CHARACTERIZATION OF SELF-COMPLEMENTARY GRAPHS WITH 2-FACTORS*

S. BHASKARA RAO'

Department of Mathematics, University Campus, Kalina, Bombay 400 029, India

Received 22 September 1975 Revised 1 April 1976

Let G be a self-complementary graph (s.c.) and π its degree sequence. Then G has a 2-factor if and only if $\pi - 2$ is graphic. This is achieved by obtaining a structure theorem regarding s.c. graphs without a 2-factor. Another interesting corollary of the structure theorem is that if G is a s.c. graph of order $p \ge 8$ with minimum degree at least p/4, then G has a 2-factor and the result is the best possible.

0. Introduction

Clapham [1] proved that every self-complementary graph (abbreviated s.c. graph) has a hamiltonian chain. It has been shown by Rao [10] that every s.c. graph of order $p \ge 8$ has an l-cycle for every integer l, $3 \le l \le p - 2$.

A k-factor of a graph G is a spanning subgraph of G which is regular of degree k. Clapham's result [1] implies that every s.c. graph of even order has a 1-factor. The aim of this paper is to characterize s.c. graphs having a 2-factor.

Let G be a s.c. graph of order p and σ be a permutation of the vertices which maps G onto its complement \overline{G} . Such a permutation is referred to as a complementing permutation of G. (For properties of s.c. graphs and complementing permutations, see [1, 2, 3, 10, 11, 13, 14].) Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ be the decomposition of the permutation σ into disjoint cycles. It is known that the length of σ , is a multiple of 4 for every i except possibly one i_0 (say) and the exceptional one has length 1 (the latter can occur only in the case p = 4N + 1). Let σ_i have length $p_i = 4n_i$, $1 \le i \le k$, $i \ne i_0$ (possibly). Let

$$\sigma_i = (a_{i,1}, a_{i,2}, \ldots, a_{i,p_i}), \qquad i \neq i_0.$$

We may assume that $(a_{i,1}, a_{i,2}) \in E(G)$ (for if not, $(a_{i,2}, a_{i,4}) \in E(G)$ and we can relabel the vertices appropriately), and this implies that $(a_{i,1}, a_{i,1-2}) \in E(G)$ for all odd j. We call the vertices $a_{i,1}, a_{i,2}, \ldots, a_{i,p-1}$ the odd vertices of σ_i and denote the set by A_i ; the vertices $a_{i,2}, a_{i,4}, \ldots, a_{i,p}$ are the even vertices of σ_i and we denote the set by B_i , $1 \le i \le k$, $i \ne i_0$. The vertices of $A_i \sqcup B_i$ are the vertices of σ_i , $1 \le i \le k$, $i \ne i_0$.

This research was supported by Research Associateship, grant No. F-16-12/74(RF) of the University Grants Commission, New Delhi 110 001.

^{&#}x27; Current address: Math.-Stat. Division, Indian Statistical Institute, 203 B.T. Road, Calcutta 700035, India.

We label the vertices such that in each cycle consecutive odd vertices are joined by an edge. Define a directed graph $D(\sigma)$ whose vertex set is the set of all cycles of σ and the cycles σ , and σ_i ($i \neq j$) are joined by an arc (σ_i, σ_j) , if there is an edge in G from some even vertex of σ_i to some odd vertex of σ_i , if $i \neq i_0$, if $i = i_0$, then (σ_i, σ_i) is an arc of $D(\sigma)$ if the unique vertex of σ_i is joined to some odd vertex of σ_i ; if $j = i_0$, then (σ_i, σ_i) is an arc of $D(\sigma)$ if some even vertex of σ_i is joined to the vertex of σ_i . It is shown in [1] that $D(\sigma)$ is a complete directed graph. Further, if (σ_i, σ_i) with $i, j \neq i_0$ is an arc of $D(\sigma)$ then every even vertex of σ_i is joined to some odd vertex of σ_i ; and every odd vertex of σ_i is joined to some even vertex of σ_i ; if $i = i_0$, then σ_i is joined to every odd vertex of σ_i and to no even vertex of σ_i ; if $j = i_0$, then σ_i is joined to every even vertex of σ_i and to no odd vertex of σ_i .

