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Let G be a sclf-complementary graph (s.c.) and o its degree sequence. Then G has a 2-factor if
and only il w ~ 2 is graphic. This is achieved by obtaining a structure th garding s.c.
graphs without a 2-factor. Another inleresting corollary of the structure theorem is that it G is a
s.c. graph of order p & 8 with minimum degree ai least p/4, then G has a 2-factor and the result is

the best possible.

0. Introduction

Clapham (1} proved that every self-complementary graph (abbreviated s.c.
graph) has a hamiitonian chain. [t has been shown by Rao [10] that every s.c. graph
of order p =8 has an l-cycle for every integer [, 3s!l<p-2.

A k-factor of a graph G is a spanning subgraph of G which is regular of degree
k. Clapham’s result [1] implies that every s.c. graph of even order has a I-factor.
The aim of this paper is to characterize s.c. graphs having a 2-factor.

Let G be a s.c. graph of order p and o be 2 permutation of the vertices which
maps G onto its complement G. Such a permutation is referred 1o as a complement-
ing permutation of G. (For properties of s.c. graphs and complementing permuta-
tions, see (1, 2, 3, 10, 11, 13, 14].) Let o = o, 0;- - - ou be the decomposition of the
permutation o into disjoint cycles. It is known that the length of o, is a multiple of 4
for every i except possibly one io (say) and the exceptional one has length 1 (the
latter can occur only in the case p = 4N +1). Let o, have length p, =4n, 1 i<k,
i# i (possibly). Let

01 = (@, Quzs -+ - D)y i# io.

We may assume that (a, a,) € E(G) (for if not, (au, a.) € E(G) and we can
relabel the vertices appropriately), and this implies that (a., a,,..) € E(G) for all
odd j. We call the vertices ayy, du, . . -, @ip-1 the odd vertices of o, and denote the set
by A, ; the vertices @z, Gu, - - -» Aoy, are the even vertices of o, and we denote the set
by B, 1 <i sk, i# i;. The vertices of A,UB, are the verticesof o, 1 = i S k, i # io.
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We label the vertices such that in each cycle consecutive odd verlices are joined
by an edge. Define a directed graph D (o) whose vertex set is the set of all cycles of
o and the cycles o, and o; (i # j) are joined by an arc (0., g;), if there is an edge in G
from some even vertex of o, to some odd vertex of o, if i, j # io: if i = iu, then (0. ;)
is an arc of D (o) if the unique vertex of o, is joined 10 some odd vertex of o,; if
j = iu, then (0. 0;) is an arc of D(a) if some even vertex of o, is joined 1o the vertex
of o, It is shown in {1} that D(c) is a complete directed graph. Further, if (0. 0;)
with i j# ia is an arc of D (o) then every even vertex of o, is joined to some odd
veriex of o,; and every odd vertex of o; is joined to some even vertex of a,; it i = iy,
then o, is joined to every odd vertex of o; and to no even vertex of g, if j = in, then
o, is joined to every even vertex of 4, and to no odd vertex of o..

We make use of the following lemma repeatedly in our discussion.

Lemma 0.1. (Clapham [l1]; compare Rao [10}). Let a.,,....0, be a path in D(o)
where all iy# io, 1<j =<0, then G has a chain containing the vertices of all o,
1< j < 8, and no vertex outside, in which two consecutive odd vertices of o,, appear
consecutively and whose end vertices are consecutive even vertices of o,

The condensation D* of a directed graph D has for its vertices the strong
components of D, and two vertices a, B of D* are joined by an arc a ~ 8 if for
some a € V(a) and b € V(B), (a.b) is an arc of D.

As always, K = K, denotes the complete graph of order n, K = K7 denotes the
empty graph; i.e. the graph with no edges. Similarly, K = K.. denotes the
complete bipartite graph with two independent sets having m and n vertices,
respectively. K© = K., denotes the empty graph on n + m verlices.

