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CODES ASSOCIA TIPS GENERALIZED
POLYGONS

1. INTRODUCTION

Throughout, X denoltes a finite (s,t}-generalized 2m-gon (P.L)s.t,m > 2, ie.
a finite linear incidence system such that (i) each element of P, called points
(respectively each element of L, called lines) is incident with exactly 7 + 1 lines
(respectively, s + | points); and (ii) the associated bipartite graph on P u L has
diameter 2m and girth 4m ([2,p. 233)). We denote by d the distance on this
bipartite graph. By 5], a gencralized 2m-gon with 5.1 > 2 exists only for
m = 2,3.4. For more on generalized polygons, see [7], [8], [9] and [10).

Let F be a field. FP denotes the vector space of F-valued functions on P with
the inner product defined by f-g = £, f(x)g(x). g€ FP.1,€ FP denotes the
indicator function of a subset 4 of P.C; = Ce(X)and [1, = IT,(X) denote the
vector subspaces of FP gencrated by {/;:leL} and {n, = L{l;:xelel):
x€ P}, respectively. For any subspace M of FP, M* denotes the dual
(=orthocomplement) of M in FP with respect 1o the inner product defined
above. We denote the dual incidence system of X by * X (note that * X is a finite
(t.sFgeneralized 2m-gon) and denote C(*X) and M*X) by *C, and *N,
respectively. ¥ = Ny, | deniotes the (0, I)-incidence matrix of X with rows
and columns indexed by points and lines respectively. Thus C,*C,.,Tl, and
*11, are the column spans over F of N,N', NN" and N'N, respectively.

In Section 2, we obtain bounds for the minimum weight of C; and C} for
any field F,and, under the assumption that X is regular (sec 2.1 and 2.2 below),
we describe the words of least weight in C; and C} (Theorem 2.8). It is
interesting lo note that when X is regular, the supports of minimum-weight
words in both C; and C; are independent of the field F. In Section 3, for all
fields F except those whose characteristic divides an explicitly given lunction
of the parameters m, s, t, (i) we show that dim(C;) = Rank4(N) (Theorem 1.6),
(ii) determine C, n C (Theorem 3.8) and (iii} show that the minimum-weight
words of C} generate Cj for regular X {Theorem 3.10). Though our methods
and results are rather elementary, our principal object in this note is to isolate
the values of the characteristic of F for which the determination of the
dimension and structure of C, is (perhaps) nontrivial. A beginning has been
made in (1, Theorem 4] on one of these nontrivial cases.

2. MINIMUM-WEIGHT WORDS OF C, AND C}
2.) DEFINITIONS. A subset T of Pisa{}, 1)-subpolygon of X ifthe incidence
system (T, {{n T:{e L, I T| > 1})is a(1,¢) generalized 2m-gon. X is said to

Geometrige Dedicata 27 (1988), 1-8.
© 1988 by Khuwer Academic Publishers.



2 BHASKAR BAGCHI AND N.§S. NARASIMHA SASTRY

be regular if cach pair x, y of points of X with d(x, y) = 2m is contained in
a (necessarily unique) (1, f}subpolygon of X.

2.2 EXAMPLES. Among the known generalized polygons, the regular ones
are: (i) the (g, g)-gencralized 4-gon W(q) = *Q(4.q) for g a prime power ([7, pp.
43 and 511); (ii) the (4%, q)-generalized 4-gon H(3,4%) = *Q(S, q) with g a prime
power ([7, pp. 46 and 51]); (iii) the 'usual’ {¢,q)-generalized 6-gon associated
with the simple group G,(q) ([8. (2.12), p. 233)), g a prime power; (iv) the (¢°.q)
generalized 6-gon associated with the simple group *D,{q)([8.(2.12), p. 233]),
g a prime power: and (v} the (¢%,9)-8 lized 8-gon jated with the
simple group ?F (qg). ¢ an odd power of 2 (its regularity follows from the
commutation relations in [ 10] and the transitivity of 2F (q) on pairs of points
at distance 8).

LEMMA 2.3. Suppose X is regular. Let x, ye P with d(x.y) = 2i (0 < i< m)
and TS P with |T| =5 + 1. Then,

(a) thereare exactlys™~'(1,1)-subpolygons of X containing both x and y: and
() Tisaline ifand only if each pair of distinct points of T is contained ins™~"
(1,tysubpolygons of X.

Proof. Routine.