We make use of the following lemma repeatedly in our discussion.

Lemma 0.1. (Clapham [1]; compare Rao [10]). Let $\sigma_{i_1}, \dots, \sigma_{i_n}$ be a path in $D(\sigma)$ where all $i_j \neq i_0$, $1 \leq j \leq \theta$, then G has a chain containing the vertices of all σ_{i_1} , $1 \leq j \leq \theta$, and no vertex outside, in which two consecutive odd vertices of σ_{i_1} appear consecutively and whose end vertices are consecutive even vertices of σ_{i_1} .

The condensation D^* of a directed graph D has for its vertices the strong components of D, and two vertices α, β of D^* are joined by an arc $\alpha \rightarrow \beta$ if for some $a \in V(\alpha)$ and $b \in V(\beta)$, (a, b) is an arc of D.

As always, $K = K_n$ denotes the complete graph of order n, $K' = K_n'$ denotes the empty graph; i.e. the graph with no edges. Similarly, $K = K_{m,n}$ denotes the complete bipartite graph with two independent sets having m and n vertices, respectively. $K' = K_{n,m}'$ denotes the empty graph on n + m vertices.

If X and Y are sets of vertices of G, G[X, Y] denotes the subgraph of G, generated by X, Y, i.e. the graph with $X \sqcup Y$ as its vertices, which includes exactly those edges of G, having one end vertex in X and the other in Y. We write G[X] for G[X, X].

1. The structure of s.c. graphs without 2-factors: the case p = 4N.

Lemma 1.1. Let G be a s.c. graph of order p = 4N(>4) and σ , a complementing permutation of G. Suppose the digraph $D(\sigma)$ is strongly connected. Then G has a 2-factor.

Proof. First suppose $n_i > 1$, for every $i, 1 \le i \le k$. Then $G[A_n, B_i]$ is a regular graph of regularity n_i , $1 \le i \le k$. Hence $G[A_n, B_i]$ has r-factor, for every r, $1 \le r \le n_n$ (see Harary [4, p. 85]), in particular, since $n_i > 1$, it has a 2-factor, $1 \le i \le k$. Therefore, G has a 2-factor. Thus we may take that some cycle of σ is elegith 4. Since $D(\sigma)$ is a strongly connected complete digraph, by Camion's theorem [4, p. 207], it has a hamiltonian circuit, $(\sigma_1, \ldots, \sigma_n)$ (say), where $n_i = 1$. Now let μ_i be a hamiltonian chain of G given by Lemma 0.1 in which the vertices

 $a_{1,1}, a_{1,2}$ appear consecutively and whose end vertices are $a_{k,j}, a_{k,j+2}$ with j even, where as always the suffixes are to be taken modulo the length of the cycle of σ in which they appear. Since (σ_k, σ_1) is an arc of $D(\sigma)$, there exists an odd i such that $e_1 = (a_{k,j}, a_{1,i}) \in E(G)$. Then $e_2 = (a_{k,j+2}, a_{1,j+2}) \in E(G)$. Note that i = 1 or 3 and $a_1 = 1$. Now

$$\mu = \mu_1 - (a_{1,1}, a_{1,3}) + e_1 + e_2$$

is a 2-factor of G. This completes the proof.

Theorem 1.2. Let G be a s.c. graph of order p = 4N (>4). Then G does not have a 2-factor if and only if V(G) can be partitioned into two sets V_1 , V_2 of order $4N_1$, $4N_2$ (say) respectively where $N_1 + N_2 = N$ such that the following conditions hold.

- (0) $H_i = G[V_i]$ is a s.c. graph, i = 1, 2.
- (1) Let L be the set of all vertices of H, whose degree in H₂ is at least $2N_2$; and $R = V_2 L$. Then G[L] = K and $G[R] = K^4$.
 - (2) $G[V_1, L] = K$ and $G[V_1, R] = K^c$.
 - (3) If $N_2 > 1$, then H_1 does not have a 2-factor.