If X and Y are sets of vertices of G, G[X. Y] denotes the subgraph of G,
generated by X, Y, i.e. the graph with X U Y as its vertices, which includes exactly
those edges of G, having one end vertex in X and the other in Y. We write G[X]
for G{X, X].

1. The structure of s.c. graphs without 2-factors: the case p =4N.

Lemma 1.1, Let G be a s.c. graph of order p = AN (> 4) and o, a complementing
permuation of G. Suppose the digraph D(a) is strongly connected. Then G has a
2-factor.

Proof. First suppose m, > 1, for every i, 1 =i =< k. Then G[A, B} is a regular
graph of regularity n, 1si=k Hence G[A, B/} has r-factor, for every r,
1sr=<n, (see Harary [4, p. 85)), in particular, since n, > 1, it has a 2-factor,
1<i = k. Therefore, G has a 2-factor. Thus we may take that some cycle of o is of
length 4. Since D(o) is a strongly connected complete digraph, by Camion's
theorem (4, p. 207], it has a hamiltonian circuit, (o,..., ) (say), where n, = 1.
Now let i, be a hamiltonian chain of G given by Lemma 0.1 in which the vertices
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a,1, @15 appear consecutively and whose end vertices are a,, a.,.; with j even,
where as always the suffixes are to be taken modulo the length of the cycle of ¢ in
which they appear. Since (0w, o) is an arc of D (o), there exists an odd i such that
ey =(aw, a,,)€ E(G). Then e;=(ai,.1,@14.2) € E(G). Note that i =1 or 3 and
n, = 1. Now

p=mi—(aa)te +e

is a 2-factor of G. This completes the proof.

Theorem 1.2. Let G be a s.c. graph of order p = 4N (> 4). Then G does not have a
2-factor if and only if V(GY) can be pariitioned into two sets V,, V; of order 4N\, 4N,
(say) respectively where N\ + N, = N such that the following conditions hold.

0) H = G|V.] is a s.c. graph, i =1,2.

(1) Let L be the set of all vertices of H. whose degree in H, is at least 2N,: and
R=V:-L Then G{L}= K and G[R]=K".

(2) G[V..L]=K and G[V..R]=K".

(3) If N.> 1, then H, does not have a 2-factor.

Proof. First we prove the sufficiency. Since H, is a s.c. graph of order 4N, we have
|L|=]R|=2N. Now it N,=1, then by (2), G has a vertex of degree 1 and
therefore G does not have a 2-factor. Thus we may take that N; > 1. if now G has a
2-factor, then by (1) and (2), note that, because of | L | = | R|, a 2-factor of G cannot
contain any edge connecting H, with H., it follows that H, also has a 2-factor,
contradicting (3).

To prove the necessity, let G be a s.c. graph of order p = 4N (> 4) without a
2-factor, and o, a complementing permutation of G. By Lemma 1.1, D(o) is not
strongly connected. Since D (o) is a complete digraph, the condensation of D(¢) is
a nontrivial transitive tournament (Harary et al. (5, p. 298)). Let C,,..., C, be the
strong components of D (o) arranged in such an order that every even vertex of all
o, € V(C)is adjacent in G to all odd vertices of every o, in V(C,). 1si<jss,
where s =2. Define V, to be the set of all vertices of the cycles of o in
U,':'. V(C) = W, (say); and V, to be the set of all vertices of the cycles of o in
V(C,) = W, (say). We show that V,, V, satisfy the conditions (0) through (3) of the
statement of the theorem. Clearly G{V,] = H, is a s.c. graph of order 4N, (say),
i =1,2; with N, + N: = N. We first prove three assertions (a), (b) and (c) below and
then complete the proof.

(@) (Gus a.,) & E(G), whenever o, € W,, 0, EW, and i, j even.