LEMMA 2.4. Let Q) # S S P be such that no line of X meets S in exactly one
point. Then |S] > 2(™ ~ 1){t ~ 1)™", and equality holds if and only if S is
a (1. t}-subpolygon of X.

Proof. Fix ae$ and define A_, = O, A4, = {a}. For | <p<m—1, con-
struct 4, S S by choosing exactly one point from each line / such that [ is
incident with a pointin 4,_, but not incident with any point in A, _,. Clearly
14,0 =(t+ 1)*"" for 1 <p<m—1. Now, cach of the (t+ 1)"~" lines
I-such that !isincident with a point in A _, but not incident with any point in
A, -meels S\U,'_'o' A, but not necessarily at distinct points. Since at most
t + 1 of these lines are incident with a point, we have

m-l
1512 T 14l+ 1t =2 -1""
i~0

and equality holds iff S is a (1, ¢}-subpolygon.

LEMMA 25. Suppose X is regular. Let O #£ AS P be such that no
(1,1)-subpolygon of X meets A in exactly one point. Then |A| 2 s+ 1 and
equality holds if and only if A is a line.

Proof. We fix x€ A and use Lemma 2.3(a) to estimate

a=|{{y0):yeA,y # x,{x,y} = & and § is a (1, t)}subpolygon}|
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in two ways to get s™ < a < (4| — )™=, whence |4| 2 s+ |, By Lemma
2.3(b), equality holds iff A is a line.

The following Lemma appears 1o be well known among cxperts (see, for
example, (8, p. 241] for the case m = 3),

LEMMA 26, Let T be a (),1)-subpolygon of X and let A and B be the two

equivalence clases in T under the equivalence relation x ~ y if and only if d(x, y)

is a multiple of 4 (x, y € T). Then the incidence system (A, B), with collinearity in

X as the incidence, is a (t,t)-generalized m-gon. In consequence, I, — 1,€ C}.
Proof. Routine.

2.7 NOTATION. We denote the word /,, — /, of Lemma 2.6 by wy . Clearly
wy is determined by the (1, t)}-subpolygon T only up lo sign.
THEOREM 2.8. Let F be any field. Then:

(a) the minimum weight of Cy is at least 2(t™ — 1)(t — 1) * and any word of
C# of weight 2™ — 1)(t ~ 1) " is of the form A~ wy for some 0 # i€ F and
some (1,t)-subpolygon T of X in particular, equality holds if X is regular;

(b) the minimum weight of C s is at most s + 1, and if X is regular then equality
holds and any word of C, of weight s + 1 is of the form 1-1, for some
0 # A€ F and some line | of X.

Proof. Note thatif A and S are the supports of a nonzero word of C, and of
C#, respectively, then |4 §| # 1. Hence, by Lemma 2.6, A and § satisfy the
hypothesis of Lemma 2.5 and Lemma 2.4, respectively. Hence the result
follows from Lemmas 2.4 and 2.5.

3. DimeNsION oF C

3.1 NOTATION. For0 < i < m, A, denotes the (0, 1}-adjacency matrix of the
relation R, = {(x.))eP x P:d(x,y)=2}. (P.R:0<i<m} is a P-poly-
nomial scheme (Proposition 1.1 in [2. p. 190]) Let ¥; be the uniquely
determined rational polynomial of degree i such that V(4,) = 4,0 i< m.
Define f,(s.0) to beequalto ifm = 1,5 + tifm = 2,s* + st + 1*ifm = Jand
(s + )(s? + 3} if m = 4. For 2 < m < 4, define F,(s,t) by

Fofst) =Pl (s + 1) {1+t fu o (s fols.0)7']

In the omnibus lemma below, we coliect details about the above-mentioned
scheme which will be needed for our later arguments.

LEMMA 3.2. (a) The eigenvalues of A, are:
(@) st + 1), s— 1 and —t—1 with the corresponding multiplicities
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1, sifs+ e+ DAs+0) and st + s + )
fm=2
(i) e+ 1, s—1 4060V, s—1—(s)'" and —t — | with the corres-
ponding multiplicitles
1, sels + Dt + (st + (0 + 1)2s + ¢ + (s)'?),
sifs + Dt + Dist =0V + 1)/2s + 1 — (50" and
S+ st 4 DAS® + st +1%)
ifm=3; and
(i) ste+ s —Los— 1+ 20", s—1— (250" and —1 -1 with the
corresponding multiplicities
1, stls+ 1+ Dis*e? + /s + 1)
stls + (0 + Dist + Dst + 1+ 2s0V)dls + ¢ + (2s)43),
sifs + 10+ Ust + Dist + 1~ 201245 + ¢ — (25)"72) and
s*st + 1?2+ (s + 1)s® + 1)
ifm=4

(b) Ranky(N) = F (s.1).

