optimality criterion, particularly for small values of k. Hence, if the differences between
estimated responses are of greater interest than estimated responses at individual
locations, other things being equal, it is better to use the designs derived here.

Table 1. Value of A% for optimal design for minimi. variance;
D-efficiency E, of minimaz design: efficiency e, oj‘ D-optimal design
k=2 k=3 ko4 k=8 k=n8 k=7 k=8 k=D k=10

a3 04308 03083 02371 01924 01818 01398 01227 01004 00987
E, 09910 00859 09079 00988 00903 09505 00598 00988 09998
o 08477 (9731 (9841 0000 09933 09948 09061 09972 09978
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Two figures are provided to illustrate the behaviour of the variance function. Figure 1
shows V(4,.1) for some typical values of 1, close to the optimal value A3. There is a Jocal
maximum at #,(4,) < (k+2)~'. The overall maximum occurs at #4(4,) for 2, > 1% and at
the boundary point ¢ = 1 for 4; < 4%. while for 2; = A} the values at these two points are
equal.

Figure 2 shows that V,;(4,), the maximum value of V,(4,.t) for t € ((k+2)"' 1), is
strictly decreasing in 4, while V,(4;). the maximum value of V,(,.1) for
t€10.(k+2)""]. has u single minimum. The optimal value 13 of 2, as given by Lemma |
corresponds to the point of intersection of the curves corresponding to V(4,) and V,(d,),

Herzberg (1967) suggested that 4, and 4, should be taken ax large as possible without
violating the conatraint 4, > kij(k +2)'. However, this prescription may be mislead-
ing. Qur resulta show that 4, should have the value at its upper bound and also 4, should
be increased but only up to the optimal value 43. Any design with 1, too close to the
bound &7 ! would result in too large a value for V,(4,) and hence V(4,) s seen in Fig, 2.

Maximum vananee for inadmixible design 14, 4,)

— 4, <4t
1 - Ay = At I — Vid))
Vidy.ny = A>ag Vil
)
R, LMl
Vildg 1040 ” [\
[ th+2y! [} 0 a1 £
t — Ay—
Fig. | A rough aketch of F(4,.1) for some typical Fig. 2. A rough sketch of V(d,).
L3 1

valuen of 4; cluee to 23.

4. COMMENTS

The aptimal denigns derived here are not necessarily exact, i.e. discrete. However, many
discrete designs have moments close to those of the optimal designa. Using the criterion
under consideration the performance of some discrete designs has been investigated. For
example, in two dimensions the design with one centre point and seven equally spaced
points on the unit circle has maximum variance 14-2857. For the optimal design the
maximum variance is 142119, giving the discrete design an efficiency of 99-489,.
Similarly, the four-di | design consisting of two centre points and the vertices of
a ‘cube +cross-polytope inacribed on the unit sphere was found to have 97-349,
efficiency.

1f differences in response at points close together are of greater interest then the
approach adopted by Atkinson (1970) may be more suitable.

We are grateful to Professor D. R. Cox for suggesting the problem, to Dr Bikas K.
Sinha for hia active interest in the work and to the referee for helpful comments.
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APPENDIX
Proof of Lemma 1

Fortin [0, 1], V3(4;.1) is convex in ¢ with a single minimum which is in [0, (k+2)~ '] if
and only if 4; < (2k+3) {(k+2)(2k+ 1)} 7' =1,. Also V,y(d;.0) 2 V,(4;.0) for tin [0,1).
Hence if 4, € 1,, it follows that

Vida) = Vatds, 1) = (k+3)2{(k+2)4,)

since
max {V3(4;.0), Valdy. (k+2)"1)} < Vo, 1)
For 4, > 1,,
V(dz) = max [Vo{dy (k+2)7'}, Valda 1), Vi{dy told )]
= max [V3(42.1). Vi{dy.toldn)} ]
where

foldz) = H{1 = {1-2(4, )" '}

is the maximum of V,(4;,4) in [0.(k+2)7"].
Hence, because

Vildaboldn)} =420 +471(10-CT1 +20(1 - 2(4,0)7 '},
V{25 06(23)} < V5(1,.1) and Vy(,, 1) is decreasing in A,,
min Vid,) = miv; max (134, 1), Vi{2.10(42)}]. (Al)

Since for k> 3 and t in [0 (k+2)71), V(2,0 is increasing in 22 prov ided A, > 1, and
’o()-z) is in [0. (k+2)" '], it follows that l’,{l,,la(lz)} is increasing in 4, for 4, > 1,. Also

I'j(4;.1) is decreasing in 1,. Hence by (Al) and the detalled expressions for
1 {45.45(4,)}. ¥3(4;,.1), the lemma follows. Elementary considerations establish the
result for k = 2.
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