Proof. First we prove the sufficiency. Since H_2 is a s.c. graph of order $4N_2$, we have $|L| = |R| = 2N_2$. Now if $N_2 = 1$, then by (2), G has a vertex of degree 1 and therefore G does not have a 2-factor. Thus we may take that $N_2 > 1$. If now G has a 2-factor, then by (1) and (2), note that, because of |L| = |R|, a 2-factor of G cannot contain any edge connecting H_1 with H_2 , it follows that H_1 also has a 2-factor, contradicting (3).

To prove the necessity, let G be a s.c. graph of order p = 4N (> 4) without a 2-factor, and σ , a complementing permutation of G. By Lemma 1.1, $D(\sigma)$ is not strongly connected. Since $D(\sigma)$ is a complete digraph, the condensation of $D(\sigma)$ is a nontrivial transitive tournament (Harary et al. [5, p. 298]). Let C_1, \ldots, C_r , be the strong components of $D(\sigma)$ arranged in such an order that every even vertex of all $\sigma_v \in V(C_r)$ is adjacent in G to all odd vertices of every σ_v in $V(C_r)$, $1 \le i < j \le s$, where $s \ge 2$. Define V_1 to be the set of all vertices of the cycles of σ in $U(C_r) = W_1$ (say); and V_2 to be the set of all vertices of the cycles of σ in $V(C_r) = W_2$ (say). We show that V_1 , V_2 satisfy the conditions (0) through (3) of the statement of the theorem. Clearly $G[V_r] = H_r$ is a s.c. graph of order $4N_r$ (say), r = 1, 2; with $N_1 + N_2 = N$. We first prove three assertions (a), (b) and (c) below and then complete the proof.

(a) $(a_{u,i}, a_{u,i}) \not\in E(G)$, whenever $\sigma_u \in W_1$, $\sigma_v \in W_2$ and i, j even.

Suppose $e_1 = (a_{w,h} a_{w,j}) \in E(G)$, with u, v, i, j as above. Then $e_2 = (a_{w,1}, 2, a_{w,j-2}) \in E(G)$. Let $\sigma_w \in V(C_b)$ where $1 \le l_0 \le s - 1$. Note that there is a $\sigma_w - \sigma_w$ path in $D(\sigma)$, containing all the vertices of $\bigsqcup_{i=1}^{l_0} V(C_i)$ and none of $\bigsqcup_{i=1}^{l_0} V(C_i)$, where $\sigma_w \in V(C_1)$. Now obtain, by Lemma 0.1, a chain μ_1 in G by combining the cycles in this $\sigma_w - \sigma_w$ path, for which $a_{w,h} \sigma_w + \sigma_w = 1$ are end vertices.

Similarly, obtain a chain μ_2 in G by combining the cycles of σ in $\bigsqcup_{i=t_0+1}^i V(C_i)$ in which two consecutive odd vertices of a cycle of σ in $V(C_{t_0+1})$ appear consecutively and whose end vertices are the consecutive even vertices $a_{r,h} a_{r,t+2}$. Now a hamiltonian cycle μ in G may be obtained by defining

$$\mu = \mu_1 + e_1 + e_2 + \mu_2$$

and this is a contradiction.

(b) $(a_{u_1}, a_{u_2}) \notin E(G)$, whenever $\sigma_{u_1} \sigma_{u_2} \in W_1$, $v \neq w$ and i, j even.

Suppose $e_1 = (a_n, a_{n,j}) \in E(G)$, where v, w, i, j are as above. Then $e_2 = (a_{n_1+2}, a_{n_2+2}) \in E(G)$. Let ρ_1, \ldots, ρ_r be a hamiltonian circuit (the case r = 2 is also included) in C_r , with $\rho_1 = \sigma_r$, and $\rho_1 = \sigma_{n_r}$, $2 \le l \le r$. Let μ_1 be a hamiltonian chain in ρ_1 in which two consecutive odd vertices of ρ_1 say a_{n_0}, a_{n_0+2} (α odd) appear consecutively and whose end vertices are a_{n_1}, a_{n_1+2} . Obtain a chain μ_2 , by combining the cycles ρ_2, \ldots, ρ_r , in which two consecutive odd vertices of $\rho_2, b_{2,\beta}, b_{2,\beta-2}$ (say) appear consecutively and whose end vertices are $a_{n_1}, a_{n_2}, a_{n_3}$. Let μ_2 , be a hamiltonian chain in H_1 whose end vertices are consecutive even vertices of some cycle σ_w (say) of σ in $V(C_{r-1})$, a_{n_r} , a_{n_r+2} (say). We now consider two cases.