(c) Let E=EMg(—1f s"""A;. Then EN = 0 and the eigenvalues of E are
0 and (s + 1)f.(s,t) with the corresponding multiplicities F,(s,t) and |P| —
Fals.t).

Proof. (a) The eigenvalues of 4, with their multiplicities are computed using
Theorem 1.3 in [2, p. 197]. Here, the polynomials V, are given by ¥, = o, W,
(0 < i< m),wherea, = 1ifi <manda,, =t + 1)”"ifi = mthe W/sareas
follow:

Wl)=1, W(Y)=Y, W)=Y —(s—1)Y-st+}),
WyY)= Y3 =2s — Y24 (s =25t = 35+ )Y + s{s — )t + 1),
WoY)=Y*=3{s = )Y* + (35> ~ 3Ist ~ Ts + J¥?

~{s—1)s* —dst—4s+ 1)Y

+5{t+ st~ 52+ 25~ 1).

{b) Since NN' = A, + (t + 1)/ and Rankg(N) = Ranky(NN), (b) is im-
mediate from (a).

(c) The verification that EN = 0 is routine. Put G = EfLqo(—1)'s""'V,.
From (a) and the expressions for V, given above one sees that G(2) = 0 for each
cigenvalue A3 —t—1 of A4;, and G(—t—1)=(s+ 1)f,(s,1). Since
E = G(A,), {c) follows from (a) and (b).

LEMMA 33 dim(C,n C}) = dim*C, — dim*T1, = Rank{(N’) — Rank;

(N'N) and dually, dim(*C,n *C#) = dim Cy ~ dimTl, = Rank,(N) -
Rank,(NN').
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Proof. Lett beany anti-isomorphism from X to *X. Let ¢: FP — *C, be the
linear map defined by #(I,,y) = /1., x€ P. Clearly the kernel of t is C} and
#Cy) = *I1;. Hence we have

dim(C; 0 C}) = dim Cp — dim *T1, = dim *C, - dim *IT,..
LEMMA 34. For leL and i odd (1 < i < 2m), let A{l) = {xe P:d(x,l) = i}.
Then 1, (1)e Cy. In consequence, I,€Cy.

Proof. Sinoe I, = Z{I,(D): 1 <i < 2m,iodd} forany fixed | € L, the second
assertion follows from the first. The first follows by induction on i since
AN =1land

X
€+ 1 Yl (41, (0 =3 {1, ecL and die,]) < 2k)eCy,
=

for0 <k <mandleL.

PROPOSITION 3.5. Let A be a square matrix of order v with integer entries
such that all the eigenvalues of A are integers. Let p be a prime. Assume that
either (a) or (b) stated below holds:

(a) pfs strictly larger than the number of distinct eigenvalues of A which are
multiples of p.

(b) A is symmetric with constant row sum k; p divides k and p does not divide
v: further, p equals the number of distinct eigenvalues of A which are
multiples of p.

Then the p-rank of A is greater than or equal ta the sum of the multiplicities of
those eigenvalues of A which are not multiples of p. In consequence. if none of the
nonzero eigenvalues of A is a multiple of p then the p-rank of A equals the Q-rank
of A.

fProoﬁ Let 4,1 < i< r, be the distinct cigenvalues of A with the corres-
ponding multiplicities p{f < i < r). Let us say pjJ, for | <1< qand pt4, for
g+igigrPutp=ZL p,.

If (a) holds, then p > g and so we can choose an integer nsuch that n # 1/p
(modp)for | < i< q.PutB = A — npl.Thenp** ' fdet B. Hence by the Smith
normal form argument (see [6, p. 57] for example), we get rank(4) =
rank (B) > v — .

If (b) holds, then A commutes with the all-one matrix J, and & is one of the
eigenvalues J, (1 € € g)say k = A,, corresponding to the afl-one eig .
Since g = p and p4v, we can choose integers #' and n such that 4,/p + n'v =
Ay/p (mod p) and n # 4,/p (mod p) for 2 i< q. Put B=A +n'pJ —npl.
Then again p** '+det B, and hence the result follows as before. If p does not
divide any of the nonzero eigenvalues of A, then (a) holds and hence
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Rank,{4) > Rankg(A). Since Rank (4) < Rankgf(4) for any integer matrix 4,
the last statement follows.