Suppose e, =(a.,a.,)E E(G), with uv,i,j as above. Then e,=
(@uio1,@0y.2) € E(G). Let o, € V(C,) where 1 € [y 5— 1. Note that there is a
o. ~a, path in D{(c), containing all the vertices of L],“;.V(C,) and none of
LIi_.i V(C), where o € V(C)). Now obtain, by Lemma 0.1, a chain u, in G by
combining the cycles in this oo, — o. path, for which a., @...: are end vertices.
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Similarly, obtain a chain u, in G by combining the cycles of o in .. V(C) in
which two consecutive odd vertices of a cycle of o in V(C,,.,) appear consecutively
and whose end vertices are the consecutive even vertices a,,a,,... Now a
hamiltonian cycle u in G may be obtained by defining

p=ptetertu,,

and this is a contradiction.
®) (au. a.,) & E(G), whenever o,,a. € Wy, v# w and i, | even.

Suppose e, = (.., 4.,) € E(G), where v, w,i,j are as above. Then e,=
{@uis2 @uy.r) € E(G). Let py, ..., p, be a hamiltonian circuit (the case r = 2 is also
included) in C, with p, = o, and p, = 0., 2 < I <. Let &, be a hamilionian chain in
pi in which two consecutive odd vertices of p, say @ua, Gua.2 (@ 0dd) appear
consecutively and whose end vertices are a..d..:. Obtain a chain u., by
combining the cycles p,,....p, in which two consecutive odd vertices of
P2, brg, b1g.: (say) appear consecutively and whose end vertices are a.,, @.u,.2. Let
£, be a hamiltonian chain in H; whose end vertices are consecutive even vertices of
some cycle a, (say) of & in V(C,-1), Qe @042 (Say). We now consider two cases.

Case (i) [ =r. Then

A= 3t (Gue brp) + (Aupes, Brger) + pa— (brg, bape2) + €1+ €2+ 1y,

is a hamiltonian cycle in G. Thus we may take

Case (ii) r = | + 1. Since (p, p)) is an arc of D (o) and « is odd. (a,.. b..) € E(G)
for some even t. Now let u. be a chain obtained by combining the cycles pi.1,....p
of o in which two consecutive odd vertices of p,., appear consecutively and whose
end vertices are the consecutive even vertices b,,, b,,.2 of p,. Then p. and i * of case
(i) may be combined by defining

g =p*t gt (e b))+ (Qoesz, Drcer) = (@oar Quasa)-
Now u is a hamiltonian cycle of G, a contradiction.
(©) (ausa.,)& E(G), where o, € W, and i, j even.

This is clearly true if n, = 1. So we may take that n, > 1. Now it is enough to show
that (a.z, a.,) € E(G), whenever j is even, 4 < j =<4n,. First let j# 2n, +2. Then
G[B.] has a 2-factor u, (say). Let u, be the cycle (aui, @us ..., Qusn,-1)- L€t
(s, - .., p) be a hamiltonian circuit in C, with p, = g.. Obtain a hamiltonian chain
#2in H, whose end vertices are consecutive even vertices of a cycle o, € V(C,-1).
Now if 7 = 1, then ., g2, 20 can be combined to yield a 2-factor of G. Thus we may
take that r > 1. Since (p, 0,) is an arc of D(c), (a.,, b..) € E(G) for some even .
Now let p, be a chain obtained by combining the cycles p,,...,p, in which two
consccutive odd vertices of p, appear consecutively and whose end vertices are
bray brsvz. Then ps, pa, 1y and o can be combined suitably to get a 2-factor of G.

Thus we may take j =2n, +2. Then
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F={(8uy @uiet) (@uu-1, @uzier), | 0dd, 1 S i s4n,}
+{(@vi @uiesa), § even, 1 Si€dn),

is a 2-factor of G|A, U B.). This F and the chains g, u, described above may be
combined to yicld a 2-factor of G itself, a contradiction.