Case (i)
$$l = r$$
. Then

$$\mu^* = \mu_3 + (a_{u,\theta}, b_{2,\theta}) + (a_{u,\theta+2}, b_{2,\theta+2}) + \mu_2 - (b_{2,\theta}, b_{2,\theta+2}) + e_1 + e_2 + \mu_1$$

is a hamiltonian cycle in G. Thus we may take

Case (ii) $r \ge l + 1$. Since $(\rho_n \rho_1)$ is an arc of $D(\sigma)$ and α is odd, $(a_{n,n}, b_{n,l}) \in E(G)$ for some even l. Now let μ_n be a chain obtained by combining the cycles $\rho_{l+1}, \ldots, \rho_r$ of σ in which two consecutive odd vertices of ρ_{l+1} appear consecutively and whose end vertices are the consecutive even vertices $b_{n,n} b_{n,l+2}$ of ρ_r . Then μ_n and μ of case (i) may be combined by defining

$$\mu = \mu^* + \mu_4 + (a_{v,o}, b_{c,t}) + (a_{v,o+2}, b_{c,t+2}) - (a_{v,o}, a_{v,o+2}).$$

Now μ is a hamiltonian cycle of G, a contradiction.

(c) $(a_{u,i}, a_{v,i}) \notin E(G)$, where $\sigma_v \in W_z$ and i, j even.

This is clearly true if $n_v = 1$. So we may take that $n_v > 1$. Now it is enough to show that $(a_{u2}, a_{uv}) \notin E(G)$, whenever j is even, $4 \le j \le 4n_v$. First let $j \ne 2n_v + 2$. Then $G[B_v]$ has a 2-factor μ_0 (say). Let μ_1 be the cycle $(a_{u1}, a_{u3}, \ldots, a_{u4n_v-1})$. Let $(a_{v1}, a_{v2}, \ldots, a_{v4n_v-1})$. Now if $(a_{v1}, a_{v2}, \ldots, a_{v4n_v-1})$ is an arc of $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$. Now let $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$ is an arc of $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$ in which two let $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$ is an arc of $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$. When $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$ is an arc of $(a_{v2}, a_{v2}, \ldots, a_{v4n_v-1})$ in which two consecutive odd vertices of (a_{v2}, a_{v4n_v-1}) and $(a_{v4n_v-1}, a_{v4n_v-1})$ in which two consecutive odd vertices of $(a_{v4n_v-1}, a_{v4n_v-1}, a_{v4n_v-1})$ in $(a_{v4n_v-1}, a_{v4n_v-1}, a_{v4n_v-1},$

Thus we may take $j = 2n_y + 2$. Then

$$F = \{(a_{n,i}, a_{n,i-1}), (a_{n,2i-1}, a_{n,2i-1}), i \text{ odd}, 1 \le i \le 4n_n\} + \{(a_{n,i}, a_{n,i-2n_n}), i \text{ even}, 1 \le i \le 4n_n\},$$

is a 2-factor of $G(A, \cup B_n)$. This F and the chains μ_2, μ_3 described above may be combined to yield a 2-factor of G itself, a contradiction.

