AN ALGORITHM FOR COMPUTING THE
VON NEUMANN BALANCED GROWTH PATH

By Dea KUMAR BOSE AND SaANsIT Bosg!

THIS NOTE DESCRIBES a computational procedure for finding the maximal balanced growth
path in the von Neumann model—more precisely, in its version given in Gale {2)'—by means
ofp ic linear progr ing (LP). The LP problem corresponds to a two-period version
of the von Neumann mode] with the growth rate (reated as a fixed parameter and the total
return to the activities in the second period as the maximand, where the rates of return are
simply taken over from an arbitrary normalization rule used in defining the von Neumann
balanced growth path. Next. the growth rate is varied in such a way as to generate a sequence
of LP problems with their solutions converging to a limit. The desired balanced growth path
is obtained from the solution of the limiting LP problem.® Thus, the basic idea behind our
algorithm is simple and intuitive: so far as one is i d only in the balanced growth solu-
tion of an optimizing dynamic model (with single-period lags and constant coefficients),
one can truncate its horizon to two periods only. The optimum solution of the two-period
model, for an appropriate obj function and an appropriate set of boundary conditions
(both unknown), will always yield the optimum balanced growth path of the original model.
In full generality, a computational procedure based on this principle will have to search for
both sets of unknowns. In the present case, it lurns out that all the requisite variations in the
boundary conditions for this search can be confined to a single coefficient, the growth rate,
while the objective function can be specified, once and for all, solely with regard to anarbitrary
normalization rule.

That was by way of introduction. Let us now define the problem in formal terms. The von
Neumann balanced growth path consists of a scalar, « (the expansion factor), and a semi-
positive n-vector, x (the intensity vector), such that « is a maximum subject to:

(1) (B—ad)x 20

where Aand Bare respectively the input and output matrices (both oforderm x n)of the mode!
(rows of Aand B correspond to dities and col to activities). Following Kemeny,
Morgenstern, and Thompson (4] and Gale [1), we shall assume each row of Band each column
of A 1o be a semi-positive vector (of appropriate dimensions), meaning, respectively, that each
commodity is producible by some activity and that each activity uses some commodity as
input, It is known thal, under these assumptions, a solution to the problem exists, and has
x> 0. Note that in the solution  is determined at most up to positive scalar multiplication,
and hence can be normalized in any fashion. We shall do this by requiring:

) ex=1
where e is the n-vector with all its components equal to unity. (There is nothing special about
this ; any positive vector can replace e in (2), provided that the same is done wherever e occurs
below.) We shall denote the set of {n + 1) vectors, (¢, x) 3 0, satisfying (1) and (2) by N, and
iits subset for which a takes on the maximum value, by N*. Our problem, then, is to find an
(x, x) € N*®. The maximum value of a will be denoted by a®.

I We wish to thank Messrs. B. C. Sanyal and M. Dey for computational assistance at various stages

of the work.

2 Thye reader is referred 10 Gale[2, pp. 310-316) for the details of the model. Much of our terminology
and notation is also taken from this source.

3 Recently, Hamburger, Thompson, and Weil (HTW) (3] proposed an algorithm for the tame
problem, which also consists of solving a convergent sequonce of LP problems. Our method of con-
structing the sequence is broadly similar to theirs (some differences will be noted later), but in other
respeets the 1wo algorithms are completely different.
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Our LP problem is the following : find two n-vectors, zand y, z 2 0, such that ey is a maxi-
mumsubjectto:
3 Bz— Ay 20,
@ az~y<€0, and

%) ezg 1,
where a 2 Qis taken as a parameter. For a given «, we shall denote the problem by P, and its
i objective function value by V(). One easily verifies the correspondence of P, to

its earlier specification by interpreting zand y as the intensity vectors of a von Neumann model
for any two successive periods.

To begin the analysis, we immediately find that for all &, (i) P, bas (z, ) = (0, 0) as a feasible
solution, and (ii) by (3),(5), and the assumptions on 4 and B stated earlier, ey is bounded above
on the set of feasible solutions of P,. It follows that V(x) is a well-defined no-negative number
for all a. Also, ¥(«) is nonincreasing in « since any (z, y) which satisfies (3}(S) for a given a also
satisfies (3)5) for a smaller a. Our next result can be stated as a lemma.

LemMA: For any a 2 0, either V(a) > 0, implying V(x) 2 «* 2 a, or V(a) = 0, implying
o> a®

Proor: We have already scen that either V() > 0 or ¥(a) = 0 for any a, Let ¥(«) > 0 and
(z, y) be the optimum solution of P,. Then ez = 1 from (5)and V{a) > 0, while Bz 2 Ay 2 adz
by (3) and (4). Hence (&, 2) € N, so that a § a®. However, for all (&, x) € N, it is easily seen that
(2, y) = (x,ax) is feasible for P,, and hence V(a) 2 aex = a by (2),ic., V(@) 2 aforalla § o*.
Since V(x) is non-increasing, one must have V(a) 2 a* 2 a whenever V(x) > 0. It follows
that if V(a) = 0, then a > a®, for otherwise, ¥(x) 2 «* > 0, a contradiction. Q.ED.