Now we are ready to prove the necessity of conditions (1) through (3). Let
A".B* be the sets of the odd vertices or even vertices of the cycles of o in V(C.),
respectively. Since H,, H, are s.c. graphs and o(A®)= B*, ¢(B*)=A"* and C,
being the bottom most strong component of the complete digraph D (o). it follows,
by assertion (a), that G[V,, A*] = K and G[V,.B*]= K*. By assertions (b) and
(). G[B*] = K, hence G{A*] = K. Now it is clear that L equals A * and R equals
B*. Thus by what has been proved above it follows that conditions (0), (1) and (2)
are satisfied. If N, > 1 and H, has a 2-factor. then since C, is a strong component, it
follows, by Lemma 1.1, that the s.c. graph H: has a 2-factor. This in turn implies
that G also has a 2-factor, contradicting the hypothesis. This compietes the proof of
the theorem.

The following remark and Lemma will be used in Section 2.

Remark 1.3. The 2-factors obtained in the proofs of assertions (b) and (c) have
two consecutive odd vertices of a cycle of o in V(C,) appearing consecutively in
them.

Lemma 1.4. Let G be a s.c. graph of order 4N, and o. a complementing
permutation of G. Suppose D (c) is strongly connected. Then G has a 2-factor in
which two consecutive odd vertices of a cycle of o appear consecutively, if and only if
G[A) # K, where A is the set of all odd veriices of o.

Proof. The proof is similar to the proof of assertions (b) and (c) of Theorem 1.2.

2. The structure of s.c. graphs without 2-factors: the case p =4N +1

Lemma 2.1. Let G be a s.c. graph of order AN +1, and o a complementing
permutation of G. Suppose the unique fixed point o, of o belongs to the botiom strong
component C, (say) of D(c) (the case D(c) is strong is nof excluded). Then G hasa
hamiltonian cycle.

Proof. Let p,...,p With p, = 04 be a hamiltonian circuit in C, (r = 1 is possible).
Note that o — o, is a complementing permutation of the s.c. graph G — o, which is
of even order. By Lemma 0.1, there exists a hamiltonian chain p; (say) in G — 0u
whose end vertices are consecutive even vertices of p,., if r & 2, or consecutive even
vertices of a cycle of o in V(C,..) if r = 1. Since o5 is joined to all even vertices of
p.-1if r =2, and also to all even vertices of every cycle of o in V(C,-,), the vertex oo
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can be incorporated at the ends of the hamiltonian chain u, to get a hamiltonian
cycle in G. This completes the proof.

Theorem 2.2. Let G be a s.c. graph of order 4N + 1. Then G does not have a
2-factor if and only if G can be partitioned into two sets V., Vi of order 4N, + 1, 4N,
respectively where N+ N.= N and N, =0, N.=1, such that the conditions (0)
through (3) of the statemnent of Theorem 1.2 hold.

Proof. The proof of the sufficiency is exactly similar 1o the proof of the sufficiency
of Theorem 1.2.

To prove the necessity, let G be a s.c. graph of order 4N + 1 without a 2-factor
and o, a complementing permutation of G and o, the unique fixed point of ¢. By
Lemma 2.1, oo € V(C.), the bottom strong component of D (o). Now define H,. H:
as in the proof of Theorem 1.2. Since the vertex o, € V(H,) = V,, it follows that
H,, is a s.c. graph of odd order, 4N, +1 say. Let H. be of order 4N,, then
Ni+ N, = N.If N, =0, then we assert that G[A] = K where A is the set of all odd
vertices of o — oo which is a complementing permutation of G — . Suppose
G[A)# K. Note that D(o — o) is strongly connected. Hence by Lemma 1.4,
G - 0o has a 2-factor F in which two consecutive odd vertices of some cycle o.
(# ao) of o appear consecutively. Then o, may be incorporated in between these
two odd vertices of F 1o get a 2-factor of G, contradicting the hypothesis. Thus
GlA]= K. Since o(A) = B, we have G[B)] = K*. Further, since G{ow, A] = K, we
have G[oo, B] = K*. Thus G satisfies the propertics (0) through (3) with V, = {g},
L = A, R = B and V; = A UB. Therefore, henceforth we may take that N, = 1.