Now we are ready to prove the necessity of conditions (1) through (3). Let A^* . B^* be the sets of the odd vertices or even vertices of the cycles of σ in $V(C_i)$, respectively. Since H_i , H_i are s.c. graphs and $\sigma(A^*) = B^*$, $\sigma(B^*) = A^*$, and C_i being the bottom most strong component of the complete digraph $D(\sigma)$, it follows, by assertion (a), that $G[V_i, A^*] = K$ and $G[V_i, B^*] = K^*$. By assertions (b) and (c). $G[B^*] = K^*$, hence $G[A^*] = K$. Now it is clear that L equals A^* and R equals B^* . Thus by what has been proved above it follows that conditions (0), (1) and (2) are satisfied. If $N_i > 1$ and M_i has a 2-factor, then since C_i is a strong component, it follows, by Lemma 1.1, that the s.c. graph M_i has a 2-factor. This in turn implies that G also has a 2-factor, contradicting the hypothesis. This completes the proof of the theorem.

The following remark and Lemma will be used in Section 2.

Remark 1.3. The 2-factors obtained in the proofs of assertions (b) and (c) have two consecutive odd vertices of a cycle of σ in $V(C_i)$ appearing consecutively in them.

Lemma 1.4. Let G be a s.c. graph of order 4N, and σ , a complementing permutation of G. Suppose $D(\sigma)$ is strongly connected. Then G has a 2-factor in which two consecutive odd vertices of a cycle of σ appear consecutively, if and only if $G[A] \neq K$, where A is the set of all odd vertices of σ .

Proof. The proof is similar to the proof of assertions (b) and (c) of Theorem 1.2.

2. The structure of s.c. graphs without 2-factors: the case p = 4N + 1

Lemma 2.1. Let G be a s.c. graph of order 4N+1, and σ a complementing permutation of G. Suppose the unique fixed point σ_0 of σ belongs to the bottom strong component C. (say) of $D(\sigma)$ (the case $D(\sigma)$ is strong is not excluded). Then G has a hamiltonian cycle.

Proof. Let ρ_1, \ldots, ρ_r with $\rho_r = \sigma_0$ be a hamiltonian circuit in C_r (r = 1 is possible). Note that $\sigma = \sigma_0$ is a complementing permutation of the s.c. graph $G = \sigma_0$ which is of even order. By Lemma 0.1, there exists a hamiltonian chain μ_1 (say) in $G = \sigma_0$ whose end vertices are consecutive even vertices of ρ_{r-1} if $r \ge 2$, or consecutive even vertices of a cycle of σ in $V(C_{r-1})$ if r = 1. Since σ_0 is joined to all even vertices of ρ_{r-1} if $r \ge 2$, and also to all even vertices of every cycle of σ in $V(C_{r-1})$, the vertex σ_0

can be incorporated at the ends of the hamiltonian chain μ_i to get a hamiltonian cycle in G. This completes the proof.

Theorem 2.2. Let G be a s.c. graph of order 4N+1. Then G does not have a 2-factor if and only if G can be partitioned into two sets V_1, V_2 of order $4N_1+1, 4N_2$ respectively where $N_1+N_2=N$ and $N_1\geq 0$, $N_2\geq 1$, such that the conditions (0) through (3) of the statement of Theorem 1.2 hold.

Proof. The proof of the sufficiency is exactly similar to the proof of the sufficiency of Theorem 1.2.

To prove the necessity, let G be a s.c. graph of order 4N+1 without a 2-factor and σ , a complementing permutation of G and σ_0 the unique fixed point of σ . By Lemma 2.1, $\sigma_0 \notin V(C_i)$, the bottom strong component of $D(\sigma)$. Now define H_1, H_2 as in the proof of Theorem 1.2. Since the vertex $\sigma_0 \in V(H_1) = V_1$, it follows that H_1 , is a s.c. graph of odd order, $4N_1+1$ say. Let H_2 be of order $4N_2$, then $N_1+N_2=N$. If $N_1=0$, then we assert that G[A]=K where A is the set of all odd vertices of $\sigma-\sigma_0$ which is a complementing permutation of $G-\sigma_0$. Suppose $G[A] \neq K$. Note that $D(\sigma-\sigma_0)$ is strongly connected. Hence by Lemma 1.4, $G-\sigma_0$ has a 2-factor F in which two consecutive odd vertices of some cycle σ_1 ($\neq \sigma_0$) of σ appear consecutively. Then σ_0 may be incorporated in between these two odd vertices of F to get a 2-factor of G, contradicting the hypothesis. Thus G[A] = K. Since $\sigma(A) = B$, we have $G[B] = K^c$. Further, since $G[\sigma_0, A] = K$, we have $G[\sigma_0, B] = K^c$. Thus G satisfies the properties (0) through (3) with $V_1 = \{\sigma_0\}$, L = A, R = B and $V_2 = A \sqcup B$. Therefore, henceforth we may take that $N_1 \ge 1$.