THEOREM 3.6. Let F be a field of characteristic p. Then dimg{(C;) € F (s.1)
and equality holds if p does not divide [ (s,1).

Proof. If p=0, then this is Lemma 3.2(b). So let p be a prime. Since
dimg(C¢) = Rank (N) < Rankg(N), in view of Lemma 3.2(b). we need only
prove the statement aboul equality. So let p4f(s.1). Since NN' = A, +
{t + 1)I, we know all the eigenvalues of NN’ by Lemma 3.2(a), and they are all
integers (since the multiplicities in Lemma 3.2(a) are integers, st is a perfect
square when m = 3 and 25t is a perfect square when m = 4). f,(s.1) is the
product of the distinct eigenvalues of NN’ other than 0 and (s + 1)(t + 1).

Case 1. ptis + ) + 1). Since p.t [ (s, 1) by hypothesis, in this case p does
not divide any nonzero cigenvalues of NN'. Hence, by Proposition 3.5,

Rank,(N) > Rank (NN') = Rankg(NN') = Ranky(N) = F(s.0).

Case 2. pl{s + 1)(t +1). Without loss of generality we can assume Lhal
plt + 1. (Otherwise apply the following argument to *X and note that
dim C; = dim*C,.) Hence I, € *C}, and so by Lemma 34, I, e *C,n*Ct.
Hence, by Lemma 3.3,

n dim C; = Rank (N} 2 Rank (NN') + L.
Since (a) and (b) of Proposition 3.5 hold for 4 = NN’ when p # 2 and when
p = 2, respectively, Proposition 3.5 yields:

2) Rank (NN') 2 F (s.1) - 1.
Combining (1) and (2), we are done.
3.7 Examples. By [3, p. 5531, [4. p. 398] and [9, p. 309, the inequality in
Theorem 3.6 holds with equalily for p = 2and X = W(2), W(3), 5,2) and the
(2,2)-generalized 6-gons, although 2 divides f3,(2.2) =4, /;(3.3) = [,2.4)= 6
and f3(2,2) = 12. On the other hand, by Theorem 4 in [1], the equality does
not hold for p = 2 and X = W(q) when g > 2 is a power of 2.

THEOREM 38. Let F be a field of characteristic p not dividing f,(s,1\ Then,
() if p divides s + 1, Cen Cp = (1,) and Cp + Cp = (1,)*: and
(b) if p does not divide s + 1, C;n C} = (0) and C,® C} = FP.

Proof. (a) By the argument in the proof of Case 2 of Theorem 3.6, pls + |
implies /,€ C;n C;. On the other hand, Lemma 3.3 and (2) in the proof of
Theorem 3.6 (applied to *X) yield:

dim{C, 1 C}) = Rank,(N') — Rank (NN') < 1.

Hence (a) follows.



CODES ASSOCIATED WITH GENERALIZED POLYGONS 7

(b) Let pts + I. Let CLE) be the column span over F of the matrix £ in
Lemma 3.2(c). Since EN = 0,CdE)  C}. By Lemma 3.2(c) Proposition 3.5
and Theorem 3.6, we get E? = 2E, where x = (s + 1) ,{s.1), and dim C{E) =
Rankg(E) = dim C¢. Hence CJ{E) = C§. Hence xe C} = x = Ey for some
y€eFP= Ex = E'y = aEy = ux. On the other hand, since EN = 0. xeC, =
Ex=0. So xeC,nC} implies 2x = 0. Since x # 0 in F. it follows that
CrnCi =40,

3.9 REMARKS. The proof of Theorem 3.8(b) shows that when char(F) does
not divide(s + 1) f{s.1), the columns of the marix E form a set of generators of
Ct.

THEOREM 3.10. Let X he regular and suppose the characteristic p of the field
F does not divide (s + 1) f(s.1). Then C} is generated by the set of minimum
weight words in C§.

Proof. Let A be the subspace of FP generated by the set {w,: T is
a (1,1}-subpolygon of X}. In view of Theorem 2.8(a), we have to show that
Ap = C}.Clearly, A < C}. So it suffices to show, in view of the remarks in 3.9
above, that dim A > Rank ,(E).

Let M be the matrix whose rows are indexed by the poinis of X, whose
columps are indexed by the (1, r}-subpolygons of X, and whose (x. T)thentryis
wy (x). Thus A is the column space of M, and so dim(4;) = Rank{Af). Using
Lemma 2.3, itis easy to check that MM’ = E. Hence,dim(A,) = Rank {M) >
Rank{E). So we are done.
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