We now prove the three assertions (a), (b) and (c) of Theorem 1.2. Suppose (a)
does not hold with o, € V(C..) and o, € V(C,). Let i E V(C), 1<slmss—1.
We consider three subcases according as [ <m, { =m, or [ >m.

Case (i) ! < m. Then in D(o — 00), C,., is the immediate successor of C., and C,
is the bottom strong component. Then, as in the proof of assertion (a) of Theorem
1.2, we obtain a 2-factor F of G — o in which two consecutive odd vertices of some
cycle of ¢ in V(C..|) appear consecutively. Now o, may be incorporated in
between these odd vertices of F, to get a 2-factor of G, a contradiction.

Case (ii) I = m. Let p,,...,p, be a hamiltonian circuit in C,. with p, = o, and
p=00, 2t =7y If 1 =2, then as in case (i) we get a 2-factor of G. Thus we may
take that 2<t=<r. Now G,= G —Lli..p, is a s.c. graph with o— L1, 85 2
complementing permutation. As in the proof of (a) of Theorem 1.2 it can be shown
that G, has a 2-factor F; (say). Now p;,...,p, can be combined to get a cycle F;
(note p, = o). Then F, + F; is a 2-factor of G, a contradiction.

Case (iii}1 > m.Now C,, ..., Casyy Cusyy .. ., C; may be combined togeta F;in G
(note @€ C;). Also. Co, Ciuyy ..., C. may be combined, as in the proof of (a) of
Theorem 1.2, to get a 2-factor F; of the corresponding graph. But then F, + Fyis a
2-factor of G, a contradiction.
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In case assertions (b) or (c) of Theorem 1.2 are not valid, we get, by Remark 1.3, 2
2-factor F, of G — oy in which two consecutive odd vertices of a cycle of o in the
bottom most strong component of D (o — aa) (which is C,) appear consccutively.
Then o, may be incorporated in between these odd vertices of F, to get a 2-factor of
G. contradicting the hypothesis that G does not have a 2-factor. Thus the assertions
of (a), (b) and (c) in Theorem 1.2 are valid in the case p = 4N + 1 also. Now as in the
proof of Theorem 1.2, it can be shown that H,, H: satisfy the conditions (0) through
(3) of Theorem 1.2. This completes the proof of Theorem 2.2.

3. Characterization of s.c. graphs with 2-factors
In this section we prove the following:

Theorem 3.1. Let G be a s.c. graph of order p, and 7 = (d,.....d,) be its degree
sequence. Then G has a 2-factorif and only if w —2=(d, - 2,...,d, — 2) is graphic.

We use the following three theorems

Theorem 3.2. (Kundu [8), Kieitman, Wang [6]). Let w and = - k be both graphic.
Then there is a realization of the former which has one of the latter as a subgraph.

Theorem 3.3. (Koren [7], Compare Rao, Rao [9, p. 187-188)). Let w = (d...... d,)
be a  graphic nonincreasing  sequence. Let 8¢ m)y=jG-1+
2, min(d, j)—~ Zi.) d. Suppose 8(j, w)=0 for some j, 1<j<p. If d,.,>], let
r=r(j) be an index such that d, = j=d,.,. If d,., < j, let r = j. For any realization
H=H(u,...,u,) of m with degree of u, = d, 1 <i <p, define

S={up,...u}, T={ther,..,ts}, U={u.,..,u}

Then

(1) H(S}=K,

(2) H(T)=K". If U#8,
then

() H[S,U]=K,
and

4) H[T,U]=K".

Theorem 3.4. (Koren [7]). Suppose H(uy,..., u,) realizes m, S ={u,,.... 4}, p>
121, T={u.,... )}, (r ), U={u.,...u} and conditions (1), (2) hold for S
and T, and if U# 8, then conditions (3), (4) hold as well. Then 6(j, w)=0.