We now prove the three assertions (a), (b) and (c) of Theorem 1.2. Suppose (a) does not hold with $\sigma_u \in V(C_m)$ and $\sigma_v \in V(C_i)$. Let $\sigma_v \in V(C_i)$, $1 \le l$, $m \le s - 1$. We consider three subcases according as l < m, l = m, or l > m.

Case (i) l < m. Then in $D(\sigma - \sigma_0)$, C_{m+1} is the immediate successor of C_m and C_r is the bottom strong component. Then, as in the proof of assertion (a) of Theorem 1.2, we obtain a 2-factor F_0 of $G - \sigma_0$ in which two consecutive odd vertices of some cycle of σ in $V(C_{m+1})$ appear consecutively. Now σ_0 may be incorporated in between these odd vertices of F_0 to get a 2-factor of G, a contradiction.

Case (ii) l=m. Let ρ_1, \ldots, ρ_r be a hamiltonian circuit in C_m with $\rho_1=\sigma_u$ and $\rho_r=\sigma_0$, $2 \le t \le r$. If t=2, then as in case (i) we get a 2-factor of G. Thus we may take that $2 < t \le r$. Now $G_1=G-\bigsqcup_{\theta=2}^t \rho_\theta$ is a s.c. graph with $\sigma-\bigsqcup_{\theta=2}^t \rho_\theta$ as a complementing permutation. As in the proof of (a) of Theorem 1.2 it can be shown that G_1 has a 2-factor F_1 (say). Now ρ_2, \ldots, ρ_r can be combined to get a cycle F_2 (note $\rho_1=\sigma_0$). Then F_1+F_2 is a 2-factor of G_1 , a contradiction.

Case (iii) l > m. Now $C_1, \ldots, C_{m-1}, C_{m+1}, \ldots, C_l$ may be combined to get a F_1 in G (note $\sigma_0 \in C_1$). Also $C_m, C_{l+1}, \ldots, C_l$ may be combined, as in the proof of (a) of Theorem 1.2, to get a 2-factor F_2 of the corresponding graph. But then $F_1 + F_2$ is a 2-factor of G_1 a contradiction.

In case assertions (b) or (c) of Theorem 1.2 are not valid, we get, by Remark 1.3, a 2-factor F_0 of $G - \sigma_0$ in which two consecutive odd vertices of a cycle of σ in the hottom most strong component of $D(\sigma - \sigma_0)$ (which is C_1) appear consecutively. Then σ_0 may be incorporated in between these odd vertices of F_0 to get a 2-factor of G, contradicting the hypothesis that G does not have a 2-factor. Thus the assertions of (a), (b) and (c) in Theorem 1.2 are valid in the case p = 4N + 1 also. Now as in the proof of Theorem 1.2, it can be shown that H_1 , H_2 , satisfy the conditions (0) through (3) of Theorem 1.2. This completes the proof of Theorem 2.2.

3. Characterization of s.c. graphs with 2-factors

In this section we prove the following:

Theorem 3.1. Let G be a s.c. graph of order p, and $\pi = (d_1, ..., d_p)$ be its degree sequence. Then G has a 2-factor if and only if $\pi - 2 = (d_1 - 2, ..., d_p - 2)$ is graphic.

We use the following three theorems

Theorem 3.2. (Kundu [8], Kleitman, Wang [6]). Let π and $\pi - k$ be both graphic. Then there is a realization of the former which has one of the latter as a subgraph.