As a corollary, we note that if. V(@) = a, then « = a*, although the converse of this is not
aecessarily true. However, regardless of whether V(a*) = a* or V(a*) > &, if (2, y) is the
optimum solution of P, then (a*, z) e N*. Hence our task boils down to finding «® whence
an x, satisfying (#*, x) € N*, is obtained simply by solving P,.. We shall do this by constructing
a sequence, {a,}, where (i) each a, lics between a least upper bound, Uy, and a greatest lower
bound, L,, ona*, obtained from the values ofa,and V(x,) for i § k:and(ii) U, and L, approach
a common limit as k — co. Specifically, we work through the sequential relation:

(6) %y = (U + L)2,

where
o ifVig,) >0,
L =
noh {L.-, if Via) =0,
and
® U= {min[V(a.), Uiyl ifV(m) >0,
P, if V(a,) = 0.

To initiate the algorithm, choose &, small enough (@, = 0 will always do) such that V{go) > 0,
and put U, = V(a,), Ly = a,. The algorithm continues so long as (U, — L,) is larger than
some preassigned number indicating the degree of approximation sought. Our main result is
the following theorem:

THBOREM : The sequence {a,} converges to «®.

Proor: It follows from the lemma and the definitions of U, and L, that U, 2 a* 2 Ly,
and heace from (6) that U, 2 «,,, 2 L, at each k. Hence all that is to be proved is that U, and
L, approach a common limit. From (6)-(8) it is seen that

Ui — L €W - L2
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(with equality except if U, > V{ay, ) > 0). Thus, (U, — L,) decreases so long as it is positive,
and hence must converge 1o zero. 0.ED.

This completes our stated job. We shall now briefly compare the present algorithm with that
proposed in [3] (see footnote 3), and then turn to the complementary problem of finding
the von Neumann interest rate and price vector. The HTW algorithm describes an iterative
procedure to find an « such that the value of the matrix game, defined by (B ~ «A) as the
pay-offl matrix, is zero. The game is solved by LP and, as in our case, « for the next iteration
is set at the midpoint of an upper and a lower bound on a®, discovered from the previous
iterations. However, unlike ours, the HTW algorithm changes only one of the bounds at each
jteration and repl it by &, and quently reduces ihe range, within which «® must lie,
by half. In contrast, we sometimes change both the bounds simultaneously—and reduce the
range by more than half—and at other times follow HTW in reducing the range by half. Hence
the rate of convergence is expecied o be faster in the present algorithm,* although this does not
necessarily imply a greater overall computational efficiency. To be fair, we note that our
LP problem has more constraints and variables than that of HTW and that, on the related
question of finding the von Neumann prices, our algorithm will generally require additional
computations (indicated below), while the HTW algorithm solves for the von Neumann
activity levels and prices simultaneously.

Let us now turn to the von Neumann price problem: find a scalar, f (the interest factor),
and a semi-positive m-vector, p (the price vector), such that B is a minimum subject to:

9 pB - B4} £ 0.

1t is again known that a solution to this problem exists and satisfies 0 < 8 £ «*. Since f > 0,
the problem is equivalent 10 one of maximizing 8 (= 1/8) subject to: (4’ — 6B')p’ 2 0 (the
primes denote transposes). This is formally the same as the earlier growth problem. Hence if
we replace a, 4,and Bin (35) by 8, B', and A’ respectively, then we can use our algorithm to
find # and p. Note that once a® is known, one can always initiate this algorithm by setting
6 = 1/a® £ 1/, so that ¥(6) > 0.In fact, if «* = B, then p is obtained in the very first step of
the algorithm, and no further iteration is necessary.

However, a more interesting question in this connection is whether (8, p) can be computed
directly from the solution of the dual LP problem associated with P,, while solving for an
(«*, x) € N*, rather than by an independent run of the algorithm. The answer, in general, is no,
and the reason is not far to seek. The objective function of P, assigns an arbitrary rate of return
to each activity in the second period, bearing no relation to the rates of return under the von
Neumann prices, ie., to pB. Clearly, these objective function coefficients will influence the
optimal values of dual variables corresponding (o P... The latter, consequently, will give us a
solution of the von Neumann price problem onty under rather special and arbitrary conditions.

These conditions are easily discovered. Let u (an m-vector) and w (a scalar) be the optimum
dual variables associated with (3) and (5) respectively for @ = a*. It is then seen from the dual
constraints that:

(10) u(B — wd) €0, u semi-positive,
and from the duality theorem of LP that:
(in u(B — a’A)z = a* — w.
where z comes from the optimum solution of P, (and hence (a*,z)e N*). It follows that
{w, u) is a solution of the von Neumann price problem if and only if w = a* = B, where the
two equalities have 10 be treated independently. for w = V(x®) 3 a* and a* 2 8.
Onan interpretive level, the condition a* = § can be directly inferred from the fact that each
activity shows a positive return in the objective function of P,. Hence so must they under the
4 Professor Weil has since pointed out 10 us that the rate of convergence in both algorithms can

be improved by adopting the Newton-Raphson method of iteration instead of (6) which is common
to both.
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von Neumann prices—ie., pB must be positive—if we are to calculate p from the optimum
solution of the dual to P.. It is well known that if pB is positive, then «® = f. The other con-
dition, V(a®) = a*, is, so far as we can see, a reflection of the arbitrariness of the objective
function of P, itself, It is, however, interesting to see that if this condition alone is satisfied,
then the right hand side of (11) is zero. In other words, (z, u) in this case is an clement of the

so-called von Neumann facet,
Indian Statistical Institute
Manuscript recelved August, 1970 revision recefved Aprll, 1971.
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