Proof of Theorem 3.1. The proof is by induction on p. For p =4, the result is
vacuously true. Assume the result for all values less than p and let G be as.c. graph
with degree sequence 7 =(d,,...,d,) such that = —2 is also graphic. Suppose G
does not have a 2-factor. Then by Theorems 1.2 and 2.2, V(G) can be partitioned
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into two sets V,, V; of order 4N + §, 4N, (where 8 = 0 or 1 according as p is 4N or
4N + 1 respectively) such that the conditions (0) through (3) of Theorem 1.2 hold.
Put

S={u..., tamh

U= (ll;u,.h ceey lll-l}r

T ={tn..., i},

where 8 =2N,+4N,+1+ 8.

Now it is not difficult to check that for u € S, v € U and w € T, we have degree
u > degree v > degree w where the degree is to be taken in the graph G. Further,
G satisfies conditions (1) through (4) of Theorem 3.3. Hence, by Theorem 3.4,
8(2N;, w) = 0. Now by Theorem 3.2, 7 has a realization G * (say) such that G* has
a 2-factor. Since 5(2N;, ) =0, it follows by Theorem 3.3, that G* satisfies the
conditions (1) through (4) of Theorem 3.3 (with H replaced by G *). Since G * has
2-factor, it is evident that the graphs G*[U), G°*[S U T} have 2-factors. By the
structure of G and G* it is also evident that degree sequence of G*[U] = degree
sequence of G[U) = degree sequence of H, = m, (say); and also degree sequence of
G*[S U T)]=degree sequence of G[S U T] = degree sequence of H,= =, (say).

Since G*[U), G *[S U T} have 2-factors it follows that m, — 2 is graphic, i = 1,2.

Thus H, is a s.c. graph with degree sequence m, such that = —2 is graphic,
i = 1,2. Hence by induction hypothesis, H, has a 2-factor F, (say), i = 1,2. But then
F,+ Fyis a 2-factor of G, a contradiction. This completes the proof of the theorem.

Theorem 3.5. Let G be a s.c. graph of order p =8 such that minimum degree of
G = p/4, then G has a 2-factor.

Proof. Suppose G does not have a 2-factor. Then let V,, L, R be as in Theorems
1.2 and 2.2. It is clear that q(H»[L, R]) = 2N} (where g = number of edges). It
follows that for some vertex w of R, q(Ha{L,{w}]) < N,. Since G[R] is the empty
graph, we have g(G[L,{w}]}=< N, Thus minimum degree in G <N, Since
p=4N,+4N;+ 8, it can be easily seen that N, <p/4, a contradiction to the
hypothesis.

To show that the result is the best possible, we consider two cases:'

Case (i) p = 4N. A required graph G whose vertex setis V = {u,, ..., 4,} may be
constructed as follows: Define V, = {u,, uz, tt3, s}, Va= V-V,

G| V] is the s.c. graph of order 4,

L ={us,...,Usnea}y R=Va~L;

GlL]=K, G[R]=K", G[V, L]=K,

G[V,,R]=K°* and

GI{L, R} is the disconnected graph having exactly two components each of which
is regular of degree N — 1. Clearly, G is a s.c. graph of order 4N in which minimum
degree is N — 1. Further, G does not have a 2-factor,
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Case (ii) p =4N + 1, A required graph G whose vertex set is V = {uo, ..., tun}
may be constructed as follows:

Vi={u} Vi= V-V,

L={u,...uww}b R=V,—-L;

G[L])=K.G[R])=K*, G[V\.L]=K.G[V\,R]=K", and

G(L. R]is the disconnected graph having exactly two components each of which
is regular of degree N. G is a s.c. graph in which minimum degree is N and G does
not have a 2-factor.

4. Epilog

The problem of characterizing s.c. graphs with k-factors seems to be much
deeper. In this connection we take the risk of conjecturing the following:

Conjecture. Let G be a s.c. graph of order p,  its degree sequence. Then G has a
k-factor if and only if w — k is graphic.

In a forthcoming paper Rao [12] we characterize, by using the techniques
developed in the present paper, hamiltonian s.c. graphs. For a characterization of
the degree sequences of self-complementary graphs, see Clapham and
Kleitman [2].
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