Theorem 3.3. (Koren [7], Compare Rao, Rao [9, p. 187–188]). Let $\pi = (d_1, \ldots, d_p)$ be a graphic nonincreasing sequence. Let $\delta(j, \pi) = j(j-1) + \sum_{i=1}^p \min(d_i, j) - \sum_{i=1}^j d_i$. Suppose $\delta(j, \pi) = 0$ for some $j, 1 \le j < p$. If $d_{j+1} > j$, let r = r(j) be an index such that $d_i \ge j \ge d_{j+1}$. If $d_{j+1} \le j$, let r = j. For any realization $H = H(u_1, \ldots, u_p)$ of π with degree of $u_i = d_{j+1} \le j$, define

$$S = \{u_1, \dots, u_t\}, T = \{u_{t+1}, \dots, u_n\}, U = \{u_{t+1}, \dots, u_t\}.$$

Then

- (1) H[S] = K,
- (2) $H(T) = K^c$. If $U \neq \emptyset$, then

(3) H(S,U) = K,

and

(4)
$$H[T, U] = K^c$$
.

Theorem 3.4. (Koren [7]). Suppose $H(u_1, ..., u_p)$ realizes π , $S = \{u_1, ..., u_l\}$, $p > j \ge 1$, $T = \{u_{l+1}, ..., u_p\}$, $(r \ge j)$, $U = \{u_{l+1}, ..., u_l\}$ and conditions (1), (2) hold for S and T, and if $U \ne \emptyset$, then conditions (3), (4) hold as well. Then $\delta(j, \pi) = 0$.

Proof of Theorem 3.1. The proof is by induction on p. For p=4, the result is vacuously true. Assume the result for all values less than p and let G be a s.c. graph with degree sequence $\pi = (d_1, \ldots, d_p)$ such that $\pi - 2$ is also graphic. Suppose G does not have a 2-factor. Then by Theorems 1.2 and 2.2, V(G) can be partitioned

into two sets V_1 , V_2 of order $4N + \delta$, $4N_2$ (where $\delta = 0$ or 1 according as p is 4N or 4N + 1 respectively) such that the conditions (0) through (3) of Theorem 1.2 hold. Put

$$S = \{u_1, \ldots, u_{2N_2}\},\$$

$$U = \{u_{2N_2+1}, \ldots, u_{n-1}\},\$$

$$T = \{u_n, \ldots, u_p\},\$$

where $\theta = 2N_2 + 4N_1 + 1 + \delta$.

Now it is not difficult to check that for $u \in S$, $v \in U$ and $w \in T$, we have degree u > degree v > degree w where the degree is to be taken in the graph G. Further, G satisfies conditions (1) through (4) of Theorem 3.3. Hence, by Theorem 3.4, $\delta(2N_3, \pi) = 0$. Now by Theorem 3.2, π has a realization G^* (say) such that G^* has a 2-factor. Since $\delta(2N_2, \pi) = 0$, it follows by Theorem 3.3, that G^* satisfies the conditions (1) through (4) of Theorem 3.3 (with H replaced by G^*). Since G^* has 2-factor, it is evident that the graphs $G^*[U]$, $G^*[S \sqcup T]$ have 2-factors. By the structure of G and G^* it is also evident that degree sequence of $G^*[U] = G$ degree sequence of $G^*[U] = G$ degree sequence of $G^*[U] = G$. Since $G^*[U] = G^*[U] = G$. Since $G^*[U] = G^*[U] = G$. Since $G^*[U] = G^*[U] = G$.

Thus H_i is a s.c. graph with degree sequence π_i such that $\pi_i - 2$ is graphic, i = 1, 2. Hence by induction hypothesis, H_i has a 2-factor F_i (say), i = 1, 2. But then $F_1 + F_2$ is a 2-factor of G, a contradiction. This completes the proof of the theorem.

Theorem 3.5. Let G be a s.c. graph of order $p \ge 8$ such that minimum degree of $G \ge p/4$, then G has a 2-factor.

Proof. Suppose G does not have a 2-factor. Then let V_1 , L, R be as in Theorems 1.2 and 2.2. It is clear that $q(H_2[L,R]) = 2N_2^2$ (where q = number of edges). It follows that for some vertex w of R, $q(H_2[L,\{w\}]) \le N_2$. Since G[R] is the empty graph, we have $q(G[L,\{w\}]) \le N_2$. Thus minimum degree in $G \le N_2$. Since $p = 4N_1 + 4N_2 + \delta$, it can be easily seen that $N_2 < p/4$, a contradiction to the hypothesis.

To show that the result is the best possible, we consider two cases:

Case (i) p = 4N. A required graph G whose vertex set is $V = \{u_1, \ldots, u_p\}$ may be constructed as follows: Define $V_1 = \{u_1, u_2, u_3, u_4\}$, $V_2 = V - V_1$,

 $G[V_1]$ is the s.c. graph of order 4, $L = \{u_5, ..., u_{2N-2}\}, R = V_2 - L;$ $G[L] = K, G[R] = K', G[V_1, L] = K,$ $G[V_1, R] = K'$ and

G[L, R] is the disconnected graph having exactly two components each of which is regular of degree N-1. Clearly, G is a s.c. graph of order 4N in which minimum degree is N-1. Further, G does not have a 2-factor.

Case (ii) p = 4N + 1. A required graph G whose vertex set is $V = \{u_0, ..., u_{4N}\}$ may be constructed as follows:

$$V_1 = \{u_0\}, \ V_2 = V - V_1;$$

 $L = \{u_1, \dots, u_{2N}\}, \ R = V_2 - L;$
 $G[L] = K, G[R] = K', G[V_1, L] = K, G[V_1, R] = K', \text{ and}$

G[L, R] is the disconnected graph having exactly two components each of which is regular of degree N. G is a s.c. graph in which minimum degree is N and G does not have a 2-factor.

4. Epilog

The problem of characterizing s.c. graphs with k-factors seems to be much deeper. In this connection we take the risk of conjecturing the following:

Conjecture. Let G be a s.c. graph of order p, π its degree sequence. Then G has a k-factor if and only if $\pi - k$ is graphic.

In a forthcoming paper Rao [12] we characterize, by using the techniques developed in the present paper, hamiltonian s.c. graphs. For a characterization of the degree sequences of self-complementary graphs, see Clapham and Kleitman [2].

References

- [1] C.R.J. Clapham, Hamiltonian arcs in self-complementary graphs, Discrete Math. 8 (1974) 251-255.
- [2] C.R.J. Clapham, D.J. Kleitman, The degree sequences of self-complementary graphs, J. Combinatorial Theory, Ser. B 20 (1976) 67-74.
- [3] R.A. Gibbs, Self-complementary graphs, J. Combinatorial Theory, Ser. B 16 (1974) 106-123.
- [4] F. Harary, Graph Theory (Addison Wesley, Reading, MA, 1972).
- [5] F. Harary, R.Z. Norman, D. Cartwright, Structural Models: an Introduction to the Theory of Directed Graphs (Wiley, NY 1965).
- [6] D.J. Kleitman, D.L. Wang, Algorithms for constructing graphs and digraphs with given valencies and factors, Discrete Math. 6 (1973) 79-88.
- [7] M. Koren, Sequences with a unique realization by simple graphs, J. Combinatorial Theory, Ser. B
- [8] S. Kundu, The k-factor conjecture is true, Discrete Math. 6 (1973) 367-376.
- [9] A.R. Rao, S.B. Rao, On factorable degree sequences, J. Combinatorial Theory, Ser. B 13 (1972) 185-191.
- [10] S.B. Rao, Cycles in self-complementary graphs, J. Combinatorial Theory, Ser. B, in print.
- [11] S.B. Rao, Characterization of forcibly self-complementary degree sequences, Discrete Math. submitted for publication.
- [12] S.B. Rao, Solution of the hamiltonian problem for self-complementary graphs, J. Combinatorial Theory, Ser. B, in print.
- [13] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358.
- [14] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.
- [15] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canad. J. Math. 6 (1954) 347-352.
- [16] W.T. Tutte, Spanning subgraphs with specified valencies, Discrete Math. 9 (1974) 97-108.